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This paper estimates a model of the effort decisions of students and
teachers in a classroom setting to understand the performance of Mex-
ican high school students on curriculum-based examinations. Themodel
allows for student heterogeneity in initial mathematics preparation and
knowledge preference and for teacher heterogeneity in instructional
ability andpreferences for student knowledge. Survey data includemul-
tiple measurements of student and teacher effort, student and teacher
preferences, student initial knowledge, and teacher ability. The most
important factor accounting for poor performance, the lack of sufficient
prior preparation, suggests a mismatch between the curriculum content
and entering grade-level mathematics knowledge.
I. Introduction
There is concern in many countries that students are underachieving.
This is particularly true in Mexico, where, on the basis of both interna-
tional and national measures, the performance of students is poor. For
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accounting for mathematics performance 2609
example, Mexico ranked last among the 34 OECD countries in the 2009
PISA (Program for International StudentAssessment) examination inmath-
ematics.1 Only 9.2 percent of ninth-grade students and 15.6 percent of
twelfth-grade students scored at the proficient level or above on the 2008
ninth- and twelfth-grade national mathematics examination (ENLACE).2

There aremany potential explanations for substandard test score perfor-
mance related to student effort, teacher effort, teacher preparation (subject
matter knowledge, teachingmethods), school-level physical resources (li-
braries, textbooks, computers), the content of the curriculum, and the
overall learning environment within the school (teacher morale, admin-
istrative leadership). Their relative importance has been debated, with
initiatives focused on particular potential causes, for example, improving
teacher training, redesigning curricula, and providing computers.
In this paper, we use control group data generated from a randomized

controlled trial (the Aligning Learning Incentives [ALI] program) in
Mexican federal high schools to assess the relative importance of some
of these alternative explanations. In the ALI program, high school stu-
dents in grades 10–12 were given end-of-year curriculum-based examina-
tions in mathematics (see Behrman et al. [2015] for a detailed descrip-
tion of the ALI program). Students, teachers, and administrators in this
treatment group were given monetary rewards of substantial magnitude
depending on student performance on the ALI examination. The exam-
inations were designed specifically for the ALI project by CENEVAL, a
private nonprofit firm that is responsible for the design of a number
of national tests. The tests are faithful to the content of the curriculum
and test what students are supposed to know at the end of each school
year. Table 1 reports the results of the examination in the final year of
the program for tenth-grade students in the control group and in the
treatment group for which the largest impact of the incentive on the test
score was observed. Two conclusions emerge. First, the treatment effect
in terms of the standardized score is large, 0.57 of a standard deviation.
Second, neither the control group nor the treatment group mastered a
significant part of the curriculum; the control group average raw score
1 PISA assessments, begun under the auspices of the OECD in 2000, are administered in
reading, mathematics, and science to 15-year-olds. In 2009, 65 nations and territories par-
ticipated.

2 The percentage of students scoring at the proficient level (or above) on the ninth-
grade test increased to 15.8 in 2011 and 20.6 in 2012 and on the twelfth-grade test to
24.7 and 30.8. The ENLACE, which had been used to provide teacher merit bonuses,
has recently been abandoned in part because of questionable outcomes suggestive of im-
proprieties in testing procedures.
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was 38.3 percent correct and the treatment group average 44.9 percent
correct.3 Following the same procedure as for the ENLACE, the experts
consulted by CENEVAL placed test scores into four categories: prebasic,
basic, proficient, and advanced. In that metric, 80 percent of the students
in the control group had achieved only a prebasic level of tenth-grade
mathematics knowledge, 20 percent had achieved a basic level, and none
of the students had achieved a level considered proficient or advanced.4

The first-order question raised by these results is why these Mexican
high school students master so little of the curriculum. This paper pro-
vides a framework within which to assess quantitatively the reasons. For
that purpose, we develop and estimate a model of a classroom in which
multiple students and a single teacher make effort decisions that affect
student performance. Students begin the academic year with an initial
knowledge level, which, in combination with their effort and their teach-
er’s effort during the year as well as their teacher’s instructional ability,
produces end-of-year knowledge. Teacher effort, assumed to be a pure
public input (consistent with a conventional lecture style of instruction
as is normal practice), and student effort are complementary in produc-
ing student knowledge. Class size potentially affects the marginal prod-
ucts of student and teacher effort. Schools may differ in their production
technologies. The value-added specification of the cognitive achieve-
ment production function we adopt is derived from a cumulative speci-
fication (see Todd and Wolpin 2003) in which current knowledge de-
pends on all past inputs, on student ability, and on initial knowledge at
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TABLE 1
ALI Test Results

Control Group Treatment Group

Standardized score 500.5a 556.8b

Raw score 38.3 44.9c

Number of correct answersd 30.3 35.5
e ALI test consisted of 79 multiple-c
questions were word problems, wh
rization.
the treatment group, 55 percent of
t in the basic category.
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Note.—The results are for the tenth grade in the last (third) year of the
ALI program. Estimated treatment effect uses the same specification as in
Behrman et al. (2015) on a slightly different sample. The treatment group
corresponds to T3 in Behrman et al.’s study, the group in which students,
teachers, and administrators were compensated for student performance.

a Standard deviation 5 100.
b The standard error of the difference from the control group, 56.3, is

7.19.
c The standard error of the difference from the control group, 6.6, is 0.83.
d There were 79 multiple-choice questions with four possible answers.
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the start of formal schooling. Given the cumulative specification, initial
knowledge at the start of any grade is a sufficient statistic for this history.
Students have preferences over end-of-year knowledge, while teachers

care about the sum of the end-of-year knowledge levels of their students.
Student and teacher effort are assumed to be chosen within a Nash game
in which each maximizes utility net of a variable effort cost. Given pro-
duction complementarities between student and teacher effort, all stu-
dents in the class benefit from an increase in any one student’s effort
through the induced increase in teacher effort. As in coordination games
more generally, there are multiple equilibria.5 In particular, the model
exhibits two equilibria, one in which all students and the teacher exert
positive effort (the positive-effort equilibrium) and one in which all stu-
dents and the teacher exert zero effort (the zero-effort equilibrium).6

Given our specification of the production function and student and teacher
preferences, student and teacher effort have closed-form solutions in the
positive-effort equilibrium. The solution to the game is assumed to be
unique in the all-positive equilibrium, because the all-zero equilibrium is
not consistent with the effort data.
The ALI project conducted surveys of students and teachers to collect

data that would help in understanding the mechanisms governing stu-
dent performance, in particular, data on student and teacher effort, stu-
dent and teacher preferences, teacher instructional ability, and student
mathematics knowledge at the start of the school year. We develop a sim-
ulated maximum likelihood procedure that uses multiple measures of
effort and multiple measures and exogenous determinants of student
and teacher endowments, that is, student beginning-year mathematics
knowledge, teacher instructional ability, and student and teacher prefer-
ences for mathematics knowledge.7 In addition, the estimation incorpo-
rates unobserved heterogeneity in productivity across schools.
The estimation recovers the parameters of the knowledge production

function, the utility functions of students and teachers, and the measure-
ment system. In principle, the measurement system provides sufficient
structure to recover the parameters of the knowledge production func-
tion without solving the effort game. However, as long as student and
teacher effort are subject to choice, estimates of the production function
5 See Vives (2005) for a discussion of games with strategic complementarities.
6 The positive-effort equilibrium is obtained as the solution to the reaction functions.

The solution contains students who optimally choose zero effort because they have a zero
preference for mathematics knowledge. The positive-effort equilibrium is defined to in-
clude those students.

7 This econometric framework has antecedents in the MIMIC (multiple-indicator
multiple-cause) framework (see, e.g., Joreskog and Goldberger 1975). For recent applica-
tions and extensions, see Cunha and Heckman (2008) and Cunha, Heckman, and Schen-
nach (2010).
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alone cannot determine the underlying factors responsible for low stu-
dent performance. Estimates of the entire structure, the production
function, and the utility function, obtained by solving the effort game
for the effort functions, are necessary to distinguish among the potential
causes.
There are additional reasons to estimate the effort functions along

with the production function. Because the production function and
the effort functions depend on the same parameters, the model imposes
cross-equation restrictions. We take advantage of the overidentification
that arises from these restrictions in two ways. First, we identify additional
parameters in the measurement structure; in particular, we estimate pa-
rameters that reflect the amount of reported effort of students and teach-
ers that is unproductive (i.e., has zero marginal product). We are thus
able to determine the extent to which “true” effort diverges from reported
effort, either because of biased reporting or because effort is actually pro-
ductive only above some threshold. Second, we test overidentifying re-
strictions of the model.8

On the surface, it would not appear that a major cause of poor perfor-
mance is a lack of student or teacher effort. On average, students report
spending 4.7 hours per week studying math outside of class and teachers
report spending 4.0 hours per week preparing lessons. However, we find
that “true” effort is considerably smaller, on average, only 3.1 hours per
week (about 45 minutes per class hour) for students and 1.6 hours per
week (about 25 minutes per class hour) for teachers. Despite these seem-
ingly low levels of effort, our results indicate that insufficient student or
teacher effort does not significantly contribute to the lack of mastery of
the tenth-grade mathematics curriculum. Nor do we find low teacher
ability to be an important contributing factor.
The factor that emerges from the empirical analysis to be the most im-

portant in determining a student’s tenth-grade mathematics knowledge
is his or her previous mathematics knowledge in ninth grade. On the ba-
sis of our estimates, we simulate that if the ninth-grade mathematics
knowledge of all students were two standard deviations (SD) above the
mean, then the tenth-year mathematics knowledge would be, on aver-
age, 1.7 SD above the mean. Although this is a large effect in relative
terms, the average raw test score, even in this case, would remain below
50 percent. Our production function estimates show that the marginal
product of student effort is very small. An increase in student effort from
8 Cross-equation restrictions arise for the same reason as in the joint estimation of firm
production functions and input demand equations, namely, that the same parameters ap-
pear in both. The analogy is not exact because input demand, i.e., student and teacher ef-
fort, is determined also by preference parameters. However, we have multiple measures of
student and teacher preferences that pin down those parameters.
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zero effort to effort that is 2 SD above the mean (an increase of about
5 hours per week in study time) increases tenth-grade mathematics
knowledge by only 0.10 SD for students whose performance in ninth-
grade mathematics is at the mean. We find similar size effects for the
marginal product of teacher effort.
A number of possible explanations are consistent with these results.

The most convincing, in our view, is that the tenth-grade mathematics
curriculum is too difficult given the mathematics knowledge that stu-
dents have acquired through the ninth grade. Moreover, the finding that
student effort has only a small effect on tenth-grade knowledge even for
students who had the highest mathematics performance in the ninth
grade, as measured by their ENLACE score and the grade they received
in their ninth-grade mathematics course, would seem to imply that those
students did not actually master the ninth-grade curriculum. Presum-
ably, mastery of the ninth-grade curriculum would provide the founda-
tion for mastery of the tenth-grade curriculum. Although speculative,
it would thus seem that the ninth-grade curriculum is also too difficult
for students to acquire the requisite knowledge to be successful in tenth
grade.9

There are only a few previous studies that develop explicit models of
teacher or student effort choices and, to our knowledge, none that im-
plement a model of both student and teacher effort choices. Duflo,
Dupas, and Kremer (2008) develop a model in which teachers choose
effort levels and a target level at which to orient their instruction, taking
into account their students’ previous performance levels. They test the
model’s implications using data from a tracking experiment in Kenya
that randomly assigned some schools to a treatment in which classroom
assignment depended on prior performance. They find that teacher ef-
fort, measured by teacher attendance, is higher under the tracking re-
gime and that both high- and low-ability students benefit from tracking
in terms of performance. In another study, Duflo, Hanna, and Ryan
(2012) develop a dynamic model of teacher attendance in India to study
compensation schemes and implications for student performance using
data from a randomized experiment.10 They find that financial incen-
tives increase teacher attendance and improve student test scores. These
models do not, however, incorporate student effort. Kremer, Miguel,
and Thornton (2009) reference, but do not explicitly develop, a model
of strategic effort complementarities to interpret the results of a ran-
9 This explanation is consistent with that given by Pritchett and Beatty (2012), who ar-
gue that the slow pace of learning evident in a number of developing countries is the result
of reliance on overly ambitious curricula.

10 This paper builds on a growing literature that combines structural estimation with ran-
domized controlled experiments (see Todd and Wolpin [2006] and the citations within).
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domizedmerit scholarship program in which Kenyan girls received school
fees and a grant depending on academic exam performance. Although
the incentives were provided only to high-performing girls, they find that
girls with low pretest scores, who were unlikely to win the tournament, also
showed improvement in performance as did boys. Also, teachers in the
schools assigned to the scholarship program had higher attendance. They
note that these results are consistent with there being positive classroom
externalities to study effort and potentially a strategic complementarity be-
tween student and teacher effort. The model developed and estimated in
this paper incorporates this kind of complementarity and can potentially be
helpful in explaining the pattern of experimental results in their study.
A related literature develops models in which peer group norms influ-

ence individuals’ educational investment choices (e.g., Brock and Dur-
lauf 2001; Austen-Smith and Fryer 2005). Lazear (2001) considers a dif-
ferent type of model in which one disruptive student imposes negative
spillovers on other students’ learning in a classroom, and he uses the
model to study implications for optimal class size. In our model, there
are also spillover effects of peers on other students’ learning, but these
spillover effects arise indirectly through teacher effort choices.11

This paper also is related to the empirical literature on the estimation
of models with strategic complementarities. Examples include models of
the adoption by banks of the automated clearinghouse system in Acker-
berg and Gowrisankaran (2006), the timing of desertions during the
Civil War in De Paula (2009), and the timing of radio commercials in
Sweeting (2009). In contrast to these applications, in the model we esti-
mate the objects of choice (student and teacher effort levels) are contin-
uous rather than discrete and we assume complete information.
The paper proceeds as follows. Section II presents the model, Sec-

tion III describes the estimation procedure, and Section IV discusses the
data. Section V presents the results and a discussion of their interpretation.
Section VI presents a summary.
II. The Model: Structure
This section presents a model of the production of student knowledge
within a classroom setting. End-of-year student knowledge depends on
the student’s initial level of knowledge and effort and on the teacher’s
11 A more general formulation might also incorporate direct peer-to-peer spillover ef-
fects as well as spillover effects arising through teacher effort choices. Such a specification
would raise an identification issue and substantially complicate the solution of the coordi-
nation game. We therefore leave development and estimation of such a model for future
work.
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instructional ability and effort. Student and teacher effort levels are as-
sumed to be the outcome of a Nash game.12

Consider a class j in grade g with a single teacher t and Nj students.
Each student, n, begins with an initial level of knowledge, Kg21,nj , n 5
1, ::: ,Nj , and chooses a level of learning effort, εgnj. The teacher has in-
structional ability agt and chooses instructional effort εgtj, a pure public
input (the same for each student). End-of-year knowledge in grade g for
student n, Kgn (dropping the j subscript), is produced according to

Kgn 5 d0Kg21,n � 1 1 kK d1
g21,na

g0

gt ε
g1

gnε
g2

gt

� �
, (1)

where d0Kg21,n ≥ 0 is the level of knowledge achieved if either the student
or teacher chooses zero effort and k is a normalization that converts units.13

The Cobb-Douglas component of (1) represents the proportionate in-
crease in knowledge due to student and teacher effort over the level of
knowledge that remains if the student or teacher exerts zero effort.
In the value-added specification given in (1), Kg21,n, knowledge in the

previous grade, is taken to be a sufficient statistic for student ability, for stu-
dent and teacher effort in all prior grades, and for parental preschool home
inputs. A feature of our specification is that it can be derived from a cumu-
lative specification in which current knowledge depends on all past inputs
and student ability.14 In particular, this cumulative specification of the pro-
duction function for knowledge produced in grade g is

Kgn 5 tg f An, K0nð Þ
Yg
s51

1 1 kK d1
s21,na

g0

st ε
g1

snε
g2

st

� �
, (2)

where An is the student’s ability, K0n the student’s preschool knowledge
(itself a function of preschool inputs), and tg one minus a depreciation
rate. Note that tg f(An,K0n) is the level of knowledge a student would have
at the end of grade g if the student (or teachers) were to exert zero effort
in every grade. Dividing Kgn by Kg21,n leads to the value-added specifica-
12 An alternative assumption is that the teacher is a Stackelberg leader. Nash is chosen in
part because we have data only about student and teacher effort averages over a school
year. Students and teachers interact on a daily basis in a repeated situation in which stu-
dents and teachers learn over time about each other’s characteristics and effort. Allowing
teachers to react to student effort (Nash) would seem a better approximation to that situ-
ation than assuming that teachers make a one-time decision for the entire school year
(Stackelberg). Indeed, Bagwell (1995, 272) has shown that “even with only the slightest de-
gree of imperfection in the observability of the first-mover’s selection . . . the pure-strategy
Nash equilibrium outcomes for the noisy leader game coincides exactly with the set of pure-
strategy Nash equilibrium outcomes for the associated simultaneous-move game.”

13 In order to capture differences in unobserved factors affecting student outcomes at
the school level, we allow schools to differ in d.

14 Value-added specifications are often adopted in the literature to circumvent the need
for historical data on inputs and ability.
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tion given in (1) with d0 5 tg=tg21.15 In what follows, we drop the g sub-
script, because our analysis is conducted on a single grade.
Students are assumed to maximize their utility from knowledge net of

effort cost (cn):

Un εnð Þ 5 vnKn 2
cn
2

εnð Þ2, (3)

where vn is student n’s (constant) marginal utility of knowledge. The
teacher is assumed to care about the total amount of knowledge pro-
duced in the class. Given effort cost, ct, the teacher maximizes

Ut εtð Þ 5 fto
N

n51

Kn 2
ct
2

εtð Þ2, (4)

where ft is teacher t’s (constant) marginal utility of total student knowl-
edge.
Assuming that all student endowments, K21,n, vn, and cn for all n 5

1, ::: ,N , and teacher endowments, at, ft, and ct, are public information,
the reaction functions for the Nash equilibrium game are

εn 5 g1kd0K
11d1
21,n a

g0

t vnc
21
n

� � 1
22g1ε

g2
22g1

t , (5)

εt 5 g2ka
g0

t ft c
21
t

� � 1
22g2 o

N

n51

d0K
11d1
21,n ε

g1

n

� � 1
22g2

(6)

for n 5 1, ::: ,N .
The unique solution to (5) and (6), normalizing cn and ct to one, has

a closed form given by

ε*n 5 g
22g2

422 g11g2ð Þ
1 g

g2
422 g11g2ð Þ
2 k

2
422 g11g2ð Þa

2g0
422 g11g2ð Þ
t ft

g2
422 g11g2ð Þ d0K21,nð Þ 1

22g1

�K
d1

422 g11g2ð Þ
21,n vn

1
22g1 � o

N

n51

d0K21,nð Þ 2
22g1K21,n

2d1
22g1vn

g1
22g1

� � g2
422 g11g2ð Þ

,
(7)
15 The specification of the value-added production function is also consistent with the
conventional Ben-Porath (1967) production function in which schooling is a period of spe-
cialization in producing human capital. The Ben-Porath formulation is

_Kg 5 b0ðsgKg Þb1Db2

g 2 dKg ,

where _Kg is the time (grade) derivative of knowledge, sg is the fraction of time devoted to
investing in knowledge, Dg are other inputs, and 1 2 d is the depreciation rate. Setting sg 5
1 (specialization), b1 5 d1, Dg 5 kag0

tg ε
g1

ng εg2

tg , and dividing through by Kg, one gets the equiv-
alent of (1) in the text, where b0 5 d0 � k.
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ε*t 5 g
g1

422 g11g2ð Þ
1 g

22g1
422 g11g2ð Þ
2 k

2
422 g11g2ð Þa

2g0
422 g11g2ð Þ
t ft

22g1
422 g11g2ð Þ

� o
N

n51

d0K21,nð Þ 2
22g1K21,n

2d1
22g1vn

g1
22g1

� � 22g1
422 g11g2ð Þ

:

(8)

As seen, a student’s effort depends not only on the student’s own attri-
butes but also, through the teacher’s effort decision, on the attributes of
all of the other students in the class. In this sense, there are student peer
effects on end-of-year knowledge, although they operate through the teach-
er’s effort decision. Given that the attributes of all of the students in the class
are taken into account by the teacher in choosing effort, separately identi-
fying the effect of peer characteristics in the knowledge production func-
tion (e.g., the initial knowledge of classmates) from the effect of teacher
effort requires a functional form assumption about how peers enter the
production function.16

An implication of the assumption that teachers care about the sum of
student knowledge is that teacher effort (and student effort) is increas-
ing in class size. Thus, students in larger classes will acquire more knowl-
edge. As this implication may not be consistent with the data, we allow
for the marginal products of student and teacher effort to be affected
by class size; specifically, we set g1 5 g10 1 g11N and g2 5 g20 1 g21N .
Negative values for g11 and g21 would offset the implied positive impact
of class size due to the assumption about teacher utility.
It is always the case, regardless of parameter values, that there is an

equilibrium in which all students and the teacher exert zero effort. If
the teacher exerts zero effort, it will not be optimal for any single student
(or for all or any subset of students) to exert positive effort, given that the
marginal product of student effort is zero. Similarly, if all students exert
zero effort, it will not be optimal for the teacher to exert positive effort,
given that the marginal product of teacher effort is zero. Thus, there
are two equilibria. Clearly, the equilibrium in which all students and the
teacher exert zero effort is Pareto inferior to the equilibrium in which
the students and the teacher exert positive effort. We will argue below,
on the basis of the data, that the zero equilibrium is never selected.

accounting for mathematics performance 2617
16 Fruehwirth (2014) discusses estimation of models with direct peer-to-peer effects. She
shows that when peer effects arise from unobservable factors, then the types of specifica-
tions commonly estimated in the literature are of limited use to inform policies (e.g., class-
room regrouping policies or desegregation). Our framework offers an alternative ap-
proach that would allow simulation of the effects of such policies, although it assumes
that the effort decisions generating the peer effects can be measured with error.
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III. Estimation
Heterogeneity among students within a class potentially arises from dif-
ferences in initial knowledge and preferences, K21,n and vn. Heterogene-
ity among students across classes in the same school and across schools
arises from class- or schoolwide differences in K21,n and vn. Heterogeneity
among teachers within the same school or among schools arises from
differences in ft and at. Heterogeneity in outcomes across schools also
arises from differences in technology; specifically, the production func-
tion parameter, d0, is assumed to be a school-specific random coefficient.
A. Latent Factor Structure for Student and Teacher
Endowments
Student and teacher endowments, K0n, vn, ft, and at, are treated as la-
tent factors that are measured with error. To be concrete, assume there
are h 5 1, ::: ,H schools, with j 5 1, ::: , Jh classes in school h and n 5
1, ::: ,Njh students in class j in school h. We let beginning knowledge of
student n assigned to class j in school h (K21,njh) depend on a set of ex-
ogenous initial conditions (XK21

njh ) and potentially on school-, class-, and
individual-level error components:

K21,njh 5 XK21

njh b
K21 1 yK21

h 1 mK21

jh 1 qK21

njh : (9)

The first error component, yK21

h , allows for unobserved school-level differ-
ences in student initial knowledge; the second, mK21

jh , for unobserved class-
level differences within a school; and the third, qK21

njh , for idiosyncratic within-
class differences.17 Student preferences follow a similar structure:

vnjh 5 X v
njhb

v 1 yv
h 1 mv

jh 1 qv
njh: (10)

All error components in (9) and (10) are assumed to be mean zero and
to be orthogonal to each other and to observed characteristics.
Assume there are t 5 1, ::: , Th teachers in school h, where Th ≤ Jh. If

two or more classes have the same teacher, both ft and at will be the same
in the two classes. Teacher instructional ability depends on observable
teacher characteristics (X a

th) and unobservables at the school level (ya
h) and

at the teacher level (ma
th), namely,

ath 5 X a
thb

a 1 ya
h 1 ma

th: (11)

Similarly, teacher preferences are given by

fth 5 X f
thb

f 1 yf
h 1 mf

th: (12)
17 In estimation, given the number of latent variables, we do not allow for error compo-
nents at all levels to conserve on parameters.
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School- and teacher-level error components are assumed to be orthogo-
nal to each other and to observable characteristics.18 Teacher and student
error components can be freely correlated across endowments.
B. Measurement Structure
In terms of the latent endowments, there are assumed to beMj measures
for prior knowledge, student preferences, teacher ability, and teacher
preferences (j 5 K21,n, vnjh, ath, fth). The measurement equations are given
by

Km
21,n 5 a

K21,m

0 1 a
K21,m

1 K21,n 1 ςK21,m

njh , m 5 1, ::: ,MK21 , (13)

vmnjh 5 av,m
0 1 av,m

1 vnjh 1 ςv,mnjh   for m 5 1, ::: ,M vn , (14)

fm
th 5 af,m

0 1 af,m
1 vth 1 ςf,mth   for m 5 1, ::: ,M ft , (15)

am
th 5 aa,m

0 1 aa,m
1 ath 1 ςa,mth   for m 5 1, ::: ,Mat , (16)

where the different measurements of each of the latent factors are de-
noted with an m superscript.
Student and teacher effort are the outcomes of the effort game, which

are fully determined by the latent endowments. We also treat them as la-
tent variables that are measured with error.19 There are assumed to be
M ε1 measures of student effort andM ε2 measures of teacher effort. The ef-
fort measurement equations take the form

εmnjh 5 aε1,m
0 1 aε1,m

1 εnjh 1 ςε1,mnjh   for m 5 1, ::: ,M ε1 , (17)

εmtjh 5 aε2,m
0 1 aε2,m

1 εtjh 1 ςε2,mtjh   for m 5 1, ::: ,M ε2 : (18)

There is one measure of end-of-year knowledge, a test score Tnjh, which
we assume measures knowledge with an additive measurement error

Tnjh 5 Knjh 1 ςTnjh, (19)

where Knjh is determined by (1). All measurement errors, for the endow-
ments, for student and teacher effort, and for end-of-year knowledge,
18 All of the student and teacher latent factors are bounded from below by zero. Thus,
we assume that no student nor any teacher receives negative utility from knowledge.

19 This methodology allows us to reduce the dimension of the effective input space to
one for both the student and the teacher. See Cunha and Heckman (2008) for further dis-
cussion.

This content downloaded from 128.042.192.005 on December 10, 2018 12:49:19 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



2620 journal of political economy

All
are assumed to be uncorrelated with all of the latent variables (both ob-
servable and unobservable components) and with each other.
An observation consists of (i) measures of the effort levels, end-of-year

test scores, and measures of initial knowledge and preferences for each
of the Njh students in each class j and school h; and (ii) measures of the
effort level, preference, and ability of the teacher in each class. We de-
note the observation set for class j (and teacher t) in school h as

Ojh 5 εmnjh, ε
m
tjh, Tnjh, K

m
21,njh, v

m
njh, f

m
th, a

m
th : n 5 1, ::: ,Njh

� 	

for all measures (i.e., over all m) and all classrooms in all schools.
In describing the distributional assumptions, it is convenient to col-

lect terms. Let Q1 5 fXK21

njh , X
v
njh, X

a
th, X

f
thg denote the vector of observ-

able characteristics of the students and teacher in class j of school h,
Q2 5 fyK21

h , yv
h, y

a
h , y

f
h , d0hg the vector of school-level unobservables, Q3 5

fmK21

jh , mv
jh, m

a
th, m

f
thg the vector of within-school class- and teacher-level unob-

servables, Q4 5 fqK21

njh , q
v
njhg the vector of within-class student-level unobserv-

ables, and Q5 5 fςK21,m

njh , ςTnjh, ς
ε1m
njh, ς

ε2m
th , ς

vm
njh, ς

fm

th , ς
am

th g the vector of measurement
errors. The unobservables in Qi (i 5 2, 3, 4) each have joint distribution
Fi, assumed to be normal with variance-covariance matrix Li. The joint dis-
tribution of the measurement errors, denoted as F5, is also assumed to be
normal with (diagonal) variance-covariance matrix L5.
C. Likelihood Function
Estimation is carried out by simulated maximum likelihood. The like-
lihood contribution for students n 5 1, ::: ,Njh in class j of school h is the
joint density of Ojh, that is, the measured efforts of students and teachers,
students’ end-of-year (ALI) test scores, measured student preferences, and
measured teacher abilities and preferences. For now, we ignore the normal-
izations that are necessary for identification.
The estimation procedure is as follows:
1. Choose a set of parameter values

k, g0, g1, g2, �d0, j
2
d0 , b

K21 , bv, bf, ba, L2,L3,L4,L5, G
� 	

,

where G denotes the a0 and a1 parameters in the measurement error
equations.
2. Draw school-level shocks, Q2, for each school, h 5 1, ::: ,H , class-

and teacher-level shocks, Q3, for each class and teacher in all schools, and
student-level shocks, Q4, for each student in all classes and schools.
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3. Given the shocks drawn in (2) and the set of observable variables
(Q1), calculate each student’s value of K21,njh and vnjh and each teacher’s
value of ath and fth (setting to zero any latent factor that is negative).
4. Calculate the equilibrium from (7) and (8) for each class and for all

schools for each of the d 5 1, ::: , D draws. Each equilibrium is character-
ized by the optimal student and teacher effort levels and implied end-of-
year knowledge.
5. For each draw (d), and given the joint measurement error distribu-

tion, calculate the joint likelihood of observing all of the measured var-
iables for the students and the teacher, which is given by the joint density
of measurement errors.20 Denote this product for classroom j in school h
as f̂ijhðdÞ for d 5 1, ::: , D.21

The likelihood for class j in school h is the average over the likelihoods
for each draw, namely,

Ljh 5
1

Dod f̂jh dð Þ: (20)

7. Repeat for all Jh classes in school h and over all h 5 1, ::: ,H schools.
The likelihood over the entire sample is

YH
h51

YJh
j51

Ljh: (21)

8. Repeat 1–7, maximizing (21) over the parameter vector given in
step 1.
D. Identification
We discuss identification separately for different sets of parameters.
i. The parameters in the distribution of latent endowments, K21, v, a,

f, and the measurement error distribution: Multiple measurements of
the latent endowments together with observable determinants, (13) and
(9) for student initial knowledge, (14) and (10) for student preferences,
(16) and (11) for teacher instructional ability, and (15) and (12) for teacher
20 Some of the measures are continuous, some are ordered categorical, and some are
dichotomous, and all of the continuous measures are bounded. In all cases, we assume
there is a continuous latent measure that underlies the observed measure. Thus, bounded
measures are treated as truncated, dichotomous variables as probits, and ordered categor-
ical variables as ordered probits.

21 Because all measurement equations are linear, the Jacobian of the transformation
from the observed measures to the measurement errors is one.
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preferences, identify the joint distribution of the latent endowments, with
suitable normalizations, and the measurement error distributions.22

ii. Production function parameters: �d0, j2
d0
, d1, k, g0, g1, g2. Combining

(19) and (1), the parameters of the production function are estimated
from

Tn 5 d0hK21,n � 1 1 kK d1
21,na

g0

t ε
g1

n ε
g2

t

� �
1 ςTn : (22)

To fix ideas, suppose we have perfect measures of K21,n, at, εn, and εt.
Given that the only student-level unobservable is the test score measure-
ment error, which is assumed to be orthogonal to the determinants of
Kn, identification of the production function parameters is immediate
given independent variation in the observables. Within-school variation
(where there are multiple teachers) identifies all of the parameters ex-
cept for j2

d0 , which is identified from between-school variation in test
scores.
We do not assume to have perfect measures of K21,n, at, εt, and εn. How-

ever, with multiple measures, as we have, we can apply a theorem in Cunha
et al. (2010) to demonstrate identification. In fact, our formulation is a
special case of the theorem, and we can apply the theorem to simulta-
neously identify the distribution of latent endowments (as in point i above),
together with the production function parameters. Specifically, define the
vector of the determinants of Kn (end-of-year knowledge), K21,n, εn, at, εt in
(22) as xn. We can treat the test score as a separate measure of the vector,
where the measurement is given by the nonlinear function

Tn 5 Kn xn; �d0, j
2
d0 , d1, k, g0, g1, g2ð Þ 1 ςTn : (23)
22 For example, consider two measures of student initial knowledge, with measurement
equations

Km1
21,n 5 K21,n 1 ςK21,m1

n ,

Km2
21,n 5 a

K21,m2

0 1 a
K21,m2

1 K21,n 1 ςK21,m2

n ,

where, for convenience, we allow only for a student-level unobservable. Note that we have
normalized a

K21,m1

0 5 0 and a
K21,m1

1 5 1, which establishes the first measure as the metric for
K21,n. Initial knowledge is given by

K21,n 5 bK21

0 1 bK21

1 XK21

n 1 qK21

n ,

where, to simplify, XK21
n is a scalar and there is only a student-level unobservable. All

unobservables are orthogonal to each other and to X. Clearly bK21

0 and bK21

1 are identified
from the first measurement equation after substitution for K21,n above, that is, b

K21

1 by the
regression coefficient covðKm1

21,n , X
K21
n Þ=bK21

1 varðXK21
n Þ and bK21

0 by passing the line through
the means. The factor loading on K21,n in the second measurement equation, aK21,m2

1 , is given
by covðKm1

21,n , X
K21
n Þ=varðXK21

n Þ and the location parameter, aK21,m2

0 , as before by passing the line
through the means. The variance of the unobservable, varðqK21

n Þ, is then derived from the
covariance between the two measurements, covðKm1

21,n , K
m2
21,nÞ, and the measurement error

variances from the variance of the measures. The same identification argument applies
to the other endowments.
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In addition, consider a nonparametric representation of the latent fac-
tors for student and teacher effort, which, consistent with the theory,
takes the form

εn 5 f1 ~Xn, Xt , qn

� �
, (24)
εt 5 f2 ~Xn, Xt , qt

� �
, (25)

where ~Xn is the set of observable student characteristics of the students in
the class, which determine student endowment latent factors; Xt are the
observable teacher characteristics that determine teacher endowment la-
tent factors; and to save on notation, we have collapsed school-level, class-
level, and student-level unobserved components of the latent factors of
effort into a single unobserved component of the latent factor, q.23 Then
the measurement system given by (23), (13) and (9), (16) and (11), (24)
and (17), and (25) and (18) corresponds to a system of nonlinear measure-
ment equations as given by (3.7) in Cunha et al. (2010). Given the orthog-
onality assumptions and the parametric forms of the measurement equa-
tions along with the distributional assumptions about the measurement
errors, we can invoke the identification argument in their theorem 2 to
identify the production function parameters.24

In the preceding argument, we did not take advantage of the paramet-
ric form of the student and teacher effort functions, (7) and (8). Letting
~K21 and~v be the endowment vector of all students in the class, if we con-
sider the particular measure of student and teacher effort that establishes
the units of the latent factor (aε1,m

1 , aε2,m
2 5 1), then the effort measurement

equations can be written as

emn 5 es 1 en ~K21,~v, at , ft ; �d0, j
2
d0 , d1, k, g0, g1, g2


 �
1 ςε1n , (26)
emt 5 et 1 et ~K21,~v, at , ft ; �d0, j
2
d0 , d1, k, g0, g1, g2


 �
1 ςε2n , (27)

where en(⋅) and et(⋅) are given by (7) and (8), and es and e t are the location
parameters,aε1,m

0 andaε2,m
0 in (17) and (18). Given that the only parameters

that enter the effort latent functions are those entering the production
function, which are identified, and that the latent endowment functions
are known, the location parameters can be identified from a single mea-
sure of student and teacher effort.
23 As can be seen from (7) and (8), qn and qt will generally not be independent as they
depend on the same set of student and teacher endowment latent factors.

24 The condition from Cunha et al. (2010) is that there would need to be at least two
continuous measures and one additional continuous or discrete measure of student and
teacher effort to nonparametrically identify the latent factor functions for student and
teacher effort, f1 and f2.
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There are two interpretations of the location parameters. One is sim-
ply that they represent reporting bias. If positive (negative), say for stu-
dent effort, the implication is that students overstate (understate) their
effort. A second interpretation is that the location parameters represent
effort amounts that are unproductive, for example, time spent doing
homework while chatting with or texting friends or while watching tele-
vision (we provide evidence for this behavior below).
Finally, because the full measurement system includes (22), and (26)

and (27), the model imposes cross-equation restrictions; measures of ef-
fort provide overidentification of the production function parameters.
Indeed, we use the overidentifying restrictions implied by the parametric
form of the effort functions to perform a test of the model, which we de-
scribe below.
IV. Data
We estimate the model using data on control group students in the tenth
grade in the third (and last) year of the ALI program. As part of the ALI
experiment, in addition to the curriculum-based end-of-year tests, ex-
tensive surveys were administered to both students and teachers that in-
cluded questions that can serve as measures of the latent factors in the
model. We choose the final year of the project because there are more
and better measures of the latent variables available in that year. We
choose the tenth grade because we have multiple measures of initial
mathematics knowledge at that grade level. We estimate the model using
data on the measures of latent student and teacher endowments, mea-
sures of student and teacher effort, and a measure of end-of-year knowl-
edge. The academic year is divided into two semesters. It is not possible
to estimate the model accounting for multiple semesters and for compo-
sitional changes within classes. To avoid this problem, we base the esti-
mation on class assignments in the second semester.25

Table 2 provides a list of the variables used in the estimation and a cat-
egorization according to their respective latent factors. The determi-
nants of the latent factors (the X ’s) are background information on stu-
dents and teachers collected in the surveys. We use data on the latent
measures from the second semester (separate surveys were administered
at the end of each semester) with respect to both the students and the
25 Most students stay together in both semesters, although some drop out between se-
mesters and the same teacher does not always stay with the same group of students, even
when the composition of the class does not change. On average, 76 percent of the students
were in the same class in both semesters. In about one-half of the classes, over 90 percent of
the students in their second-semester class were also together in the same class in the first
semester. In 35 percent of the second-semester classes, all of the students had the same
teacher in the first semester. In 38 percent, none of the students had the same teacher
as in the first semester.
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teacher.26 As seen in the table, the latent factors of effort and end-of-year
knowledge have at least two measures and one determinant.
Table 3 provides descriptive statistics of the latent factor determinants.27

The sample consists of 5,220 students and 56 teachers in 28 schools. As
seen in the table, the mean age at entry into tenth grade is 15.9 years;
TABLE 2
Measures and Determinants of Latent Variables

Latent Variable Determinants Measures

Student entering
knowledge (K0n)

Gender, height, pri-
mary school average,
parental education,
age

9th-grade mathematics ENLACE
score, 9th-grade mathematics
class grade

Student knowledge
preference (vn)

Gender, primary
school average, pa-
rental education

Extent to which likes math generally,
hours per week studies nonmath
subjects, extent to which does
only what is required

Student effort (en) Hours per week studies math, per-
centage of time pays attention in
class, extent of effort on ALI
test, attempts to answer difficult
questions on ALI test, frequency
skips math

Teacher instructional
ability (at)

Has education degree,
has master’s degree,
teaching experience

Fraction of students who say that
teacher “always” knows subject
well, fraction of students who
say teacher “always” has control
of class

Teacher preference
for student knowl-
edge (ft)

Has education degree,
has master’s degree,
teaching experience

Fraction of students who say that
teacher “always” cares that they
learn the material, fraction of stu-
dents who say teacher “always”
cares that they pay attention in
class

Teacher effort (et) Hours per week spent planning for
classes, hours per week helps stu-
dents outside of class, gave only
multiple-choice tests, prepared
students for ALI test

Student final knowl-
edge (Kn)

ALI test score
26 The exceptions are th
These preference measur
of the first semester to avo
tenth-grade mathematics

27 Missing values for he
observations), and paren
The regression imputatio
age and dummies for sch
school dummies. The reg
der, parental education, a
also draw from the residu
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es are based on questions fr
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ight (217 observations), pri
tal education (21 observat
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nd school dummies. In ea
al variances of these regres
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the modal age is 16, and 95 percent of the students are between the ages
of 15 and 17. Slightly over 50 percent of the students aremale, theirmean
grade in primary school (grades 1–6) is 8.7 on a scale from6 to 10, neither
parent attended high school for 60.1 percent of the students, and the stu-
dents are, on average, 162 centimeters in height. With respect to the
teachers, 23 percent have an education degree and the same percentage,
though not exactly the same teachers, have a master’s degree. The teach-
ers, on average, have almost 20 years of teaching experience. The average
class size is 33.9, which is a slight understatement because the sample
does not include students who did not complete the survey.
As seen in table 2, the measures of student initial knowledge are

the student’s (standardized) score on the ninth-grade mathematics
ENLACE and the student’s grade in his or her ninth-grade mathematics
class. The latter is provided in nine categories, at 0.5 intervals beginning
at 6.0 and ending at 10.0 (with 10.0 a separate category). We treat it as con-
tinuous, coded at midpoints of the intervals, with truncations at 6.0 and
10.0. Teacher instructional ability is measured by student responses to
questions about the teacher’s subject matter knowledge and control of
the class. They are coded according to the fraction of students in the
class who rate the teacher as always being in command of the subject
and always being in control of the class. The measures of student effort
are the number of hours per week the student studied mathematics out-
side of class (0, 1, 2, . . . , 10, treated as continuous and truncated at 0 and
10), the percentage of time the student paid attention in class (0–24, 25–
49, 50–74, 75–100 percent, treated as ordered categorical), whether or
not the student put in a great deal of effort on the ALI test, whether
or not the student tried to answer the difficult questions on the ALI test,
and the number of days the student skipped the math class. Teacher ef-
 use subje
TABLE 3
Descriptive Statistics: Latent Factor Determinants

Mean
Standard
Deviation

Students (5,220):
Age 15.9 .81
Male (%) 52.2 . . .
Height (cm.) 162.9 10.7
Primary school grade average (6.0–10.0) 8.67 .79
Parent’s education less than high school (%) 60.1 . . .

Teachers (56):
Has education degree (%) 23.2 . . .
Has master’s degree (%) 23.2 . . .
Teaching experience (years) 19.5 9.63

Schools (28):
Class size 33.9 9.21
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fort is measured by the amount of time in hours per week devoted to les-
son planning (0–1, 1–2, 2–3, 3–4, 4–6, 7.5, treated as continuous and
coded at interval midpoints with truncations at 0 and 7.5), the amount
of time in hours per week the teacher tutored the students outside of
class (0, 1–3, 4–6, 7–10, 12.5, treated as continuous and coded at interval
midpoints with truncations at 0 and 12.5), whether or not the teacher
gave only multiple-choice tests, and whether or not the teacher helped
students in preparation for the ALI test.
The optimal effort of students and teachers depends on the utility

they attach to acquiring knowledge. The student measures of preference
for knowledge include the number of hours per week the student stud-
ied subjects other than mathematics, the response to a direct question
on whether the student likes mathematics (four ordered categories), a
measure of conscientiousness, and a self-report of whether the student
does only the work that is required (five ordered categories). The teach-
er’s preference, like ability, is measured from the perspective of the stu-
dents in the class. The two measures are the fraction of students in the
class who report that the teacher always is concerned that they learn the
material and the fraction who say that the teacher always cares that they
pay attention in class.
Descriptive statistics for the measures of the latent factors are presented

in table 4. In addition, we present p-values for the test that the measures of
the same latent variables are pairwise correlated as well as the sign of the
correlations.28 Nonindependence of the measures is crucial for identifica-
tion. In terms of effort, the mean number of hours per week students re-
port that they study math outside of classroom time seems fairly high,
4.68 hours. On the other hand, less than half of the students report that
they pay attention in class at least 75 percent of the time. Only a third of
the students reported that they put a great deal of effort into the ALI test,
but two-thirds said that they attempted the difficult questions on the test.
All of the measures have pairwise correlations that are statistically signifi-
cant, and all pairwise correlations are positive except those that include
the number of days class is skipped. With respect to their mathematics
knowledge at high school entry, students in these schools scored higher
than average on the national ninth-grade ENLACE, 530.9 as opposed to
a national average of 500, and received, on average, just over a B in their
ninth-grade mathematics course.29 The two measures are positively corre-
lated and the correlation is statistically significant. Among the student pref-
erencemeasures, about two-thirds of the students likemathonly sometimes,
28 The p-values are obtained either from regressions (accounting for clustering at the
school level) if one of the measures is continuous (the dependent variable) or from a
chi-square statistic based on a contingency table if both variables are discrete.

29 Part of the reason they score higher on the ENLACE is that high school enrollment is
not universal while the ENLACE is administered to all ninth-grade students.
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TABLE 4
Descriptive Statistics: Measures of Latent Variables

Mean
Standard
Deviation

A. Students

Measures of student effort (en):
1. Hours/week studies math 4.68 2.92
2. Percent of time pays attention in class:
0–24 5.2 . . .
25–49 12.6 . . .
50–74 35.0 . . .
75–100 47.3 . . .

3. Puts great deal of effort into ALI test (%) 33.1 . . .
4. Attempted difficult questions on ALI
test (%) 67.3 . . .

5. Days skipped mathematics class .41 1.0
p-value: test corr(1, 2) 5 0, sign <.001, 1
p-value: test corr(1, 3) 5 0, sign <.001, 1
p-value: test corr(1, 4) 5 0, sign <.001, 1
p-value: test corr(1, 5) 5 0, sign <.001, 2
p-value: test corr(2, 3) 5 0, sign <.001, 1
p-value: test corr(2, 4) 5 0, sign <.001, 1
p-value: test corr(2, 5) 5 0, sign <.001, 1
p-value: test corr(3, 4) 5 0, sign <.001, 1
p-value: test corr(3, 5) 5 0, sign <.001, 2
p-value: test corr(4, 5) 5 0, sign <.001, 2

Measures of student initial knowledge (K21):
1. 9th-grade ENLACE score 530.9 104.2
2. Mathematics grade in 9th-grade class 8.26 1.03
p -value: test corr(1, 2) 5 0, sign <.001. 1

Measures of student preference for
knowledge (vn):

1. Likes math generally (%):
Never 5.2 . . .
Almost never 13.1 . . .
Sometimes 65.6 . . .
Always 16.1 . . .

2. Does only the work required (%):
Strongly agree 6.2 . . .
Somewhat agree 45.1 . . .
Neither agree nor disagree 20.8 . . .
Somewhat disagree 21.4 . . .
Strongly disagree 6.6 . . .

3. Hours/week studies nonmath subjects 5.56 3.04
p-value: test corr(1, 2) 5 0, sign <.001, 1
p-value: test corr(1, 3) 5 0, sign <.001, 1
p-value: test corr(2, 3) 5 0, sign .002, 1

B. Teachers

Measures of teacher effort (et):
1. Hours/week planning lessons 3.99 2.31
2. Hours/week tutors students out of class 3.11 2.88
3. Addressed student problems in
preparation for the ALI test (%) 24.5 . . .

4. Gave only multiple-choice exams (%) 33.9 . . .
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a little over one-half of the students either strongly or somewhat agree that
they do only the work that is required, and, on average, students spend
5.5 hours per week studying nonmath subjects. This latter figure is per-
haps surprising in that it is less than 1 hourmore than the amount of time
spent studying math alone.30 The three measures of preferences are all
positively correlated and the correlations are statistically significant.
Teachers report spending almost 4 hours a week preparing lessons

and a little over 3 hours a week tutoring students outside of class. The
correlation of these measures of teacher effort is positive and statistically
significant. The two measures, addressing student problems in prepara-
tion for the ALI test and giving only multiple-choice exams, have a pos-
itive and statistically significant correlation with each other but do not
have statistically significant correlations with the other two measures.
Teacher preferences and instructional ability each have two measures,
and in each case the two measures are positively correlated and the cor-
relation is statistically significant.
As seen in (7), optimal student effort depends on the student’s pref-

erence for knowledge and initial mathematics knowledge, the teacher’s
preference for student knowledge and the teacher’s ability, and a com-
posite of the initial knowledge and preference for knowledge of all of
TABLE 4 (Continued)

Mean
Standard
Deviation

p-value: test corr(1, 2) 5 0, sign <.001,1
p-value: test corr(1, 3) 5 0, sign .536,1
p-value: test corr(1, 4) 5 0, sign .541,1
p-value: test corr(2, 3) 5 0, sign .634,1
p-value: test corr(2, 4) 5 0, sign .879,1
p-value: test corr(3, 4) 5 0, sign <.001,1

Measures of teacher’s instructional ability (at):
1. Fraction of students report teacher
always in command of subject .822 .151

2. Fraction of students report teacher
always in control of class .614 .203

p-value: test corr(1, 2) 5 0, sign <.001,1
Measures of teacher preference for student

knowledge (ft):
1. Fraction of students report teacher
always concerned they learn the material .783 .165

2. Fraction of students report teacher
always cares that they pay attention .700 .176

p-value: test corr(1, 2) 5 0, sign <.001,1
30 These high schools, though now college preparatory
schools and still require that mathematics be taken all 3 y
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the students in the class. Moreover, student effort depends positively on
each of these latent factors, including the class composite, although the
class compositematters only because students react to teacher effort. Sim-
ilarly, teacher effort, as seen in (8), depends positively on the same latent
factors (except there is no individual student latent preference or initial
knowledge). These dependencies imply that student and teacher effort
are positively correlated, a direct consequence of the assumption that they
are complementary inputs in the production of student knowledge. To be
consistent with this prediction, it is necessary that at least some student and
teacher effort measures be positively correlated. The correlation between
themeannumber of hours per week students with a given teacher spend
studying math and hours per week the teacher spends preparing lessons is
positive with a p -value for the test that they are unrelated equal to .030.31

We previously argued that the data on student and teacher effort would
not support the all-zero effort equilibrium, that is, the equilibrium in which
all students in a class exert no effort or the teacher exerts zero effort. To
see that, note that only 2.8 percent of the students in the sample report
spending 0 hours per week studying math and only 13.1 percent report
spending an hour or less. Students seem to be distributed relatively ran-
domly across classes with respect to study time; on average, 2.8 percent
of students in a class study 0 hours and 12.9 percent study an hour or less.
More relevant is that the largest percentage of students who study 0 (one
or less) hours in any of the 154 classes is 14.8 (24.3) percent. Similarly, in
terms of teacher effort, only 1.5 percent of teachers report spending less
than an hour per week on planning lessons, and none of those also report
spending 0 hours tutoring students outside of class.
V. Estimation Results

A. Parameter Estimates
Estimation is carried out with the distributional assumptions previously
described. To conserve on parameters, we place some a priori zero co-
variance restrictions onL2 (school-level unobservables); specifically, the non-
zero covariances include the following pairs: (K21, vn), (K21, at), and (vn, at).
In addition, we did not attempt to identify the covariance matrix of class-
or teacher-level unobservables to conserve on parameters. Because we set L3

to zero, all between-class variation within schools in teacher instructional
ability and preferences and in student initial knowledge and preferences
is due to systematic differences in observable student and teacher charac-
teristics.
31 Note that there are only 56 tenth-grade math teachers in the 28 schools. The p-value is
based on a regression of one measure on the other clustered at the school level to account
for multiple teachers in a school.
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The model contains 85 parameters. Table 5 presents estimates of the
production function parameters along with selected summary statistics
of the predicted latent factors.32 The parameters indicate that end-of-year
knowledge increases with initial knowledge (d0 > 0). However, because
the measures of Kn and K21,n are not cardinal measures of a single scale
of mathematics knowledge, d0 reflects both knowledge depreciation and
a normalization. Themarginal product of student effort, g1, is positive and
is essentially independent of class size (g11 ≈ 0). The marginal product of
teacher effort, g2, is also positive and declines with class size (g21 < 0); at
the largest class size the marginal product of teacher effort is close to zero.
The normalizations (d0, k) are statistically significant at conventional levels
as is the student’s marginal product of effort (g1). However, neither the
teacher’s marginal product, the coefficient on teacher’s ability (g0), nor
the effects of class size are statistically significant.
Mean student effort is equivalent to 3.14 hours per week of math study

time andmean teacher effort to 1.59 hours per week of class preparation
time. The coefficient of variation is similar for student and teacher ef-
fort, 0.30 versus 0.33. The amount of effort that is unproductive (or sub-
ject to reporting bias) is large for both students and teachers. The unpro-
ductive (or overstated) effort of students (es) is the equivalent of 1.61 hours
per week of study time, about 35 percent of “total” effort. Similarly, the
32 The

All use sub
TABLE 5
Production Function Parameter Estimates

and Predicted Summary Statistics

Parameter Value Parameter Value

d0 .937 g1 .372
jd .055 g11 .00017
k .0066 g2 .082
d1 .011 g21 2.0016
g0 .549

Predicted Summary Statisticsa

Endowments Outcomes

mK21 528.5 mK 498.0
jK21 47.7 jK 52.6
mvn 5.61 men 3.14
jvn 2.06 jen .939
mat .830 met 1.59
jat .136 jet .523
mvt .794
jvt .156
entire set of param
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unproductive (or overstated) effort of teachers (e t) is the equivalent of
2.51 hours per week of class preparation time, about 60 percent of “total”
effort.
Mean end-of-year knowledge (Kn) is equivalent to a standardized score

of 498.0 on the ALI test, with a standard deviation of 52.6.33 Mean initial
knowledge is equivalent to a (standardized) score of 528.5 on the ninth-
grade ENLACE, with a standard deviation of 47.7.34 The coefficient of var-
iation of student preferences for knowledge is greater than that of teacher
preferences for student knowledge, 0.40 versus 0.20. Teacher ability has
the smallest coefficient of variation, 0.16.
B. Model Fit
Table 6 compares actual and predicted statistics for each latent variable
measure. It also shows the fraction of the measure’s variance that reflects
variation in the latent factor (oneminus the fraction due tomeasurement
error). The measures are categorized according to their corresponding
latent. The first row shows the fit for the ALI test, the measure of end-of-
year (tenth-grade) math knowledge (Kn). As seen, themodel fits themean
and standard deviation well. According to the model estimates, 27.8 per-
cent of the variance in the ALI test is accounted for by the variation in
math knowledge (and the residual bymeasurement error). In comparison,
20.3 and 31.5 percent of the variance of the two measures of initial knowl-
edge (K0n), the ninth-grade ENLACE score and the students’ grades in their
ninth-grade mathematics class, is accounted for by the variation in initial
math knowledge.35

The fit for the measures of the other latent factors is generally quite
good, although measures vary in their degree of measurement error. For
example, the actual mean hours per week of study time devoted to mathe-
matics, one of the measures of student effort, is 4.68, while the predicted
mean is 4.79 hours; the actual standard deviation of themeasure is 2.92 hours
and the prediction is 2.96 hours. Hours of study time is, however, a noisy
measure of student effort, with the noise component of the measure ac-
counting for 92 percent of its variance. Another measure of student effort,
the percentage of time the student reports paying attention in class, which
33 On the basis of an analysis of answer sheets, Behrman et al. (2015) report that 3.7 per-
cent of students in the control group engaged in copying. We account for this in our esti-
mation by including an indicator variable in the test score measurement equation for
whether a student was identified as a copier. Our estimate indicates that copiers increased
their test scores by 22.1 standardized points on average.

34 In terms of the second measure of initial knowledge, mean initial knowledge is equiv-
alent to a grade in the ninth-year mathematics course of 8.23.

35 Regressions of the ENLACE score and the ninth-grade mathematics class grade on
their observable determinants (listed in table 1) yield R 2’s of 11 and 24 percent. The rest
of the variance in initial knowledge is due to the unobserved component.
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TABLE 6
Model Fit

Actual Predicted

j2
True=j

2
Totalm j m j

Measure of 10th-year math knowledge (K):
ALI test 500.5 99.8 498.0 100.1 .278

Measures of student effort (en):
Hours/week studies math 4.68 2.92 4.79 2.95 .078
Days attended math class 79.6 1.10 79.6 1.06 .150
Percent of time pays attention in class: .148
0–24 5.3 . . . 5.4 . . .
25–49 12.6 . . . 12.7 . . .
50–74 35.0 . . . 34.9 . . .
75–100 47.3 . . . 47.1 . . .
Puts lot of effort into ALI test (%) 33.1 . . . 33.0 . . . .062
Tried to answer difficult questions on
ALI test (%) 67.3 . . . 67.1 . . . .065

Measures of teacher effort:
Hours/week of class preparation 3.99 2.31 4.08 2.34 .031
Hours/week tutor outside of class 3.05 2.94 3.25 3.66 <.001
Gave only multiple-choice tests (%) 37.4 . . . 35.8 . . . .034
Prepared students for ALI test (%) 21.3 . . . 23.4 . . . .001

Measures of student initial knowledge (K0):
9th-grade ENLACE standardized score 530.9 104.2 528.5 105.9 .203
9th-grade mathematics grade 8.26 1.03 8.22 1.04 .315

Measures of student preference for
knowledge (vn):

Hours/week studies nonmath subjects 5.56 3.04 5.47 3.32 .242
Likes math (%): .134
Never 5.2 . . . 5.5 . . .
Almost never 13.1 . . . 13.2 . . .
Sometimes 65.6 . . . 65.3 . . .
Always 16.1 . . . 16.0 . . .

Student does only what is expected: .022
Strongly agree 6.2 . . . 6.2 . . .
Agree 45.1 . . . 46.2 . . .
Neither agree or disagree 20.8 . . . 20.5 . . .
Disagree 21.4 . . . 20.9 . . .
Strongly disagree 6.6 6.3 . . .

Measures of teacher preferences for
student knowledge (vt):

Fraction of students in class who
respond that:

Teacher always cares if they learn .779 .172 .784 .158 .806
Teacher always wants students to pay
attention in class .693 .179 .707 .182 .835

Measures of teacher instructional
ability (at):

Fraction of students in class who respond
that:

Teacher always knows the subject .818 .159 .818 .142 .731
Teacher always has control of class .608 .204 .622 .207 .686
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can take on values within the ranges 0–24 percent, 25–49 percent, 50–
74 percent, and 75–100 percent, also fits well; the actual percentages are
5.3, 12.6, 35.0, and 47.3 while the predicted percentages are 5.4, 12.7, 34.9,
and 47.1. The measure is less noisy than hours of study time, with the var-
iance component of the latent factor accounting for 14.5 percent of the
total variance of the measure.36 The fit for the measures of teacher effort
is similarly good, though the noise components of the measures are larger.
The least noisy measure of teacher effort is the number of hours per week
spent on class preparation, for which the noise component is 96.9 per-
cent of the total variance. With respect to student preferences, the vari-
ance components of the factors for the three measures account for 24.2,
13.4, and 2.2 percent, while for the two measures of teacher preferences,
they are 80.6 and 83.5 percent. Variance components of the factors for
the measures of teacher instructional ability, based on student reports as
was also the case for teacher preferences, account for 73.1 and 68.6 percent.
Further evidence on model fit is provided in table 7, which compares

regressions of predicted model outcomes on exogenous student and teacher
characteristics that determine the latent factors to regressions of measures
of those outcomes on the same variables. Given the nonlinear nature of the
production function and the effort functions, which are derived as the so-
lution to the game, the ability of themodel to capture these relationships is
a demanding test.37 The first two columns show the regression coefficients
for the actual ALI test score and the test score predicted from the model.
The column based on the actual data also reports the 95 confidence inter-
val and the p-value. With respect to student characteristics, three of the five
coefficients (age, height, and primary school average) based on the pre-
dicted test score fall within the 95 percent confidence interval, which in
each case is quite tight (p-value ≤ .001). Two coefficients (male and par-
ent education) also fall within the 95 percent confidence interval, but the
p -values exceed .05. With respect to teacher characteristics, the regression
coefficients based on the predicted test score fall within the 95 percent
confidence interval of those based on the actual data for all three charac-
teristics, but p -values are large.
The model is less successful with respect to the student effort mea-

sure, hours per week devoted tomath study time. In the two cases in which
the p -value of the regression coefficient based on the actual data was less
than .05, the regression coefficient based on the prediction fell inside the
36 Measures that are ordered categorical or binary are treated as themselves coming
from an underlying continuous latent variable. The proportion of variance that the mea-
sure explains of the model latent factor (in this case the preference for knowledge, vn) is
taken with respect to the continuous latent factor of the measure.

37 Note that although the model outcomes are functions of the student and teacher ob-
servables, at both the individual and class levels, the functions are highly nonlinear. These
misspecified regressions are used only to assess model fit and have no interpretation.
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95percentconfidence interval foroneof them.Forallof theother variables,
p-values were too large for the comparison to bemeaningful, as was also the
case for themeasure of teacher effort, hours per week spent planning.
C. Discussion

1. Characteristics of the Knowledge
Production Function
Table 8 summarizes quantitatively the features of the production func-
tion for end-of-year knowledge. Each row shows the effect on the normal-
ized and raw score equivalent level of end-of-year knowledge of ceteris pa-
ribus changes in each of the latent factor determinants of end-of-year
knowledge. When each latent factor is varied, the others are held con-
stant at mean values. As seen in the table, an increase in initial knowledge
from 2 SD below to 2 SD above the mean would increase tenth-grade
math knowledge by 180.4 standardized points or by 20.9 raw score per-
centage points, an increase of 3.4 SD. Although these changes are sub-
stantial, even students with initial knowledge 2 SD above the mean would
answer, on average, only 48.6 percent of the questions correctly.
Ceteris paribus changes in student and teacher effort or teacher ability

have negligible effects on end-of-year knowledge. A student who increases
effort from 0 to 2 SD above themean, equivalent to an increase of 5.28 hours
spent studying per week, would increase knowledge by only 0.10 SD. More-
over, the concavity of the production function in student effort is such that
three-fifths of the gain in knowledge arises from increasing effort from zero
to only 1 SD below the mean. The marginal product of student effort in-
creases with student initial knowledge, but not greatly. A student with ini-
tial knowledge 2 SD above the mean who increases effort from 0 to 2 SD
above the mean would increase knowledge by 0.12 SD, only 0.02 SDmore
than a student with initial knowledge at the mean. The results are similar
both for teacher effort and for teacher ability. In all cases, the raw score
equivalent never reaches 50 percent.
2. Accounting for Performance
The results in table 8 do not provide a complete picture as to the causes of
low performance. Student and teacher effort are choices, and changes in
student initial knowledge or in teacher ability will affect those choices. To
account fully for low performance, we perform a series of counterfactuals
in which we change the composition of the classes in terms of student and
teacher endowments. In each case, we set a student or teacher endowment
for all students or teachers in the sample to be 2 SD above the mean. The
results are reported in table 9.
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The first column shows the baseline mean student and teacher effort
levels and student end-of-year knowledge (both standardized and raw
score). The second column shows those same statistics for the case in which
initial knowledge is 2 SD above the mean for all of the students in each
class. As seen, student effort increases by the equivalent of 0.31 hour per
week of study time and teacher effort by 0.17 hour per week of class prep-
aration time. The reason for these increases, though small, stems from the
increase in the marginal product of effort with increasing initial knowl-
edge. End-of-year knowledge increases by 90.1 standardized points (1.7 SD).
However, the raw score equivalent remains under 50 percent. The second
column reports the same outcomes for the case in which instructional abil-
ity is 2 SD above themean for all teachers. The effect on student and teacher
effort is similar to that for the change in student initial knowledge. How-
ever, because the marginal product of teacher ability is also low, student
knowledge increases only by 1.1 standardized points. Thus, improving
teacher instructional ability, at least within the range of abilities in the data,
is not a viable mechanism to improve student knowledge of the current
curriculum.
TABLE 8
Properties of the Knowledge Production Function: Predicted Measures

of Performance at Alternative Values of Student and Teacher Inputs

Knowledge: Normalized
Equivalent
(SD 5 53.0)

Knowledge: Raw Score
Equivalent
(SD 5 6.12)

Initial knowledge (K21):
m 2 2j 5 433 409.4 27.7
m 5 529 499.6 38.2
m 1 2j 5 624 589.8 48.6

Student effort (en):
Zero 495.0 37.6
m 2 2j 5 1.27 498.3 38.0
m 5 3.14 499.6 38.2
m 1 2j 5 5.02 500.5 38.3

Student effort (en) at K21 5 624:
Zero 584.4 47.9
m 2 2j 5 1.27 588.2 48.4
m 5 3.14 589.8 48.6
m 1 2j 5 5.02 590.8 48.7

Teacher effort (et):
Zero 495.0 37.6
m 2 2j 5 1.27 499.5 38.1
m 5 3.14 499.6 38.2
m 1 2j 5 5.02 499.7 38.2

Teacher ability (at):
Zero 495.0 37.6
m 2 2j 5 .56 499.2 38.1
m 5 .89 500.0 38.2
m 1 2j 5 1.10 500.4 38.2
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The counterfactual simulations related to changing preferences (more
accurately to the ratio of the marginal utility of knowledge to the per-unit
cost of effort) also lead to small effects on end-of-year knowledge. Unlike
student initial knowledge and teacher ability, the effect of changing pref-
erences on knowledge arises only through the effect on effort. As seen, set-
ting student preferences at 2 SD above themean increases average student
effort by the equivalent of 1.32 hours of study time per week and average
teacher preparation time by the equivalent of 0.12 hour. Even with these
increases in effort, however, average end-of-year knowledge increases by
only 0.7 standardized points (0.01 SD). The reason that students exert as
much effort as they do, despite the low productivity of effort, is that they
value even small increments of knowledge.38 Setting teacher preferences
at 2 SD above the mean has essentially no effect on average student effort
and increases average teacher effort by 0.29 hour per week of class prepa-
ration time. The overall effect on student knowledge is again essentially nil.
The counterfactuals in tables 7 and 8 demonstrate that (1) the initial

preparation of students in terms of their incoming math knowledge has
a large impact on tenth-grade math performance as measured by the
standardized score but still leaves even those students with the best prep-
aration havingmastered less than 50 percent of the curriculum; (2) within
the range of instructional abilities and preferences of teachers observed in
the data, employing “better” teachers would have a small impact on stu-
dent end-of-year curriculumknowledge; and (3) increasing the enjoyment
that students receive from acquiring math knowledge has a considerable
impact on student effort and a smaller impact on teacher effort but induces
only a small increase in student end-of-year knowledge.
As Cunha et al. discuss (2010), a limitation of test score analyses is that

they generally identify only determinants of relative performance. The
TABLE 9
The Effect of Universal Changes in Student Initial Knowledge,

Teacher Instructional Ability, and Student and Teacher

Preferences on Tenth-Grade Mathematics Knowledge

Baseline K21 5 m 1 2j at 5 m 1 2j vn 5 m 1 2j vt 5 m 1 2j

en 3.14 3.45 (.33 SD) 3.48 (.33 SD) 4.46 (1.41 SD) 3.15 (.01 SD)
et 1.59 1.76 (.33 SD) 1.75 (.33 SD) 1.71 (.23 SD) 1.88 (.55 SD)
Kn:
Standard
score 498.0 588.1 (1.7 SD) 499.1 (.01 SD) 498.7 (.01 SD) 498.0 (<.001 SD)

Raw score
(%) 38.0 48.4 (1.7 SD) 38.1 (.01 SD) 38.1 (.01 SD) 38.0 (<.001 SD)
38 One po
on the stude
matter in ter

All use subjec
ssibility is
nt’s cours
ms of futu

This conte
t to Unive
that small increas
e grade, and it is
re academic suc

nt downloaded fro
rsity of Chicago Pr
es in this measur
the latter that s
cess.

m 128.042.192.00
ess Terms and Co
e of knowledge
tudents care mo

5 on December 1
nditions (http://w
have a large effect
st about and that

0, 2018 12:49:19 PM
ww.journals.uchicago.edu/t-and-c).



2640 journal of political economy

All
ALI test was designed to uncover the extent to which students have mas-
tered the curriculum, and as such, raw scores (percentages correct), which
our analysis focuses on, are a measure of their mastery. Nevertheless, as
suggested by Cunha et al., it would be desirable to know whether perfor-
mance on the ALI test is related to other outcomes of interest, such as at-
tending college or adult earnings. Unfortunately, the ALI experiment did
not follow students subsequent to leaving high school.39
3. Credibility and Interpretation of Results
In this section, we raise two questions: (1) Are the results credible? and
(2) What is the interpretation of the results?
Credibility.—Obviously, the estimation results rely on many assump-

tions: strategic interaction between students and teachers, specific func-
tional forms of the production function and preferences, specific distribu-
tional assumptions, covariance and exclusion restrictions, and the match
of measures to latent factors. It is not possible to test each of these as-
sumptions separately. Yet the credibility of the results depends on the
ability of the model to capture “true” systematic aspects of student and
teacher effort decisions.
As we have shown, the model places cross-equation restrictions be-

tween the parameters of the knowledge production function and the de-
rived effort functions. Such restrictions could have led to a poor fit of the
estimatedmodel to the data. That did not, however, seem to be the case.40

A more convincing validation exercise would be to directly test the cross-
equation restrictions. We carried out such a test by relaxing the restric-
tion on three of the parameters, d0, g1, and g2, estimating separate param-
eters for the production function and for the effort functions. We did not
estimate separate parameters for k, which is a normalization that is iden-
tified only in the production function. Also, because teacher ability and
teacher preferences are highly correlated, we did not estimate a separate
parameter for g0, which would be difficult to distinguish from g1 and g2 in
the effort functions. In essence, themodel without the restrictions breaks
the tight link between fitting the measure of end-of-year knowledge (the
39 Cawley, Heckman, and Vytlacil (2001) summarize extensive empirical evidence show-
ing that cognitive skills strongly predict schooling attainment and wages. Heckman,
Stixrud, and Urzua (2016) show that cognitive and noncognitive skills also explain a variety
of other labor market and behavioral outcomes, including employment, work experience,
choice of occupation, teenage pregnancy, smoking, and criminal participation. Much of
the accumulated evidence on the relationship between cognitive and noncognitive skills
and adult outcomes is based on National Longitudinal Survey of Youth 1979 survey data,
which gathered extensive test score data on teenage youths and followed them for more
then 20 years, allowing examination of subsequent outcomes.

40 However, as argued inWolpin (2007), model validation based on within-sample fit can
be problematic because of structural data mining,
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ALI test score) and the measures of student and teacher effort. The var-
iation in student effort, for example, that must be attributed to prefer-
ence variation to explain the level of student effort, while accommodating
the low marginal product of effort, can now be explained by changing the
effort function parameters. We reestimated the model allowing for the sep-
arate parameters and performed a likelihood ratio test. We did not reject
the hypothesis that the restrictions were valid.41

As we noted, model restrictions allowed us to identify the amount of
effort that is unproductive, estimated for students to be 1.6 hours per
week of study time and for teachers to be 2.5 hours per week of prepa-
ration time. In addition to study time, students were also asked to report
on competing activities they engaged in while doing homework. Almost
30 percent of the students reported that they always engage in one of the
following activities while doing homework: chatting or texting, watching
television, playing video games, or caring for a sibling.42 If we assume that
productive study time is zero for those students, the average number of pro-
ductive hours of study time would be 3.5. Recall that our estimate of pro-
ductive effort is 3.1 hours per week.
Interpretation.—The results are rather dramatic: the only factor that re-

ally matters in determining how much of the tenth-grade mathematics
curriculum was mastered is mathematics knowledge upon entry into
the tenth grade. Moreover, even students who enter with knowledge ac-
quired through the ninth grade that is 2 SD above the mean (the equiv-
alent of a grade of 9.3 in their ninth-grade mathematics class) master less
than 50 percent of the tenth-grade curriculum. We explore several pos-
sible explanations.
One explanation is that students may put little or no effort into the

ALI test, because the test is perceived as low stakes. Although we cannot
rule out the possibility that test-taking effort is partly responsible for the
results, it is unlikely to be the main explanation. First, the difference be-
tween the average raw score, 38 percent, and the raw score that would be
achieved by guessing, 25 percent, is statistically significant. Second, the
vast majority, 89 percent, of enrolled students took the test. This figure
is comparable to that of the treatment group, 92.5 percent, students who
had a monetary incentive to sit for the test. Third, as we have already
noted, 67 percent of the control group students reported that they at-
tempted to answer the difficult questions on the test. In the treatment
group, the figure was 81 percent. Finally, the relevant question is a coun-
terfactual; namely, among students who put in less than “full” test-taking
41 Twice the difference in the log likelihood values of the unrestricted and restricted
models was 7.33. The chi-square statistic with 3 degrees of freedom is 7.81 at the .05 critical
value.

42 The response categories for each of them were never, almost never, sometimes, and
always.
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effort, what would their performance have been had they put in “full”
effort? Although we cannot give a quantitative answer to that question,
we can provide some information about reported test-taking effort and
student characteristics. In particular, the students reporting that they
attempted the difficult questions scored 0.25 SD higher on the ninth-
grade ENLACE, reported spending 0.74 hour more per week studying
math, and were half as likely to report paying attention in class less than
50 percent of the time than those who reported that they did not attempt
the difficult questions. This evidence suggests that those exerting less
test-taking effort would have mastered less of the curriculum regardless
of their test-taking effort given that they had lower initial knowledge, stud-
ied less, and paid attention less during the year.
A second explanation is that the tenth-grade ALI test was just very dif-

ficult, and so it is no surprise that test scores were low. It is true that the
test was difficult, but it was difficult because the curriculum is difficult.
The creators of the test, as noted by a national testing organization, took
as their mandate the design of a test that was faithful to the curriculum.
Thus, our estimate of tenth-grade math knowledge, based on a raw score
equivalent metric, can be taken as a measure of the fraction of the cur-
riculum that was mastered. Mastering the curriculum is presumably the
goal of the Ministry of Education.
A third explanation is that teachers do not follow the curriculum. Ob-

viously, students cannot learn what they are not given to learn. Teacher
reports, however, indicate that the curriculum is followed. Eighty percent
of the teachers report that they taught at least 75 percent of the trigonom-
etry curriculum, sequentially the last and most difficult component of the
tenth-grade curriculum.43 And, of course, the motivation for not teaching
the curriculum may be that the curriculum is not learnable (teachable)
given the level of mathematics knowledge with which students enter.
The final explanation, and to us the most convincing, is that the tenth-

grade curriculum is too difficult given the level of mathematics knowl-
edge acquired through the ninth grade. To be consistent with our results,
it would have to be true that even those students far above the average in
the distribution of the latent factor of initial knowledge do not have the
requisite foundation for learning thematerial covered in the tenth-grade
curriculum, and further, at least within the range of the data, no amount
of effort on the part of the student or teacher and no level of teacher abil-
ity would compensate for the deficiency. Given the institutional structure,
it is reasonable to assume that the ninth- and tenth-grademathematics cur-
ricula are aligned, that is, thatmastery of the ninth-grade curriculumwould
43 The raw score for the trigonometry component of the test was only 29 percent. The
aw scores for algebra and geometry were both about 40 percent.
r
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provide an adequate foundation.44 Under that assumption, the interpreta-
tion of our results depends on what our measures of initial knowledge, the
ninth-grade ENLACE, and the grade earned in ninth-grade mathematics
actually indicate about entering mathematics knowledge. An assumption,
consistent with our results, is that the initial knowledge latent factor that
we identify on the basis of those measures, although capturing some rele-
vant variation among students, does not span the knowledge necessary to
successfully tackle the tenth-grade curriculum.45
VI. Conclusions
This paper developed and estimated a strategic model of the joint effort
decisions of students and teachers in a classroom setting to understand
the reasons for low mathematics performance of Mexican high school
students on curriculum-based examinations. The model allowed for stu-
dent and teacher heterogeneity in preferences for knowledge acquisition
and in student initial mathematics preparation and teacher instructional
ability.
Survey data of students and teachers collected as part of the ALI proj-

ect provided multiple measures of student and teacher effort, student and
teacher preferences, student initial knowledge, and teacher ability, all of
which were treated as latent variables. An end-of-year curriculum-based test
provided a measure of tenth-year mathematics knowledge. A simulation-
based maximum likelihood estimation procedure was used to recover the
parameters of the knowledge production function as well as parameters
governing the latent variable and measurement structures.
Estimation results indicated that the most important factor account-

ing for low performance is the lack of sufficient prior mathematics prep-
aration. On the basis of the production function estimates, a ceteris pa-
ribus increase in student effort from its mean to 2 SD above the mean, an
increase equivalent to almost 2 extra hours per week of time devoted to
studying math, was estimated to increase end-of-year knowledge by only
0.02 SD. A similar increase in teacher effort increased knowledge by less
than 0.01 SD. In contrast, a 1 SD increase in student initial knowledge in-
creased end-of-year knowledge by 0.85 SD.
44 In both the ninth and tenth grades, the curriculum is set at the federal level, although
the states are responsible for oversight of lower secondary schools (grades 7–9). Our sam-
ple of tenth graders comes from schools for which the federal Ministry of Education has
oversight.

45 Unfortunately, we do not have a mapping from the standardized score on the ninth-
grade ENLACE to a raw score as we do for the tenth-grade ALI test. Thus, we cannot de-
termine how much of the ninth-grade curriculum is mastered. However, looking at the
ENLACE test, it appears that it has a level of difficulty similar to that in the tenth-grade
ALI test. And only 11 percent of the students in our sample were deemed proficient on
the basis of the ENLACE.
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We also used the model to perform counterfactual experiments that
changed the composition of classes in terms of student and teacher en-
dowments, incorporating the implied optimal changes in student and
teacher effort. Increasing student initial knowledge in all classes to be
2 SD above the sample mean increased end-of-year knowledge by 1.7 SD
above themean.However, this seemingly large effect corresponded tomas-
tery of only 48.4 percent of the curriculum. On the other hand, similar-
size changes in student or teacher preferences or in teacher ability led
to negligible effects on end-of-year knowledge.
We considered a number of explanations for these results. The most

compelling in our view is that there is a mismatch between the tenth-
grade mathematics curriculum and the mathematics preparation of in-
coming high school students. Because of this mismatch, increasing ef-
fort per se of either students or teachers leads to only small increases
in end-of-year knowledge. Simply having a rigorous curriculum without
a strong foundation does not by itself improve knowledge.
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