Memory-Hierarchy Management

Steve Carr

CRPC-TR92222-S
September 1992

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

RICE UNIVERSITY

Memory-Hierarchy Management

by

Steve Carr

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Ken Kennedy, Chairman
Noah Harding Professor of Computer Science

Keith D. Cooper
Associate Professor of Computer Science

Danny C. Sorensen
Professor of Computational and Applied Math

Houston, Texas

February, 1993

Memory-Hierarchy Management

Steve Carr

Abstract

The trend in high-performance microprocessor design is toward increasing computational power on the
chip. Microprocessors can now process dramatically more data per machine cycle than previous models.
Unfortunately, memory speeds have not kept pace. The result is an imbalance between computation speed
and memory speed. This imbalanceis leading machine designers to use more complicated memory hierarchies.
In turn, programmers are explicitly restructuring codes to perform well on particular memory systems,
leading to machine-specific programs.

It is our belief that machine-specific programming is a step in the wrong direction. Compilers, not
programmers, should handle machine-specific implementation details. To this end, this thesis develops and
experiments with compiler algorithms that manage the memory hierarchy of a machine for floating-point
intensive numerical codes. Specifically, we address the following issues:

Scalar replacement. Lack of information concerning the flow of array values in standard data-flow analysis
prevents the capturing of array reuse in registers. We develop and experiment with a technique to
perform scalar replacement in the presence of conditional-control flow to expose array reuse to standard
data-flow algorithms.

Unroll-and-jam. Many loops require more data per cycle than can be processed by the target machine.
We present and experiment with an automatic technique to apply unroll-and-jam to such loops to
reduce their memory requirements.

Loop Interchange. Cache locality in programs run on advanced microprocessors is critical to performance.
We develop and experiment with a technique to order loops within a nest to attain good cache locality.

Blocking. Iteration-space blocking is a technique used to attain temporal locality within cache. Although it
has been applied to “simple” kernels, there has been no investigation into its applicability over a range
of algorithmic styles. We show how to apply blocking to loops with trapezoidal-, rhomboidal-, and
triangular-shaped iteration spaces. In addition, we show how to overcome certain complex dependence
patterns.

Experiments with the above techniques have shown that integer-factor speedups on a single chip are possible.
These results reveal that many numerical algorithms can be expressed in a natural, machine-independent
form while retaining good memory performance through the use of compiler optimizations.

Acknowledgments

I would like to thank the members of my committee for their input and support throughout the development
of this thesis. In particular, I would like to thank Ken Kennedy for his guidance and support throughout
my graduate career, especially through the numerous times when I was ready to quit. I would also like to
give special thanks to Keith Cooper for being willing to listen when I had ideas that needed to be heard.

From the onset of graduate school, I found that many of my fellow students provided much-needed support
and insight. Preston Briggs, Uli Kremer, Mary Hall and Ervan Darnell have given feedback on the ideas
developed within this thesis. Those who began graduate school with me, René Rodriguez, Elmootazbellah
Elnozahy and Rebecca Parsons, have been great friends and a constant source of encouragement. The
members of the ParaScope research group provided the infrastructure for the implementation of the ideas
developed within this thesis. Finally, special thanks goes to Ivy Jorgensen for proofreading this thesis.

Without the encouragement of my undergraduate professors at Michigan Tech, I would have never even
considered graduate school. Dave Poplawski, Steve Seidel, and Karl Ottenstein provided that encouragement
and I am indebted to them for it.

As with all endeavors, financial support is needed to allow one to eat. I have been supported by IBM
Corporation, the National Science Foundation and Darpa at various points in my graduate career.

Finally, I wish to thank my family. My parents have supported me with love and encouragement that
has been invaluable. Most of all, I thank my wife Becky who has been the best friend that I could ever have.
Her love and encouragement has done more to make my life meaningful than she could ever imagine.

Contents

Abstract

Acknowledgments

List of Hlustrations

1 Introduction
1.1 Background L
1.1.1 Performance Model
1.1.2 Dependence Graph
1.2 Transformations To Improve Memory Performance
1.2.1 Scalar Replacement
1.2.2 Unroll-and-Jam
1.2.3 Loop Interchange
1.2.4 Strip-Mine-And-Interchange L o
1.3 Related Work
1.3.1 Register Allocation L L
1.3.2 Memory Performance Studies
1.3.3 Memory Management Lo
14 Overview e
2 Scalar Replacement
2.1 Partial Redundancy Elimination
2.2 Algorithm
2.2.1 Control-Flow Analysis
2.2.2 Availability Analysis e
2.2.3 Reachability Analysis
2.2.4 Potential-Generator Selection
2.2.5 Anticipability Analysis
2.2.6 Dependence-Graph Marking
2.2.7 Name Partitioning e
2.2.8 Register-Pressure Moderation oL 0oL o0
2.2.9 Reference Replacement Lo
2.2.10 Statement-Insertion Analysiso
2.2.11 Register Copying o e e
2.2.12 Code Motion
2.2.13 Imitialization L
2.2.14 Register Subsumption 0oL
2.3 Experiment

2.4 Summary

1l

O =1 O O UL O O s s R N b

o
o

viil CONTENTS
3 Unroll-And-Jam 35
3.1 Safety 35
3.2 Dependence Copying o o i e 36
3.3 Improving Balance with Unroll-and-Jam 0oL 37
3.3.1 Computing Transformed-Loop Balance. 38

3.3.2 Estimating Register Pressure oL oo 43

3.4 Applying Unroll-and-Jam in a Compiler 0. 44
3.4.1 Picking Loops to Unroll 44

3.4.2 Picking Unroll Amounts Lo 44

3.4.3 Removing Interlocko 45

3.4.4 Multiple Edgeso 46

3.4.5 Multiple-Induction-Variable Subscriptso 47

3.4.6 Non-Perfectly Nested Loops 50

3.5 Experiment 51
3.6 Summary e 54

4 Loop Interchange 55
4.1 Performance Model 55
4.1.1 Data Locality e 55

4.1.2 Memory Cycles e 56

4.2 Algorithm o oL 87
4.2.1 Computing Loop Order 57

4.2.2 Non-Perfectly Nested Loops 58

4.3 Experiment L e 58
4.4 Summary . .o ... e 60

5 Blockability 61
5.0.1 Tteration-Space Blockingo o 61

5.1 Index-Set Splitting L 62
5.1.1 Triangular Iteration Spaces L Lo 62

5.1.2 Trapezoidal Iteration Spaces 63

5.1.3 Complex Dependence Patterns 65

5.2 Control Flow e 66
5.3 Solving Systems of Linear Equations L 67
5.3.1 LU Decomposition without Pivoting 69

5.3.2 LU Decomposition with Partial Pivoting 71

5.3.3 QR Decomposition with Householder Transformations 73

5.3.4 QR Decomposition with Givens Rotations 74

5.4 Language Extensions L L 75
B.h Summary e 77

6 Conclusion 79
6.1 Contributions 79
6.1.1 Registers L e 79

6.1.2 Cache 80

6.2 Future Work 80
6.3 Final Remarks 81

A Formulas for Non-Rectangular Iteration Spaces 83
A.1 Triangular Loops 0 L e 83
A1l Upper Left: a >0 0 e 83

A.1.2 Upper Right: o <0 0 0 o0 o 85

A.1.3 Lower Right: o >0 0 . e 86

CONTENTS X

A1l4 Lower Left: o <O L o 87
A2 Trapezoidal Loops L 88
A.2.1 Upper-Bound MIN Function 88
A.2.2 Lower-Bound MAX Function 89
A.3 Rhomboidal Loops 90

Bibliography 91

Illustrations

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Partially Redundant Computation 13
After Partial Redundancy Elimination L0 13
FindPotentialGenerators L 17
MarkDependenceGraph 19
GenerateNamePartitons L L 20
CalculateBenefit 22
ModerateRegisterPressureo 24
ReplaceReferences 25
InsertStatements L 27
InsertRegisterCopies L e 28
CodeMotion 29
Initialize L 29
Subsume 31
Example After Scalar Replacemento 31
Experimental design.o 31
Distance Vectors Before and After Unroll-and-Jam 37
V? Before and After Unroll-and-Jam 39
V,¢ Before and After Unroll-and-Jam 40
VI Before and After Unroll-and-Jam 41
PickLoops e 45
PartitionNodes 47
Compute Coefficients for Optimization Problem 48
Distribute Loops for Unroll-and-jam 52
Example Loop for Memory Costs 56
Algorithm for Ordering Loops o 87
Algorithm for Non-Perfectly Nested Loops 59
Upper Left Triangular Iteration Space 63
Trapezoidal Iteration Space with Rectangle 64
Trapezoidal Iteration Space with Rhomboad 0L 65
Data Space for A L L 66
Matrix Multiply After IF-Inspection 68
Regions Accessed in LU Decomposition L 000 70
Block LU Decomposition. L 70
LU Decomposition with Partial Pivoting 0o 72
Block LU Decomposition with Partial Pivoting 72
QR Decomposition with Givens Rotations 75
Optimized QR Decomposition with Givens Rotations 76
Block LU in Extended Fortran 76

x11

Al
A2
A3
A4
Ab
A6
AT

ILLUSTRATIONS

Upper Left Triangular Iteration Space 83
Upper Right Triangular Iteration Space 85
Lower Right Triangular Tteration Space 86
Lower Left Triangular Iteration Space o 87
Trapezoidal Iteration Space with MIN Function 88
Trapezoidal Iteration Space with MAX Function 89

Rhomboidal Tteration Space L 90

Chapter 1

Introduction

Over the past decade, microprocessor design strategies have focused on increasing the computational power
available on a single chip. These advances in power have been achieved not only through reduced cycle times,
but also via architectural changes such as multiple instruction issue and pipelined floating-point functional
units. The resulting microprocessors can process dramatically more data per machine cycle than previous
models. Unfortunately, the performance of memory has not kept pace. The result has been an increase in the
number of cycles for a memory access—a latency of 10 to 20 machine cycles is now quite common—causing
an imbalance between the rate at which computations can be performed and the rate at which operands can
be delivered onto the chip.

To ameliorate these problems, machine designers have turned increasingly to complex memory hierarchies.
For example, the Intel i860XR has an on-chip cache memory for 8K bytes of data and there are several
systems that use two levels of cache with a MIPS R3000. Still, these systems perform poorly on scientific
calculations that are memory intensive and are not structured to take advantage of the target machine’s
memory hierarchy.

This situation has led many programmers to restructure their codes by hand to improve performance in
the memory hierarchy. We believe that this is a step in the wrong direction. The user should not be writing
programs that target a particular machine; instead, the task of specializing a program to a target machine
should fall to the compiler. If this trend continues, an increasing fraction of the human resources available
for science and engineering will be spent on conversion of high-level language programs from one machine to
another—an unacceptable eventuality.

There is a long history of the use of sophisticated compiler optimizations to achieve machine indepen-
dence. The Fortran I compiler included enough optimizations to make it possible for scientists to abandon
machine language programming. More recently, advanced vectorization technology has made it possible to
write machine-independent vector programs in a sublanguage of Fortran 77. Is it possible to achieve the
same success for memory-hierarchy management on scalar processors? More precisely, can we enhance com-
piler technology to make 1t possible to express an algorithm in a natural, machine-independent form while
achieving memory-hierarchy performance good enough to obviate the need for hand optimization?

This thesis shows that compiler technology can make 1t possible for a program expressed in a natural
form to achieve high performance, even on a complex memory hierarchy. Compiler algorithms to manage
the memory hierarchy automatically are developed and shown through experimentation to be effective. By
adapting compiler technology developed for parallel and vector architectures, we are able to restructure
scientific codes to achieve good memory performance on scalar architectures. In many cases, our techniques
have been extremely effective — capable of achieving integer-factor speedups over code generated by a
good optimizing compiler of conventional design. This accomplishment represents a step forward in the
encouragement of machine-independent programming.

This chapter introduces the models, transformations and previous work on which our compiler strategy
is based. Section 1.1 presents the models we use to understand machine and program behavior. Section 1.2
presents the transformations that we will use to improve program performance. Section 1.3 presents the
previous work related to memory-hierarchy management and, finally, Section 1.4 gives a brief overview of
the thesis.

2 CHAPTER 1. INTRODUCTION

1.1 Background

In this section, we lay the foundation for the application of our reordering transformations that improve the
memory performance of programs. First, we describe a measure of machine and loop performance used in
the application of the transformations described in the next section. Second, we present a special form of
dependence graph that can be used by our transformation system to model memory usage.

1.1.1 Performance Model

We direct our research toward architectures that are pipelined and allow asynchronous execution of memory
accesses and floating-point operations (e.g., Intel i860 or IBM RS/6000). We assume that the target machine
has a typical optimizing compiler — one that performs scalar optimizations only. In particular, we assume
that it performs strength reduction, allocates registers globally (via some coloring scheme) and schedules
the arithmetic pipelines [CK77, CAC*81, GM&6]. This makes it possible for our transformation system to
restructure the loop nests while leaving the details of optimizing the loop code to the compiler.

Given these assumptions for the target machine and compiler, we will describe the notion of balance
defined by Callahan, et. al, to measure the performance of program loops in relation to memory [CCK88].
This model will serve as the force behind the application of our transformations described throughout this
thesis.

Machine Balance

A computer is balanced when it can operate in a steady state manner with both memory accesses and
floating-point operations being performed at peak speed. To quantify this relationship, we define Gy as
the rate at which data can be fetched from memory, My, compared to the rate at which floating-point
operations can be performed, Fis:

max words/cycle = My,

max flops/cycle = Fu,

Bm =

The values of My; and Fy represent peak performance where the size of a word 1s the same as the precision
of the floating point operations. Every machine has at least one intrinsic 3y (there may be one for single-
precision floating point and one for double precision). For example, on the IBM RS/6000 G5y = 1 and on the
DEC Alpha gy = 3.

Although this measure can be used to determine if a machine is balanced between computation and
data accesses, it is not our purpose to use balance in this manner. Instead, our goal is to evaluate the
performance of a loop on a particular machine based upon that machine’s particular balance ratio. To do
this, we introduce the notion of loop balance.

Loop Balance

Just as machines have balance ratios, so do loops. We can define balance for a specific loop as

8y = number of memory references—= M
- number of flops= F ’

We assume that references to array variables are actually references to memory, while references to scalar
variables involve only registers. Memory references are assigned a uniform cost under the assumption that
loop interchange, software prefetching or tiling will attain cache locality [WL91, KM92, CKP91].
Comparing Gpr to fGr can give us a measure of the performance of a loop running on a particular
architecture. If 31 = Bar, the loop is balanced for the machine and will run well on that particular machine.
The balance measure favors no particular machine or loop balance. It reports that out-of-balance loops will
run well on similarly out-of-balance architectures and balanced loops will run well on similarly balanced
architectures. In addition, it reports that performance bottlenecks occur when loop and machine balance do
no match. If S > Oyr, then the loop needs data at a higher rate than the memory system can provide and
idle computational cycles will exist. Such a loop is said to be memory bound and its performance can be
improved by lowering Gr. If 1 < [ar, then data cannot be processed as fast as it is supplied to the processor
and memory bandwidth will be wasted. Such a loop is said to be compute bound. Compute-bound loops run

1.1. BACKGROUND 3

at the peak floating-point rate of a machine and need not be further balanced. Floating-point operations
usually cannot be removed and arbitrarily increasing the number of memory operations is pointless.

1.1.2 Dependence Graph

To aid in the computation of the number of memory references for the application of our transformations,
we use a form of dependence graph that exposes reuse of values. We say that a dependence exists between
two references if there exists a control-flow path from the first reference to the second and both references
access the same memory location [Kuc78]. The dependence is

e a true dependence or flow dependence if the first reference writes to the location and the second reads
from 1it,

e an antidependence if the first reference reads from the location and the second writes to it,
e an output dependence if both references write to the location, and
e an tnput dependence if both references read from the location.

If two references, v and w, are contained in n common loops, we can refer to separate instances of the
execution of the references by an iteration vector. An iteration vector, denoted Z, is simply the values of
the loop control variables of the loops containing v and w. The set of iteration vectors corresponding to all
iterations of the of the loop nest is called the iteration space. Using iteration vectors, we can define a distance
vector, d = {dy,ds, ..., dy,), for each consistent dependence: if v accesses location 7 on iteration iy and w
accesses location Z on iteration i:v, the distance vector for this dependence is iw — iy. Under this definition,
the k" component of the distance vector is equal to the number of iterations of the k** loop (numbered from
outermost to innermost) between accesses to 7. For example, given the following loop:

DO 10 T = 1,N
DO 10 J = 1,N

10 A(I,J) = A(I-1,]) + A(I-2,J+3)
the true dependence from A(I,J) to A(I-1,7J) has a distance vector of (1,0) and the true dependence from
A(I,J) to A(I-2,3+3) has a distance vector of (2, —3).

The loop associated with the outermost non-zero distance vector entry is said to be the carrier. The
distance vector value associated with the carrier loop is called the threshold of the dependence. If all distance
vector entries are zero, the dependence is loop independent. In determining which dependences can be used
for memory analysis, we consider only those that have a consistent threshold — that is, those dependences
for which the threshold is constant throughout the execution of the loop [GJG87, CCK88]. For a dependence
to have a consistent threshold, it must be the case that the location accessed by the dependence source on
iteration 7 is accessed by the sink on iteration ¢ + ¢, where ¢ does not vary with ¢. Formally, if we let

A(f(E) =4
Alg(i)) =A
be array references where each a; and b; is a constant and each I; is a loop induction variable (I, is associated
with the innermost loop), then we have the following definition.
Theorem 1.1 A dependence has a consistent threshold iff a; = b; for each 1 < ¢ < n and there
exists an integer 7 such that b,7 = ag — bg.

(a0 +arli + -+ aply)
(bo+ b1l + -+ by1y)

Proof See Callahan, et. al [CCK88]. O

Some carried dependences will have multiple distance vector values associated with one entry. Consider
the following loop.
pDo10I =1, N
10 AK) = ACK) + ...
The true dependence between the references to A(K) has the distances 1,2, 3, ..., §—1 for the entry associated
with the I-loop. For the purposes of memory management, we will use the minimum value, 1 in this case,
as the distance vector entry.

4 CHAPTER 1. INTRODUCTION

1.2 Transformations To Improve Memory Performance

Based upon the dependence graph described in the previous section, we can apply a number of transforma-
tions to improve the performance of memory-bound programs. In this section, we give a brief introduction
to these transformations.

1.2.1 Scalar Replacement

In the model of balance presented in the previous section, all array references are assumed to be memory
references. The principal reason for this is that the data-flow analysis used by typical scalar compilers is
not powerful enough to recognize most opportunities for reuse in subscripted variables. Arrays are treated
in a particularly naive fashion, if at all, making it impossible to determine when a specific element might be
reused. This, however, need not be the case. In the code shown below,
DO 10 I =2, N
10 A(D) = A(I-1) + B(D)

the value accessed by A(I-1) is defined on the previous iteration of the loop by A(I) on all but the first
iteration. Using this knowledge, obtained via dependence analysis, the flow of values between the references
can be expressed with temporaries as follows.

T = A(1)
DO 10 I =2, N
T =T + B(I)
10 AT) =T

Since global register allocation will most likely put scalar quantities in registers, we have removed the load
of A(I-1), resulting in a reduction in the balance of the loop from 3 to 2 [CACT81, CH84, BCKT89]. This
transformation is called scalar replacement and in Chapter 2, we show how to apply it to loops automatically.

1.2.2 Unroll-and-Jam

Unroll-and-jam is another transformation that can be used to improve the performance of memory-bound
loops [AC72, AN87, CCK88]. The transformation unrolls an outer loop and then jams the resulting inner
loops back together. Using unroll-and-jam we can introduce more computation into an innermost loop body
without a proportional increase in memory references. For example, the loop:

DO 10 I = 1, 2#M
DO 10 J =1, N
10 A(I) = ACI) + B(J)

after unrolling becomes:

DO 10 I =1, 2%M, 2

DO 20 J =1, N
20 A(I) = ACI) + B(J)

DO 10 J =1, N
10 A(I+1) = A(I+1) + B(D)

and after jamming becomes:

DO 10 I = 1, 2#M, 2
DO 10 J =1, N
A(I) = ACI) + B(D)
10 A(I+1) = A(I+1) + B(D)

In the original loop, we have one floating-point operation and one memory reference after scalar replacement,
giving a balance of 1. After applying unroll-and-jam, we have two floating-point operations and still only
one memory reference; giving a balance of 0.5. On a machine that can perform twice as many floating-point
operations as memory accesses per clock cycle, the second loop would perform better. In Chapter 3, we will
show how to apply unroll-and-jam automatically to improve loop balance.

1.3. RELATED WORK 5

1.2.3 Loop Interchange

Not only are we concerned with the number of references to memory, but also whether the data accessed by
a reference is stored in cache or main memory. Consider the following Fortran loop where arrays are stored
in column-major order.
DO10I =1, N
DO 10 J =1, N
10 A=A+ B(I,D
References to successive elements of B by B(I,J) are a long distance apart in number of memory accesses,
requiring an extremely large cache to capture the potential cache-line reuse. With the likelihood of cache
misses on accesses to B, we can interchange the I- and J-loops to make the distance between successive
accesses small, as shown below [AK87, Wol86a].
DO 10 J =1, N
pDo10I =1, N
10 A=A+ B(I,D
Now, we will only have a cache miss on accesses to B once every cache line, resulting in better memory
performance. In Chapter 4, we derive a compiler algorithm to apply loop interchange, when safe, to a loop
nest to improve cache performance.

1.2.4 Strip-Mine-And-Interchange

Sometimes loops access more data than can be handled by a cache even after loop interchange. In these
cases, the iteration space of a loop can be blocked into sections whose reuse can be captured by the cache.
Strip-mine-and-interchange is a transformation that achieves this result [Wol87, Por89]. The effect is to
shorten the distance between the source and sink of a dependence so that it is more likely for the datum to
reside in cache when the reuse occurs. Consider the following example
DO 10 J = 1,N
DO 10 I = 1,M
10 A(D) = A(D) + B(I,D)
Assuming that the value of M is much greater than the size of the cache, we would miss the opportunity to
reuse the values of A on each iteration of J. To capture this reuse, we can use strip-mine-and-interchange.
First, we strip mine the I-loop as shown below.
DO 10 J = 1,N
DO 10 T = 1,M,IS
DO 10 IT = I,MIN(I+IS-1,1)
10 A(II) = A(II) + B(II,J)
Note that this loop executes the iterations of the loop in precisely the same order as the original and its
reuse properties are unchanged. However, when we interchange the stripped loop with the outer loop to give
DO 10 I = 1,M,IS
DO 10 J = 1,N
DO 10 IT = I,MIN(I+IS-1,1)

10 A(II) = A(II) + B(II,J)
the iterations are now executed in blocks of size IS by N. With this blocking, we can reuse IS values of A out
of cache for every iteration of the J-loop if IS is less than half the size of the cache.

Together, unroll-and-jam and strip-mine-and-interchange make up a transformation technique known as
wteration-space blocking. As discussed, the first 1s used to block for registers and the second for cache. In
Chapter 5, we explore additional knowledge necessary to apply iteration-space blocking to many real-world
algorithms.

1.3 Related Work

Much research has been done in memory-hierarchy management using the aforementioned transformations.
In this section, we will review the previous work, noting the deficiencies that we intend to address.

6 CHAPTER 1. INTRODUCTION

1.3.1 Register Allocation

The most significant work in the area of register allocation has been done by Chaitin, et al., and Chow and
Hennessy [CACT81, CH84]. Both groups cast the problem of register allocation into that of graph coloring
on an interference graph, where the nodes represent scalar memory locations and an edge between two nodes
prevents them from occupying the same register. The objective is to find a k-coloring of the interference
graph, where k 1s the number of machine registers. Since graph coloring is NP-complete, heuristic methods
must be applied. It is usually the case that a k-coloring is not possible, requiring values to be spilled from
registers to satisfy physical constraints. This method has been shown to be very effective at allocating scalar
variables to registers, but because information concerning the flow of array values is lacking, subscripted
variables are not handled well.

Allen and Kennedy show how data dependence information can be used to recognize reuse of vector data
and how that information can be applied to perform vector register allocation [AK88]. They also present
two transformations, loop interchange and loop fusion, as methods to improve vector register allocation
opportunities. Both of these transformations were originally designed to enhance loop parallelism. Because
dependences represent the flow of values in an array, Allen and Kennedy suggest that this information could
be used to recognize reuse in arrays used in scalar computations.

Callahan, Cocke and Kennedy have expanded these ideas to develop scalar replacement as shown in
Section 1.2.1 [CCK88]. Their method is only applicable to loops that have no inner-loop conditional control
flow; therefore, it has limited applicability. Also, their algorithm does not consider register pressure and may
expose more reuse than can be handled by a particular machine’s register file. If spill code must be inserted,
the resulting performance degradation may negate most of the value of scalar replacement.

Callahan, Cocke and Kennedy also use unroll-and-jam to improve the effectiveness of scalar replacement
and to increase the amount of low-level parallelism in the inner-loop body. Although the mechanics of
unroll-and-jam are described in detail, there is no discussion of how or when to apply the transformation to
a loop nest.

Aiken and Nicolau present a transformation identical to unroll-and-jam, called loop quantization [ANST].
However, they do not use this transformation to increase data locality, but rather to improve inner-loop
parallelism. They perform a strict quantization, where the unrolled iterations of the original loop in the
body of the unrolled loop are data-independent. This means that they do not improve the data locality in
the innermost loop for true dependences; therefore, little reduction in memory references can be obtained.

1.3.2 Memory Performance Studies

Previous studies have shown how poor cache behavior can have disastrous effects on program performance.
Abu-Sufah and Malony showed that the performance of the LANL BMK8A1 benchmark fell by a factor of as
much as 2.26 on an Alliant FX/8 when vector sizes were too large to be maintained in cache [ASM86, GS84].
Similarly, Liu and Strother found that vector performance on the IBM 3090 fell by a factor of 1.40 when
vector lengths exceeded the cache capacity [LS88]. In this second study, it was also shown that if the vector
code were blocked into smaller sections that fit into cache, the optimal performance was regained. Porterfield
reported that on computers with large memory latencies, many large scientific programs spent half of their
execution time waiting for data to be delivered to cache [Por89).

A number of other studies have shown the effectiveness of blocking loops for cache performance. Gallivan,
et al., show that on the Alliant FX/8, the blocked version of LU decomposition is nearly 8 times faster than
the unblocked version, using BLAS3 and BLAS2 respectively [GIMS88, DDHH88, DDDH90]. The BLAS2
version performs a rank 1 update of the matrix while the best BLAS3 version performs a blocked rank 96
update. Also on the Alliant FX/8, Berry and Sameh have achieved speedups of as large as 9 over the standard
LINPACK versions for solving tridiagonal linear systems [BS88, DBMS79] and on the Cray-2, Calahan showed
that blocking LU decomposition improved the performance by a factor of nearly 6 [Cal86].

All of these studies involved tedious hand optimization to attain maximal performance. The BLAS
primitives are noteworthy examples of this methodology, in which each primitive must be recoded in assembly
language to get performance on each separate architecture [LHKK79]. Hand optimization is less than ideal
because it takes months to code the BLAS primitives by hand, although recoding the whole program is a worse
alternative. Therefore, significant motivation exists for the development of a restructuring compiler that can

1.3. RELATED WORK 7

optimize for any memory hierarchy and relieve the programmer from the tedious task of memory-hierarchy
management.

1.3.3 Memory Management

The first major work in the area of memory management by a compiler is that of Abu-Sufah on improving
virtual memory performance [AS78]. In his thesis, he describes the use of a restructuring compiler to improve
the virtual memory behavior of a program. Through the use of dependence analysis, Abu-Sufah is able to
perform transformations on the loop structure of a program to reduce the number of physical pages required
and to group accesses to each page.

The transformations that Abu-Sufah uses to improve virtual memory performance of loops are cluster-
ing (or loop distribution), loop fusion and page indexing (a combination of strip mining, interchange and
distribution). Clustering is used to split the loop into components whose name spaces (or working sets) are
disjoint. Loop fusion is then used to fuse components which originated in different loops but whose name
spaces intersect. The page indexing transformation is used to block a loop nest so that all the references
to a page are contained in one iteration over a block, thus maximizing locality. The goal is a set of loops
whose working sets are disjoint; hence, the required number of physical pages is reduced without increasing
the page fault rate.

Although Abu-Sufah’s transformation system shows the potential for improving a program’s memory
behavior, his use of loop distribution can increase the amount of pipeline interlock and cause performance
degradation [CCK88]. Additionally, the fact that virtual memory is fully associative rather than set asso-
ciative prevents the application of his model to cache management.

Fabri’s work in automatic storage optimization concentrates on extended graph-coloring techniques to
manage storage overlays in memory [Fab79]. She presents the notion of array renaming (analogous to live-
range splitting) to minimize the memory requirements of a program. However, the problem of storage
overlays does not map to cache management since the compiler does not have explicit control over the cache.

Thabit has examined software methods to improve cache performance through the use of packing,
prefetching and loop transformations [Tha81]. He shows that optimal packing of scalars for cache-line
reuse is an NP-complete problem and proposes some heuristics. However, scalars are not considered to be
a significant problem because of register-allocation technology. In addition, Thabit maps graph-coloring to
the allocation of arrays to eliminate cache interference caused by set associativity. However, no evaluation
of the effectiveness of this approach is given. In particular, he does not address the problem of an array
interfering with itself. Finally, Thabit establishes the safety conditions of loop distribution and strip-mine-
and-interchange.

Wolfe’s memory performance work has concentrated on developing transformations to reshape loops to
improve their cache performance [Wol87]. He shows how tiling (or iteration-space blocking) can be used to
improve the memory performance of program loops. Wolfe also shows that his techniques for advanced loop
interchange can be used to tile loops with non-rectangular iteration spaces and loops that are not perfectly
nested [Wol86a]. In particular, he discusses blocking for triangular- and trapezoidal-shaped iteration spaces,
but he does not present an algorithm. Instead, he illustrates the transformation by a few examples.

Irigoin and Triolet describe a new dependence abstraction, called a dependence cone, that can be used
to block code for two levels of parallelism and two levels of memory [IT88]. The dependence cone gives
more information than a distance vector by maintaining a system of linear inequalities that can be used to
derive all dependences. The cone allows a larger set of perfectly nested loops to be transformed than other
dependence abstractions by providing a general framework to partition an iteration space into supernodes
(or blocks). The idea is to aggregate many loop iterations, so as to provide vector statements, parallel tasks
and data reference locality. To improve memory performance, the supernodes can be chosen to maximize
the amount of data locality in each supernode. Unfortunately, this technique does not work on imperfectly
nested loops nor does it handle partially blockable loops, both of which occur in linear algebra codes.

Wolfe presents work that is very similar to Irigoin and Triolet’s [Wol89]. He does not use the dependence
cone as the dependence abstraction, but instead he uses the standard distance vector. Using loop skewing,
loop interchange and strip mining, he can tile an iteration space into blocks which have both data locality
and parallelism. Wolfe is limited by the transformations that he applies and by the restrictive nature of the

8 CHAPTER 1. INTRODUCTION

subscripts handled with distance vectors, but he 1s capable of handling non-perfectly nested loops. The main
advantage of Wolfe’s techniques over Triolet’s is that Wolfe’s method is more straightforward to implement
in a restructuring compiler, although the complexity of the algorithm is O(d!), where d is the loop nesting
depth.

Gannon, et al., present a technique to describe the amount of data that must be in the cache for reuse
to be possible [GJG87]. They call this the reference window. The window for a dependence describes all of
the data that is brought into the cache for the two references from the time that one datum is accessed at
the source until it is used again at the sink. A family of reference windows for an array represents all of its
elements that must fit into cache to capture all of the reuse. To determine if the cache is large enough to
hold every window, the window sizes are summed and compared against the size of the cache. If the cache
is too small, blocking transformations such as strip-mine-and-interchange can be used to decrease the size
of the reference windows.

Porterfield proposes a method to determine when the data referenced in a loop does not fit entirely in
cache[Por89]. He develops the idea of an overflow iteration, which is that iteration of a loop that brings in
the data item which will cause the cache to overflow. Using this measurement, Porterfield can predict when
a loop needs to be tiled to improve memory performance and to determine the size of a one dimensional tile
for the loop that causes the cache to overflow.

Porterfield also presents two new transformations to block loops. The first is peel-and-jam, which can be
used to fuse loops that have certain types of fusion preventing dependences by peeling off the offending itera-
tions of the first loop and fusing the resulting loop bodies. The second is either a combination loop skewing,
interchanging and strip-mining or loop unrolling, peeling and jamming to perform wavefront blocking. The
key technique here is the use of non-reordering transformations (skewing, peeling and unrolling) to make
it possible to block loops. Some of these non-reordering transformations will become especially important
when dealing with partially blockable loops.

Porterfield also discusses the applicability of blocking transformations to twelve Fortran programs. He
organizes them into three categories: transformable, semi-transformable and non-transformable. One-third of
the programs in his study were transformable since the blocking transformations were directly applicable. The
semi-transformable programs contained coding styles that made it difficult to transform them automatically,
and in the case of the non-transformable program, partial pivoting was the culprit. Porterfield claims that a
compiler cannot perform iteration-space blocking in the presence of partial pivoting, but his analysis is not
extensive enough to make this claim. He does not consider increasing the “intelligence” of the compiler to
improve its effectiveness.

Lam and Wolf present a framework for determining memory usage within loop nests and use that frame-
work to apply loop interchange, loop skewing, loop reversal, tiling and unroll-and-jam [WL91, Wol86b].
Their method does not work on non-perfectly nested loops and does not encompass a technique to determine
unroll-and-jam amounts automatically. Additionally, they do not necessarily derive the best block algorithm
with their technique, leaving the possibility that suboptimal performance is still possible.

Lam, Rothberg and Wolf present a method to determine block sizes for block algorithms automatically
[LRW91]. Their results show that typical effective block sizes use less than 10% of the cache. They suggest
the use of copy optimizations to remove the effects of set associativity and allow the use of larger portions
of the cache.

Kennedy and McKinley present a simplified model of cache performance that only considers inner-loop
reuse [KM92]. Any reuse that occurs across an outer-loop iteration is considered to be prevented by cache
interference. Using this model, they describe a method to determine the number of cache lines required
by a loop if it were innermost and then they reorder the loops to use the minimum number of cache lines.
This simple model is less precise than the Lam and Wolf model, but is very effective in practice. While
the number of cache lines used by a loop is related to memory performance, 1t is not a direct measure of
performance. Their work is directed toward shared-memory parallel architectures where bus contention 1s a
real performance problem and minimizing main memory accesses is vital. On scalar processors with a higher
cache-access cost, the number of cache lines accessed may not be an accurate measure of performance.

1.4. OVERVIEW 9

1.4 Overview

In the rest of this thesis, we will explore the ability of the compiler to optimize a program automatically
for a machine’s memory hierarchy. We present algorithms to apply transformations to improve loop balance
and we present experiments to validate the effectiveness of the algorithms. In Chapter 2, we address scalar
replacement in the presence of conditional-control flow. In Chapter 3, we discuss automatic unroll-and-
jam to improve loop balance. Chapter 4 addresses loop interchange to improve cache performance and in
Chapter b, we analyze the applicability to real-world numerical subprograms of compiler blocking techniques
that further optimize cache performance. Finally, we present our conclusions and future work in Chapter 6.

11

Chapter 2

Scalar Replacement

Although conventional compilation systems do a good job of allocating scalar variables to registers, their
handling of subscripted variables leaves much to be desired. Most compilers fail to recognize even the simplest
opportunities for reuse of subscripted variables. For example, in the code shown below,
pDo10I =1, N
DO 10 J =1, M
10 A(I) = A(I) + B(D)
most compilers will not keep A(I) in a register in the inner loop. This happens in spite of the fact that stan-
dard optimization techniques are able to determine that the address of the subscripted variable is invariant
in the inner loop. On the other hand, if the loop is rewritten as
D020 I=1, N

T = ACI)

DO 10 J =1, M
10 T =T+ BUJ)
20 AT) =T

even the most naive compilers allocate T to a register in the inner loop.

The principal reason for the problem is that the data-flow analysis used by standard compilers 1s not
powerful enough to recognize most opportunities for reuse of subscripted variables. Subscripted variables are
treated 1n a particularly naive fashion, if at all, making it impossible to determine when a specific element
might be reused. This is particularly problematic for floating-point register allocation because most of the
computational quantities held in such registers originate in subscripted arrays.

Scalar replacement is a transformation that uses dependence information to find reuse of array values
and expose it by replacing the references with scalar temporaries as was done in the above example [CCK88,
CCK90]. By encoding the reuse of array elements in scalar temporaries, we can give a coloring register
allocator the opportunity to allocate values held in arrays to registers [CACT81].

Although previous algorithms for scalar replacement have been shown to be effective, they have only
handled loops without conditional-control flow [CCK90]. The principle reason for past deficiencies is the
reliance solely upon dependence information. A dependence contains little information concerning control
flow between its source and sink. It only reveals that both statements may be executed. In the loop,

DO 10 I = 1,N
5 IF (M(I) .LT. 0) A(I) = B(I) + C(D)
10 D(I) = A(I) + E(D)
the true dependence from statement 5 to statement 10 does not reveal that the definition of A(I) is con-
ditional. Using only dependence information, previous scalar replacement algorithms would produce the
following incorrect code.
DO 10 I = 1,N
IF (M(I) .LT. 0) THEN

5 A0 = B(I) + C(I)
A(I) = A0
ENDIF

10 D(I) = A0 + E(I)

12 CHAPTER 2. SCALAR REPLACEMENT

If the result of the predicate is false, no definition of A0 will occur, resulting in an incorrect value for A0 at
statement 10. To ensure A0 has the proper value, we can insert a load of A0 from A(I) on the false branch,
as shown below.
DO 10 T = 1,N
IF (M(I) .LT. 0) THEN

5 A0 = B(I) + C(I)
A(I) = A0
ELSE
A0 = A(I)
ENDIF
10 D(I) = A0 + E(I)

The hazard with inserting instructions is the potential to increase run-time costs. In the previous example,
we have avoided the hazard. If the true branch is taken, one load of A(I) is removed. If the false branch is
taken, one load of A(I) isinserted and one load is removed. It will be a requirement of our scalar replacement
algorithm to prevent an increase in run-time accesses to memory.

This chapter addresses scalar replacement in the presence of forward conditional control flow. We show
how to map partial redundancy elimination to scalar replacement in the presence of conditional control flow
to ensure that memory costs will not increase along any execution path [MR79, DS88]. This chapter begins
with an overview of partial redundancy elimination. Then, a detailed derivation of our algorithm for scalar
replacement is given. Finally, an experiment with an implementation of this algorithm is reported.

2.1 Partial Redundancy Elimination

In the elimination of partial redundancies, the goal is to remove the latter of two identical computations
that are performed on a given execution path. A computation is partially redundant when there may be paths
on which both computations are performed and paths on which only the latter computation is performed. In
Figure 2.1, the expression A+B is redundant along one branch of the IF and not redundant along the other.
Partial redundancy elimination will remove the computation C=A+B, replacing it with an assignment, and
insert a computation of A+B on the path where the expression does not appear (see Figure 2.2). Because
there may be no basic block in which new computations can be inserted on a particular path, insertion is
done on flow-graph edges and new basic blocks are created when necessary [DS88].

The essential property of this transformation is that it is guaranteed not to increase the number of
computations performed along any path [MR79]. In mapping partial redundancy elimination to scalar
replacement, references to array expression can be seen as the computations. A load or a store followed
by another load from the same location represents a redundant load that can be removed. Thus, using
this mapping will guarantee that the number of memory accesses in a loop will not increase. However, the
mapping that we use will not guarantee that a minimal number of loads is inserted.

2.2 Algorithm

In this section, we present an algorithm for scalar replacement in the presence of forward conditional-control
flow. We begin by determining which array accesses provide values for a particular array reference. Next,
we link together references that share values by having them share temporary names. Finally, we generate
scalar replaced code. For partially redundant array accesses, partial redundancy elimination is mapped to
the elimination of partially redundant array accesses.

2.2.1 Control-Flow Analysis

Our optimization strategy focuses on loops; therefore, we can restrict control-flow analysis to loop nests only.
Furthermore, it usually makes no sense to hold values across iterations of outer loops for two reasons.

1. There may be no way to determine the number of registers needed to hold all the values accessed in
the innermost loop because of symbolic loop bounds.

2. Even if we know the register requirement, it is doubtful that the target machine will have enough
registers.

2.2. ALGORITHM

13

Figure 2.1 Partially Redundant Computation

Figure 2.2 After Partial Redundancy Elimination

14 CHAPTER 2. SCALAR REPLACEMENT

Hence, we need only perform control-flow analysis on each innermost loop body.

To simplify our analysis, we impose a few restrictions on the control-flow graph. First, the flow graph
of the innermost loop must be reducible. Second, backward jumps are not allowed within the innermost
DO-loop because they potentially create loops. Finally, multiple loop exits are prohibited. This restriction is
for simplicity and can be removed with slight modification to the algorithm.

2.2.2 Availability Analysis

The first step in performing scalar replacement is to calculate available array expressions. Here, we will
determine if the value provided by the source of a dependence is generated on every path to the sink of
the dependence. We assume that enough iterations of the loop have been peeled so values can be available
upon entry to the loop. Since each lexically identical array reference accesses the same memory location on
a given loop iteration, we do not treat each lexically identical array reference as a separate array expression.
Rather, we consider them in concert.

Array expressions most often contain references to induction variables. Therefore, their naive treatment
in availability analysis is inadequate. To illustrate this, in the loop,

DO 30 I =1,N
IF (B(I) .LT. 0.0) THEN

10 C(I) = A(I) + D(D)
ELSE

20 C(I) = A(I-1) + D(I)
ENDIF

30 E(I) = ¢(I) + A(I)

the value accessed by the array expression A(I) is fully available at the reference to A(I-1) in statement 20,
but it 1s not available at statement 10 and is only partially available at statement 30. Using a completely
syntactic notion of array expressions, essentially treating each lexically identical expression as a scalar, A(I)
will be incorrectly reported as available at statements 10 and 30. Thus, more information is required. We
must account for the fact that the value of an induction variable contained in an array expression changes
on each iteration of the loop.

A convenient solution is to split the problem into loop-independent availability, denoted L1Av, where the
back edge of the loop is ignored, and loop-carried availability, LcAv, where the back edge is included. Thus,
an array expression 1s only available if it is in LIAV and there is a consistent incoming loop-independent
dependence, or if it is in LCAV and there is a matching consistent incoming loop-carried dependence. The
data-flow equations for availability analysis are shown below.

LIAVIN(B) = ﬂpepreds (B) LIAVOUT(p)
LIAVOUT(B) = (LIAVIN(B) — LIKILL(B)) | JLIGEN(B)

LCAVIN(B) = ﬂpepreds 5 LCAVOUT(p)
LCAVOUT(B) = LCAVIN(B)ULCGEN(B)

For L1av, an array expression is added to GEN when it is encountered whether it 1s a load or a store. At
each store, the sources of all incoming inconsistent dependences are added to KILL and removed from GEN.
At loads, nothing is done for KILL because a previously generated value cannot be killed. We call these sets
LIGEN and LIKILL.

For L.cav, we must consider the fact that the flow of control from the source to the sink of a dependence
will include at least the next iteration of the loop. Subsequent loop iterations can effect whether a value has
truly been generated and not killed by the time the sink of the dependence is reached. In the loop,

DO 10 T = 1,N
IF (A(I) .GT. 0.0) THEN
C(I) = B(I-2) + D(I)
ELSE
B(X)
ENDIF
10 B(I) = E(I) + ¢(D)
the value generated by B(I) on iteration I=1 will be available at the reference to B(I-2) on iteration I=3
only if the false branch of the IF statement is not taken on iteration I=2. Since determining the direction

C(I) + D(D)

2.2. ALGORITHM 15

of a branch at compile time is undecidable in general, we must assume that the value generated by B(I)
will be killed by the definition of B(K). In general, any definition that is the source of an inconsistent output
dependence can never be in LCGEN(B), V B. It will always be killed on the current or next iteration of the
loop. Therefore, we need only compute the LCGEN and not LCKILL.

There is one special case where this definition of LCGEN will unnecessarily limit the effectiveness of scalar
replacement. When a dependence threshold is 1, it may happen that the sink of the generating dependence
edge occurs before the killing definition. Consider the following loop.

DO 10 T = 1,N

B(K) = B(I-1) + D(I)
10 B(I) = E(I) + C(I)

the value used by B(I-1) that is generated by B(I) will never be killed by B(K). The solution to this
limitation is to create a new set called LcaviF1 that contains availability information only for loop-carried
dependences with a threshold of 1. Control flow through the current and next iterations of the loop is
included when computing this set. The data-flow equations for LCAVIF1 are identical to those of L1av. This
1s because we consider control flow on the next iteration of the loop, unlike LcAv. Below are the data-flow
equations for LCAVIF1.

LCAVIF1IN(B) = ﬂpepreds (B) LCAVIF10UT(p)

LCAVIF10UT(B) = (LCAVIF1IN(B) — LIKILL(B)) | LIGEN(B)

Because we consider both fully and partially redundant array accesses, we need to compute partial avail-
ability in order to scalar replace references whose load is only partially redundant. As in full-availability anal-
ysis, we partition the problem into loop-independent, loop-carried and loop-carried-if-1 sets. Computation
of KILL and GEN corresponds to that of availability analysis. Below are the data-flow equations for partially
available array expression analysis.

LIPAVIN(B) = Upepreds (B)LIPAVOUT(p)
LIPAVOUT(B) = (LIPAVIN(B) — LIKILL(B)) | JLIGEN(B)
(

L&epnﬂs(B)LCPAVOUT

(B)

LCPAVIN(B) =

LCPAVOUT(B) = LCPAVIN(B) | JLCGEN(B)
(B)
(B)

)

LCPAVIF1IN(B) = Upepreds()LCPAVIFlOUT(p)

LCPAVIF1OUT(B) = (LCPAVIF1IN(B) — LIKILL(B)) | JLIGEN(B)

2.2.3 Reachability Analysis

Because there may be multiple lexically identical array references within a loop, we want to determine which
references actually supply values that reach a sink of a dependence and which supply values that are killed
before reaching such a sink. In other words, which values reach their potential reuses. In computing reacha-
bility, we do not treat each lexically identical array expression in concert. Rather, each reference is considered
independently. Reachability information along with availability is used to select which array references pro-
vide values for scalar replacement. While reachability information is not required for correctness, it can
prevent the marking of references as providing a value for scalar replacement when that value is redefined
by a later identical reference. This improves the readability of the transformed code.

We partition the reachability information into three sets: one for loop-independent dependences (LIRG),
one for loop-carried dependences with a threshold of 1 (LcrRGIF1) and one for other loop-carried dependences
(LoraG). Calculation of LIGEN and LIKILL is the same as that for availability analysis except in one respect.
The source of any incoming loop-independent dependence whose sink is a definition is killed whether the
threshold is consistent or inconsistent. Additionally, LIKILL is subtracted from LCRGOUT to account for
consistent references that redefine a value on the current iteration of a loop. For example, in the following
loop, the definition of B(I) kills the load from B(I), therefore, only the definition reaches the reference to
B(I-1).

DO 10 T = 1,N
A(I) = B(I-1) + B(D)
10 B(I) = E(I) + C(D)

16 CHAPTER 2. SCALAR REPLACEMENT

Using reachability information, the most recent access to a value can be determined. Even using LIKILL when
computing LCRG will not eliminate all unreachable references. References with only outgoing consistent loop-
carried output or antidependences will not be killed. This does not effect correctness, rather only readability,
and can only happen when partially available references provide the value to be scalar replaced. Below are
the data-flow equations used in computing array-reference reachability.

LIRGIN(B) = Upepreds (B) LIRGOUT(p)

LIRGOUT(B) = (LIRGIN(B) — LIKILL(B)) | JLIGEN(B)
LCRGOUT(B) = Upepreds (B) LCRGOUT(P)
LCRGOUT(B) = (LCRGIN(B) — LIKILL(B)) | JLCGEN(B)
LCRGIF1IN(B) = UpePREDS (B) LCRGIF10UT(P)
LCRGIF1OUT(B) = (LCRGIF1IN(B) — LIKILL(B)) | J LIGEN(B)

2.2.4 Potential-Generator Selection

At this point, we have enough information to determine which array references potentially provide values
to the sinks of their outgoing dependence edges. We call these references potential generators because they
can be seen as generating the value used at the sink of some outgoing dependence. The dependences leaving
a generator are called generating dependences. Generators are only potential at this point because we need
more information to determine if scalar replacement will even be profitable. In Figure 2.3, we present the
algorithm FindPotentialGenerators for determining potential generators.

We have two goals in choosing potential generators. The first is to insert the fewest number of loads,
correlating to the maximum number of memory accesses removed. The second is to minimize register
pressure, or the number of registers required to eliminate the loads. To meet the first objective, fully available
expressions are given the highest priority in generator selection. To meet the second, loop-independent fully
available generators are preferred because they require the fewest number of registers. If no loop-independent
generator exists, loop-carried fully available generators are considered next. If there are multiple such
generators, the one that requires the fewest registers (the one with the smallest threshold) is chosen.

If there are no fully available generators, partially available array expressions are next considered as
generators. Partially available generators do not guarantee a reduction in the number of memory accesses
because memory loads need to be inserted on paths along which a value is needed but not generated. However,
we can guarantee that there will not be an increase in the number of memory loads by only inserting load
instructions if they are guaranteed to have a corresponding load removal on any execution path [MR79].
Without this guarantee, we may increase the number of memory accesses at execution time, resulting in a
performance degradation.

The best choice for a partially available generator would be one that is loop-independent. Although
there may be a “more available” loop-carried generator, register pressure is kept to a minimum and scalar
replacement will be applied if we chose a loop-independent generator. If there are no loop-independent
partially available array expressions, then the next choice would be a loop-carried partially available array
expression with a generating dependence having the largest threshold of any incoming potential generating
dependence. Although this contradicts the goal of keeping the register pressure to a minimum, we increase
the probability that there will be a use of the value on every path by increasing the window size for potential
uses of the generated value. We have chosen to sacrifice register pressure for potential savings in memory
accesses.

Finally, when propagating data-flow sets through a basic block to determine availability or reachability
at a particular point, information is not always incrementally updated. For loop-independent information,
we update a data-flow set with GEN and KILL information as we encounter statements. However, the same
is not true for loop-carried and loop-carried-if-1 information. GEN information is not used to update any
loop-carried data-flow set. Loop-carried information must propagate around the loop to be valid and a
loop-carried data-flow set at the entry to a basic block already contains this information. KILL information
is only incrementally updated for loop-carried-if-1 sets since flow through the second iteration of a loop after
a value is generated is considered.

2.2. ALGORITHM 17

procedure FindPotentialGenerators(G)

Input: G = (V, E), the dependence graph
Defs: B, = basic block containing v

for each v € V do
if de € Ele = (w,v),w € LIAV(B,), w € LIRG(B,), dn(e) = 0 then
mark all such w’s as v’s potential LIAV generator
else
if 3e € Ele = (w,v), w € LCAVIF1(B,), w € LCRGIF1(B,),
w € LCAVIF1OUT(EXIT), w € LCRGIF10UT(EXIT), dy(e) = 1 then
mark all such w’s as v’s potential LCAV generator
else
if de € Ele = (w,v), w € LCAVOUT(EXIT), w € LCRGOUT(EXIT),
dn(e) > 0,minseg, (dn(f)) = dn(e) then
mark all such w’s as v’s potential LCAV generator
else
if 3¢ € Ele = (w,v),w € LIPAV(B,), w € LIRG(B,), dn(e) = 0 then
mark all such w’s as v’s potential LIPAV generator
else
if de € Ele = (w,v), w € LCPAVOUT(EXIT), w € LCRGOUT(EXIT),
dn(€) > 0),maxseg, (dn(f)) = dn(e) then
mark all such w’s as v’s potential LCPAV generator
else
if 3e € Ele = (w,v), w € LCPAVIF1(B,), w € LCRGIF1(B,),
w € LCPAVIF1OUT(EXIT), w € LCRGIF10UT(EXIT), dy(e) = 1 then
mark all such w’s as v’s potential LCPAV generator
else
v has no generator

Figure 2.3 FindPotentialGenerators

18 CHAPTER 2. SCALAR REPLACEMENT

In the next portion of the scalar replacement algorithm, we will ensure that the value needed at a reference
to remove its load is fully available. This will involve insertion of memory loads for references whose generator
is partially available. We guarantee through our partial redundancy elimination mapping that we will not
increase the number of memory accesses at run time. However, we do not guarantee a minimal insertion of
Memory accesses.

2.2.5 Anticipability Analysis

After determining potential generators, we need to locate the paths along which loads need to be inserted to
make partially available generators fully available. Loads need to be inserted on paths along which a value is
needed but not generated. We have already encapsulated value generation in availability information. Now,
we encapsulate value need with anticipability. The value generated by an array expression, v, is anticipated
by an array expression w if there is a true or input edge v — w and v is w’s potential generator.

DO 61I=1,0
IF (ACI) .GT. 0.0)
5 B(I) = C(I) + D(I)
ELSE
F(I) = ¢(I) + D(I)
ENDIF
6 C(I) = E(I) + B(D)

In the above example, the value generated by the definition of B(I) in statement 5 is anticipated at the use
of B(I) in statement 6.

As in availability analysis, we consider each lexically identical array expression in concert. We split the
problem, but this time into only two partitions: one for loop-independent generators, LIAN, and one for loop-
carried generators, LCAN. We do not consider the back edge of the loop during analysis for either partition.
For L1AN, the reason is obvious. For LCAN, we only want to know that a value is anticipated on all paths
through the loop. This is to ensure that we do not increase the number of memory accesses in the loop.
In each partition, an array expression is added to GEN at an array reference if it is a potential generator
for that reference. For members of LIAN, array expressions are killed at the point where they are defined
by a consistent or inconsistent reference. For LCAN, only inconsistent definitions kill anticipation because
consistent definitions do not define the value being anticipated on the current iteration. For example, in the

loop
DO1I=1,N
A(I) = B(I) + D(I)
1 B(I) = A(I-1) + C(I)

the definition of A(I) does not redefine a particular value anticipated by A(I-1). The value is generated by
A(I) and then never redefined because of the iteration change.

LIANOUT(B) = ﬂsesuccs (B) LIANIN(S)

LIANIN(B) = (LIANOUT(B) — LIKILL(B)) | JLIGEN(B)
LCANOUT(B) = ﬂsesuccs () LCANIN(s)
LCANIN(B) = LCANOUT(B) - LCKILL(B) | JLCGEN(B)

2.2.6 Dependence-Graph Marking

Once anticipability information has been computed, the dependence graph can be marked so that only depen-
dences to be scalar replaced are left unmarked. The other edges no longer matter because their participation
in value flow has already been considered. Figure 2.4 shows the algorithm MarkDependenceGraph.

At a given array reference, we mark any incoming true or input edge that is inconsistent and any incoming
true or input edge that has a symbolic threshold or has a threshold greater than that of the dependence
edge from the potential generator. Inconsistent and symbolic edges are not amenable to scalar replacement
because it is impossible to determine the number of registers needed to expose potential reuse at compile time.
When a reference has a consistent generator, all edges with threshold less than or equal to the generating
threshold are left in the graph. This is to facilitate the consistent register naming discussed in subsequent

2.2. ALGORITHM 19

Procedure MarkDependenceGraph(G)
Input: G = (V, E), the dependence graph

foreach v € V
if v has no generator then
mark v’s incoming true and input edges
else if v’s generator is inconsistent or symbolic d,, then
mark v’s incoming true and input edges
v no longer has a generator
else if v’s generator is LCPAV and v ¢ LCANTIN(ENTRY)
mark v’s incoming true and input edges
v no longer has a generator
else
7y = threshold of edge from v’s generator
mark v’s incoming true and input edges with d, > 7,
mark v’s incoming edges whose source does not reach v or
whose source is not partially available at v
mark v’s incoming inconsistent and symbolic edges

Figure 2.4 MarkDependenceGraph

sections. It ensures that any reference occurring between the source and sink of an unmarked dependence
that can provide the value at the sink will be connected to the dependence sink. Finally, any edge from a
loop-carried partially available generator that is not anticipated at the entry to the loop i1s removed because
there will not be a dependence sink on every path.

2.2.7 Name Partitioning

At this point, the unmarked dependence graph represents the flow of values for references to be scalar
replaced. We have determined which references provide values that can be scalar replaced. Now, we move
on to linking together the references that share values. Consider the following loop.

DO 6 I=1,N
5 B(I) = B(I-1) + D(I)
6 C(I) = B(I-1) + E(K)

After performing the analysis discussed so far, the generator for the reference to B(I-1) in statement 6
would be the load of B(I-1) in statement 5. However, the generator for this reference is the definition of
B(I) in statement 5 making B(I-1) in statement 5 an intermediate point in the flow of the value rather
than the actual generator for B(I-1) in statement 6. These references need to be considered together when
generating temporary names because they address the same memory locations.

The nodes of the dependence graph can be partitioned into groups by dependence edges (see Figure 2.5)
to make sure that temporary names for all references that participate in the flow of values through a memory
location are consistent. Any two nodes connected by an unmarked dependence edge after graph marking
belong in the same partition. Partitioning is accomplished by performing a traversal of the dependence
graph, following unmarked true and input dependences only since these dependences represent value flow.
Partitioning will tie together all references that access a particular memory location and represent reuse of
a value in that location.

After name partitioning is completed, we can determine the number of temporary variables (or registers)
that are necessary to perform scalar replacement on each of the partitions. To calculate register requirements,
we split the references (or partitions) into two groups: variant and invariant. Variant references contain the
innermost-loop induction variable within their subscript expression. Invariant references do not contain the

20 CHAPTER 2. SCALAR REPLACEMENT

Procedure GenerateNamePartitions(G, P)

Input: G = (V, E), the dependence graph
P = the set of name partitions

Vv € V mark v as unvisited
1=0
for each v € V
if v is unvisited then
put v in P;
Partition(v, P;)
1=1+1
for each p € P do
FindGenerator(p, vp)
if p is invariant then

rp=1
else
rp = max(CalcNumberOfRegisters(g) + 1)
gE€Tp
enddo

end

Procedure Partition(v, p)
mark v as visited
add v to p
for each (e = (v, w) V (w,v)) € E
if € 1s true or input and unmarked and w not visited then
Partition(w, p)
end

Procedure FindGenerator(p, v)
for each v € p that is a potential generator
if (v is invariant A (v is a store V
v has no incoming unmarked loop-independent edge)) V
(v is variant A v has no unmarked incoming true or
input dependences from another w € p) then
y=7vUv
end

Procedure CalcNumberOfRegisters(v)

dist =0

for each e = (v,w) € E

if € is true or input and unmarked A w not visited A
P(w) = P(v) then
dist = max(dist,d, (e)+ CalcNumberOfRegisters(w))

return(dist)

end

Figure 2.5 GenerateNamePartitons

2.2. ALGORITHM 21

innermost-loop induction variable. In the previous example, the reference to E(K) is invariant with respect
to the I-loop while all other array references are variant.

For variant references, we begin by finding all references within each partition that are first to access a
value on a given path from the loop entry. We call these references partition generators. A variant partition
generator will already have been selected as a potential generator in Section 2.2.4 and will not have incoming
unmarked dependences from another reference within its partition. The set of partition generators within one
partition is called the generator set, 7,. Next, the maximum over all dependence distances from a potential
generator to a reference within this partition is calculated. Even if dependence edges between the generator
and a reference have been removed from the graph, we can compute the distance by finding the length of
a chain, excluding cycles, to that reference from the generator. Letting 7, be the maximum distance, each
partition requires r, = 7, 4+ 1 registers or temporary variables: one register for the value generated on the
current iteration and one register for each of the 7, values that were generated previously and need to flow
to the last sink. In the previous example, B(I) is the oldest reference and 1s the generator of the value used
at both references to B(I-1). The threshold of the partition is 1. This requires 2 registers because there are
two values generated by B(I) that are live after executing statement 5 and before executing statement 6.

For invariant references, we can use one register for scalar replacement because each reference accesses
the same value on every iteration. In order for an invariant potential generator to be a partition generator,
it must be a definition or the first load of a value along a path through the loop.

2.2.8 Register-Pressure Moderation

Unfortunately, experiments have shown that exposing all of the reuse possible with scalar replacement may
result in a performance degradation [CCK90]. Register spilling can completely counteract any savings from
scalar replacement. The problem is that specialized information is necessary to recover the original code to
prevent excessive spilling. As a result, we need to generate scalar temporaries in such a way as to minimize
register pressure, in effect doing part of the register allocator’s job.

Our goal is to allocate temporary variables so that we can eliminate the most memory accesses given
the available number of machine registers. This can be approximated using a greedy algorithm. In this
approximation scheme, the partitions are ordered in decreasing order based upon the ratio of benefit to cost,
or in this case, the ratio of memory accesses saved to registers required. At each step, the algorithm chooses
the first partition that fits into the remaining registers. This method requires O(nlogn) time to sort the
ratios and O(n) time to select the partitions. Hence, the total running time is O(nlogn).

To compute the benefit of scalar replacing a partition, we begin by computing the probability that each
basic block will be executed. The first basic block in the loop is assigned a probability of execution of 1.
Each outgoing edge from the basic block is given a proportional probability of execution. In the case of two
outgoing edges, each edge is given a 50% probability of execution. For the remaining blocks, this procedure
is repeated, except that the probability of execution of a remaining block is the sum of the probabilities of
its incoming edges. Next, we compute the probability that the generator for a partition is available at the
entrance to and exit from a basic block. The probability upon entry is the sum of the probabilities at the exit
of a block’s predecessors weighted by the number of incoming edges. Upon exit from a block, the probability
is 1 if the generator is available, 0 if it is not available and the entry probability otherwise. After computing
each of these probabilities,; the benefit for each reference within a partition can be computed by multiplying
the execution probability for the basic block that contains the reference by the availability probability of
the references generator. Figure 2.6 gives the complete algorithm for computing benefit. As an example of
benefit, in the loop,

DO1TI-=1,N

IF (M(I) .LT. 0) THEN
A(D) = B(I) + ¢(D)
ENDIF
1 D(I) = ACI) + E(D)
the load of A(I) in statement 1 has a benefit of 0.5.

Unfortunately, the greedy approximation can produce suboptimal results. To see this, consider the
following example, in which each partition is represented by a pair (n, m), where n is the number of registers
needed and m is the number of memory accesses eliminated. Assume that we have a machine with 6 registers

22 CHAPTER 2. SCALAR REPLACEMENT

Procedure CalculateBenefit(P, F'G)

Input: P = set of reference partitions
FG = flow graph

Defs: AZ(B) = probability v, is available on entry to B
AL (B) = probability v, is available on exit from B
b, = benefit for partition p
Fra = edges in flow graph
P(B) = probability block B will be executed

P(ENTRY) = 1
n =7 outgoing forward edges of ENTRY
weight each outgoing forward edge of ENTRY at ﬂ%l
for the remaining basic blocks BE F'G in reverse
depth-first order
let P(B)= sum of all incoming edge weights
n =7 outgoing forward edges of B
weight each outgoing forward edge at @
for each p € P
for each basic block BE F'G in reverse depth-first order
n =# incoming forward edges of B
for each incoming forward edge of B, e = (¢,B)
AZ(B) = AZ(5)+250
if v, € L1AvouT(B) | J LcAVOUT(B) then
Al(B)=1
else if v, € LIPAVOUT(B) | J LCPAVOUT(B) then
AL(B)= AL(B)
else
AP(B)=0
for each v € p
if v, is LOPAV or LCPAVIF1 then
by = by + AL(EXIT) X P(By)
else if v, is LIPAV
by, = b, + AZ(B) x P(By)
else
by = by + P(Bo)

end

Figure 2.6 CalculateBenefit

2.2. ALGORITHM 23

and that we are generating temporaries for a loop that has the following generators: (4, 8),(3,5),(3,5),(2,1).
The greedy algorithm would first choose (4,8) and then (2, 1), resulting in the elimination of nine accesses
instead of the optimal ten.

To get a possibly better allocation, we can model register-pressure moderation as a knapsack problem,
where the number of scalar temporaries required for a partition is the size of the object to be put in the
knapsack, and the size of the register file is the knapsack size. Using dynamic programming, an optimal
solution to the knapsack problem can be found in O(kn) time, where k is the number of registers available
for allocation and n is the number of generators. Hence, for a specific machine, we get a linear time bound.
However, with the greedy method, we have a running time that is independent of machine architecture,
making it more practical for use in a general tool. The greedy approximation of the knapsack problem is
also provably no more than two times worse than the optimal solution [GJ79]. However, our experiments
suggest that in practice the greedy algorithm performs as well as the knapsack algorithm.

After determining which generators will be fully scalar replaced, there may still be a few registers available.
Those partitions that were eliminated from consideration can be examined to see if partial allocation is
possible. In each eliminated partition whose generator is not LCPAV, we allocate references whose distance
from 7, is less than the number of remaining registers. All references within p that do not fit this criterium
are removed from p. This step is performed on each partition, if possible, while registers remain unused.
Finally, since we have possibly removed references from a partition, anticipability analysis for potential
generators must be redone.

To illustrate partial allocation, assume that in the following loop there is one register available.

DO 10 I 1,N
A = ...
IF (B(I) .GT. 0.0) THEN
.= ACD)

ENDIF
10 ..o.o= A(T-D

Here, full allocation is not possible, but there is a loop-independent dependence between the A(I)’s. In partial
allocation, A(I-1) is removed from the partition allowing scalar replacement to be performed. The algorithm
in Figure 2.7 gives the complete register-pressure moderation algorithm, including partial allocation.

Although this method of partial allocation may still leave possible reuses not scalar replaced, experience
suggests this rarely, if ever, happens. One possible solution is to consider dependences from intermediate
points within a partition when looking for potential reuse.

2.2.9 Reference Replacement

At this point, we have determined which references will be scalar replaced. We now move into the code
generation phase of the algorithm. Here, we will replace array references with temporary variables and
ensure that the temporaries contain the proper value at a given point in the loop.

After we have determined which partitions will be scalar replaced, we replace the array references within
each partition. This algorithm is shown in Figure 2.8. First, for each variant partition p, we create the
temporary variables TZEJ, Tpl, ce T;p_l, where Tzf represents the value generated by g € v, ¢ iterations earlier,
where g is the first generator to access the value used throughout the partition. Each reference within the
partition is replaced with the temporary that coincides with its distance from ¢. For invariant partitions,
each reference is replaced with T19~ If a replaced reference v € 7, is a memory load, then a statement of
the form Tzf = v is inserted before the generating statement. Requiring that the load must be in 7, for load
insertion ensures that a load that is a potential generator but also has a potential generator itself will not
have a load inserted. The value for the potential generator not in 7, will already be provided by its potential
generator. If the v is a store, then a statement of the form v = Tzf is inserted after the generating statement.
The latter assignment is unnecessary if it has an outgoing loop-independent edge to definition that is always
executed and it has no outgoing inconsistent true dependences. We could get better results by performing
availability and anticipability analysis exclusively for definitions to determine if a value is always redefined.

24 CHAPTER 2. SCALAR REPLACEMENT

Procedure ModerateRegisterPressure(P, G)

Input: P = set of reference partitions

G = (V, E), the dependence graph

Defs: b, = benefit for a partition p
rp = register required by a partition p

CalculateBenefit(P, G)

R = registers available
bP

H = sort of P on ratio of X in decreasing order
P

for i =1 to |H| do
if 14, < R then
allocate(H;)

R=R—rn,
else
S=8SUH;
P=P—"H,
endif
enddo
if R > 0 then
1=1

while ¢ < |§| and R > 0 do
while |S;| > 0 and R > 0 do
Si = {v|v € 8i,dn(é) < R,é = (vs,,v)}
allocate(S;)
R=R—rs,
P=PUS,
enddo
enddo
redo anticipability analysis
endif

end

Figure 2.7 ModerateRegisterPressure

2.2. ALGORITHM 25

Procedure ReplaceReferences(P)
Input: P = set of reference partitions

for each p € P do
let ¢ = v € v with no incoming marked or unmarked
edge from another w € v, or v is invariant
for each v € P do
if v i1s invariant then d =0
else d = distance from ¢ to v
replace v with T;
if v € v, and v is a load then
insert “Tg = v” before v’s statement
if v is a store A (Je = (v, w)le is true and inconsistent V
Ve = (v, w) where e is output and 7. =0,
w is not always executed) then
insert “v = T;” after v’s statement
end

Figure 2.8 ReplaceReferences

The effect of reference replacement will be illustrated on the following loop nest.
DO 3 I =1, 100

1 IF (M(I) .LT. 0) E(I) = ¢(I)
2 A(I) = ¢(I) + D(D)
3 B(K) = B(K) + A(I-1)

The reuse-generating dependences are:

1. A loop-independent input dependence from C(I) in statement 1 to C(I) in statement 2 (threshold 0),
and

2. A true dependence from A(I) to A(I-1) (threshold 1).

3. A true dependence from B(X) to B(K) in statement 2 (threshold 1).

By our method, the generator C(I) in statement 1 needs only one temporary, T10. Here, we are using
the first numeric digit to indicate the number of the partition and the second to represent the distance from
the generator. The generator B(K) in statement 1 needs one temporary, T20, since it is invariant, and the
generator A(I) needs two temporaries, T30 and T31. When we apply the reference replacement procedure
to the example loop, we generate the following code.

DO 3 I =1, 100

1 IF (M(I) .LT. 0) THEN
T10 = C(I)
E(I) = T10
ENDIF
T30 = T10 + D(I)
2 A(I) = T30
T20 = T20 + T31
3 B(K) = T20

The value for T31 is not generated in this example. We will discuss its generation in Sections 2.2.11 and

2.2.13.

2.2.10 Statement-Insertion Analysis

After we replace the array reference with scalar temporaries, we need to insert loads for partially available
generators. Given a reference that has a partially available potential generator, we need to insert a statement

26 CHAPTER 2. SCALAR REPLACEMENT

at the highest point on a path from the loop entrance to the reference that anticipates the generator where
the generator is not partially available and is anticipated. By performing statement-insertion analysis on
potential generators, we guarantee that every reference’s anticipated value will be fully available. Here,
we handle each individual reference, whereas name partitioning linked together those references that share
values. This philosophy will not necessarily introduce a minimum number of newly inserted loads, but there
will not be an increase in the number of run-time loads. The place for insertion of loads for partially available
generators can be determined using Drechsler and Stadel’s formulation for partial redundancy elimination,

as shown below [DS8§].

PPIN(B) = ANTIN(B)[|PAVIN(B)[|(ANTLOC(B) | J(TRANSP(B) [|PPOUT(B))
FALSE if B is the loop exit
PPOUT(B) = { N.esucc(s) PPIN(S)
INSERT(B) = PPOUT(B) (| ~AvoUT(B) [|(-PPIN(B) | J ~TRANSP(B))
INSERT(A By = PPIN(B) (| =AVOUT(a) (| —PPOUT(A)

Here, PPIN(B) denotes placement of a statement is possible at the entry to a block and PPOUT(B) denotes
placement of a statement is possible at the exit from a block. INSERT(B) determines which loads need to
be inserted at the bottom of block B. INSERT(4 B) is defined for each edge in the control-flow graph and
determines which loads are inserted on the edge from A to B. TRANSP(B) is true for some array expression if
it is not defined by a consistent or inconsistent definition in the block B. ANTLOC(B) is the same as GEN(B)
for anticipability information. Three problems of the above form are solved: one for LIPAV generators, one
for LcPAV generator and one for LOPAVIF] generators. Additionally, any reference to loop-carried ANTIN
information refers to the entry block.

If INSERT(4 B) is true for some potential generator g, then we insert a load on the edge (a,B) of the
form Tpd = ¢, where Tpd is the temporary name associated with g. If INSERT(B) is true for some potential
generator g, then a statement of identical form is inserted at the end of block B. Finally, if INSERT(A’B) 18
true VA € PRED(B), then loads can be collapsed into the beginning of block B. The algorithm for inserting
statements is shown in Figure 2.9.

If we perform statement insertion on our example loop, we get the following results.

DO 3 I =1, 100
1 IF (M(I) .LT. 0) THEN
T10 = (D)
E(D T10
ELSE
T10
ENDIF
T30
2 A(T)
T20 T20 + T31
3 B(K) T20

Again, the generation of T31 is left for Sections 2.2.11 and 2.2.13.

c(I)

T10 + D(I)
T30

2.2.11 Register Copying

Next, we need to ensure that the values held in the temporary variables are correct across loop iterations.
The value held in Tzf needs to move one iteration further away from its generator, TZEJ, on each subsequent
loop iteration. Since ¢ is the number of loop iterations the value is from the generator, the variable Tg"‘l
needs to take on the value of 7)) at the end of the loop body in preparation for the iteration change. The
algorithm in Figure 2.10 effects the following shift of values for each partition, p.

T;p—l — T;p—z

T;p—z — T;p—?’

1 _ 40
TP_TP

2.2. ALGORITHM 27

Procedure InsertStatements(FG)
Input: FG = flow graph

perform insert analysis
for each flow edge e € FG
for each v €EINSERT.
if v 1s invariant then d = 0
else d = distance from the oldest generator in P(v) to v
insert statement “Tg(v) =v” one
for each basic block B € F'G
for each v € INSERT(B)
if v 1s invariant then d = 0
else d = distance from the oldest generator in P(v) to v
insert statement “T;—l,(v) = v” at the end of B
for each v such that INSERT(A B)(v) is true
VA € PREDS(B)
collapse loads of v into beginning of B
end

Figure 2.9 InsertStatements

After inserting register copies, our example code becomes:

DO 3 I=1, 100
1 IF (M(I) .LT. 0) THEN
T10 C(I)
E(I) = T10
ELSE
T10
ENDIF
T30
2 ACD)
T20
B(X)
3 T31

c(I)

T10 + D(I)
T30
T20 + T31
T20
T30

2.2.12 Code Motion

It may be the case that the assignment to or a load from a generator may be moved entirely out of the
innermost loop. This is possible when the reference to the generator is invariant with respect to the innermost
loop. In the example above, B(K) does not change with each iteration of the I-loop; therefore, its value can
be kept in a register during the entire execution of the loop and stored back into B(K) after the loop exit.

DO 3 I=1, 100
1 IF (M(I) .LT. 0) THEN
T10 C(I)
E(I) = T10
ELSE
T10
ENDIF
T30
2 A(I) = T30
T20 T20 + T31
3 T31 = T30
B(K) = T20

c(I)

T10 + D(I)

The algorithm for this type of code motion is shown in Figure 2.11.

28 CHAPTER 2. SCALAR REPLACEMENT

Procedure InsertRegisterCopies(G,P,x)

Input: G = (V, E), the dependence graph
P = set of reference partitions
x = peeled iteration number or
oo for a loop body

for each p € P
for ¢ = min(rp, — 1,2) to 1 do
insert “T, = T;_l” at the end of loop body in GG
end

Figure 2.10 InsertRegisterCopies

When inconsistent dependences leave an invariant array reference that is a store, the generating store for
that variable cannot be moved outside of the innermost loop. Consider the following example.
DO 10 J =1, N
10 A(T) = A(D) + A(D)
The true dependence from A(I) to A(J) 1s not consistent. If the value of A(I) were stored into A(I) outside
of the loop, then the value of A(J) would be wrong whenever I=J and I > 1.

2.2.13 Initialization

To ensure that the temporary variables contain the correct values upon entry to the loop, it is peeled using the
algorithm in Figure 2.12. We peel max(rp,,...,7p,) — 1 iterations from the beginning of the loop, replacing
the members of a variant partition p for peeled iteration & with their original array reference, substituting
the iteration value for the induction variable, only if j > & for a temporary TZZ. For invariant partitions, we
only replace non-partition generators’ temporaries on the first peeled iteration. Additionally, we let r, = 2
for each invariant partition when calculating the number of peeled iterations. This ensures that invariant
partitions will be initialized correctly. Finally, at the end of each peeled iteration, the appropriate number
of register transfers is inserted.
When this transformation is applied to our example, we get the following code.
IF (M(1) .LT. 0) THEN
T10 c(1)
E(1) T10
ELSE
T10
ENDIF
T30
ACD) T30
T20 B(K) + A(0)
T31 = T30

c(1)

T10 + D(1)

LOOP BODY
2.2.14 Register Subsumption

In our example loop, we have eliminated three loads and one store from each iteration of the loop, at the
cost of three register-to-register transfers in each iteration. Fortunately, inserted transfer instructions can be
eliminated if we unroll the scalar replaced loop using the algorithm in Figure 2.13. If we have the partitions
Po,P1, - - -, Pn, We can remove the transfers by unrolling lem(rp,, rp,, ..., 7p,) — 1 times. In the kth unrolled

2.2.

ALGORITHM

29

Procedure CodeMotion(P)
Input: P = set of reference partitions

for each p € P
for each v € v,
if v is a store Av € LCANTIN(ENTRY) then
if de = (v, w) € EAv=wA
Ve = (v,z) € F, e is consistent then

move the store into v after the loop

else if 3e = (v, w) € E such that e is consistent A
v=wA Ve = (u,v) € E, if € is true it is consistent
move the load into v before the loop

end

Figure 2.11 CodeMotion

Procedure Initialize(P,G)

Input: P = set of reference partitions

G = (V, E), the dependence graph

¢ =max(rp,,...,Tp,) — 1
fork=1tox
G’ =peel of the kth iteration of GG
for each v € V'
if v =17 A(vis variant Aj > k)V
(vis invariant Av & ypy A g+ 1> kA
v’s generator is loop carried) then
replace v with its original array reference
replace the inner loop induction variable with
its kth iteration
endif
InsertRegisterCopies(G’, P, k)
end

Figure 2.12 Initialize

30 CHAPTER 2. SCALAR REPLACEMENT

body, the temporary variable Tg is replaced with the variable Tmed(j_k’rp) where mod(y,z) =y — [£]=.

Essentially we capture the permutation of values by circulating the register names within the unrolled
iterations.

The final result of scalar replacement on our example is shown in Figure 2.14 (the pre-loop to capture
the extra iterations and the initialization code are not shown).

2.3 Experiment

We have implemented a source-to-source translator in the Parascope programming environment, a program-
ming system for Fortran, that uses the dependence analyzer from PFC. The translator replaces subscripted
variables with scalars using the described algorithm. The experimental design is illustrated in Figure 2.15. In
this scheme, Parascope serves as a preprocessor, rewriting Fortran programs to improve register allocation.
Both the original and transformed versions of the program are then compiled and run using the standard
product compiler for the target machine.

For our test machine, we chose the IBM RS/6000 model 540 because it had a good compiler and a
large number of floating-point registers (32). In fact, the IBM XLF compiler performs scalar replacement
for those references that do not require dependence analysis. Many fully available loop-independent cases
and invariant cases are handled. Therefore, the results described here only reflect the cases that required
dependence analysis. FEssentially, we show the results of performing scalar replacement on loop-carried
dependences and in the presence of inconsistent dependences.

Livermore Loops. We tested scalar replacement on a number of the Livermore Loops. Some of the kernels
did not contain opportunities for our algorithm; therefore, we do not show their results. In the table below,
we show the performance gain attained by our transformation system.

Loop | Iterations | Original | Transformed | Speedup
1 10000 3.40s 2.54s 1.34
5 10000 3.05s 1.36s 2.24
6 10000 3.82s 2.82s 1.35
7 5000 3.94s 2.02s 1.95
8 10000 3.38s 3.07s 1.10
11 10000 4.52s 1.69s 2.67
12 10000 1.70s 1.42s 1.20
13 5000 3.25s 3.01s 1.08
18 1000 2.62s 2.54s 1.03
20 500 2.99s 2.90s 1.03
23 5000 2.68s 2.35s 1.14

Some of the interesting results include the performances of loops 5 and 11, which compute first order

linear recurrences. Livermore Loop 5 is shown below.
DOS5TI=2,N

5 X(I) = Z(I) * (Y(I) - X({I-1))
Here, scalar replacement not only removes one memory access, but also improves pipeline performance. The
store to X(I) will no longer cause the load of X(I-1) on the next iteration to block. Loop 11 presents a
similar situation.

Loop 6, shown below, is also an interesting case because it involves an invariant array reference that
requires dependence analysis to detect.

DO 6 I= 2,N
DO 6 K= 1,I-1
6 W(I)= W(I)+B(I,K)*W(I-K)

A compiler that recognizes loop invariant addresses to get this case, such as the IBM compiler, fails because
of the load of W(I-K). Through the use of dependence analysis, we are able to prove that there is no
dependence between W(I) and W(I-K) that is carried by the innermost loop, allowing code motion. Because
of this additional information, we are able to get a speedup of 1.35.

2.3. EXPERIMENT

31

Procedure Subsume(G,P)

Input: P = set of reference partitions

G = (V, E), the dependence graph

¢ =lem(rpy,...,7mp,) —1
unroll G’ x times
for G = each of the x new loop bodies
for each v € V3
if v =T} then
replace v with Tmed(]_k’rp)

end

Figure 2.13 Subsume

DO 3 I =12, 100,2
1 IF (M(I) .LT. 0) THEN

T10 = C(I)
E(I) = T10
ELSE
T10 = C(I)
ENDIF
T30 = T10 + D(I)
2 A(I) = T30
T20 = T20 + T31
IF (M(I+1) .LT. 0) THEN
T10 = C(I+1)
E(I+1) = T10
ELSE
T20 = C(I+1)
ENDIF
T31 = T10 + D(I+1)
A(I+1) = T31
3 T20 = T20 + T30

Figure 2.14 Example After Scalar Replacement

transformer
] (Parascope) |] =
Fortran Fortran
program compiler

Figure 2.15 FExperimental design.

improved

original

32 CHAPTER 2. SCALAR REPLACEMENT

Linear Algebra Kernels. We also tested scalar replacement on both the point and block versions of LU
decomposition with and without partial pivoting. In the table below, we show the results.

Kernel Original | Transformed | Speedup
LU Decomp 6.76s 6.09s 1.11
Block LU 6.39s 4.40s 1.45
LU w/ Pivot 7.01s 6.35s 1.10
Block LU w/ Pivot 6.84s 4.81s 1.42

Each of these kernels contains invariant array references that require dependence analysis to detect. The
speedup achieved on the block algorithms is higher because an invariant load and store are removed rather
than just a load as in the point algorithms.

Applications. To complete our study we ran a number of Fortran applications through our translator.
We chose programs from Spec, Perfect, RiICEPS and local sources. Of those programs that belong to the
benchmark suites, but are not included in the experiment, 5 failed to be successfully analyzed by PFC, 1
failed to compile on the RS6000 and 10 contained no opportunities for our algorithms. Table 3 contains a
short description of each application.

Suite Application Description
SPEC Matrix300 Matrix Multiplication
Tomcatv Mesh Generation
Perfect Adm Pseudospectral Air Pollution
Arc2d 2d Fluid-Flow Solver
Flo52 Transonic Inviscid Flow
RiCEPS Onedim Time-Independent Schrédinger Equation
Shal Weather Prediction
Simple 2d Hydrodynamics
Sphot Particle Transport
Wave Electromagnetic Particle Simulation
Local CoOpt Oil Exploration
Seval B-Spline Evaluation
Sor Successive Over-Relaxation

The results of performing scalar replacement on these applications is reported in the following table. Any
application not listed observed a speedup of 1.00.

Suite Program | Original | Transformed | Speedup
Perfect Adm 236.84s 228.84s 1.03
Arc2d 410.13s 407.57s 1.01
Flo52 66.32s 63.83s 1.04
RiCEPS Shal 302.03s 290.42s 1.04
Simple 963.20s 934.13s 1.03
Sphot 3.85s 3.78s 1.02
Wave 445.94s 431.11s 1.03
Local CoOpt 122.88s 120.44s 1.02
Seval 0.62s 0.56s 1.11
Sor 1.83s 1.26s 1.46

The applications Sor and Seval performed the best because we were able to optimize their respective
computationally intensive loop. Each had one loop which comprised almost the entire running time of the
program. For the program Simple, one loop comprised approximately 50% of the program execution time,
but the carried dependence could not be exposed due to a lack of registers. In fact, without the register-
pressure minimization algorithm of Section 2.2.8, program performance deteriorated. Sphot’s improvement
was gained by performing scalar replacement on one partition in one loop. This particular partition contained
a loop-independent partially available generator that required our extension to handle control flow.

The IBM RS/6000 has a load penalty of only 1 cycle. On processors with larger load penalties, such as the
DEC Alpha, we would expect to see a larger performance gain through scalar replacement. Additionally, the

2.4. SUMMARY 33

problem sizes for benchmark are typically small. On larger problem sizes, we expect to see larger performance
gains due to a higher percentage of time being spent inside of loops.

2.4 Summary

In this chapter, we have presented an algorithm to perform scalar replacement in the presence of forward
conditional-control flow. By mapping partial redundancy elimination to scalar replacement, we are able to
ensure that we will not increase the run-time memory costs of a loop. We have applied our algorithm to
a number of kernels and whole applications and shown that integer-factor speedups over good optimizing
compilers are possible on kernels.

35

Chapter 3

Unroll-And-Jam

Because applying scalar replacement alone may still leave a loop memory bound, we can sometimes apply
unroll-and-jam before scalar replacement to allow a larger reduction in loop balance. For example, recall
from Chapter 1 that given the loop
DO 10 I =1, 2*M
DO 10 J =1, N
10 A(I) = A(I) + B(D)

with a balance of 1, unroll-and-jam of the I-loop by 1 produces the loop
DO 10 I =1, 2*M, 2

DO 10 J =1, N
ACI) = A(I) + BQD)
10 A(I+1) = A(I+1) + B(J)

with a balance of 0.5. On a machine that can perform 2 flops per load for a balance of 0.5, the transformed
loop would execute faster because it would be balanced.

Although unroll-and-jam has been studied extensively, it has not been shown how to tailor unroll-and-
jam to specific loops run on specific architectures. In the past, unroll amounts have been determined
experimentally and specified with a compile-time parameter [CCK90]. However, the best choice for unroll
amounts varies between loops and architectures. Therefore, in this chapter, we derive a method to chose
unroll amounts automatically in order to balance program loops with respect to a specific target architecture.
Unroll-and-jam is tailored to a specific machine based on a few parameters of the architecture, such as effective
number of registers and machine balance. The result is a machine-independent transformation system in the
sense that it can be retargeted to new processors by changing parameters.

This chapter begins with an overview of the safety conditions for unroll-and-jam. Then, we present
a method for updating the dependence graph so that scalar replacement can take advantage of the new
opportunities created by unroll-and-jam. Next, we derive an automatic method to balance program loops
with respect to a particular architecture and, finally, we report on performance improvements achieved by
an experimental implementation of this algorithm.

3.1 Safety

Certain dependences prevent or limit the amount of unrolling that can be done and still allow jamming to
be safe. Consider the following loop.

DO 10 T =1, 2*M

DO 10 J = 1,N
10 A(T,J) = A(I-1,J+1)

A true dependence with a distance vector of (1, —1) goes from A(I,J) to A(I-1,J+1). Unrolling the outer
loop once creates a loop-independent true dependence that becomes an antidependence in the reverse direc-
tion after loop jamming. This dependence prevents jamming because the order of the store to and load

36 CHAPTER 3. UNROLL-AND-JAM

from location would be reversed as shown in the unrolled code below.
DO 10 I =1, 2*M,2
DO 10 J = 1,N
ACI,J) = A(I-1,J+1)
10 A(I+1,3) = A(I,J+1)
Location A(3,2) is defined on iteration (3,2) and read on iteration (4,1) in the original loop. In the
transformed loop, the location is read on iteration (3,1) and defined on iteration (3,2}, reversing the access
order and changing the semantics of the loop. With a semantics that is only defined on correct programs (as
in Fortran), we say that unroll-and-jam is safe if the flow of values is not changed. The following theorem
summarizes this property.

Theorem 3.1 Let e be a true, output or antidependence carried at level k& with distance vector
d=1{0,...,0,ds,0,...,0,d;,...),

where d; < 0 and all components between the kth and jth are 0. Then the loop at level k can be
unrolled at most di — 1 time before a dependence is generated that prevents fusion of the inner
n — k loops.

Proof See Callahan, et. al [CCK88]. O

Essentially, unrolling more than dy — 1 will introduce a dependence with a negative entry in the outermost
position after fusion. Since negative thresholds are not defined, the dependence direction must be reversed.
Dependence direction reversal makes unroll-and-jam unsafe. Additionally, when non-D0O statements appear
at levels other than the innermost level, loop distribution must be safe in order for unroll-and-jam to be safe.
Essentially, no recurrence involving data or control dependences can be violated [AK87].

3.2 Dependence Copying

To allow scalar replacement to take advantage of the new opportunities for reuse created by unroll-and-jam,
we must update the dependence graph to reflect these changes. Below is a method to compute the updated
dependence graph after loop unrolling for consistent dependences that contain only one loop induction
variable in each subscript position and are not invariant with respect to the unrolled loop. [CCK8§].

If we unroll the mth loop in a nest L by a factor of k, then the updated dependence graph G = (VI, EI)
for L' can be computed from the dependence graph G = (V, F) for L by the following rules:

1. For each v € V| there are k£ + 1 nodes vy, ..., vt in V'. These correspond to the original reference and
its k copies.

2. For each edge e = (v,w) € E, with distance vector d(e), there are k + 1 edges eq,...,e; where
e; = {vj,w;), v; is the jth copy of v, w; is the ith copy of w and

i = (j+dm(e)) mod(k+1)
de) = 4 UETL iz
B L = R A R

Below dependence copying is described for invariant references. To aid in the explanation, the following
terms are defined.

1. If references are invariant with respect to a particular loop, we call that loop reference invariant.

2. If a specific reference, v, is invariant with respect to a loop, we call that loop v-invariant.

3.3. IMPROVING BALANCE WITH UNROLL-AND-JAM 37

The behavior of invariant references differs from that of variant references when unroll-and-jam is applied.
Given an invariant reference v, the distance vector value of an incoming edge corresponding to a v-invariant
loop represents multiple values rather than just one value. Therefore, we first apply the previous formula
to the minimum distance. Then, we create a copy of the original edge for each new loop body between
the source and sink corresponding the original references and insert loop-independent dependences from the
references within a statement to all identical references following them.

To extend dependence copying to unroll-and-jam, we have the following rules using an outermost- to
innermost-loop application ordering. If

e we unroll loop k

e we have a new distance vector, d(e) = (d1,da, ..., dp)
o di(e)=0

o VYm < k,dn(e) =0

then the next inner non-zero entry, dy,(e),p > k, becomes the threshold of e and p becomes the carrier of e.
If Ym, dy(e) = 0, then e is loop independent. If 3m < k such that dp,(e) > 0 then e remains carried by loop
m with the same threshold.

The safety rules of unroll-and-jam prevent the exposure of a negative distance vector entry in the out-
ermost non-zero position for true, output and antidependences. However, the same is not true for input
dependences. The order in which reads are performed does not change the semantics of the loop. Therefore,
if the outermost entry of an input dependence distance vector becomes negative during unroll-and-jam, we
change the direction of the dependence and negate the entries in the vector.

To demonstrate dependence copying, consider Figure 3.1. The original edge from A(I,J) to A(I,J-2)
has a distance vector of (2,0) before unroll-and-jam. After unroll-and-jam the edge from A(I,J) now goes
to A(I,J) in statement 10 and has a vector of (0,0). An edge from A(I,J+1) to A(I,J-2) with a vector of
(1,0) and an edge from A(I,J+2) to A(I,J-1) with a vector of (1,0) have also been created. For the first
edge, the first formula for d,,(e;) applies. For the latter two edges, the second formula applies.

3.3 Improving Balance with Unroll-and-Jam

As stated earlier, we would like to convert loops that are bound by main-memory access time into loops
that are balanced. Since unroll-and-jam can introduce more floating-point operations without a proportional
increase in memory accesses, it has the potential to improve loop balance. Although unroll-and-jam improves
balance, using it carelessly can be counterproductive. Transformed loops that spill floating-point registers
or whose object code is larger than the instruction cache may suffer performance degradation. Since the
size of the object code is compiler dependent, we are forced to assume that the instruction cache is large
enough to hold the unrolled loop body. By doing so, we can remain relatively independent of the details
of a particular software system. This assumption proved valid on the IBM RS/6000 and leaves us with the
following objectives for unroll-and-jam.

1. Balance a loop with a particular architecture.

2. Control register pressure.

D0 10 J = 1,0 | DO 10 J = 1,N,3
DO 10 I = 1,0 | DO 10 I = 1,W
10 ACI,J) = A(I,J-2) | ACI,3) = A(I,J-2)
| A(I,J+1) = A(I,J-1)
| 10 A(I,J+2) = ACI,D)

Figure 3.1 Distance Vectors Before and After Unroll-and-Jam

38 CHAPTER 3. UNROLL-AND-JAM

Expressing these goals as an integer optimization problem, we have

objective function: min |3 — S|
constraint: # floating-point registers required < register-set size

where the variables in the problem are the unroll amounts for each of the loops in a loop nest. For the
solution to the objective function, we prefer a slightly negative difference over a slightly positive difference.”

For each loop nest within a program, we model its possible transformation as a problem of this form.
Solving it will give us the unroll amounts to balance the loop nest as much as possible. Using the following def-
initions throughout our derivation, we will show how to construct and efficiently solve a balance-optimization
problem at compile time.

V= array references in an innermost loop
Vi, = members of V that are memory reads
Vw = membersof V that are memory writes
X; = number of times the ith outermost loop in L is unrolled + 1
(This is the number of loop bodies created by unrolling loop %)
= number of floating-point operations after unroll-and-jam
M = number of memory references after unroll-and-jam

For the purposes of this derivation, we will assume that each loop nest is perfectly nested. We will show how
to handle non-perfectly nested loops in Section 3.4.6. Additionally, loops with conditional-control flow in
the innermost loop body will not be candidates for unroll-and-jam. Inserting additional control flow within
an innermost loop can have disastrous effects upon performance.t

3.3.1 Computing Transformed-Loop Balance.

Since the value of 3,, is a compile-time constant defined by the target architecture, we need only create the
formula for 31 at compile time to create the objective function. To create fr, we compute the number of
floating-point operations, F', and memory references, M, in one innermost-loop iteration. F' is simply the
number of floating-point operations in the original loop, f, multiplied by the number of loop bodies created
by unroll-and-jam, giving

F=rx [x

1<i<n

where n 1s the number of loops in a nest. M requires a detailed analysis of the dependence graph.
Additionally, in computing M we will assume an infinite register set. The register-pressure constraint
in the optimization problem will ensure that any assumption about a memory reference being removed will
be true.

To simplify the derivation of our formulation for memory cycles, we initially assume that at most one
incoming or outgoing edge is incident upon each v € V' and that all subscript positions contain at most one
induction variable. We will remove these restrictions later. Additionally, we partition the reference set of
the loop into sets that exhibit different memory behavior when unroll-and-jam is applied. These sets are
listed below.

1. V¥ = references without an incoming consistent dependence.

2. V¢ = memory reads that have a loop-carried or loop-independent incoming consistent dependence,
but are not invariant with respect to any loop.

*On massively parallel systems, it may be advantageous to have 37, << s to reduce network contention.
tExperiments have shown this to be true on the IBM RS/6000.

3.3. IMPROVING BALANCE WITH UNROLL-AND-JAM 39

3. VI = memory reads that are invariant with respect to a loop.

4. V¢ = memory writes that have a loop-carried or loop-independent incoming consistent dependence,
but are not invariant with respect to any loop.

5. VI = memory writes that are invariant with respect to a loop.

Using this partitioning, we compute the cost associated with each partition, {Mm, ME M ME MY, to
get the total memory cost,

M=M"+ME+ M+ MS + M.
For the first partition, M?, each copy of the loop body produced by unroll-and-jam contains one memory
reference associated with each original reference. This value can be expressed as follows.

M =>" (I x».

veV? 1<i<n

For example, in Figure 3.2, unrolling the outer two loops by 1 creates 3 additional copies from the reference
to A(I,J,K) that will be references to memory.

For each v € V¢, unroll-and-jam may create dependences useful in scalar replacement for some of the
new references created. In order for a reference, v, to be scalar replaced, its incoming dependence, e, , must
be converted into an innermost-loop-carried or a loop-independent dependence, which we call an innermost
dependence edge. In terms of the distance vector associated with an edge, d(e,) = {d1,da, ..., d,), the edge is
made innermost when it becomes d(e}) = (0,0,...,0,dy,). After unroll-and-jam, only some of the references
will be the sink of an innermost edge. It is our goal to quantify this value. For example, in Figure 3.3, the
first copy of A(I,J-2), the reference to A(I,J-1), is the sink of a dependence from A(I,J+3) that is not
innermost, but the second and third copies, A(I,J) and A(I,J+1), are the sinks of innermost edges (in this
case, ones that are loop independent) and will be removed by scalar replacement.

To quantify the behavior of V.| we first compute the total number of references before scalar replacement
as in M?,

SOOI xo.

vEVE 1<i<n

Next, we determine which of the new references will be removed by scalar replacement by quantifying the
number of references that will be the sink of an innermost dependence after unroll-and-jam. To simplify the
derivation, we consider unrolling only loop i, where Ye and Yk # i,n we have di(e) = 0. This limits the
dependences to be carried by loop 7 or to be innermost already. Later, we will extend the formulation to
arbitrary loop nests and distance vectors.

Recall from our dependence-copying formulas in Section 3.2 that d;(e,) < X;, for some v € V,¢, must be
true in order to create a distance vector with a 0 in the ¢th position, resulting in an innermost dependence
edge. However, depending upon which of the two distance formulas is applied, the edge may still have a 1 in
the ith position. In order for the formula that allows an entry to become 0, d;(e},) = L%ﬁ”)], to be applied,
the edge created by unroll-and-jam, e, = (wm, v,), must have n > m true. If n < m, then the applicable
formula, d;(el) = L%ﬁ”” + 1, prevents an entry from becoming 0. In the following theorem, we show that
n > m is true for X; — d;(e,) of the new dependence edges if d;(e,) < X;. This shows that X; — d;(e,) new
references can be removed by scalar replacement.

DO 10 K = 1,0 | DO 10 K = 1,N,2
D0 10 J = 1,0 | DO 10 J = 1,N,2
DO 10 I = 1,W | DO 10 I = 1,W
10 ACI,J,K) = ... | ACI,J,K) =
| ACI,J,K+1) =
| ACI,J+1,K) =
| 10 ACI,J+1,K+1) =

Figure 3.2 V? Before and After Unroll-and-Jam

40 CHAPTER 3. UNROLL-AND-JAM

Theorem 3.2

Given 0 < m,d;(e) < X; and n = (m + d;(e)) mod X; for each new edge €], = (wpm, vy) created
from e, = {(wg, vg) by unroll-and-jam, then

n>m <= m<X; —die).

Proof

(=)
Given n > m, assume
m> X; — di(e).
Since
0 <m,di(e) < X;
we have
n = (m +di(e)) mod X;
=m+ di(e) — X,
giving
m+di(e) — Xi > m.
Since
di(e) < Xi,
the inequality is violated, leaving

m < X; — di(e).

(<)
Given
m < X; — di(e) and m,d;(e) > 0,
then
n = (m +di(e)) mod X;
=m+ d;(e)
Since
m,di(e) >0
we have
m + di(e) > m.
giving
n>m.

g

In the case where X; < d;(e,), no edge can be made innermost, resulting in a general formula of (X; —d; (e,))*
edges with d;(el) = 0, where % is the positive part of z.

For an arbitrary distance vector, if any outer entry is left greater than 0 after unroll-and-jam, the new
edge will not be innermost. Additionally, once a dependence edge becomes innermost, unrolling any loop
additionally creates a copy of that edge. For example, in Figure 3.3, the load from A(I,J+1) has an incoming

D0 10 J = 1,0 | DO 10 J = 1,N,3
DO 10 I = 1,0 | DO 10 I = 1,W
10 ACI,J) = A(1,3-2) | ACI,3) = A(I,J-2)
| A(I,J+1) = A(I,J-1)
| A(I,J+2) = A(I,D)
| 10 A(I,J+3) = A(I,J+1)

Figure 3.3 V,° Before and After Unroll-and-Jam

3.3. IMPROVING BALANCE WITH UNROLL-AND-JAM 41

innermost edge that is a copy of the incoming edge for the load from A(I,J). The edge into A(I,J+1) was
created by additional unrolling of the J-loop after A(I,J)’s edge was created. Quantifying these ideas, we
have

[T (xi—di(en))?

1<i<n

references that can be scalar replaced. Subtracting this value from the total number of references before
scalar replacement and after unroll-and-jam gives the value for M,“. Therefore,

ME= % (I X T (%= diteu))®).

UEVTC 1<i<n 1<i<n

In Figure 3.3, X1 = 4 and di(e) = 2 for the reference to A(I,J-2). Our formula correctly predicts that 2
memory references will be removed. Note that if X; < 2 were true, no memory references would have been
removed because no distance vector would have a 0 in the first entry.

For references that are invariant with respect to a loop, memory behavior is different from variant
references. If v € V! is invariant with respect to loop L;, i < n, unrolling L; will not introduce more
references to memory because each unrolled copy of v will access the same memory location as v. This
is because the induction variable for L; does not appear in the subscript expression of v. Unrolling any
loop that is not v-invariant will introduce memory references. Finally, if v is invariant with respect to the
innermost loop, no memory references will be left after scalar replacement no matter which outer loops are
unrolled. In Figure 3.4, unrolling the K-loop introduces memory references, while unrolling the J-loop does
not. Using these properties, we have

MrI: Z(H w(ev’i’n))

veVI 1<i<n

where

w(e,i,n) < if e is invariant wrt loop n then
return 0
else if e is invariant wrt loop 7 then
return 1
else
return X;

Members of V.¢ behave exactly as those in V. except that scalar replacement will remove stores only when
their incoming dependence is loop independent. Thus, for M5 we have

Mg: Z C(v,1,n,n)

veEVE

DO 10 K =
DO 10 J
DO 10

= =
g
~

10
ACI,E+1)
A(I,K)

I
I
I
) I
I
I
| ACI ,K+1)

[~}
o
P Y
P =
| T T | O T |

10

Figure 3.4 V! Before and After Unroll-and-Jam

42 CHAPTER 3. UNROLL-AND-JAM

where

C(v,j, k,n) = ifdy(ey) =0 and e, is an output edge then

return (H X; — H (X = di(ey))™)

j<i<k J<i<k
else
return H X;
j<i<k

Finally, M! is defined exactly as M/!.
Now that we have obtained the formulation for loop balance in relation to unroll-and-jam, we can use it
to prove that unroll-and-jam will never increase loop balance. Consider the following formula for g; when

unrolling only loop 1.

Z X+ Z X; — (X — di(ev))++ Z w(ey,i,n)+ Z C(v,i,i+1,n)

veV? veVS veVIiuv] veVS

61’: fXXZ'

If we examine the vertices and edges in each of the above vertex sets to determine the simplified formula for
My, we obtain the following, where Vj,a; > 0.

MY = apX;
]\LC = a1 X;+tas
MTI = a3X;+tay
Mg = a5X; + as
Mi = a7X;+as
Combining these terms we get
=

where ¢g, ¢; > 0. Note that the values of ¢y and ¢; may vary with the value of X;. As X; increases, ¢y may
decrease and ¢; may increase because the value of (X; — di(ev))‘l' may become positive for some v € VTC. In
the theorem below, we show that gr will not increase as X; increases, showing that unrolling one loop will

not increase loop balance.

Theorem 3.3

The function for Sz is nonincreasing in the ¢ dimension.

Proof

For the original loop, X; = 1 and

_ (coten
BL — 7

If we unroll-and-jam the i-loop n — 1 times, n > 1, then X; = n giving

gl = (cun-l}21+02)
where ¢ is the sum of all d;(e,) where (X; — d;(e,))T became positive with the increase in Xj;.
Since ¢p will decrease or remain the same with the change in X;, ¢f, < ¢g. The difference between
co and ¢ is the number of edges where (X; — d;(e,))T becomes positive with the change in X;.
Given that X; = n, the maximum value of any d;(e,) added into ¢5 is n — 1 (any greater value
would not make (X; — d;(e,))" positive). Therefore, the maximum value of 3} is

g, = LhntatCozch)(n=1)

3.3. IMPROVING BALANCE WITH UNROLL-AND-JAM 43

To show that 8 is nonincreasing, we must show that 2z > 87 or that the unrolled loop’s balance
is no greater than the original balance.

gL >
il
nleoter) (egnt(co—cg)(n=1)ter)
nf = fn
neg +ney > nep + neg — ney + ey — co+ e
(n=Deyr > ¢f—co
Since n > 1,¢1 > 0 and ¢}, < ¢, the inequality holds and Sy, is nonincreasing. O

Given that we unroll in an outermost- to innermost-loop order, unrolling loop 1 produces a new loop with
balance B} such that B < B by Theorem 3.3. After unrolling loop i, assume we have Vj < Z,BZL < g
If we next unroll loop ¢ + 1 to produce ﬁi"’l, then again by Theorem 3.3, 62"’1 < 6ZL Therefore, unrolling
multiple loops will not increase loop balance.

An Example. As an example of a formula for loop balance, consider the following loop.
DO 10 J = 1,N
DO 10 T = 1,N
10 A(I,J) = A(I,J-1) + B(D
We have A(I,J) € V? a(1,3-1) € V¢ with an incoming distance vector of (1,0), and B(I) € V.!. This
gives

g = Xi4+X (X1 -1t 41
L = X,

3.3.2 Estimating Register Pressure

Now that we have the formula for computing loop balance given a set of unroll amounts, we must create
the formula for register pressure. To compute the number of registers required by an unrolled loop, we
need to determine which references can be removed by scalar replacement and how many registers each of
those references need. We will refer to this quantity as R. As in computing M, we consider the partitioned
sets of V| {Vm, VE VI, but we do not consider V,, because its register requirements are included in the
computation of V.. Associated with each of the partitions of V' is the number of registers required by that
set, {RY RS RI}, giving
R=RY+ RS + Rl
Since each member of V? has no incoming dependence, we cannot use registers to capture reuse. However,
members of V? still require a register to hold a value during expression evaluation. To compute the number
of registers required for those memory references not scalar replaced and for those temporaries needed during
the evaluation of expressions, we use the tree labeling technique of Sethi and Ullman [SU70]. Using this
technique, the number of registers required for each expression in the original loop body is computed and
the maximum over all expressions is taken as the value for RP.
For variant references whose incoming edge is carried by some loop, v € V,“, we need to determine which
(or how many) references will be removed by scalar replacement after unroll-and-jam and how many registers
are required for those references. The former value is derived in the computation of M and is shown below.

> CIT Y= dite))

The latter value, d,,(ey) + 1, comes from scalar replacement, where we assume that all registers interfere.
Any value that flows across a loop-carried dependence interferes with all other values and predicting the
effects of scheduling before optimization to handle loop-independent interference is beyond the scope of this
work. Therefore,

RE = 37 (TT (5 = dilen))*) x (dulen) + 1).

veVE 1<i<n

44 CHAPTER 3. UNROLL-AND-JAM

References that are invariant with respect to an outer loop require registers only if a corresponding reference-
invariant loop is unrolled. However, references that are invariant with respect to the innermost loop always
require registers. For each v € V!, unrolling loops that are not v-invariant creates references that possibly
require additional registers. In Figure 3.4, the reference to A(I,K) requires no registers unless the J-loop is
unrolled and since K is unrolled once, two registers are required. Formulating this behavior, we have

Rw{: Z(H O‘(ev’i’n))

veV] 1<i<n

where

a(e,i,n) < if e is invariant wrt loop ¢ then
if (3X;|X; > 1 Ae is invariant wrt loop j) or
(e is invariant wrt loop n) then

return 1

else
return 0

else
return X;

An Example. As an example of a formula for computing register pressure, consider the following loop.
DO 10 J = 1,N
DO 10 T = 1,N
10 A(I,J) = A(I,J-1) + B(D)

We have A(I,3) € VP A(I,3-1) € V,C with an incoming distance vector of (1,0) and B(J) € V,!. This
gives

R= 1+(X; -1t +X;.

3.4 Applying Unroll-and-Jam in a Compiler

In this section, we will discuss how to take the previous optimization problem and solve it practically for
real program loop nests. In general, integer-programming problems are NP-complete, but we can make
simplifying assumptions for our optimization problem that will make its solution tractable. First, we show
how to choose the loops to which unroll-and-jam will be applied and then we show how to choose the unroll
amounts for those loops.

3.4.1 Picking Loops to Unroll

Applying unroll-and-jam to all of the loops in an arbitrary loop nest can make the solution to our optimization
problem extremely complex. To simplify the solution procedure, we will only apply unroll-and-jam to a subset
of the loop nest. Since experience suggests that most loop nests have a nesting depth of 3 or less, we can
limit unroll-and-jam to 1 or 2 loops in a given nest.

Our heuristic for determining the subset of loops for unroll-and-jam is to pick those loops whose unrolling
is likely to result in the fewest memory references in the unrolled loop. In particular, we unroll the loops
that carry the most dependences that will be innermost after unroll-and-jam is applied. To find these loops,
we examine each distance vector to determine if it can be made innermost for each pair of loops in the nest.
Given a distance vector d(e) = (d1,...,d;,...,d;, ..., d,) where d;,d; > 0, unrolling loops ¢ and j can make
e innermost if Vk, k # 4, j, n we have di(e) = 0. If we unroll only one loop, ¢, then e can be made innermost
if Vk, k # ¢, n we have dj(e) = 0. The algorithm for choosing loops is shown in Figure 3.5.

3.4. APPLYING UNROLL-AND-JAM IN A COMPILER 45

procedure PickLoops(V')
Input: V' = array references in a loop

for each v € V
if v is a memory read or dn(e,) = 0 then
fore=1ton—1
for each j > i|Vk, k # i, j,n we have di(e) =0
count(z, j)++
if unrolling two loops
unroll loops ¢, j| count(s, j) is the maximum
else
unroll loop i| count(s, i) is the maximum
end

Figure 3.5 PickLoops

3.4.2 Picking Unroll Amounts

In the following discussion of our problem solution, we consider unrolling only one loop to bring clarity to the
solution procedure. Later, we will discuss how to extend the solution to the problem for two loops. Given
this restriction, we can reduce the optimization formula to the following, where § = (X; — d;(e))T and ¢ is
the effective size of the floating-point register set for the target architecture.

Z X+ Z (Xz — (S)+ Z W(ev,i,n)-l' Z C(evaiai"i' 1,77,)

. |veve veVS veVIuv] veEVE 3
min —
I xX; n

RO+ X x > (8% (da(en)+ 1)+ Y aley,in) <o

veEVE vev]

X; > 1

We begin the solution procedure by examining the vertices and edges of the dependence graph to accumulate
the coefficient for X; and any constant value as was shown earlier. Essentially, we solve the summations to
get a linear function of X;. However, the T-function requires us to keep an array of coefficients and constants,
one set for each value of d;, that will be used depending upon the value of X;. In practice, most distances
are 0, 1 or 2, allowing us to keep 4 sets of values: one for each common distance and one for the remaining
distances. If d; > 2 is true for some edge, our results may be a bit imprecise if 3 < X; < d;. However,
experimentation discovered no instances of this situation.

Given a set of coefficients, we can search the solution space, while checking register pressure, to determine
the best unroll factor. Since most dependence distances are 0, 1 or 2, unrolling more than ¢ will most likely
increase the register pressure beyond the physical limits of the target machine. Therefore, by Theorem 3.3,
we can find the solution to the optimization problem in the solution space in O(log g) time.

To extend unroll-and-jam to two loops, we can create a simplified problem from the original by setting
n = 2. A formula for two particular loops, ¢ and j, can be constructed by examining the dependence distance
vectors as in the case for one loop. By Theorem 3.3, if we hold either X; or X; constant, the function for Gz
is nonincreasing, which gives a two dimensional solution space with each row and column sorted in decreasing
order, lending itself to an O(g) intelligent search. In general, a solution for unroll-and-jam of k loops, k > 1,
can be found in O(g*~1) time.

46 CHAPTER 3. UNROLL-AND-JAM

3.4.3 Removing Interlock

After unroll-and-jam, a loop may contain pipeline interlock, leaving idle computational cycles. To remove
these cycles, we use the technique of Callahan, et. al, to estimate the amount of interlock and then unroll
one loop to create more parallelism by introducing enough copies of the inner loop recurrence [CCK8§].
Essentially, the length of the longest recurrence carried by the innermost loop is calculated and then unroll-
and-jam is applied to an outer loop until there are more floating-point operations than the recurrence length.

3.4.4 Multiple Edges

In general, we cannot assume that there will be only one edge entering or leaving each node in the dependence
graph since multiple incident edges are possible and likely. One possible solution i1s to treat each edge
separately as if it were the only incident edge. Unfortunately, this is inadequate because many edges may
correspond to the flow of the same set of values. In the loop,
DO 10 J = 1,N
DO 10 T = 1,N

10 B(I,J) = A(I-1,J) + A(I-1,J) + A(I,D)
there is an input dependence from A(I,J) to each A(I-1,J) with distance vector {0, 1) and a loop-independent
dependence between the A(I-1,J)’s. Considering each edge separately would give a register pressure es-
timation of 5 registers per unrolled iteration of J rather than the actual value of 2. Both values provided
come from the same source, requiring us to use the same registers. Although the original estimation is
conservatively safe, it is more conservative than necessary. To improve our estimation, we consider register
sharing.

To relate all references that access the same values, our scalar replacement algorithm considers the oldest
reference in a dependence chain as the reference that provides the value for the entire chain. Using this
technique alone to capture sharing within the context of unroll-and-jam, however, can cause us to miss
registers that are used. Consider the following example.

DO 10 I = 1,N
DO 10 J = 1,N
10 C(I,J) = A(I+1,J) + A(I,]) + A(I,])
The second reference to A(I,J) has two incoming input dependences: one with a distance vector of (1,0)
from A(I+1,J) and one with a distance vector of (0, 0) from A(I,J). After unrolling the I-loop by 1 we have
DO 10 I = 1,N,2
DO 10 J = 1,N
1 C(I,]) A(I+1,3) + A(I,)) + A(I,D)
10 C(I+1,J) = ACI+2,J) + A(I+1,J) + A(I+1,D)
Now, the reference A(I+1,J) in statement 1 provides the value used in statement 10 by both references to
A(I+1,7), and the first reference to A(I,J) in statement 1 provides the value used in the second reference
to A(I,J) in statement 1. Here, we cannot isolate which of the two references to 4 will ultimately provide
the value for the second A(I,J) before unrolling because they both provide the value at different points.
Therefore, we cannot pick just the edge from the oldest reference, A(I+1,7J), to calculate its register pressure.
Instead, we can use a stepwise approximation where each possible oldest reference within a dependence chain
is considered.

The first step is to partition the dependence graph so that all references using the same registers after
unrolling will be put in the same partition. The algorithm in Figure 3.6 accomplishes this task. Once we
have the references partitioned, we apply the algorithm in Figure 3.7 to calculate the coefficients used in R.
First, in the procedure OldestValue, we compute the node in each register partition that is first to reference
the value that flows throughout the partition. We look for the reference, v, that has no incoming dependence
from another member of its partition or has only loop-carried incoming dependences that are carried by
v-invariant loops. We consider only those edges that can create reuse in the unrolled loop as described in
Section 3.4.1. After unroll-and-jam, the oldest reference will provide the value for scalar replacement for the
entire partition and is called the generator of the partition.

Next, in procedure SummarizeEdges, we determine the distance vector that will encompass all of the
outgoing edges (one to each node in the partition) from the generator of each partition. Because we want

3.4. APPLYING UNROLL-AND-JAM IN A COMPILER 47

Procedure PartitionNodes(G, j, k)

Input: G = (V, E), the dependence graph
7,k = loops to be unrolled

put each v € V in its own partition, P(v)
while 3 an unmarked node do
let v be an arbitrary unmarked node
mark v
forall w € V|((Je = (w,v) Ve = (v, w))A
(e is input or true and is consistent) A
(fori=1...n—1,i+# j,i # k,d;(e) =0)) do
mark u
merge P(u) and P(v)
enddo
enddo

end

Figure 3.6 PartitionNodes

to be conservative, for ¢ = 1,...,n — 1 we pick the minimum d; for all of the generator’s outgoing edges.
This guarantees that the innermost-loop reuse within a partition will be measured as soon as possible in
the unrolled loop body. For d,,, we pick the maximum value to make sure that we do not underestimate
the number of registers used. After computing a summarized distance vector, we use 1t to accumulate the
coefficients to the equation for register pressure.

At this point in the algorithm, we have created a distance vector and formula to estimate the register
requirements of a partition partially given a set of unroll values. In addition, we must account for the
intermediate points where the generator of a partition does not provide the reuse at the innermost loop level
for some of the references within the partition as shown in the previous example (i.e. A(I-1,73) and A(I,J)).
We will underestimate register requirements if we fail to handle these situations.

First, using procedure Prune, we remove all nodes from a partition for which there are no intermediate
points where a reference other than the current generator provides the values for scalar replacement. Any
reference that occurs on the same iteration of loops 1 to n — 1 as the current generator of the partition will
have no such points. Their value will always be provided by the current generator. Next, we compute the
additional number of registers needed by the remaining nodes in the partition by calculating the coefficients
of R for an intermediate generator of the modified partition. The only difference from the computation for the
original generator is that we modify the coefficients of R derived from the summarized distance vector of the
modified partition by accounting for the registers that we have already counted with the previous generator.
This is done by computing the coefficients for R as if an intermediate generator were the generator in an
original partition. Then, we subtract from R the number of references that have already been handled by
the previous generator. We use the distance vector of the edge, é, from the previous generator, v, to the
new intermediate generator, u, to compute the latter value. Given d° for the current summarized distance
vector and d(é) for the edge between the current and previous generators, we compute Rgs — R(4-4ace)). The
value d* + d(é) would represent the summarized distance vector if the previous generator were the generator
of the modified partition. In our example, d* = (0,0) and d(¢) = (1,0) giving (X; — 0)* — (X; —)t
additional references removed. These steps for intermediate points are repeated until the partition has 1 or
less members.

With the allowance of multiple edges, references may be invariant with respect to only one of the unrolled
loops and still have a dependence carried by the other unrolled loop. In this case, we treat the references as
a member of V! with respect to the first loop and V¢ with respect to the second.

Partitioning is not necessary to handle multiple edges for M because sharing does not occur. Instead, we
consider each reference separately using a summarized vector for each v € V' that consists of the minimum
d; over all incoming edges of v for : = 1,...,n — 1. Although this is a slightly different approximation then
used for R, it is more accurate and will result in a better estimate of Gf .

48

CHAPTER 3. UNROLL-AND-JAM

Procedure ComputeR(P, G, R)

Input: P = partition of memory references
G = (V, E), the dependence graph

R = register pressure formula

foreach p € P do
v = OldestValue(p)
d = SummarizeEdges(v)
update R using d
Prune(p,v)
while size(p) > 1 do
u = OldestValue(p)
d = SummarizeEdges(u)
update R using Rq — Rayq(ey, € = (v, u)
Prune(p,u)
v=1u
enddo
enddo

end

Procedure OldestValue(p)
foreach v € p
if Ve = (u, v), v is invariant wrt the loop at level(e)V
P(u) # P(v)) then return v

end

Procedure SummarizeEdges(v)
fore=1ton—1
foreach e = (v, w) € E, w is a memory read
di = min(d{, di(e))
foreach e € F, w is a memory read
dy, = max(d;,, dn(e))
return d°
end

Procedure Prune(p,v)
remove v from p
foreach e = (v,w) € E
if d(e) = (=,=,...,=,*) then remove w
end

Figure 3.7 Compute Coefficients for Optimization Problem

3.4. APPLYING UNROLL-AND-JAM IN A COMPILER 49

3.4.5 Multiple-Induction-Variable Subscripts

In Section 3.2, we discussed a method for updating the dependence graph for references with one induction
variable in each subscript position. Unfortunately, this method does not work on subscripts containing
multiple induction variables, called MIV subscripts, that have incoming consistent dependences [GKT91].
Consider the following loop.

DO 10 I = 1,N
DO 10 J = 1,N
10 A(I) = A(I) + B(I-J)

The load of B(I-J) has a loop-independent incoming consistent dependence from itself carried by the I-loop.
After unroll-and-jam of the I-loop by a factor of 2, we have

po 10 I = 1,N,3
DO 10 J = 1,N

A(I) = A(I) + B(I-D)
A(I) = A(I) + B(I-J+1)
10 A(I) = ACI) + B(I-J+2)

Here, there is an input dependence carried by the innermost loop from B(I-J+2) to both B(I-J+1) and
B(I-J). It was not possible for new references that contained only single-induction-variable subscripts,
called SIV subscripts, to have multiple edges that have the same source and that arose from one original
edge. In the above example, even though the I-loop step value has increased, the presence of J in the
subscript removes its effect for the execution of the innermost loop. The formula presented in Section 3.2 is
invalid in this case since the change in loop step does not have the same effect on dependence distance and
location.

In general, we would need to re-apply dependence analysis to MIV subscripts to get the full and correct
dependence graph. This is because of the interaction between multiple MIV subscripts. In addition, it would
be very difficult to compute M and R given the behavior of such subscripts. Therefore, we restrict the type
of MIV subscripts that we handle to a small, predictable subset, VMV In our experimentation, the only
MIV subscripts that we found fit into the following description of VMV

In order for a reference to be classified as MIV in our system, it must have the following properties:

1. The reference is incident only upon consistent dependences.
2. The reference contains only one MIV subscript position.

3. The inner-loop induction variable does not appear in the subscript or it appears only in the MIV
subscript position.

4. At most, one unrolled-loop induction variable is in the MIV subscript position.

5. The coefficients of the induction variables in the MIV subscript position are 1 for an unrolled loop and
1 or —1 for the innermost loop.

If an MIV reference is invariant with respect to the innermost loop, it is treated as a member of V.I or V.I. If
a loop is unrolled and its induction variable 1s not in the MIV subscript position, we use the classification of
the reference in relation to the unrolled-loop induction variable when unroll-and-jam is applied (e.g, B(I-J)
would be treated as a member of V,! with respect to a K-loop). Any reference containing multiple-induction-
variable subscripts that do not fit the above criteria are classified as members of V7.

To update the dependence graph for VMV we restrict ourselves to the innermost loop to satisfy the needs
of scalar replacement only. Essentially, we will apply the strong SIV test for the innermost-loop induction
variable on each MIV reference pair [GKT91]. Given the references, A(anl, + ag) and A(b, I, + by), where
a, = by, there 1s a dependence between the two references with a consistent threshold d if d = % s an
integer. Since we restrict a, and b, to be 1 or —1, there will always be a dependence.

50 CHAPTER 3. UNROLL-AND-JAM

MMIV RMIV

To compute and , we must recognize that the effect of unroll-and-jam on MIV subscripts is
to increase the distance from the first to the last access of a value by the unroll amount of the loop. Consider
the following loop.

DO 10 I 1,N
DO 10 =1,N
B(I-J) + B(I-J+1)

|| ISR ||

10 ..
Unroll-and-jam of I by 1 produces
DO 10 I 1,N,3
DO 10 =1,N
B(I-J) + B(I-J+1)
B(I-J+1)+ B(I-J+2)

|||

10

In the original loop, the dependence distance for B’s partition was 1. After unroll-and-jam by 1, the distance
is 2. This example shows that each v € VMIV requires X; + d,,(e) registers, assuming a step value of 1 for
loop ¢, when unrolling the loop whose induction variable is in the MIV subscript position. In the loop,

DO 10 I = 1,N
DO 10 J = 1,N
10 . = B(I-J)

we must unroll the I-loop at least once to get a dependence carried by the innermost loop. To quantify this,
we have

RiWIV = Z POS(XZ' - dl(ev)) X (Xz + dn(ev))

’UEVMIV

where d,(ey) is the maximum distance in a partition and Pos(z) returns 1 if z > 0, otherwise it returns 0.
Here, POs(X; —d;(ey)) ensures that a dependence will be carried by the innermost loop after unroll-and-jam.

Only the MIV reference that is first to access a value will be left as a reference to memory after unroll-
and-jam and scalar replacement. This is because each later reference introduced by unroll-and-jam will be
the sink of an innermost dependence, as shown in the examples. Therefore,

MMIV: Z 1.

VEVMIV

For each v € VMV unrolling at least d,(e,) will create an identical subscript expression, resulting in an
incoming loop-independent dependence. Therefore,

MYV =N min(X;, d(ey)),

’UEVMIV

where dy,(ey) is the minimum over all of v’s incoming output dependence edges.

3.4.6 Non-Perfectly Nested Loops

It may be the case that the loop nest on which we wish to perform unroll-and-jam is not perfectly nested.
Consider the following loop.
DO 10 T = 1,N
DO 20 J = 1,N

20 A(I) = ACI) + B(D)
DO 10 J = 1,N
10 c(J) = ¢(J) + D(D)

On the RS/6000, where B3y = 1, the I-loop would not be unrolled for the loop surrounding statement 20,
but would be unrolled for the loop surrounding statement 10. To handle this situation, we can distribute

3.56. EXPERIMENT 51

the I-loop around the J-loops as follows

DO 20 I = 1,N
DO 20 J = 1,N
20 A(I) = ACI) + B(D)
DO 10 I = 1,N
DO 10 J = 1,N
10 c(J) = ¢(J) + D(D)

i
and unroll each loop independently.

In general, we compute unroll amounts with a balance-optimization formula for each innermost loop
body as if it were within a perfectly nested loop body. A vector of unroll amounts that includes a value for
each of a loop’s surrounding loops and a value for the loop itself is kept for each loop within the nest. When
determining if distribution is necessary, if we encounter a loop that has multiple inner loops at the next level,
we compare each of the unroll vectors for each of the inner loops to determine if any unroll amounts differ.
If they differ, we distribute each of the loops from the current loop to the loop at the outermost level where
the unroll amounts differ. We then proceed by examining each of the newly created loops for additional
distribution. To handle safety, if any loop that must be distributed cannot be distributed, we set the unroll
vector values in each vector to the smallest unroll amount in all of the vectors for each level. Distribution is
unsafe if it breaks a recurrence [AK87]. The complete algorithm for distributing loops for unroll-and-jam is
given in Figure 3.8.

3.5 Experiment

Using the experimental system described in Chapter 2, we have implemented unroll-and-jam as presented
in this chapter. In addition to controlling floating-point register pressure, we found that address-register
pressure needed to be controlled. For the RS/6000, any expression having no incoming innermost-loop-carried
or loop-independent dependence required an address register. Although this removes our independence from
a particular compiler, it could not be avoided for performance reasons. To allow for an imperfect scalar
optimizer, the effective register-set size for both floating-point and address registers was chosen to be 26.
This value was determined experimentally.

DMXPY. For our first experiment, we choose DMXPY from the Level 2 BLAS library [DDHHS88]. This
version of DMXPY is a hand-optimized vector-matrix multiply that is machine-specific and difficult to un-
derstand. We applied our transformations to the unoptimized version and compared the performance with
the BLAS2 version.

Array Size | Iterations | Original | BLAS2 | UJ4+SR | Speedup
300 700 7.78s 5.18s 5.06s 1.54

As the table shows, we were able to attain slightly better performance than the BLAS version, while allowing
the kernel to be expressed in a machine-independent fashion. The hand-optimized version was not specific
to the RS/6000 and more hand optimization would have been required to tune it to the RS/6000. However,
our automatic techniques took care of the machine-specific details without the knowledge or intervention of
the programmer and still obtained good performance.

Matrix Multiply. The next experiment was performed on two versions of matrix multiply. The JKI loop
ordering for better cache performance is shown below.

DO 10 J = 1,N
DO 10 K = 1,N
DO 10 I = 1,N
10 C(I,3) = ¢(1,3) + A(I,K) * B(X,J)

The results from our transformation system show that integer factor speedups are attainable on both small
and large matrices for both versions of the loop. Not only did we improve memory reuse within the loop,

52

CHAPTER 3. UNROLL-AND-JAM

Procedure DistributeLoops(L, 1)

Input: I = loop to check for distribution
1 = nesting level of L

if I has multiple inner loops at level 2 + 1 then
| = outermost level where the unroll amounts differ for the
loop nests.
if I > 0 then
if loops at levels I, ... 4 can be distributed then
L=1
while level(£) <1 do
distribute £ around its inner loops
L = parent(L)
enddo
else
for y =1 to: do
m = minimum of all unroll vectors for the inner loops of

L at level y
assign to those vectors at level j the value m
enddo
endif
endif

N = the first inner loop of I at level ¢ + 1
if N exists then

DistributeLoops(N, 1 + 1)
N = the next loop at level ¢ following L
while N exists do

DistributeLoops(N, 1)

N = the next loop at level ¢ following N
enddo

end

Figure 3.8 Distribute Loops for Unroll-and-jam

3.56. EXPERIMENT

but also available instruction-level parallelism.

Loop Order | Array Size | Iterations | Original SR UJ+SR | Speedup
JIK 50x50 500 4.53s 4.53s 2.37s 1.91
500x500 1 135.61s 135.61s 44.16s 3.07
JKI 50x50 500 6.71s 6.71s 3.3s 2.04
500x500 1 15.49s 15.49s 6.6s 2.35

93

Comparing the results of the two versions of matrix multiply shows how critical memory performance really
1s. The JKI version has better overall cache locality and on large matrices, that property gives dramatically
better performance than the JIK version.

Linear Algebra Kernels. We also experimented with both the point and block versions of LU decompo-
sition with and without partial pivoting (LU and LUP, respectively). In the table below, we show the results
of scalar replacement and unroll-and-jam.

Kernel Array Size | Block Size | Original SR UJ+SR | Speedup
Block LU 300x300 32 1.37s 0.91s 0.56s 2.45
300x300 64 1.42s 1.02s 0.72s 1.97
500x500 32 6.58s 4.51s 2.48s 2.65
500x500 64 6.59s 4.54s 2.79s 2.36
Block LUP 300x300 32 1.42s 0.97s 0.67s 2.12
300x300 64 1.48s 1.10s 0.77s 1.92
500x500 32 6.85s 4.81s 2.72s 2.52
500x500 64 6.83s 4.85s 3.02s 2.26

As shown in the above examples, a factor of 2 to 2.5 was attained. Each of the kernels contained an
inner-loop reduction that was amenable to unroll-and-jam. In these instances, unroll-and-jam introduced
multiple parallel copies of the inner-loop recurrence while simultaneously improving data locality.

NAS Kernels. Next, we studied three of the NAS kernels from the SPEC benchmark suite. A speedup
was observed for each of these kernels with Emit and Gmtry doing much better. The reason is because
one of the main computational loops in both Emit and Gmtry contained an outer-loop reduction that was
unroll-and-jammed.

Geophysics Kernels.

Kernel | Original SR UJ+SR | Speedup

Vpenta 149.68s 149.68s | 138.69s 1.08
Emit 35.1s 33.83s 24.57s 1.43
Gmtry 155.3s 154.74s 25.95s 5.98

We also included in our experiment two geophysics kernels: one that computed

the adjoint convolution of two time series and another that computed the convolution. Each of these loops
required the optimization of trapezoidal, rhomboidal and triangular iteration spaces using techniques that

we develop in Chapter 5. Again, these kernels contained inner-loop reductions.

Kernel | Iterations | Array Size | Original SR UJ+SR | Speedup
Afold 1000 300 4.59s 4.59s 2.55s 1.80
1000 500 12.46s 12.46s 6.65s 1.87
Fold 1000 300 4.61s 4.61s 2.53s 1.82
1000 500 12.56s 12.56s 6.63s 1.91

Applications. To complete our study we ran a number of Fortran applications through our translator.
We chose programs from SPEC, Perfect, RICEPS and local sources. Those programs that belong to our
benchmark suites but are not included in this experiment contained no opportunities for our algorithm. The

94 CHAPTER 3. UNROLL-AND-JAM

results of performing scalar replacement and unroll-and-jam on these applications are shown in the following
table.

Program | Original SR UJ+SR | Speedup
Arc2d 410.13s | 407.57s 401.96 1.02
CoOpt 122.88s 120.44s | 116.67s 1.05
Flo52 61.01s 58.61s 58.8s 1.04

Matrix300 149.6s 149.6s 33.21s 4.50

Onedim 4.41s 4.41s 3.96s 1.11
Simple 963.20s 934.13s | 928.84s 1.04

Tomcatv 37.66s 37.66s 37.41s 1.01

The applications that observed the largest improvements with unroll-and-jam (Matrix300, Onedim) were
dominated by the cost of loops containing reductions that were highly optimized by our system. Although
many of the loops found in other programs received a 15%-40% improvement, the applications themselves
were not dominated originally by the costs of these loops.

Throughout our study, we found that unroll-and-jam was most effective in the presence of reductions.
Unrolling a reduction introduced very few stores and improved cache locality and instruction-level parallelism.
Stores seemed to limit the perceived available parallelism on the RS/6000. Unroll-and-jam was least effective
in the presence of a floating-point divide because of its high computational cost. Because a divide takes 19
cycles on the RS/6000, its cost dominated loop performance enough to make data locality a minimal factor.

3.6 Summary

In this chapter, we have developed an optimization problem that minimizes the distance between machine
balance and loop balance, bringing the balance of the loop as close as possible to the balance of the machine.
We have shown how to use a few simplifying assumptions to make the solution times fast enough for inclusion
in compilers. We have implemented these transformations in a Fortran source-to-source preprocessor and
shown its effectiveness by applying it to a substantial collection of kernels and whole programs. These
results show that, over whole programs, modest improvements are usually achieved with spectacular results
occurring on a few programs. The methods are particularly successful on kernels from linear algebra. These
results are achieved on an IBM RS/6000, which has an extremely effective optimizing compiler. We would
expect more dramatic improvements over a less sophisticated compiler. These methods should also produce
larger improvements on machines where the load penalties are greater.

tQur version of Matrix300 is after procedure cloning and inlining to create context for unroll-and-jam [BCHT90].

99

Chapter 4

Loop Interchange

The previous two chapters have addressed the problem of improving the performance of memory-bound
loops under the assumption that good cache locality already exists in program loops. It is the case, however,
that not all loops exhibit good cache locality, resulting in idle computational cycles while waiting for main
memory to return data. For example, in the loop,
DO 10 I =1, N
DO 10 J =1, N

10 A=4+B(I,D
references to successive elements of B are a long distance apart in number of memory accesses. Most likely,
current cache architectures would not be able to capture the potential cache-line reuse available because of
the volume of data accessed between reuse points. With each reference to B being a cache miss, the loop
would spend a majority of its time waiting on main memory. However, if we interchange the I- and J-loops
to get

DO 10 J =1, N
pDo10I =1, N

10 A=A+ B(I,D)
the references to successive elements of B immediately follow one another. In this case, we have attained
locality of reference for B by moving reuse points closer together. The result will be fewer idle cycles waiting
on main memory.

In this chapter we show how the compiler can automate the above process to attain a loop ordering with
good memory performance. We begin with a model of memory performance for program loops. Then, we
show how to use this model to choose the loop ordering that maximizes memory performance. Finally, we
present an experiment with an implementation of this technique.

4.1 Performance Model

Our model of memory performance consist of two parts. The first part models the ability of cache to retain
values between reuse points. The second part models the costs associated with each memory reference within
an innermost loop.

4.1.1 Data Locality

When applied to data locality within cache, a data dependence can be thought of as a potential opportunity
for reuse. The reason the reuse opportunity is only potential is cache interference — where two data items
need to occupy the same location in cache at the same time. Previous studies have shown that interference
is hard to predict and often prevents outer-loop reuse [CP90, LRW91]. However, inner-loop locality is likely
to be captured by cache because of short distances between reuse points. Given these factors, our model
of cache will assume that all outer-loop reuse will be prevented by cache interference and that all inner-
loop reuse will be captured by cache. This assumption allows us to ignore the unpredictable effects of set

56 CHAPTER 4. LOOP INTERCHANGE

associativity and concentrate solely on the cache line size, miss penalty and access cost to measure memory
performance. In essence, by ignoring set associativity, we assume that the cache will closely resemble a fully
associative cache in relation to innermost-loop reuse. Although precision is lowered, our experimentation
shows that loop interchange based on this model is effective in attaining locality of reference within cache.

4.1.2 Memory Cycles

To compute the cost of an array reference, we must first know the array storage layout for a particular
programming language. Our model assumes that arrays are stored in column-major order. Row-major order
can be handled with slight modifications. Once we know the storage layout, we can determine where in the
memory hierarchy values reside and the associated cost of accessing each value by analyzing reuse properties.
In the rest of this section, we show how to determine the reuse properties of array references based upon the
dependence graph and how to assign an average cost to each memory access.

One reuse property, temporal reuse, occurs when a reference accesses data that has been previously
accessed in the current or a previous iteration of an innermost loop. These references are represented in the
dependence graph as the sink of a loop-independent or innermost-loop-carried consistent dependence. If a
reference is the sink of an output or antidependence, each access will be out of cache (assuming a write-back
cache) and will cost T = C cycles, where C}, is the cache access cost. If a reference is the sink of a true or
input dependence, then it will be removed by scalar replacement, resulting in a cost of 0 cycles per access. In
Figure 4.1, the reference to A(I-1,J) has temporal reuse of the value defined by A(I,J) 1 iteration earlier
and will be removed by scalar replacement. Therefore, 1t will cost 0 cycles.

The other reuse property, spatial reuse, occurs when a reference accesses data that is in the same cache
line as some previous access. One type of reference possessing spatial reuse has the innermost-loop induction
variable contained only in the first subscript position and has no incoming consistent dependence. This
reference type accesses successive locations in a cache line on successive iterations of the innermost loop. It
requires the cost of accessing cache for every memory access plus the cache miss penalty, C),, for every access
that goes to main memory. Assuming that the cache line size is C; words and the reference has a stride of
s words between successive accesses, L%J successive accesses will be in the same cache line. Therefore, the
probability that a reference with spatial reuse will be a cache miss is

P = é)
=]

giving the following formulation for memory cost

S =Ch+ P xChy.
In Figure 4.1, the reference to A(I,J) has spatial reuse of the form just described. Given a cache with
Chn=1,Cp, =8 and C; = 16, A(I,J) costs 1 + 18—6 = 1.5 cycles/access.

The other type of reference having spatial reuse accesses memory within the same cache line as a different
reference but does not access the same value. These references will be represented as the sink of an outer-
loop-carried consistent dependence with a distance vector of {0,...,0,d;,0,...,0,d,), where the induction
variable for loop ¢ is only in the first subscript position. In this case, memory accesses will be cache hits on
all but possibly the first few accesses and essentially cost S¢ = C}. In Figure 4.1, the reference to €(J-1,I)
has this type of spatial reuse due to the reference to C(J,I). Under the previous cache parameters, C(J-1,I)
requires 1 cycle/access.

The remaining types of references can be classified as those that contain no reuse and those that are
stored in registers. Array references without spatial and temporal reuse fall into the former category and
require A" = C} + Cy, cycles. References to scalars fall into the latter category and require 0 cycles. €(J,I)
in Figure 4.1 has no reuse since the stride for consecutive elements is too large to attain spatial reuse. It has
a cost of 9 cycles/access under the current cache parameters.

DO 10 J = 1,N
DO 10 T = 1,N
10 A(I,J) = A(I-1,]) + C(J,I) + C(J-1,1)

Figure 4.1 FExample Loop for Memory Costs

4.2. ALGORITHM 57

4.2 Algorithm

This section presents an algorithm for ordering loop nests to maximize memory performance that is based
upon the memory-cost model described in the previous section. First, we show how to compute the order
for memory performance for perfectly nested loops. Then, we show how to extend the algorithm to handle
non-perfectly nested loops.

4.2.1 Computing Loop Order

Using the model of memory from Section 4.1, we will apply a loop interchange algorithm to a loop nest to
minimize the cost of accessing memory. The algorithm considers the memory costs of the references in the
innermost-loop body when each loop is interchanged to the innermost position and then orders the loops
from innermost to outermost based upon increasing costs. Although costs are computed relative only to the
innermost position, they reflect the data-locality merit of a loop relative to all other loops within the nest.
Loops with a lower memory cost have a higher locality and have a higher probability of attaining outer-loop
reuse if interference happens not to occur. To actually compute the memory costs associated with each loop
as described, the distance vectors of all of the dependence edges in the loop nest are viewed as if the entry
for the loop under consideration were shifted to the innermost position with all other entries remaining in
the same relative position. This will allow determination of which edges can be made innermost to capture
reuse.

After computing the memory cost for each loop and computing the order for the loops, we must ensure
that no violation of dependences will occur. Safety is ensured using the technique of McKinley, et al. [KM92].
Beginning, with the outermost position in the loop, we select the loop with the highest memory cost that can
safely go in the current loop position. A loop positioning is safe if no resulting dependence has a negative
threshold [AK87]. After selecting the outermost loop, we proceed by iteratively selecting the loop with the
next highest cost for the next outermost position until a complete ordering i1s obtained. The algorithm for
computing loop order for perfectly nested loops is shown in Figure 4.2.

An Example. To illustrate the algorithm in Figure 4.2, consider the following loop under two sets of
memory costs.
DO 10 T = 1,N
DO 10 J = 1,N
10 ACT ACJ) + B(J,I)
Given (7 = 8,Cy = 1 and (), = 8, the cost of the I-loop in the innermost position 1s 0 +0+9 = 9
cycles/iteration and the cost of the J-loop is 3% (14 % *x8) = 6 cycles/iteration. This cost model would argue
for an I,7J loop ordering. However, if C} were 3 cycles, the cost of the I-loop becomes 11 cycles/iteration

Procedure LoopOrder(L)
Input: I = loop nest

compute memory costs for each loop
P = SortByCost(L)
if 3 a dependence with a negative threshold then
L=7P
for 1 =1 to |£| then
P; = the outermost loop, I; € L |
putting I; at level 2 will not create a dependence
with a negative threshold
remove P; from L
enddo
endif
store P for this perfectly nested loop
end

Figure 4.2 Algorithm for Ordering Loops

58 CHAPTER 4. LOOP INTERCHANGE

and the cost of the J-loop becomes 12 cycles/iteration, giving a J,I loop ordering. As illustrated by this
example, our cost model can optimize for a loop/architecture combination that calls for either better cache
reuse or better register reuse. Unfortunately, we do not have access to a machine with a high load penalty to
validate this effect of our model. It may be the case that TLB misses, due to long strides for references with
no reuse, would dominate the cost of memory accesses. In this case, our model would need to be updated
to reflect TLB performance.

4.2.2 Non-Perfectly Nested Loops

It may be the case that the loop nest on which we wish to perform interchange is not perfectly nested.
Consider the following loop.
DO 10 T = 1,N
DO 20 J = 1,N

20 A(I,J) = A(I,D) + B(I,D)
DO 10 J = 1,N
10 ¢(J,I) = ¢(J,D +DUJ,D

It is desirable to interchange the I- and J-loops for statement 20, but is not desirable for statement 10. To
handle this situation, we will use an approach similar to that used in unroll-and-jam, where each innermost
loop body will be considered as if it were perfectly nested when computing memory costs. If interchange
across a non-perfectly nested portion of the loop nest is required or different loop orderings of common loops
are requested, then the interchanged loop 1s distributed, when safe, and the interchange is performed as
desired [Wol86a]. Distribution safety can be incorporated into LoopOrder at the point where interchange
safety is tested. To be conservative, any loop containing a distribution-preventing recurrence and any
loop nested outside of that loop cannot be interchanged inward. In the previous example, the result after
distribution and interchange would be
DO 20 J = 1,N
DO 20 I =1,N
20 A(T,J) = ACT,J) + B(I,D)
DO 10 T = 1,N
DO 10 J = 1,N
10 c(J,I) = ¢(J,I) + DAJ,I)
In Figure 4.3, we show the complete algorithm for ordering nested loops.

4.3 Experiment

We have implemented our loop interchange algorithm in the Parascope programming environment along with
scalar replacement and unroll-and-jam. Our experiment was performed on the IBM RS/6000 model 540 which
has the following cache parameters: C, = 1,C,, = 8 and C; = 128 bytes. The order in which transformations
are performed in our system is loop interchange followed by unroll-and-jam and scalar replacement. First,
we get the best data locality in the innermost loop and then we improve the resulting balance.

Matrix Multiply. We begin our study with the effects of loop order on matrix multiply using matrices
too large for cache to capture all reuse. In the table below, the performance of the various versions using
two different-sized matrices is given.

Loop Order | Array Size Time
1JK 300x300 12.51s
500x500 131.71s

IKJ 300x300 50.93s
500x500 366.77s

JIK 300x300 12.46s
500x500 135.61s

JKI 300x300 3.38s
500x500 15.49s

KIJ 300x300 51.32s
500x500 366.62s

KIJI 300x300 3.45s
500x500 15.83s

4.3. EXPERIMENT

59

Procedure Interchange(L, i)

Input: I = loop nest
1 = level of outermost loop

for N = each possible perfect loop nest in L do
LoopOrder(NV)
InterchangeWithDistribution(L, 1)
end

Procedure InterchangeWithDistribution(L, 1)

if I has multiple inner loops at level 2 + 1 then
if interchange is desired across level ¢ + 1 or
multiple orderings requested for levels 1 to 2 then
distribute L
for N = L and its distributed copies do
Interchange(N, 1)
return
endif
if L is innermost then
let N = ordering for perfect nest produced by LoopOrder
order perfect nest of loops by N
endif
N = the first inner loop of L at level ¢ 4+ 1
if N exists then
InterchangeWithDistribution(N, ¢ + 1)
N = the next loop at level 1 following L
while N exists do
InterchangeWithDistribution(N, i)
N = the next loop at level ¢ following N
enddo

end

Figure 4.3 Algorithm for Non-Perfectly Nested Loops

60 CHAPTER 4. LOOP INTERCHANGE

The loop order with the best performance is JKI because of stride-one access in cache. This is the loop
order that our transformation system will derive given any of the possible orderings. The key observation to
make is that the programmer can specify matrix multiply in the manner that is most understandable to him
without concern for memory performance. Using our technique, the compiler will give the programmer good
performance without requiring knowledge of the implementation of the array storage layout for a particular
programming language nor the underlying machine. In essence, machine-independent programming is made
possible.

NAS Kernels. Next, we studied the effects of loop interchange on a couple of the Nas kernels from the
SPEC benchmark suite. As is shown in the results below, getting the proper loop ordering for memory
performance can have a dramatic effect.

Kernel | Original SR LI+SR | UJ+SR | LI+UJ4+SR | Speedup
Vpenta 149.68s 149.68s | 115.62s 138.69s 115.62s 1.29
Gmtry 155.30s 154.74s 17.89s 25.95s 18.07s 8.68

The speedup reported for Gmtry does not include the application of unroll-and-jam. Although we have
no analysis tool to determine what exactly caused the slight degradation in performance, the most likely
suspect 1s cache interference. Unroll-and-jam probably created enough copies of the inner loop to incur cache
interference problems due to set associativity.

Applications. To complete our study, we ran our set of applications through the translator to determine
the effectiveness of loop interchange. In the following table, the results are shown for those applications
where loop interchange was applicable.

Program | Original SR LI+SR | UJ+SR | LI+UJ4+SR | Speedup
Arc2d 410.13s 407.57s | 190.69s 401.96 192.53s 2.15
Simple 963.20s 934.13s | 850.18s 928.84s 847.82s 1.14
Wave 445.94s 431.11s | 414.63s | 431.11s 414.63s 1.08

Again, we have shown that remarkable speedups are attainable with loop interchange. Arc2d improved by a
factor of over 2 on a single processor. This application was written in a “vectorizable” style with regard for
vector operations rather than data locality. What our transformation system has done is to allow the code
to be portable across different architectures and still attain good performance. The very slight degradation
when unroll-and-jam was added is probably again due to cache interference.

Throughout our study, one factor stood out as the key to performance on machines like the Rs6000
— stride-one access in the cache. Long cache lines, a low access cost and a high miss penalty create
this phenomena. Attaining spatial reuse was a simple yet extremely effective approach to obtaining high
performance.

4.4 Summary

In this chapter, we have shown how to automatically order loops in a nest to give good memory performance.
The model that we have presented for memory performance is simple, but extremely effective. Using our
transformation system, the programmer is freed from having to worry about his loop order, allowing him
to write his code in a machine-independent form with confidence that it will be automatically optimized to
achieve good memory performance. The results presented here represent a positive step toward encouraging
machine-independent programming.

61

Chapter 5

Blockability

In Chapter 1, we presented two transformations, unroll-and-jam and strip-mine-and-interchange, to effect
iteration-space blocking. Although these transformations have been studied extensively, they have mainly
been applied to kernels written in an easily analyzed algorithmic style. In this chapter, we examine the
applicability of iteration-space blocking on more complex algorithmic styles. Specifically, we present the
results of a project to see if a compiler could automatically generate block algorithms similar to those found
in LAPACK from the corresponding point algorithms expressed in Fortran 77. In performing this study, we
address the question, “What information does a compiler need in order to derive block versions of real-world
codes that are competitive with the best hand-blocked versions?”

In the course of this study, we have found transformation algorithms that can be successfully used on
triangular loops, which are quite common in linear algebra, and trapezoidal loops. In addition, we have
discovered an algorithmic approach that can be used to analyze and block programs that exhibit complex
dependence patterns. The latter method has been successfully applied to block LU decomposition without
pivoting. The key to many of these results is a transformation known as indez-set splitting. Our results
with this transformation show that a wide class of numerical algorithms can be automatically optimized for
a particular machine’s memory hierarchy even if they are expressed in their natural form. In addition, we
have discovered that specialized knowledge about which operations commute with one another can enable
compilers to block codes that were previously thought to be unblockable by automatic means.

This chapter begins with a review of iteration-space blocking. Next, the transformations that we found
were necessary to block algorithms like those found in LAPACK are presented. Then, we present a study of
the application of these transformations to derive the block LAPACK-like algorithms from their corresponding
point algorithms. Finally, for those algorithms that cannot be blocked by a compiler, we propose a set of
language extensions to allow the expression of block algorithms in a machine-independent form.

5.0.1 Iteration-Space Blocking

To improve the memory behavior of loops that access more data than can be handled by a cache, the
iteration space of a loop can be blocked into sections whose temporal reuse can be captured by the cache.
Strip-mine-and-interchange is a transformation that achieves this result [Wol87, WIL.91]. The effect is to
shorten the distance between the source and sink of a dependence so that it is more likely for the datum to
reside in cache when the reuse occurs. Consider the following loop nest.
DO 10 J = 1,N
DO 10 I = 1,M
10 A(I) = ACD) + B(D)
Assuming that the value of M is much greater than the size of the cache, we would get temporal reuse of the
values of B, while missing the temporal reuse of the values of A on each iteration of J. To capture A’s reuse,
we can use strip-mine-and-interchange as shown below.
DO 10 J = 1,N,JS
DO 10 I = 1,M
DO 10 JJ = J, MIN(J+JS-1,N)
10 AT = A(D) + BAD

62 CHAPTER 5. BLOCKABILITY

Now, we can capture the temporal reuse of JS values of B out of cache for every iteration of the J-loop if JS
is less that the size of the cache and no cache interference occurs, and we can capture the temporal reuse of
A in registers [LRW91].

As stated earlier, both strip-mine-and-interchange and unroll-and-jam make up the transformation tech-
nique known as iteration-space blocking. Essentially, unroll-and-jam 1s strip-mine-and-interchange with the
innermost loop unrolled. The difference is that unroll-and-jam is used to block for registers and strip-mine-
and-interchange for cache.

5.1 Index-Set Splitting

Iteration-space blocking cannot always be directly applied as shown in the previous section. Sometimes a
transformation called indez-set splitting must be applied to allow blocking. Index-set splitting involves the
creation of multiple loops from one original loop, where each new loop iterates over a portion of the original
iteration space. Execution order is not changed and the original iteration space is still completely executed.
As an example of index-set splitting, consider the following loop.
DO 10 I = 1,N
10 A = A(D) + B(D
We can split the index set of I at iteration 100 to obtain
DO 10 I = 1,MIN(N,100)
10 A = A(D) + B(D
DO 20 I = MIN(N,100)+1,N
20 A(I) = A(D) + B(D
Although this transformation does nothing by itself, its application can enable the blocking of complex
loop forms. This section shows how index-set splitting allows the blocking of triangular-, trapezoidal-, and
rhomboidal-shaped iteration spaces and the partial blocking of loops with complex dependence patterns.

5.1.1 Triangular Iteration Spaces

When the iteration space of a loop 1s not rectangular, iteration-space blocking cannot be directly applied.
The problem is that when performing interchange of loops that iterate over a triangular region, the loop
bounds must be modified to preserve the semantics of the loop [Wol86a, Wol87]. Below, we will derive the
formula for determining loop bounds when blocking is performed on triangular iteration spaces. We begin
with the derivation for strip-mine-and-interchange and then extend it to unroll-and-jam.

The general form of a strip-mined triangular loop is given below. « and 3 are integer constants (3 may
be a loop invariant) and o > 0.

DO 10 T = 1,N,IS
DO 10 IT = I,I+IS8-1
DO 10 J = alI+f3,M
10 loop body
Figure 5.1 gives a graphical description of the iteration space of this loop. To interchange the IT and J loops,
we have to account for the fact that the line J=aII+/ intersects the iteration space at the point (I,aI+f3).
Therefore, when we interchange the loops, the II-loop must iterate over a trapezoidal region, requiring its
upper bound to be % until #} > I+IS-1. This gives the following loop nest.
DO 10 T = 1,N,IS
DO 10 J = al+3,M
DO 10 II = I,MINC(J-8)/a,I+IS-1)
10 loop body
This formula can be trivially extended to handle the cases where o < 0 and where a linear function of I
appears in the upper bound instead of the lower bound (see Appendix A).

Given the formula for triangular strip-mine-and-interchange, we can extend it to triangular unroll-and-
jam as follows. The iteration space defined by the two inner loops is a trapezoidal region, making unrolling the
innermost loop non-trivial because the number of iterations vary with J. To overcome this, we can use index-
set splitting on J to create one loop that iterates over the triangular region below the line J=a (I+IS-1)+43

5.1. INDEX-SET SPLITTING 63

J=alI+j

a+fd I I I II
1 I I+IS-1 N

Figure 5.1 Upper Left Triangular Iteration Space

and one loop that iterates over the rectangular region above the line. Since we know the length of the
rectangular region, the second loop can be unrolled to give the following loop nest.
DO 10 T = 1,N,IS
DO 20 IT = I,I+I58-2
DO 20 J = aII+3,MIN(a(I+IS-2)+3,M)
20 loop body
DO 10 J = o (I+IS-1)+5 M
10 unrolled loop body
Depending upon the values of @ and 3, it may also be possible to determine the size of the triangular region;
therefore, it may be possible to completely unroll the first loop nest to eliminate the overhead. Additionally,
triangular unroll-and-jam can be trivially extended to handle other common triangles (see Appendix A).
To see the potential of triangular unroll-and-jam, consider the following loop that is used in a back solve
after LU decomposition.
DO 10 I = 1,N
DO 10 J = I+1,N
10 AC)) = A(D) + B(J,I) * A(D
We used an automatic system to perform triangular unroll-and-jam and scalar replacement on the above
loop. We then ran the result on arrays of DOUBLE-PRECISION REALS on an IBM RS/6000 540. The results
are shown in the table below.

Size | Iterations | Original | Xformed | Speedup
300 500 6.09s 3.49s 1.74
500 200 6.78s 3.82s 1.77

5.1.2 Trapezoidal Iteration Spaces

While the previous method applies to many of the common non-rectangular-shaped iteration spaces, there are
still some important loops that it will not handle. In linear algebra, seismic and partial differential equation
codes, we often find loops with trapezoidal-shaped iteration spaces. Consider the following example, where
L is assumed to be a constant and « > 0.
DO 10 I = 1,N
DO 10 J = L,MIN(aI+3,N)
10 loop body

64 CHAPTER 5. BLOCKABILITY

Here, as is often the case, a MIN function has been used to handle boundary conditions, resulting in the
loop’s trapezoidal shape as shown in Figure 5.2. The formula to handle a triangular region does not apply
in this case, so we must extend 1t.

The trapezoidal iteration space contains one rectangular region and one triangular region separated at
the point where aI+3 = N. Because we already know how to handle rectangular and triangular regions and
because we want to reduce the execution overhead in a rectangular region, we can split the index set of I

into two separate regions at the point I = I\K%ﬁ This gives the following loop nest.

DO 10 I = 1,MIN(N, (N-3)/«a)
DO 10 J = L,al+p
10 loop body
DO 10 I = MAX(1,MIN(N, (N-3)/a)+1),N
DO 10 J = L,N
10 loop body

We can now apply triangular iteration-space blocking to the first loop and rectangular unroll-and-jam to the
second loop. In addition to loops with MIN functions in the upper bound, index-set splitting of trapezoidal
regions can be extended to allow MAX functions in the lower bound of the inner loop (see Appendix A).

The lower bound, L, of the inner loop in the trapezoidal nest need not be restricted to a constant value.
It can essentially be any function that produces an iteration space that can be blocked. In the loop,

DO 10 I = 1,N1
DO 10 J = I,MIN(I+N2,N3)
10 F3(I) = F3(I)+DT*F1(K)*WORK(I-K)

the lower bound is a linear function of the outer-loop induction variable, resulting in rthomboidal and trian-
gular regions (see Figure 5.3). To handle this loop, blocking can be extended to rhomboidal regions using
index-set splitting as in the case for triangular regions (see Appendix A).

To see the potential for improving the performance of trapezoidal loops, see Section 3.5 under Geophysics
Kernels. The algorithm Afold is the example shown above and computes the adjoint-convolution of two
time series. Fold computes the convolution of two time series and contains a MAX function in the lower bound
and a MIN function in the upper bound.

L I
1 N=f N

(o4
Figure 5.2 Trapezoidal Iteration Space with Rectangle

5.1. INDEX-SET SPLITTING 65

N3 T

1 f I
1 N3 — N2 N1

Figure 5.3 Trapezoidal Iteration Space with Rhomboid

5.1.3 Complex Dependence Patterns

In some cases, it 1s not only the shape of the iteration space that presents difficulties for the compiler, but
also the dependence patterns within the loop. Consider the strip-mined example below.
DO 10 I = 1,N,IS
DO 10 IT = I, I+IS-1
T(II) = A(ID
DO 10 K = II,N
10 AK) = AK) + T(ID)
To complete blocking, the II-loop must be interchanged into the innermost position. Unfortunately, there
is an recurrence between the definition of A(K) and the load from A(II) carried by the II-loop. Using
only standard dependence abstractions, such as distance and direction vectors, we would be prevented from
blocking the loop [Wol82]. However, if we analyze the sections of the arrays that are accessed at the source
and sink of the offending dependence using array summary information, the potential to apply blocking is
revealed [CK87, HK91]. Consider Figure 5.4. The region of the array A read by the reference to A(II) goes
from I to I+IS-1 and the region written by A(K) goes from I to N. Therefore, the recurrence does not exist
for the region from I+IS to N.

To allow partial blocking of the loop, we can split the index set so that one loop iterates over the common
region and one loop iterates over the disjoint region. To determine the split point to create these regions, we
set the subscript expression for the larger region equal to the boundary between the common and disjoint
regions and solve for the inner induction variable. In our example, we let K = I+IS-1 and solve for K.
Splitting at this point yields

DO 10 I = 1,N,IS
DO 10 IT = I,I+IS-1
T(II) = A(ID
DO 20 K = T,I+I5-1

20 A(K) = ACK) + T(II)
DO 10 K = I+IS,N
10 A(K) = ACK) + T(II)

We can now distribute the II-loop and complete blocking on the loop nest surrounding statement 10.

The method that we have just described may be applicable when the references involved in the preventing
dependences have different induction variables in corresponding positions (e.g., A(II) and A(K) in the
previous example). An outline of our application of the method after strip mining is given below.

1. Calculate the sections of the source and sink of the preventing dependence.

2. Intersect and union the sections.

66 CHAPTER 5. BLOCKABILITY

1 I I+IS-1 N
Figure 5.4 Data Space for &

3. If the intersection is equal to the union then stop.

4. Set the subscript expression of the larger section equal to the boundary between the disjoint and
common sections and solve for the inner-loop induction variable.

5. Split the index set of the inner loop at this point and proceed with blocking on the disjoint region.

6. Repeat steps 4 and 5 if there are multiple boundaries.

If multiple transformation-preventing dependences exist, we process each one with the above steps until
failure or a region is created where blocking can be performed.

5.2 Control Flow

In addition to iteration-space shapes and dependence patterns, we must also consider the effects of control
flow on blocking. It may be the case that an inner loop is guarded by an IF-statement to prevent unnecessary
computation. Consider the following matrix multiply code.
DO 10 J = 1,N
DO 10 K = 1,N
IF (B(K,J) .NE. 0.0) THEN
DO 20 I =1,N
20 C(I,J) = ¢(I,J) + A(I,K) * B(K,J)
ENDIF
10 CONTINUE
If we were to ignore the IF-statement and perform unroll-and-jam on the K-loop, we would obtain the
following code.
DO 10 J = 1,N
DO 10 K = 1,N,2
IF (B(K,J) .NE. 0.0) THEN
DO 20 I =1,N

C(I,J) = C(I,J) + A(I,K) * B(K,J)
20 C(I,J) = C(I,J) + ACI,K+1) * B(K+1,J)
ENDIF

10 CONTINUE

Here, the value of B(K+1,7J) is never tested and statements that were not executed in the original code may
be executed in the unrolled code. Thus, we have performed unroll-and-jam illegally.

One possible method to preserve correctness is to move the guard into the innermost loop and replicate
it for each unrolled iteration. This, however, would result in a performance degradation due to a decrease
in loop-level parallelism and an increase in instructions executed. Instead, we can use a combination of
IF-conversion and sparse-matrix techniques that we call IF-inspection to allow us to keep the guard out
of the innermost loop and still allow blocking [AK87]. The idea is to inspect at run-time the values of an
outer-loop induction variable for which the guard is true and the inner loop is executed. Then, we execute

5.3. SOLVING SYSTEMS OF LINEAR EQUATIONS 67

the loop nest for only those values. To effect IF-inspection, code is inserted within the IF-statement to
record loop bounds information for the loop that we wish to transform. On the true branch of the guard to
be inspected we insert the following code, where KC is initialized to 1, FLAG is initialized to false, K is the
induction variable of the loop to be inspected and KLB is the store for the lower bound of an executed range.
IF (.NOT. FLAG) THEN
KC =KC + 1
KLB(KC) = K
FLAG = .TRUE.
ENDIF
On the false branch of the inspected guard, we insert the following code to store the upper bound of each
executed range.
IF (FLAG) THEN
KUB(KC) = K-1
FLAG = .FALSE.
ENDIF
Note that we must also account for the fact that the value of the guard could be true on the last iteration
of the loop, requiring a test of FLAG to store the upper bound of the last range after the IF-inspection loop
body.

After inserting the inspection code, we can distribute the loop we wish to transform around the inspection
code and create a new loop nest that executes over the iteration space where the innermost loop was executed.
In our example, the result would be

DO 20 K = 1,N

¢
C IF-inspection code
¢

20 CONTINUE

DO KN = 1,KC
DO K = KLB(KN) ,KUB(KN)
DOI =1,N
10 €(I,J) = ¢(I,J) + A(I,K) * B(X,J)

The KN-loop executes over the number of ranges where the guarded loop is executed and the K-loop executes
within those ranges. The new K-loop can be transformed as was desired in the original loop nest. The final
IF-inspected code for our example is shown in Figure 5.5

If the ranges over which the inner loop is executed in the original loop are large, the increase in run-
time cost caused by IF-inspection can be more than counteracted by the improvements in performance on
the newly transformed inner loop. To show this, we performed unroll-and-jam on our IF-inspected matrix
multiply example and ran it on an IBM RS/6000 model 540 on 300x300 arrays of REALS. In the table below,
Frequency shows how often B(K,J) = 0, UJ is the result of performing unroll-and-jam after moving the
guard into the innermost loop and UJ+IF is the result of performing unroll-and-jam after IF-inspection.

Frequency | Original UJ UJ+IF | Speedup
2.5% 3.33s 3.84s 2.25s 1.48
10% 3.08s 3.71s 2.13s 1.45

5.3 Solving Systems of Linear Equations

LAPACK 1is a project whose goal is to replace the algorithms in LINPACK and EISPACK with block al-
gorithms that have better cache performance. Unfortunately, scientists have spent years developing this
package to attain high performance on a variety of architectures. We believe that this process is the wrong
direction for high-performance computing. Compilers, not programmers, should handle the machine-specific
details required to attain high performance. It should be possible for algorithms to be expressed in a nat-
ural, machine-independent form with the compiler performing the machine-specific optimizations to attain
performance.

68

CHAPTER 5. BLOCKABILITY

FLAG = .FALSE.
DO 10 J = 1,N
KC =0
DO 20 K = 1,N
IF (B(X,J) .NE. 0.0) THEN
IF (.NOT. FLAG) THEN
KC =KC + 1
KLB(KC) = K
FLAG = .TRUE.
ENDIF
ELSE
IF (FLAG) THEN
KUB(KC) = K-1
FLAG = .FALSE.
ENDIF
ENDIF
20 CONTINUE
IF (FLAG) THEN

KUB(KC) = N
FLAG = .FALSE.
ENDIF

DO 10 KN = 1,KC
DO 10 K = KLB(KN) ,KUB(KN)
DO 10 I = 1,N
10 C(I,J) = €(I,J) + A(I,K) * B(K,J)

Figure 5.5 Matrix Multiply After IF-Inspection

5.3. SOLVING SYSTEMS OF LINEAR EQUATIONS 69

In this section, we examine the efficacy of this hypothesis by studying the machine-independent expression
of algorithms similar to those found in LAPACK. We examine the blockability of three algorithms for solving
systems of linear equations, where an algorithm is “blockable” if a compiler can automatically derive the best
known block algorithm, similar to the one found in LAPACK, from its corresponding machine-independent
point algorithm. Deriving the block algorithms poses two main problems. The first is developing the
transformations that allow the compiler to attain the block algorithm from the point algorithm. The second
is to determine the machine-dependent blocking factor for the block algorithm. In this section, we address
the first issue. The second is beyond the scope of this thesis.

Our study shows that LU decomposition without pivoting is a blockable algorithm using the techniques
derived in Section 5.1, LU decomposition with partial pivoting is blockable if information in addition to the
index-set splitting techniques is supplied to the compiler and QR decomposition with Householder transfor-
mations is not blockable. The study will also show how to improve the memory performance of a fourth
non-LAPACK algorithm, QR decomposition with Givens rotations using the techniques of Sections 5.1 and 5.2.

5.3.1 LU Decomposition without Pivoting
Gaussian elimination is a form of LU decomposition where the matrix A is decomposed into two matrices,
L and U, such that

A=1LU,

L is a unit lower triangular matrix and U is an upper triangular matrix. This decomposition can be obtained
by multiplying the matrix A by a series of elementary lower triangular matrices, My, ... M, as follows [SteT3].

A = LU
A = M7U.MU
U = Mp...MA (5.1)

Using Equation 5.1, an algorithm for LU decomposition without pivoting can be derived. This point algo-
rithm, where statement 20 computes M and statement 10 applies My to A, is shown below.
DO 10 K = 1,N-1
DO 20 I = K+1,N
20 A(T,K) = A(I,K) / A(K.,K)
DO 10 J = K+1,N
DO 10 T = K+1,N
10 A(I,J) = A(T,J) - A(T,K) * ACK,])

Unfortunately, this algorithm exhibits poor cache performance on large matrices. To improve its cache
performance, scientists have developed a block algorithm that essentially groups a number of updates to
the matrix A and applies them together to a block portion of the array [DDSvdV91]. To attain the best
blocking, strip-mine-and-interchange is performed on the outer K-loop for only a portion of the inner loop
nest, requiring the technique described in Section 5.1.3 for automatic derivation of the block algorithm.
Consider the strip-mined version of LU decomposition below.

DO 10 K = 1,N-1,KS
DO 10 KK = K,K+KS-1
DO 20 I = KK+1,N
20 A(I,KK) = A(I,KK)/A(KK,KK)
DO 10 J = KK+1,N
DO 10 I = KK+1,N
10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)

To complete the blocking of this loop, the KK-loop would have to be distributed around the loop that
surrounds statement 20 and around the loop nest that surrounds statement 10 before being interchanged to

70 CHAPTER 5. BLOCKABILITY

20 10

K K+KS-1 N

Figure 5.6 Regions Accessed in LU Decomposition

the innermost position. However, there is a recurrence between statements 20 and 10 carried by the KK-loop
that prevents distribution unless index-set splitting 1s done.

If we analyze the regions of the array A accessed for the entire execution of the KK-loop, we find that the
region touched by statement 20 is a subset of the region touched by statement 10 (Figure 5.6 gives a graphical
description of the data regions). Since the recurrence exists for only a portion of the iteration space, we can
split the larger region, defined by the reference to A(I,J) in statement 10, at the point J = K+KS-1. The
new loop that covers the disjoint region is shown below.

DO 10 KK = K,K+K5-1
DO 10 J = K+KS,N
DO 10 I = KK+1,N

10 A(TI,J) = A(I,J) - A(I,KK) * A(KK,J)

Now, we can use triangular interchange to put the KK-loop in the innermost position. At this point, we have
obtained the best block algorithm, making LU decomposition blockable (see Figure 5.7). Not only does this
block algorithm exhibit better data locality, it also has increased parallelism as the J-loop that surrounds
statement 10 can be made parallel.

At this point, we would like to perform unroll-and-jam and scalar replacement to further improve the
performance of block LU decomposition. Unfortunately, the true dependence from A(I,J) to A(KK,J) in

DO 10 K = 1,N-1,KS
DO 20 KK = K,MIN(K+KS-1,N-1)
DO 30 I = KK+1,N
30 A(I,KK) = A(I,KK)/A(KK,KK)
DO 20 J = KK+1,K+KS-1
DO 20 I = KK+1,N
20 A(I,J) = A(I,J) - A(I,KK) * ACKK,J)
DO 10 J = K+KS,N
DO 10 I =K+1,N
DO 10 KK = K,MIN(MIN(K+KS-1,N-1),I-1)
10 A(I,J) = A(I,]) - A(I,KK) * A(KK,J)

Figure 5.7 Block LU Decomposition

5.3. SOLVING SYSTEMS OF LINEAR EQUATIONS 71

statement 10 is inconsistent and when moved inward by unroll-and-jam would prevent code motion of the
assignment to A(I,J). However, if we examine the array sections of the source and sink of the dependence
after splitting for trapezoidal and triangular regions, we find that the dependence does not exist in an
unrolled loop body.

We applied our algorithm by hand to LU decomposition and compared its performance with the original
program and a hand coded version of the right-looking algorithm [DDSvdV91]. In the table below, “Block
17 refers to the right-looking version and “Block 27 refers to our algorithm in Figure 5.7. In addition, we
used our automatic system to perform trapezoidal unroll-and-jam and scalar replacement, to our blocked
code, producing the version referred to as “Block 2+”.* The experiment was run on an IBM RS/6000 model
540 using DOUBLE-PRECISION REALS. The reader should note that these final transformations could have
been applied to the Sorensen version as well, with similar improvements.

Array Size | Block Size | Original | Block 1 | Block 2 | Block 24 | Speedup
300x300 32 1.47s 1.37s 1.35s 0.49s 3.00
300x300 64 1.47s 1.42s 1.38s 0.58s 2.53
500x500 32 6.76s 6.58s 6.44s 2.13s 3.17
500x500 64 6.76s 6.59s 6.38s 2.27s 2.98

5.3.2 LU Decomposition with Partial Pivoting

Although the compiler can discover the potential for blocking in LU decomposition without pivoting using
dependence information, the same cannot be said when partial pivoting for numerical stability is added to
the algorithm. Using the following matrix formulation
U=M,_1Py_1--M3gPsMaPo M P A,

the point version that includes partial pivoting can be derived (see Figure 5.8) [Ste73].* While we can apply
index-set splitting to the algorithm in Figure 5.8 after strip mining to break the recurrence carried by the new
KK-loop involving statement 10 and statement 40 as in the previous section, we cannot break the recurrence
involving statements 10 and 25 using this technique.

After index-set splitting, we have the following relevant sections of code.

DO 10 KK = K,K+KS-1

C .
DO 30 J = 1,N
TAU = A(KK,J)
25 A(KK,J) = A(IMAX,J)
30 A(IMAX,J) = TAU
C

DO 10 J = K+KS,N
DO 10 T = KK+1,N
10 A(TI,J) = A(I,J) - A(I,KK) * A(KK,J)
Distributing the KK-loop around both J-loops would convert what was originally a true dependence from
A(I,J) in statement 10 to A(IMAX,J) in statement 25 into an anti-dependence in the reverse direction.
The rules for the preservation of data dependence prohibit the reversing of a dependence direction, which
would seem to preclude the existence of a block analogue similar to the non-pivoting case. However, a block
algorithm, that essentially ignores the preventing recurrence and is similar to the non-pivoting case, can still
be mathematically derived using the following result from linear algebra (see Figure 5.9) [DDSvdV91, Ste73].

If we have
1 0 1 0
Ml_<—m1 I)’ P2_<0 152)

*The dependence from A(I,J) to A(KK,J) in statement 10 needed to be deleted in order for our system to work. Not only do we
need section analysis to handle the dependence, but also PFC incorrectly reported the dependence as interchange preventing.
*In this version of the algorithm, row interchanges are performed across every column. Although this is not necessary (it can
be done only for columns K through), it is done to allow the derivation of the block algorithm.

72

CHAPTER 5. BLOCKABILITY

DO 10 K = 1,N-1
TAU = ABS(A(K,X))
IMAX = K
DO 20 I = K+1,N
IF (ABS(A(I,K)) .LE. TAU) GOTO 20
IMAX = I
TAU = ABS(A(I,.K))
20 CONTINUE
DO 30 J = 1,N

TAU = A(K,J)
25 A(K,J) = A(IMAX,J)
30 A(IMAX,J) = TAU
DO 40 I = K+1,N
40 A(I,K) = A(I,K)/A(K,K)

DO 10 J = K+1,N
DO 10 I = K+1,N
10 A(I,J) = A(I,J) - A(I,K) * A(K,])

Figure 5.8 LU Decomposition with Partial Pivoting

DO 10 K = 1,N-1,KS
DO 20 KK = K,MIN(K+KS-1,N-1)
TAU = ABS(A(K,K))
IMAX = K
DO 30 I = K+1,N
IF (ABS(A(I,K)) .LE. TAU) GOTO 20
IMAX = I
TAU = ABS(A(I,.X))
30 CONTINUE
DO 40 J = 1,N
TAU = A(KK,J)

25 A(KK,J) = A(IMAX,J)
40 A(IMAX,J) = TAU
DO 50 I = KK+1,N
50 A(I,K) = A(I,KK)/A(KK,KK)

DO 20 J = KK+1,K+KS-1
DO 20 I = KK+1,N
20 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)
DO 10 J = K+KS,N
DO 10 T =K+1,N
DO 10 KK = K,MIN(MIN(K+KS-1,N-1),I-1)
10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)

Figure 5.9 Block LU Decomposition with Partial Pivoting

5.3. SOLVING SYSTEMS OF LINEAR EQUATIONS 73

then

1 0 1 0
et = () (o 7)
1 0
(-Azml]52)
1 0 1 0
- <—P2m1 I)(O PZ)

= MPs. (5.2)

This result shows that we can postpone the application of the eliminator M; until after the application of
the permutation matrix P, if we also permute the rows of the eliminator. Extending Equation 5.2 to the
entire formulation we have

U= My 1PoiMy_2Py oMy 3Py 3---MiPIA
My A My 9 Pn 1 Po_oMp_3Pn_3--- M1 P1A
My A My oMy _3Pn 1 Po_9Pp_3--- M1 P1A
My 1My _oMp_5- My Py 1Py 2P,_3--- PLA.
In the implementation of the block algorithm, P; cannot be computed until step ¢ of the point algorithm.
P; only depends upon the first ¢ columns of A, allowing the computation of ¥ P;’s and Mi’s, where £k is the
blocking factor, and then the block application of the M;’s as is done in Figure 5.9 [DDSvdV91].

To install the above result into the compiler, we examine its implications from a data dependence view-
point. In the point version, each row interchange is followed by a whole-column update in which each row
element is updated independently. In the block version, multiple row interchanges may occur before a par-
ticular column is updated. The same computations (column updates) are performed in both the point and
block versions, but these computations may occur in different locations (rows) of the array because of the
application of P41 to M;. The key concept for the compiler to understand is that row interchanges and
whole-column updates are commutable operations. Data dependence alone is not sufficient to understand
this. A data dependence relation maps values to memory locations. It reveals the sequence of values that
pass through a particular location. In the block version of LU decomposition, the sequence of values that
pass through a location is different from the point version, although the final values are identical. Therefore,
from the point of view of a compiler that only understands data dependence, LU decomposition with partial
pivoting is not blockable.

Fortunately, a compiler can be equipped to understand that operations on whole columns are commutable
with row permutations. To upgrade the compiler, one would have to install pattern matching to recognize
both the row permutations and whole-column updates to prove that the recurrence involving statements
10 and 25 of the index-set split code could be ignored. Forms of pattern matching are already done in
commercially available compilers, so it is reasonable to believe that we can recognize the situation in LU
decomposition. The question is, however, “Will the increase in knowledge be profitable?” To see the potential
profitability of making the compiler more sophisticated, consider the table below, where “Block” refers to
the algorithm given in Figure 5.9 and “Block+4" refers to that algorithm after unroll-and-jam and scalar
replacement. This experiment was run on an IBM RS/6000 model 540 using DOUBLE-PRECISION REALS.

Array Size | Block Size | Original | Block | Block+ | Speedup
300x300 32 1.52s 1.42s 0.58s 2.62
300x300 64 1.52s 1.48s 0.67s 2.27
500x500 32 7.01s 6.85s 2.58s 2.72
500x500 64 7.01s 6.83s 2.73s 2.57

5.3.3 QR Decomposition with Householder Transformations

The key to Gaussian elimination is the multiplication of the matrix A by a series of elementary lower
triangular matrices that introduce zeros below each diagonal element. Any class of matrices that have this

74 CHAPTER 5. BLOCKABILITY

property can be used to solve a system of linear equations. One such class, having orthonormal columns, is
used in QR decomposition [Ste73].

If A has linearly independent columns, then A can be written uniquely in the form

A=QR,
where @ has orthonormal columns, QQ7 = I and R is upper triangular with positive diagonal elements.
One class of matrices that fits the properties of () is elementary reflectors or Householder transformations of
the form I — 2vv” .

The point algorithm for this form of QR decomposition consists of iteratively applying the elementary
reflector Vi = I — 2u;, vg to Ap to obtain Apyq for £ =1,...,n— 1. Each Vj eliminates the values below the
diagonal in the kth column. For a more detailed discussion of the QR algorithm and the computation of Vj,
see Stewart [Ste73].

Although pivoting is not necessary for QR decomposition, the best block algorithm is not an aggregation of
the original algorithm. The block application of a number of elementary reflectors involves both computation
and storage that does not exist in the original algorithm [DDSvdV91]. Given

Ay Agp
A= .
(A Agp)

(An)_(Qn Q12)<R11)
Asr)\ Qa1 Qan 0 ’

The first step is to factor
and then solve

where
Q= (I—2vo")I—2v0Ty. (I - QUbvbT)
= I-2vTVT.

The difficulty for the compiler comes in the computation of I — 2VTV7T because it involves space and
computation that did not exist in the original point algorithm. To illustrate this, consider the case where
the block size is 2.

Q= (I—2vv")(I — 2v9vY)

= 1—2(v1vz)< é (U?vzi) (Z%)

Here, the computation of the matrix
_ (1 (vfw)
r=(,)

is not part of the original algorithm, making it is impossible to determine the computation of Q from the
data dependence information.

The expression of this block algorithm requires the choice of a machine-dependent blocking factor. We
know of no way to express this algorithm in a current programming language in a manner that would allow a
compiler to automatically chose that factor. Can we enhance the expressibility of a language to allow block
algorithms to be stated in a machine-independent form? One possible solution is to define looping constructs
whose semantics allow the compiler complete freedom in choosing the blocking factor. In Section 5.4, we
will address this issue.

5.3.4 QR Decomposition with Givens Rotations

Another form of orthogonal matrix that can be used in QR decomposition is the Givens rotation matrix
[Sew90]. We currently know of no best block algorithm to derive, so instead we show that the index-set
splitting technique described in Section 5.1.3 and IF-inspection have wider applicability.

Consider the Fortran code for Givens QR shown in Figure 5.10 (note that this algorithm does not check
for overflow) [Sew90]. The references to A in the inner K-loop have a long stride between successive accesses,
resulting in poor cache performance. Our algorithm from Chapter 4 would recommend interchanging the J-
loop to the innermost position, giving stride-one access to the references to A(J,K) and making the references

5.4. LANGUAGE EXTENSIONS 75

DO 10 L =
DO 10 J
IF (R
= DSQRT(A(L,L)*A(L,L) + A(J,L)*A(J,L))
A(L,L)/DEN
= A(J,L)/DEN
DO 10 K = L,N
A1 = A(L,K)
A2 = A(J,K)
A(L,K) = C#A1 + S*A2
10 A(J,K) = -S*A1 + Cx*A2

1
A(J,L) .EQ. 0.0) GOTO 10
N

Figure 5.10 QR Decomposition with Givens Rotations

to A(L,K) invariant with respect to the innermost loop. In this case, loop interchange would necessitate
distribution of the J-loop around the IF-block and the K-loop. However, a recurrence consisting of a true
and antidependence between the definition of A(L,K) and the use of A(L,L) seems to prevent distribution.
Examining the regular sections for these references reveals that the recurrence only exists for the element
A(L,L), allowing index-set splitting of the K-loop at L, IF-inspection of the J-loop, distribution (with scalar
expansion) and interchange as shown Figure 5.11 [KKP*81]. Below is a table of the results of the performance
of Givens QR using DOUBLE-PRECISION REALS run on an IBM RS/6000 model 540.

Array Size | Original | Optimized | Speedup
300x300 6.86s 3.37s 2.04
500x500 84.0s 15.3s 5.49

5.4 Language Extensions

The examination of QR decomposition with Householder transformations has shown that some block al-
gorithms cannot be derived by a compiler from their corresponding point algorithms. In order for us to
maintain our goal of machine-independent coding styles, we need to allow the expression of these types of
block algorithms in a machine-independent form. Specifically, we need to direct the compiler to pick the
machine-dependent blocking factor for an algorithm automatically.

To this end, we present a preliminary proposal for two looping constructs to guide the compiler’s choice
of blocking factor. These constructs are BLOCK DO and IN DO. BLOCK DO specifies a DO-loop whose blocking
factor is chosen by the compiler. IN DO specifies a DO-loop that executes over the region defined by a
corresponding BLOCK DO and guides the compiler to the regions that it should analyze to determine the
blocking factor. The bounds of an IN DO statement are optional. If they are not expressed, the bounds are
assumed to start at the first value in the specified block and end at the last value with a step of 1. To allow
indexing within a block region, we define LAST to return the last index value in a block. For example, if
LU decomposition were not a blockable algorithm, it could be coded as in Figure 5.12 to achieve machine
independence.

The principal advantage of the extensions is that the programmer can express a non-blockable algorithm
in a natural block form, while leaving the machine-dependent details, namely the choice of blocking factor,
to the compiler. In the case of LAPACK, the language extensions could be used, when necessary, to code
the algorithms for a source-level library that is independent of the choice of blocking factor. Then, using
compiler technology, the library could be ported from machine to machine and still retain good performance.
By doing so, we would remove the only machine-dependency problem of LAPACK and make it more accessible

76 CHAPTER 5. BLOCKABILITY

DO 10 L = 1,N
DO 20 J = L+1,M
IF (A(J,L) .EQ. 0.0) GOTO 20
DEN = DSQRT(A(L,L)*A(L,L) + A(J,L)*A(J,L))
c(J) = A(L,L)/DEN
S(J) = A(J,L)/DEN
A1 = A(L,L)
A2 = A(J,L)
A(L,L) = C(J)*A1 + S(J)*A2
ACJ,L) = -S(J)*A1 + C(J)*A2

C IF-Inspection Code

ENDIF
20 CONTINUE
DO 10 K = L+1,N
DO 10 JN = 1,JC
DO 10 J = JLB(JN),JUB(JN)

A1 = A(L,K)

A2 = A(J,K)

ACL,K) = C(J)*A1 + S(J)*A2
10 ACJ,K) = -S(J)*A1 + C(J)*A2

Figure 5.11 Optimized QR Decomposition with Givens Rotations

BLOCK DO K = 1,N-1
IN K DO KK
DO I = KK+1,N
A(I,KK) = A(I,KK)/A(KK,KK)
ENDDO
DO J = KK+1,LAST(K)
DO I = KK+1,N
A(I,J) = A(I,J) - A(I,KK) * ACKK,J)
ENDDO
ENDDO
ENDDO
DO J = LAST(K)+1,N
DO I = K+1,N
IN K DO KK = K,MIN(LAST(K),I-1)
A(I,J) = A(TI,J) - ACI,KK) * A(KK,J)
ENDDO
ENDDO
ENDDO
ENDDO

Figure 5.12 Block LU in Extended Fortran

5.5. SUMMARY 77

for new architectures. To realize this goal, research efforts must focus on effective techniques for the choice
of blocking factor.

5.5 Summary

We have set out to determine whether a compiler can automatically restructure computations well enough to
avoid the need for hand blocking and encourage machine-independent programming. To that end, we have
examined a collection of programs similar to LAPACK for which we were able to acquire both the block and
corresponding point algorithms. For each of these programs, we determined whether a plausible compiler
technology could succeed in obtaining the block version from the point algorithm.

The results of this study are encouraging: we can block triangular, trapezoidal and rhomboidal loops and
we have found that many of the problems introduced by complex dependence patterns can be overcome by
the use of the transformation known as “index-set splitting”. In many cases, index-set splitting yields codes
that exhibit performance at least as good as the best block algorithms produced by LAPACK developers. In
addition, we have shown that, in the special case of LU decomposition with partial pivoting, knowledge about
which operations commute can enable a compiler to succeed in blocking codes that could not be blocked by
any compiler based strictly on dependence analysis.

79

Chapter 6

Conclusion

This dissertation has dealt with compiler-directed management of the memory hierarchy. We have described
algorithms to improve the balance between floating-point operations and memory requirements in program
loops by reducing the number of memory references and improving cache performance. These algorithms
work under the assumption that the compiler for the target machine is effective at scheduling and register
allocation. The implementation of our algorithms has validated our methodology by showing that integer-
factor speedups over quality commercial optimizers are possible on whole applications. Our hope is that these
results will be used to encourage programmers to write their applications in a natural, machine-independent
form, leaving the compiler to handle machine-dependent optimization details.

In this chapter, we review this thesis. First, we discuss the contributions that we have made to register
allocation and automatic management of cache. Next, we discuss the issues related to cache performance
that still must be solved and finally, we present some closing remarks.

6.1 Contributions

6.1.1 Registers

We have developed and implemented an algorithm to perform scalar replacement in the presence of inner-
loop conditional control flow. The goal of scalar replacement is to expose the flow of values in arrays with
scalar temporaries so that standard data-flow analysis will discover the potential for register allocation. By
mapping partial redundancy elimination to scalar replacement, we are able to replace array references whose
defining value is only partially available, something that was not done before this thesis. The implementation
of this algorithm has shown that significant improvements are possible on scientific applications.

We have also developed and implemented an algorithm to apply unroll-and-jam to a loop nest to improve
its balance between memory references and floating-point operations automatically. Our algorithm chooses
unroll amounts for one or two loops to create a loop that is balanced as much as possible on a particular
architecture. Included in this algorithm is an estimate of floating-point register pressure that is used to
prevent spill code insertion in the final compiled loop. The results of an experiment using this technique have
shown that integer-factor speedups are possible on some applications. In particular, reductions benefit greatly
from unroll-and-jam because of both improved balance and easily attained instruction-level parallelism.

The algorithms for scalar replacement and unroll-and-jam eliminate the need for hand optimization to
effect register allocation of array values. Not only do the algorithms capture reuse in inner loops, but also in
outer loops. Although the outer-loop reuse can be obtained by hand, the process is extremely tedious and
error prone and produces machine-dependent programs. In one particular case, we have shown that hand
optimization actually produces slightly worse code than the automatically derived version. By relying on
compiler technology to handle machine-dependent details, programs become more readable and are portable
across different architectures.

Because scalar replacement and unroll-and-jam can greatly increase register pressure within loops, one
question might be “How many registers are enough?” The answer depends upon the balance of the target

80 CHAPTER 6. CONCLUSION

machine. For machines that can perform multiple floating-point operations per memory operation, more
registers are needed to compensate for a lower memory bandwidth. However, balanced architectures will
require fewer registers because memory bandwidth is not as much of a bottleneck.

6.1.2 Cache

We have developed and implemented an algorithm to attain the best loop ordering for a loop nest in relation
to memory-hierarchy performance. Our algorithm is simple, but effective. It safely ignores the effects of
cache interference on reuse by only considering reuse in the innermost loop. The algorithm is driven by
cache line size, access cost and miss penalty. Implementation has shown that the algorithm is capable of
achieving dramatic speedups on whole applications on a single processor. Using this technology, it is possible
for a programmer to order loop nests independent of language implementation of array storage and cache
structure.

We have also shown that current compiler techniques are not sufficient to perform iteration-space block-
ing on real-world algorithms. Trapezoidal-, thomboidal- and triangular-shaped iteration spaces, which are
common in linear algebra and geophysics codes, require a transformation known as index-set splitting to be
considered blockable. We have derived formulas to handle these common loop shapes with index-set splitting
and shown that blocking these loops can result in significant speedups.

In addition, we have applied index-set splitting to dependences that prevent iteration-space blocking.
The objective is to create new loops where the preventing dependences do not exist and blocking can be
performed. Using this technique, we have been able to derive automatically the best-known block algorithms
for LU decomposition with and without pivoting. Previously, compiler technology was unable to accomplish
this. Unfortunately, not all block algorithms can be derived automatically by a compiler. Those block for-
mulations that represent a change of algorithm from their corresponding point algorithm cannot be obtained
automatically. To handle these situations, we have proposed that a set of programming-language extensions
be developed to allow a programmer to specify block algorithms in a machine-independent manner.

Finally, our study of blockability has also led to a transformation called IF-inspection to handle inner loops
that are guarded by control conditions. With this transformation, we determine exactly which iterations of
an innermost loop will execute and then, we optimize the memory performance of the loop nest for those
iterations. Large integer-factor speedups have been shown to be possible with IF-inspection.

6.2 Future Work

Although we have addressed many memory hierarchy issues in this dissertation, there is still much left to do.
Most of that work lies in the area of cache management. In this section, we will survey some of the major
issues yet to be solved.

In the computation of loop balance, memory references are assigned a uniform cost under the assumption
that all accesses are made out of the cache. This is not always the case. Can we do a better job of computing
the memory requirements of a loop? By applying our memory-hierarchy cost model presented in Chapter 4,
we can compute the actual number of cycles needed to access memory within the innermost loop body. Using
this measurement we will be able to get a better measurement of the relationship between computation and
memory cycles, resulting in a better measure of loop balance. The question is “Does this increased precision
matter to performance?” An implementation and comparison between the two computations of balance
would answer the question.

Our treatment of iteration-space blocking for cache is not complete. Although we have studied extensions
to current compiler techniques to allow a larger class of algorithms to be blocked automatically, these
additional techniques alone are insufficient for implementation in a real compiler. Picking block sizes and
dealing with cache interference because of set associativity are two issues that must be solved to make
automatic blocking a viable technology. The optimal block size for a loop is dependent upon the behavior
of the set associativity of the cache and has been shown to be difficult to determine [LRW91]. Can the
compiler predict these effects at compile time or is it hopeless to perform automatic blocking with today’s
cache architectures? Additionally, an implementation of the techniques developed in Chapter 5 needs to be
done to show its viability.

6.3. FINAL REMARKS 81

As our study of blockability revealed, not all algorithms can be written in a style that will allow them
to be blocked optimally. The language extensions presented in Chapter b provide a vehicle for programmers
to express those block algorithms in a machine-independent manner. It must be determined exactly which
extensions are needed and how to implement them effectively. Assuming that we can automatically determine
block sizes, can we use the language extensions to allow variable block sizes to increase performance?

One transformation for memory performance that has not been discussed in this thesis is software
prefetching. Previous work in this area has ignored the effects of cache-line length on the redundancy
of prefetching in the presence of limited issue slots [CKP91]. Can we take advantage of our loop interchange
algorithm to attain stride-one accesses and use cache-line size to derive an efficient and effective method for
using software prefetching? Future efforts should be directed toward the development of an effective software
prefetching algorithm.

Finally, we have not studied the effects of multi-level caches on the performance of scientific applications.
Many current systems use a MIPS R3000 or an Intel 1860 with a second-level cache to attain better cache
performance. Are current compiler techniques (with the addition of the rest of our future work) good enough
to handle this increase in complexity? What is the correct way to view the higher-level caches? What is the
true payoff of level-2 caches? How much improvement can be attained with the extra level of cache? These
issues and others must be answered before such complex memory hierarchies become effective.

6.3 Final Remarks

The complexity in the design of modern memory hierarchies and the lack of sophistication in modern com-
mercial compilers have put a significant burden on the programmer to achieve any large fraction of perfor-
mance available on high-performance architectures. Given that future machine designs are certain to have
increasingly complex memory hierarchies, compilers will need to adopt increasingly sophisticated memory-
management strategies to offset the need for programmers to perform hand optimization. It is our belief
that programmers should not be burdened with architectural details, but rather concentrate solely on pro-
gram logic. To this end, our goal has been to find compiler techniques that would make it possible for
a programmer to express numerical algorithms naturally with the expectation of good memory-hierarchy
performance. We have demonstrated that there exist readily implementable methods that can manage the
floating-point register set and improve the effectiveness of cache. By accomplishing these objectives, we have
taken a significant step towards achieving our goal.

Appendix A

Formulas for Non-Rectangular
Iteration Spaces

A.1 Triangular Loops

A.1.1 Upper Left: a >0

DO 10 I = 1,N
DO 10 J = alI+f3,H
10 loop body

83

II

o+ | |
1 I I+IS-1 N

Figure A.1 Upper Left Triangular Tteration Space

84 APPENDIX A. FORMULAS FOR NON-RECTANGULAR ITERATION SPACES

Strip-Mine-and-Interchange Formula
DO 10 I = 1,N,IS
DO 10 J = aI+@3,M
DO 10 II = I,MINC(J-0)/ca,I+IS-1)
10 loop body

Unroll-and-Jam Formula
DO 10 I = 1,N,IS
DO 20 IT = I,I+IS-2
DO 20 J = oII+83,MIN(a(I+IS-2)+3,M)
20 loop body
DO 10 J = a(I+IS-1)+3,H
10 wunrolled loop body

A.1. TRIANGULAR LOOPS

A.1.2 Upper Right: a <0

DO 10 I = 1,N
DO 10 J = alI+f3,H
10 loop body

all+3 : | II
1 I I+IS-1 N

Figure A.2 Upper Right Triangular Iteration Space

Strip-Mine-and-Interchange Formula
DO 10 I = 1,N,IS
DO 10 J = a(I+IS-1)+3,H
DO 10 II = MAX(I,(J-3)/«),I+IS-1
10 loop body

Unroll-and-Jam Formula
DO 10 I = 1,N,IS
DO 20 II = I+1,I+IS-1
DO 20 J = oII+3,HIN(a(I+1)+5,H)
20 loop body
DO 10 J = aI+8,M
10 wunrolled loop body

86 APPENDIX A. FORMULAS FOR NON-RECTANGULAR ITERATION SPACES

A.1.3 Lower Right: a >0

DO 10 I = 1,N
DO 10 J = L,aI+s
10 loop body

all+f +

L II
1 I I+IS-1 N

Figure A.3 Lower Right Triangular Iteration Space

Strip-Mine-and-Interchange Formula
DO 10 I = 1,N,IS
DO 10 J = L,a(I+IS-1)+3
DO 10 II = MAX(I,(J-3)/«),I+IS-1
10 loop body

Unroll-and-Jam Formula
DO 10 I = 1,N,IS
DO 20 J = L,al+3
20 unrolled loop body
DO 10 II = I+1,I+IS-1
DO 10 J = MAX(a(I+1)+3,L),all+p
10 loop body

A.1. TRIANGULAR LOOPS

A.1.4 Lower Left: a« <0

DO 10 I = 1,N
DO 10 J = L,aI+s
10 loop body

a+f

L f II
1 I I+IS-1 N

Figure A.4 Lower Left Triangular Iteration Space

Strip-Mine-and-Interchange Formula
DO 10 I = 1,N,IS
DO 10 J = L,aI+8
DO 10 II = I,MINC(J-0)/«a),I+IS-1)
10 loop body

Unroll-and-Jam Formula
DO 10 I = 1,N,IS
DO 20 J = L,a(I+IS-1)+53
20 unrolled loop body
DO 10 IT = I,I+IS-2
DO 10 J = MAX(a(I+IS-2)+3,L),all+B
10 loop body

88 APPENDIX A. FORMULAS FOR NON-RECTANGULAR ITERATION SPACES

A.2 Trapezoidal Loops

A.2.1 Upper-Bound MIN Function

Assume «, § > 0.
DO 10 I = 1,N
DO 10 J = L,MIN(aI+3,N)
10 loop body

L I
1 N- N

=)

Figure A.5 Trapezoidal Iteration Space with MIN Function

After Index-Set Splitting
DO 10 I = 1,MIN(N,(N-3)/a)
DO 10 J = L,al+3
10 loop body
DO 20 I = MAX(1,MIN(N, (N-3)/a)+1),N
DO 20 J = L,N
20 loop body

A.2. TRAPEZOIDAL LOOPS 89

A.2.2 Lower-Bound MAX Function

Assume «, 3 > 0.
DO 10 I = 1,N
DO 10 J =MAX(aI+3,L),N
10 loop body

H

1 f
1 N-p N

[a4

Figure A.6 Trapezoidal Iteration Space with MAX Function

After Index-Set Splitting
DO 10 I = 1,MINCN,(L-8)/a)
DO 10 J = L,N
10 loop body
DO 20 I = MAX(1,MIN(N,(L-8)/a)+1),N
DO 20 J = a + 8,8
20 loop body

90 APPENDIX A. FORMULAS FOR NON-RECTANGULAR ITERATION SPACES

A.3 Rhomboidal Loops

Assume o > 0.
DO 10 I = 1,N1
DO 10 J = aI+N,al+M
10 loop body

aN1+M T /

a+l f f f II
1 I I+IS-1 N1

Figure A.7 Rhomboidal Iteration Space

Strip-Mine-and-Interchange Formula
DO 10 I = 1,N1,IS
DO 10 J = aI+N,al+M
DO 10 IT = MAX(I,aT+M),MIN(aTI+N,I+IS-1)
10 loop body

Unroll-and-Jam Formula
DO 10 I = 1,N1,IS
DO 20 IT = I,I+IS-2
DO 20 J aII+N,MIN(a(I+IS-2)+N,a(I+IS-2)+M)
20 loop body
DO 30 J = «a(I+IS-1)+N,aI+M
30 unrolled loop body
DO 10 II = I+1,I+IS-1
DO 10 J MAX (o (I+1)+N, o (IT+1)+M) ,aII+M
10 loop body

BIBLIOGRAPHY 91

Bibliography

[ACT2]

[AKST]

[AKSS]

[ANST]

[AST78]

[ASMS6]

[BCHTY0]

[BCKTS9]

[BS8S]

[CAC*S81]

[Cal86]

[COKSS]

[CCK90]

[CH84]

F.E. Allen and J. Cocke. A catalogue of optimizing transformations. In Design and Optimiza-
tion of Compilers, pages 1-30. Prentice-Hall, 1972.

J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM
Transactions on Programming Languages and Systems, 9(4):491-542, October 1987.

J.R. Allen and K. Kennedy. Vector register allocation. Technical Report TR86-45, Department
of Computer Science, Rice University, 1988.

A. Aiken and A. Nicolau. Loop quantization: An analysis and algorithm. Technical Report
87-821, Cornell University, March 1987.

W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. PhD thesis, Dept.
of Computer Science, University of Illinois, 1978.

W. Abu-Sufah and A. Malony. Vector processing on the alliant FX/8 multiprocessors. In
Proceedings of the 1986 International Conference on Parallel Processing, pages 559-566, August
1986.

P. Briggs, K.D. Cooper, M.W. Hall, and L. Torczon. Goal-directed interprocedural optimiza-
tion. Technical Report TR90-102, Rice University, CRPC, November 1990.

P. Briggs, K.D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register alloca-
tion. In Proceedings of the ACM SIGPLAN 89 Conference on Program Language Design and
Implementation, Portland, OR, June 1989.

M. Berry and A. Sameh. Multiprocessor schemes for solving block tridiagonal linear systems.
International Journal of Supercomputer Applications, 2(3):37-57, Fall 1988.

G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein.
Register allocation via coloring. Computer Languages, 6:45-57, January 1981.

D.A. Calahan. Block-oriented, local-memory-based linear equation solution on the Cray-2:
Uniprocessor algorithm. In Proceedings of the 1986 International Conference on Parallel Pro-
cessing, 1986.

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for
pipelined machines. Journal of Parallel and Distributed Computing, 5, 1988.

D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted vari-
ables. In Proceedings of the SIGPLAN 90 Conference on Programming Language Design and
Implementation, White Plains, NY, June 1990.

F. Chow and J. Hennessy. Register allocation by priority-based coloring. In Proceedings of the
SIGPLAN 84 Symposium on Compiler Construction, SIGPLAN Notices Vol. 19, No. 6, June
1984.

92

[CKTT]

[CK87]

[CKP91]

[CPIO]

[DBMST7Y]

[DDDHYO]

[DDHHSS]

[DDSvdV91]

[DS88]

[Fab79]

[GI79]

[GIGST]

[GIMS8S]

[GKT91]

[GMS6]

[GS84]

[HK91]

[T1T88]

BIBLIOGRAPHY

John Cocke and Ken Kennedy. An algorithm for reduction of operator strength. Communica-

tions of the ACM, 20(11), November 1977.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel program-
ming environment. In Proceedings of the First International Conference on Supercomputing.

Springer-Verlag, Athens, Greece, 1987.

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proceedings of the Fourth
International Conference on Architecural Support for Programming Languages and Operating

Systems, Santa Clara, CA, April 1991.

D. Callahan and A. Porterfield. Data cache performance of supercomputer applications. In
Supercomputing '90, 1990.

J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. LINPACK User’s Guide. STAM
Publications, Philadelphia, 1979.

J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammerling. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 16:1-17, 1990.

J.J. Dongarra, J. DuCroz, S. Hammerling, and R. Hanson. An extendend set of fortran basic
linear algebra subprograms. ACM Transactions on Mathematical Software, 14:1-17, 1988.

J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Solving Linear Systems on
Vector and Shared-Memory Computers. SIAM, Philadelphia, 1991.

K.H. Drechsler and M.P. Stadel. A solution to a problem with morel and renvoise’s “global
optimization by suppression of partial redudancies”. ACM Transactions on Programming Lan-

guages and Systems, 10(4):635-640, October 1988.

Janet Fabri. Automatic storage optimization. In Proceedings of the SIGPLAN Symposium on
Compiler Construction, Denver, CO, 1979.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., San Francisco, 1979.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management
by global program transformations. In Proceedings of the First International Conference on
Supercomputing. Springer-Verlag, Athens, Greece, 1987.

K. Gallivan, W. Jalby, U. Meier, and A.H. Sameh. Impact of hierarchical memory systems on
linear algebra design. International Journal of Supercomputer Applications, 2(1):12-48, Spring
1988.

G. Goff, K. Kennedy, and C.W. Tseng. Practical dependence testing. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation, Toronto,
Ontario, June 1991.

P.B. Gibbons and S.S. Muchnick. Efficient instruction scheduling for a pipelined architecture.
In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, 1986.

J.H. Griffin and M.L. Simmons. Los Alamos National Laboratory Computer Benchmarking
1983. Technical Report LA-10051-MS, Los Alamos National Laboratory, June 1984.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section
analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.

F. Irigoin and R. Triolet. Supernode partitioning. In Conference Record of the Fifteenth ACM
Symposium on the Principles of Programming Languages, pages 319-328, January 1988.

BIBLIOGRAPHY 93

[KKP*81]

[KM92]

[Kuc78]

[LHKK79]

[LRW91]

[1.588]

[MR79]

[Por89]

[Sew90]
[SteT3]
[SU70]

[Tha81]

[WL91]

[Wol82]

[Wol86a]

[Wol86b]

[Wol87]

[Wol89]

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler
optimizations. In Conference Record of the Fight ACM Symposium on the Principles of Pro-
gramming Languages, 1981.

K. Kennedy and K. McKinley. Optimizing for parallelism and memory hierarchy. In Proceedings
of the 1992 International Conference on Supercomputing, Washington, DC, July 1992.

D. Kuck. The Structure of Computers and Computations Volume 1. John Wiley and Sons,
New York, 1978.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortran
usage. ACM Transactions on Mathematical Software, 5:308-329, 1979.

M.S. Lam, E.E. Rothberg, and M.E. Wolf. The cache performance and optimizations of blocked
algorithms. In Proceedings of the Fourth International Conference on Architecural Support for
Programmang Languages and Operating Systems, April 1991.

B. Liu and N. Strother. Programming in VS FORTRAN on the IBM 3090 for maximum vector
performance. Computer, 21(6), June 1988.

E. Morel and C. Revoise. Global optimization by suppression of partial redundancies. Com-
munications of the ACM, 22(2), February 1979.

A K. Porterfield. Software Methods for Improvement of Cache Performance on Supercomputer
Applications. PhD thesis, Rice University, May 1989.

G Sewell. Computational Methods of Linear Algebra. Ellis Horwood, England, 1990.
G.W. Stewart. Introduction to Matriz Computations. Academic Press, New York, 1973.

R. Sethi and J.D. Ullman. The generation of optimal code for arithmetic expressions. Journal

of the ACM, 17(4):715-728, October 1970.

Khalid O. Thabit. Cache Managemant by the Compiler. PhD thesis; Rice University, November
1981.

M.E. Wolfand M.S. Lam. A data locality optimizing algorithm. In Proceedings of the SIGPLAN
’91 Conference on Programming Language Design and Implementation, June 1991.

M. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of Illinois,
October 1982.

M. Wolfe. Advanced loop interchange. In Proceedings of the 1986 International Conference on
Parallel Processing, August 1986.

M. Wolfe. Loop skewing: The wavefront method revisited. Journal of Parallel Programming,
1986.

M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third STAM
Conference on Parallel Processing for Scientific Computing, December 1987.

M. Wolfe. More iteration space tiling. In Proceedings of the Supercomputing ’89 Conference,
1989.

