


ABSTRACT

Predicting Wind Induced Damage to Residential Structures:

A Machine Learning Approach

by

Josue Salazar

Hurricane winds can cause significant physical damage to residential properties.

Pre-storm prediction of wind damage risk allows residents and city emergency o�cials

to plan actions to reduce loss of life and property. In this thesis, I have developed

a data-driven machine learning framework to estimate the probability of structural

damage risk to a home subject to hurricane force winds. The modeling framework

maps a set of predictor variables with the potential to explain structural damage

to actual observations of homes damaged by hurricane winds. Widely used wind

damage prediction models are parametric and are based on the physics of a struc-

ture responding to a wind load. Using a wind damage dataset gathered from about

700,000 residential buildings after Hurricane Ike in 2008 over Harris County, I have

built a hybrid machine learning model that combines classification trees and logistic

regression. My model is 47.5% more accurate than the physics-based approach at

predicting expected damage at the one-kilometer square block level. I demonstrate

the robustness of the model by using it to predict wind damage to homes in Harris

County for simulated hurricanes of category 1 through 5 on the Sa�r-Simpson scale.
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Chapter 1

Introduction

1.1 Importance of hurricane damage prediction

Hurricane hazards have caused significant loss of life and economic harm to the United

States. Over the years 2003-2012, they induced property damage of up to $122 billion

dollars and more than 1,000 deaths all along the Gulf and East Coast [1]. According

to a study of the economic impact of hurricanes in the United States, yearly ratios of

damage to gross domestic product (GDP) for nine years between 1900 and 2008 have

exceeded 20% [2]. Among these years, 2005 stands out with a damage to GDP ratio

of about 90%, mainly due to damage caused by the landfall of five hurricanes in US

territory (hurricanes Denis, Emily, Katrina, Rita, and Wilma). The source of such

significant economic impact does not solely originate from the hurricane hazards but

also from the level of economic development where the hurricane made landfall. As of

2005, New Orleans and three other coastal cities (Miami coast, Houston, and Tampa)

were areas holding capital stock greater than $100 billion [2]. In the United States,

during 2003, 53% of the total population lived in coastal counties. Among these, 56%

resided in coastal counties from the Northeast, Southeast, and Gulf of Mexico regions

where hurricane activity is most experienced [3]. As long as economic development

and population migration continue to increase in coastal regions, hurricanes will have

a significant impact on the economy and population of the United States.
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The harmful e↵ects hurricanes cause have motivated the development of prediction

tools with the goal to mitigate disaster and loss of life. In particular, this thesis focuses

on the development of a data-driven machine learning framework which estimates the

probability of structural damage risk to homes subject to hurricane wind forces. While

most models in civil engineering for wind damage prediction are physics based, mine

is based on the largest damage data set collected to date. The framework maps a

set of predictor variables with the potential to explain structural damage to actual

observations of homes damaged by hurricane winds. Using the wind damage dataset

composed of about 700,000 residential buildings after Hurricane Ike in 2008 over

Harris County, I build a hybrid machine learning model that combines classification

trees and logistic regression. Since it is di�cult to predict damage at the individual

home level, I assess the model quality by aggregating damage predictions at the level

of blocks which divide the Harris County into 1km2 areas. That is, I compare the

model’s prediction of damage at the one-kilometer square block level with the actual

(or observed) damage percentage at the same level. My model correctly predicts the

percentage of actual observed damage caused by Hurricane Ike for 75.2% of the one-

kilometer square blocks across Harris County with a mean absolute error of 0.125.

This outcome corresponds to a 47.5% increase in performance compared to the state-

of-the-art wind damage model.

Improved prediction performance of wind-induced damage to residential struc-

tures has important applications for the federal government, local governments, and

community residents. The federal government uses damage risk predictions to esti-

mate economic losses of a↵ected areas in order to decide the amount of economic aid

needed by local governments for restoration. Local governments use damage risk pre-

dictions to identify neighborhoods most at risk, estimate the number of people likely
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to evacuate, the number of temporary shelters needed, and the number of personnel

and rescue teams needed to assist the displaced population. Community residents

can use predictions prior to or during a hurricane threat to become informed about

the risk of wind-induced damage specific to their neighborhood. Once informed, they

can make decisions about improvements to their homes to increase resistance to wind

damage, and better assess whether to shelter or evacuate in the event of a hurricane

threat. These important applications accentuate the need for e�cient, practical, and

accurate wind-damage prediction models which enable communities to respond to

hurricane threats more e↵ectively.

1.2 Formulation of the prediction problem

The wind damage prediction problem can be formulated at two di↵erent geographical

levels of aggregation: individual and areal. The individual level corresponds to having

data values represent single family residences. For example, Figure 1.1(i) shows a

set of five homes, two of which have been labeled as not damaged and three as

damaged. The areal level corresponds to the case where a summary statistic is used

to aggregate individual units within a geographical area. Figure 1.1(ii) shows the same

set of houses, but now divided by three regions. Each region has been assigned the

expected damage of homes within (100%, 50%, and 0%). In the following paragraphs,

I expose the di�culties encountered when fitting wind damage models using data at

the individual and areal levels of aggregation. I compare and contrast the advantages

and disadvantages of using either of the two levels and use that as a guide to devise

the best strategy for modeling the risk prediction problem.

Predicting at the individual level increases the di�culty of prediction due to two

types of uncertainties: uncertainties due to naturally stochastic wind currents and
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Damaged

Not
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50% 100%

0%

(i) Individual Level (ii) Region Set A

(iii) Region Set B (iv) Region Set C

100%

0%

0%
60%

Figure 1.1 : (i) Individual level representation of residential structures. (ii) Region

Set A divides the area into three regions and the corresponding expected damage

computed from individual homes within each region is shown. (iii) Region Set B

shows the scale e↵ect of the MAUP compared to Region Set A. (iv) Region Set C

shows the e↵ect of zoning compared to Region Set A.

uncertainties due to unknown stochastic factors pertaining to wind resistive capacity

of structures. The first type of uncertainty corresponds to the e↵ects of turbulent

wind flows interacting with the environment. Turbulent wind flows might create wind

gusts defined as sudden, brief increases in wind speed followed by a sudden decrease
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[4]. When severe, these can exert significant loads on buildings, causing structural

failure. Formed due to friction (turbulence caused by wind blowing around obstacles),

wind shear (changes in wind speed and direction over distance in both vertical and

horizontal directions), and solar heating of the ground (which causes warm air to rise

and cooler air to sink), wind gusts can also blow down trees over homes and pick

up debris, transforming them into high velocity projectiles that collide with homes

[5]. The second source of uncertainty corresponds to the unknown stochastic factors

characterizing the resistance capacity of built structures. The structure’s resistance

as a whole is determined by the individual components’ capacity to tolerate stress.

Failure at any given component compromises the integrity of the whole structure.

Even though probabilistic knowledge of the components’ resistance capacity exists,

stochastic factors such as quality degradation due to aging and unknown prior damage

(e.g. prior hurricane, water infiltration, termite damage) increase uncertainty [6].

Predicting with data spatially aggregated to the areal level generates two types

of problems: the Modifiable Areal Unit Problem (MAUP) and the ecological fallacy.

The MAUP emerges from the fact that spatial aggregation can be performed at areal

zones of di↵erent sizes having di↵erent boundary delineations [7]. Constructing sta-

tistical models based on aggregated summary statistics produce statistical analyses

dependent on the specific areal aggregation. MAUP can be characterized by two

e↵ects: scale and zoning e↵ects. The scale e↵ect relates to the variation introduced

due to the geographic level of aggregation (e.g. census blocks, census tracts, county).

For example Figure 1.1(iii) shows a di↵erent outcome in expected damage after ag-

gregating individual homes to a larger areal zone. The zoning e↵ect relates to the

variation introduced by the geographic delineation of zones (there are infinite ways to

partition a study area into zones). Figure 1.1(iv) shows an example of how modifying
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the zone boundaries generate di↵erent results. The second problem when predicting

at the areal level corresponds to the ecological fallacy. Ecological fallacy occurs when

making an inference about individuals based on spatially aggregated data [8]. There-

fore, prediction estimates produced at the areal level can only be interpreted at that

level of aggregation. For example, it is not correct to infer from Figure 1.1(iii) that

given the probability damage in Region B is 60%, an individual home within Region

B has a probability of damage of 60%. In fact, two homes within Region B have 0%

probability of damage and three have 100% probability of damage.

Predicting at the individual level directly answers the question, “What is the

probability of damage to a home?” This is actually the question home owners would

like answered each time a hurricane threatens their community. Nonetheless, there

are advantages as well as disadvantages when predicting at this level. The advantages

of using individual level data are twofold. First, individual data allows for the con-

struction of models based on residential structures that share similar components and

characteristics by using information at the finest grain. Aggregating over a predefined

zoning replaces the individuality of each structure by a summary statistic computed

from di↵erent nearby structures. Second, estimating individual level damage risk al-

lows for the possibility to aggregate damage probabilities to any areal level. Doing

so relaxes the burden of predicting accurately at the individual level and allows us

to evaluate prediction performance at the areal level of choice. The disadvantages

of using individual level data are also twofold. First, as explained in previous para-

graphs, di�culty exists in predicting whether a specific home will be damaged due

to the stochastic processes taking place in a hurricane event. It is an open question

whether it is even possible to predict wind damage at the individual level given the
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available information. Second, if damage risk predictions were to be released to the

public, the privacy of residents would be violated.

Predicting at the areal level answers the question, “What is the probability of

expected damage in a neighborhood?” City emergency o�cials are interested in an-

swering this question to identify neighborhoods with higher damage risk, so they can

plan mitigation steps accordingly. The advantages of areal level prediction include

analysis at larger scales over geography and protection of privacy of residents. The

disadvantages of predicting at the areal level are the heavy dependence of results on

the specific scale and zoning (MAUP). Also, predictions at the areal level limit the

ability to infer damage at other aggregation levels (ecological fallacy).

The examination of the advantages and disadvantages of individual and areal

level prediction motivates the combination of the best of both levels for learning

data-driven wind damage models. First, model construction at the individual level

avoids the MAUP problem. Predicting at this level allows the model construction

to benefit from information at the finest grain. Second, once the model has been

constructed, individual level wind damage predictions can be aggregated to the areal

level of choice by computing the expected probability of damage. Aggregating indi-

vidual level predictions and assessing the model accuracy at the areal level improves

overall performance of the model. Note that as the scale of geographical aggregation

increases (i.e. census blocks to census tracts), the impact of uncertainties and pre-

diction errors is diminished as a consequence of summarizing predictions to a single

statistic (i.e. expectation), therefore, improving prediction accuracy with respect to

observed damage. However, predictions aggregated over a large area do not provide

detailed information useful to residents who are trying to decide whether to evacuate

to a safer place within the same locality. Additionally, irregular delineations of areal
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units with di↵erent scales (as observed in census tracts) make geographical analysis

di�cult. For these reasons, I use one-kilometer square blocks to aggregate and evalu-

ate predictions. This areal level configuration contains uniform areas of small enough

size to make predictions at this level useful to residents.

1.3 Contributions

With a large data set of about 700,000+ observations of wind damage gathered after

Hurricane Ike in 2008 over Harris County, I have made the following contributions:

• Developed a hybrid data-driven machine learning framework to construct dam-

age functions for di↵erent types of residential structures that relate wind speed

to the probability of minor wind damage. The hybrid framework is composed

of a hierarchy of two well known algorithms fitted in sequence: random forest of

classification trees with logistic regression models at the leaves. Although this

combination technique has been previously researched [9][10][11], I contributed

with the novel idea of training the models with di↵erent sets of features to ac-

commodate the needs of the wind damage prediction problem. At the first level,

a random forest separates the training data into similar building types, based on

building, construction code, and terrain variables. The second level corresponds

to fitting a logistic regression model with wind speed and observed damage at

every terminal leaf in the random forest. Each logistic regression is fitted with

wind speed variables and observed damage from samples at each terminal leaf.

The hybrid model (referred to as LogRFT) is equivalent to having a function

for each building type that estimates the probability of at least minor damage

to an individual home given a wind speed.



9

• Developed a strategy to introduce prior knowledge in the learning process en-

abling generalization of models to wind speeds outside the scope of those present

in the training data.

• Trained a random forest/logistic regression hybrid model (LogRFT) to optimize

the number of correctly predicted one-kilometer square blocks with respect to

the observed damage across Harris County, Texas. My model is 47.5% more

accurate than the most widely used wind damage model at predicting expected

damage at the one-kilometer square block level. I demonstrate the robustness

of the hybrid model by using it to predict wind damage to homes in Harris

County for simulated hurricanes of category 1 through 5 on the Sa�r-Simpson

scale. This analysis shows the hybrid model capable of making predictions with

a smooth transition from low to high damage probabilities. Given that the

existence of damage data is limited, it is not possible to evaluate the model

rigorously, therefore, model overfitting might exist.

1.4 Outline

My thesis is organized as follows: In chapter 2, I assemble a literature review of stud-

ies addressing prediction of wind-induced damage to structures, dividing them into

probabilistic component-based vulnerability models (physics based) and supervised

machine learning models (data-driven). I focus attention on a component-based wind

damage model called HAZUS-MH, widely used by local and federal governments to

estimate wind damage risk. I motivate the machine learning approach by citing prior

work which characterized prediction errors made by the HAZUS-MH methodology, by

identifying parameters not modeled in the component-based approach. In chapter 3, I
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describe the hybrid machine learning framework developed for modeling wind-induced

damage, based on a combination of the random forest algorithm [12] and logistic re-

gression models. In chapter 4, I present the model evaluation metrics, detailing data

sources, analysis, and pre-processing of the target and predictor variables. I apply the

hybrid machine learning framework to construct a wind-damage model based on the

observed damage survey of residential structures from Hurricane Ike. Since a large

number of predictor variables was obtained, I include feature selection techniques. In

chapter 5, I analyze the logistic regression models fitted in the previous chapter by:

identifying the di↵erent types of logistic functions, observing the geographic distribu-

tion of residences described by similar logistic models, and characterizing the types

of residences corresponding to similar logistic functions. Additionally, I assess the

generalization of the hybrid model over unseen hurricane category wind fields and

analyze the observations. Lastly, in chapter 6, I conclude a summary of contributions

of my thesis and suggest directions for future research.
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Chapter 2

Background

2.1 Literature review

Divided into two categories, studies addressing the prediction of wind-induced damage

to structures include: probabilistic component-based vulnerability models (based on

the physics and interaction between built structures and the wind) and supervised

machine learning models (derived from observed damage data, knowledge of structural

properties of buildings, terrain characteristics, and the wind). The following sub-

sections present a brief summary of models proposed by these studies, the variables

used to infer damage risk to structures, and the validation of predictions produced

by these models.

2.1.1 Probabilistic component-based vulnerability modeling

Probabilistic component-based vulnerability modeling consists of explicitly account-

ing for the physical resistance capacity of the structure’s components subjected to

increasing wind loads in order to estimate the probability of damage to the entire

structure.

Unanwa et al. (2000) proposed the concept of wind damage bands which define the

upper and lower thresholds of the relationship between the degree of damage and wind

speeds for structure types with similar components (i.e. mid-rise, residential, com-

mercial, and institutional structures) [13]. The upper and lower damage thresholds
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are obtained by considering the highest and lowest probabilities of failure of the set of

components and connections characterizing the structure type. Probabilities of failure

for a structure, acquired from fragility curves, represent the probability of exceeding

a level of damage as a function of wind speeds. These fragility curves are generated

by analyzing a multiple fault tree scheme modeling predominant sequences of failure

modes in hurricane events that significantly contribute to the amount of structural

damage. The model considers components such as roof covering, roof structure, exte-

rior doors and windows, exterior wall, interior, structural system, and foundation. A

subsequent paper, Unanwa and McDonald (2000), details the procedure for the im-

plementation of this model to predict wind-induced damage to individual structures

and groups of structures [14]. This study validates model predictions by comparing

them to observed damage to three buildings from Hurricane Fran. They report that

“the actual damage degrees were found to be within 95% of the model prediction in-

tervals” [14]. The size of the validation set limits the scope of assessment and makes

it di�cult to project its accuracy in new settings.

Ellingwood et al. (2004) presents a fragility-based methodology for assessing the

resistance capacity of light-frame building constructions with various roof configura-

tions subjected to hurricane winds [15]. Roof and construction parameters considered

are roof type, slope, roof height, nailing pattern, connector type, and truss spacing.

In contrast to Unanwa et al. (2000), Ellingwood et al. (2004) fails to consider indi-

vidual component failures that propagate to complete collapse. Instead, Ellingwood

et al. (2004) simply combine the conditional probability of damage of all individual

component fragilities by marginalizing them over a given wind speed [15]. Predictions

were compared to observed damage surveys performed by the National Association

of Home Builders (NAHB) in the aftermath of Hurricanes Andrew (1992) and Iniki
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(1992). Predictions made by the fragility models were found to over-predict the prob-

ability of roof panel damage for one-story residences during Hurricane Andrew. The

survey indicated that 69±5% of homes lost at least one roof panel while the fragility

models predicted roof panel failure of 92%.

Pinelli et al. (2004) presents another probabilistic component-based model which

relies on Monte Carlo simulations. The model determines the probabilities of occur-

rence of combinations of basic damage modes given 3-second average gust wind speeds

while taking into consideration wind-driven debris [16]. These basic damage modes

correspond to breakage of openings, loss of shingles and roof or gable end sheathing,

and roof to wall connection and masonry wall damage. After selecting a building

class (1-story gable roof masonry/wood frame, 1-story hip roof masonry/wood frame,

etc.) for the Monte Carlo engine simulation, each component is assigned a resistance

capacity based on probabilistic information acquired from previous tests and research

[17]. Failure checks to individual components are performed after deterministically

simulated wind loads to uncover component failures. The combination of failures

determine the categorical damage state of the building. This process is repeated

thousands of times for the same building class and the same wind conditions. The

result of the Monte Carlo simulation is a matrix that contains the probability of

occurrence of various damage states given 3-second wind gust speeds. Pinelli et al.

(2004) presents a detailed implementation of the model for a hypothetical residential

community containing di↵erent building types but does not provide any validation of

predictions made by the model.

The HAZUS-MH physical model introduced by Vickery et al. (2006b) is the most

widely used component-based model [18]. This model, currently used by local and

federal governments to provide pre-storm prediction analyses of wind-induced damage
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risk, was developed by the Federal Emergency Management Agency (FEMA). The

methodology for developing structural damage functions relates to that of Pinelli et

al. (2004). The use of simulated hurricane wind fields over 15 minutes intervals

instead of using deterministic wind speeds, di↵erentiates the Monte Carlo engine in

the HAZUS-MH model. A detailed description of this model and studies performed

to validate its predictions is provided inSection 2.2.

Another component-based vulnerability model, the Florida Public Hurricane Loss

Project (FPHLP) model funded by the Florida O�ce of Insurance Regulation, as-

sesses the risk of insured residential property associated with hurricane wind-induced

damage in the State of Florida [19]. This model, based on Monte Carlo simulations,

not only simulates wind speeds but also di↵erent wind directions for the variety of

structure types common in the State of Florida. Components considered include

the roof type, roof sheathing, roof-to-wall connections, walls, windows, doors, garage

doors, region (north, central, south), and sub-region (high wind velocity zone, wind

born debris region, other) [20]. Hamid et al. (2010) provides validation of the FPHLP

model by comparing predicted economic losses to insurance data of historical losses

at the county and state level from di↵erent hurricane events. Their validation shows a

high correlation between the modeled and actual losses but at the very coarse county

and state levels.

Chung et al. (2010) [21] present the application of an integrated model intro-

duced by Lin et al. (2010) [22], combining the debris risk model developed by Lin

and Vandemarcke (2008, 2010) [23] [24] and the FPHLP component-based vulner-

ability model. Chung et al. (2010) analyze the e↵ect of wind-driven debris from

neighboring structures by performing a Monte Carlo simulation with structural resis-

tances randomly assigned to every building component in each run. For each wind
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speed and direction, the wind-pressure damage model is applied to each building in

the neighborhood. If any component failure causes an opening on the building or

when debris damage occurs via windows, doors, or garage doors the internal pressure

is adjusted. Unlike the FPHLP model, which only adjusts the internal pressure once,

the model in Chung et al. (2010) keeps updating the internal pressure of the structure

until no more openings are created and an equilibrium is reached. The simulations

presented in the papers show that wind-borne debris from damaged buildings causes

significant damage to neighboring buildings. Chung et al. (2010) do not provide any

validation due to lack of observed damage data. In addition, wind damage computa-

tion time for a neighborhood of 358 structures becomes significant. This suggests that

the Monte Carlo simulation becomes intractable over a significantly higher amount

of structures.

Building upon previous research, the most recent component-based vulnerability

model approach for wind damage prediction is presented by Grayson et al. (2013) [25]

where they integrate the FPHLP model with a three-dimensional (3D) probabilistic

wind-born debris trajectory model developed by Grayson et al. (2012) [26]. This

integrated model is broken into three phases allowing for an increase in computational

e�ciency. The first phase defines all parameters related to the area of interest. The

second, composed of a Monte Carlo simulation, samples resistance capacities for each

structure component. A separate module determines if wind loads generate wind-

borne debris damage to individual structures. The final phase aggregates the damage

to the individual structures for analysis. Grayson et al. (2012) provide an example

of how the integrated model works. They acknowledge that one of the limitations of

their model is that it cannot be verified due to the lack of data from real building
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envelope failures during hurricanes. Neither Chung et al. (2010) nor Grayson et al.

(2013) take windborne debris from vegetation into account in their models.

2.1.2 Supervised machine learning modeling

Previous studies have also been based on supervised machine learning to model wind-

induced damage to residential structures. Supervised machine learning refers to the

task of building models from supplied training data consisting of a target variable

(which summarizes the outcome we would like to predict) and a collection of predictor

variables (which potentially explain the target variable). Supervised machine learning

explores, within a space of functions, solutions that map the predictor variables to

the target variables. The solution which best explains the target variable given the

predictor variables is used to make new predictions.

Huang et al. (2001) [27] and Sparks (2003) [28] present a very simple model for

wind-induced damage learned from an insurance-claim training data. The training

set is comprised of residential homes in South Carolina a↵ected by Hurricanes Hugo

and Andrew. Created using regression techniques to relate the mean surface wind

speed to the damage ratio (amount paid by insurer divided by total insured value)

at the zip code areal level, the model seems to fit the damage ratio well as wind

speeds increased. Nonetheless, the papers fail to validate the model on a new damage

dataset.

Dehring and Halek (2006) [29] investigate damage based on a sample of residen-

tial structures a↵ected by Hurricane Charley in 2004. Although their goal is to in-

vestigate whether adopting the National Flood Insurance Program construction code

a↵ected damage outcomes in residential structures, they constructed a logistic regres-

sion model based on a binary damage variable. As predictor variables, they include
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four indicator variables related to the construction code in place when the residential

structure was built, as well as distance from the Gulf, area of building, area of parcel,

real price per square foot, age relative to 2003, and base flood elevation. The logistic

model’s goodness of fit, measured by the Nagelkerke’s R2 at 22.03%, corresponds to

the proportion of unexplained variance reduced by the predictor variables. The pa-

per concluded that there was no evidence that increased construction code standards

reduce property risk exposure.

Moreover, Highfield and Peacock (2010) [30] use a set of approximately 1,500 wind-

damage assessments independently collected in the aftermath of Hurricane Ike from

random sampled residential structures within the Galveston Island and the Bolivar

Peninsula. In this paper, the authors learn Ordinary Least Squares (OLS) models

using the collected information to describe and analyze the pattern of damage. Four

observed assessments in a five-point scale including foundation and structural damage,

roof damage, exterior damage, and overall damage, summarized into a damage index

is used as target variable. The predictor variables used by the model include structure

elevation, home age, distance to water, distance to seawall, proportion in FEMA A

Zone, proportion in FEMA V Zone, maximum inundation, whether the structure is

located in Galveston Island, improvement value, and proportions of hispanic and black

population. Although their focus is to analyze the impact of each of these predictor

variables, the best R2 of 35.1% reflects the limitations of using a single linear model

to explain individual residence level damage.

Another study made by Kim et al. (2013) [31] presents a supervised machine

learning approach for predicting wind-induced damage based on insurance claims of

commercial buildings from eight a↵ected counties in the aftermath of Hurricane Ike.

As target variable, they used the ratio of property damage loss paid by the insurer
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divided by the structure’s appraised value. As predictor variables, they considered

maximum sustained wind speeds, floor area, building age, FEMA Flood Zones, Hur-

ricane Surge Zones, distance from water, and an indicator variable of whether the

structure is located to the right side of the hurricane track. After selecting a ran-

dom sample of 500 commercial structures and analyzing correlations between the

damage ratio and variables, they applied a backward feature elimination method to

find a best-fit multiple regression model. The resulting model has an adjusted R

2 of

33.7% which corresponds to the proportion of target variable variance explained by

the set of significant predictor variables: right side of the hurricane track, building

age, hurricane surge zones, and distance from property to shoreline. They attribute

the low adjusted R

2 score to the lack of inclusion of unknown predictor variables,

but do not consider wind damage prediction as a non-linear problem, as previous

component-based engineering research suggests [32]. Surprisingly, the backward fea-

ture elimination procedure in Kim et al. (2013), drops maximum sustained wind

speeds as a predictor variable contradicting the results derived in the probabilistic

component-based approach [32].

2.1.3 Summary

Both data-driven and physics based research aimed at predicting wind-induced dam-

age to residential structures exhibit limitations. Limitations in the machine learning

literature include: failure to consider non-linear models (i.e. decision trees), failure

to acquire important predictor variables for explaining wind-damage, and failure to

apply techniques that enable models to generalize over unseen wind speeds. In gen-

eral, work in component-based modeling, lacks model validations based on actual

damage data. In prior work done in collaboration with other colleagues based on a
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large damage data collected after Hurricane Ike, I performed a validation analysis on

the most widely used component-based wind damage model: HAZUS-MH physical

model. In the next section, I describe the HAZUS-MH methodology for wind-damage

risk modeling, comment on prior validation studies, and report on the findings in the

validation study we performed.

2.2 Current state of the art wind damage prediction model:

HAZUS Multi-Hazard

FEMA developed a software based on Geographic Information Systems (GIS) called

HAZUS Multi-Hazard (HAZUS-MH), for use by local city emergency management

teams. HAZUS-MH contains prediction models for estimating potential physical,

economic, and social impacts from earthquakes, hurricanes, and floods [33]. These

estimations currently help emergency management teams develop damage mitigation

strategies, discover susceptible communities at-risk, plan evacuation recommenda-

tions, and allocate emergency resources.

2.2.1 Methodology

The HAZUS-MH hurricane physical damage model, introduced by Vickery et al.

2006b [18] as previously mentioned, estimates potential damage to a structure by

calculating the wind-induced loads acting on the building and then assessing the re-

sistance of the building and its components under such wind-loads. Fragility curves,

which relate wind gust speeds to the probability of exceeding a level of damage, esti-

mate the resistance of buildings given di↵erent combinations of exterior components

(frame composition, number of floors, roof shape, shutters, garage door type, roof-

deck attachment, and sheeting nails) [34]. These curves are developed by iteratively
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comparing each component’s resistance to pressure loads obtained from wind fields

simulated at 15 minute intervals. Resistance for each component is sampled from

its corresponding probabilistic distribution derived based on experimental data and

engineering analysis [35]. Failure at each component is then assessed by comparing

internal and external pressures. At the same time, the probability of damage caused

by wind-borne debris originating from surrounding structures is simulated based on

a missile impact model introduced in Twisdale et al. (1996) [36] and Vickery et al.

(1999) [37]. After a number of simulations for a given building type, the resulting

overall damage at each simulation is categorized into one of five damage levels (0-

4) defined in Vickery et al. 2006b [18]: no damage, minor, moderate, severe, and

destruction. The HAZUS-MH model outputs expected damage at the areal level

of choice taking into consideration the building stock within each zone. Expected

damage percentage for a given zone is computed by using the predictions of fragility

models of all represented building types and their respective proportion relative to

the total number of buildings within zone. Finally a count of damaged buildings is es-

timated by multiplying each zone’s probability of damage by the zone’s total building

population.

2.2.2 Validation studies

In order to compare actual observed damage to predictions made by the HAZUS-MH

model, the FEMA study [38] introduced a validation protocol for wind-damage models

that accounts for the uncertainty in wind speed. Validation results based on this

protocol at the county areal level indicate “good agreement” with observed damage

caused by Hurricane Charley; however, results also show significant under-estimation

of observed damage caused by Hurricane Ivan. The same study on Hurricanes Charley
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and Ivan indicates significant under-estimation of observed damage at the individual

home level. Another validation study performed by Vickery et al. (2006b) [18] for

Hurricanes Andrew, Hugo, Erin, and Opal, finds that the HAZUS-MH fragility curves

under-estimate the probability of potential damage at wind speeds less than 100mph.

Validation of HAZUS-MH using Hurricane Ike damage data

In collaboration with other colleagues, in Subramanian et al. (2013) [39], I performed

a data intensive validation analysis of the HAZUS-MH model using damage data from

Hurricane Ike. In this study, I reverse engineered and implemented the HAZUS-MH

methodology for predicting wind damage as a function of wind speed. I evaluated

the methodology’s performance based on the same validation protocol introduced in

previous validation studies [38]. The HAZUS-MH physical model uses deterministic

simulation of Hurricane Ike 3-second peak gust speeds generated by the HAZUS-

MH hazard model introduced in Vickery et al. (2006a) [40]. Results show that

the HAZUS-MH physical model correctly predicts observed damage for 51% of the

one-kilometer square blocks, under-estimates 25.6% of the blocks, and over-estimates

damage in 23.4% of the blocks.

Based on a random forest [12] classifier built to discriminate correctly (in good

agreement with observed damage) predicted blocks from incorrectly predicted blocks

in Harris County, characterization of prediction errors made by HAZUS-MH is possi-

ble through twenty-one potential explanatory variables. The classification algorithm

computes estimates of explanatory variable importance. We used these variable im-

portance scores as a tool to reveal important variables that explain prediction errors

made by HAZUS-MH. Figure 2.1 shows the variable importance score for each of

the explanatory variables ordered in decreasing order from left to right. The top
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three variables include quality of the structure, years passed since last remodeling

(remodeled age), and building value. Figure 2.2 shows the distribution of errors at

the one-kilometer square blocks along with a map that shows the spatial distribution

of the quality of structure. Neighborhoods with homes having low quality structures

appear to correlate spatially with under-estimated one-kilometer square blocks. For

example, under-estimated blocks east of US-59 inside the I-610 loop tend to have low-

quality structures. Additionally, over-estimated blocks in the northeast of Beltway 8

seem to include homes with structual quality.

The results of our validation study motivated me to ask whether it would be possi-

ble to construct a supervised machine learning model based on important exploratory

variables in Figure 2.1.

In the following chapter, I layout a machine learning framework I developed to

construct wind-damage models from data with the potential to explain damage at

the one-kilometer square level.
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Figure 2.1 : Random forest variable importance score of explanatory variables used to

discriminate between correctly and incorrectly predicted one-kilometer square blocks

made by the HAZUS-MH wind damage methodology.
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Figure 2.2 : a) Distribution of errors made by the HAZUS-MH wind damage method-

ology at the one-kilometer square block level. b) Spatial distribution of individual

level explanatory variable “quality of structure” considered as the most important

variable that explains HAZUS-MH errors. HAZUS-MH errors appear to correlate

with neighborhoods having low quality structures.
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Chapter 3

Machine learning framework for wind damage
modeling

One of the most di�cult aspects in modeling wind-induced damage to residential

structures is dealing with the uncertainty introduced by stochastic factors governing

the process. Probabilistic component-based models developed directly from proba-

bility functions describe the resistance capacity to wind loads of di↵erent building

types. Some component-based models in the literature review Section 2.1.1 handle

uncertainty by modeling the e↵ects of debris generated from damage to nearby struc-

tures. In contrast, when modeling wind-induced damage directly from observed data,

I have to deal with the variability of observed damage outcomes from similar building

types experiencing similar wind fields. Such variability results from un-modeled and

un-observed factors such as collisions from flying debris or trees falling over the struc-

ture. Therefore, supervised machine learning models have to deal with the challenge

of estimating damage with an incomplete set of predictors.

3.1 Hybrid framework: LogRFT

Recognizing the di�culties in modeling wind-induced damage, I devised a machine

learning framework (named LogRFT), composed of a hybrid combination of two well-

established machine learning algorithms: random forest [12] (an ensemble of classi-

fication trees [41]) and logistic regression [42]. These two models are combined in a

sequential hierarchical fashion. The first is composed of a random forest trained on
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the target variable (observed damage to a building) and a set of predictor variables

excluding wind variables. The second level is composed of logistic regression models

at each terminal leaf in the random forest, based on wind variables and the target

variable. This learning configuration enables us to model the variation of damage

probabilities with wind speeds as a smooth logistic function, where a small change in

the input wind speed results in a small change in the resulting damage probability.

The idea of learning hybrid decision trees with classifiers constructed at each ter-

minal leaf is not new [9] [10] [11]. Seewald et al. (2001) [10] explored the construction

of pruned decision trees with leaf classifiers based on linear regression, the nearest

neighbor algorithm, and the Naive Bayes classifier. The experimental results in See-

wald et al. (2001) show that hybrid decision trees with leaf classifiers perform slightly

better than the original decision tree. Abu-Hanna and Keizer (2003) [11] explored the

construction of classification trees with logistic regressions at the leaves to predict the

probability of intensive care patient survivals, dividing the training set into patient

sub-groups, to learn specialized models. These sub-groups of patients were created

by a classification tree based on predictor variables such as temperature and heart

rate, to discriminate between surviving and the nonsurvivor patients. They con-

structed logistic regression models at the terminal leaves based on a single variable

that describes the severity of illness.

The hybrid combination of a single CART (Classification and Regression Trees)

[41] tree and logistic regressions at the leaves (referred to as LogTree in this the-

sis) takes advantage of the strengths from both classifiers. On the one hand, CART

trees, are capable of capturing non-linear relationships between the predictor vari-

ables and the target variable. A small change in the predictor variables could result

in a large change in prediction. On the other hand, logistic regression models, which
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capture linear relationships between predictors and damage probability (or non-linear

relationships with appropriate choice of basis functions), exhibit a smooth continu-

ous response for predicting the probability damage. Small changes in the predictor

variables of a logistic model result in a small change in the predicted probability.

The LogRFT model previously introduced, composed of an ensemble of LogTree

models put together via the Random Forest algorithm, benefits from the ability of

random forests to generalize by bagging and by feature selection. One of the disad-

vantages of using a single classification tree is that it tends to overfit the data. The

Random Forest algorithm tries to control the loss of generalization due to overfitting

by introducing randomness into the construction of each classification tree in the

ensemble [12]. By learning di↵erent hybrid trees that make uncorrelated errors, the

generalization and accuracy of the overall is improved.

3.2 Dealing with uncertainty in wind speeds in training pro-

cess

The hope is that the classification trees partition the training samples into groups

with respect to the predictor variables (excluding wind variables) to enable e↵ective

discrimination between “damaged” and “not damaged” homes. Any variation left in

the target variable within these groups, found at the terminal leaves, is assumed to

be the result of stochastic wind currents experienced by the residential structures.

Approximations of maximum wind speeds, necessary to explain the variation in the

target variable, introduce two problems. First, while a home experiencing a given

wind speed is labeled as “not damaged”, another home from the same homogeneous

group at a terminal leaf experiencing a lower wind speed is labeled as “damaged”. This
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occurs because of deterministic wind speed approximations utilized to describe the

stochastic wind patterns that a home experiences throughout the hurricane. Second,

using wind data specific to a hurricane, limits the range of speeds used in the training

process. The absence of lower and higher wind speeds in the training data creates

overfitted models.

To observe the e↵ect of using wind speed approximations, consider the synthetic

data presented in Table 3.1. These data represents a set of samples corresponding

to a terminal leaf in the random forest. Observe that, while some “non-damaged”

samples experience higher wind speeds, some reveal damage at lower speeds. Figure

3.1 shows a logistic regression trained using the synthetic data in Table 3.1. The

logistic model represents the cumulative density of the probability of damage as a

function of wind speed. Instead of obtaining a function that rises from low to high

damage probabilities as wind speed increases, the opposite behavior is observed. Since

the training data does not contain samples outside the range of 60mph-90 mph,

logistic regression overfits the training data resulting in lack of generalization over

higher and lower wind speeds. The model over-predicts damage at low wind speeds

P (Damage|windspeed = 0mph) = 0.62 and under-predicts damage at high wind

speeds P (Damage|windspeed = 180mph) = 0.34. This shows the need for a strategy

to overcome the e↵ects of overfitting on observed wind speeds.

3.2.1 Incorporation of virtual samples

I have designed a procedure that enables logistic regression to generalize over wind

speed ranges absent in the training data. This procedure is based on virtual samples

created from existing ones by incorporating prior knowledge [43]. In the context of

wind damage prediction, a virtual sample is added according to the following policy:
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Wind%speed%
(Mph)

Target

60 0
65 1
70 1
72 0
78 1
80 0
84 1
86 0
88 1
90 0

Synthetic%Data

Table 3.1 : Synthetic data representing a set of samples from a single node. The

samples reflect variability in the target variable with respect to wind speed approxi-

mations. Target variable: “not damaged”=0, “damaged”=1.
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Figure 3.1 : Logistic regression trained with synthetic data from Table 3.1.
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a residential structure “damaged” at wind speed w remains “damaged” at w

0
> w;

if a structure is “not damaged” at w, then it remains “not damaged” at w0
< w. In

Algorithm 3.1 for adding virtual samples, a uniform probability distribution randomly

generates values for w0. I use an upper bound of 177mph for the top wind speed based

on largest recorded wind speeds on Earth.

Algorithm 3.1: Algorithm for generating virtual samples based on random

sampling values for w0 from a uniform distribution.

U(a, b) uniform distribution on the interval (a,b);

b original sample; b0  virtual sample;

w  windspeed(b); w0  windspeed(b’);

if class(b) = damaged then

w

0 = U(w, 177 mph);

else

w

0 = U(0 mph, w);

Creating virtual samples for the synthetic data in Table 3.1 based on Algorithm

3.1 and adding them to the training set to fit a logistic regression model, enables

generalization over unseen wind speeds. Figure 3.2 shows how virtual samples help

logistic regression avoid over-estimating damage for low speeds and under-estimating

damage for high speeds.

3.2.2 Training LogRFT with static and dynamic variables

Trained in sequence, the two-level LogRFT machine learning model begins by first fit-

ting the random forest and then fitting logistic regressions at each terminal leaf. Each
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Figure 3.2 : Logistic regression trained with synthetic data in Table 3.1 and virtual

samples generated according to Algorithm 3.1.

level utilizes a di↵erent set of predictor variables which divide into static and dynamic

variables. Static variables, used to construct Random Forest, do not change during

the hurricane event (e.g. distance to coast, distance to highway, etc.). Dynamic vari-

ables, that change during the hurricane event (e.g. wind speed, wind direction, etc.),

are used to fit the logistic regression models. In order to enable logistic regressions to

generalize over unseen wind speeds, the training set of dynamic variables is expanded

to contain virtual samples with w

0 values sampled from a uniform distribution, as

described by Algorithm 3.1.
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Chapter 4

Case study: Prediction of wind-induced damage
caused by Hurricane Ike

I applied the hybrid machine learning framework designed in chapter 3 to a large

damage data set collected after Hurricane Ike in Harris County, Texas. This chapter

is organized as follows: (1) I state the model evaluation metrics, learning objectives,

and model validation protocol. (2) I describe the training data and results from a

spatial autocorrelation analysis of the target variable. (3) I perform feature selection

based on a correlation filter and embedded methods. (4) I select the subset of best

predictor variables using the hybrid framework and construct a LogRFT model.

4.1 Model evaluation

4.1.1 Learning objective: areal level accuracy

Due to the di�culty of accurately predicting the probability of damage for individ-

ual residential structures, the learning objective optimizes the number of correctly

predicted one-kilometer square blocks. The definition of correctly predicted blocks

(in good agreement with actual observed damage) is introduced in a validation pro-

tocol in a study conducted by FEMA related to HAZUS-MH [38]. The validation

protocol directly considers the uncertainty in wind speed by defining an interval of

predictions made evaluating the wind-damage model at ±10% wind speed. I de-

fine expected damage for areal unit u evaluated at ±10% wind speed as the interval
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[p0.9w(u), p1.1w(u)], and o(u) as the actual percentage of observed damage at the areal

level. The decision rule in Equation 4.1 classifies a unit u as under predicted, over

predicted, or correctly predicted. Equation 4.2 indicates the overall accuracy of the

wind-damage model specified by the percentage of correctly predicted areas. Note

that the averaged individual probability estimates of all residential structures inside

the geographic extent of u, determines the expected probability of damage for areal

unit u.

class(u) =

8
>>>><

>>>>:

correct if p0.9w(u)  o(u)  p1.1w(u)

underpredicted if o(u) > p1.1w(u)

overpredicted if o(u) < p0.9w(u)

(4.1)

areal accuracy =
1

n

nX

i=1

[class(ui) = correct] (4.2)

Since areal level accuracy is defined using sensitivity to wind speed, models con-

structed without wind variables are assessed at the level of individual homes using the

area under the ROC curve (AUC)[44] - a standard measure for classification accuracy.

4.1.2 Training and validation protocol

The dataset of 578,666 residences used in the construction and validation of the

LogRFT hybrid model, is split randomly without replacement into two sets: true test

set (30%) and training set(70%). The true test set is composed of 173,600 samples,

and is used to evaluate generalization and performance of the fitted model. The

training data of 405,066 samples is further decomposed into five separate equally
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sized sets of approximately 81,014 samples each. These five sets are used as folds

to compute cross validation estimates. Consequently, training and test sets for each

cross validated fold contain approximately 324,052 and 81,014 samples respectively.

The curse of dimensionality problem limits the number of samples of the final model

to approximately no more than 18 predictor variables (log2(324, 052) = 18.3) [45].

Three types of accuracy estimates are reported in generated graphs. True Test

estimates correspond to those resulting by evaluating the trained model on the set

aside true test dataset. Test estimates correspond to the performance of the trained

model based on the fold test sets. Train estimates correspond to the performance

of the trained model evaluated on the fold training set. Analyzing these accuracy

estimates together helps identifying under- and over-fitting e↵ects.

4.2 Description, pre-processing, and analysis of data

Supervised machine learning requires a set of predictor variables and a target variable

for each residential structure. The target variable summarizes the observed outcome

for each residential structure, corresponding to whether or not it was damaged by

the hurricane, while predictor variables potentially explain damage incurred to a

residence. In the following sections, I describe the acquisition, pre-processing, and

analysis of each of these variables.

4.2.1 Target variable: Harris County House of Authority survey data

In the aftermath of Hurricane Ike’s passing through Harris County, Texas in Septem-

ber 13, 2008, the Harris County House of Authority (HCHA) utilized 200 inspectors

to conduct a survey of approximately 774,000 physical residential damage assessments

[46]. Planned assessment over the entire Harris County used spatial sampling tech-
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niques, ensuring surveys were performed evenly reflecting the residential density of

the local communities. This residence by residence survey, between September 23,

2008 and November 12, 2008, recorded the following information about each resi-

dential structure: damage to the overall building, damage to its components (roof,

wall, foundation, garage), and damage to facing and landscaping. Mostly caused by

wind, roof damage is chosen as the target variable for the supervised machine learning

model developed in this thesis. Inspectors categorized roof damage for each residen-

tial structure in the same discrete scale of 0 (no damage) to 4 (destruction) used by

FEMA [18]. Among the total number of surveyed residential properties, only single-

family residential properties were considered to construct the wind-damage model.

There are 578,666 single-family residential homes in the dataset. Figure 4.1 (left)

shows a histogram of the distribution of the categories of roof damage among single-

family residences. Given that roof damage categories moderate (2) through total

destruction (4) compose only 5.06% of the total damage, I focus this study on the

prediction of whether residential structures experience any level of roof damage or

none at all. Therefore, I map FEMA’s the discrete scale of 0-4 to 0 (“not damaged”)

and 1 (“damaged”), where label 1 contains the merged categories from minor damage

to destruction. The histogram Figure 4.1 (right) shows the distribution of “damaged”

(25%) and “not damaged” (75%) residential structures.

Each residential structure is mapped to its latitude and longitude coordinates

by merging the dataset with the centroids of the residential parcels provided by the

Harris County Appraisal District (HCAD) from 2008 [47]. This processing is done

using the spatial analysis software called ArcGIS, and it creates and saves data in an

ArcGIS geodatabase of point geometry data type. Once in this format, ArcGIS o↵ers

a range of spatial analysis tools to help understand the distribution of damage to the
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Figure 4.1 : Left: Histogram showing the distribution of categories indicating roof

damage to residential structures (0:No damaged, 1:Minor, 2:Moderate, 3:Severe, 4:De-

struction). Right: Histogram showing the distribution of roof damage indicator (0:No

damage, 1:Damaged)

residential structures surveyed by the HCHA. Figure 4.2 shows the distribution of

roof damage across the Harris County. Damage outcome is mixed in areas south of

I-610 and in between SH-288 and I-35. The figure reveals of predicting wind-induced

damage at the individual residence level.

4.2.2 Spatial analysis of target variable

Spatial analysis techniques applied to the damage survey data help us understand

geographical patterns present in the data. Spatial analysis can be performed on

location alone as well as on values and location (spatial autocorrelation). Location

based analysis classifies the geographical distribution of the dataset as clustered,

dispersed, or randomly distributed, whereas analysis based on location and values

identifies patterns on the spatial distribution of values.
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Figure 4.2 : Spatial distribution of observed roof damage caused by Hurricane Ike in

2008 to residential structures over the Harris County, Texas. Source of data: HCHA

Spatial analysis based on location itself: average nearest neighbor

The spatial distribution of damaged homes helps us understand global patterns and

the closeness among them. Although residential homes in urban areas tend to lie

near each other, analyzing their geographical locations gives an empirical evaluation

of whether they are actually clustered. Additionally, knowing homes’ proximity to

each other provides an initial understanding of the spatial extent of neighborhoods. In

order to analyze the geographical distribution of surveyed residential structures, I use

the Average Nearest Neighbor tool from ArcGIS [48]. This tool measures the distance
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between each geospatial point (representing a residential structure) and its nearest

neighbor point location. The tool computes the observed average of all the nearest

neighbor distances in the survey database, as well as the expected average distance

based on a hypothetical spatially random distribution of points. The expected average

helps analyze clustering or dispersement. The hypothetical random distribution of

points contains the same number of points as the survey data and covers the same total

area. If the observed average is less than the expected average from the hypothetical

random distribution of points, the distribution pattern reveals clustering. However,

dispersed distribution exists if the observed average is greater than the expected

average. An average nearest neighbor ratio is computed by dividing the observed

average distance by the expected average distance. When the ratio is less than 1, the

spatial pattern exhibits clustering, and when the ratio is greater than 1, the pattern

leans toward a dispersed spatial distribution [48]. The Average Nearest Neighbor

tool computed an observed mean distance of 71.8ft, an expected mean distance of

145.5ft, and a nearest neighbor ratio of 71.8/145.5 = 0.493 with a z-score of -852.56

and significance level of less than 1%. Based on these measures, the geographical

distribution of residence locations reveals a clustering pattern with a less than 1%

likelihood resulting from random chance.

4.2.3 Spatial analysis based on location and values: spatial autocorrela-

tion of roof damage

Analyzing observed damage in the spatial dimension assists in understanding the ef-

fect of stochastic processes within neighborhoods in two ways: first, spatial analysis

uncovers whether damage to residential structures is clustered, dispersed, or ran-

domly distributed over the geographical space; and secondly, if damage is found to be
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clustered, spatial analysis uncovers the more prominent neighborhood size at which

such clustering occurs.

Nearby built and natural environments experience similar high-speed wind cur-

rents, wind direction dynamics, wind-generated debris, and exposure to wind stress

for similar periods of time. Therefore, damage that nearby residential structures

experience possibly originates directly from wind-loads or indirectly through debris

released by neighboring damage to residential structures, trees, or other objects.

The observation that close residential structures experience more similar damage

than distant structures is called spatial dependence. Spatial dependence, described by

Tobler (1970) through his ”First Law of Geography,” states that everything relates

to everything else, but near things relate more than distant things [49]. Spatial

dependence quantified through spatial autocorrelation, refers to the correlation of a

variable with itself over space. When the values of neighboring homes are similar,

the variable exhibits positive spatial autocorrelation indicating a tendency toward

clustering. In dissimilar neighboring values, negative spatial autocorrelation exists,

indicating a dispersed pattern. If the neighboring values are neither similar nor

dissimilar, spatial independence and values exhibit a random distribution [50].

Widely measured through Moran’s I [51], spatial autocorrelation of a variable is

computed with:

I =
N

PN
i=1

PN
j=1 wi,j (xi � x) (xj � x)

⇣PN
i=1

PN
j=1 wi,j

⌘⇣PN
i=1 (xi � x)2

⌘ (4.3)

where, in relationship to the the survey damage data: N corresponds to the

total number of surveyed residential structures, wi,j to a matrix with binary values

indicating whether structure i and j are within spatial distance r, and xi to the
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binary value indicating whether structure i experienced roof damage. The Moran’s

I equation computes a deviation from the mean for each structure’s damage value x,

multiplying the deviation values from each structure i by the deviation values from

structures j within spatial distance r identified in matrix wi,j. Results remain positive

if both structures are damaged or both are not damaged, indicating spatial clustering.

Negative product of deviations indicates spatial dispersion. When the multiplication

of deviances balances to a sum of zero, a spatial random distribution of damage values

exists. The Moran’s I equation is divided by the variance of damage values of the

surveyed structures and by
PN

i=1

PN
j=1 wi,j in order to normalize the value to the

interval [�1.0, 1.0].

In order to study the spatial distribution of roof damage among residential struc-

tures, I measure spatial autocorrelation of roof damage (0/1 scale) using Moran’s I at

di↵erent spatial radius distances r using ArcGIS [52]. Figure 4.3 shows the Moran’s

I z-scores for each distance radius r in the range from 330ft to 920ft in increments

of 10 ft. This figure depicts spatial autocorrelation remains positive for each spa-

tial distance r, suggesting that roof damage is clustered spatially at multiple levels.

Therefore, processes explaining roof damage are in action at many spatial levels and

not confined to a single level. Therefore, choosing any distance r within the range

330ft to 920ft is justified for performing spatial analysis of roof damage.

Assuming that the probability of roof damage for a given home is higher when

surrounded by damaged homes, I analyze spatial autocorrelation at the extent of

census blocks (the smallest geographical unit used by the United States Census Bu-

reau). The U.S. Census Bureau describes census blocks within a city as ”generally

bounded on all sides by streets” [53]. By computing the count of surveyed homes

within each census block, I compute the average count of homes k within all census
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Figure 4.3 : Moran’s I spatial analysis of observed roof damage at di↵erent spatial

radius distances r (330ft to 920ft).

blocks across the Harris County, Texas. Interpreting this average count as the average

number of neighbors around surveyed homes, I select a distance band radius with the

same average number of neighbors for use in spatial analysis [54]. To do so, I first

obtain the census block geospatial dataset from 2008 for the Harris County; second,

surveyed homes within each census block aggregate by counting; third, I compute the

average number of homes within the census blocks. The mean number of surveyed

homes within the census blocks is 19. Finally, to obtain the average distance from

each surveyed home to its nineteenth nearest neighbor, I use the ArcGIS tool called

Calculate Distance Band from Neighbor Count [55]. This tool calculates the aver-

age distance to the 19th nearest neighbor to be r = 362ft. This neighborhood level

of analysis at which roof damage clusters, helps me create predictor variables that
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reflect structural and terrain characteristics of the neighborhood surrounding each

residential structure.

4.2.4 Predictor variables

The selection of predictor variables used in the development of the hybrid machine

learning model include those deemed influential toward damage outcomes. These

variables obtained from di↵erent sources, fall into the following categories: structure-

related variables, construction code enforcement variables, terrain configuration vari-

ables, and wind hazard variables.

Structure-related variables

I acquired information about residential structures as of 2008 through the public

records maintained by the Harris County Appraisal District (HCAD) [47]. As proxy

for the structural quality of the residential structure and its capacity to withstand

damage, I selected the following variables from these public records:

• building value (in 2008 dollars). The value of the building is a reasonable proxy

for its structural quality. This feature was acquired from table “real acct”

column “impr value”.

• land value (in 2008 dollars). Highly assessed residential property land corre-

lates with the economic solvency of the owners and the quality of their homes.

Acquired from table “real acct” column “land value”, the spatial distribution

of land and building value observed in Figure 4.4, demonstrates that expen-

sive land to the west of downtown and inside I-610 correlates with expensive

residences around the same geographical area.
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• extra features value (in 2008 dollars). Acquired from table “real acct” column

“extra features value” this value includes additions to the building and land.

• number of stories. Acquired from table “fixtures” column “units” with column

“type”={’STY’, ’STC’}. Buildings with a higher number of stories are more

exposed to wind currents.

• age in years (2008 - the year of home construction). The vulnerability of a

residential structure to strong winds relates directly to its age. In other words,

the older the structure, the more vulnerable it becomes. By subtracting the

year in which a home was built from the year 2008, I obtained the age of the

structure.

• remodeled age in years (2008 - the year of a home’s last remodeling). Acquired

from table “building res” column “yr remodel”, to account for structures pre-

viously remodeled and improved. I calculated the age of the structure relative

to its last remodeled date. If no remodeling is recorded, then age is calculated

relative to the date of construction. Figure 4.5 shows the spatial distribution

of the residential structures’ age and remodeled age. Observe that residential

structures within Beltway 8, west of Houston’s downtown, and south of I-10,

remodeled age is lower than the construction age, indicating recent remodeling

to these residential structures.

• building quality. Acquired from table “building res” column “quality”, this

feature maps the quality of a building on a discrete scale of 1 to 6, 6 being the

best and 1 being the worst.
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• detached garage (0 for no, 1 for yes). Acquired from table “extra features” col-

umn “cd”={’CRG4’, ’CRG5’, ’RRG1’, ’RRG2’, ’RRG3’, ’RRG4’}, the presence

of detached garages increase the probability of damage to a residential structure

because they are likely to be damaged by wind-borne debris.

• exterior wall (0 for no, 1 for yes). Acquired from table “structural elem” column

“type”=’XWR’, the exterior wall greatly influences the resistive capacity of a

residential structure. I identified residential structures with strong exterior wall

materials such as brick/mansonry, frame/concrete, stucco, brick/veneer, and

stone.

Given that observed roof damage significantly clusters at multiple spatial extents,

I only considered spatial autocorrelation in neighborhoods delineated by a radius of

362 ft surrounding each residential structure. To do so, I averaged the previously

mentioned structure variables based on a 362 ft radius and added them to the set of

predictor variables (refer to Section 4.2.3 for explanation on this radius selection).

Furthermore, I acquired 2012 building footprint database corresponding to build-

ings in Harris County from Rice University’s GIS/Data Center [56]. From this

database I obtained the building perimeter length (in feet) and building area (in

squared feet) of just the residential structures found in the survey dataset from 2008.

These two variables capture the surface area exposed to high wind currents.

The descriptive statistics for all structure variables are shown in Table 4.1. The

table includes the Pearson’s correlation with roof damage and the Moran’s I spatial

autocorrelation measure with respect to a 362 ft radius.
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ID Continuous*Variables Mean Standard*
Deviation

Min Max
Pearson's*
Correlation*
with*Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

1 Land&value&in&2008&dollars&
(LANDVALUE)

54637.357 121281.693 100.0 6845400 A0.0939 A0.0942

2 Mean&land&value&within&362&feet&
(LANDVALMN)

54430.860 116408.375 900.0 6775130 A0.0982 A0.0979

3 Building&value&in&2008&dollars&
(BLDGVALUE)

112559.282 111959.806 5000.0 6073131 A0.1527 A0.1393

4 Mean&building&value&within&362&
feet&(BLDGVALMN)

112396.509 89649.437 5937.7 3078260 A0.1751 A0.1741

5 Extra&features&value&in&2008&dollars&
(EXTFEATVAL)

1416.356 3531.653 0.0 180612 A0.0564 A0.0540

6 Mean&extra&features&value&within&
362&feet&(EXTFMN)

1413.026 1642.699 0.0 36904 A0.1168 A0.1166

7 Quality&of&structure&(QUALITYCD) 4.192 0.740 1.0 6 A0.1888 A0.1801

8 Mean&quality&of&structure&within&
362&feet&(QUALMN)

4.192 0.634 1.0 6 A0.2107 A0.2099

9 Age&of&structure&with&respect&to&
2008&(AGE)

33.624 20.434 2.0 210 0.1535 0.1347

10 Mean&age&within&362&feet&(AGEMN) 33.642 18.466 2.0 120 0.1504 0.1497

11 Remodeled&age&of&structure&with&
respect&to&2008&(REMOAGE)

30.727 19.407 2.0 210 0.1647 0.1453

12 Mean&remodeled&age&within&362&
feet&(REMAGEMN)

30.739 16.038 2.0 99 0.1773 0.1767

13 Number&of&stories&(NUMSTORIES) 1.323 0.488 1.0 4 A0.1157 A0.1227

14 Mean&number&of&stories&within&362&
feet&(NUMSTMN)

1.323 0.349 1.0 4 A0.1712 A0.1706

15 Building&perimeter&in&feet&
(BLDNG_LEN)

243.908 102.229 50.121 4992.41 A0.1042 A0.0979

16 Building&area&in&squared&feet&
(BLDG_AREA)

2704.786 1890.554 156.214 215126.97 A0.0843 A0.0790

17
Mean&of&exterior&brick&wall&
indicatior&wihin&362&feet&
(EXTWALLMN)

0.750 0.367 0.000 1 A0.1339 A0.1338

18 Mean&of&detached&garage&indicator&
within&362&feet&(DETGARMN)

0.248 0.287 0.000 1 A0.1063 A0.1063

ID Indicator*Variables Mean

Pearson's*
Correlation*

with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

19 Brick&wall&(EXTWALL) 0.750 A0.1181 A0.1133
20 Detached&garage&(DETCHGAR) 0.248 A0.0712 A0.0704

Descriptive*Statistics*of*Structure*Variables

Table 4.1 : Descriptive statistics for structure predictor variables.
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Construction code enforcement variables

Construction codes for residential structures within city limits are enforced in order

to regulate the quality of new residences. Residential structures built outside or be-

fore its inclusion into a city, are likely to be less rigid and have inferior quality. To

account for di↵erences in construction quality, I included the following two variables:

incorporation year and within incorporated area (0 for no, 1 for yes). The incorpora-

tion year from each of the thirty-four cities that intersect Harris County, Texas was

collected from public information and recorded in each city polygon acquired from

GIS HCAD [57]. I spatially joined the city polygons with the GIS survey dataset.

Incorporation years range between 1837 and 1970. After the spatial join, I calculated

the variable within incorporated area to indicate whether or not the building is inside

an incorporated zone. Table 4.2 shows the descriptive statistics for these variables.

ID Continuous*Variables Mean Standard*
Deviation

Min Max
Pearson's*
Correlation*
with*Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

21 Incorporation,year,(INCORP_YR) 1044.328 923.052 0 1970 0.0702 0.0702

Indicator*Variables Mean

Pearson's*
Correlation*

with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

22
Within,incorporated,area,
(INCAREAQ)

0.562 0.0707 0.0707

Descriptive*Statistics*of*Construction*Code*Enforcement*Variables

Table 4.2 : Descriptive statistics for construction code enforcement variables.
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Terrain configuration variables

I acquired and computed a number of variables from geographical datasets as prox-

ies for the exposure of residential structures to wind loads and flying debris. The

first variable, roughness length, is equivalent to the height at which the wind speed

theoretically becomes zero depending on the height of terrain elements in the area.

Acquired from the NLCD 1992 land cover data set [58] featuring a 30 by 30 meter

resolution and classified according to the National Land Cover Database (NLCD)

classification system [59], the roughness length variable, identifies exposure to higher

wind loads. With the help of aerial photographs and NLCD classification descriptions,

roughness lengths empirically estimated for individual areas of Texas, were published

in the HAZUS-MH 2.1 Technical Manual Table 3.9 (page 128) [60]. Using this table,

I mapped the ten NLCD land cover categories to roughness length values as shown

in Table 4.3.

Land%Cover%Class NLCD%1992%Class

HAZUS7MH%
Technical%Manual%

Table%3.9%
Roughness%Length

Open%Water 11 0.01
Cultivated 81485 0.07
Herbaceous%Wetland 92 0.1
Grassland/Shrub 51,71 0.1
Bare 31433 0.15
Developed%open%space 21 0.35
Developed%lower%intensity 23 0.44
Woody%wetlands 91 0.5
Developed%higher%intensity 22 0.55
Forest 41443 0.56

Table 4.3 : Mapping of National Land Cover Database classes into roughness length

values based on Table 3.9 (page 128) in the HAZUS-MH 2.1 Technical Manual.
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The distance to coast in feet from each residential structure was computed in order

to account for the decreasing wind force of the hurricane, as it makes its way through

land. In order to compute this feature, I created a line in ArcGIS which delineated the

gulf coast area closer to Harris County, Texas. Given the geospatial survey dataset

represented as points, I calculated the closest distance to such line delineating the

coast with the aid of the Near (Analyst) ArcGIS tool [61].

Roads and highways provide an unobstructed channel for storm winds that directly

hit nearby exposed residential structures. In order to identify the structures probably

damaged by this exposure, I merge major Houston highways with other major routes,

and used them to compute the variable highway distance. This variable is equal to

the Euclidean distance in feet from each residential structure to the closest highway.

I acquired the two road datasets from the GIS system of the city of Houston’s public

works department [62].

According to Han et al. (2009) [63], soil moisture impacts the stability of electricity

poles and trees. When the soil is highly saturated with water, the probability of poles

and trees falling down increases, and it a↵ects the surrounding built environment.

To account for this type of hazard, I acquired soil variables from the State Soil

Geographic (STATSGO) database available through the United States Geological

Survey (USGS) [64]. These variables include: available water capacity (in inches per

inch); percentage of soil consisting of clay (in percent of material less than 2mm

in size); and permeability of soil (in inches per inch). Nateghi et al. (2011) [65]

considered features measuring the soils’s moisture and clay content of soil as important

for predicting duration of power outage.

I also computed the feature “tree within 100 meters (328ft)” from a dataset found

in the GIS system of the Houston’s Department of Public works containing 193,000
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geo-referenced trees located mostly in Houston’s downtown [62]. I base the radius

of analysis chosen on the spatial autocorrelation analysis in Section 4.2.3. Although

this dataset does not report tree data for the entire Harris County, it aids assessment

of damage due to tree blown debris caused to residential structures within Houston’s

downtown.

From the Houston-Galveston Area Council [66], I acquired the 2008 HGAC Land

Cover raster dataset categorizing the entire Harris County in the NLCD classification

system of 10 categories: developed, higher intensity (1); developed, lower intensity

(2); developed, open space (3); cultivated (4); grassland/shrub (5); forest (6); woody

wetland (7); herbaceous wetland (8); bare (9); and open water (10). For each of

the 10 categories, I computed a variable characterizing the Euclidean distance in

meters from each residential structure to the closest area of each category. This

set of variables captures the surrounding terrain around each residential structure.

Additionally, I mapped the 10 classes into three terrain types: wood, open, and

developed terrain. Table 4.4 shows the mapping of HGAC land cover classes into the

tree terrain types. For each residential structure, I computed the percentage area

covered by each of these three terrain types with respect to a circle of radius 362 feet

around each home. I called these features: wood terrain percent, open terrain percent,

and developed terrain percent. The collection of these three predictors capture the

surrounding terrain of each residential structure. Wooded terrain is source of debris

and trees that causes increase in probability of damage. High wind currents flowing

over open terrain collide freely against exposed residential structures. Obstructed

wind currents flowing through developed terrain cause turbulence and creation of

wind gusts, which are considered a source of damage to homes.



51

Terrain'Type Land'Cover'Class'
Description

HGAC'2008'
Class'Code

Developed,)higher)intensity 1
Developed,)lower)intensity 2
Forest 6
Woody)wetland 7
Developed,)open)space 3
Cultivated 4
Grassland/shrub 5
Herbaceous)wetland 8
Bare 9
Open)water 10

Developed

Wooded

Open

Table 4.4 : Categorization of HGAC land cover classes into wooded, open, and de-

veloped terrain.

To further capture the e↵ects of hurricane wind currents given the built and natu-

ral environment, I obtained from a remote sensing technology called Light Detection

and Ranging (LIDAR), raster datasets describing the continuous terrain height mea-

sures (in feet) over Harris County, Texas from the year 2008 [67]. Using the 2012

building footprint database for Harris County from HCAD [47], I computed the max-

imum height of building area and the mean height of building area. These variables

are vital for capturing the discrepancy in height within the building’s footprint due

to external objects going over the home (i.e. a tree extending its branches above the

home). Additionally, I computed the maximum height, mean height, and standard

deviation height from each residential structure to a radius of 25 meters (82 ft) and

from 25 meters to 50 meters (164 ft). Used as proxy, these variables, explain damage

caused by sources of debris and trees falling over the structure.

The descriptive statistics for all the terrain configuration variables are shown in

Tables 4.5 and 4.6.
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ID Continuous*Variables Mean Standard*
Deviation

Min Max
Pearson's*

Correlation*with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

24 Roughness+length+(ROUGHLEN) 0.365 0.182 0.010 0.560 0.0093 0.0071

25 Distance+to+coast+in+feet+
(COAST_DIST)

260011.629 60710.024 111691.000 430150.000 K0.1525 K0.1525

26 Euclidean+distance+in+feet+to+closest+
freeway+(FREEWAYED)

4424.843 3650.064 0.000 20810.200 K0.0629 K0.0629

27 Soil+available+water+capacity+in+
inches+per+inch+(AWC)

0.162 0.014 0.170 0.076 0.0763

28 Percent+of+soil+consisting+of+clay+
(CLAY)

31.052 11.845 K0.100 49.800 0.1116 0.1118

29 Permeability+of+the+soil+in+inches+
per+hour+(PERM)

0.808 1.030 K0.100 7.000 K0.0874 K0.0874

30
Euclidean+distance+in+meters+to+
HGAC+LC+Category+1:Developed,+
Higher+Intensity+(ED1)

31.105 37.015 0.000 1020.000 K0.0435 K0.0411

31
Euclidean+distance+in+meters+to+
HGAC+LC+Category+2:+Developed,+
Lower+Intensity+(ED2)

9.582 25.844 0.000 2188.360 K0.0113 K0.0134

32
Euclidean+distance+in+meters+to+
HGAC+LC+Category+3:+Developed,+
Open+Space+(ED3)

342.400 247.751 0.000 3905.300 K0.0827 K0.0822

33
Euclidean+distance+in+meters+to+
HGAC+LC+Category+4:+Cultivated+
(ED4)

9025.717 5956.358 0.000 23700.600 0.0571 0.0571

34
Euclidean+distance+in+meters+to+
HGAC+LC+Category+5:+
Grassland/Shrub+(ED5)

694.110 710.094 0.000 5208.000 K0.0152 K0.0152

35 Euclidean+distance+in+meters+to+
HGAC+LC+Category+6:+Forest+(ED6)

790.678 676.411 0.000 4150.860 K0.0018 K0.0019

36
Euclidean+distance+in+meters+to+
HGAC+LC+Category+7:+Woody+
Wetland+(ED7)

957.289 863.617 0.000 5677.530 K0.0301 K0.0301

37
Euclidean+distance+in+meters+to+
HGAC+LC+Category+8:+Herbaceous+
Wetland+(ED8)

1007.877 812.856 0.000 6179.850 K0.0282 K0.0283

38 Euclidean+distance+in+meters+to+
HGAC+LC+Category+9:+Bare+(ED9)

1701.120 1244.665 0.000 7097.900 0.0097 0.0097

39
Euclidean+distance+in+meters+to+
HGAC+LC+Category+10:+Open+Water+
(ED10)

1094.562 782.387 0.000 5587.580 0.0150 0.0150

40
Percentage+of+open+terrain+within+a+
radius+of+362+feet+based+on+HGAC+
LC+(OPEN_PER36)

0.072 0.101 0.000 1.000 K0.0221 K0.0225

Descriptive*Statistics*of*Terrain*Variables*(Part*1)

Table 4.5 : Descriptive statistics for terrain variables Part 1.
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ID Continuous*Variables Mean Standard*
Deviation

Min Max
Pearson's*

Correlation*with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

41
Percentage+of+developed+terrain+
within+a+radius+of+362+feet+based+on+
HGAC+LC+(DEVT_PER36)

0.895 0.138 0.000 1.000 0.0370 0.0371

42
Percentage+of+wood+terrain+within+
a+radius+of+362+feet+based+on+HGAC+
LC+(WOOD_PER36)

0.033 0.078 0.000 0.914 P0.0369 P0.0366

43
Maximum+height+of+building+area+in+
feet+based+on+LIDAR+2008+
(BLDGHTMAX)

31.327 15.048 8.013 253.461 P0.0904 P0.0990

44
Mean+height+of+building+area+in+feet+
based+on+LIDAR+2008+
(BLDGHTMEAN)

15.743 5.684 0.113 104.696 P0.1113 P0.1219

45
Maximum+terrain+height+within+a+
radius+of+25+meters+based+on+LIDAR+
2008+(MAX0_25M)

43.900 19.265 P0.331 253.849 P0.0709 P0.0718

46
Mean+terrain+height+within+a+radius+
of+25+meters+based+on+LIDAR+2008+
(MEA0_25M)

12.414 8.506 P0.331 109.193 P0.0850 P0.0863

47
Standard+deviation+of+terrain+height+
within+a+radius+of+25+meters+based+
on+LIDAR+2008+(STD0_25M)

11.227 5.372 0.000 51.465 P0.0751 P0.0770

48
Maximum+terrain+height+within+a+
radius+of+25+to+50+meters+based+on+
LIDAR+2008+(MAX25_50M)

43.782 21.227 P0.470 498.658 P0.0701 P0.0685

49
Mean+terrain+height+within+a+radius+
of+25+to+50+meters+based+on+LIDAR+
2008+(MEA25_50M)

12.194 8.975 P1.714 362.346 P0.0829 P0.0805

50
Standard+deviation+of+terrain+height+
within+a+radius+of+25+to+50+meters+
based+on+LIDAR+2008+(STD25_50M)

10.900 5.867 0.000 179.803 P0.0742 P0.0718

ID Indicator*Variables Mean

Pearson's*
Correlation*

with*
Damage

Spatial*
Autocorrela
tion*with*
Damage*

(Moran's*I)

51 Within+100+meters+of+tree+
(TREE100M)

0.076 0.0031 0.0034

Descriptive*Statistics*of*Terrain*Variables*(Part*2)

Table 4.6 : Descriptive statistics for terrain variables Part 2.
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Wind hazard variables

The National Oceanic and Atmospheric Administration (NOAA) released real time

snapshots of wind fields in 6 hour intervals before, during, and after hurricane Ike

made landfall near Galveston Texas. Available in ArcGIS shapefile format, these

data releases contain grids of points uniformly separated by 5 km with measurements

of 1-mimute maximum sustained wind speeds [68]. Taking into consideration all

grid datasets released before and after Hurricane Ike that intersect Harris County, I

converted wind speed data to raster form based on spatial kriging interpolation, and

merged them together by computing the maximum speed among all the rasters. Krig-

ing interpolation estimates the geographical surface of values from a scattered set of

points. Note that kriging does not take into consideration the terrain configuration

and its e↵ect on earth surface wind speeds. Then, the resulting single raster con-

tains the maximum wind speed used to assign each of the buildings its corresponding

speed. Additionally, NOAA computed the H*wind analysis [69] over Harris County

after Hurricane Ike. This analysis provides wind characteristics, after analyzing and

adjusting for the height and exposure of anemometers, used to capture the storm.

These wind hazard variables obtained from the H*wind analysis include: 1-minute

maximum sustained wind swath, wind direction, wind duration, and wind steadiness.

Wind duration is the duration of sustained winds over 34 meters/second, and it is a

measure of the cycles of gusts and lulls in a turbulent wind field [70]. Wind steadiness

is the ratio of the vector mean of wind velocity to its scalar mean over the time pe-

riod required for a storm to traverse the region [70]. Values range from 0% to 100%.

Areas receiving large wind direction shifts due to the passage of the eye experience

low values of steadiness, on the order of 10%-20%. Strong winds combined with low

steadiness account for significant damage to structures. Descriptive statistics of these
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wind hazard variables are shown in Table 4.7. Shown in Figure 4.6, the spatial dis-

tributions of variables maximum wind speed, wind swath, wind direction, and wind

steadiness are included.

ID Continuous*Variables Mean Standard*
Deviation

Min Max
Pearson's*

Correlation*with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

52 Hurricane+Ike+maximum+wind+
speed+in+MPH+(MAXWIND)

69.488 4.478 51.775 79.992 0.02065 0.0206

53 Hurricane+Ike+wind+swath+in+MPH+
(WINDSWAMPH)

76.638 6.092 50.696 85.154 0.07971 0.0797

54 Hurricane+Ike+wind+direction+in+
geographic+degrees+(WINDDIR)

250.162 19.223 187.139 287.430 L0.09782 L0.0978

55 Hurricane+Ike+wind+duration+in+secs+
(WINDDUR)

0.920 0.657 L0.052 2.351 0.13293 0.1329

56 Hurricane+Ike+wind+steadiness+in+
secs+(WINDSTEAD)

0.344 0.093 0.120 0.489 L0.09303 L0.0930

Descriptive*Statistics*of*Wind*Hazard*Variables

Table 4.7 : Descriptive statistics for Hurricane Ike wind hazard characteristics.
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Figure 4.6 : Distribution of wind variables over the Harris County, Texas observed in

Hurricane Ike, 2008. a) Wind swath (WINDSWAMPH). b) Maximum sustained wind

speeds (MAXWIND). c) Wind direction (WINDDIR). d) Wind steadiness (WIND-

STEAD).
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4.3 Feature selection

By fitting parameters based on available data, supervised machine learning models

recognize patterns in the data that describe the underlying process generating ob-

served outcomes. Irrelevant or redundant predictor variables degrade the model’s

performance. Irrelevant variables add noise to the learning process. Redundant vari-

ables do not add new knowledge relative to that already covered by other variables.

Identifying these types of variables and selecting the subset of variables that best

captures the patterns of the underlying process is called feature selection [71]. The

benefits of feature selection include: increase in predictive performance, reduction in

the time and space of the model construction process, and reduction of the e↵ects of

the curse of dimensionality [72] [73].

Feature selection methods in machine learning research fall into three categories:

wrappers, filters, and embedded methods [72]. The methods di↵er in the techniques

used to evaluate the value of subsets of variables. Wrappers are those that apply

a specific learner to a subset of variables to assess their value. Filter methods are

independent of a learning method. Instead, filters evaluate the value of a subset of

variables by analyzing the interactions between the variables through information

theoretic or correlation measures [72]. Embedded methods use the set of all variables

to fit a model, and then analyze the model to infer the importance of the variables.

Finding the optimal subset of predictor variables is a problem known to be NP-hard

[74]. Therefore, feature selection methods find an approximately optimal subset of

predictor variables based heuristic search techniques.

Despite the fact that wrappers explore the space of features optimal for the in-

tended learning algorithm, due to the repeated evaluation each time a new feature

subset is considered, this method becomes computationally intensive. Much faster
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than wrappers, filter and embedded methods combined, reduce the number of vari-

ables [75].

First, I choose to apply a correlation-based filter to eliminate irrelevant and redun-

dant variables. I proceed by applying embedded feature selection methods for static

and dynamic variables separately. Using LASSO logistic regression, I find the most

important dynamic (wind) variables. Advancing, I apply feature selection based on

the variable importance measure embedded in the Random Forest to static (structure

and terrain related) variables.

4.3.1 Correlation-based Feature Selection (CFS)

One of the most popular feature selection filters is Correlation-based Feature Selection

(CFS) developed by Hall (1999) [75]. This filter defines irrelevant and redundant vari-

ables in terms of correlation evaluated among subsets with combinations of predictor

variables and the target variable. While a non-correlated variable with respect to the

target variable is considered irrelevant, a highly correlated variable with predictor

variables already in the subset, is considered redundant. Based on the assumption

that the optimal variable subset includes highly correlated variables with the target

variable, with minimal mutual correlation, CFS measures the quality of a subset of

variables with the following equation:

MS =
krcfp

k + k(k � 1)r↵
(4.4)

where MS is the “merit” of subset S containing k variables, rcf is the average

correlation between the target variable c and every predictor variable f 2 S, and r↵

is the average correlation among all pair combinations of predictor variables S. Figure
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4.7 shows a 3-dimensional plot of Equation 4.4 for k values of 5 and 15. As the number

of variables in S increases, the plane stretches towards higher values of MS for high

values of rcf and low values of r↵. Furthermore, adding a new predictor variable to S

highly correlated with the target variable and not correlated to other features, results

in a higher merit measure. While CFS assumes conditionally independent predictor

variables given the target variable, it works well when this assumption is moderately

violated [75]. Non-linear interactions between predictor variables can be considered

by adding product terms to the set.
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Figure 4.7 : 3-dimensional plot of Equation 4.4 for k values of 5 (left) and 15 (right).

Selecting relevant wind damage predictor variables

Given the large number of acquired predictor variables described in Section 4.3.1, I

consider CFS to filter out redundant and irrelevant variables. Before applying CFS,

I perform two pre-processing steps: variable transformation and joining of variables.

By transforming high skewed variables with a logarithmic function, their distri-

bution becomes more normally distributed. The specific transformation is:

X̂ = ln(X + 2) (4.5)
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where X̂ is the transformed variable X. Adding two to X avoids infinity values in

the computation of X̂ where X is zero. I chose the addition of constant two instead of

one due to the minimum value of variable MEA25 50= �1.717 as observed in Table

4.6. Negative values of MEA25 50 occur when estimations of bare earth elevation in

the LIDAR dataset are higher than the surface elevation [76]. Table 5.2 includes the

complete set of variables chosen for transformation. Although transformed, the name

of these variables remains the same in future references. For illustration, Figure 4.8

shows the e↵ect of the logarithmic transformation on variable BLDGVALUE. On the

left of this figure, the Q-Q plot of the original values for BLDGVALUE shows a high

positive skew and non-linear relation with respect to the normal distribution. After

applying the logarithmic transformation in Equation 4.5, the transformed values of

BLDGVALUE becomes statistically closer to a normal distribution as shown in the

Q-Q plot in the right of Figure 4.8.

Q-Q plot for BLDGVALUE Q-Q plot for LN(BLDGVALUE+2) 

Figure 4.8 : Q-Q plots for variable BLDGVALUE (left) and its logarithmic transfor-

mation (right).
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Terrain'Variables Structure''Variables
COAST_DIST LANDVALUE
FREEWAYED BLDGVALUE
ED1 EXTFEATVAL
ED2 AGE
ED3 REMOAGE
ED4 LANDVALMN
ED5 BLDGVALMN
ED6 EXTFMN
ED7 AGEMN
ED8 REMAGEMN
ED9 BLDNG_LEN
ED10 BLDG_AREA
OPEN_PER36
DEVT_PER36
WOOD_PER36
BLDGHTMAX
BLDGHTMEAN
MAX0_25M
MEA0_25M
STD0_25M
MAX25_50M
MEA25_50M
STD25_50M

Transformed'Variables

Table 4.8 : Set of selected variables exhibiting highly skewed distributions which were

transformed using Equation 4.5.

To enable CFS to consider non-linear interactions among variables, the second

pre-processing step consisted of joining pairs of variables by multiplication. After

graphing their values against each other, I visually selected the complete set of join

combinations of variable pairs. I chose a pair of variables to form a new joined variable

only if they exhibited some form of non-liner relation. Figure 4.9(a) shows an example

of two variables joined together: MAXWIND and COAST DIST. Non-linearity is

observed in Figure 4.9(a) as the values of COAST DIST increase. For low values of

COAST DIST, MAXWIND remains high for a number of residential properties up to

a certain COAST DIST value (at about 12.1) and after that, MAXWIND decreases.
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Combining the values of these two variables occurred by multiplication in order to

form a new variable named MAXWIND COAST DIST. Figure 4.9(b) depicts the

distribution of values for MAXWIND COAST DIST. Created from selected variable

combinations, together, original and 38 new variables, add up to 94. In Figure 4.10,

the complete set of variables appear in the order in which CFS eliminates them

(implemented using a greedy search backward elimination).

MAXWIND_COAST_DIST

JOINED VARIABLES BY MULTIPLICATION:
(MAXWIND)*(COAST_DIST)

(a) (b)
MAXWIND

CO
AS

T_
D
IS
T

Figure 4.9 : The graph MAXWIND vs. COAST DIST in (a) visually exposes non-

linearity among the variables. Joined together by multiplication, the distribution of

combined variable MAXWIND COAST DIST is shown in (b).

As the space of solutions is explored, the CFS algorithm uses the heuristic measure

called “merit” to assess the value of subsets of variables using Equation 4.4. Greedy

feature selection methods can either do: forward selection or backward elimination.

Forward selection begins with an empty set of variables and incorporates variables
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progressively based on the heuristic measure. Backward elimination begins with the

full set of variables and progressively eliminates those to improve merit. Based on

previous experiments, backward elimination produces better subsets of variables, rea-

soning that, as variables are dropped, it assesses the interactions in the context of the

entire set [75]. In contrast, forward elimination assesses the relevance of variables in

the context of the ones that have already applied.

Utilizing the set of 94 predictor variables found in the pre-processing stage, the

CFS algorithm executed using backward elimination. Figure 4.10 shows a graph

containing the iteration number, the variable eliminated in the iteration, and the

“merit” measured after eliminating the indicated variable. As the algorithm proceeds

with variable elimination, the heuristic reaches its peak at iteration 81. The set of

variables listed from iteration 81 to 94 correspond to the sub-optimal solution found

by the backward elimination algorithm. The CFS algorithm discovered 14 variables

relevant to explaining the target variable.

I selected the 57 variables in iterations within one standard deviation from the

maximum “merit” to accommodate for the possibility of non-linear interactions not

captured by the CFS. This translates to retaining variables from iterations 38 to 94.

Other selection techniques described in sections that follow are used to further reduce

the number of predictor variables. Meanwhile, I divide this new set of predictors into

two groups as explained in Section 3.2.2: static and dynamic variables. Table 4.9 and

4.10 show descriptive statistics for these variables respectively sorted in decreasing

order of Pearson’s correlation absolute value with the target variable. Shown in

decreasing order of correlation with the target variable from left-right and bottom-

up, Figures 4.11 and 4.12 display a heatmap of correlations among the static and

dynamic variables respectively. Shown in Figure 4.11, three clusters of variables



64

with positive correlation among them also correlate distinctively with roof damage:

bottom-left cluster correlates positively, top-right cluster correlates negatively, and

middle cluster correlates weakly.

Small measures of “merit”, as observed over all iterations in Figure 4.10, result

from holding minimal mean correlation between target and predictor variables (see

3-dimensional plot of “merit” in Figure 4.7). This suggests that the target variable

cannot be explained using linear interactions among predictor variables, and that

more sophisticated techniques are needed to capture non-linearities. In the next

section, I use machine learning algorithms to further select variables and ultimately

create a model to predict wind-induced damage to residential structures.



65

(it
er

at
io

n 
#:

   
re

m
ov

ed
 v

ar
ia

bl
e)

'A*"EB>>/-<>2"
'C*"4;-<"

'D*"+,-.%(3(!,3,>-%(3(!,8"
'(*";-12=-;:>"

''*"/5523F>B&D"
'&*"B>,5-@>"
'%*"0145BF3<B"

'$*"+,>-!3%(,3672!3%(,8"
'!*"+/01220B3/01267>-28"

&)*"+5F>13F>B&D3/5523F>B&D8"
&A*"+,>-%(3(!,3672%(3(!,8"

&C*"/0126/-,FG"
&D*">2("

&(*",-.%(3(!,"
&'*"+?;2@=-;:>3-@>8"

&&*"+/01220B3/0122:B8"
&%*"+,-.!3%(,3672!3%(,8"

&$*">2)"
&!*"45-6732067"

%)*"-@>,1"
%A*"/01267>-2"

%C*">2A"
%D*"+5F>13F>B&D32>=73F>B&D8"

%(*"672%(3(!,"
%'*"/01220B"

%&*">2$!"
%%*"7B>>$!!,"

%$*"+?;2@=-;:>3B>,-@>,18"
%!*"+,-.!3%(,3,>-!3%(,8"

$)*"+/0126/-,FG3/01220B8"
$A*">2D"
$C*"-@>"

$D*"/0122:B"
$(*"672!3%(,"

$'*"+/0126/-,FG3/01267>-28"
$&*"?:0;7-E014"

$%*"+/0122:B3/01267>-28"
$$*"+B>,-@>,13?;2@=-;,18"

$!*">2C"
)*",-.!3%(,"

A*"5F>13F>B&D"
C*"+/0126/-,FG3/0122:B8"

D*"+?;2@=-;:>3-@>,18"
(*"014-B>-9"

'*"2>=73F>B&D"
&*"+45-67320673>2'8"

%*"+-@>,13?;2@=-;,18"
$*">2'"

Merit

...

!" !#!$" !#!%" !#!&" !#!'" !#!("

!"#$%&

)'*"+,-./012345-67320678"
)&*"9:-;07<42"

)%*"+;-12=-;:>3?;2@=-;:>8"
)$*"+/01267>-2345-67320678"

)!*"?;2@=-;,1"
A)*"-/4"

AA*"1:,675B0>6"
AC*"9:-;,1"

AD*"+/01220B37B>>$!!,8"
A(*"+,-./0123/01267>-28"

A'*"?;21@3;>1"
A&*">.7/-;;"

A%*"?;2@=-;:>"
A$*">.7E>-7=-;"

A!*"+/0126/-,FG345-67320678"
C)*"1:,67,1"

CA*"+?;2@G7,>-13,>-%(3(!,8"
CC*"?;2@3-B>-"

CD*">.7E,1"
C(*"+,-./0123/01220B8"

C'*"+9:-;,13;-12=-;,18"
C&*"+?;2@G7,>-13,>-!3%(,8"

C%*">2%"
C$*"+/0122:B345-67320678"
C!*"+9:-;,13?;2@=-;,18"

D)*"+-@>3B>,5-@>8"
DA*"2>74G@-B"
DC*"B5:@G;>1"

DD*"+,-./0123/0126/-,FG8"
D(*",>-%(3(!,"

D'*"?;2@G7,>-1"
D&*">2&"

D%*">.7/-;;,1"
D$*"+;-12=-;:>3>.7E>-7=-;8"

D!*"B>,-@>,1"
()*"F>B,"
(A*">2$"

(C*",-./012"
(D*"?;2@G7,-."
((*";-12=-;,1"

('*"+,-.%(3(!,3672%(3(!,8"
(&*"+?;2@=-;:>3B>,5-@>8"

(%*",>-!3%(,"
($*"2>7@-B1,1"

(!*"+?;2@G7,-.3?;2@G7,>-18"
')*"+B>,-@>,13-@>,18"

'A*"EB>>/-<>2"
'C*"4;-<"

Merit
!" !#!$" !#!%" !#!&" !#!'" !#!("

!"#$%&

...

G
re

ed
y 

ba
ck

w
ar

d 
el

im
in

at
io

n

Figure 4.10 : Application of CFS with greedy backward elimination search on the

expanded set of 94 predictor variables. The graph shows the iteration number, the

variable eliminated at the given iteration, and the “merit” heuristic measure evalu-

ating the worth of the remaining subset of variables.
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ID Continuous*Variables Mean
Standard*
Deviation Min Max

Pearson's*
Correlation*

with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

1 BLDGVALMN 11.439 0.598 8.689 14.940 20.2365 20.2353
2 (QUALMN_LANDVALMN) 43.195 9.103 10.733 86.998 20.2269 20.2262
3 (QUALMN_BLDGVALMN) 48.221 9.319 12.376 81.754 20.2266 20.2257
4 (LANDVALUE_BLDGVALUE) 116.733 15.410 55.138 238.327 20.2244 20.2142
5 BLDGVALUE 11.379 0.705 8.518 15.619 20.2195 20.1992
6 QUALMN 4.192 0.634 1.000 6.000 20.2107 20.2099
7 QUALITYCD 4.192 0.740 1.000 6.000 20.1888 20.1801
8 LANDVALMN 10.248 0.925 6.805 15.729 20.1761 20.1757
9 LANDVALUE 10.236 0.935 4.625 15.739 20.1744 20.1744
10 NUMSTMN 1.323 0.349 1.000 4.000 20.1712 20.1706
11 (AGE_REMOAGE) 11.439 4.307 1.922 28.693 0.1631 0.1420
12 REMAGEMN 3.334 0.607 1.386 4.611 0.1607 0.1598
13 (REMAGEMN_AGEMN) 11.715 3.894 1.922 21.260 0.1581 0.1574
14 REMOAGE 3.271 0.711 1.386 5.357 0.1579 0.1367
15 BLDG_AREA 7.804 0.403 5.064 12.279 20.1502 20.1382
16 BLDNG_LEN 5.456 0.289 3.954 8.516 20.1475 20.1367
17 COAST_DIST 12.44 0.26 11.62 12.97 20.1456 20.1456
18 EXTWALLMN 0.750 0.367 0.000 1.000 20.1339 20.1338
19 BLDGHTMEAN 2.833 0.282 0.748 4.670 20.1215 20.1343
20 EXTWALL 0.750 0.433 0.000 1.000 20.1181 20.1133
21 NUMSTORIES 1.323 0.488 1.000 4.000 20.1157 20.1227
22 (BLDGHTMAX_BLDGHTMEAN) 9.771 2.052 1.997 25.886 20.1146 20.1260
23 CLAY 31.052 11.845 20.100 49.800 0.1116 0.1118
24 DETGARNMN 0.248 0.287 0.000 1.000 20.1063 20.1063
25 (BLDGVALUE_REMOAGE) 36.956 7.160 12.174 63.955 0.1060 0.0890
26 (BLDGHTMEAN_MEA25_50M) 7.027 2.172 23.684 21.122 20.1035 20.1046
27 (BLDGHTMEAN_MEA0_25M) 7.163 2.163 0.970 20.073 20.1022 20.1058
28 BLDGHTMAX 3.417 0.415 2.304 5.543 20.0994 20.1091
29 PERM 0.808 1.030 20.100 7.000 20.0874 20.0874
30 (MEA0_25M_STD0_25M) 6.482 2.400 0.355 18.444 20.0803 20.0809
31 (MAX25_50M_MEA25_50M) 9.361 3.352 20.531 35.014 20.0774 20.0744
32 MEA0_25M 2.503 0.595 0.512 4.711 20.0769 20.0761
33 AWC 0.162 0.014 20.100 0.170 0.0757 0.0763
34 MEA25_50M 2.463 0.641 21.250 5.898 20.0740 20.0703
35 DETCHGAR 0.248 0.432 0.000 1.000 20.0712 20.0704
36 INCORP_YR 1044.328 923.052 0.000 1970.000 0.0702 0.0702
37 FREEWAYED 8.017 0.981 0.693 9.943 20.0672 20.0662
38 (MAX25_50M_STD25_50M) 9.284 2.974 0.409 32.341 20.0659 20.0635
39 ED3 5.568 0.846 0.693 8.271 20.0656 20.0654
40 EXTFMN 6.075 2.269 0.693 10.516 20.0442 20.0443
41 WOOD_PER36 0.709 0.036 0.693 1.069 20.0375 20.0372
42 (OPEN_PER36_WOOD_PER36) 0.516 0.046 0.480 0.822 20.0372 20.0373
43 ED1 2.935 1.296 0.693 6.930 20.0170 20.0113
44 (LANDVALUE_EXTFEATVAL) 29.580 35.022 3.206 162.888 20.0166 20.0172
45 ED2 1.465 1.277 0.693 7.692 20.0113 20.0157
46 ROUGHLEN 0.365 0.182 0.010 0.560 0.0093 0.0071
47 EXTFEATVAL 2.878 3.358 0.693 12.104 20.0039 20.0043

Static*Variables

Table 4.9 : Descriptive statistics for static variables in decreasing order of absolute

Pearson’s correlation with roof damage.
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ID Continuous*Variables Mean
Standard*
Deviation Min Max

Pearson's*
Correlation*

with*
Damage

Spatial*
Autocorrelation*
with*Damage*
(Moran's*I)

1 (WINDDUR_COAST_DIST) 11.352 8.073 70.654 27.720 0.1300 0.1300
2 (WINDSTEAD_COAST_DIST) 4.292 1.206 1.394 6.345 70.0990 70.0990
3 (WINDDIR_WINDSTEAD) 87.764 28.588 25.285 140.692 70.0979 70.0979
4 (MAXWIND_WINDSTEAD) 23.779 6.205 7.856 31.402 70.0875 70.0875
5 (MAXWIND_WINDDIR) 17361.401 1490.183 12153.513 20214.600 70.0684 70.0684
6 (MAXWIND_WINDSWAMPH) 5334.112 612.517 2624.800 6665.670 0.0631 0.0631
7 (WINDSWAMPH_COAST_DIST) 952.657 72.030 657.197 1077.936 0.0443 0.0443
8 (MAXWIND_COAST_DIST) 863.658 47.893 671.185 1004.523 70.0305 70.0306
9 MAXWIND 69.488 4.478 51.775 79.992 0.0207 0.0206
10 (WINDDIR_TREE100M) 19.200 66.787 0.000 264.227 0.0010 0.0012

Dynamic*Variables

Table 4.10 : Descriptive statistics for dynamic variables in decreasing order of absolute

Pearson’s correlation with roof damage.
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Figure 4.11 : Heatmap of Pearson’s correlation among static variables. Variables

are ordered from left-right and bottom-up in decreasing order of Pearson’s correla-

tion with roof damage. Three clusters of variables with positive correlation among

them, as seen in this heatmap, correlate distinctively with roof damage: bottom-left

cluster correlates positively, top-right cluster correlates negatively, and middle cluster

correlates weakly.
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Figure 4.12 : Heatmap of Pearson’s correlation among dynamic variables. Variables

are ordered from left-right and bottom-up in decreasing order of Pearson’s correlation

with roof damage.
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4.3.2 Selection of dynamic variables through LASSO analysis

Ten relevant dynamic variables, listed in Table 4.10, emerge after pre-processing and

selection via CFS. Constructing logistic regression models at the terminal leaves of

the hybrid model requires identification of the most important among these wind

related variables.

The Least Absolute Shrinkage and Selection Operator (LASSO), a well-established

technique for feature subset selection in linear models, solves the L1-penalized regres-

sion problem for finding the set of linear coe�cients that minimize the sum of squares

subject to the regularization parameter � [77]. For the case of of logistic regression,

LASSO minimizes the deviance between the observed values and the expected val-

ues subject to the same regularization parameter. The parameter � � 0 regularizes

the amount of shrinkage applied to the coe�cient estimates. As the � parameter in-

creases, it causes some coe�cients to decrease and others to be set at exactly zero. At

the same time, the impact of predictor variables with coe�cients set to zero reflects

in the increase of deviance. Therefore, as the regularization parameter increases,

LASSO tries to retain only the features which best explain the target variable.

Using the Matlab implementation of LASSO, I executed a 5-fold cross validated

analysis to measure the impact of the regularization parameter �. Virtual samples

are added to the training sets of each cross-validated fold based on Algorithm 3.1

in Section 3.2.2. Figure 4.13 shows the deviance as the � parameter increases. The

deviance mostly remains constant for values � < 10�2. For values � � 10�2, the

impact of important coe�cients set to zero becomes more evident by observing the

larger increments in deviance. Figure 4.14 shows a trace plot of the wind variable

coe�cients fit by LASSO. On observation, � has a rapid shrinking e↵ect up to about

� = 10�3. When � > 10�3, most variable coe�cients reduce to zero. For example, at
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� = 10�1.56 only the coe�cients for MAXWIND, (WINDSWAMPH COAST DIST),

and (MAXWIND WINDSWAMPH) remain non-zero. Furthermore, a zoomed in plot

in Figure 4.14 shows (MAXWIND WINDSWAMPH) as the only variable maintaining

a non-zero coe�cient at � = 10�1.5592. Table 4.11 shows dynamic variables in the order

of importance relative to the sequence in which variable coe�cients were set to zero

as � increases. The two most important variables, (MAXWIND WINDSWAMPH)

and MAXWIND, are later used to fit logistic regressions at the random forest leaves

in the hybrid model.
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Figure 4.13 : E↵ect of regularization parameter � on LASSO Logistic Regression

based on dynamic variables.
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(5-fold cross validated).

Order%of%
Importance

Variable%Name

1 (MAXWIND_WINDSWAMPH)
2 MAXWIND
3 (WINDSWAMPH_COAST_DIST)
4 (WINDDUR_COAST_DIST)
5 (WINDSTEAD_COAST_DIST)
6 (WINDDIR_TREE100M)
7 (MAXWIND_WINDSTEAD)
8 (WINDDIR_WINDSTEAD)
9 (MAXWIND_COAST_DIST)
10 (MAXWIND_WINDDIR)

Table 4.11 : Order of importance among dynamic variables as result of LASSO anal-

ysis. The descending order corresponds to the sequence in which the variable coe�-

cients were set to zero by LASSO as � increases.
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4.3.3 Selection of static variables through random forest variable impor-

tance

As a result of the correlation-based feature selection performed in Section 4.3.1, I

considered the forty-seven static variables describing the individual buildings, con-

struction codes, and surrounding terrain listed in Table 4.9. I used the importance

measure embedded in the Random Forest algorithm to find the most important static

variables [12] [71]. Variable importance measures in the random forest become stable

as the number of trees in the ensemble increases. Random Forest supplies a measure

of importance based on the amount of error increase in the tree by tree evaluation of

the out-of-bag samples after randomly permuting its values [78]. The more the error

increases, the more important the variable is considered.

I constructed a 5-fold cross validated random forest model with 50 trees based on

the Matlab function TreeBagger. This model only utilizes the set of static variables

as predictors. The TreeBagger function computes the out-of-bag variable importance

score for each feature in each tree by permuting the out-of-bag values and then com-

puting the error increase [79]. Figure 4.15 shows the 5-fold variable importance scores

for the 47 static variables in decreasing order from left to right. The importance scores

are stable across the 5-fold evaluations. The top three important variables include:

distance to closest freeway, a combined terrain variable describing the percentage of

open and wooded terrain in a radius of 362ft, and the distance to coast. These vari-

ables explain damage: residential structures closer to freeways and the Gulf Coast,

and located mostly in open terrain, are more exposed to higher turbulence and wind

gusts; and structures surrounded mostly by wooded terrain are more susceptible to

damage caused by tree blow downs and wind-borne debris. In Section 4.4, I proceed to
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select the optimal subset of these variables based on the areal prediction performance

specific to the machine learning hybrid framework.
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Figure 4.15 : Random forest variable importance based 47 static variables and an

ensemble of 50 trees. Top three most important variables include: distance to freeway,

a combined terrain variable describing the percentage of open and wooded terrain in

a radius of 362 ft, and distance to coast.
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4.4 Fitting hybrid model

By discovering an ordering of variable importance among both static and dynamic

variables, I am able to perform a search for the subset of variables that maximizes

the areal accuracy of the hybrid model. In this section, I present the need to prune

the decision trees in the hybrid model in order to allow enough training samples at

the terminal leaves to fit logistic regressions, I explore the optimal subset of static

variables based on a single hybrid classification tree, and I finally construct the ran-

dom forest hybrid model which performs significantly better than the HAZUS-MH

wind damage model.

Choosing regularization parameter for minimum samples at tree terminal

leaves

Growing the random forest without any pruning produces overfitted trees with a

single sample at each terminal leaf, leaving an insu�cient number of samples for

logistic regression models to be fitted as required in the hybrid model. Therefore, I

explore the optimal number of samples to allow at the terminal leaves.

Since random forests are based on a single classification trees (CART), I analyzed

the response of a single tree to the regularization parameter MinLeaf based on the

Matlab implementation of CART (fitctree). The MinLeaf parameter enables the

user to select the minimum number of samples allowed at the terminal leaves of each

tree in the ensemble. As the value for MinLeaf increases, the trees become smaller

in size. I explored the e↵ect MinLeaf on predicting damage to individual homes as

quantified by the AUC metric. Figure 4.16 shows the AUC values of a 5-fold cross

validated analysis for 100 CART with MinLeaf values ranging from 1 up to 105

constructed with the 47 selected static variables. Individual level metrics for each
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CART are plotted based on the True Test set, fold Test set, and fold Train set. As

MinLeaf increases, the True Test AUC reaches a maximum at MinLeaf ⇡ 25. At

this point, evaluation on the fold Train set suggest overfitting as indicated in the

figure. The overfitting e↵ect becomes minimal up to MinLeaf = 700 where the True

Test set AUC is 73%. ChoosingMinLeaf = 700 enables the logistic regression models

at the terminal leaves to be fitted with at most 9 wind variables (log2(700) = 9.45).

A CART fitted with MinLeaf = 700 contains approximately 100 terminal leaves and

a depth of approximately 28 levels as Figure 4.17 shows.

101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
CART 5−Fold Cross Validation

MinLeafs

AU
C

 

 
Test Train True Test

MinLeaf=700 

Overfitting 

73% 

Figure 4.16 : Exploring the e↵ect of regularization parameter MinLeaf for a single

CART based on AUC metric.
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MinLeaf = 700.
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4.4.1 Variable subset selection based on single hybrid tree: LogTree

In order to select the best subset of static variables, I evaluate the performance of

multiple subsets based on a single hybrid tree (named LogTree) and in therms of the

accuracy of that tree at the one-kilometer square block level. Subsets with combina-

tions of variables are created in a greedy fashion based on their importance shown in

Figure 4.15. The first subset contains the most important variable, the second subset

contains the top two most important variables, and so on until a subset containing

the total amount of static variables is assembled. The LogTree model, constructed

with these variable subsets, is composed of a single CART with MinLeaf = 700

and logistic regressions fitted at the leaves with the top important wind variable

(MAXWIND WINDSWAPMH). In order to train the hybrid model, I followed the

training protocol introduced in Section 3.2.2 adding virtual samples based on Algo-

rithm 3.1 for fitting the logistic regressions. Figure 4.18 shows the cross validated

accuracy at the areal level of one-kilometer square blocks based on the LogTree hy-

brid model. The last significant increase in areal True Test set accuracy occurs with

subset 15 where 62.19% one-kilometer square blocks are predicted correctly. For sub-

sequent subset evaluations, the areal accuracy stabilizes at about 62.3%. The low

areal accuracy is due to high variance in prediction errors made by a single tree. True

Test set accuracy can be improved by building an ensemble of trees that make uncor-

related prediction errors with new data. In the next section I proceed to construct

the hybrid LogRFT which is based on an ensemble of trees.

Subset 15 is composed of fifteen variables with the highest variable importance

score in Figure 4.15. In decreasing order of importance, these variables include: dis-

tance to closest freeway, combined percentage of open and wooded terrain within 362

ft, mean height within building’s footprint, closest distance to open terrain, com-
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bined maximum height and mean height within building’s footprint, combined build-

ing value and years since building remodeling, mean number of stories within 362ft,

percentage of wooded terrain within 362 ft, maximum altitude within building’s foot-

print, mean extra features value of homes within 362 ft, mean of years since building

remodeling of homes within 362 ft, combined mean of years since building remodel-

ing and mean building age of homes within 362 ft, mean detached garage presence

in homes within 362 ft, and mean land value of homes within 362 ft. Eight of these

variables describe surrounding terrain and seven describe structural characteristics of

the residential buildings.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

LogTree Variable Subsets 5−Fold Cross Validation
(MAXWIND_WINDSWAMPH)

Subset

w
in

d 
co

rre
ct

 

 

Test Train True Test

62.19%  

Figure 4.18 : Variable subset selection based on hybrid model with a single CART

tree and logistic regressions at the leaves (LogTree) based on MinLeaf = 700 and a

single dynamic variable: (MAXWIND WINDSWAPMH).
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4.4.2 Constructing LogRFT hybrid model

As a result of the analysis done with LogTree, I selected variables in subset 15 to fit

a LogRFT hybrid model. The random forest tree includes up to 50 individual trees

based on MinLeaf = 700. After observing the variation of individual level accuracy

with the number of trees increase, I choose to use 20 trees since cross-validated True

Test AUC stabilizes after 20 trees to about 76%. At 20 trees, the average total number

of terminal leaves per cross-validated fold is 7,036 and the mean number of leaves per

tree is 352.

Given these parameters and the two most important wind variables (MAXWIND

WINDSWAPMH) and MAXWIND, the LogRFT model is constructed using the

training protocol described in Section 3.2.2. Figure 4.19 shows that as the number

of trees in the ensemble increases, the one-kilometer square block accuracy varies up

and down, finally stabilizing at about 75.2% after 15 trees. Compared to the perfor-

mance of the HAZUS-MH physical model evaluated with the Ike simulated 3-second

wind gusts introduced in Section 2.2.2, LogRFT performs 45.5% better at predicting

expected wind damage risk at one-kilometer square blocks. The performance of the

HAZUS-MH physical model drops significantly when 1-minute maximum sustained

wind speeds (MAXWIND) is used, instead of the 3-second peak wind gusts. per-

formance significantly drops. With respect to MAXWIND, the HAZUS-MH model

accuracy is 3.2%, under-prediction is 89.6%, and over-prediction 7.2%. For ease of

comparison, Table 4.12 shows the areal performance of these di↵erent models. The

LogRFT model is compared against best performing HAZUS-MH model.

Figure 4.20 shows the spatial distribution of errors across the Harris County made

by LogRFT (left) and HAZUS-MH (right) based on observed damage from Hurricane

Ike. In contrast to the balanced errors in the HAZUS-MH model, errors in the
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Wind%damage%predictive%model% Accuracy
Under5

prediction
Over5

prediction

LogRFT
'(Trained(and(evaluated(with(MAXWIND(
and((MAXWIND_WINDSWAPMH).

75.2% 7.1% 17.7%

HAZUS'MH(physical(model((evaluated(
with(Hurricane(Ike(simulated(3'second(
wind(gusts.

51.0% 25.6% 23.4%

HAZUS'MH(physical(model(evaluated(
with(1'minute(maximum(sustained(wind(
speeds((MAXWIND).

3.2% 89.6% 7.2%

Table 4.12 : One-kilometer square level prediction performance for the di↵erent wind

damage models with respect to actual observed roof damage caused by Hurricane Ike

over Harris County, Texas.

LogRFT model skew towards over-prediction (7.1% under and 17.7% over). Under-

predicted block regions appear mainly clustered in three areas: first, in the north

west between US-290 and SH-249; second, in the west of SH-6 between US-290 and

I-10; and third, west of Beltway 8 in the area south of I-10 and east of SH-6. Over-

predicted block areas mainly clustered in three areas: first, north of Beltway 8 from

east to west beginning at US-90 and ending at US-290; second, between SH-6 and

Beltway 8 south of US-290; and third, in the west of Harris County around I-10.

Further analysis of these results and the LogRFT hybrid model itself is documented

in the next chapter.
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Figure 4.19 : Areal accuracy of LogRFT as the number of trees in the ensemble

increases. The LogRFT is based on a random forest tree constructed with the top 15

most important static predictors and based on logistic regressions at the leaves fitted

with the top most important dynamic wind variables.
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Figure 4.20 : Comparison of one-kilometer square areal accuracy between LogRFT

and HAZUS-MH model based on expected roof damage from Hurricane Ike. LogRFT

performs 45.5% better than HAZUS-MH. The performance of HAZUS-MH is based

on the Hurricane Ike simulated 3-second wind gusts.
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Chapter 5

Analysis of results

By constructing a LogRFT hybrid model that exhibits significant improvement over

the HAZUS-MH model, I have demonstrated it is possible to construct probabilistic

wind damage risk models from data. Nonetheless, the LogRFT model makes incorrect

predictions for 24.8% of the one-kilometer square blocks. Analysis of the spatial

distribution of errors over the Harris County suggests that under- and over-prediction

errors are clustered in certain geographical areas. Analyzing the logistic regression

models fitted by the hybrid framework helps us in understanding their source. In this

chapter, I examine the logistic regression models fitted at the random forest leaves,

I explore the geographical location of homes used in logistic models, and I describe

the di↵erence between groups of similar logistic models characterized by the static

variables. Furthermore, in a subsequent section, I evaluate the generalization of the

LogRFT hybrid model to unseen hurricane category wind fields and report the results.

5.1 Analysis of logistic regressions in the LogRFT hybrid

model

In order to understand the wind-damage prediction estimates produced by the Lo-

gRFT model, I examine the logistic regressions fitted at each leaf in the random

forest. These logistic functions describe the rate at which the probability of wind

damage increases/decreases for a group of similar residential structures as wind vari-
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ables change. Functions exhibiting sharp increments in damage probability within

a small wind speed range reflect model overfitting and need further analysis. This

behavior triggers under- and over-prediction errors depending on where the sharp

increase in damage probability happens. For example, logistic models with sharp

probability increments at low wind speeds, predict high damage probabilities for low

speeds. This behavior consequently results in over-prediction errors. Furthermore,

functions with sharp damage probability increments at high wind speeds produce

under-prediction errors. Analyzing the di↵erent logistic functions fitted by the hy-

brid model helps diagnose prediction errors and plan future techniques to improve

model performance.

5.1.1 Clustering and description of logistic regression coe�cients

To explore the logistic regression models fitted in the LogRFT methodology, I se-

lect the LogRFT model from cross-validation fold #1 (from now on referred to

as LogRFT#1). Each leaf in LogRFT#1 is associated with a logistic regression

model described by one constant and two coe�cients. The first coe�cient cor-

responds to MAXWIND and the second coe�cient corresponds to (MAXWIND

WINDSWAPMH). Using the constant and the two coe�cients from each logistic

model, I applied the K-means algorithm (Matlab function kmeans) to cluster the lo-

gistic models into similar groups. Before clustering, the variables in the logistic models

were min-max normalized to make all equally important. Executing the K-means al-

gorithm multiple times with 10 replicates finds logistic regressions mainly clustered

into three distinctive groups. Figure 5.1 shows a 3D-plot of the 7,056 logistic models

in LogRFT#1 and the partitioning among the 3 clusters found by K-means. Observe

that 20.8% of the logistic models belong to clusters 1, 74.2% belong to cluster 2,
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and 5.0% belong to cluster 3. Table 5.1 shows descriptive statistics of the logistic

regression coe�cients for each cluster. The majority of logistic functions (cluster 2)

concentrate in the intercept interval [-17.47,-3.261], MAXWIND coe�cient interval

[-0.212,0.229], and (MAXWIND WINDSWAPMH) coe�cient interval [-4E-05,0.005].
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Figure 5.1 : 3-D plot of the 7,056 logistic regression models fitted in LogRFT#1

partitioned into 3 clusters by K-means algorithm.

MEAN STD MIN MAX MEAN STD MIN MAX MEAN STD MIN MAX

1 1469 %5.572 2.596 %37.5 %1.187 %0.393 0.37 %5.695 %0.168 0.006 0.005 0.003 0.068
2 5238 %8.88 2.668 %17.47 %3.261 0.014 0.083 %0.212 0.229 0.001 8E%04 %4E%05 0.005
3 349 %25.36 11.26 %115.1 %16.89 0.228 0.207 %1.733 1.514 0.001 0.002 %2E%04 0.029

Cluster1
ID

Number1
of1Models

Intercept MAXWIND (MAXWIND_WINDSWAMPH)

Table 5.1 : Descriptive statistics for the three clusters of logistic regression functions

fitted in the LogRFT#1 model.
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To interpret the logistic regressions describing each cluster, I graph the logistic

functions and observe their behavior as wind variables change. To simplify the graphs,

I plotted the probability of wind damage as a function of MAXWIND with values

ranging from 0mph-180mph. The values used for variable (MAXWIND WINDSWAPMH)

are set to MAXWIND2. Figure 5.2 shows the logistic regression functions for clus-

ters 1 through 3. By plotting all logistic functions within each cluster on the same

graph, it is possible to observe the overall behavior describing the cluster. Logistic

functions from clusters 1 and 3 exhibit a sharp increase mostly within the interval

of 60mph-90mph. This behavior reflects model overfitting to wind speeds due to the

lack of variation in the observed wind estimates. Figure 4.10 shows that MAXWIND

range from 52mph-80mph for Hurricane Ike. Some functions in cluster 2 exhibit tran-

sitioning of probabilities beginning from 0mph and reaching 100% at about 80mph.

This type of logistic model describes groups of residential structures more vulnerable

to wind speed loads. Within the same cluster, other logistic models describe groups

of residential structures capable of withstanding stronger wind loads. For example,

the probability of damage of the right most logistic model in cluster 2, begins to rise

from 0% at about 70mph and reaches 100% damage probability at 160mph.

5.1.2 Geographical distribution of logistic models

Every logistic regression model describes the probability of damage for a group of

similar residential structures. By plotting the location of such structures, I analyze

the geographical impact of the logistic models in each cluster. To do so, I extract the

training samples used to construct each logistic function in the LogRFTR#1 model

and group them according to their cluster membership. Since the classification trees

in the random forest are constructed from random samples with replacement, an
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Figure 5.2 : Graphical representation of the three clusters of logistic models from

the LogRFT#1. These models are plotted as a function of MAXWIND. The

(MAXWIND WINDSWAPMH) variable is set to MAXWIND2.

individual sample can appear multiple times in the training set of a given logistic

model. Therefore, I only keep the set of unique samples that describe each cluster of

logistic functions. The unique samples from each cluster are gathered and aggregated

to the one-kilometer square blocks by computing the count of samples within each
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block. Figure 5.3 depicts the geographical distribution of training samples in clusters

1 to 3.
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Figure 5.3 : Geographical distributions of unique training samples used to fit logistic

regression models in cluster 1 to 3. Samples from each cluster are aggregated to the

one-kilometer square blocks by computing the count of residential properties within

each block.

The one-kilometer square blocks in the geographical distribution map into six

categories depending on the number of structures present within each block. Most

of the structures in cluster 3 are located toward the northwest of Harris County.

According to Section 5.1.1, the logistic regression models in this cluster exhibit sharp

increments in damage probability within a small wind speed range. The geographic

location of this cluster coincides with most under- and over-prediction errors made
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by the LogRFT model north and west of the Harris County in Figure 4.20 (left).

Since this cluster contains blocks holding residential property counts mostly in the

1 to 200 range, overfitted logistic models explain only part of the errors made by

LogRFT. Given the large density of residential properties explained by cluster 2,

logistic functions within this cluster have a higher potential to a↵ect the areal level

prediction. Therefore, a second source of over-prediction errors is introduced by

slightly shifted functions to lower wind speeds such as those present in cluster 2

Figure 5.2. Along the same lines, logistic functions in this cluster exhibiting low

probabilities of damage up to 90 mph, possess a high potential to be the source of

under-prediction errors made by the LogRFT model.

5.1.3 Characterization of logistic models with respect to static variables

After analyzing the spatial distribution of training samples, I proceed to characterize

the di↵erences among them with respect to the top fifteen predictor static variables

selected in Section 4.4.1. Knowledge of distinctive building types across all clusters is

obtained by contrasting the values of these variables. In Figure 5.4, I create a graph for

each static variable containing a box plot based on the unique training samples at each

cluster. Note that Section 4.3.1 performed log-transformation of all static variables,

with the exception of NUMSTMN and DETGARNMN. In order to facilitate the

interpretation of values, only single variables are transformed to their original scale

for plotting in this figure. Joint variables such as (OPEN PER36 WOOD PER36)

are not transformed back to original values.

As explained in Subsections 5.1.1 and 5.1.2, under- and over-prediction errors

appear more prominent in locations where cluster 1 and 3 samples are geographically

located. According to Figure 5.4, residential properties in cluster 1 are constructed



91

on less expensive land, are mostly older/unremodeled one-story homes surrounded by

the smallest percentage of wooded terrain, are closest to the freeway system and to the

Gulf coast. Under-estimation errors in cluster 1 can be potentially explained by fact

that the residences in that cluster are more vulnerable to wind damage. Properties

in cluster 3 are farthest from the Gulf coast (also observed in Figure 5.3), have the

highest mean/max building heights, are the newest/remodeled buildings, have the

highest number of stories (a mixture of 1, 2, and 3 story building), have the highest

cost of exterior features, the highest percentage of detached garages in neighborhood,

and are built on more expensive land. Residences in cluster 3 are thus more resistant

toward damage, therefore, over-estimation errors could potentially occur.

In summary, further investigation of under- and over-prediction errors needs to

be performed. In particular, understanding the e↵ects of overfitted functions rising

within a small range of wind speeds help resolve errors made by clusters 1 and 3.

Additionally, investigating the details of how logistic functions in the extremes of

cluster 2 are fitted could help devise strategies to enable better generalization.
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Figure 5.4 : Graphs describing the distribution of values of each static variable in

LogRFT#1 across the three logistic regression clusters. The distribution of values

in each cluster is represented using box plots. Single variables log-transformed in

Section 4.3.1 are transformed back to their original units of measure.



93

5.2 Assessing LogRFT generalization to unseen wind speeds

Since the purpose of the LogRFT model is to predict wind-induced damage to resi-

dential structures for future hurricane events, generalization is judged based on wind

fields outside Hurricane Ike’s wind speed range. A deterministic wind field for each

of the five Sa�r-Simpson hurricane categories is used to simulate wind speeds over

the Harris County. For reference, Table 5.2 shows the range of 1-minute speeds defin-

ing the Sa�r-Simpson categories. The simulated wind fields, computed by the wind

hazard model integrated in the HAZUS-MH software [40], are used to evaluate the

LogRFT and HAZUS-MH wind damage models. Figures 5.5 and 5.6 show the spatial

distribution of predicted expected damage for hurricane categories one through five

respectively for both models at the one-kilometer square block level.

Category
Wind-speed-
range-(mph)

1 74$95
2 96$110
3 111$130
4 131$155
5 >155

Table 5.2 : Sa�r-Simpson hurricane hurricane categories.

5.2.1 Comparing generalization among the LogRFT and HAZUS-MH

models

By observing the response of both the LogRFT and HAZUS-MH models to lower

and higher wind speeds, we can evaluate the generalization di↵erences between them.

Figure 5.5 shows that the LogRFT model predicts a sharp increase in damage proba-
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bilities from hurricane category 1 to category 2. This this is due to the use of logistic

functions in which the transition from low to high damage probabilities occurs within

the wind speed interval of 60mph-100mph (see Figure 5.2). For hurricane category

wind fields 3 to 5, the LogRFT model predicts expected damage probabilities of 80%

to 100% for all one-kilometer square blocks. The HAZUS-MH model also predicts a

sharp increase in damage probabilities from hurricane categories 2 to 3 and from cat-

egories 3 to 4 as shown in Figure 5.6. This suggests that the model’s fragility curves

transition from low to high damage probabilities mostly in the wind speed range

of about 96mph-130mph. In contrast, the logistic functions fitted by the LogRFT

exhibit low to high probability transitions at a much lower wind speed range.

Both the logistic functions and fragility curves describe the cumulative probabil-

ity of wind damage as a function of wind speed. The di↵erence in their structure

stems from the fact that they have been developed based on di↵erent wind speed

ranges. While the LogRFT model is trained using 1-minute wind speeds (MAXWIND

and MAXWIND WINDSWAMPH), the HAZUS-MH model is developed based on 3-

second peak wind gust speeds [18]. According to a FEMA mitigation assessment

report, 3-second peak wind gusts are 1.3 times (or 30% higher than) the 1-minute

maximum sustained wind speed [80].

To compare the performance of the LogRFT methodology based on 3-second peak

wind gusts, I convert the 1-minute wind speed variables to 3-second peak wind gusts to

construct a LogRFT model (from now on referred to as LogRFT windgust factored).

This model exhibits a one-kilometer square level accuracy of 43.7%, an under-prediction

of 43.9%, and an over-prediction of 12.4%. To facilitate comparing the perfor-

mance of the di↵erent wind models discussed, Table 5.3 shows their one-kilometer

square block accuracies and prediction errors. Contrasting the performance of mod-
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els LogRFT windgust factored and LogRFT, areal accuracy decreased 41.9%, under-

prediction increased 518.3%, and over-prediction decreased 29.9%. These numbers re-

flect a large percentage of one-kilometer square blocks previously classified as correctly

predicted now classified as under-predicted. Furthermore, evaluating the HAZUS-MH

model with variable MAXWIND converted to 3-second wind gusts yields to an areal

accuracy of 41%, under-prediction rate of 43.1%, and over-prediction rate of 15.9%.

This results based on the HAZUS-MH model are very similar to those obtained with

the LogRFT windgust factored model.

Wind%damage%predictive%model% Accuracy
Under5

prediction
Over5

prediction

1)
LogRFT
)*Trained*and*evaluated*with*MAXWIND*
and*(MAXWIND_WINDSWAPMH).

75.2% 7.1% 17.7%

2)

LogRFT_windgust_factored
)*Trained*and*evaluated*with*MAXWIND*
and*(MAXWIND_WINDSWAPMH)*
converted*to*3)second*wind*gusts.

43.7% 43.9% 12.4%

3)
HAZUS)MH*physical*model**evaluated*
with*Hurricane*Ike*simulated*3)second*
wind*gusts.

51.0% 25.6% 23.4%

4)
HAZUS)MH*physical*model**evaluated*
with*MAXWIND*converted*to*3)second*
wind*gusts.

41.0% 43.1% 15.9%

5)
HAZUS)MH*physical*model*evaluated*
with*1)minute*maximum*sustained*wind*
speeds*(MAXWIND).

3.2% 89.6% 7.2%

Table 5.3 : One-kilometer square level prediction performance for the di↵erent wind

damage models with respect to actual observed roof damage caused by Hurricane Ike

over Harris County, Texas.
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5.2.2 Construction and analysis of LogRFT based on 3-second peak wind

gusts

Logistic coe�cients fitted with 3-second wind gust speeds are analyzed following the

same strategy as in Section 5.1. Obtained from the LogRFT windgust factored#1

model, these coe�cients cluster into three groups based on the K-means algorithm as

depicted in Figure 5.7. Comparison to coe�cients in the LogRFG#1 model indicates

that the new intercepts and (MAXWIND WINDSWAMPH) coe�cients distribute

over a smaller range, while MAXWIND coe�cients appear in a similar range. Fur-

thermore, the configuration of the new logistic models as a function of wind speed

compared those fitted with 1-minute maximum sustained winds, exhibit a transition

from low to high damage probabilities at the higher wind speed range of about 70

mph-130 mph according to Figure Figure 5.8.

In order to assess the generalization of the LogRFT windgust factored model to

unseen hurricane category wind fields, I evaluate the model with the same simulated

wind fields used to assess the generalization of models LogRFT and HAZUS-MH.

Figure 5.9 shows the distribution of expected predicted damage at the one-kilometer

square blocks for these wind fields. In contrast to the generalization observed in

LogRFT, LogRFT windgust factored predicts less damage for category 1, 2, and 3.

Prediction estimates for category 1 and 2 exhibit a smoother transition to higher

damage probabilities. Additionally, comparing the model’s generalization to that of

the HAZUS-MH model, predictions are identical for both models with the exception of

category 1 and 2. While HAZUS-MH uniformly predicts 0%-20% expected damage for

category 2, LogRFT windgust factored predicts 20%-60% expected damage for one-

kilometer square blocks that spatially correlate with roof damage in Figure 4.2. These
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observations suggest that LogRFT windgust factored identifies regions of vulnerable

residential structures across the Harris County.
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5.3 Summary of results

The logistic regressions fitted by the LogRFT methodology for multiple building

types confirm that these cumulative density functions relate the probability of roof

damage to wind speeds. Because of the form of these functions, the constructed Lo-

gRFT model can predict damage probabilities from as a function of increasing wind

speeds. This generalization ability is observed over LogRFT#1 predictions for hur-

ricane categories 1-5, although they appear to over-estimate damage relative to the

HAZUS-MH model predictions. Nonetheless, by converting the 1-minute wind speeds

to 3-second wind gusts and using them to train the LogRFT windgust factored model,

I demonstrate the capability of the LogRFT methodology to resemble the general-

ization observed in the HAZUS-MH model. In addition, the LogRFT methodology

identifies regions vulnerable to wind damage. Constructed based on individual level

data describing Harris County residences, LogRFT models surpass fragility curves in

the HAZUS-MH model which were developed for a limited number of building types

described by a few parameters as presented in Section 2.2.

Models developed from 3-second wind gusts predict observed damage with signif-

icantly lower areal accuracy compared to those developed from 1-minute sustained

wind speeds. The one-kilometer square accuracies and errors from models developed

and evaluated based on 3-second wind gusts are very similar, as observed in Table

5.3. Furthermore, logistic functions fitted with 3-second wind gusts shift to higher

wind speeds in comparison to those fitted with 1-minute wind speeds. This change

produces a drop in areal accuracy from 75.2% to 41.0%. Therefore, it appears that

in order to obtain higher prediction accuracies, wind damage models based on cumu-

lative density functions need augmentation with 1-minute wind speeds. Additional

independent observed damage information caused by a di↵erent hurricane will allow
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the validation of these models. Meanwhile, a more detailed study of prediction errors

made by models developed with 3-second wind speeds is necessary.
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Chapter 6

Conclusion and future work

In the work presented in this thesis I developed the first purely data-driven machine

learning framework to predict the probability of wind damage risk to individual res-

idences and to areal units, in particular, one-kilometer square blocks. While most

models in civil engineering for damage prediction are physics based, the modeling

framework presented in this thesis is based entirely on the largest damage data set

collected to date. The model constructed by the machine learning framework (Lo-

gRFT) performs 47.5% better than the state of the art HAZUS-MH physical model

at predicting wind damage from Hurricane Ike at the one-kilometer square level. To

achieve this performance improvement, I made two technical contributions. First,

since observed wind estimates recorded over the Harris County, Texas for Hurricane

Ike were limited to the range from 50mph-80mph, I added virtual samples to the

training set to improve generalizability over unseen wind speeds. The virtual samples

are added based on the rationale that buildings damaged at a given wind speed re-

main damaged at higher wind speeds and that buildings undamaged at a given wind

speed, remain undamaged at lower wind speeds. The addition of virtual samples

enables models to predict damage smoothly as wind speed increases. In particu-

lar, logistic regression models provide the best smooth response for increasing wind

speeds. This finding led me to my second technical contribution: to divide the predic-

tor variables into two groups; and to adapt a two-level hybrid model (called LogRFT)

using a random forest tree trained on static variables and logistic regression models
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at the leaves trained with dynamic variables. By implementing the LogRFT method-

ology, I demonstrate the possibility of building good models of wind damage risk at

the kilometer square level in an entirely data-driven fashion.

I analyze logistic regression models fitted at the leaves of the LogRFT model by:

exploring the behavior of the logistic functions as wind speed increases; plotting the

geographical location of residential structures described by the logistic functions; and

characterizing clusters of logistic models based on the predictor static variables used

to construct the random forest model. This analysis helped identify groups of logistic

functions which explain under- and over-prediction errors. Characterization of the

errors made by the LogRFT model needs to be investigated in future work in order

to improve the performance of the hybrid framework.

In addition, analysis of model generalization over unseen wind speeds uncovered

significant over-estimation of wind damage risk made by the LogRFT model compared

to the HAZUS-MH model. Nonetheless, training the hybrid model with 3-second wind

gust speeds enables the construction of logistic regressions with prediction errors

similar to those made by the HAZUS-MH model. Through this observation, the

model trained with 3-second wind gust speeds and the HAZUS-MH model produce

very similar areal performance when evaluated on the same wind field. Most of the

errors persist as under-prediction errors. Future work is needed to investigate why

cumulative probability densities of wind damage based on 3-second wind speeds result

in a decrease in areal accuracy and significantly increase under-prediction errors when

compared to models constructed with 1-minute wind speeds.

The hybrid machine learning methodology presented in this thesis can be used

to construct wind damage models that provide real-time predictions for any coastal

region. In predicting wind damage accurately, I recommend constructing the model
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based on 1-minute maximum sustained wind speeds. However, constructing the model

based on 3-second peak wind gusts, produces damage estimates that do not seem to

over-estimate at lower wind speeds.

My thesis helps provide more accurate estimations of wind damage risk to residents

and emergency agencies for future hurricanes events. The hybrid model I constructed

can be used to provide real-time wind damage estimates for Harris County, Texas.

With better damage risk estimates, emergency agencies can guarantee the best sup-

port to a↵ected communities, and residents can make decisions that potentially lead

to the reduction of loss of life and property due to hurricane hazards.
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