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Abstract

In this report, we consider the problem of finding the maximum-
volume ellipsoid inscribing a given full-dimensional polytope in R
defined by a finite set of affine inequalities. We present several formu-
lations for the problem that may serve as algorithmic frameworks for
applying interior-point methods. We propose a practical interior-point
algorithm based on one of the formulations and present preliminary
numerical results.

Introduction

Since Karmarkar’s 1984 ground-breaking work [8], the area of interior-point
methods has matured considerably, as evidenced by a string of recently ap-
peared books in this area (see, for example [19, 20, 24, 29, 30, 31]) which
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contain comprehensive lists of references. Even so, there are still many re-
search topics that need to be further studied, especially in extending and
applying interior-point methodology to solving practically important opti-
mization problems.

In this paper, we are concerned with the problem of finding the maximum-
volume ellipsoid (MVE) inscribed in a polytope in R" defined by a finite set
of affine inequalities. We will call this problem the MVE problem in short.

The MVE problem has its root in rounding of convex bodies in R™. One
of the earliest studies was due to F. John [6]. In particular, John’s results
implies that once the maximum-volume inscribing ellipsoid & is found in P,
then

ECPCné.

That is, £ provides an n-bounding for P. Moreover, if P is centrally sym-
metric around the origin, then the rounding factor can be reduced to y/n.

In general, ellipsoids are much easier to handle, both theoretically and
computationally, than polytopes are. For example, the global minimum of
any quadratic in an ellipsoid can be easily located in polynomial time, while
finding such a global minimum in a polytope is generally a NP-hard prob-
lem. Not surprisingly, for many problems a fruitful and effective approach
is to use ellipsoids to approximate polytopes in various theoretic and algo-
rithmic settings. A celebrated example is Khachiyan’s ellipsoid method for
linear programming [11] — the first polynomial-time algorithm for linear
programming. Other applications include optimal design [22, 25], computa-
tional geometry (for example, [27]) and algorithm construction (for example,
23]).

Recently, several randomized polynomial-time algorithms ([3, 16, 7], for
example) have been proposed for estimating the volume of convex bodies
(computing the volume itself is NP-hard). In the case of polytopes, these
algorithms require approximating polytopes by ellipsoids.

It is well known that the rounding of a polytope can be accomplished
by the (shallow-cut) ellipsoid method in polynomial time (see, for exam-
ple, [21, 5]). It is also well known, however, that ellipsoid method is not a
practically efficient algorithm. A number of polynomial-time interior-point
algorithms have been proposed in the recent years for the MVE problem, for
example, by Nesterov and Nemirovskii [18], Khachiyan and Todd [12] (also
see [10] for a related problem), and Nemirovskii [17]. All these works are
primarily concerned with the computational complexity issues and the pro-



posed algorithms are in theoretic nature. Vandenberghe, Boyd and Wu [26]
proposed an algorithm for the class of problems called MAXDET problems
to which the MVE problem belong. However, their algorithm does not take
into account of the special structure of the MVE problem.

The MVE problem plays a major role in the well-known Lenstra’s algo-
rithm [14] for integer programming, which is the first polynomial algorithm
for integer programming when the number of integer variables is fixed . In
the Lenstra algorithm, a MVE problem need to be solved at every node of
the branch-and-bound search tree. The efficiency of the algorithm used to
solve this problem, therefore, will dominate the calculation. Though theoret-
ically efficient, Lenstra’s algorithm has never been implemented, nor studied
from a computational point of view. One of the primary reasons for the lack
of computational results for Lenstra’s algorithm is the lack of practically
efficient algorithms and software for the MVE problem involved.

It is curiously noticeable that computational results on the MVE problem
are scarce. In fact, at the writing we are not aware of any published com-
putational results for this problem. This work constitutes a first effort from
the author to construct practically algorithms for solving the MVE problem.

This paper is organized as follows. In Section 2, we will introduce the
formulation of the MVE problem as a convex program. In Section 3, we
present the optimality conditions (or system) for the problem, as well as the
perturbations of the optimality conditions. Section 4 contains several equiv-
alent optimality systems resulting from eliminating different variables from
the original optimality system. Based on one of the optimality systems, an
interior-point algorithm is proposed in Section 5 and preliminary numerical
results presented in Section 6. In the last section, some concluding remarks
are offered.

2 Problem Description
Consider a given polytope P in R”,

P={yeR": Ay <b}, (1)

where A € R™*™ and b € R™. For convenience of discussion, we will assume
that

1. A has full rank containing no zero-rows;



2. There is a point y € R" satisfying Ay < b.

Given a center © € R"” and a nonsingular scaling matrix £ € R**", an
ellipsoid in R™ can be defined as

Ex,B)={yeR": (y— o) (EED) Yy —2) < 1};
or equivalently,
E(x,B)={yeR":y=a+ Fsand ||s]| <1}, (2)

where || - || is the Euclidean norm in R". Clearly, the shape of the ellipsoid
is uniquely determined by the symmetric positive definite matrix FET, but
not uniquely by F since the same ellipsoid can also be generated by F () for
any orthogonal matrix @ € R"*". Without loss of generality, we can assume
that F itself is symmetric positive definite.

The ellipsoid E(x, £) is contained in P if and only if

sup al(z + Bs)<b;, i=1:m
lIsll=1

where a! is the i-th row of A, or equivalently
CLZTJ} + || Fa;|| < by 1=1:m.
Introducing the notation
WE) = ([|Bayll, -, | Eax]))" € R™, (3)

we have

E(x,B) CP <= b—Ax—h(FE) > 0. (4)

Since the volume of £(x, F') is a multiple of det F, the maximum-volume
ellipsoid contained in P is the solution (a*, E*) € R" x R™*" to the following
optimization problem

max log det
st. b—Ax—h(FE) >0 (5)
E >0

where F > (0 means that £ is symmetric positive definite. It is well known
that (5) is a convex program with a unique pair of solution (a*, E*) € R" x
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R™*"™ which is uniquely determined by the first-order optimality, or Karush-
Kuhn-Tucker (KKT), conditions for the problem. The maximum volume
ellipsoid (MVE) problem is classified as in the class of MAXDET problems
by [26].

We introduce some notation. For any given vector v = (v, vq, -+ v,)T €
R?, we denote the p x p diagonal matrix with v on its diagonal either by
diag(v), or by its upper-case letter V whenever no confusion can occur. On
the other hand, for a square matrix M, diag(M) is the vector consisting of
the diagonal elements of M.

3 Optimality Conditions and Perturbations
The Lagrangian function of (5) is
L(z, E,u) =logdet B +u”(b— Ax — h(E))

where u € R™ is the vector of Lagrange multipliers.
Using the formulas

Vllogdet £] = B! (6)
and p Eadl 5
a;a; + a;a;
—hi(E) = : ¢
") 2h:(E)

we can derive the optimality (KKT) conditions as

Aty =0, (7a)

E7'— [E(ATY A) + (ATYA)E]/2 = 0, (7b)
z—(b—Ax—h(E)) = 0, (7¢)

Uz = 0, (7d)

u,z > 0 (Te)

Y

where Y = diag(h(F))™'U, U = diag(u) and z is a slack variable.

A large class of primal-dual interior point algorithms can be viewed as a
damped Newton’s method applied to so-called perturbed KK'T conditions.
Following this approach, we replace the zero right-hand-side of (7d) by a
positive vector ¢ € R, i.e.,

Uz =c¢, (8)



and resulting system is the so-called perturbed KKT (PKKT) conditions.
The PKKT conditions are equivalent to the gradient of a strictly concave
function being zero, and have a unique solution for each ¢ > 0. This fact is
stated in the following proposition.

Proposition 1 For any positive vector ¢ € R™, the perturbed KKT condi-
tions have a unique solution (F,x,u,z) where £ > 0 and u,z > 0.

Proof: Consider the strictly concave function (both in # and in F) param-
eterized by 0 < ¢ € R™

B.(z,F) =logdet £ + Zci log(b— Az — h(FE));.

=1
For any give ¢ > 0, the function has a unique minimizer pair z., F.) where
VB(x,E)=0, b—Ax—h(E)>0, E >~ 0.

It is straightforward to verify that VB.(z, E) = 0 is equivalent to the per-
turbed KK'T conditions if we introduce the variables

z=b— Az — h(E), u=diag(z) e,

which completes the proof.

4 Elimination of Variables

In this section, we present several equivalent forms of the KK'T or the per-
turbed KKT (PKKT) system through the elimination of different variables.
In principle, interior-point Newton’s method may be applied to anyone of
these systems.

4.1 Eliminating Variable E
To eliminate the matrix £ from the PKKT system, we let

y = diag(h(£)) ", (9)
and solve E from (7b) as a function of y to obtain

Bly) = (ATY A)72 (10)
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As a result, h;(E) = |[Fa;|| becomes a function of y which we denote by
hi(y); namely,

h(y) = (IE@)arll, - II1E()anl)" = /diag(H (y)), (11)

H(y) = A(ATY A)1 AT, (12)

After eliminating F from the PKKT conditions, we arrive at a set of
equivalent PKKT conditions

where

ATy = 0, (13a)
y— diag(h(y) " = 0 (13b)
z—(b—Ax—h(y)) = 0, (13c)
Uz = ¢ (13d)
u,z > 0 (13e)
4.2 Eliminating Variable u
Solving (13b) for wu,
u=Yh(y),

and substituting the above result into (13¢), and noting that y has the same
zero-nonzero pattern as u, we obtain a set of equivalent perturbed KKT
conditions involving only variables =,y and z:

ATYh(y) = 0, (14a)
z—(b—Ax—h(y)) = 0, (14b)
Yz = ¢ (14c)

y,z > 0, (14d)

Multiplying (14b) by ATY and using (14a) and (14c), we obtain another
set of equivalent PKKT conditions

ATY (b — Az) = Ale, (15a)
z—(b—Ax —h(y)) = 0, (15b)
Yz = ¢ (15¢)

Y,z > (15d)

We note that (15a) is less nonlinear than (14a) is.
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4.3 Eliminating Variable z

We can further eliminate the variable x. To do so, we first solve (15a) for
and obtain

2(y,e) = (ATY )T AT (YD — ¢). (16)
Substituting x(y, ¢) into b — Az, we obtain a function of y and ¢:
gly,c) =b—a(y,c)=b— AATY A)TTAT(Yb — ¢).
Recall from (12) that H(y) = A(ATY A)~' AT, Hence,
9ly,c)=[I = H(y)Y]o+ H(y)c. (17)

Replacing b — Az by ¢(y, ¢) in (15¢) and deleting (15a), we arrive at another
set of equivalent PKKT conditions:

z—(g(y,¢c) = nly)) = 0, (18a)
Y: = ¢ (18b)
y,z > 0, (18¢)

In the case of ¢ = 0, the above system represents a nonlinear complemen-
tarity problem:
0<yLz=fly) >0, (19)

where f(y) = ¢(y,0) — h(y). This nonlinear complementarity problem is
equivalent to the optimality conditions of the maximum-volume ellipsoid

problem (5).

4.4 Alternative equations

The components of the function h(y) are defined as Euclidean norm of vectors
and hence involve square roots. However, it is possible to use alternative
equations involving h(y)? only. Observe that for Az < b, the inequality
(b— Ax)—h(y) > 0 is equivalent to, after adding a nonnegative slack variable

2

2= [(b—A2)* —h(y)*] =0, = > 0. (20)
Simﬂarl}]v whenever g(y7 C) 2 07 g(y7 C) - h(y) 2 0is equivalent to
e = [9(y. ) = h(y)’] =0, z > 0. (21)

These alternative equations are free of square roots, but require additional
constraints in order to maintain equivalence to the PKKT or KKT conditions.
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4.5 Derivative formulas

In applying interior-point Newton’s method to different formulations pre-
sented above, we will need derivative information of various functions. Here
we collect derivative formulas for possible future use.

Lemma 1 Let H(y),h(y) and g(y) be defined as in (12), (11) and (17),

respectively; and let v be any vector in R™. Then

OH;(y)/0yx = —Hy(y)Hn(y), (22)
Vy[H(y)v] = —H(y)diag(H(y)v), (23)
Vh(y) = —(1/2)diag(h(y))"[H(y) o H(y)], (24)
Vygly,c) = —H(y)diag(g(y,c)), (25)
Vik(y)*] = —H(y)o H(y), (26)
Vylgly,¢)!] = —2diag(g(y,c))H (y)diag(g(y, <)), (27)

where “o” denotes the element-wise or Hadamard product of matrices.

Using these formulas, we have

Vilg(y.c)—h(y)] = (1/2)diag(h(y)) " H(y) o H(y)
—H(y)diag(g(y, c)),
Vilg(y. ) = h(y)’] = H(y)o H(y)

—2diag(g(y, ¢)) H(y)diag(g(y, c)).

We note that the second matrix is symmetric while the first is not.

5 An Interior Point Algorithm

So far our limited computational experiments seem to favor the conditions
(15). Let ¢ = pe for scalar g > 0, where e is the vector of all ones. We can

write (15) as o
F(:L',y,z)/,c( 0 ) (28)

€

and y,z > 0, where

ATY (b — Az)
Yz )

Flx,y,z) = ( z—(b— Az — h(y))



Besides the nonnegativity y,z > 0, (28) is a square, nonlinear system of
n 4 2m variables. It is known that as g — 0, the solution of (28) converges
to a solution from which we can reconstruct the solution to the original
problem.

By direct calculation, we obtain

_ATY A ATdiag(b— Az) 0
A Vh(y) I
0 A Y

Fllz,y,z) =

To solve the linear system

dx ry
F’(:L',y,z) 5y = T2 >
oz rs

we can use the following block Gaussian elimination procedure:
Sy = M7 '(ry =Y lrg 4+ A(ATY Ay,
§z = Yl (r3— Zdy),
s = (ATY A)7'(ry — Aldiag(b — Ax)dy),

where

M = H(y)diag(b — Az) — diag(2h(y)) " H(y) o H(y) — Y 'z
Choose (2% € P,y? > 0,2° > 0), set k = 0.
1. Choose ¢* € (0,1) and set pu* = Uk%.

2. Solve for (éx,dy,dz) from

dx ATe
F/(l’,y,Z) 5y =H 0 —F(l’,y,Z)
oz e

for (z,y,2) = («*,y*, ") and p = p.
3. Choose step-length o € (0,1] and update
(@ ") = (2 b, ) o (6, 8y, 62),

such that
e Pyttt S0, >0,

4. Increment k and go to Step 1.
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6 Numerical Results

We have implemented this prototype algorithm in Matlab and performed
limited numerical experiments on randomly generated problems (description
of parameter choices is skipped here).

Figure 1 below illustrates how a 2-dimensional problem is solved. The
small circles in the picture represents the positions of the z-iterates, starting
from close to the boundary and converging to the center of the ellipse in a
few steps.
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0.56 |

0.54F

0.52F

05}

0.48F

0.46 1 1 1 1 1 1
0.75 0.8 0.85 0.9 0.95 1 1.05 11

Figure 1: A 2-D example

Figure 2 contains an edited session of a Matlab run of the implemented
algorithm on a random problem with 100 variables and a polytope defined by
500 inequalities. The problem is solved on a Sun UltraSparc-1 workstation
in about 100 seconds.

We emphasize that since the matrix variable £ has been eliminated, sys-
tem (28) contains only 2m+n variables. The linear algebra cost per iteration
is no more expensive than algorithms based on the volumetric barrier as de-
scribed in [28, 1], for example. In general, the prototype algorithm seems to
be quite robust and reasonably efficient for medium-size problems.
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Figure 2: Result on a Random Problem

[m n] = [500 100]

iter 0 residual = 2.91e+03
iter 1 residual = 1.28e+03
iter 2 residual = 7.58e+02
iter 3 residual = 6.86e+02
iter 17 residual = 5.74e-03
iter 18 residual = 7.25e-04
iter 19 residual = 1.13e-04
iter 20 residual = 1.80e-05

Converged!
CPU time: 97.74 seconds

We also conducted experiments on polytopes derived from traveling sales-
man problem (TSP). The largest polytope in our tests is a convex hull of
tours through 7 nodes that is defined by 3437 inequality constraints and 7
equality constraints in 21 variables. This polytope is then projected onto
a full-dimensional polytope in 14 variables defined by 3437 inequality con-
straints. For this problem, the origin is an extremely good starting point
for the center of the maximum volume ellipsoid. Starting from the origin,
the algorithm converges rather quickly; see a edited session in Figure 3. The
result was obtained on an AlphaServer 4100 5/400 with 1GB of memory, and
on a 400MHz Alpha 21164 processor (the machine has 4 processors, but only
one was used).

We note that the algorithm is not particularly suitable for problems where
m is far greater than n since it solves an m x m, and usually dense, linear sys-
tem at each iteration. This is clearly demonstrated by the result in Figure 3
where about three hours of CPU time was consumed.

7 Concluding Remarks

Our preliminary numerical results indicate that the infeasible, primal-dual,
interior-point approach seems promising for problems of small to medium
sizes in terms of both the numbers of variables and constraints. This research
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Figure 3: Result on a TSP polytope

[m n] = [3437 14]

iter 0 residual = 5.99e-01
iter 1 residual = 6.82e+00
iter 2 residual = 5.60e+00
iter 3 residual = 1.58e+00
iter 4 residual = 5.22e-01
iter 5 residual = 1.09e-01
iter 6 residual = 1.22e-02
iter 7 residual = 1.53e-04
iter 8 residual = 2.39e-08

Converged!
CPU time: 11012 seconds

is still at a preliminary stage and many issues remain to be investigated for
the development of efficient and robust algorithms for the MVE problem,
especially large-scale problems in terms of either the number of variables or
the number of constraints.
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