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Abstract

In this report� we consider the problem of �nding the maximum�

volume ellipsoid inscribing a given full�dimensional polytope in �n

de�ned by a �nite set of a�ne inequalities� We present several formu�

lations for the problem that may serve as algorithmic frameworks for

applying interior�point methods� We propose a practical interior�point

algorithm based on one of the formulations and present preliminary

numerical results�

� Introduction

Since Karmarkar�s ���� ground�breaking work ��	
 the area of interior�point
methods has matured considerably
 as evidenced by a string of recently ap�
peared books in this area �see
 for example ���
 �

 ��
 ��
 �

 ��	� which
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contain comprehensive lists of references� Even so
 there are still many re�
search topics that need to be further studied
 especially in extending and
applying interior�point methodology to solving practically important opti�
mization problems�
In this paper
 we are concerned with the problem of �nding the maximum�

volume ellipsoid �MVE� inscribed in a polytope in �n de�ned by a �nite set
of a�ne inequalities� We will call this problem the MVE problem in short�
The MVE problem has its root in rounding of convex bodies in �n� One

of the earliest studies was due to F� John ��	� In particular
 John�s results
implies that once the maximum�volume inscribing ellipsoid E is found in P

then

E � P � nE�
That is
 E provides an n�bounding for P� Moreover
 if P is centrally sym�
metric around the origin
 then the rounding factor can be reduced to

p
n�

In general
 ellipsoids are much easier to handle
 both theoretically and
computationally
 than polytopes are� For example
 the global minimum of
any quadratic in an ellipsoid can be easily located in polynomial time
 while
�nding such a global minimum in a polytope is generally a NP�hard prob�
lem� Not surprisingly
 for many problems a fruitful and e�ective approach
is to use ellipsoids to approximate polytopes in various theoretic and algo�
rithmic settings� A celebrated example is Khachiyan�s ellipsoid method for
linear programming ���	 � the �rst polynomial�time algorithm for linear
programming� Other applications include optimal design ���
 ��	
 computa�
tional geometry �for example
 ���	� and algorithm construction �for example

���	��
Recently
 several randomized polynomial�time algorithms ���
 ��
 �	
 for

example� have been proposed for estimating the volume of convex bodies
�computing the volume itself is NP�hard�� In the case of polytopes
 these
algorithms require approximating polytopes by ellipsoids�
It is well known that the rounding of a polytope can be accomplished

by the �shallow�cut� ellipsoid method in polynomial time �see
 for exam�
ple
 ���
 �	�� It is also well known
 however
 that ellipsoid method is not a
practically e�cient algorithm� A number of polynomial�time interior�point
algorithms have been proposed in the recent years for the MVE problem
 for
example
 by Nesterov and Nemirovskii ���	
 Khachiyan and Todd ���	 �also
see ��
	 for a related problem�
 and Nemirovskii ���	� All these works are
primarily concerned with the computational complexity issues and the pro�

�
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posed algorithms are in theoretic nature� Vandenberghe
 Boyd and Wu ���	
proposed an algorithm for the class of problems called MAXDET problems
to which the MVE problem belong� However
 their algorithm does not take
into account of the special structure of the MVE problem�
The MVE problem plays a major role in the well�known Lenstra�s algo�

rithm ���	 for integer programming
 which is the �rst polynomial algorithm
for integer programming when the number of integer variables is �xed � In
the Lenstra algorithm
 a MVE problem need to be solved at every node of
the branch�and�bound search tree� The e�ciency of the algorithm used to
solve this problem
 therefore
 will dominate the calculation� Though theoret�
ically e�cient
 Lenstra�s algorithm has never been implemented
 nor studied
from a computational point of view� One of the primary reasons for the lack
of computational results for Lenstra�s algorithm is the lack of practically
e�cient algorithms and software for the MVE problem involved�
It is curiously noticeable that computational results on the MVE problem

are scarce� In fact
 at the writing we are not aware of any published com�
putational results for this problem� This work constitutes a �rst e�ort from
the author to construct practically algorithms for solving the MVE problem�
This paper is organized as follows� In Section �
 we will introduce the

formulation of the MVE problem as a convex program� In Section �
 we
present the optimality conditions �or system� for the problem
 as well as the
perturbations of the optimality conditions� Section � contains several equiv�
alent optimality systems resulting from eliminating di�erent variables from
the original optimality system� Based on one of the optimality systems
 an
interior�point algorithm is proposed in Section � and preliminary numerical
results presented in Section �� In the last section
 some concluding remarks
are o�ered�

� Problem Description

Consider a given polytope P in �n


P � fy � �n � Ay � bg� ���

where A � �m�n and b � �m� For convenience of discussion
 we will assume
that

�� A has full rank containing no zero�rows�
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�� There is a point y � �n satisfying Ay � b�

Given a center x � �n and a nonsingular scaling matrix E � �n�n
 an
ellipsoid in �n can be de�ned as

E�x�E� � fy � �n � �y � x�T �EET ����y � x� � �g�

or equivalently


E�x�E� � fy � �n � y � x� Es and ksk � �g� ���

where k � k is the Euclidean norm in �n� Clearly
 the shape of the ellipsoid
is uniquely determined by the symmetric positive de�nite matrix EET 
 but
not uniquely by E since the same ellipsoid can also be generated by EQ for
any orthogonal matrix Q � �n�n� Without loss of generality
 we can assume
that E itself is symmetric positive de�nite�
The ellipsoid E�x�E� is contained in P if and only if

sup
ksk��

aTi �x� Es� � bi� i � � � m

where aTi is the i�th row of A
 or equivalently

aTi x� kEaik � bi� i � � � m�

Introducing the notation

h�E� � �kEa�k� � � � � kEamk�T � �m� ���

we have
E�x�E� � P �� b�Ax� h�E� 	 
� ���

Since the volume of E�x�E� is a multiple of detE
 the maximum�volume
ellipsoid contained in P is the solution �x�� E�� � �n
�n�n to the following
optimization problem

max log detE
s�t� b�Ax� h�E� 	 


E � 

���

where E � 
 means that E is symmetric positive de�nite� It is well known
that ��� is a convex program with a unique pair of solution �x�� E�� � �n 
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�n�n which is uniquely determined by the �rst�order optimality
 or Karush�
Kuhn�Tucker �KKT�
 conditions for the problem� The maximum volume
ellipsoid �MVE� problem is classi�ed as in the class of MAXDET problems
by ���	�
We introduce some notation� For any given vector v � �v�� v�� � � � vp�T �

�p
 we denote the p 
 p diagonal matrix with v on its diagonal either by
diag�v�
 or by its upper�case letter V whenever no confusion can occur� On
the other hand
 for a square matrix M 
 diag�M� is the vector consisting of
the diagonal elements of M �

� Optimality Conditions and Perturbations

The Lagrangian function of ��� is

L�x�E� u� � log detE � uT �b�Ax� h�E��

where u � �m is the vector of Lagrange multipliers�
Using the formulas

r�log detE	 � E�� ���

and
d

dE
hi�E� �

Eaia
T
i � aia

T
i E

�hi�E�

we can derive the optimality �KKT� conditions as

ATu � 
� ��a�

E�� � �E�ATY A� � �ATY A�E	�� � 
� ��b�

z � �b�Ax� h�E�� � 
� ��c�

Uz � 
� ��d�

u� z 	 
� ��e�

where Y � diag�h�E����U 
 U � diag�u� and z is a slack variable�
A large class of primal�dual interior point algorithms can be viewed as a

damped Newton�s method applied to so�called perturbed KKT conditions�
Following this approach
 we replace the zero right�hand�side of ��d� by a
positive vector c � �m
 i�e�


Uz � c� ���
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and resulting system is the so�called perturbed KKT �PKKT� conditions�
The PKKT conditions are equivalent to the gradient of a strictly concave
function being zero
 and have a unique solution for each c � 
� This fact is
stated in the following proposition�

Proposition � For any positive vector c � �m� the perturbed KKT condi�
tions have a unique solution �E� x� u� z� where E � 
 and u� z � 
�

Proof� Consider the strictly concave function �both in x and in E� param�
eterized by 
 � c � �m

Bc�x�E� � log detE �
mX
i��

ci log�b�Ax� h�E��i�

For any give c � 

 the function has a unique minimizer pair xc� Ec� where

rBc�x�E� � 
� b�Ax� h�E� � 
� E � 
�
It is straightforward to verify that rBc�x�E� � 
 is equivalent to the per�
turbed KKT conditions if we introduce the variables

z � b�Ax� h�E�� u � diag�z���c�

which completes the proof�

� Elimination of Variables

In this section
 we present several equivalent forms of the KKT or the per�
turbed KKT �PKKT� system through the elimination of di�erent variables�
In principle
 interior�point Newton�s method may be applied to anyone of
these systems�

��� Eliminating Variable E

To eliminate the matrix E from the PKKT system
 we let

y � diag�h�E����u� ���

and solve E from ��b� as a function of y to obtain

E�y� � �ATY A������ ��
�
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As a result
 hi�E� � kEaik becomes a function of y which we denote by
hi�y�� namely


h�y� � �kE�y�a�k� � � � � kE�y�amk�T �
q
diag�H�y��� ����

where
H�y� � A�ATY A���AT � ����

After eliminating E from the PKKT conditions
 we arrive at a set of
equivalent PKKT conditions

ATu � 
� ���a�

y � diag�h�y����u � 
� ���b�

z � �b�Ax� h�y�� � 
� ���c�

Uz � c� ���d�

u� z 	 
� ���e�

��	 Eliminating Variable u

Solving ���b� for u

u � Y h�y��

and substituting the above result into ���c�
 and noting that y has the same
zero�nonzero pattern as u
 we obtain a set of equivalent perturbed KKT
conditions involving only variables x� y and z�

ATY h�y� � 
� ���a�

z � �b�Ax� h�y�� � 
� ���b�

Y z � c� ���c�

y� z 	 
� ���d�

Multiplying ���b� by ATY and using ���a� and ���c�
 we obtain another
set of equivalent PKKT conditions

ATY �b�Ax� � ATc� ���a�

z � �b�Ax� h�y�� � 
� ���b�

Y z � c� ���c�

y� z 	 
� ���d�

We note that ���a� is less nonlinear than ���a� is�

�



��
 Eliminating Variable x

We can further eliminate the variable x� To do so
 we �rst solve ���a� for x
and obtain

x�y� c� � �ATY A���AT �Y b� c�� ����

Substituting x�y� c� into b�Ax
 we obtain a function of y and c�

g�y� c� � b� x�y� c� � b�A�ATY A���AT �Y b� c��

Recall from ���� that H�y� � A�ATY A���AT � Hence


g�y� c� � �I �H�y�Y 	b�H�y�c� ����

Replacing b�Ax by g�y� c� in ���c� and deleting ���a�
 we arrive at another
set of equivalent PKKT conditions�

z � �g�y� c�� h�y�� � 
� ���a�

Y z � c� ���b�

y� z 	 
� ���c�

In the case of c � 

 the above system represents a nonlinear complemen�
tarity problem�


 � y � z � f�y� 	 
� ����

where f�y� � g�y� 
� � h�y�� This nonlinear complementarity problem is
equivalent to the optimality conditions of the maximum�volume ellipsoid
problem ����

��� Alternative equations

The components of the function h�y� are de�ned as Euclidean norm of vectors
and hence involve square roots� However
 it is possible to use alternative
equations involving h�y�� only� Observe that for Ax � b
 the inequality
�b�Ax��h�y�	 
 is equivalent to
 after adding a nonnegative slack variable
z


z �
h
�b�Ax�� � h�y��

i
� 
� z 	 
� ��
�

Similarly
 whenever g�y� c� 	 

 g�y� c�� h�y� 	 
 is equivalent to
z �

h
g�y� c�� � h�y��

i
� 
� z 	 
� ����

These alternative equations are free of square roots
 but require additional
constraints in order to maintain equivalence to the PKKT or KKT conditions�
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��� Derivative formulas

In applying interior�point Newton�s method to di�erent formulations pre�
sented above
 we will need derivative information of various functions� Here
we collect derivative formulas for possible future use�

Lemma � Let H�y�� h�y� and g�y� be de�ned as in ���	� ���	 and ��
	�
respectively� and let v be any vector in �m� Then

�Hij�y���yk � �Hik�y�Hjk�y�� ����

ry�H�y�v	 � �H�y�diag�H�y�v�� ����

rh�y� � ������diag�h�y�����H�y� 
H�y�	� ����

ryg�y� c� � �H�y�diag�g�y� c��� ����

r�h�y��	 � �H�y� 
H�y�� ����

ry�g�y� c�
�	 � ��diag�g�y� c��H�y�diag�g�y� c��� ����

where �

 denotes the element�wise or Hadamard product of matrices�

Using these formulas
 we have

ry�g�y� c�� h�y�	 � �����diag�h�y����H�y� 
H�y�
�H�y�diag�g�y� c���

ry�g�y� c�
� � h�y��	 � H�y� 
H�y�

��diag�g�y� c��H�y�diag�g�y� c���
We note that the second matrix is symmetric while the �rst is not�

� An Interior Point Algorithm

So far our limited computational experiments seem to favor the conditions
����� Let c � �e for scalar � � 

 where e is the vector of all ones� We can
write ���� as

F �x� y� z� � �

�
B�

ATe


e

�
CA ����

and y� z 	 

 where

F �x� y� z� �
�
B�

ATY �b�Ax�
z � �b�Ax� h�y��

Y z

�
CA

�



Besides the nonnegativity y� z 	 

 ���� is a square
 nonlinear system of
n � �m variables� It is known that as �� 

 the solution of ���� converges
to a solution from which we can reconstruct the solution to the original
problem�
By direct calculation
 we obtain

F ��x� y� z� �

�
��
�ATY A ATdiag�b�Ax� 


A rh�y� I

 Z Y

�
	


To solve the linear system

F ��x� y� z�

�
B�

	x
	y
	z

�
CA �

�
B�

r�
r�
r�

�
CA �

we can use the following block Gaussian elimination procedure�

	y � M���r� � Y ��r� �A�ATY A���r���

	z � Y ���r� � Z	y��

	x � �ATY A����r� �ATdiag�b�Ax�	y��

where

M � H�y�diag�b�Ax�� diag��h�y����H�y� 
H�y�� Y ��z�

Choose �x� � P� y� � 
� z� � 
�
 set k � 
�
�� Choose 
k � �
� �� and set �k � 
k �y

k�T zk

m
�

�� Solve for �	x� 	y� 	z� from

F ��x� y� z�

�
B�

	x
	y
	z

�
CA � �

�
B�

ATe


e

�
CA � F �x� y� z�

for �x� y� z� � �xk� yk� zk� and � � �k�

�� Choose step�length �k � �
� �	 and update
�xk��� yk��� zk��� � �xk� yk� zk� � �k�	x� 	y� 	z��

such that
xk�� � P� yk�� � 
� zk�� � 
�

�� Increment k and go to Step ��

�
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� Numerical Results

We have implemented this prototype algorithm in Matlab and performed
limited numerical experiments on randomly generated problems �description
of parameter choices is skipped here��
Figure � below illustrates how a ��dimensional problem is solved� The

small circles in the picture represents the positions of the x�iterates
 starting
from close to the boundary and converging to the center of the ellipse in a
few steps�

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Figure �� A ��D example

Figure � contains an edited session of a Matlab run of the implemented
algorithm on a random problem with �

 variables and a polytope de�ned by
�

 inequalities� The problem is solved on a Sun UltraSparc�� workstation
in about �

 seconds�
We emphasize that since the matrix variable E has been eliminated
 sys�

tem ���� contains only �m�n variables� The linear algebra cost per iteration
is no more expensive than algorithms based on the volumetric barrier as de�
scribed in ���
 �	
 for example� In general
 the prototype algorithm seems to
be quite robust and reasonably e�cient for medium�size problems�
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Figure �� Result on a Random Problem

�m n� � ���� ����

iter � residual � ��	�e
��

iter � residual � ����e
��

iter � residual � 
���e
��

iter � residual � ����e
��

� �

iter �
 residual � ��
�e���

iter �� residual � 
���e���

iter �	 residual � ����e���

iter �� residual � ����e���

Converged�

CPU time� 	
�
� seconds

We also conducted experiments on polytopes derived from traveling sales�
man problem �TSP�� The largest polytope in our tests is a convex hull of
tours through � nodes that is de�ned by ���� inequality constraints and �
equality constraints in �� variables� This polytope is then projected onto
a full�dimensional polytope in �� variables de�ned by ���� inequality con�
straints� For this problem
 the origin is an extremely good starting point
for the center of the maximum volume ellipsoid� Starting from the origin

the algorithm converges rather quickly� see a edited session in Figure �� The
result was obtained on an AlphaServer ��

 ���

 with �GB of memory
 and
on a �

MHz Alpha ����� processor �the machine has � processors
 but only
one was used��
We note that the algorithm is not particularly suitable for problems where

m is far greater than n since it solves an m
m
 and usually dense
 linear sys�
tem at each iteration� This is clearly demonstrated by the result in Figure �
where about three hours of CPU time was consumed�

� Concluding Remarks

Our preliminary numerical results indicate that the infeasible
 primal�dual

interior�point approach seems promising for problems of small to medium
sizes in terms of both the numbers of variables and constraints� This research
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Figure �� Result on a TSP polytope

�m n� � ����
 ���

iter � residual � ��		e���

iter � residual � ����e
��

iter � residual � ����e
��

iter � residual � ����e
��

iter � residual � ����e���

iter � residual � ���	e���

iter � residual � ����e���

iter 
 residual � ����e���

iter � residual � ���	e���

Converged�

CPU time� ����� seconds

is still at a preliminary stage and many issues remain to be investigated for
the development of e�cient and robust algorithms for the MVE problem

especially large�scale problems in terms of either the number of variables or
the number of constraints�
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