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Abstract 

Topological Optimization ofNanofiber Placement in a 
Continuum 

by 

Chin-Mow Li 

The structural integrity and/or electrical or thermal conductivity of a component can be 

improved with the optimal topological placement of very high strength or very high 

conductivity nanofibers. This thesis presents a heuristic procedure for the estimation of 

the optimal location for the nanofibers based on topological optimization concepts. 

Previously established topological procedures for continuum-only structures and for 

truss-only systems are reviewed. Then, this new hybrid approach, which utilizes the 

continuum model as a retained ground structure, and truss structure for nanofibers, is 

introduced and evaluated. To initiate this new procedure, a very large number of fiber 

elements are generated using the material continuum's geometry and then embedded into 

the component. A finite element method (FEM) program will analyze the structure. Post 

processing determines which fibers are the least necessary, and deletes them in an 

iterative process until the desired volume fraction of nanomaterials is reached, leaving 

only the vital fibers. This procedure is illustrated with several different example 

geometries and compared to bounding cases from other topological optimization 

approaches. 
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Chapter 1 

Introduction 

Topology optimization is a concept in engineering design that seeks out the best (or most 

optimal) solution domain shape, or material placement, for a problem under a set of given 

circumstances. Evolutionary structural optimization (ESO) is a method in which 

inefficient material is incrementally removed from a structure in order to improve its 

efficiency while still retaining optimal functionality. This study will apply the principles 

of ESO to determine the most ideal placement of nanofibers within a material with the 

goal of improving its structural integrity, or thermal and electrical conductivity. An 

algorithm will generate and embed a network of fibers into a geometric solid, which will 

then be analyzed with the finite element method (FEM). Following the algorithm ofESO 

(given below), this study will then progressively eliminate those fibers that meet a 

specific rejection criterion. 
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1.1. Continuum Components 

Evolutionary structural optimization was first conceptualized in 1993 by Xie and Steven 

[27], who studied instances of shape optimization occurring in nature. More specifically, 

they noticed that the shapes of structures such as egg shells and animal bones were 

formed by years of evolution. These structures reached their final state by making 

incremental adaptations over a large period of time. Xie and Steven applied this concept 

to engineering: make slight alterations to a solid structure one iteration at a time until an 

optimal shape has been reached. 

The basic ESO algorithm (modified for nanoropes) works as follows: 

1. Define domain of ground structure and its boundary conditions. 

2. Discretize structure volume into continuum finite elements and insert multiple 

fiber paths into each continuum element. 

3. Perform finite element stress analysis 

4. Determine a criteria for deleting fiber elements (continuum elements are 

unchanged) 

5. Post-process all ofthe continuum and fiber elements to determine their stress 

or gradients 

6. If a fiber element falls below a pre-determined threshold, then delete that 

element 

7. Repeat steps 3-7 until the specified volume fraction of nanomaterials is 

reached 

8. Apply engineering judgment to establish the actual nanorope location. 
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In 1998, they, along with Li and Querin [19], extended this method to heat conduction 

problems. Elements that do not contribute to heat transfer (or possess low thermal 

gradients) within a structure would be deleted. In 2000, Steven, Xie, and Querin [20] 

published another paper in which they explored ESO's adaptability for different scenarios 

and developed a number of modifications to improve the procedure. These include: 

1. Nibbling ESO - In order to prevent the formation of cavities within the 

continuum mesh, element deletion is restricted only to those on the boundary 

of the domain. 

2. Bi-Directional ESO - Logic is added to the algorithm such that elements can 

be added back into the structure if the criterion in an area is above the 

threshold. 

3. Group ESO- Groups of elements are defined prior to finite element analysis. 

If the group criterion falls below the threshold, then all elements within that 

group are removed. 

4. Stress Minimization -After the initial finite element analysis (FEA) iteration, 

a virtual load will be applied to the element with the maximum stress. FEA is 

then performed again, and sensitivity values are calculated. Elements whose 

sensitivity falls below the threshold are deleted. 

5. Multiple Criteria ESO - More than one criterion is defined, and an element 

will only be deleted if all of its criteria fall below thresholds. 

Taskanen [23], in 2002, examined the merits ofESO's theoretical aspects, and concluded 

that it was a simple yet promising optimization method to be utilized by design engineers. 
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Hassani and Hinton [14] discuss-various methods of topological optimization in their 

book. One particular algorithm they detail uses homogenization, a procedure that 

simulates a composite with many heterogeneities as an equivalent material model, and 

the optimality criteria method to optimize plane structures via a resizing scheme. These 

authors also provide a Fortran 77 program named PLATO (PLAne Topology 

Optimization) that is capable of analyzing plane-stress structures with a host of variables, 

including material and element types. Figure 1.1 shows a demonstration of PLATO 

applied to optimize a clamped beam structure with a point load applied to the top right 

corner. They reduce the effective modulus of elasticity of each element and display that 

iterative value in a gray scale plot. Thus, all the original elements were retained (which is 

computationally expensive) and the light gray element are providing some very low level 

of lateral support for the (black) elements recommended for retention. Such lateral 

support often leads to hiding kinematic instabilities that would be unacceptable in a real 

system. 

Note here that the two upper left dark regions are in tension, and thus could be enhanced 

by adding tension fibers. The two lower right regions are mainly compressive and would 

not benefit from adding tension fibers. Of course, if the design allows for reversals in the 

load directions, then both regions would benefit from such reinforcements. 
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Figure 1.1 - Iteration history of clamped beam example optimized by PLATO 

Rozvany [21] delves into the terminology, problem classes, and multiple solution 

strategies for topology optimization in his essay. He mentions that topological 

optimization of structures and composite continua consists of two subfields: Layout 

Optimization (LO), which deals with structures that have low volume fractions, and 

Generalized Shape Optimization (GSO), which handles higher volume fractions, and 



whose solutions may be analytical or based on the finite element method. Within FEM­

based GSO, he deems several terms to describe individual elements: 

1. Solid (S) - consisting of entirely a single material 

2. Empty (E) - void of any material 

3. Porous (P) - contains one material and empty space 

4. Composite (C)- consisting of multiple materials, but without void 

5. Composite-Porous (CP)- consisting of multiple materials and void 

He then discusses various problem classes for FEM-based GSO, including Isotropic­

Solid-Empty (ISE), Anisotropic-Solid-Empty (ASE), and Isotropic-Solid-Empty-Porous 

(ISEP) topologies. He also elaborates on three different solution strategies: Solid 

Isotropic Microstructure with Penalization (SIMP), Optimal Microstructure with 

Penalization (OMP), and Non-optimal Microstructures (NOM). Between these three 

solution strategies, Rozvany notes that many researchers consider SIMP to have a 

number of advantages over other solution strategies, including computational efficiency, 

versatility, and algorithm simplicity. Meanwhile, OMP and NOM are comparatively 

disadvantageous due to their more complex natures, their lack of robustness, and 

requirement for homogenization. 

When using traditional continuum elements in topological optimization, problems such as 

ill-defined boundaries, "checkerboard" patterns, and kinematic instability may arise. 

Kumar and Parthasarathy [ 18] investigated the utilization of B-spline approximations in 

optimization in order to mitigate these irregularities. B-spline elements differ from the 

usual quadrilateral elements in that they are formed through alternate methods, and are 
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often of a higher order. After experimentation, they conclude that using B-spline 

elements in lieu of traditional elements can produce smoother and more well-defined 

structural shapes. In one example, they apply a topological optimization routine to a 

cantilever beam with a shear load using various element types. Figure 1.2 displays the 

domain (a) and compares the optimization results for traditional quadrilateral elements (b 

and c) to those forB-spline elements (d and e). Note that the latter two results contain 

fewer isolated elements and have smoother boundary shapes. 

(a) 

(b) 

(c) 

(e) 
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Figure 1.2- Optimization results for cantilever beam: (a) domain, (b) Quad4N elements, 

(c) Quad9N elements, (d) B-spline9N elements, (e) B-spline16N elements 
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1.2. Truss Structures 

Hajela and Vittal [13] thoroughly examine the development of stochastic search methods 

in topological optimization. Their assessment focuses mainly on those methods that 

employ principles of biological evolution as a foundation. They note that for truss 

topology, there are a number of methods to utilize genetic algorithms (GA). A genetic 

algorithm is a search heuristic that mimics natural evolution. A typical GA may proceed 

as follows: 

1. An initial population of randomly generated solutions is defined. 

2. Each solution is evaluated and rated for its "fitness", or how close to optimum 

it is. 

3. Through a selection process that favors high fitness, several solutions are 

chosen to "breed" a new population. 

4. Pairs of selected members are "mated" in order to produce a new population 

generation. Offspring solutions carry traits from their parents, including those 

that favor optimization. 

5. Steps 2-4 are repeated until certain terminating conditions are met. 

One evolutionary method for truss topology optimization, explored by Hajela and Lee 

[12], involves a two-stage optimization procedure: 

1. Stage 1 (S1): Through a genetic algorithm, a set of low-weight, kinematically 

stable truss structures is produced. In this stage, response constraints on 

stress, displacement, and buckling are not considered. 
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2. Stage 2 (S2): Using the S1 structures as bases, member resizing is performed, 

with the goals of minimizing weight and satisfYing response constraints. 

Truss members may be added or subtracted only if the resulting topologies 

match those identified in S 1. 

Beckers and Fleury [3] proposed a primal-dual solution scheme for the topological 

optimization of truss structures. They detail a procedure that first defines an initial 

"ground structure", and then seeks to select a set of truss members of a certain total 

volume so that the structure remains kinematically stable. In Figure 1.3, three truss 

structures undergo this scheme in which each truss has its left corners clamped and a 

downward point load applied to its bottom right corner. The initial ground structure and 

final results are displayed for each example. 
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{a) 

(b) 

fc) 

Figure 1.3- Primal-dual optimization results for truss structures: (a) 225 bars, (b) 411 

bars, (c) 701 bars 
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1.3. Nanomaterials 

One key application of nanomaterials is to improve performance and stability of micro­

or nano-electro-mechanical systems (MEMS or NEMS). Che, <;agm, and Goddard [5] 

delved into researching the advantages of using carbon nanotubes for this purpose. They 

studied how structure, defects, and vacancies can affect the thermal conductivity and 

found positive results, concluding that the thermal efficiency of carbon nanotubes were 

comparable to that of diamond crystal and graphite sheet (when a percolation path is 

formed). 

Wu, Natsuki, Kurashiki, Ni, Iwamoto, and Fujii [26] examined the electrical conductivity 

stability of nano-composite material consisting of carbon nanofiber (CNF) and 

unsaturated polyester resin (UPR). Their observations and studies concluded that: 

1. The CNF/UPR nanocomposites have a low electrical percolation threshold, 

the critical value where infinite connectivity occurs. This is partly due to the 

CNF's large aspect ratio. 

2. The nanocomposites exhibit the positive temperature coefficient (PTC) effect, 

where electrical resistance increases with higher temperatures. The influence 

of temperature is notably more profound near the percolation threshold. 

3. The volume resistivity and PTC effect are lower at higher numbers of thermal 

cycles. 

Wichmann [25], in 2011, presented a numerical model to determine and characterize 

electrical properties of carbon nanotube composites. In this model, a nanotube 

11 
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microstructure is randomly generated via a Monte Carlo simulation and checked for a 

percolation path. The generated fibers are converted into a mesh of conducting and 

contact resistance line elements in order to study its electrical conductivity. A key 

element of this model is identifying the effective backbone of the conducting network: 

the percolation path that the current follows from one boundary to the other. This is 

necessary as the conductivity between the fibers and the material surrounding them differ 

by a factor in the millions. Figure 1.4 shows a sample resistor network and its effective 

backbone. 

1 )C 10 .. 

0.9 

0.8 

0.7 

0.6 47.6 

0.5 

0.4 

0.3 

0.2 

0.1 0.1 

(a) 0 
0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 1.4 -Resistor network (a) and corresponding backbone (b) 

In 1998, Islam and Pramila [ 15] performed a number of finite element analyses of fiber 

composites with varying temperature and heat flux boundary conditions to estimate their 



effective conductivities. They compared the solutions with known experimental and 

analytical results. 

Esteva [10], a graduate student at Rice University, created a model that used the FEM to 

study the effective elastic and thermal properties of composite material embedded with a 

specific volume fraction of carbon nanotubes (CNTs). Elsbemd [11] continued that study 

and extended it to include nonlinear stress analysis. 

Zhou and Li [28], in 2006, presented a topological optimization method for fiber­

reinforced composite structures under multiple load cases: 

1. The fiber-reinforced composite is presented as a material model. The fibers 

themselves are simulated as members of a truss continuum. 

2. The structure undergoes finite element analysis under multiple load cases. The 

orientation of the fibers are adjusted to match those of the principal stresses, and 

the fiber densities are altered to be proportional to the strain along those fiber 

orientations. 

13 

3. A group of continuous lines is drawn based on the densities and orientations of 

fibers at the nodes. A final optimum truss structure can then be formed using the 

concept as a suggestion. 

One of the many examples performed Zhou and Li's study is that of a cantilever beam 

with two point loads opposite in direction applied at the right end, as seen in Figure 1.5. 

The beam then undergoes FEA under a specific load case to determine the magnitude and 

orientation of its principal stresses (as seen in Figure 1.6a), which then serve as a 



template for the continuous line mapping (Figure 1.6b ), from which the final optimum 

truss structure (Figure 1.6c) can be determined. 

Pt 

P2 

Figure 1.5 - Cantilever beam example for fiber-reinforced composite material model 
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Figure 1.6- Topological optimization of composite beam: (a) principle stresses, (b) 

continuous fiber lines, (c) optimal truss 
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Chapter 2 

New Methodology 

2.1. Concept 

The process developed in this study deals with the placement of nanofibers onto a plane 

continuum, and the subsequent topological optimization of the fiber network. Unlike 

Wichmann's model, which produced nano-fibers randomly using Monte Carlo 

simulations, this methodology employs a procedurally generated nano-fiber network 

based on the nodal connectivity ofthe continuum elements. 

16 

The interior of an element receives straight fibers that connect between every node on the 

element. Duplicate fiber elements along the element interface should be avoided. For 

example, Figure 2.1 shows the effective fibers in 8 node (Serendipity) and 9 node 

(Lagrangian) quadrilaterals. Elements that contain nodes along their edges are preferable 

for this type of study not only for improved accuracy, but also to increase the number of 

fibers initially embedded. For the 8 node element, the four fibers crossing at the center of 

the element are not connected to each other, and cross over the entire element. For the 9 



node element, eight shorter fibers connect to the center node. If the elements are curved 

the fibers are still straight, but re-aligned to match the node locations on the curve. This 

process for creating the fiber candidates can be utilized for any two- or three-dimensional 

continuum element. 

a . . 
.... 
' 

" 

Figure 2.1 - Placement of 24 or 32 fiber elements within each 8 or 9 node quadrilateral 

The process of causing the original fiber candidate to connect to the continuum nodes 

simplifies the linear equations assembly and solution algorithms. It also avoids the use of 

linear constraint equations to account for the fiber coupling to the continuum material, as 

was done by Esteva [ 1 0] and Elsbernd [9]. 

The basic algorithm for the topological optimization of the fibers used here goes as 

follows: 

1. The plane structure is defined as a mesh of discrete, two-dimensional continuum 

elements. In Figure 2.2a, a sample structure is discretized as a continuum of 

quadrilateral 8-node (Q8) elements. 

2. Depending on the node layout, fibers are embedded into each element, as seen in 

Figure 2.2b (with L2 fiber elements). 
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3. The structure undergoes the stress or Poisson finite element analysis. For this 

step, the fiber network is directly coupled to the nodes of the continuum mesh. 

The fibers act like a constrained truss system. 

4. Fiber elements whose strain, or gradient, values fall below a pre-determined 

threshold are promptly deleted. 
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5. Steps 3 and 4 are performed iteratively until the specified volume fraction of 

fibers is reached, leaving only a minimal number of fiber elements remaining. 

This methodology can be employed m a number of applications, with vanous uses 

including improving the mechanical strength of a structure or the electrical/thermal 

conductivity of a material. 

1--1--11------1· . . .... . . 1--+---+----1 

1--11------1--1· . . . . .. . . ~1----11--1 

(a) (b) 

Figure 2.2- Structure with (a) Q8 elements, (b) L2 fibers 



2.2. Analysis 

A brief review ofthe equations associated with the Finite Element Model for a continuum 

component imbedded with nanofibers may help understanding the mechanical behaviors 

and sensitivities of the nanofiber-strengthened structure. For a mechanical component, 

the stress and thermal analyses use similar equations but with differences: in stress 

analysis, the displacement response is a vector, while heat transfer produces a scalar 

temperature response. Furthermore, the ground structure in stress analysis usually 

experiences external loads as natural boundary conditions (alongside the essential 

displacement boundary conditions), while in thermal analysis, essential boundary 

conditions occur in the form of temperatures while the natural boundary conditions 

involve heat fluxes. 

For the quadrilateral element, the element stiffness matrix can be written as an integral 

over the element area: 

[S] = 8 farea[B]T[E] [B]dA (2.1) 

Each node has two degrees of freedom in stress problems, and one degree in thermal 

problems, meaning that the dimensions of the stiffness matrix [S] are 2Nx2N and NxN 

respectively, where N is the number of nodes per element. In the preceding equation, o 

represents the thickness of the plane element of the ground structure, and [ B] contains 

the derivatives of the shape functions <pi (x,y) at a location (x,y) inside the element (in 

which T=l ,2, .... N). The shape function derivatives are used to convert the nodal response 
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into response space gradient. The shape function derivative matrix for stress analysis is 

defined below. 

a<fJ1 0 a<fJ2 0 a<fJN 

·~·] ax ax ax 

[B] = 0 a<fJ1 0 a<fJ2 0 (2.2) ay ay ay 
a<fJ1 a<fJ1 a<fJ2 a<fJ2 a<fJN a<fJN 
ay ax ay ax ay ax 

For thermal or electrical analysis, the shape function is as stated: 

[
a<fJl a<fJ2 .. • a<fJN] 

E _ ax ax ax 
[ 1 - a<fJ1 a<fJ2 .. . a<fJN 

ay ay ay 

(2.3) 

In Equation 2.1, [E] is the local stiffuess at a given point inside the element. For plain 

strain, the local matrix relating the stress and strain is a 3x3 matrix given in Equation 2.4, 

where Egrd is the Young's modulus ofthe ground material, and v is the Poisson ratio of 

the ground material. 

Egrd EgrdV 
0 

1-v2 1-v2 

.[E] = 
EgrdV Egrd 

0 I 1-v2 1-v2 

0 0 
Egrd 

2(1+v) 

(2.4) 

For heat transfer, the local stiffuess matrix relating temperature gradient and heat flux 

density is described as a 2 x2 matrix in Equation 2.5, where kgrd is the heat conductivity 

the ground material. 

[E] = [k90rd 0 ] 
kgrd 

(2.5) 
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For a fiber element, the element stiffness is rather straight forward. For stress analysis, it 

is a 4x4 matrix: 

[ 
cos2 a 

[S] = EtibAfib sin a cos a 
Ltib - cos 2 a 

-sin a cos a 

sin a cos a 
sin2 a 

-sin a cos a 
- sin2 a 

- cos 2 a 
-sin a cos a 

cos2 a 
sin a cos a 

-sin a cos a] 
- sin2 a 

sin a cos a 
sin2 a 

(2.6) 

Meanwhile, the element stiffness for thermal analyses is a 2x2 matrix given as follows: 

(2.7) 

In the proceeding equations, Efib' kfih' Afih' Lfib represent the Young's modulus, thermal 

conductivity, cross-sectional area, and element length of the fiber element, respectively, 

and a is the orientation of the fiber element with respect to the X-axis. 

The [B] matrices for the nanofiber elements are used in post-processing for the 

transformation from nodal displacement to strain, 

[B] = [-cosa -sina cosa sina] (2.8) 

or from nodal temperature to temperature gradient. 

[B] = [-1 1] (2.9) 

An assembly of all of the element stiffness matrices leads to the formation of global 

element matrix [K]. In stress analysis, the nodal responses are the nodal displacements 

{U} under the external nodal loads {F} in the ground structure (Equation 2.10), with the 
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global stiffness [K] assembled from stiffness matrices [S] in Equation 2.1 for ground 

structural elements and stiffness matrices in Equation 2.6 for fiber elements. 

{F} = [K]{U} (2.10) 

Equation 2.11 a then describes the stress vector { o(x,y)} in a location in the ground 

structure as a transformation of the nodal displacement { U} through transformation 

matrices [B(x,y)] and stiffness matrices [E(x,y)], described in Equation 2.2 and 2.4. 

{u(x, y)} = [E][B(x, y)]{T} (2.11a) 

Within the fiber element, the tension Ten as a transformation of nodal displacement in a 

fiber element is provided by 

(2.11b) 

in which the transformation matrix [B] is given previously by Equation 2.8. 

In thermal analysis, the goal is to study the heat conductivity behavior changes caused by 

the nanofibers. By imposing fixed temperatures to certain nodes as boundary conditions, 

the temperature distribution at each node can be computed. The result is an essential 

boundary value problem: 

{0} = [K]{T} (2.12) 

where the global stiffness matrix [K] is an assembly of element matrices [S] taken from 

Equations 2.1 and 2.7. 

The corresponding heat flux density vector {h(x,y)} in the ground structure is a 

transformation ofthe nodal temperatures {Te} in an element as given by Equation 2.13a, 



in which the transformation matrix [B] and element stiffuess matrix [E] are derived from 

Equations 2.3 and 2.5, respectively. 

[b(x, y)] = [E][B(x, y)]{T} (2.13a) 

The total thermal flux H along the fiber line is given by 

(2.13b) 

While electrical components may physically differ from mechanical ones, the 

mathematical model for electrical computation bares many similarities to that of thermal 

computation. The basic differential equations for heat flux field (heat flux density 

distribution, denoted by h) and electrical current field (current density distribution, 

denoted by T) are the gradient of temperature (VT in Equation 2.14) and voltage (VV in 

Equation 2.15) respectively. 

h = kVT (2.14) 

(2.15) 

Let the electrical conductivity be denoted by K. Electrical conductivity is the inverse 

reciprocal of the electrical resistivity. The electrical resistance is related to the electrical 

conductivity, as seen in the following equation: 

L 
R=­

ICA 
(2.16) 
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The finite element formulation for electrical analysis of a quadrilateral element is then 

provided by Equation 2.17, where [B] is calculated from Equation 2.8, and Kgrd is the 

electrical conductivity of the ground material. 

[E] = [Kgord 0 ] 
Kgrd 

(2.17) 

The formulation of element stiffuess of a nanofiber element is then represented by 

Equation 2.18. 

(2.18) 

The other equations are similar to their thermal counterparts. The global equation is 

{0} = [K]{V} (2.19) 

Where the global stiffness [K] is the assembly of element stiffuess matrices [S] form 

Equations 2.1, 2.8, 2.17, and 2.18, and [ V] is the global vector for nodal voltages. 

The electrical current per unit area i(x,y) in the ground structure is given from the nodal 

voltages within an element: 

{i(x, y)] = [E] [B(x, y)]{V} (2.20a) 

with [E] and [B] coming from Equations 2.17 and 2.3, respectively. 

For the fibers, the electric current along the fiber line (denoted by I) is given by 

(2.20b) 



Chapter 3 

Structural Applications 

3.1. Shear Wall Structure 

The text by Hassani and Hinton gives several structural examples. In one particular 

problem, the shear-wall structure in Figure 3.1 has its bottom edges clamped, and is given 

two horizontal point forces: the first one is at the top-left comer, and second is at the left­

side midpoint. 

First principle stress contours for this example (before fibers are introduced) are given in 

Figure 3.2 in which red marks regions of the highest tension and blue denotes areas that 

lack tension or experience compression. Note that it is assumed that the ground material 

can resist high compressions, but limited tension stresses. The compression force 

distribution is not of interest in this study. 
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Figure 3.1 -Shear Wall Structure 
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Figure 3.2- Stress Contour of Shear Wall Structure without Fibers 



Once the nano-fibers have been implanted, the optimization method will delete low­

tension fibers and fibers in compression until a threshold is reached. The deletion 

process was, in this case, carried out over a series of eight iterations, and is terminated 

when the specified volume fraction is reached. This process is shown in Figures 3.3 and 

3.4, where red indicates fibers that have yet to be eliminated. Blue lines are fibers that 

have been deleted. Figure 3.5 provides an enlarged view of the final retained fibers in 

comparison to the final stress contour mapping. Note that when compared to original 

fiber-free mapping (Figure 3.2), the final solution with the embedded fibers experiences 

considerably lower levels of stress. 

That figure shows a coupled continuum-fiber system with two basic fiber group paths. 

The lower (diagonal) group tends to follow the highest region of tension found in the 

continuum only model. The second group of fibers lie along the left structure edge. 

Being similar to a cantilever beam, experience shows that the original structure would 

have flexural tension stresses on the left and compression on the right side. Thus, the 

selected path would seem to be an improvement over the continuum material alone. 
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Figure 3.3 - Blue deleted and red retained fibers of first four (of eight) stages 
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Figure 3.4- Blue deleted and red retained fibers of last four (of eight) stages 
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Figure 3.5- .Final Retained Fiber Groups 
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The stage 3 and 4 plots of Figure 3.3 illustrate a potential disadvantage of the current 

fiber deletion logic. There it is apparent that in some positions a single fiber has been 

retained, even though it was not connected to any other retained fiber. If the part were 

produced by rapid prototype printing that could be done. However, if an actual series of 

continuous fibers are to added to the continuum, then retaining such fibers is undesirable. 

Retained single fibers are still counted in the volume fraction of reinforcing or 

conducting materials. For electrical applications with extremely high conductivity fibers 

31 



32 

it is important to retain a percolating path. That importance on a continuous path of 

connected fibers renders lone fibers nearly useless. 

The mesh database contains information on all elements connected to each element. 

Thus, it would be practical to add another loop to the deletion process that would 

determine if a retained fiber is surrounded by deleted fibers. If so, that single fiber would 

be deleted. Since the quantity of fibers is quite large, such an additional search should be 

delayed until the first few iterations have deleted a large percentage ofthe fibers. 

As mentioned earlier, this problem was solved with the PLATO system in an effort to 

define a truss system that could carry the imposed loads while satisfying the geometric 

restraints for avoiding the hole regions. The resulting optimal system is seen in Figure 

3.6. The black elements (on the right) are the retained continuum elements from the 

original continuum design region. Those elements are supported by hidden continuum 

elements whose elastic modulus has been reduced by about a factor of a million. The 

string of continuum elements would be replaced by a single truss (line) element. The 

final set of continuum elements is kinematically unstable since some are connected only 

at their opposite comers. If the hidden elements were not retained, then the continuum 

model would have been singular and no stress results could have been retained. 

Similar to how final continuum meshes are converted to trusses, the retained coupled 

fibers of the current approach would probably be further revised by fitting a continuous 

fiber (spline) through all of the retained fibers. That calculation has not been done for the 

examples being presented here, but it would be easy to "eyeball" such a path and then do 

a final analysis using a continuum with such a fiber path(s). 



p 

p 

3.0 

solid elements 
joined only at 
their corners 

Figure 3.6- PLATO Approximate Equivalent Truss System 
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3.2. Beckers and Fleury Cantilever 

In another example, the truss that Beckers and Fleury used to demonstrate their primal­

dual scheme (from Figure 1.3) is modeled as a continuum plate. For this problem, the 

continuum is discretized into 60 Q8 elements initially embedded with 1,232 L2 fiber 

elements (Figure 3.7). 
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Figure 3.7- Continuum and initial fiber elements for a cantilever supported on the left 
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For finite element analyses, two different cases are examined. In case (1), the entire left 

edge of the structure is clamped, and a point load is applied to its bottom right corner. 

The iterative history leading to its final result is displayed in Figure 3.8. 

I I 

Figure 3.8- Seven stages of retained ribers for corner point load case 
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For case (2), the force is represented differently. Rather than as a single point load, the 

applied force is modeled as three forces distributed equally among the lower edge of the 

bottom right quadrilateral, see Figure 3.9. As can be seen in Figure 3.1 0, this alteration 

will result in a slightly different solution. In both cases the desirable fiber path appears to 

run along the top edge for about half the length, and then arcs downward to the centroid 

of the load region. 

,~ 

i!E' 

~~ 

4~ 

~~ 

,~ 

..Lo .,.. 

Figure 3.9 - Supported (left) and loaded (right) nodes 
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Figure 3.1 0 - Eight stages of retained fibers for edge load case 



The equivalent truss developed by Beckers and Fleury had both tension and compression 

members (and none of the original continuum elements). Thus, their result, in Figure 

3.11 , shows a completely different optimal structure. Since the current process retains all 

of the original solids in a part or solid design it is different from the other approaches 

considered in the literature. 

(a} 

(b) 

{c} 

Figure 3.11 - Beckers and Fleury optimal trusses for case 1 
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3.3. Rectangular Plate with Hole 

Here is a more irregular structural example, involving a rectangular design place with a 

circular hole at its center, where no material exists. The plate is supported at its left 

boundary, and is given an upward vertical load at its top-right corner. This example was 

originally used as a demonstration ofPLATO in Hinton and Hassani's work. The problem 

design, along with two optimal solutions (obtained using different criteria), is illustrated 

in Figure 3.12 below. 

For this study, the design region serves the geometry for the continuum element mesh in 

which fibers are imbedded to as reinforcement. Figure 3.13 shows the original mesh, as 

well as the contours for first principle (Pl) stress and Von Mises stress for the solution 

without fibers. The iteration history for the retained fibers is given in Figures 3.14 and 

3.15. Note that the arrangement of the retained fibers does seem to follow the original 

PLATO solutions, as well as the Pl stress contours. 

In Figure 3 .16, a zoomed in scan shows that the solution does not manage to retain a 

perfect percolation path, as there is an undesired gap. Were this an electrical problem, it 

would be critical to rectifY this (possibly by fitting a single continuous fiber through the 

retained elements), as the entire solution would fail. This figure also shows a free­

standing fiber as well as two connected fibers isolated from the main path. 
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Figure 3.12- Rectangle with hole design, and two optimal solutions 
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Figure 3.13- Continuum mesh (without fibers) , with Pl and Von Mises stress contours 
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Figure 3.14- First four (of eight) iterations ofretained (red) fibers 
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Figure 3.15 - Final four (of eight) iterations of retained (red) fibers 
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Figure 3.16- Loss of percolation path due to gap between retained fibers 
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3.4. Isolated Fiber Elements 

As seen in Figure 3.16, and in the thermal applications that follow, the final solution of 

an optimization problem solved under the initial deletion logic method may leave single 

or double fibers floating in an otherwise empty region of the continuum, separated from 

the main fiber path. Such elements provide very little to no functionality in stress relief 

or thermal/electrical transfer. One suggested improvement would then be to implement a 

routine that would identify and eliminate isolated fiber elements. One way to accomplish 

this is to store a database that lists each fiber's neighboring elements, and delete those that 

have zero or only one neighbor. That is a relatively fast search process. Extending such 

a "clean up" process in each iteration becomes prohibitively expensive when applied to 

paths with only three of four fiber members. 

At the end of this research the "clean up" algorithm was implemented and it successfully 

eliminated paths with only one or two fibers. Thus, it did give a better distribution of the 

final volume fraction. However, having a more concentrated group of fibers in the final 

state still did not prevent gaps from developing in the final fiber paths. An example of 

this is given in Figure 3.17. That figure shows the re-run of the previous example with 

the "clean up" algorithm turned on. In the zoomed region near the bottom of the circular 

hole the bold black lines show where free standing fibers had appeared in Figure 3.16. 

While the single and two fiber paths were eliminated, a gap in the total fiber space still 

developed. 
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Figure 3.17- Loss of percolation path due to gap with "clean up" turned on 



Chapter 4 

Thermal Applications 

4.1. Heat Transfer Example Case 1- Fibers Initially Omitted 

Once again using the geometry and mesh in Figure 2.2a, a structure comprised of 8-node 

quadrilateral elements is given a specified temperature (essential boundary condition) 

along its bottom left edge, and a heat flux applied to its upper right comer. The linear two 

noded (L2) thermally conducting fibers are embedded into the continuum, as seen in 

Figure 2.2b. 

There are multiple approaches used for this particular example. In Case 1, the fibers are 

not present initially. Only after the first finite element analysis iteration are the fibers 

inserted into the structure. The primary thermal contour for this case is given in Figure 

4.1, and the iterative optimization history is recorded in the following Figures 4.2 and 

4.3. 

47 



FEA Solution Component_1 (max= 100, min = 0) 

+----+---+---+ .......... ............. f-----+----+----1· 

. . .... ... .... .. . . ... .. . · 1---~---4--~ 

Figure 4.1 - Continuum temperature contour for Case 1 (no high conductivity fibers 

added) 
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Figure 4.2 - First three (of six) iterations of retained fibers for thermal example Case 1 
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.J .. 

Figure 4.3 - Final three (of six) iterations of retained fibers for thermal example Case 1 



4.2. Heat Transfer Example Case 2 - Fibers Initially Present 

In Case 2 of this example, the nanofibers are applied during the first iteration of FEA, and 

remain throughout the whole procedure. Figure 4.4 compares this case's thermal contour 

to that of the previous one, while Figures 4.5 and 4.6 illustrate the iteration history. Note 

that for both cases, the final results for both schemes are similar, and each is able to 

effectively produce a percolation path from the flux point at the top right to the bounding 

on the bottom left edge. 

FEA Solution Component_1 (max= 1 00, min = 0) 

1------+-----t---t . . . . . . .. ....... . 

Figure 4.4 - Continuum temperature contours for Case 1 (left) and Case 2 (right) 
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Figure 4.5 - First four (of seven) iterations of retained fibers for thermal example Case 2 
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Figure 4.6 - Final three (of seven) iterations of retained fibers for thermal example Case 2 



4.3. Heat Transfer Example Case 3 - Heuristic Approach 

Upon completion of the initial study using the crude mesh, it is possible to use heuristic 

evaluation to refine the continuum mesh and/or limit the region where fibers are applied. 

In case (3) of the same previous example, the fibers are embedded only in the space 

where the percolative path (judging from previous results) is expected. The refined mesh 

and selected fiber network are shown in Figure 4. 7. The temperature distribution is 

nearly identical to that of Case 2 (in Figure 4.4). 

Figure 4.7 - Continuum mesh, fiber network, and optimal results for thermal example 

Case 3 
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Chapter 5 

Electrical Applications 

5.1. Introduction 

For electrical applications one has the same governing equations as for the thermal 

applications presented previously. The critical difference is that the electrical 

conductivity of the fiber can be thousands or millions of times larger than the thermal 

conductivity value. The huge electrical conductivity of the fibers causes numerical ill­

conditioning in the electrical application that was not present in thermal and structural 

applications. That is because round off error makes the polymer material essentially 

vanish and the electrical fibers function as if suspended in a vacuum. That is, unless 

some of the fibers form percolation paths between locations of essential boundary 

conditions, or from an input source to a location of an essential boundary condition, the 

equations become singular and no solution is obtained. In the electrical application 

percolation paths can also be formed by electron tunneling, as discussed by Wichmann 

[24]. When fibers get within a specific distance of each other a tunneling resistance is 

overcome and electrons can flow between them. That is, the conducting fibers do not 
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always have to be physically connected to form percolation paths. However, a set of one­

dimensional "tunneling elements" would have to be inserted into the original mesh so 

that some of their nodal connectivity's close the gap(s) in a percolation path. 

5.2. Maintaining an Unbroken Percolation Path 

In the present implementation, it is important for the final solution to keep a continuous 

nanofiber path connecting one boundary of the structure to another, especially in 

electrical engineering cases, where the high conductivity of the fiber elements relative to 

the continuum would cause the system to become singular. Wichmann's work on 

numerical modeling of nanocomposite electrical properties discusses this in detail. 

Normally, the initial fiber mesh by default includes a huge number of potential 

percolation paths. Logic could be implemented to check that the no gaps will be formed 

in the path before each respective fiber is killed. 

In some cases, gaps can form as the result of the fiber path branching out in two or more 

different directions, only to rejoin at a different location. This can result in the algorithm 

severing the path by deleting both branches. To prevent this occurrence, the 

methodology must be altered so that it can recognize these situations, and ensure that one 

of the branches is spared so that the percolation path is not broken. 

When all else fails, and gaps in the percolation path still exist despite the system checks 

proposed above, there is always the contingency of simply "fixing" said gaps by adopting 

the bi-directional evolutionary structural optimization discussed by Steven, Xie, and 

Querin previously. If the algorithm is able to identify what would otherwise be a perfect 
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path save for a few missing links, then it could simply add the fibers back in. However, 

this solution should be a last resort only, and needs to be heavily refined so that it doesn't 

recreate extraneous fiber elements. 
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The current approach initially creates a very large number of conducting fibers on top of 

the continuum mesh. It would be too expensive to search all of the distances to 

neighboring to find a fiber that is close enough to require inserting a new "tunneling 

element" into the mesh connectivity. Thus, such a search and insertion process would be 

practical only after several iterations had eliminated a major percentage of the conducting 

fibers. 

Yet another alternative would be to fit one or more long continuous cables through the 

retained fibers, even if they contain a gap. As illustrated in Figure 5.1, one can take any 

reasonable collection of fiber paths and extract their centroid locations and/or their end 

points to define a general neighborhood of a final continuous path. Then, a particular 

type of continuous curve, such as a spline, could be least squares fit through those points. 

The result of such a fitting process would be the single black spline path given in Figure 

5.2. Such a process is clearly extendable to three-dimensional paths. 
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Figure 5.1 -Fiber paths (left) and their centroid locations (right) 
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Figure 5.2 - A single continuous spline curve (black) fit through the retained fibers 



Chapter 6 

Future Work and Conclusions 

6.1. Three-Dimensional Applications 

Topological optimization is not necessarily limited to two-dimensional structures, as 

Hassani and Hinton demonstrate with the three-dimensional control arm example shown 

in Figure 6.1. In (a), the design (light gray) and non-design (black) domains of the 

control arm are displayed. Commercial optimization software is used to void elements 

with low material density in (b), with the final manually smoothed element model for 

stress analysis shown in (c). 

The current fiber optimization methodology can recognize and accept three-dimensional 

finite element domains such as the control arm example. Fibers would be laid from node­

to-node within each cubic element in three-dimensional space. The additional work 

would occur in the solid element mesh generation phase. For each standard solid element 

shape, a process similar to that shown in Figure 2.1 would have to be implemented to 

create the family of initial fibers connecting all of the nodes of the solid elements. A 
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serendipity quadratic solid element extension, of the left side of that figure, would have 

20 nodes. Thus the number of fibers in a solid mesh is drastically increased in the first 

iteration. The input files become huge, but the algorithm would still function. 

Visualizing the fibers in a solid domain would not be difficult, but it may be hard to 

identify where gaps develop in the final few paths. 

(n.} 

(h) 

(r.) 

Figure 6.1 -Three-Dimensional Optimization of Control Arm 

61 



6.2. Future Work 

The speed of the current algorithm can be significantly increased with a few straight 

forward modifications that merit consideration in the future. Currently, the continuum 

elements are generated and assembled in every iteration. Since they do not change in the 

iteration process they only need to be built once. The assembly algorithm could be 

changed such that before the first iteration all of the continuum elements are formed and 

assembled first. The assembled stiffness matrix is saved to a high speed binary file. At 

the beginning of each iteration the equilibrium equations would be initialized by reading 

in the assemble continuum contribution from the binary file. Then the loop over all fibers 

would begin. If a fiber had not been deleted then its stiffness is computed and assembled 

into the equilibrium equations. At the end of the fiber loop, the system would be 

complete, and the enforcement of the boundary conditions and the final factorizations 

would take place in the usual fashion. For three-dimensional models this would probably 

be a necessary step for the process to run in a reasonable time. 
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6.3. Conclusions 

At this current stage, the optimization algorithm for nanofiber placement for improving 

the mechanical, electrical, or thermal behavior of a structure has been completed. The 

examples in the study demonstrate both the feasibility of this algorithm, but also potential 

flaws that can be rectified. This present study, at status quo, serves as the foundation for 

future research in which a more refined optimization methodology can be realized and 

extended to fibers in solids. From the results and data obtained, there are a few avenues 

of research in which the methodology covered here can be improved upon. 

While the option to by-pass gaps in the path(s) can be overcome by curve fitting methods 

(as in Figure 5.2). It would be very useful to have an algorithm that would prevent a fiber 

from being deleted if it causes a gap in the last path. That may not be practical with the 

current approach because it begins with an extremely large number of paths and it is quite 

difficult to detect when just a few connected paths remain. The identities of all retained 

fibers are stored at the end of each iteration. Therefore, one could work backwards and 

visually identify the last iteration that contained at least one continuous path. Then, you 

could restart with that fiber connectivity as the initial state, tum on the closed path 

retention logic, and proceed with deleting fibers that are not on a closed path. 
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