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ABSTRACT 

Hierarchical normal mode refinement of anisotropic thermal 
parameters for supramolecular complexes 

by 

Zhenwei Luo 

In this thesis, we report a novel normal-mode based protocol for modeling 

anisotropic thermal motions of supramolecular complexes in x-ray crystallographic 

refinement, named HNMRef. The method models not only the global movements of 

the whole complex but also the deformational patterns of substructures. Compared 

with another widely adopted anisotropic thermal parameters refinement method—

multi-group TLS, HNMRef delivers much more accurate thermal parameters for the 

complex and greatly simplifies the choice of substructure partition schemes. The 

effectiveness of the procedure is demonstrated on the refinements of a set of 

complexes with moderate resolutions. This protocol was shown to be able to 

significantly reduce the values of 𝑅free and improve the electron density maps. 

Moreover, the distribution of anisotropic thermal ellipsoids was much more 

consistent throughout the whole structure and agreed with the functional structure 

movements. We expect this protocol to be very effective in the anisotropic 

refinements of very large and flexible complexes with low or moderate-resolution x-

ray diffraction data. 
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Chapter 1 

Introduction 

The diffraction intensity data collected in x-ray crystallography experiment is 

not a static snapshot of a single structure, but a time and space average of a set of 

conformers (Painter and Merritt, 2006a). This information contained in 

experimental data is routinely modelled by atomic displacement parameters (ADP), 

which give the mean square deviation of each atom from its average position, or the 

variance of atomic position assuming it is distributed according to gaussian. The 

various conformers of a protein mainly originate from its motions, which range 

from high frequency atomic vibrations to low frequency collective movements. 

Among those forms of motions, the lowest frequency collective displacements 

contribute the most to a conformal change (Petrone and Pande, 2006). For large 

complexes comprised of highly flexible components, their low frequency 

movements are often hierarchical and anisotropic (Lu and Ma, 2005; Painter and 

Merritt, 2006a). The hierarchy of complex motions means that the conformers of 



 2 

subunits vary according to their own low frequency modes and the whole structure 

also oscillates by its low frequency modes. Both of them contribute nontrivially to 

the large scale conformal changes. While the anisotropy mainly results from the 

orientation-specific nature of the low frequency modes of whole structure, such as 

hinge-bending motion between two subunits. A side effect of those large scale 

movements is that they deteriorate the resolutions that crystals can diffract to. To 

properly model the position uncertainties resulting from those motions in large 

complexes, first of all, anisotropic ADPs should be used. However, a full-scale 

individual anisotropic refinement requires three positional and six thermal 

parameters for each atom, thus significantly lowering the data to parameter ratio 

and increasing the risk of overfitting. Secondly, the ADPs of large complexes should 

represent the various hierarchies of their motions. 

To address the overfitting problem in the anisotropic refinement of 

supramolecular complexes with moderate resolution, a number of methods have 

been proposed to reduce the number of parameters required for anisotropic 

refinement. These methods were inspired by the fact that the motions of a group of 

atoms can be well approximated by the linear combination of low frequency modes 

of this group (Brooks and Karplus, 1983; Go et al., 1983; Levitt et al., 1983). This 

formalism allows us to optimize the linear coefficients of low frequency modes 

when performing anisotropic refinement, instead of refining six ADPs for each atom. 

Two commonly used models in crystallography are TLS 

(translation/libration/screw) (Schomaker and Trueblood, 1968) and normal mode 

(Diamond, 1990; Kidera and Go, 1990; Kidera and Gō, 1992, 1992; Kidera et al., 
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1992, 1994; Poon et al., 2007). Their difference is that TLS model only utilizes the 

six zero-frequency modes of the structure, while normal mode based model takes 

other low frequency modes into account. Another challenge for modeling the ADPs 

for large complexes is describing the various hierarchies of their movements. This 

was first systematically addressed by multi-group TLS method (Painter and Merritt, 

2006a). The main concept of multi-group TLS method is to partition the complex 

into multiple groups, each described by a set of TLS parameters, and refine the TLS 

parameters for each group individually. Though this method has shown to improve 

the cross validation score (𝑅free) (Brünger, 1997) of refined structures, it also has 

certain limitations. First of all, it introduces an additional problem, generating an 

optimal partition scheme. Secondly, as it is highlighted in later analysis, the ADPs 

refined by the multi-group TLS method exhibits great discrepancy between the 

ADPs of atoms on the boundary of different groups even though those groups are 

physically bonded. Thirdly, the multi-group TLS method refines the ADPs of 

different groups individually and neglects the interactions between those groups.  

As a goal to fully capture the characteristics of the movements of molecular 

complexes, in this study, we propose a hierarchical normal mode based anisotropic 

refinement method (HNMRef). This method is based on a novel normal mode 

analysis (fSUB (Lu et al., 2012)), which employs a hierarchical normal mode 

approach, developed in our group recently. In fSUB, the normal mode calculation on 

the whole complex is performed in two stages. In the first stage, the normal modes 

of substructures are calculated with substructures in isolation. The normal modes 

for the whole complex are then constructed on the basis of the substructure modes. 
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By employing fSUB, we are able to obtain the motions of various hierarchies, such as 

the deformations within a substructure and the movements between substructures, 

in a supramolecular complex. Our HNMRef also consists of two stages to model the 

various hierarchies of complex movements. The ADPs resulting from the low 

frequency motions of whole complex is first obtained by conventional normal mode 

refinement method, where the whole structure is refined with a single set of 

parameters and its low frequency modes. The whole structure is then divided into 

multiple substructures, each of which is modelled with a set of parameters and the 

low frequency substructure modes. The correlations between the motions of 

substructures are considered by introducing a new restraint which penalizes the 

differences between the ADPs obtained in this stage and the first stage. Unlike multi-

group TLS, of which partition schemes are generated by post hoc analysis (Painter 

and Merritt, 2006b), this new method requires minimal considerations about the 

partition scheme; partitioning the whole structure according to chain division is 

good enough. Besides, this method addresses the movements of substructures and their 

correlations simultaneously. 

In this thesis, we first introduce the theory of HNMRef. We then assess the new 

HNMRef by comparing it with the widely adopted multi-group TLS method on a wide 

range of proteins, using the diffraction data and structures from PDB. 
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Chapter 2 

  Normal Mode Analysis 

Normal mode analysis (NMA) is a powerful tool for describing the global, 

collective and functional motions of protein complexes (Brooks and Karplus, 1983; 

Go et al., 1983; Levitt et al., 1983; Ma, 2005). In this approach, the potential energy 

function of a protein is assumed to be harmonic so that protein motions can be 

described as a linear combination of a set of independent harmonic modes. 

Consequently, the low frequency modes obtained from NMA can serve as the basis 

to model the atomic displacement parameters of protein complexes in x-ray 

crystallographic refinement. In this chapter, we introduce the basic ideas behind 

NMA and present a novel NMA for supramolecular complexes, which is particularly 

suitable for describing the various hierarchies of the motions of supramolecular 

complexes. 

2.1. Hessian Matrix 

In this section, we briefly explain the Hessian matrices of protein structures 

and their roles in determining the motions of protein structures. Assuming the 
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potential energy of protein complexes is harmonic around the local minimum 

represented by the native structure, the potential energy of a conformation whose 

coordinates deviate from the coordinates of native structure by a small vector 𝝃 can 

be expressed as  

 𝑈 ≈ 𝑈0 +
𝜕𝑈
𝜕𝑞𝑖

𝜉𝑖 +
1
2

𝜕2𝑈
𝜕𝑞𝑖𝜕𝑞𝑗

𝜉𝑖𝜉𝑗 =
1
2

𝜕2𝑈
𝜕𝑞𝑖𝜕𝑞𝑗

𝜉𝑖𝜉𝑗, (1) 

where 𝜕𝑈
𝜕𝑞𝑖

 are the first order derivatives of the potential energy function and equal 

to zero at the local minimum, and  𝜕2𝑈
𝜕𝑞𝑖𝜕𝑞𝑗

 are the second order derivatives of the 

potential energy function at the local minimum. The matrix comprised of the all-

atom second order derivatives is often called the Hessian matrix of protein 

complexes. Denote the mass matrix of a protein complex where each diagonal 

element represents the mass of atom as 𝐌 and the Hessian matrix as 𝐇, the equation 

of motion of this protein is  

 𝐌𝛏̈ + 𝐇𝛏 = 𝟎. (2) 

where 𝛏̈ and 𝛏 are the accelerations and displacements of atoms in this protein, 

respectively. Hence, the key to solve the equation of motion is to calculate the 

eigenvectors and eigenvalues for the Hessian matrix. Since all-atom Hessian matrix 

is of size 3𝑁×3𝑁 for a molecule of 𝑁 atoms, solving the eigenvalue equation for this 

matrix when 𝑁 is large incurs great computational cost. A number of approaches 

have been proposed to reduce the computational cost. The most notable methods 

include the rotations-translations blocks (RTB) method (Tama et al., 2000), and 

elastic network models (Atilgan et al., 2001; Haliloglu et al., 1997; Tirion, 1996). 
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2.2. fSUB 

fSUB is a novel normal mode analysis method which is devised to model the 

various hierarchies of the motions of supramolecular complexes. In fSUB, a complex 

structure is divided into 𝑛 substructures. For each substructure i, the 𝑗𝑡ℎ normal 

mode is denoted as 𝐱𝑖
𝑗 . A normal mode 𝐲 of the whole complex can be divided into n 

parts, and 𝐲𝑖 is the portion of the normal mode 𝐲 corresponding to the substructure 

i. The normal mode 𝐲𝑖 can be approximated by a linear combination of the first 𝑘𝑖  

lowest frequency modes of the substructure i, which can be expressed as 

 𝐲𝑖 = 𝐗𝑖𝐯𝑖, (3) 

where 𝐗𝑖 = {𝐱𝑖
1, 𝐱𝑖

2, … , 𝐱𝑖
𝑘𝑖}, each of which is obtained by solving 𝐇𝑖𝐱𝑖

𝑘𝑖 = 𝜆𝑖
𝑘𝑖𝐱𝑖

𝑘𝑖 , and 

𝐯𝑖  is a 𝑘𝑖×1 vector that contains the coefficients for this combination. The eigenvalue 

and eigenvector problem of the whole complex can be written as 

 𝐇𝒚 = 𝜆𝒚, (4) 

where 𝐇 is the hessian matrix for the whole complex. By projecting the original 

hessian matrix 𝐇 into the linear space spanned by substructure modes, namely, 

substitution Eq. 3 into Eq. 4, we can express the eigenvalue and eigenvector 

problem as 

 𝐇𝐏𝐯 = 𝜆𝐏𝐯, (5) 
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where 𝐏 = (

𝐗1 0 ⋯ 0
0 𝐗2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐗n

) is the projection matrix and 𝐯 = (𝐯1
𝑇, 𝐯2

𝑇, … , 𝐯𝑛
𝑇)𝑇 is a 

collection of coefficients. Since 𝐏 is a unitary matrix, multiplication of both sides of 

Eq. 5 with 𝐏𝑇 yields 

 𝐇fSUB𝐯 = 𝜆𝐯, (6) 

where 𝐇fSUB = 𝐏𝑇𝐇𝐏. Consequently, 𝐯 is an eigenvector of the projected Hessian 

matrix for the whole complex. The eigenvectors of the whole complex can be easily 

converted from 𝐯 to 𝐏 by Eq. 3. The hessian matrix construction and calculation in 

this study are performed by MGR (Lu and Ma, 2011). 

Based on the concept of normal mode analysis, the instantaneous 

displacements of atoms from their equilibrium positions can be expressed in terms 

of normal modes and the normal mode variables 𝛔 as  

 Δ𝐫 = 𝐄𝛔, (7) 

where each column of the matrix 𝐄 is an eigenvector which represents a pattern of 

collective motion of atoms. The dimension of matrix 𝐄 is 3𝑁×𝑀, 𝑀 ∈ [6,3𝑁], where 

3𝑁 is the size of all the coordinates of atoms and 𝑀 is the number of low-frequency 

modes, including six zero-frequency modes. 
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Chapter 3 

Crystallographic Refinement of ADP 

X-ray diffraction data from a protein crystal is a space and time average of 

various conformers of this protein. These conformers are mainly generated by the 

constant movements of the protein structure. Hence, an important part of 

crystallographic refinement is to model the uncertainties of atomic coordinates 

resulting from its movements. Accurately modelling of the atomic displacement 

parameters of the protein structure can improve the accuracy of calculated 

structure factors, which in turn allows the improvement of the structural model. 

This chapter is devoted to interpreting the role of atomic displacement parameters 

in crystallographic refinement and introducing common methods to model ADP. At 

the end of this chapter, we also discuss the metrics to evaluate the quality of refined 

ADPs. 
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3.1. Crystallographic Refinement of Atomic Displacements 

Since the atom is oscillating around the average position in the 3 dimensional 

space, the probability of finding an atom in a specific position is usually modeled by 

a trivariate Gaussian distribution. Thus, the average electron density is given by a 

convolution between the static atomic electron density and its distribution 

(Trueblood et al., 1996) 

 〈ρatom(𝐫)〉 = ρatom,static(𝐫) ∗ 𝑃(𝐮), (8) 

where 𝑃(𝐮) = 1
(2𝜋)3/2|𝛔|1/2 exp {− 1

2
𝐮𝑻𝛔−1𝐮} is the trivariate Gaussian distribution for 

modelling position uncertainty. The average structure factor can be expressed as the 

Fourier transform of this convolution, which is the product of the Fourier transform 

of each function (Trueblood et al., 1996), 

 〈𝑓(𝐡)〉 = 𝑓(𝐡)𝑇(𝐡). (9) 

Here 𝑇(𝐡), the Fourier transform of the gaussian distribution 𝑃(𝐮), is, 

 𝑇(𝐡) = exp{−2π2𝐡𝑇𝛔𝐡}. (10) 

The variance-covariance matrix 𝛔, which is also known as atomic displacement 

parameters (ADP), is often denoted as 𝐔 in crystallographic literature. We will use 

this notation in the following derivation. The previous discussion focus on the 

structure factor of an atom. For a protein structure with 𝑁 atoms, its structure factor 

is a sum of those atomic structure factors, that is,  

 𝐹(𝐡) ≈ ∑ 𝑓𝑘(𝐡)𝑇𝑘(𝐡) exp(2𝜋𝑖𝐡 ⋅ 𝐫𝑘)
𝑁

𝑘=1

, (11) 
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where 𝐫𝑘 is the coordinate for the 𝑘th atom in the structure.  

The crystallographic refinement is devised to optimize the parameters of the 

protein model, thus making the structure factors calculated from the optimized 

model fit with the observed ones. The objective function for optimizing is often in 

the form,  

 𝐸 = argmin
𝐫,𝐔

∑ 𝑤(𝐡)𝑙(|𝐹calc(𝐡, 𝐫, 𝐔)| − |𝐹obs(𝐡)|) + 𝑁(𝐫) + 𝑁(𝐔)
𝒉

, (12) 

where 𝑙 is a convex function, 𝑤(𝐡) is the weight factor for the reflection with index 

𝐡, |𝐹(𝐡)| represents the magnitude of the structure factor, and 𝑁 are the restraint of 

the atomic coordinates 𝐫 and the ADPs 𝐔, respectively. Though this objective 

function is nonconvex, it can be minimized by the standard techniques for nonlinear 

optimization in practice. 

Assuming the contributions to anisotropy are independent, the ADP can be 

constructed as (Afonine et al., 2012; Winn et al., 2001) 

 𝐔 = 𝐔group + 𝐔local + 𝐔cryst. (13) 

𝐔group results from the concert motions of atoms within the same group. 𝐔local is 

mainly due to individual atomic displacements, such as local vibrations. Thus, it can 

be well approximated by harmonic oscillator assumption and modeled with the 

isotropic B factor. 𝐔cryst originates from the overall displacement of the crystal and 

some additional experimental anisotropic effects. This effect contributes equally to 

all atoms, and is treated as a common parameter.  
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3.2. TLS Method 

The TLS method (Schomaker and Trueblood, 1968) is a popular way to 

model anisotropic thermal parameters in x-ray refinement. In the TLS method, the 

ADP matrix 𝐔group is parameterized as  

 𝐔group = 𝐓 + 𝐒𝑇×𝐫𝑇 − 𝐫×𝐒 − 𝐫×𝐋×𝐫𝑇, (14) 

where T, L, and S are the translation, libration, and screw matrices, respectively, r is 

the atomic displacement. T and L are symmetric matrices which can be described by 

6 parameters, while S is not usually symmetric and includes 8 parameters. In the 

multi-group TLS formalism, the ADPs of atoms in each group are described by such 

a set of 20 parameters. The TLS method is available in phenix.refine (Afonine et al., 

2012). The partition scheme for multi-group TLS method is generated from TLSMD 

web server (Painter and Merritt, 2006b). 

3.3. Normal Mode Based Crystallographic Refinement 

In normal-mode-based crystallographic refinement, 𝐔group is expanded in 

terms of the effective normal modes. Since the instantaneous atomic displacement 

of an atom j is expressed in terms of normal modes as Eq. 7, the group ADP for atom 

𝑗 becomes 

 𝐔group = 〈(Δ𝐫𝑗)𝟐〉 = 𝐄𝑗〈𝝈𝝈𝑇〉𝐄𝑗
𝑇 = 𝐄𝑗𝚷𝐄𝑗

𝑇, (15) 

where 𝐄𝒋 represents the rows in matrix 𝐄 corresponding to atom 𝑗, and 𝚷 is the 

variance-covariance matrix for normal mode variables. In our method, the positive 
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semidefiniteness of matrix 𝚷 is guaranteed by decomposing it into two triangular 

matrices, that is, 

 𝚷 = 𝛀𝛀𝑇. (16) 

Here, 𝛀 are the independent parameters to be optimized against experimentally 

determined amplitudes in the refinement. The size of the parameter set 𝛀 is 

determined by the number of normal modes. If 𝑛 normal modes are used, 𝛀 includes 

𝑛(𝑛+1)
2

 parameters. 

3.4. HNMRef 

To model the contributions to 𝐔group from both the complex and 

substructure motions, HNMRef consists of two stages. In the first stage, the whole 

complex is assigned with a single set of parameters, 𝛀, and the eigenvector matrix 𝐄 

is made up of the normal modes of the whole complex. Upon the completion of the 

first stage, the ADPs, 𝐔whole, obtained from this stage are stored for further use. In 

the second stage, the whole complex is divided into multiple substructures. The 

division scheme usually is based on the hierarchical structure of complex. For 

example, each chain in a complex can be designated as a substructure. Each 

substructure has its own set of parameters 𝛀i. The eigenvector matrix 𝐄i which 

serves as the basis to model ADPs for atoms in substructure 𝑖 is composed of the 

normal modes of this substructure. To take the motion of whole complex into 

account, we add a new restraint to the crystallographic target function, 
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 𝐸nm = ∑(𝐔𝑗 − 𝐔whole,𝑗)
𝑗

2
, (17) 

where 𝐔whole,𝑗 is the ADP for atom 𝑗 computed in the first stage by 

optimizing with the normal modes of the whole structure, and 𝐔𝑗  is the ADP for 

atom 𝑗 evaluated in current stage. The new ADPs then are calculated by minimizing 

this new crystallographic target function. With this target function, an optimal set of 

ADPs obtained on the substructure modes should be able to fit well with the 

observed diffraction intensity while accounting the ADPs originates from the 

motions of whole complex. We implemented the HNMRef with the phenix.refine 

(Afonine et al., 2012) framework. 

3.5. Test Criteria 

A widely used technique for assessing the quality of refined model is cross 

validation. In crystallographic literature, this metric is often called 𝑅free (Brünger, 

1997). To calculate the 𝑅free value for a refined model, the whole dataset of 

observed reflections should be randomly split in to two sets at the beginning of 

refinement. One dataset is named as validation set which will not involve in the 

optimization. The other dataset is training set and used to optimize the model. After 

the model is refined to converge, the 𝑅free value is calculated on the validation set by 

the following equation, 

 𝑅free =
∑ ||𝐹obs(𝐡)| − |𝐹calc(𝐡)||𝐡∈validation

∑ |𝐹obs(𝐡)|𝐡∈validation
, (18) 
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where 𝐹calc(𝐡) is the structure factor calculated from the refined model. A good 

model should have a low 𝑅free factor, which means that the difference between the 

data predicted by the model and the experimentally observed data is small. Thus the 

model with low 𝑅free value has small generalization error and superior predictive 

power. 

Another useful criterion for evaluating the refined model is the electron 

density map, which can be obtained from the inverse Fourier transform of the 

structure factor. The electron density map obtained from the structure factors 

calculated by the model is the model itself, thus unable to provide any useful 

information for us. We here consider some other types of electron density maps 

which incorporate the experimentally observed intensities. Since the x-ray 

diffraction data only contains intensities but not phases for the structure factors, all 

the information about phases in x-ray structure determination is often biased by the 

model. But with this limited information, we are still able to calculate different types 

of electron density maps which can reveal the errors of model. The mostly used one 

is the (2|𝐹obs| − |𝐹calc|)exp (𝑖𝛼calc) map, where the phases are still calculated from 

the model, while the amplitudes are replaced by the difference between 2|𝐹obs| and 

|𝐹calc|. This approximately equals with 2𝜌true − 𝜌calc, where 𝜌true is the true electron 

density map and 𝜌calc is the electron density map of the model. Therefore, the 

difference map has additional densities at where the model has missing atoms, and 

the difference map has missing densities at where the model atomic positions are 

incorrect. A similar but more robust electron density map is the weighted difference 

map proposed by Randy Read (Read, 1986). This map is often denoted as 2𝑚𝐹𝑜 −
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𝑑𝐹𝑐 , where the 𝑚 and 𝑑 are weighted coefficients for maps obtained by maximum 

likelihood method. 

We evaluate the difference of refined ADPs for two nearby atoms that belong 

to the same TLS group or two different TLS groups according to a new metric 

proposed here. Since the ADPs are the covariance matrices describing the 

distributions of atomic positions, the difference between ADPs can be measured by 

the metrics evaluating the difference between two probability distributions. In 

probability theory, Kullback-Leibler (KL) divergence is often used as such a metric. 

We defined pair KL divergence, or 𝑃KL, for an atom pair 𝑖 and 𝑗 as  

 𝑃KL =
𝐷KL(𝑖, 𝑗) + 𝐷KL(𝑗, 𝑖)

2𝑟𝑖𝑗
, (19) 

where 𝐷KL(𝑖, 𝑗) is the KL distance of the ADPs of the atoms 𝑖 and 𝑗, 𝐷KL(𝑗, 𝑖) is 

included to make 𝑃KL commutative, and inverse of atomic distance 𝑟𝑖𝑗 is used as 

weight to emphasize the packed atoms. For two gaussian distributions with the 

same means, their KL divergence can be computed as 

 𝐷KL(𝑖, 𝑗) = −
3
2

+
1
2

ln (
|Σ𝑗|
|Σ𝑖|) +

1
2

tr(Σ𝑗
−1Σ𝑖), (20) 

where 𝛴𝑖 is the covariance matrix for the distribution 𝑖, |Σ𝑖| is the determinant of Σ𝑖, 

and Σ𝑗
−1 is the inverse of Σ𝑗 . In our test, the average 𝑃KL is evaluated for all atom 

pairs within 5Å in the same TLS group (denoted as 𝑃̅KL
inside) or two different TLS 

groups (denoted as 𝑃̅KL
boundary), and the ratio of the average 𝑃KL for these two 

categories were defined as the boundary indicator  
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 𝐵KL =
𝑃̅KL

boundary

𝑃̅KL
inside . (21) 

The 𝐵KL tests were also performed on HNMRef refined proteins using the same TLS 

group partition schemes. 

 



 

1 
 

Chapter 4 

  Results 

4.1. Refinement Protocols 

To examine the effectiveness of HNMRef method on different systems, we 

selected 20 deposited structures which represent a wide range of protein complexes 

from PDB. The resolutions of these structures are within the range 2.0~6.7 Å. To 

eliminate the possible bias of deposited models, a series of preprocessing was 

applied on them. First of all, we shook those proteins by running constant 

temperature molecular dynamics simulation on them for 200 cycles. In addition, the 

ADPs of atoms of those proteins were all reset to isotropic B-factor of size 20Å2. The 

refinement protocols were organized in an automated fashion, thus eliminating the 

bias may be introduced by human intervention. They all consisted of twenty macro-

cycles of individual coordinates and ADP refinement with rotamer fitting and 

peptide side-chain (NQH) flips being turned on. If NCS is available, the NCS 

restraints would be generated by phenix.refine and incorporated in positional 

refinement automatically. In real scenario, the ADP refinement cycle often consists 

of several micro-cycles, depending on the ADP parameterization method. In this 
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work, we considered both the contributions from 𝐔local and 𝐔group. The ADP 

refinement cycle started by refining 𝐔group, which was modelled by either the 

HNMRef and the mutli-group TLS method. To model 𝐔local, we added a micro-cycle 

in which the local B-factor for each atom was refined with x-ray/ADP weight 

optimization turned on. As the multi-group TLS method in phenix.refine was 

followed by a cycle of unrestrained group B-factor refinement, to solely compare the 

effectiveness of HNMRef and TLS method in modelling the large-scale deformations 

of protein, we removed that cycle. To locate the optimal parameter set for both 

methods, a grid search where each grid represents a TLS grouping scheme or a 

combination of the number of complex or substructure modes was performed. The 

TLS group partition schemes for every peptide chain in the structure were 

generated by the TLSMD server (Painter and Merritt, 2006b). They differentiate 

from each other by the number of groups per chain. The number groups per chain 

was searched from 1 to 20 (or the maximum number of groups per chain can be 

partitioned) in our test. For the combination of the number of whole complex modes 

and the number of substructure modes, the number of whole complex modes 𝑛 

varied from 10 to 50 with a step size 5, and for a fixed number of whole complex 

modes 𝑛, the number of substructure modes 𝑝 was searched from 10 till 𝑛 with the 

same step size. In the HNMRef protocol, the weight factor between the new restraint 

𝐸nm and the target function in phenix.refine was set to 0.5. 
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4.2. 𝑹𝐟𝐫𝐞𝐞 and Ramachandran Favored Region 

As it was shown in Figure 1, 19 out of 20 HNMRef-refined structures had 

lower Rfree-factor values comparing to the multi-group TLS structures.  The largest 

improvement in 𝑅free values is 2.96% (2I37). The averaged Rfree-factor value of 

HNMRef-refined structure is 0.86% smaller than the averaged Rfree-factor value of 

the multi-group TLS-refined structures. Besides, most of  the 𝑅free − 𝑅work values of 

HNMRef refined structures were lower than TLS refined ones. The average 

improvement over TLS refined structures was 0.59%. These two improvements in 

the cross validation scores demonstrated the HNMRef method significantly reduced 

overfitting in refinment. 

In addition, in 15 out of 20 HNMRef-refinement structures, the percentage of 

residues in the most favored Ramachandran plot region are increased, with the 

average being 0.64% higher than those of TLS-refinement structures (Table 1). 
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PDB ID Resolutio
n(Å) 

𝑅free (%) 𝑅free − 𝑅work (%) Ramachandran Favored (%) 
HNMRef TLS Improve

ment 
HNMRef TLS Improve

ment 
HNMRef TLS Improve

ment 
4JM2 3.10 27.20 28.19 0.99 5.71 6.43 0.72 91.11 90.59 0.52 
2VV5 3.45 30.40 30.82 0.42 3.17 5.26 2.09 87.40 87.63 -0.23 
2BBJ 3.90 32.56 34.11 1.55 8.54 9.02 0.48 85.64 85.03 0.61 
3CAP 2.90 26.69 26.83 0.14 2.96 2.93 -0.03 92.90 93.06 -0.16 
2IOQ 3.51 31.37 30.87 1.26 7.8 7.51 -0.29 86.97 85.37 1.6 
4LSN 2.98 29.13 29.56 0.43 4.32 4.52 0.2 92.18 91.87 0.31 
2CG9 3.10 36.86 38.07 1.21 9.14 9.77 0.63 77.22 76.80 0.42 
3SN6 3.20 25.74 26.86 2.02 4.89 4.93 0.04 90.66 89.58 1.08 
2OAR 3.50 29.60 30.23 0.63 2.31 3.70 1.39 85.20 84.23 0.97 
2I37 4.15 35.39 41.02 2.96 5.71 6.43 0.72 85.88 84.49 1.39 
1QFW 3.50 26.63 27.19 0.56 9.16 9.44 0.28 83.12 82.48 0.64 
4K0E 3.71 29.75 30.01 0.26 5.86 6.13 0.27 91.56 91.53 0.03 
1PZN 2.85 28.59 29.11 0.52 4.44 4.50 0.06 92.38 92.79 -0.41 
2WAQ 3.35 35.70 35.70 0.00 5.92 5.82 -0.07 82.55 81.79 0.76 
3TT3 3.22 29.74 30.29 0.55 6.45 7.16 0.71 90.18 89.54 0.64 
3E3J 6.70 38.79 30.23 0.44 5.55 7.16 1.61 85.39 85.09 0.30 
3MJ9 2.95 31.48 31.72 0.24 4.89 7.3 2.41 89.48 88.51 0.97 
3LOH 3.80 30.97 31.37 0.40 4.89 5.13 0.24 83.66 83.66 0.00 
4K9E 2.70 29.66 30.55 0.89 8.32 8.88 0.56 95.50 93.09 2.41 
3I59 2.29 28.09 29.91 1.82 4.98 4.67 -0.31 96.29 95.30 0.99 
Average 3.50   0.86   0.59   0.64 

 
Table 1 𝑹𝐟𝐫𝐞𝐞(%) and Ramachandran Favored regions for 20 protein 

structures with different refinement methods (The 𝑹𝐟𝐫𝐞𝐞 values and their 
improvements for HNMRef refined structures over TLS are shown in percent.) 

 

4.3. Electron Density Map 

Other important improvements were found in the electron density maps and 

structures. Take the structure 3I59 as an example, we calculated 2𝑚𝐹𝑜 − 𝑑𝐹𝑐  maps 

using the experimental intensities and phases from the HNMRef- or multi-group 

TLS- refined structures. Some typical changes in the structure and 2𝑚𝐹𝑜 − 𝑑𝐹𝑐  map 

were shown in Figure 4. The Figure 4 (A) showed the omit 2𝑚𝐹𝑜 − 𝑑𝐹𝑐  map of the 

HNMRef structure. Comparing with Figure 4 (B), when both contoured at 1.5𝜎, it 

had complete densities for sidechain. In addition, in the region of residues 39A-41A, 
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the HNMRef refined structure fitted well with its 2𝑚𝐹𝑜 − 𝐹𝑐  map, while some atoms 

of the multi-group TLS refined structure were located outside its 2𝑚𝐹𝑜 − 𝐹𝑐  map, 

which suggested a possible model error.  

Figure 3 (C) and (D) presented another electron density map improvement from the 

HNMRef refined structure in the region of residues 145A-147A. Comparing with the 

multi-group TLS refined electron density map, the HNMRef refined electron density 

map had more complete electron densities at this region when both were contoured 

at 2𝜎. In this region, the multi-group TLS refined 2𝑚𝐹𝑜 − 𝐹𝑐  map had either missing 

or incomplete densities for sidechains. Moreover, in this region, the HNMRef refined 

structure had shifted to improve the map-coordinate consitency. Another example 

about the electron density map improvement was in 2CG9. As it was shown in  

Figure 3, in the region of residues 329B-331B, the HNMRef refined 2𝑚𝐹𝑜 − 𝑑𝐹𝑐  map 

had complete backbone densities, whereas the multi-group TLS refined map was 

weak and fragmented. Besides, there were some structural shifts in the HNMRef 

refined structure which made it fit well with the electron density map. The 

improvements in electron density maps indicated that the HNMRef method 

improved the phase accuracy, which in turn allowed improvement of the structural 

model. 

4.4. 𝑩𝐊𝐋 

We computed the 𝐵KL values, defined in Method, for the HNMRef refined and 

multi-group TLS refined structures. The 𝐵KL value is the ratio between the average 
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pair KL divergences of two different types of nearby atom pairs, namely, those 

belong to the same TLS group and those belongs to two different TLS groups. 

Therefore, we can use it as an indicator to check the internal consistency of ADPs 

throughout the whole structure. The higher the 𝐵KL value, the bigger the 

discrepancy between the differences of ADPs of intragroup atom pairs and 

intergroup atom pairs. As it was shown in Figure 2, the multi-group TLS refined 

structures all had higher 𝐵KL values comparing with the HNMRef refined structures. 

This highlighted the inconsistency of ADPs throughout the whole structure for 

multi-group TLS refined structures. It is mainly caused by the arbitrary choice of 

TLS groups and the limitation of the multi-group TLS method, in that it models ADPs 

locally and independently across different groups. While HNMRef method doesn’t 

suffer from such drawbacks as it treats each chain as an integral part and its ADPs 

are restrained by the global modes refined ADPs during refinement. 

We also compared the ADPs generated by the HNMRef and multi-group TLS 

methods by visualizing them as ellipsoids. As it was shown in Figure 5, the atoms of 

2VV5 after refinement with the HNMRef method showed greater anisotropy at the 

end of transmembrane regions, which was consistent with the rotation movement 

of helices at that region to open the channel (Wang et al., 2008). However, the 

ellipsoids of the structure refined by the multi-group TLS method didn't present 

much orientation preference, and failed to depict the highly anisotropic movements 

of that region. 
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Figure 1 Improvements of 𝑹𝐟𝐫𝐞𝐞 Values for different proteins 

 

 

 

 

Figure 2 𝑩𝐊𝐋 profile for each refined structure 
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A B

 

 
Figure 3 Electron density map and structure comparison for 2CG9 

The left shows the electron density map calculated from the HNMRef refined 

structure, and the right shows the electron density map calculated from the multi-

group TLS refined structure. Both 2𝑚𝐹𝑜 − 𝑑𝐹𝑐  maps are contoured at 2σ. The 

HNMRef refined structure is colored with red, while the multi-group TLS refined 

structure is colored with green. 
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Figure 4 Electron density map and structure comparison for 3I59.  

A B

C D
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The left shows the electron density maps calculated from the HNMRef 

refined structure, and the right shows the electron density maps calculated from the 

multi-group TLS refined structure. The 2𝑚𝐹𝑜 − 𝑑𝐹𝑐 maps in (A) and (B) are 

contoured at 1.5σ, and the 2𝑚𝐹𝑜 − 𝑑𝐹𝑐 maps in (C) and (D) are contoured at 2.0𝜎. 

The HNMRef refined structures are colored with red, while the multi-group TLS 

refined structures are colored with green. 

 

 

Figure 5. The open structure of an E.coli mechanosensitive channel at 3.45 Å 
showing 50% probability ellipsoids refined with (A) HNMRef and (B) multi-

group TLS methods. 

 

A B
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Conclusions 

We here presented a new hierarchical normal mode based anisotropic 

refinement method (HNMRef). Comparing with its precursors, this new method has 

shown to greatly reduce the generalization errors of models (lower 𝑅free values). 

This is an evidence for the superior ability of our new method to accurately model 

the motions of large complexes. The improvements of models have been further 

validated by inspecting their electron density maps. We also compared the ADPs 

generated by the HNMRef and multi-group TLS methods using a new metric 𝐵KL. 

This comparison highlighted the unrealistic part of the multi-group TLS method; 

there is a great discrepancy between the differences of ADPs of intergroup atom 

pairs and intragroup atom pairs. This defect is caused by the problematic chain 

partition schemes of the multi-group TLS method and the negligence of correlations 

exist among the movements of different groups. In contrast, the HNMRef has 

managed to model the various hierarchies of complex motions without introducing 

inconsistency to the ADPs throughout the whole structure. Another benefit of the 

HNMRef method is that it minimizes the effort to search an optimal partition 

scheme. Therefore, we expect our method to be deployed in scenario like the 

anisotropic refinement of large complex with moderate resolution. Our method is 

expected to expedite the refinement process by delivering more accurate and 

physical model for those complexes. 
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