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ABSTRACT

Architecture for Detection in MIMO Wireless Systems
by

Kiarash Amiri

In this work, we study two main classes of detectors for spatially multiplexed
Multiple-input Multiple-output (MIMO) systems. For the first group, i.e. hard-
decision detectors, we study sphere detectors, and propose novel algorithms as well as
efficient architectures which make them suitable for low-complexity implementations.
Furthermore, different variations of such detectors are prototyped on Xilinx FPGAs
embedded on Wireless Open-access Research Platform (WARP). The second class of
detectors are soft-decision detectors where, generally, soft sphere detectors are used;
however, we study a new class of detectors that can serve the same purpose through
a stochastic approach known as Markov Chain Monte Carlo (MCMC) technique. A
general architecture with various complexity reduction techniques is proposed for this
scenario, and it is shown that MCMC achieves better performance compared to sphere

detector; while it requires less computation when higher order modulations are used.
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Chapter 1
Introduction

1.1 Multiple-Input Multiple-Output (MIMO) Systems

Wireless systems with multiple antennas at either side are generally called multiple-
input multiple-output (MIMO) systems, and they are known to be able to provide
higher data rates and spectral efficiencies in wireless communications systems [14]
and [7]. Thus, they have been proposed and adopted for many different wireless
standards, such as IEEE 802.11n, IEEE 802.16e and upcoming 3GPP LTE.

A general topology of such systems is shown in Figure 1.1. One way to capture
the properties of MIMO systems is to model them with M transmit antennas and N

receive antennas through
y=Hs+n (1.1)

where H s is the channel matrix, sprx1 is the transmitted vector with complex ele-
ments chosen from a set of modulation constellation, ny; is the circularly symmetric

complex Gaussian noise vector, and yyx; is the received vector.

1.2 Related Work

Several research groups have focused on design and implementation of efficient and
low-complexity detectors for MIMO systems. These works can be divided into two

main categories of algorithm development and hardware architecture/implementation:



v, Y
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Figure 1.1 Multiple-input multiple-output (MIMO) wireless system.

e Algorithm Development The notion of lattice detection/sphere detection
was proposed in [30], and later adopted [13] for use in practical MIMO chan-
nels. The complexity of such techniques was later shown [9] to be polynomial
for a large range of SNR values, and therefore, feasible to be implemented.
Meanwhile, {10] proposes using sphere detector to generate soft information
in iterative detection/decoding structures. Different variations of list sphere
detectors to generate soft information have been analyzed and compared in
(26, 28, 24]. Recently, a new stochastic approach has been proposed [8] to gen-
erate soft information for iterative schemes. This technique uses Markov Chain
Monte Carlo technique to generate a list of possible candidates based on which

soft information can be evaluated.

¢ Hardware Architecture/Implementation Different versions of sphere de-

tectors have been implemented with different capabilities. A summary of these



implementations are tabulated in Table 1.1.

Table 1.1  Sphere detection ASIC/FPGA implementations

Type Output Detection Rate Notes
[22] K-best | Hard Output 10 Mbps ASIC, 4 x 4,
(Wong '02) 16-QAM
(18] Depth-first | Hard Output 35.75 Mbps FPGA, 4 x 4,
(Ma ’05) based 16-QAM
5] Depth-first | Hard Output | Variable (230 Mbps @ | ASIC, 4 x 4,
(Burg '05) based 24 dB SNR) 16-QAM
[32] K-best | Hard Output 53.3 Mbps ASIC, 4 x 4,
(Guo ’06) Soft Output 106.6 Mbps 16-QAM
[12] Depth-first | Soft Output 38.8 Mbps ASIC, 4 x 4,
(Garrett ’04) based 16-QAM

1.3 Thesis Contributions

The contributions of this work are threefold, algorithm development, low-complexity

architecture design and hardware prototyping,

e Algorithm Development: Novel tree pruning schemes are proposed that
will further reduce the latency of hard detection. Furthermore, the behavior

of MIMO wireless systems under different realistic channel models are studied



and simulated. Simulation results show significant improvements when com-
pared with the original tree pruning schemes. Finally, the stochastic approach,
initially proposed in [8], is further developed, simulated and compared to other

commonly used soft-detection techniques.

e Low-complexity Architecture: Efficient architectures are studied, and vari-
ous complexity reduction techniques are proposed to further reduce the architec-

ture complexity both for both hard-decision detection and iterative detection-

decoding.

e Hardware Implementation: Hard-output depth-first based sphere detector
for 16-QAM 4 x 4 system is implemented on Xilinx FPGAs. Moreover, a K-best
sphere detector for a 2 x 2 QPSK system is implemented and incorporated into

the current WARP [1] platform at CMC lab.

A pictorial view of the contributions and structure of the thesis is given in Figure

1.2.

1.4 Thesis Overview

The organization of the thesis is as follows. Chapter 2 studies the detection
techniques which are based on distance minimization, and proposes algorithm modi-
fications and presents simulation results of these algorithms. Chapter 3 investigates

the architecture issues related to sphere detection, and proposes efficient architectures
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Figure 1.2 Thesis outline diagram.



as well as hardware implementations for sphere detectors. Finally, chapter 4 consid-
ers stochastic methods to perform detection in iterative structures, and proposes a

low-complexity architecture for that.



Chapter 2
Hard-decision Detection in MIMO Systems

In this chapter, we study the algorithms for Hard-decision detection. The first two
sections, 2.1, 2.2, review the prior work in this area. The rest of the chapter covers our
contributions for MIMO hard-decision detection, further algorithmic simplifications
of sphere detection as well as different simulation results comparing the performance

of variuos approaches.

2.1 Review of Maximum-Likelihood Detection

The MIMO system model with M transmit antennas and N receive antennas can

be described by
y=Hs+n (2.1)

where Hyyar is the channel matrix, spsx; is the transmitted vector with complex
elements chosen from a set of modulation constellation, nyy; is the complex noise
vector, and yyx1 is the received vector. The maximum-likelihood (ML) estimate of

the transmitted signal is given by

a . _ 2
§ = argmin |y —Hs || (2.2)
where Q is the constellation set with w elements, i.e. |Q] = w, and || . ||* denotes the

22 norm of the matrix throughout the paper.



The ML estimate is shown to be the optimum detector in communication re-
ceivers [19]. However, as (2.2) suggests, this requires a brute-force search among
all the possible candidates. In other words, for the system described above, w™
search operations are required to find the optimum solution. Thus, the complexity
of maximum-likelihood (ML) increases exponentially with the number of antennas.
For example, for a 4 x 4, 16-QAM MIMO system, 26 search operations are required

which considering the current VLSI area limitations is infeasible to implement.

2.2 Review of Sphere Detection

ML detectors have a high complexity in MIMO systems with high order modu-
lation schemes and moderate number of antennas. Thus, sphere detection [30], [13]
has been proposed to decrease the complexity of the search.

The norm in (2.2) can be simplified as [25]:
D(s) = [ly-Hs|’
= (y—Hs)"(y — Hs)
= (v —Hs)"QQ"(y — Hs)

= (Qy - Rs)?(Q"y — Rs)

= [ Q"y -Rs |’ (2:3)
1 M

= Y lw' = Rys;l? (2.4)
=M j=i

where H = QR, QQf =1, R is an upper triangular matrix and y’ = Q¥y. Super-



script # denotes the conjugate transpose operator. We also define the partial distance

(PD) as,
M
j=i

The summation in (2.3) can be done through a tree where the value of each node
of the tree is equivalent to the partial distance of that node. This tree will have
M + 1 levels. Moreover, each node of the tree has w children nodes where w is the
number of constellation points. Furthermore, since the external summation is over
non-negative terms, children nodes have partial distances greater than or equal to the
partial distances of their parent.

If the search is limited to those nodes whose partial distances are smaller than a
pre-specified threshold, the number of visited nodes, and hence the complexity, would
decrease. In other words, imposing the condition that D(s) < R?, will lead to pruning
out the nodes whose partial distances are greater than R2. Note that whenever a node
is pruned out, its children can also be pruned out. This is because of the monotonic
increasing nature of partial distances.

Figure 2.1 shows a specific case of a MIMO system with four transmit antennas,
each using a two-element modulation constellation, e.g. BPSK. Applying maximum-
likelihood (ML) to this detection problem is equivalent to visiting all the 31 possible
nodes of the search tree; whereas, imposing a threshold, i.e. a radius of 9, leads

to visiting 19 nodes. The complexity reduction is more significant with more strict
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thresholds and higher order modulation schemes.

i=3

i=2

Radius=9

Figure 2.1 Computing partial distances using a tree. Numbers in each node indicate
the partial distance

The norm in (2.3) can be computed in M iterations starting with i = M. When
it = M, i.e. the first iteration, the initial partial norm is set to zero, PNy = 0. At
each iteration, partial distances, PD; = |y’ — E?ﬁi Ri js;|? corresponding to the i-th
level, are calculated and added to the partial norm of the respective parent node in
the (i —1)-th level, PN; = PN;_; + PD;. Finishing the iterations gives the final value
of the norm. One can envision this iterative algorithm as a tree traversal problem
where each level of the tree represents one ¢ value, each node has its own PN, and
w children, see Figure 2.2. In order to reduce the search complexity, a threshold, C,
can be set to discard the nodes with PN > C. Therefore, whenever a node k£ with
a PN, > C is reached, any of its children will have PN > PN, > C. Hence, not
only the k-th node, but also its children, and all nodes lying beneath the children in

the tree, can be pruned out. The tree can be traversed either vertically, known as
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depth-first search (DFS) [5], [21]; or level by level, called breadth-first search (BFS)

[31], [22]. Our approach is a modified DFS-based scheme [21].

i=M

Li=M-1

=1

Figure 2.2 Calculating the distances using a tree. Partial norms, PNs, of dark nodes
are less than the threshold. White nodes are pruned out.

2.3 Dynamic Threshold Sphere Detection (DTSD)
In this section, we propose new techniques to further reduce the complexity of the
sphere detector.

2.3.1 Dynamic Threshold

There are two primary methods to implement the tree search; namely depth-first
search [5] and a modification of breadth-first search, called K-best [31] [17]. In the

depth-first approach, the tree is traversed vertically in both upward and downward
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directions. Starting from the top level, one node is selected, the PDs, (3.1), of its
children are calculated, and among those new computed P Ds, one of them is chosen,
and that becomes the parent node for the next iteration. The PDs of its children are
calculated, and the same procedure continues until a leaf is reached. Then, the search
continues with another node at a higher level, and the search controller traverses the
tree down to another leaf. If a node with a PD larger than the radius, i.e. the global
threshold, is reached; that node, along with all nodes lying beneath that, are pruned
out, and the search continues with a new node.

On the other hand, in the breadth-first approach, the search visits a specified
number of nodes in each level, and then continues with the children of these nodes
in the next level. Hence, there is not any tree traversal in the reverse, i.e. upward,
direction. A common modification of this search algorithm which is extensively used
for sphere detection is called K-best. In K-best, the best K candidates at each level
are chosen and the search continues with them. We will show later in the next sections
why we have chosen the depth-first scheme.

Generally, the radius remains constant during the search, although there are some
depth-first based schemes where the radius is updated with the current PD whenever
a leaf is reached. We are proposing to change the radius dynamically since the value
of the PD highly depends on its corresponding level. In other words, due to the

non-negativity of each of the PDs (3.1), the norm is increasing monotonically as we
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move down the tree. So, a more reasonable choice for the radius is a dynamically
changing threshold that increases for the lower levels of the tree. Now, two issues
need to be addressed:

1. How does this dynamic radius relate to the level number?

If we use the indexing of Figure 2.1 for the levels of the tree, it is clear that as
we move down the tree, i.e. reduce the level index, the dynamic threshold should

increase. Revisiting (4.1) and left-multiplying it by Q¥, we get
Q"y —Rs =Q"n (2.6)

and, we define n’ as

n' = Qfn = [n},...,n)]%. (2.7)

Therefore, the D(s) derived in (2.3) is
M
D(s) =] Qy ~ Rs |*>=| n' I’=>_ |nj|*. (2.8)
=1
It is easy to see that each n; is
n; = e;Q"n (2.9)

where e; is an M-element row vector with 1 at the ¢-th position, and zero everywhere

else. Hence, the expected value of the component added in the é-th layer, is

E{n’} = E{nn}
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= E{e;Q"nn”Qef}
= e,Q"E{nn”}Qe’
= o0le;Q7IQef

= oleel =02 (2.10)

where superscript * denotes the conjugate. Also, note that for this derivation, we
have assumed that the noise components of different receive antennas have the same
variance and are independent from each other. The above derivation shows that the
mean is a constant scalar independent of the level index, ¢, and purely depends on
the statistical properties of the noise. In other words, the value of the PDs added in
different levels of the tree have similar first-order statistical properties. This implies
that a reasonable choice for updating the radius is using a linear function to relate
the level index and the threshold. To be more precise, if the initial estimate for
the threshold is R, the dynamic threshold for each level of the tree, i.e. R;, can be

calculated from

R(M+1—14)

R, = v (2.11)

Using linear thresholds, the partial norm of each node is compared with R; rather
than R. Moreover, whenever a leaf is reached, R is updated with the value of the PN
of that leaf. Hence, the dynamic threshold for a particular level of the tree decreases

each time a new leaf is reached. Therefore, more nodes are pruned out through the
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search, and the complexity reduces considerably. Note that compared to K-best, this
scheme has better performance while visiting less nodes [21].

We should note here that the approach proposed in [29] partially resembles our
approach, but with two major differences: it is requiring that the prior knowledge of
SNR is provided in the detector to find the thresholds; plus, it does not update R, and
hence R;s, each time a leaf is reached. Similar threshold updating has been proposed
in [17] for a K-best implementation, and its impact on the complexity and performance
of K-best search has been studied. However, this scheme requires calculation of the
radius in advance, while in our scheme, the radius is set whenever a leaf, i.e. a node in
the very last level of the tree, is reached. Moreover, choosing [17] incurs performance
degradation compared to the original K-best method; while, the original K-best is
also showing larger bit error rates compared to depth-first based schemes, see section
2.4.

2. How much performance do we give up by adopting this scheme?

Clearly, since the radius is smaller, more nodes are pruned out at each step;
equivalently, less nodes are effectively visited. Hence, the complexity is reduced.
However, there is a higher probability for the optimum solution to be pruned out.
Realizing this tradeoff, we need to find out how much of the performance we are
loosing, and at the same time, how much reduction in the complexity we are gaining

through adopting this scheme. Section 2.4 presents the simulation results comparing
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different scenarios.

It is worth noting that another advantage of using the linear approach is that
in some particular MIMO systems, e.g. 4 x 4, it can be implemented more easily
compared to other more complex approaches. Specifically, other possible functions
require divisions and multiplications which are quite expensive in terms of hard-
ware resources and time; while using the linear approach, these computations can be
avoided. For example, in the case of a 4 x 4 system, the possible values of thresholds
are R/4,R/2,3R/4 and R. All these different values can be calculated using two

bit-shifters and one adder. See Figure 2.3.

™ 2-bit Shifter > R/4

R — Adder 3R/4

_>l 1-bit Shifter + R/2

Figure 2.3 Dynamic threshold updating implementation

2.3.2 Minimum Finding

Unlike K-best method, where it is critical to sort the children nodes in order to find
the best K candidates, a depth-first structure does not necessarily require sorting.

However, a sorted list can expedite the search and reduce the latency for a depth-first
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based scheme. But, sorting algorithms can be quite time and resource consuming.
We are proposing to find only the minimum of each children rather than sorting all
the list. In other words, each time the partial distances of the children of a node is
computed, the one with the minimum partial distance will be the next node to visit;
other nodes, if inside the local threshold of that level, are saved in the memory to be
visited later. Since the value of the global threshold, R, is updated whenever a leaf
is reached, choosing the minimum-path expedites shrinking the global radius of the
tree. Therefore, this approach helps us reduce the radius faster as leafs are visited at
the end of a tree, and at the same time, avoids significant number of computations

required for sorting.

2.4 Simulation Results - Rayleigh Fading Model

We compared our scheme with the original DFS-based and K-best schemes in
terms of complexity, i.e. number of visited nodes, and performance, i.e. bit error
rate (BER). We have assumed a Rayleigh fading channel and circularly symmetric
Gaussian noise components. The channel realizations for different symbols are in-
dependent from each other, and perfect channel state information at the receiver is
assumed. The results are shown in Figures 2.4 and 2.5.

Since in our scheme thresholds are updated dynamically, less nodes are visited
compared to both the original DFS-based scheme and the K-best when K=10. The

number of visited nodes in the K-best method is comparable to our scheme only for
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low SNRs and K=5. However, our scheme shows better BER performance compared

to K-best both for K=5 and K=10.

BER Comparison, 4X4 16-QAM

—#— K-best, K=10

£ Proposed, Dynamic Threshold Updating| =~
—— Original Depth-first Based :

0 2 4 6 8

10 12 14 16 18

Eb/No [dB]

Figure 2.4 BER performance comparison
fading environment

of different search approaches in Rayleigh

Note that compared to the original DF'S-based approach, our scheme visits consid-

erably less nodes; but, this is at an expense of less than 1 dB loss in BER performance

compared to maximum-likelihood.

2.5 Realistic Channel Models - Algorithm Modification

The same algorithm has been simulated using different real-world propagation sce-

narios. All the channel models used in this section are based on the models proposed

in WINNER project [2]. Several scenarios have been considered, see Table 2.1.

The simulations are performed for different antenna spacings common in 3GPP
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Number of visited nodes, 4X4 16-QAM

70 _ : : :
o | —¥=K-best, K=10
: || =3 K-best, K=5

80r N\ | =@=Original Depth-first Based i

Number of visited nodes

8 10 12 14 16 18
Eb/No [dB]

o
s

Figure 2.5 Complexity comparison of different search approaches in Rayleigh fading
environment

LTE. The spacing the mobile station (MS), i.e. the receiver, is fixed to %)\. For the
base station (BS), i.e. the transmitter, different spacings have been assumed: 1,4\
and 10A. For many of these channels, there are multiple paths with multiple delays.
In order to avoid multiple tap channels, we have assumed multi-carrier systems so
that each transmitted vector experiences a single channel matrix. To simplify the
system, the number of subcarriers have been taken equal to the number of delays.
This can be generalized to more general cases. However, the results will not change.

The BER results are presented in Figures 2.7,2.6 for the MS= 4\ and MS= 10).

As Figures 2.7 and 2.6 suggest, the performance degradation is not significant as

realistic channel models are used. However, for the special case of BS=MS= %/\, the



20

Table 2.1 Winner model channels

Scenario Definition Mobility
Al Indoor small office/residential | 0-5 km/h
B1 Typical Urban Micro-Cell 0-70 km/h
B3 Indoor 0-5 km/h
C1 Suburban 0-70 km/h
C2 Typical Urban Macro-cell 0-70 km/h
D1 Rural macro-cell 0-200 km/h

performance degradation is considerably large. Here, we analyze the reason for this

result. The condition number of each channel matrix is defined as

_ Umaz(H)

where 00z (H) and o (H) are the maximal and minimal singular values of A re-
spectively. Unlike the Rayleigh fading model, the channel models introduced in table
2.1 generally have very large condition numbers due to significant spatial correlation
between antennas in realistic scenarios; therefore, the smallest singular value of the
matrix is generally one or two orders of magnitude less than the greatest singular
value. If r;;s are the diagonal elements of the R matrix, after QR decomposition of

the channel matrix, then it is easy to show that

|H7‘m'| =H0i- (2.13)
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Figure 2.6 BER performance comparison for different channel models assuming base
station spacing of 10\ and mobile station spacing of %)\.

However, since the condition number is very high, there is a high probability that
;i are orders of magnitude different from each other. This generates a problem that
can be well described through the following example.

Assume that a for a specific channel realization with high condition number, the
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Figure 2.7 BER performance comparison for different channel models assuming base
station spacing of 4\ and mobile station spacing of %/\.

R matrix is given by,

—1.5604 — 1.5827: 2.0075 — 0.8188:

2.2794 —0.8744 + 2.0859:
0 —0.0912 0.0909 — 0.1298: 0.0586 + 0.19641
0 0 —0.0185 0.0148 — 0.0470¢
0 0 0 —0.0023

For this specific realization, the first step is to calculate the norm |y,' — R4 484
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However, since Ry 4 is very small, the value of the norm for all the possible different s
drawn out of the constellation is almost the same, and is independent of the number
of s.

As explained in the previous sections, in order to find an estimate of the threshold
in the beginning of the algorithm, a single minimum trace is traversed. Then, starting
the next iterations, nodes are saved after comparison with the value of the threshold.
With the problem just explained, it is critical to reduce the radius estimate, as with
the current technique, a huge number of nodes will be saved in the memory; thus, the
latency will become very high. In order to avoid this problem in this realistic channel
models, the following modification is made to the algorithm.

For this system, rather than using the updated radius and dividing it by the level
number to get the dynamic threshold for each level (check Eq. (2.11)); we exploit the
mean value of the per-level-threshold, and use that as the threshold for that level in
the next iterations. Formally, a variable mean.(i), ¢ = 1, ..., M7, is defined for each

level,
. 1
mean.(i) = ” > PN;. (2.14)
J

where w is the constellation size or the number of children for each node, and PN; is
the value of partial distance for the j-th child of the current node.
During each partial distance computation, the mean.(i) is updated with the av-

erage value of the children of the current node according to (2.15). Moreover, the
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threshold to which the partial values are compared, is now defined as:
C(i) = min{mean.(i), R;}, (2.15)

where R, is given by the linear function in (2.11).

Making this change, the number of visited nodes decreases, so that we can again
utilize the depth-first scheme to detect the signal. Figure 2.8 shows the number
of visited nodes for the original schemes (assuming Rayleigh Fading channel) along
with the number of visited nodes assuming WINNER channel models when the new
threshold scheme is applied. Also, Figure 2.9 compares BER performance of the
original schemes when Rayleigh Fading channel is used with the BER performance of
WINNER channels when the new threshold scheme is employed.

As can be observed, the performance is still lower than the Rayleigh fading. This
is mainly due to lower rank matrix generated for the special case of MS=BS= %/\. As
next Figures show, using K-best even degrades the performance slightly more than
depth-first based scheme; however, with significantly less complexity, i.e. number of
visited nodes, which translates to higher achievable data rates. Each Figure shows
the achievable data rate and BER performance comparison of K-best and depth-first
in one of the channel models given in Table 2.1 with that of the depth-first based in

a Rayleigh fading environment.
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Chapter 3
Hardware Architecture and Implementation for
Hard-decision Detection

3.1 Proposed VLSI Architecture

In this section, we discuss various architecture-oriented concepts that we have
utilized to improve the performance and reduce the complexity and area of the design.
Figure 3.1 shows the main blocks of the detector. The tree traversal unit (TTU) is
responsible for searching through the tree. It functions as a control unit to handle
the flow of data between the other two blocks. Computation unit (CMPU) consists
of parallel datapaths to compute the PNs for all the children nodes of another node.
Node ordering unit (NOU) finds the minimum among all the P possible children
nodes whose PNs have been calculated in the CMPU. Visiting each node in the tree

is equivalent to one iteration of the {TTU, CMPU, NOU} loop.

3.1.1 Computation Unit (CMPU)

Computing the PDs for all the children of each node can be quite resource and

cycle consuming.

M
PD = |y’ =Y Rijs;f? (3.1)
Jj=t

= |y’ — Rii8i — Rig+18i41 — ... — Rimsul® (3.2)
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for all the complex s; € 2. Once the PDs are calculated, they are added to the partial
norm of their parent node to form their own partial norm, PN; = PN;_, + PD;.

There are some points to consider in (3.2). While s; needs to take all the different
constellation points; s;41, ..., Sar are fixed, and have the same value at that specific
level of computation, hence can be computed only once. The symbols sx, k =1, ..., M,
are chosen from a complex constellation 2, and the number of elements in Q, i.e.
modulation order, is w. Also note that diag(R) are real numbers, and all the other
off-diagonal terms in the upper triangle of R are complex numbers. Assuming four
real multipliers and two real adders for each complex multiplier and two real adders
for each complex adder, the overall number of real multipliers and adders for a CMPU
is given in Table 3.1. Since the same CMPU block is used for different levels of the
tree, i.e. different ¢, and also different antennas can use different modulations, we
need to design it for the worst case. Hence, a trivial architecture for CMPU will have
(4(M — 1) + 4w) real multipliers and (2(2M — 1) + 2w) real adders.

The number of multipliers can be considerably reduced by noting the fact that
most of the multiplicands are constellation points with their real and imaginary values
taken from a small set of integer numbers. Therefore, each of the real multipliers used
to form a complex multiplier can be replaced with a combination of adders, shifters
and multiplexers. It can be verified that using this property of the multiplicands,

the CMPU needs only (2w) real multipliers; the rest of the multipliers in the original



Table 3.1 Initial number of multipliers and adders for CMPU
Step Operation Real MUL Real Adder
1 R;s; 2w 0
2 Z_?ii+1 Ri;8; 4(M — 1) 2(M - 1)
3 | u' —Riisi— XM Rijs; 0 2(M —i+1)
4 | |y — Rijsi — Tjlips Rijssl? 2w w
5 PN; = PN;_1 + PD; 0 w
Total 4w+ M—-0) | 4M-9)+2+2w

Previous PD

Figure 3.2
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Computation Unit (CMPU)
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Figure 3.3 Node Ordering Unit (NOU). Each Min Finder block finds the minimum of
its two inputs, and passes that minimum to the next minimum finder. The larger output
of each Min Finder block will be saved into memory only if it is inside the local threshold.



37

CMPU are replaced by different adders and shifters resulting in an overall number of
(2M - 6)y/w + 4w + 2 adders and (4(M — 1) log,(v/w)) multiplexers. Using synthesis
results, Table 3.2 compares the resources required for the original CMPU and the
modified CMPU based on multiplier reduction. Figure 3.4 shows how such multipliers

can be implemented using adders/shfiters.

MUX
One-bit Left Shifter + 3R
Q(s)
16-QAM
Rx{3,-1,1,3}

H One-bit Left Shifter

Two-bit Left Shifter

Three-bit Left Shifter +

64-QAM
Rx{7,-5,-3,-1,1,8,5,7}

Sign(S)

Figure 3.4 Reduced Complex Multiplier Architecture for 64-QAM. Q(.) maps the value
of S to proper MUX indices. Similar combination of adder-shifters can be used for higher
order modulations.

There is no data dependency between steps 1 and 2. Hence, they can be performed
in parallel. The operations listed in Table 3.1, except the second step which is common

for all the children, are repeated in all of the partial distance units. Changing the
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Table 3.2 Required arithmetic units for two different CMPU implementations with
M=4

Original CMPU Modified CMPU Approximate
Modulation | Real Real Real | Real | Real Area
(w) MUL | Adder | MUL | Adder | MUX | Reduction
16-QAM 76 46 32 74 24 51.1%
64-QAM 268 142 128 274 36 45.8%
256-QAM | 1036 526 512 | 1058 48 44.6%

modulation order, i.e. w, only modifies the number of parallel partial distance units.
Hence, for a system supporting different modulation schemes, it is sufficient to design

the CMPU for the largest modulation order, and it can support other modulations.

3.1.2 Node Ordering Unit (NOU)

The children nodes need to be compared with the dynamic threshold, C;. If
outside the dynamic sphere, they should be discarded; otherwise, kept for further
computations. Among those kept candidates, the best one should be sent for the next
tree level of the computations in the CMPU, and the rest will be saved in memory.
Unlike the K-best approach [], where the structure is based on sorting the candidates,
it is not necessary to perform sorting in DFS-based schemes. However, we have
included a minimum finder in the NOU to find the minimum partial norm, minimum-

PN, among all the w different PNs generated in the CMPU. Notice that continuing
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with the minimum-PN, results in reaching smaller norm leafs. The global threshold,
C, is updated with the norm of a leaf whenever any leaf is reached. Therefore, the
concept of continuing with the minimum-PN node greatly reduces the threshold [21]
5].

The minimum finder requires w — 1 compare-select blocks searching among the
possible candidates in a (log, w)-level tree. The best candidate, i.e. the minimum, is
sent to the tree traversal unit (T'TU), and the rest are saved in the memory as long
as their partial norms are less than the dynamic threshold of that level. The size of
the MEM unit is very small as the dynamic threshold updating scheme prunes out

considerable number of nodes during the search process, see Figure 3.5.

—— 4X4 MIMO, 16-QAM
—— 3X3 MIMO, 16-QAM

Average Size of MEM Unit

0 2 4 6 8 10 12 14
EbNo [dB]}

Figure 3.5 Average memory size for the dynamic threshold updating.
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Since the data needs to be compared and listed in a queue to be saved in the
memory, higher modulation orders mean longer queues and longer read-write time
from MEM unit. Therefore, memory unit interface can become a major bottleneck
that reduces the data rate for higher order modulations. In order to avoid this, and
keep the architecture easily scalable without throughput penalty, we propose using
separate memory modules that can be accessed simultaneously, so that the average
time required to save all of them in the MEM unit is essentially divided by the number
of memory modules. If the number of clock cycles for writing the remaining PNs
into the MEM unit is Cpem, then ¢ = (w — 1)/Crrem memory modules are used in
the MEM unit. The optimum timing for saving into the MEM and avoid stalling,
is to do that while other blocks, i.e. CMPU and TTU, are processing the data.
Hence, a reasonable choice for Crem 18 Crmem = Crrv + Compy. Thus, the number
of memory modules in the MEM unit is, t = (w — 1)/(Crrv + Compyr). Note that
using this architecture, the transfer time between the MEM unit and other blocks do

not increase as higher modulations are utilized.

3.1.3 Tree Traversal Unit (TTU)

The TTU handles the flow of data between the CMPU and NOU. Computation
of the current threshold, C;, is done based on (2.11). The dynamic threshold, C;, is
chosen from the set {C/M,2C/M,...,(M —1)C/M}. Similar to CMPU, no explicit

multiplier is required to compute C; since all those integer multiplications can be



41

performed using only adders and shifters.

3.1.4 Throughput

Table 3.6 gives the number of cycles required to generate outputs in each of the
blocks. In order to guarantee high clock frequencies, the CMPU block, which goes
through the steps in table 3.1, has been heavily pipelined. Moreover, the NOU is
pipelined in such a way that every two sequentially successive compare-select blocks
in the tree structure form one pipeline stage. The TTU needs one clock cycle in the
case that the MIN output from the NOU is not a leaf of the tree and is inside the
dynamic threshold. If not, C,er, extra clock cycles are required to read the data from
the memory. The last row of the table shows the overall number of cycles required to
do one iteration, i.e. visit one node. E{Crry}, the expected value of the number of

cycles of TTU, captures the uncertainty in the number of cycles of the TTU unit.

Table 3.3 Number of clock cycles required to perform each step

Unit Name Number of Clock Cycles
Compu S
Cnou [3log, w]
Crru lor 14 Chrem
Y{Crrv, Compu, Cnout | 5+ [§1og, w] + E{Crru}

If N, nodes are visited in the tree to find the detection solution, then the through-
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put can be calculated based on:

M(logy W) fmaz

Throughput = )
I = N, (5 + [Llog, w] + E{Crru})

(3.3)

Note that N, highly depends on the radius reduction scheme, whether we use
constant threshold, C, which is only updated with new leafs, or dynamic threshold,
C;, given in (2.11). Figure 3.6 compares the throughput for different dynamic and

constant radius examples.

140
120
100+ - ........ ........ ........ .........
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Figure 3.6 Throughput of the proposed architecture for fq, = 300 MHz.

3.2 Implementation Results

The architecture proposed for implementing dynamic threshold sphere detection

has been implemented for FPGA and synthesized for ASIC. The results are presented
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in the following sections:

3.2.1 FPGA Implementation of Complex 2 x 2 QR Decomposition

Different groups have been looked at architecture efficient QR implementations
[20], [23] and [4]. A fully pipelined QR decomposition block has been implemented to
generate QR outputs per cycle, see Figure 3.7. This is specifically required for OFDM
systems where multiple sub-carriers are used, and each sub-carrier comes usually one

clock cycle after each other. The FPGA resources for this pipelined QR is tabulated

in Table 3.4.
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Figure 3.7 System Generator block diagram of the 2 x 2 complex QR decomposition
block on WARP.
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Table 3.4 FPGA resource utilization for pipelined complex 2 x 2 QR decomposition
block

Device Xilinx Virtex-II Pro xc2vp70-6ff1517
Number of Slices 7985/33088 (24%)
Number of FFs 11,598/66,176 (17%)

Number of Look-Up Tables 11,195/66,176 (16%)
Number of MULT18X18s 8/328 (2%)
Max. Freq. 102 MHz

latency 255 cycles (@ 51 MHz)

Output QR Rate 51 x 10 channel/second

3.2.2 FPGA Implementation, 2 x 2 QPSK, K-best, on WARP

This sphere detector is specifically designed to fit into the Wireless Open-Access
Research Platform (WARP) [1] FPGA boards. Currently, a custom 2 x 2 MIMO-
OFDM using QPSK modulation is designed and run on the board. Considering the
specific structure of the OFDM systems, where sub-carriers are processed sequentially,
a high throughput, heavily pipelined architecture is required so that only one sphere
detector could be used for all the sub-carriers. It is already shown in the previous
chapter that the K-best structure is more amenable to pipelining; therefore, for this
specific application, a 2 x 2 K-best detector along with the custom QR decomposition

block have been implemented on the FPGA. The structure of this detector is similar
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to the one shown in Figure 3.1. Figure 3.8 shows the System Generator block.
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Figure 3.8 System Generator block diagram of the 2 x 2 K-best sphere detector on
WARP.

The overall resource utilization data, including the QR, is given in Table 3.5.

3.2.3 FPGA Implementation, 4 x 4 16-QAM, Depth-first Based

This architecture has been implemented for a 4 x 4 16-QAM system on the Xilinx
state-of-the-art Virtex-4 FPGA using Xilinx System Generator [3], see Figure 3.9.
The performance is compared and verified on FPGA hardware with the simulations.

Table 3.6 shows the number of required cycles to accomplish each task. Note that the



46

Table 3.5 FPGA resource utilization for pipelined K-best detector along with the QR
block on WARP

Device Xilinx Virtex 4 xc4vfx100-12ff1517
Number of Slices 11637/42176 (27%)
Number of DSP48 48/160 (30%)

Number of FFs 15682/84,352 (18%)
Number of Look-Up Tables 15201/84,352 (18%)
Number of RAM16/FIFO16 2/376 (1%)

Max. Freq. 102 MHz

number of cycles required for TTU unit depends on whether the current visited node
is a dead-end node, i.e. a node outside the threshold or a leaf, (e.g. six cycles) or
a regular node, e.g. one cycle. Moreover, Table 3.7 presents the resource utilization
as well as maximum achievable clock frequency for this particular Xilinx device. The
maximum achievable data rate that the detector can support is 50.05 Mbps. Figure
3.10 shows the data rate for different values of the SNR. Note that the fastest re-
ported FPGA implementation of sphere detection is given in [18] where a maximum
throughput of 35.75 Mbps has been achieved using Altera Stratix EP1510. It should
be noted that generally the maximum achievable clock frequency in FPGAs are less

than ASICs for the same design.
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Figure 3.9 System Generator block diagram of the 4 x 4 depth-first based sphere
detector.

Table 3.6 Number of clock cycles

Unit Name Number of Clock Cycles
Computation Unit (CMPU) 6
Node Ordering Unit (NOU) 1
Tree Traversal Unit (TTU) 1 (6)




Table 3.7 FPGA resource utilization for sphere detector

Device Xilinx Virtex-4 xc4vix100-12ff1517
Number of Slices 4065/42176 (9%)
Number of FFs 3344/84352 (3%)
Number of Look-Up Tables 6457/84352 (7%)
Number of RAMB16 3/376 (1%)
Number of DSP48s 32/160 (20%)
Max. Freq. 125.7 MHz
Data Rate
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Figure 3.10 Data rate of the FPGA implementtion of the design
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3.2.4 ASIC Synthesis

This architecture was described in VHDL for the special case of a 16-QAM 4 x 4
MIMO system, and synthesized for TSMC 0.13um CMOS technology using Synopsys
ASIC design tools. The maximum achievable throughput is 128.8 Mbps with a max-
imum power dissipation of 130 mW. To the best of our knowledge, this throughput
is higher than the fastest implemented K-best scheme [31] for a broad range of SNR,
see Fig 3.11. Table 3.8 presents the ASIC synthesis results. Note that the proposed
architecture is synthesized using 0.13pm technology, while both of the K-best archi-
tectures used 0.35um technology. However, K-best architectures can be pipelined to
process input received vectors faster; while, depth-first based schemes are iterative in
nature.

Table 3.8 ASIC synthesis results, comparison with K-best implementations

This work | [31] | [22]

Technology (um) 0.13 0.35|0.35
Gate Estimate (K) 135 91 | 52
Max. Clock Freq. (MHz) 300 100 | 100

Throughput (Mbps) 128.8 (Max.) || 53.3 | 10




Figure 3.11
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Chapter 4
Soft-decision Detection in Iterative
Detection/Decoding Structures

In this chapter, the iterative detection/decoding structure to increase the BER
performance will be studied. This technique highly lends itself to soft information
generated after processing the received signal. Different techniques to generate soft
information have been proposed [32, 6, 12, 8, 10], among which sphere detection
have been more realistic, and was impleﬁented in different ways [32, 6, 12, 10]. Re-
cently, Markov Chain Monte Carlo (MCMC) technique has been proposed [8] to
replace sphere detectors in generating soft information. In this chapter, this tech-
nique is introduced, architectural challenges to implement it will be identified, and
architecture-efficient solutions will be outlined to trade-off the performance, complex-

ity and effective detection throughput.

4.1 System Model

The MIMO system model, similar to the previous chapter, with M transmit an-

tennas and NV receive antennas can be described by
y=Hs+n (4.1)

where Hyxar is the channel matrix, sps«; is the transmitted vector with complex

elements chosen from a set of modulation constellation, nyy; is the complex noise
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vector, and ynx1 is the received vector. Here, each s;,7 = 1,..., M corresponds to
M,-length bit sequence of z;s where M, is the number of bits per modulation symbol.
Figure 4.1 shows an iterative detection/decoding structure. The soft information

passed from the detection block to the decoding block is obtained by [10]

Plzy = +1]y]

Lo(eily) =10 5 —r

(4.2)

where k = 0,..., MM, — 1. This soft information is updated in the decoder and feed
to detector. These cycles of soft information leads to more reliable soft information
eventually used by the decoder to decode more reliably. For the decoder side, LDPC
can be a good choice as it requires soft information. Thorough studies of LDPC

decoder as well as its architecture has been presented in [27] and [11].

Input L
Vector | . Sof D »| Decoder
»| Detector

H |

Figure 4.1 TIterative detection/decoding.

4.2 Review: Generating Soft Information

Soft information can be generated using any list kind of generator. Once a list

generated, computing the LLR values (4.2) is straightforward. This section covers



53

two well-known methods to generate the list upon which soft information can be

calculated.

4.2.1 Sphere Detection for List Generation

One straightforward way to generate the list is using sphere detection. Rather
than picking the best candidate of the sphere detector as the detected vector, a list of
best candidates, i.e. the ones with the least distances, can be chosen as a list. Later
on, this list can be utilized in LLR computations (4.2). Depending on the way, the

sphere detector is carried out, different list generators can e used:

e Depth-first based sphere detectors (DFS): In DFS-based SDs, a vertical
tree traversal is performed. The list of the candidates used to compute the soft

values, are a subset of the visited tree leaves.

o K-best based sphere detectors: In K-best schemes, the last level usually
gives a set of best leaves. In hard sphere detection, the minimum one is declared
as the detected signal; however, here we can use the whole list as the list of
candidates. For small K, such as 5 or 10, this would give a small list which
is not always a reasonable list length, and might lead to unreliable LLRs. In
order to append the list with more candidates, a modified K-best (MKSE) is

proposed in [32].
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4.2.2 Challenges of Using Sphere Detection for List Generation

However, utilizing sphere detection to generate soft information incurs two major

challenges in practical scenarios.

¢ Pipelining issue in multi-carrier system As multi-carrier schemes, e.g. or-
thogonal frequency division multiplexing (OFDM), become more common in
different wireless protocols, it is necessary to design other parts of the sys-
tem such that it is architecturally optimized for such scenarios. This means
that the detector block needs to be either duplicated for different sub-carriers
or pipelined such that it can generate the outputs with a considerably high
rate. However, different flavors of sphere detection are not equally amenable
to pipelining. For instance, depth-first sphere detection has an iterative struc-
ture due to high data dependency between different stages. On the other hand,
even though K-best technique can be pipelined [31], it does not generally show

acceptable performance compared to depth-first-based schemes [21]

e Costly channel pre-processing In order to carry out sphere detection, signifi-
cant amount of channel pre-processing is necessary. This channel pre-processing
is usually done in different channel decomposition formats, such as QR, LR or
Cholesky decomposition. There has been considerable amount of study in the

literature regarding low-complexity and efficient realization of these decompo-
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sitions. However, even the most area-speed optimized architectures still call for
significant hardware resources [4]. Note that for OFDM-based systems, where
each sub-carrier is generally experiencing different channel matrices, this re-
quires separate channel pre-processing for each sub-carrier. Therefore, either
a single channel pre-processing unit, e.g. a QR decomposition block, needs to
be shared between all the sub-carriers during the training period, or multiple
QR blocks need to be dedicated to each subcarrier. The former would add the
latency of the training period and therefore reducing the effective data rate;
whereas, the latter requires considerable hardware resources. For the ASIC
realization, the hardware resources for the QR decomposition ASIC implemen-
tation, presented in [4], is compared with the soft sphere detector presented in
[32]. For FPGA implementation, the resources are compared with the maximum
capacity of the targeted FPGA. Obviously, mapping of different algorithms to
FPGA is highly dependent on the available resources as well as the CAD tools

optimization; therefore, these numbers are rough estimates.

4.3 Markov Chain Monte Carlo (MCMC) Technique for List
Generation

In order to avoid the significant pre-processing required to finish estimate a list, a
stochastic approach to list estimation has been proposed in [8], [16] and [15]. In this

technic, each transmit antenna symbol is drawn out of a distribution function. The



algorithm steps for this technic are summarized as follows:
1. Start with a random s(-),

2. Forn=—-N,+1ton=N,,

Draw sample s;" ™ from P(s |s§"‘1), ,sg\’,}Tl),y),
Draw samples from P(sz|s(n 1), g” 1) " %ZTI),}’),
Draw sample s( ) from P(sMT|s(n) SS\T,})T LY)-
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We show in here that assuming a Gaussian noise, all the above probability distri-

bution functions can be written as follows,

}

pdf(n) = P(S.7'|S§n)782 y ooy gn)l’sgﬁ-ll)a-. Sg\ZTl)’Y7H)
|y — Hs||?
= Kexp{—T}
E' Yi — hiTS 2
= f(exP{___LL7Z;?___L}
i lYi — hiesk — Xz hijs;|?
= Kexp{— i 19 L = j#k by Jl}
~ Kex {_Eihh—Ej¢khij8j|2+2¢|hiksk|2 2R{T; hisi(y] — Sz hi;s3)}
P 202
h — 2R h*.s
— KQeXp{ Z’L‘ ‘lkskl {skg;zlk( Zj;ék 1] ])}}
Is5 — >, hm(y;‘—zl%wsj) 2
= Ksexp{— 2 Ihaxl }

202 /%, |hx|?

where h; is the i-th row of channel matrix, H; superscripts *

(4.3)

and T indicate scalar

conjugate and vector transpose conjugate respectively, and K;s are proper coefficients
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to normalize the distribution at each step.
Thus, the distribution from with the sample is drawn at each step is a Gaussian

random variable with mean, o, and variance, 3%, given as

Ry — S aar By S =
o= Sl — i hats) g o 5%y e (44)
i | hil =1

Assuming a Gaussian random variable with zero mean and variance of one is given

in advance, the new random variable can be obtained from

s = {(R{a} + 8 x v} + H{S{a} + 8 x ¥}, (4.5)

where ¢ and v are two independent samples drawn from the given zero-mean variance-

one Gaussian distribution.

4.4 Architectural Considerations

Note that the mean, (4.4) , changes in each step. Therefore, computation of
the mean can be quite expensive consisting of various additions, multiplications and
divisions. In this section, we study architecture oriented techniques to reduce this
complexity.

There are four major modifications made to (4.4) to simplify it.

e Fixed Multiplications: Even though the drawn sample can be any real num-
bers, they can be mapped to one of the modulation constellation points so that

all the h;;s; multiplications change to shift-add operations.
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¢ Avoiding Square roots/divisions: With the current definitions of a and 3
in (4.4), division operations are required at each step to find ¢; moreover, to
find 3, Mt number of square root calculations are required in the pre-processing
stage. To avoid all these calculations, everything, including the modulation con-
stellation, should be scaled with a 3, |hs|? factor. Therefore, the constellation

points are now defined as

Mg
mi = sy |hikl® (4.6)

i=1

for each of the k = 1, ..., M7 transmit antennas. Therefore, the new mean and

variance to be substituted in (4.5) are defined as:

Mg
o =3 hi(yi— 3 his), B F= 0y |hal?, (4.7)

J#k i=1
No need to say that this scaling depends on the instantaneous channel realiza-
tion; however, still replaces a significant number of division/sqrt operations to

less costly ones, i.e. multiplications.

o Iterative Computation of the Mean: To further reduce the complexity and

avoid repeating multiplications, (4.7), can be re-written as:

r(n+1) (ny Mr Mz Mp  Mr 1
a = a + Z h;kz hz‘jsj(’n) _ Z h:kz hijsj(n+ )
i=1 j#k pat por
(ny Mr_ Mz
=@ + Zhrk{Z(h”SJ(n) — h”s](’n+1))}
=1 j#k
1(n) Mg My 1
= @733 hihg(e™ — ). “8)

=1 j#£k
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Using (4.8), required hj,h;; can be computed in advance, and saved, and being
re-used through sample drawing steps. The x(s;(™ — s;("*1)) part of (4.8) is

basically a sequence of shift-add operations as all the s;s are constellation points.

Table 4.1 summarizes the resource saving through adopting the aforementioned
technics. The number of parallel samplers is denoted by N, and the number of itera-
tions is I = Mp(Ny+ N;). In order to come up with a single number to compare the
complexity, i.e. operation count, comparators are assumed to have unit complexity;
adders have twice complexity as that of addition; multipliers ten times the addition;
and finally division and square roots to have 4.5 and 3.8 times that of a multiplier
respectively.

Once a is computed, drawing the random variables is straight forward. Figure 4.3
shows how this can be accomplished with memory blocks containing the instances of
normal Gaussian distribution with proper number of occurrence of different samples.
The address to this memory block, which needs to be statistically uniform, is gener-
ated with a regular linear feedback shift register (LFSR). The overall architecture is

shown in the same figure.
4.5 Simulation Results

The MCMC technic is with the simplifications described in the previous section
has been simulated. Rayleigh Fading channel matrices have been assumed. The FER

results comparing the MCMC with the K-best technique [32] is shown in Figure 4.3.
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Table 4.1 Operation count comparison between (4.4) and (4.7).
(4.4) (4.7) and (4.8)
comparison 2/ wNI 2/ wNI
addition Mr(Mg — 1)+ (2Mg — 1)Mr + 2MrMr(¥E — 1)+

N.I{8Mgr(Mr — 1) +4Mg + 4}

N.I{2Mp(M7r — 2)}+

N.Mr{2Mg(My — 1) + 2(Mg — 1)}

square 2Mp My 2MpMr
multiplication N.I{4Mg + 2} 4(3 MpMp (Mg — 1))
4MgpMrN +2N.I
Division Mp +2N.1 0
Square root My 0

sum (16-QAM,

4x4)

18000 computation

operations

1700 computation

operations

The number of operations for different modulation orders as well as different num-

ber of antennas are shown in Figures 4.5, 4.6 and 4.7. The figures show the complexity

for a whole range of modulation orders among which 16, 64 and perhaps 256 are the

more reasonable choices. The complexity extension to higher order modulation is

more significant in sphere detection due to the sorting step required in that strategy.

Note that for the complexity comparison figures, since the list size is kept fixed for

all the modulation orders, the performance would roughly keep the same trend of
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Figure 4.2 MCMC architecture assuming N parallel units.
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Chapter 5
Conclusion and Future Work

Two broad categories of detectors for spatially multiplexed MIMO systems have
been analyzed in this work. The first category, hard-decision detectors, was based
on minimizing the distance between the received signal and the possible candidates.
Maximum-likelihood was shown to be far more complex to be implemented with
reasonable area/latency constraints. Sphere detector were hence chosen to reduce the
complexity while keeping high performance and data rate. In this work, we proposed
modified algorithms to further reduce the complexity of sphere detectors. We also
implemented two types of sphere detectors which were using different tree search
schemes.

The depth-first based implementation used a novel tree pruning scheme to fur-
ther simplify the complexity and meanwhile keep high performance. The K-best
implementation was specifically designed to fit with WARP [1] requirements and con-
straints.

The second category of detectors, soft-decision detectors, adopted a stochastic
approach; Markov-chain Monte-Carlo (MCMC) technique generates a list of possi-
ble candidates with which soft information can be computed and passed to decoder.

The decoder outputs updated soft information to the detector, and forms an iter-
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ative detection scheme. This iterative structure can outperform the current sphere
detectors based iterative schemes; and with suitable arithmetic complexity reduction
techniques, maintain reasonably small amount of computations compared to sphere
detection. We proposed these computational complexity reduction techniques as well
as a suitable architecture to implement MCMC.

This work can be extended as follows:

¢ Hard-decision detectors: The depth-first based implementation of sphere
detector can be fully pipelined so that it can support much higher data rates.
Also, the K-best sphere detector can be generalized to support more number of
antennas as well as higher order modulation. A flexible architecture that can

support dynamic modulation is another possible extension.

e Soft-detection detectors: Other stochastic approaches whose nature might
fit better with the structure of the problem, i.e. detection in MIMO, needs to be
considered to find possibly better stochastic approaches capable of giving similar
performance with less complexity. However, even with the current derivations,
the possibility of further simplifications in the algorithm and computations,
e.g. in the number of parallel units and memory size, can be investigated.
Furthermore, the behavior of the algorithm can be studied for the non-Gaussian
noise cases. Finally, the FPGA/ASIC implementation of this technique, e.g. on

WARP FPGA, is certainly an interesting VLSI research topic for completion of
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Finally, the outline of the thesis and the contributions are shown in Figure 5.1.

MIMO Detection
(Spatial Multiplexing)

N

Detection

\

Hard-decision ] Soft-decision Detection
(iterative detection/decoding)

|

Y

-

Sphere Detection
\

Figure 5.1 Thesis outline diagram.
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