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CHAPTER 1

INTRODUCTION

Recently, there has been interest in the design of
finite length digital filters. Several reasons for this
interest lie in the advantages of the finite impulse re-

sponse (FIR) digital filter; namely

1. stability of the filter,
2. high speed implementation, and
3. relative insensitivity to round off in non-

recursive realizations.

In the most general case, the Chebyshev approximation

problem is to find the hi’ i=0,...,N such that one

minimizes the {max |[D(F) - O(F)]|}
all hj € Real FeX

where O(F) equals the frequency response of the digital
filter defined as equaling the transfer function of the

digital filter

(I bz = G(2))
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evaluated at e:““T = eJZ"F; F a normalized frequency Vvariable

= wT/27 ¢ X = [0,1).

(Hence O(F) = ¢ J27Fk

k

h
0

.)

#e~12

k

D(F) is some desired response, and |X(F)| denotes the mag-

nitude of X(F) evaulated at the frequency F.

Remark 1-1. One notes that for low pass filters with con-

stant group delay

e J2mFY(N/2) g Passband

D(F) =
0 F ¢ Stopband

where y is a linear phase factor.

Methods for solving this problem include windowing
techniques, frequency sampling techniques and optimal
Chebyshev approximation with linear phase.

Windowing techniques derive their name from the
method in which the hi are obtained. Since the frequency
response of a digital filter is periodic, the frequency
rerponse function can be expanded in terms of a Fourier
series, which in general contains an infinite number of
terms. The Fourier coefficients are then truncated to form
the hi of a filter producing approximately the desired

frequency response. One of the problems with the method is
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at discontinuities where one usually obtains unsatisfactory
performance due to the Gibbs phenomena. To avoid this dif-
ficulty, one modifies the Fourier coefficients by multiply-
ing the coefficients by a desirable time limited function
known as a window, which reduces the Gibbs effect.[1].

A second method for obtaining the filter coefficient
is the frequency sampling method [2]. Basically the method
samples a desired frequency response at N points with the
values of M points (M < N) left unspecified. The inverse
discrete Fourier transform (IDFT) is then applied and the
hi of a filter determined, and a new continuous frequency
response of these hi's is found. An optimizing technique
is applied to the M values left unspecified, and the filter
coefficients finally achieved incorporating the newly
specified value of the M points. Typical results include a
maximum deviation of about -35 to -40 db for a filter of
length 16 with 1 transition point for a low pass filter.

The third and most recent advancement is the fast
and efficient computation of an optimal Chebyshev approxi-
mation by a FIR digital filter to a desired frequency re-
sponse with linear phase [3], [4]. This interpolative
technique applies the Remes Algorithm [5].

Methods ene and two (windowing and frequency sampl-
ing) offer the possibility of complex approximation, but
they are not optimal in the Chebyshev sense. Method 3

offers the advantage of a fast efficient procedure



(as does 2) and is optimal. However, method 3 does not
offer the generality of a complex approximation since the
phase is fixed to be exactly linear (thereby making the

approximation problem a real approximation problem).

Remark 1-2. If one desires linear phase, then he is done,

for the apprecximation found in [3] and [4] are optimal.
There exist, however, reasons why one would be

interested in a general complex approximation to a desired

response in the Chebyshev sense. Consider the cross

sectional plane shown in Figure 1-1.

v
€

Real

Figure 1-1



5
If one is doing the general complex Chebyshev approximafion
problem then one can accept a small phase error and a small
magnitude error at a given point, and thereby can avail
himself of the possibility of fitting the approximation to
the desired function'inside a cylinder of radius e or inside

a circle of radius ¢ at a given frequency (Figure 1-2).

Max Magnitude Error = ¢

Im Magnitude

Error
Radius = ¢

7
4 7

o

/
. b = t
//Ktt desired Max A = arctan e
Real 7

neat

Figure 1-2

It is seen that by trading off a little phase error
for a little magnitude error, and vice versa, one can ob-
tain any point lying within the circle of radius e.

If, however, one fixes the phase to be exactly
linear, then one is no longer approximating in a cylinder,

but rather on a ribbon lying around the desired function



as shown in Figure 1-3.

Im
251 Ad’ =0
q/l/% Max Magnitude Error = €1
7/
/7
7
"4
Real A\
Road
Figure 1-3

Therefore in effect one has constrained the solution
to the problem to be in a subspace of the complex approxi-
mation problem. Hence, if one is willing to accept a small
amount of phase error (or in the case of the optimal magni-
tude filter any phase at all) then one should be able to
obtain a smaller Chebyshev error by taking advantage of the
maximum number of degrees of freedom possible. Therefore,
this thesis will consider the problem of dropping the
linear phase constraint and determining the advantages and

disadvantages of doing so.



CHAPTER 1II

THE OPTIMAL MAGNITUDE FILTER

The optimal magnitude filter is the filter which

minimizes {maximum| [D(F)| - [O(F)|]|}
all hj € Real e X

where

D (F)

desired magnitude response

N .
0(F) ) hy e I2"KF _ t1e obtained filter's
k=0

response

F a normalized frequency variable ¢ X = [0,1) and

hi i=0,...,N are the filter's coefficients.

Remark 2-1. Although O(F) has a phase associated with its

response, the error criteria places no weight on the phase,
hence this filter is also termed the optimal magnitude

Chebyshev approximation without regard to phase.

Remark 2-2. One notes the following properties of a

7



transfer function

(H(F) =

w
It 122
o

restricted to possessing linear phase.

(a)

(b)

(c)

(d)

linear phase & symmetric filter coefficients, :

ice. hy; = h;; i=0,..

hy; .»[N/2] where [X] denotes

-

the largest integer not exceeding X;

real coefficients imply that the zeros of the
transfer function océur in complex conjugate pairs;
symmetric coefficients imply that the transfer

function H(F) may be written as (for N+1 ¢ odd
integers)

. n |
H(F) = e J270F Y du cos 2nyF
n=0

where 2n+l = N+1, do =h_, d = 2h s w=1,...,

n’ Ty n-u
n, 1i.e. a strictly imaginary part times a
strictly real part;

since

n n
uZO du cos 2muF = do + Z

d cos 2 wu F
p=1 M

the response H(F) may be linearly slid up and down

the response axis by changing dd'



(e)

for ¢ € Teals and > 0.

e~
i~

cl

d cos 2%F ] = .
u u :

cd ws2rsF
0‘ u H H

u 0

which implies that a scaling of all coefficients
by e implies a linear scaling of the frequency

response.

Proposition 2-1. The procedure for producing the optimal

magnitude filter is as follows:

(a)

(b)

(c)

obtain an optimal linear phase Chebyshev approxi-
mation of length 2n+l, n e positive integers(the method
of [4] suffices quite well) to a law pass filter;
add 8, (the deviation in the stopband of the

length 2n + 1 linear phase filter) to the center
coefficient of that same filter;

find the zeros of this new transfer function

2n
A -k
(H(z) 2 ] h,.z ™)
k=0 ¥ 7’
where the hk's are the coefficients of the new

filter and eliminate all zeros lying outside the

unit circle in the z plane, and one each of the

~double zeros on the unit circle (thereby .taKing



(d)

10

the square root of the magnitude of the transfer
function [see 6, page 93-97] evaluated at

7 =_ej2"F);

scale the coefficients of this length n + 1 fil;
ter by the factor C = 2/[maximum achieved value

of the magnitude of the transfer function

H(z) = ) d + minimum achieved

b gi2nF

value of the magnitude of the transfer

function H(Z) 1.

Z=ej2nF

Remark 2-3. 1In particular if the original length 2n + 1

linear phase filter has a deviation in the passband of §

1

and in the stopband of 895 then one obtains for the length

n + 1 optimal magnitude filter pass and stopband deviations

of

S

= ( ——— 2 ) \/1+62+61 - 1.0
/1+61+62 + 1+62—61

— 2 .

= ( ) '262

V1+62+61 + 1+62—61

respectively.
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Remark 2-4. It is convenient in the design procedure to be

able to express §4 and 8, of the length 2n + 1 linear phase
1
1
magnitude filter. One may therefore derive the following

filter in terms of the resulting &, and Gé of the optimal

expressions for 61 and 6;, by ebsentially reversing the

above procedure-

461

1 i

2428, -6}

aéz
§2 F T2 12
2+28,%- 5,

Remark 2-5. The procedure of proposition 2-1 is similar to
the Hermann Schuessler procedure [7] for producing minimum
phase filters, and hence the procedure also produces mini-
mum phase filters. Figure 2-1 shows the zeros locations
and resulting alteration in magnitude response as the pro-

cedure is applied.

Proof of Optimal Magnitude Property

Lemma 2-1. Given that g1 < 8y, 0 < gq < 1, 0 < 8§, < 1,

then



1+61
1-¢

Zeros and Frequency Response of the
Length 2n+1 Linear Phase Filter

1+61+62
1+62-61

’\f\/*
U .

p)
8§

=

//
N

Zeros and Frequency Response After Adding §,

wa\/zsz

ZVI+61+62

Y1+8,%6, ¢

'1"'62‘61

R
Nl

Zeros and Frequency Response after taking
the Square Root and Scaling

o

2/262

/1+61+620/1+62-61

Figure 2-1

o
o
[}
o
(-]
(]
o
o
/A\

N/

12
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2 2
(a) 1 + €] * Zel <1 + 6 * 861
(b) 1+ e} -2e; >1+ 6 - 26

Proof of Lemma 2-1.

(a) 261 >_2€1,

2 2

2 2
61 > &g > 61 + 261 > €7 + 2e1

1+ ez + 2¢

2
1 < 1 + 61 + 26

1 1

(b) e * 8; % 2

(el+61)(e1-61) > Z(el-si) multiply by a negative

number
ez - 62 > 2(e,~-864) rearrange
1 1 17°1 &
2 2
1+ €] - 2eq >1 + 8] - 28 [

The proof ‘of the optimal magnitude.  property follows by
contradiction of the fact that an nth order real poly-
nomial of a Chebyshev system can exhibit a maximum of n

zeros (see fior example [8] page 23).
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Proof.

Case I. Assume there exists a filter of length n + 1 with

the same cut-off frequencies Fp, F_ as the optimal mangi-

s
*
tude filter and possessing a Chebyshev error Gi = Gi and
* i ‘
a 6% < 65 (i.e. a better filter) where the 6i and 6; refers

to the deviations of the optimal magnitude filter in the
pass and stopbands respectively. Reversing the optimal
magnitude procedure produces a filter with a 6; and 865;
as a function of 61* and 6;* as given in Remark 2-4. 1In
particular, one can reverse the optimal magnitude procedure

* *
to produce this linear phase filter with 84 and 8, by:

(a) finding the zeros of the transform function of
the length n + 1 filter;

(b) making double zeros of all zeros on the unit
circle;

(c) adding a zero outside the unit circle at (1/4,9)
for each zero inside the unit circle located at
(d,8) (or vice versa) where d is the distance
from the origin to the zero, and 6 the angle;

(d) multiplying out these zeros and scaling such that
one approximates 1 and 0 in the pass and stop-

band respectively.

In particular one notes that if
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% ]
1 < 61 and 6

1 %

|
8 , < 62 then

% b . .
§y < 84 and 65 < &, (trivially).

Also since one is now back to a length 2n+l1 linear
phase filter the frequency response H(F) may be written

(Remark 2-2), as

N
H(F) = ¥ du cos 2wpF.
u=0

F e [0,1/2]

(F is a normalized frequency variable)

If we associate H(F) with the length 2n + 1 linear
phase filter resulting from the oppimal magnitude filter
and H*(F) with the filter assumed to be better, we may
arrive at a contradiction.

If one considers the polynomial obtained by taking
the difference of the two error vectors associated with the

two filters i.e.

>

P(F) e(F) - e*(F) = D(F) - H(F)

(D(F) - H*(F)) = H*(F) - H(F)

one obtains a Chebyshev polynomial P(F) of order n since

H*(F) and H(F) are both Chebyshev polynomials of order n.

P ms
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Now it is clear that one knows little about the form of the
error vector e*(F) associated with the filter assumed to be
better except that e*(F) always lies below that of e(F).
However, since the optimal magnitude procedure started with
the optimal Chebyshev approximation for finite impulse
response digital filters with linear phase, one knows that
the error vector e(x) exhibits at least n + 2 alternating
maxima (see for example [4]). Therefore, P(F) exhibits at
least n + 2 sign changes or n + 1 zeros since e*(x) always

lies below e(x).

Contradiction: P(F) is a Chebyshev polynomial of order n.

Case II. Assume there exists a filter of length n + 1 wdth
the same cut-off frequencies Fp, Fs as the optimal magni-
tude filter and possessing a Chebyshev error of Ei < Gi,
and eé < Gé Where (ei,ai) and (eé,dé) refer to the stop
and passbands deviations, respectively. If one considers
then doing steps a, b, c as in Case I and multiplying out
the zeros, one obtains filters with deviations as shown in
Figure 2-2.

If now one (1) adds to the center coefficient of
the length 2n + 1 filter resulting from the filter assumed

to be better the

min[ 3 (1+832+28]- (1+ej+2¢]), F(637-e3%)]



17

1+e1242¢e! 1+61 24263
2_5_ 1 2.
1+e]2-2¢1 1+612-241

Figure 2-2
(2) shifts and scalesbbobh resultant filters by

- %6;2 an@d: ¢

il
&N
4]
=
Q

(3) again considers the difference of the two polynomials

one again obtains a contradiction as in Case I.

Case III. With conditions as before in Case II except

assume there exists a filter possessing ei and eé such that

! Yoy o
€1 < 875 &5 = 62

where si and 6% refer to the optimal magnitude filter's
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deviation. Prodeeding as in Case II, we have deviations

as shown in Figure 2-3.

1+siz+2§:i

1+e12-2;i

eéz
Figure 2-3
From Lemma 2-1
1+ Giz +*261 > 1 + eiz + Zgi
1+ 632 - 268 < 1w 22 . 2e]

If one now (1) scales by %

1+812 26}
k=——-,T_—F1 ]I'<1
1+e'1 -Zei

the length 2n + 1 linear phase filter resulting from the

filter assumed to be better,
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(2) adds to the center coefficient of this same filter

the min[ %(G%Z-keéz), %(1+siz+zai

2

- k(1+ei ¥ Zei)]

(3) shifts and scales both resultant filters by

1
12 1
1+61 - '2'6

and (4) looks at the difference of the two polynomials, one

again obtains a contradiction as in Case II.

The Numerical Solution

A computer algorithm was programmed which proceeds

in the following manner:

(1) Obtainsuan optimal Chebyshev linear phase approxi-
mation to a low pass filter on a dense grid,
thyough the Parks and McClellan algorithm [4],
with the desired passband and stopband cut-offs
and the necessary 81 and 6, as given by Remark

2-4 as a function of the desired Gi and 61.

2
(2) Adds 8, (the deviation in the stopband of the
length 2n + 1 filter) to the center coefficient

of the filter which then implies,
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(a) all the zeros in the stopband on the unit
circle are double zeros occuring (except for
the case z = ej") in complex conjugate pairs;
(b) the other zeros must be reciprocal and occur
in complex conjugate pairs or lie on the

real axis;

(3) Applies a modified Bairstow method of root finding
to find the zeros of the transfer function of
step 2 and then proceeds to eliminate all the
zeros outside the unit circle along with one each
of the pair of double zeros located on the unit

circle.

Part three deserves further clarification. For a
short discussion of the Bairstow's method for finding zeros
of a polynomial the interested reader is referred to [10].
The remainder of this discussion will focus on how the
starting points for the application of Bairstow's method
are found.1 The algorithm proceeds as follows:

Since one knows the location of the extremal
frequencies of the linear phase filter, one can determine
with good accuracy the location of the minimas in the

stopband and consequentially the location of the double

1Much of the work with respect to the computer algo-
rithm is due to D. Stahlmach of Rice University, Houston,
Texas.
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zerosiin the stopband, and since the:: double zeros occur in
complex conjugate pairs one has essentially located 4 at a
time.

Similarly, the minimas in the passband provide a
starting point for the location of the reciprocal pairs
of zerosin the passband. In particular the lecation of
the minimas provide a guess as to which angle to assume
the zero is located along. The starting guess for the
radius is initially taken to be one, with the subsequent
starting points for the other zeros'itheppreviousiyfdonid
radius of the zero immediately preceeding. The procedure
'sfarts with the largest 8 and proceedstto smaller 8's.
The procedure for pass band zeros is illustrated in

Figure 2-4.

-
N

Location of the Minimas

Starting Point for
\‘_ the Location of the

Second Zero

Figure 2-4
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This numerical procedure has been applied to many

different types of filters with extremely good accuracy

and speed.

In particular a length 100 optimal magnitude

filter has been designed using this procedure.

At this point several meaningful comparisons are

apparent.

1)

(2)

Given that one fixes N, the length of the filter,
how much better can one do using the optimal
magnitude filter? i.e. given a linear phase fil-
ter of length N and a specified-a1 and 8§95 how
much improvement will an optimal magnitude filter
of length N with the same cut-off frequencies,

i 7
? - ° ?
and the same 61 61 show in 62.

In some cases the improvement is small--i.e., a
6; of approximately 6 db below §,. However, in
other cases, notably in wide band filters, 6;
can be 20 db below 8, for the linear phase filter.
An example of the 20 db improvement of the opti-
mal magnitude over the linear phase filter is
shown in Figures 2-5 and 2-7.

Perhaps a more significant question is given

§15 9§, and a specified set of cut-off frequencies,

what improvement in length can one expect from
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(3)
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the optimal magnitude filter over the linear

phase filter?

Numerical experience indicates that typically
one can expect an improvement in length by a
factor of 1/4, i.e. if a length N linear phase
filter has a given 61 and 62, then a length 3/4 N
optimal magnitude filter will have the same 61,
65. To determine in advance for a particular
filter what reduction in length one may expect
one can compare the values of N found off stan-
dard graphs for given deltas (see f11]) to the
value of N* determined for the optimal magnitude
filter (found by using the same standard graphs

and the equations of Remark 2-4).

An example of length reduction is shown in
Figure 2-6 where a length 27 optimal magnitude
filter exhibits the same magnitude response as
the length 37 linear phase filter shown in

Figure 2-5,.

A table of the impulse responses used to obtain
these results is given in Table 2-1.

A third comparison can be made by considering

_group delay. A linear phase filter of length N

always has a delay of (N-1)/2 units, while an
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TABLE 2-1
IMPULSE RESPONSES OF VARIOUS FILTERS USED TO

OBTAIN FIGURES 2-5, 2-6, 2-7, 2-8
In Al1 Cases Passband Cutoff=.4375, Stopband Cutoff=.4765625

Length 37 Length 37 Length 27
Linear Phase Optimal Magnitude Optimal Magnitude
1 -.06062266 -.09254351 -.12913201
2 -.02841454 -.11076426 -.07115311
3 -.02473988: .04784192 .05572940
4 -.02244766 -.00922118 -.04363674
5 .02047536 -.01343356 -.03285454
6 -.01792091 .02560267 -.02182491
7 .01406100 -.03071236 .00959521
8 -.00838433 .03083546 .00400265
9 .00064378 -.02710248 -.01835813
10 .00920400 .02020551 .03228686
11 -.02086980 -.01079559 -.04410801
12 .03394659 -.00040782 .05172492
13 -.04771304 .01245042 -.05313543
14 - .06140589 -.02400113 .04670824
15 -.07416678 .03357802 -.03146765
16 .08513573 -.03962545 .00758548
17 -.09357668 .04075034 .02329853
18 .09889637 -.03603170 -.05783422
19 .89927420 .02512482 -.09062710
20 .09889637 -.00859818 -.11426923
21 -.09357668 .01197452 .11937226
22 .08513573 .03414077 -.09451642
23 -.07416678 -.05445059 .02685008
24 .06140589 .06906038 .09782017
25 -.04771304 -.07394038 -.29421708
26 .03394659 .06576884 .57732202
27 -.02086980 -.04251300 .62878528
28 .00920400 .00443117
29 .00064378 .04502167
30 -.00838433 -.09821310
31 .01406100 .14243790
32 -.01792091 -.15913862
33 .02047536 .12322871
34 -.02244766 -.00273679
35 .02473988 -.34135091
36 -.02841454 .65491806
37 -.06062266 .54489264
61 .1520 0.1672 .16908

52 .00237 0.0002892 .00247
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optimum magnitude filter, with minimum phase,

has considerably lesd delay.

There is, however, a drawback to the phase
characteristics of the optimal magnitude filter.
As indicated in_Figure 2-8, which is the group
delay of the length 27 filter of Figure 2-7, the
group delay may prove to be unsatisfactory where
little deviation from a constant group delay

characteristic is required.
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CHAPTER III

THE OPTIMAL CHEBYSHEV COMPLEX APPROXIMATION

As noted at the end of Chapter II, the optimal mag-
nitude approximation may not be satisfactory if a control
of phase slope is desired. Hence ene may consider the com-

plex approximation in the hope of

1. obtaining a magnitude response similar to the
optimal magnitude, and
2. an approximately linear phase response with a

phase slope less than the linear phasessinee

a) a better magnitude response implies a better
discrimination,

b) a lower phase slope implies in effect a shorter
delay time for the filter (i.e. im real time
a pulse placed into the input of such a filter
would appear at the output sooner), and

c) 1linear phase implies no phase distortion of

the signal.

Before proceeding further into the production of the
optimal Chebyshev approximation to a desired function (i.e.,

30
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minimizing {max|D(F)-0(F)|}
over all hj e Real FeX
i=0,...,N

where D(F) = desired response,

N -j2nkF

O(F) = hye = the obtained response
k=0

and F a normalized frequency variable) it will be advan-

tageous to present two fundamental results of complex ap-

proximation theory. Hence from Lorentz [8].

Proposition 3-1. Let ¢ = {¢1,...,¢N} be a Chebyshev system
of complex or real functions on a compact Hausdorff space

A that contains at least N+1 points, and let P be a poly-
nomial of best approximation for a continuous function f.
Then the set of points x ¢ A for which |[f(x)-p(x)| = E

contains at least N+1 points.

Proposition 3-2. For a Chebyshev system there is a unique

polynomial of best approximation for each continuous

function.

Remark 3-1. In the case of digital filters, Propositions

3-1 and 3-2 imply that a solution exists and is unique

j2nFk

where e , x=0,...,N-1 are the N basis functions, and

in terms of previous geometrical arguments the APProOXimhating
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function must tquch the walls of the tube (or ribbon for
linear phase approximation) at least N+1 times over the
closed interval upon which one is approximating in order

to be a candidate for the best approximation.

Remark 3-2. The optimal magnitude filter is optimal in
the Chebyshev complex approximation sémse also, if the
desired functioniD*(F) is a low pass filter possessing the
same passband and stopband cut-offs as the optimal magni-

tude filter and exactly the same phase.

Proof of Remark 3-2. It is clear that if & equals the

resultant deviation of the optimal magnitude filter, then
any candidate for the optimal complex approximation to a
low pass filter with that phase must do at least that well,
(otherwise it must have done worse and cannot possibly

be the best.) Now, assume that the optimal complex
Chebyshev approximation to this D*(F) possesses a Chebyshev
error of ¢ < §. Then the deviation in the magnitude por-
tion of this filter must be < ¢ < §. Contradiction.
Therefore the best Chebyshev complex approximation must
have a Chebyshev error = §, and by Proposition 3-2 it must

be unique, hence it must be the optimal magnitude filter.

The Lawson Algorithm

The Lawson algorithm will be the method by which the
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complex approximations are computed, hence presented below
without proof are the basic results of the Lawson algorithm.

It would be desirable if the Lawson algorithm com-
puted the optimal Chebyshev approximation on an interval.
Unfortunately, it does not, but instead computes the opti-
mal approximation on a finite point set. This is not a
disadvantage, however, if the point set is dense enough.

The Lawson algorithm computes the minimum of the

{maximum |[D(£)-0(£f) |

where f ¢ i, i a finite point set = [0,1-¢] where [0,1-¢]
merely denotes that the finite point set may contain 0;'
but not 1, with D(f) and 0(f) the desired and obtained
responses as before.

The pertinent Lawson results are: (from [9])

NOTATION:

~

D(Xi) = desired response evaluated at Xi e X

t -j2nF(i-1)
L(A,x) = approximating function = h;e J 1
i=1

Let mk(x) X ¢ X be a sequence of weight functions such

that

I. of(x) =1 and {L(Ap,X)}
xeX



a corresponding sequence of best weighted least squares

approximation to D(x) with weights wk(x). Then

Proposition 3-3. The Lawson algorithm is defined by the

recursive relation

o (x) |D(x) -L (Ap,x) |

1w ) D) -L(A,X)|
xeX

mk+1(x) -

where ml(x) is a positive weight function and L(Ak,x) is
the best least squares approximation to D(x) with weights

WX (x).

Proposition 3-4. Denoting ek(x) = D(x) - L(Ak,x)

x e % and oF = [ ] oXex)[eX(x)1?/2

xeX

then if for some k one has Iek(x)l constant on mk(x) then

L(Ak+j’x) = L(Ak,x) for all j. Otherwise

ok < °k+1 < &* = max |D(x)-L(A*,x)|

xeX

where L(A*,x) is the best Chebyshev approximation to D(x)

on X.

34
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Proposition 3-5. The sequence'{L(Ak,x)} converges to
L(Ad,x) which is a best Chebyshev approximation to D(x)
provided mk(x) > e > 0 with |D(x)-L(Ao,x)| = g* for all
X 3 wk(x) >¢e >0, and o* = 1lim ok

k+oo

Remark 3-3. The requirement that wk(x) must remain greater

than zerc poses no problem numerically since machine round
off, etc. will undoubtedly prevent the weight function from

ever actually being set equal to zero.

Remark 3-4. Propositions 3-4 and 3-5 are vital since they

allow one to determine when to stop the algorithm (i.e.

upon the repetition of |ek(x)|.).

Constraints in the Use of the

Optimality Criteria

It is clear, that when ek(x) repeats, one is done,
for then he has obtained the optimal Chebyshev complex
approximation. It is however, unclear what to do when the
error vector ek(x) does not repeat, as is usually the case
when one is designing either moderately long filters or
filters on a dense grid.

This, along with the fact that weighted least
squares approximation is time consuming and Lawson's algo-

rithm converges very slowly, poses a serious problem. The
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problem of ek(x) not repeating may be dealt with in a

number of ways; possibilities include

obtaining more accuracy from the computer,
allowing the program to run longer, or
accepting a small probability that one does not

have the optimal filter.

Number 3 is the easiest to obtain. Perhaps the most

straightforward way to attain 3 is the following:

a)

b)

Run the desired filter on a very coarse grid.
(This will usually imply a quick convergence where
the error repeats itself, with some Chebyshev
error §.)

Run the desired filter again on a dense gridafor
ausuitabléclength of:time. (i.etotehwheréhthe

error is changing sufficiently slowly to indicate
further iterations are returning little)’ and

again obtain a Chebyshev error ¢ > 6.

If ¢ = §, all is well, since one then knows that he

has obtained the optimal Chebyshev approximation. How-

ever, in most cases ¢ > ¢ and then one can only say (if

the error vector ek(x) contains at least N+l maxima where

N is the length) that one has a candidate for the optimal

complex approximation that can not be any more than

p = |e-6| away from the optimal. Hopefully, |e-§| will



be small.

The Numerical Solution and Results

The Lawson algorithm computes the optimal complex
approximation as a limit of successive best least squares
approximations modified by an appropriate weighting func-
tion. Therefore, it is necessary that one place the com-
plex approximation problem in Ieast squares terms. In

effect one has an over determined set of equations
Ah =D

where h is a column vector (n,l) representing the impulse
response of the filter,
D is the desired frequence response at M points
(m,1), and

A is the coefficient matrix whose (i,k) element is

-3 (k-1) ((i-1) x 2%)

With this notation the best weighted least squares

approximation is given by

n* = (afqa)1 afgp

37
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where AH implies A transposed and conjugated and Q is a
m X m weighting matrix with diagonal entries only. The
above solution is the one programmed on the computer.

One notes that in order for hf to be real, D must
have even magnitude and odd phase and must be over the
interval [0,1) (Q real). Hence in terms of the optimality
criteria, one must have at least N + 1 maxima of the error
vector on [0,1).

In order to investigate the Lawson algorithm, the
following two cases are considered. In one case the algo-
rithm is required to design a linear phase filter of
length 9 with cut off frequencies of Fp = cut off frequency
in the passband of 0.2 and FS = cutooff frequency in the
stopband of 0.3. The resultant coefficients are then
compared to coefficients derived from a standard design
method for linear phase filter [12]. As seen in Table 3-2,
the coefficients agree quite well, and there is little ques-
tion that Lawson is capable of designing linear phase fil-
ters. In the second case a length 5 optimal magnitude
filter is obtained using the method of Chapter II with
approximately unit weighting. The Fp and Fs are .15 and
.25 respectively for this filter. Remark 3-2 is then
applied and the Lawson algorithm is required to approximate
1,6 in the passband (where 1 denotes the magnitude and 6
the optimal magnitude's phdse response) and 0.0 in the
stopband. If the Lawson algorithm is working properly it

should converge to the optimal magnitude filter's
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coefficients. Table 3-2 demonstrates that again the Lawson
algorithm has performed satisfactorily. The small dif-

ferences are easily attributable to

1. the optimal magnitude filter did not have exactly
unit weighting or

2. differences in grid size.

With the Lawson algorithm performing well at both
ends of the scale (i.e., linear phase, no phase) one should
now consider the case of the middle ground-time complex
approximation.

In order to demonstrate that the complex approxi-
mation filter performs as indicated at the start of the
chapter, a filter of length 11 with FP = 0094 F, = .152
with a slope factor of 0.7 (where 0.7 denotes 0.7 of 1
where 1.0-is defined as equaling conventional linear phase
i.e, a phase of 8 = 2#F + ((N-1)/2) radians where N=length,
and F is the normalized frequency variable).

The result is shown in Figure 3-1 along with an opti-
mal magnitude filter. In particular the resulting §'s are:
for the complex approximation filter 61=625.147, for the op-
timal magnitude filter 615625.140. If the complex approxi-
mation is to be useful it must demonstrate & control over the
phase. This is indeed the case as indicated in Figure 3-2wwthere

the complex group delay varies considerably less than the
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TABLE 3-1
COEFFICIENTS OF LINEAR PHASE FILTERS

Standard Method Lawson's Method
1 0.00000 0.00000
2 -0.11960 -0.11912
3 0.00000 0.00000
4 0.31312 0.31409
5 0.49999 0.50000
6 0.31312 0.31409
7 0.00000 0.00000
8 -0.11960 -0.11912
9 0.00000 0.00000
TABLE 3-2

COEFFICIENTS OF OPTIMAL MAGNITUDE FILTERS

Standard Method - Lawson's Method
1 -0.04096 -0.03041
2 0.22048 0.22622
3 0.36749 0.36966
4 0.38880 0.38566
5

0.27827 0.27264




41

1-¢ @an3tg

J Aousnbaixj pozITRUWION
c-

N-

- -

uotleutxoxddy— e — — —
xa1dwo)

apnitTudepn
wautido

t

IQMI

|QNI

_IOHI

aa



42

Z-¢ @in3dt4

d
g d

So°

*xoxddy _ . — ¢ — —
xa1dwon

.wmz e @) v

unut3dg

L 1

/’.

pueqssed ur Aeyaq dnouy

[}

L p]

<
so1dureg utr ‘ALe1a(Q

wn



43

optimal magnitude resubtdant.igroup delay.

Remark 3-5. The linear phase filter possessing the same

attributes as the other two filters of Figure 3-1 has a

61 = .14 and a 62 = ,19,

Remark 3-6. Another bossible use of the complex approxima-

tion filter is in the area of phase compensation. The
Lawson algorithm will accomplish this now, but the use-
fulness is limited due to the short length requirements of

Lawson and the slow convergence.



CHAPTER IV

COMPARISONS OF LINEAR PHASE, OPTIMAL MAGNITUDE
AND COMPLEX APPROXIMATION FILTERS

Several comparisons between the various filters
have already been made (see for example pages 22-28 and
pages 38-43 ), however a comparison implied, but yet to
be made is in the differing output delay timescof the three
filters to a pulse input. Heuristically, one would expect
that in response to a pulse input, the optimal magnitude
(also minimum phase) would respond the quickest (although
a hard statement of this quality is lacking since minimum
phase does not necessarily imply a minimum phase slope),
followed by the complex approximation filter with a phase
slope approximation to a linear slope with a slope factor
less: than normal- linear phase,. and finally the. linear phase' filter
which always has a delay of (N-1)/2 sample time intervals
where N is the length of the filter. This comparison is
demonstrated in Figure 4-1 where a sampled Gaussian pulse
is placed into each of the 3 different filters (all of
length 9 with the same cut off frequencies and weighting
factor). The results are exactly as predicted; i.e., the
pulse peaks first in the output of the optimal magnitude,

44
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followed by the complex approximation filter and then the
linear phase filter.

In comparing the three filters, optimal magnitude
(0.M.), complex approximation (C.A.) and linear phase (L.P.)
one is drawn to the interesting manner in which the opti-
mal magnitude and linear phase represent two optimal ex-
tremes with the optimal complex approximation representing
the optimal answer in the middle ground. In particular one
notes the outstanding attribute of linear phase filters--
no phase distortion. One also notes the outstanding at-
tribute of the optimal magnitude filter, i.e. it obtains
the lowest Chebyshev error of any finite impulse response
digital filter possessing its cut off frequencies and
weighting. It is interesting to note that the complex
approximation filter possesses attributes of both and the
outstanding properties of neither (i.e. some control over
phase, but not linear, some improvement of the Chebyshev
error over linear phase, but not the best), hence, it is
a true compromise between the two extremes.

Therefore, in the simplest terms one should consider

a) wusing the L.P. filter when a rigid constant group
delay characteristic is required,

b) wusing the 0.M. filter where no phase constraints
are required and

c) using the C.A. filter for the cases in between.



CHAPTER V

CONCLUSIONS

In summary one concludes that in some cases (notably
wide band filters) one can cbtain a large improvement in
magnitude response or in the length filter required to meet
a given set of magnitude specifications, if one is willing
to accept no control over the variation of the group phase
delay through the use of the optimal magnitude filter. In
particular for length improvement one can apply the rule
of thumb that for a given 6§15 §, (deviations in the pass
and stopbands) the optimal magnitude filter has a length of
approximately three-fourths of the linear phase filter

For 6!

producing these same §15 8 1’ 65 (the resultant

2°
pass and stopband deviations for the optimal magnitude fil-
ters) improvement one can determine the 6] and §5 for the
length n + 1 optimal magnitude filter given the §; and 6,

of a length 2n + 1 linear phase filter by applying the

formulas
ci = ( 2 ) - /1+61+62 -1
/1+61+62-/1+62-61
5y = ( 2 ) - /75,
/1+62+61+/1+62-61 '

47
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One also notes that for any given filter possessing a speci-
fied pass and stopband cutoff and a specified weighting
factor, the Chebyshev deviation obtained by the optimal
magnitude filter's deviation constitutes the smallest pos-
sible Chebyshev error obtainabile.
In summary the optimal Chebyshev complex approxima-

tion filter performs as predicted, i.e. it possesses

a) a Chebyshev error less than that obtained by the
optimal magnitude filter and greater than that
obtained by the linear phase filter for normal
specifications of desired linear phase with a
slope less than the slope obtained by the linear

phase filter;

1. hence the optimal complex approximation pre-
sents a magnitude deviation less than the
linear phase, and

2. in general a phase distortion curve better

than the optimal magnitude filter;

b) a lower phase slope which implies in effect a
shorter delay time for the filter (i.e. in real
time a pulse placed into the input of such a

filter would appear at the output sooner).

One also notes that while Lawson's algorithm is

exceptionally slow and generally unsuited for filter design
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due to length cqnsiderations, it provides the only known
means of obtaining an optimal complex Chebyshev approxima-
tion.

Hence future work must be directed toward the pro-
duction of a fast design algorithm for optimal Chebyshev

approximation.



CHAPTER VI

APPENDIX A

OPTIMAL MAGNITUDE FILTER COMPUTER PROGRAM
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IMPLICIT REAL*8 (A-H,0-2)
DEFINE FILE 8(1+527sUs IXY2Z)
PROGRAM TO DETERMINE THE ZERO LOCATIONS OF THE FINITE IMPULSE

- RESPUNSE OPTIMAL MAGNITUDE DIGITAL FILTER USING THE

BAIRSTOW METHOD OF FINDING ZEROS AND ‘THE JeDe FISHER METHOD FOR
THE PROUUCTION OF THE OPTIMAL MAGNITUDE F ILTER

JeDe FISHERs TeWe PARKS, De STAHLMACH OF RICE UNIVERSITY
HOUSTON+TEXAS == .JANUARY 1, 1973

FROM THE DESIGN OF AN OPTIMAL LINEAR PHASE FILTER DESIGN PROGRAM
THE PROGRAM REQUIRES AS AN INPUT THE FOLLOWING PARAMETERS
' A = LINEAR PHASE FILTER'S COEFFICIENTS
FOPT = EXTREMAL FREQUENCIES OF THE LINEAR PHASE FILTER(LPF)
NF LENGTH OF LPF
KR NUMBER OF PASSBAND RIPPLES OF LPF
KRP = NUMBER OF STOPBAND RIPPLES OF THE LPF
Tw TRANSITION WIDTH OF THE LPF
AA WEIGHTING FACTOR (=°S PASSBAND DEVIATION/STOPBAND
DEVIATION)
RHO = DEVIATION IN STOPBAND
R1 = DEVIATION IN PASSBAND
FP = PASSBAND CUTOFF
FS = STOPBAND CUTOQOFF
WHERE FP+FS+FOPT ETCe ARE GIVEN IN TERMS OF A
NORMALIZED FREQUENCY VARIABLE = (0Oese5)
THIS INFORMATION IS SET UP TO BE READ OFF A DISK FILE IN A
SEQUENTIAL MANNERe HENCE THE MATRICES A AND FOPT
MUST HAVE THE SAME DIMENSIONS IN BOTH PROGRAMS IF THIS
INPUT SCHEME [S TO BE USED

o

THIS PROGRAM ALSO REQUIRES THE INDEPENDENT INPUT '‘BY CARDS
oF :
CARD ONE = = NL = THE LENGTH OF THE LPF IN THE FIRST THREE
COLUMNS
CARD TWO = LL = NUMBER OF ITERATIONS IN FIRST THREE COLUMNS
THIS NUMBER IS GENERALLY SET TO ABOUT THIRTY
CARD 3 = NPOINT = NUMBER OF POINTS AN FFT OF THE
RESULTING OPTIMAL MAGNITUDE FILTER IS TO BE CALLED ON,
IT MUST BE A POWER OF 2
HENCE A SAMPLE CARD INPUT WOULD BE

021
030
128

SIGNIFYING A LENGTH 21 FILTER WITH A MAXIMUM
NUMBER OF ITERATIONS OF 30 WITH A FFT CALLED ON 128 POINTS

THE OUTPUT CONSISTS OF

(1) THE COEFFICIENTS OF THE LPF AND THE COEFF ICIENTS

:
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OF THE LPF AS THEY WOULD BE ASSUMING THE ZERO LOCATIONS AS
FOUND BY THE PRUGRAM -—- [N BETWEEN THESE PRINTOUTS THE
VARIOUS REMAINDER VALUES ARE PRINTED OUT INDICATING HOW
WELL THE ZEROS HAVE BEEN FOUND

(2) THE DPTIMAL_MAGN[TUDE FILTER®*S COEFFICIENTS

AND(3) THE FFT OF THE OPTIMAL MAGNITUDE FILTER

THE PROGRAM IS CURRENTLY SET UP TO HANDLE A MAXIMUM

LENGETH FILTER OF 128, IF AN INCREASE IN LENGTH IS DESIRED THE
MATRIX SIZE OF THE MATRICIES CURRENTLY HAVING DIMENSION 128 MUST
HBE CHANGED TO EQUAL OR EXCEED THE NEW LENTH DESIRED

THE OTHER MATRICES SHUULD BE AT LEAST 1/3 THE SIZE

OF THE NEW DIMENSION, WITH THE EXCEPTION

OF THE MATRICIES USED IN THE FFT CALL - WHICH ARE INDEPENDENT
SIMILARLY THE DATA INITIALIZATION SYATEMENTS MUST BE CHANGED

COMMON/LI/A(128)sFsN

COMMON/QB/ASUB(128) »FSUB, NSUB

COMMON/F 1 /RR s KSP
commoN/BA/CB(100).5(100).EC(100).x(100).v(100).xct100).
$ YC(100):KS

COMMON/MB/ ZETASETARPsLL
COMMON/CD/EA(100)sFA(100)+GA(100)sWA(100)+ZA(100)+WAC(100),
$ ZAC(100)+KP )

COMMON/PR/XX(128) s IN

DIMENSION FOPT(128),SMIN(128)+PMIN(128)+RAA(128),20Z(100)
DIMENSION RFA({100) sAAA(128),8B8(128),RBB(100),

$ SFAC(100),PFAC(100)

DIMENSION ROPO(128)sREPO(128)+RTPO(30) sASPL(128)

DIMENSION PSR(128),POR(128)+AAR(128),RGA(100),AAL(128)

DATA
4 PMIN/128%040/+sRAA/128%0.0/+Z0Z/100%060/+RFAZ10C*0.0/+AAA/128%
5 060/+8B/128%0.0/+,RBB/100%0e07¢SFAC/100%0¢G/sPFAC/100%040/
DATA ROP0/128%0.0/+REPO/128%040/ +RTPO/30%0.00/+ASPL/128%040/»
1 PSR/128%0.0/+,POR/128%0.0/+AAR/128%0.0/+RGA/100%0.0/,AAL/128%
2 0.0/

DD 881 I = 1,128

A(I) = 0.0

ASUB(I) = 0.0

XX{I) = 0e0

FOPT(I) = 0.0
SMIN(I) = 0.0
CONT INUE

DO 882 I = 1,100
EB(I) = 0.0

E(I) = 0.0
EC(I) = 0.0
X{I) = 0.0
Y(I) = 0.0

XC(I) = 0.0
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— pmn

888

12

11

31

30
32

YC(I) = 0.0 52
LEA(I) = 0.0

FA(I) = 0.0
GA(I) = 0.0
WA(IL) = 0.0
ZA(I) = 0.0
WAC(I) = 0.0
ZAC(I) = 0.0
CONT INUE
NWI = 0
NTR = 0
‘NWR = 0
NWT = 0

FORMAT(I3)

‘FORMAT(F15.8)

FORMAT(/5Xs *ENTER ORDER FILTER(13)?)
FORMAT(/5X, * IMPULSE RESPONSE®*/(E20.12))
FORMAT(/S5X+*DEGREE OF POLYNGOMIAL N=¢,[3)
FORMAT(*FILTER LENGTHS DISAGREE")
FORMAT (/5Xs *ENTER NUMBER OF ITERATIONS(I3)?)
FORMAT(/'=PTS«(1I3)*)
KS=0
PRINT3
READ14NL
PRINT 16
READ1.LL
PRINT 17
READ1+NPOINT
NN=(NL-1)/2
READ(8*'1) AsFOPT o NF s KReKRP s TWsAASRHOsR1+FPsFS
F = A(1)
NNP1l = NN+ 1
DO 888 III = 2.NNP1
A(TII-1) = A(ILII)
IF(NF-NL)14,12,14
A(NN)I=A{NN) +RHO
N=2%NN
A(N)=F
NNM1 = NN - 1
DO 11 I = 14,NNM1
A(N=-I)=A(I)
PRINT7,N
PRINTA+Fs(A(1)sI=1,N)
ETA = 8.0D00 * DATAN(1.0D0)
KWICH=3
NP2 = NN+2
DO 30 J = 14NP2
IF(FOPT(J)-FS)30+31,31
Js=J
GO TO 32
CONT INUE
IS=0
IF(JS+EQ.(NN+2)) GO TO 45
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60.

63

‘47

- 50,

45

55

65
70

KP1=JS+1

NP2=NN+2

DO 40 K = KPLlysNP2,2

IS=1S+1

SMIN(K-JS+1-1S)=FOPTI(K)
IF(SMIN(IS)LT.FOPT(NN+2)) GO TO 47
DO 60 K=1,1S
IF(SMIN(K) «eGT e (0+s5-0.5E-08)) GO TO 63
ZETA=SMIN(K)

KS=KS+1

CALL MILBA

CONT INVUE

GO TO 55

[S=1S~1

KS =KS+1

ZETA=0.5

RP=1.0

KWICH=1

NITCH=1

CALL REIM(EBJIEJECesXoY9KS)

GO TO 55

D0 50 K=1,1S

ZETA=SMIN(K)

KS=KS+1

CALL M]ILBA

CONTINUE

IF(FOPT(NN+2) «eGTe(05-0.5E-08)) GO YO S5
KS=KS+1

ZETA=0.5

RP=1.,0

KWICH=1

NITCH=1

CALL RECIP(EBEsECsXeYsKS)

GO TO 55

KS=KS+1

ZETA=0.5

RP=1.0

KITCH=1

NITCH=1

CALL RECIP(EBJESEC+XsYsKS)
NSBR=IS*4+(KS~-1S) *2

KP=0"

iP=0

IF(FOPT(JS-1)+EQ.FOPT(1)) GO TO 85
IF(FOPT(JS=2) sEQeFOPT(1)) GO TO 67
DO 6S K=1,100

KN=JS-1-2%K

IF(KN.LT+1) GO TO 70

IP=1IP+1

PMIN(K)=FOPT(KN)

RP=1.0

IF(PMIN(IP).GT.FOPT(1)) GO TO 77
D0 80 K=1,1IP

53
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87

77

75

67

85

205

210

240

245

220

22S

280

IF(PMIN(K)«LT«0.5E-10) GO TO 87
ZETA=PM IN(K)

KP=KP+1

CALL LINBA

CONTINUE

GO TO 85

IP=1p~-1

KP=KP+1

ZETA=0.0

KWICH=2

CALL RECIP(EA+FAsGAsWA+sZA+KP)
GO TO 85

DO 7S5 K=1,1IP

ZETA=PMIN(K)

KP=KP+1

CALL LINBA

CONT INUVE

IF(FOPT(1)eLTe0.56~08) GO TO 85

KP=KP+1
ZETA=0.0

KWICH=2 _

CALL RECIP(EAsFAsGAsWAsZAKP)
GO TO 85 )
IF{FOPT(1)«LT.0s5E=-08) GO TO 85
KP=KP+1

ZETA=0.0

Rp=lo°

KWICH=2

CALL RECIP(EA.FA.GAOWAQZA’KP’
NPBR=IP*4+(KP-IP) %2
NSBR=IS*4+(KS~15) %2
NPOL=NSBR+NPBR
IFC(NL=-1)-NPOL)14,82,205
IFINTR«GE.1) GO 7O 14

GO TO(210+2204+215) yKWICH
IF(NWI.GE«l) GO TO 240

NWI=1

GO TO 340

IF(RR«GT+0) GO TO 245
XW=X(KS=-1)

GO TO 350

XW=X(KS)

GO TO 350

IF(NITCH.EQ+0) GO TO 225
XW=X(KS)

RR=WA(KP)

GO TO 350

IF{NWR.GE«.1) GO TO 280

NWR=1

GO TO 340

IF(RR«.GT.0,0) GO TO 285
XW=WA(KP)

GO TOo 350

54
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260

340

341

350

360

295

300

XW=wWA(KP-=1)

GO TO 350

IF(NWT.GEel) GO TO 260
NWT=1

GO TO 340

RTPO(3)=1.,0
RTPAO(2)==(RR+1/RR)
RTPO(1)=1.0

NTPQ=3

GO TO 360

RR==0.,7

IF(NWT.EQel1) GO TO 341
KSP=0

CALL NEWT(ASUB,FSUB.NSUB)
KSP=1 ’ T
CALL NEWT(A,FN)
IF{RR+EQ.0+.0) GO TO 14

GO 70 85

RTPO(S)=1.0
RTPO(4)==(XW+1/XW+RR+1/RR)
RTPU(3)=2¢+( XW+1/XW)%*{RR+1/RR)
RTPO(2)=RTPO(4)
RTPO(1)=1,0

NTPO=S

ROPO(1)=F

DO 295 I=1,N
ROPO(I+1)=A(1])

NZZZ = N + 1

CALL PDIV(REPONEPO+ROPOINZZZRTPONTPO)
PRINTZ2,(ROPO(I)sI=144)
FSPL=REPO(1)

NEPOM1=NEPO - 1

DO 300 I = 1, NEPOMI
ASPL(I)=REPO(I+1)
NSPL=NEPO-1

KSP=0

RR==007

_ CALL NEWT(ASPL +FSPL ¢NSPL)

82

81

84

KSP=1

CALL NEWT(A+FoN)
IF(RR.EQ.0.0) GO TO 14
NTR=1

GO TO 85

PRINT21 sNSBR

PRINT22,NPBR

PRINTS

DO 81 I=1,KS
IF(XC(I).EQe.0.0) GO TO 84
SFAC(I)=X(I)x%x2+v(T) %2
PRINT6eX(I)sY(I)eXC(E)oYC(I)
CONT INUE

GO TO 93

Ji=1
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86

93

91

24

96

92

90

400
410

149

145
150

160

105

430

110

115

DO B86 1=J1+KS

SFAC({I)=X(1)
PRINTO+s(X(I)sY(I)s I=JIWKS)
GO TO 93

IF(KP.,EQ.0) GO TO 92

DO 91 [=1.KP
IF(WAC(I)«EQe0.0) GO TO 94
PEFAC(I)=WA(TI)%%24+ZA(I)%x%2
PRINTE6+WA(I)sZA(1)WAC(I)ZAC(1)
CONTINUE

GO TO 92

JI=1

DO 96 I=JI1+KP
PFAC(I)=WA(I)
PRINT6s(WACI)sZA(1)oI=J1,KP)
CALL PRMUL(EB+E+EC.KS)

DO 90 I=1.IN

AAA(TI)=XX(1)

IA=IN

DO 400 I=1,1A

JI=TA+1~-1

IF(AAA(JJ) eNEsOe0O) GO TO 410
CONTINVUE

JA=TA=-JJ

[A=JJ

IF(JAEQ+0) GO TO 145

DO 415 I=1+JA
EC(KS+1-1)=1/EC(KS+1~-1)
CALLL PRMUL(EB+E+EC»KS)

DO 149 I=1,IN

RAA(I)=XX(1)

IR=IA

GO TO 160

DO 150 I=1,1A
RAA(I)=AAA(I)

IR=IA

I0Z=IA+IR~-1

CALL PMPTY(ZOZ+.I0Z,AAA.IAJRAALIR)
IF(NPBR+EQ«O) GO TO 165
CALL PRMUL(EAFA,GAKP)

DO 105 I=1,IN

BB(I)=XxX(1I)

IB=IN

DO 430 I=1.18

JB=1IB+1-1
IF(BB{(JB)+NE«O.0) GO TO 110
CONT INVUE

I8=JB

DO 115 [I=1,.,KP
IF(EA(I)«EQ.0) GO TO 120
RFA(L)=FA(1)/GA(1)
RGA(I)=1/GA(1)

GO TO 125
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120

435
125

130

140

165

170

175
180
185

181

184

182

183

190

195

JRB=]

DO 435 [=JRO,KP

RFA(I)=1.0 f
RGA(I)=1/GA(])

CALL PRMUL(EARFAJRGAKP)

DO 130 I=1,IN '
RBB(I)=XX(1)

IRG=18

IOP=1I0+IRB-1

CALL PMPTY(POR,I0OP BBy IBsRBB,IRB)
ITT=10Z+10P~1

CALL PMPTY(AAR»ITT +Z20Z2+10Z+POR,10P)
ISR=[A+1IB~}

CALL PMPTY(PSR+15RAAASIA+BB,I8)
GO TO 180

00 170 I=1,1IA

PSR{TI)=AAA(I)

ISR=IA

00 175 I=1,102

ITT=102

AAR(I)=Z202(1)

DO 185 I=1,ITT

AAR(T)=F*AAR(I)
PRINTIOSITTS(AAR(I) o I=1,1ITT)
SBFAC=1.0

DO 181 I=1,XS
S3FAC=SBFAC#ASFAC(1I)

IF(KP.NE«+O} GO TO 184.
PSFAC=DABS{(SBFAC)

GO TO 183

PBFAC=140

DO 182 I=1,KpP
PBFAC=PBFAC*PFAC(1)

PSFAC = DABS(SBFAC*PBFAC)

OPMX =DSQRT(1+RHO+R])

DPMN =DSQRT(1+RHO-R1)
PAPX=2/(DPMX+DPMN)

SRF = PAPX * DSQRT(DABS(F)/PSFAC)
DO 190 I=1,4,ISR

PSR(I)=SRF*PSR(1)
SPO=DPMX*PAPX=1.0

SSD ='PAPX*DSQRT(2*RHO)
PRXNTI3.SPD-SSO
PRINT&4(PSR(I)sI=1,41ISR)

AAL(1)=F

NLP=N+1

DO 195 I=1.N

AAL(I+1)=A(1L)

PRINTY 19

CALL SFFT(PSR+ISR¢+NPOINT)

FORMAT (/7/75X+s *ROOTR® 4 20X *ROOTI*)
FORMAT((SX+E20e12¢5XeE20412))
FORMAT(//713/7(5X+E20412))
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13

19
21
22

14
9

210

S

10

15

25

FORMAT(//5Xs *NEW PASSBAND DEVIATION=®*,F14.11 58
1 /5X+*NEW STOPBAND DEVIATION=*,Fl14.11)

FORMAT(//5X+ *MAGNITUDE RESPONSE")

FORMAT (/7/5Xs * NUMBER OF ROOTS IN STOPBAND=¢,13)

FORMAT (//5X+ "NUMBER OF RCOTS IN PASSBAND=%,13)

GO TO0 9

PRINT 8

STop

END

SUBROUTINE MILBA

IMPLICIT REAL*8 (A-H,0-Z)

COMMON/LI/A(128) +F 4N

COMMON/MB/ZETASETA +RP,HLL
COMMON/BA/EB(IOO)oE(lOO)oEC(lOO)oX(lOO)oY(lOO)oXC(100)0
$ YC(100),KS

DIMENSION B(128),C(128)

REAL HsL .M

DO 210 I = 1,128.

B{(I) = 0.0

ClI) = 0.0

CONT INVE

T = —=4.0 *DCOS(ETA*ZETA)

J=0

B(N)=A(N)

NMa= N-4

DO S [=1,NM4

BI(N~I)=A(N-1)-T#*B(N-I+1)- (2*T**2/4)*B(N-l+2)-T#B(N—I+3)
$ -B(N-1I+4)

C(N)=0

DO 10 I=1,NMg

CIN-1I)=-B(N-I+1)~- “T*C(N=I+1)-T*B(N~-142)/72-(24+T*%2/4)%C(N-1+2)

$ “BIN-I+3)-TXC(N-I+3)=C(N=-1%4)
VEA(3)-T*B(4)-(2¢T*%2/4)%B(5)~T*B(6)~B(7)
U=SA(2)=(2+T*%2/4)%B8(4)~T*B(5)=-8(6)
R=A(1)~-T%8(4)~-8(5)

S=F-B(4)

TT=T

PC=VRR2$URR2+R K2+ Sk %2

oPC=PC

LP=0

T=TT
G--B(4)-T*C(4)-T*B(S)/Z-(Zth¥2/4)*C(5)—B(6)—T*C(6)-C(7)
H==T*8(4)/2-(2+T%%2/4)%C(4)=-B(5)~-T*C(S)-C(6)

==B8(4)~-T*C(4)-C(5)

M=-C(4)
DELT=~(GRV+HRU+LAR+M¥S ) /( GER2+HE X2+ %24 Mk%2)
J=J+1

IF(DABS(DELT) ¢LT+0+SE~10) GO TO 30
IF(JeGT.LL) GO TO 30

LC=0

ALPHA=1,.,0

TT=T+ALPHA*DELT )

BI(N)I=A(N) :



DO 105 I=1sNM4 59

105 B(N=I)=A(N-I)-TTHB(N=I41)=(2+TT*%2/4)%B(N=-[+2)
$ -TT*B(N-I+3)-B(N-1+4)
C(N)=0
DO 110 I=14sNM4
110 CI(N~I)==BI(N=-I+1)=TT*C(N-I4+1)=-TT&B(N~-T1+2)/2
$ ~(24TT*%2/4)%C(N-142)-B(N~I+3)-TT*C(N-1+3)-C(N~-L+4)
V=A(3)-TT%B8(4)=(2+TT%*2/4)%B(5)~TT%B(6)-B(7)
U=A({2)-(2+TT*%2/4) *B(4)-TT*B(5)~-8(6)
R=A(1)-TT%B8(4)-B(5)
S=F-B(4)
PC=VEX2+UR¥24+RRRk24+Sk %2
IF(PCeLT.OPC) GO TO 15 ‘
LC=LC+]
ALPHA=ALPHA/Z2
IF(LC.LT«5) GO TO 25
LP=LP+1
IF{LP.LT.4) GO TO 20
30 FZETA=(1/ETA)*DARCOS(-T/4)
AR=T/2
RTR==AR/2
TE=1-AR%%2/4
IF(TE«GE«.Q) GO TO 40
IF(TE.LT.-0.5E-14) GO TO 35

RTI=0
GO TO 45
35 TE=-~-TE

" X1 = RTR + DSQRT(TE)
X2=RTR~-DSQRT(TE)
PRINT7,ZETAWFZETA+X19X2
GO TO 100
40 RTI= DSQRT(TE)
45 E(KS)=AR
EB(KS)=1.,0
EC{KS)=1.0
X(KS)=RTR
Y{KS)=RTI
XC(KS)=RTR
YC{KS)==RTI
PRINT2+J
PRINT3,DELT
PRINT4 sV iUsReS
PRINTO6+ZETASFZETA .
2 FORMAT(/5Xs*NO. OF ITERATIONS=',13)
3 FORMAT(/5Xs *CHANGE IN POLYNOMIAL COEFFICIENTS=?,E20.,12)
4 FORMAT(/5Xs? THE REMAINDERS?Y/5X s 'V=" 4E20e12/5X+°U=* ,E20.12/5X
$ 'R=*,E20612/5Xe?*S=*4,E20.12)
6 FORMAT(/5Xs* INITIAL ZETA='4F10.7/5Xs*FINAL ZETA=*3F10.7)
7 FORMAT(/SXs*INITIAL ZETA="sF10+7/5Xs*FINAL ZETA=?4F107/710X,
$ "REAL ROOTS*/SXe*X1=?eE20e12/5Xe*X2=23E20612) '
100 RETURN
END
SUBROUTINE L INBA




210

35
60

10

15

20

130

135

25

30

IMPLICIT REAL*8 (A-Hs0~2) 60
COMMON/LI/ZA(128)+F 4N

COMMON/MB/ ZETAWETA oRP 4LL
COMMON/CD/EA(100)FA(100)+GA(100)+WA(L100)+ZA(100)WAC(100),
$ ZAC(100)+KP
"DIMENSION B(128),C(128),0(128)

DO 210 I = 1,128

B(I) = 0.0
C(I) = 0.0
0D(I) = 0.0
CONT INUE
LTV = 0
LRG=0

P=RP

LM=0
==2%DCOS(ETA%XZETA)
J=0
B8(N)=A(N)
NM2 = N-2

DO 10 I=1,NM2
BIN=-I)=A(N~1)-P*Q*B{N-I+1)-(P%%2)%8(N~-1+2)
C(N)=0

DO 1S I=1.NM2
CIN=I)==Q%B(N-1+1)=P*Q%C(N=-1+1)=2%P*B(N-I+2)=(P**2)XC(N-1+2)
DI(N)=0

DO 20 I=1,NM2
OD(N=TI)==P%*B(N=1+1)-PxQ%D(N-I+1)—(P*%2) %D(N-[+2)
R=A{1)-P*xQ%xB(2)~(P%%2) %B8( 3}
S=F-(P**2)*B(2)
T==0*B{2)-P%Q*xC{(2)-2%P%B(3)-(P*%2) %C(3)
==P%*B(2)-PAQ%D(2)~-(P%%2) %D (3)
V=<=2%P*B(2)-(P*x%2) *C(2)

W==(P*%2)%*D(2)

TV=T*W-U*xV ) .

IF(TV.NE«QO) GO TO 130

P=P-4,005

LTV=LTV+1

IFELTVeGT.10) GO TO 130

GO TO 60

DELP=(—=R*W+S%xU)/( TRwW-U%V)
IF(DABS(DELP).L.Tel) GO TO 135S

P=P~+005

LTV=LTV+1 .

IF(LTV.GT.20) GO TO 135

GO TO 60

PT=pP

QT=Q

PC=R*%24Sk%x2

OPC=PC

LP=0

P=PT

Q=QT
==Q*B(2)-P*Q*C(2)-2%¢P*B(3)-(P&*2) ¥C(3)



40

110

115

120

45

50

S1

90

S5

65

U==P%3(2)-P%xQ*D(2)-(P*%2)%D( 3)

V==2%P%B(2)-(P%%2)%C(2)
W==(Px%x2)%D(2)
DELP=(~R*W+SXU )/ (T xW-U%kV)
DELQ=(-T*S+R*V)/( TxwW-U%V)
J=J+1 '

IF(DABS(DELP) oL Te0SE~08. AND+DABS(DELQ) LT«0.5E-~08) GO°

IF(J«GT.LL) GO TO 55
L=0

ALPHA=1.0
PT=P+ALPHAXDELP
QT=Q+ALPHAXDELQ
IF(PT.LE.O0) GO TO 45
B(N)=A(N)

DO 110 I=1,NM2

BIN=I)=A(N-TI)=PT*QT*B(N-I+1)—-(PT*%x2)*B(N-1I+2)

C(N)=0
DO 115 I=1,NM2

CIN=-I)==QT*B(N~I+1)=PTRQT*C(N-I+1)-2%PT*B(N-1+2)

$ ~(PT%%2)%C(N-1+42)
D(N)=0
DO 120 I=1.NM2

D(N-I)--PT*B(N-I#I)-PT*OT*D(N-Ifl) (PT**Z)*D«N l+2)
R=A(1)-PT%QT%B(2)~- (PT**Z)#B(3)

S=F-=-{PT%%2)%B8(2)
PC=R*¥2+S%x%x2
IF(PC.LT.0OPC) GO TO 25
L=L+1

ALPHA=ALPHA/2
IF(L.LTeS) GO TO 40
IFL{PT «GT=20) GO TO 90
LM=LM+1

IF(LM+EQ.1) GO TO S0
PRINT1+PTsP+DELP+QT+Q+DELQ
GO TO 100

LRG=LRG+1

IF(LRG«NE+.l) GO TO 51
IF(RP.EQ.1) GO TO 51
P=1,0

LTV=0

GO TO 35

P=0%9

LTV=0

GO TO 35

LP=LP+1

IF(LP.LT«4) GO TO 30
IF{P.LEs10) GO TO 65
P=1/P

LM=0

GO TO 60

FZETA = (1l/ETA)*DARCOS{(~-Q/2)
RP=P )
AR=Q%P

61

TO S5



AS=P%%2 - 62
RTR=-AR/2 .
TE=AS—AR¥%2/4

IF(TE.GE.0) GO TO 75

IF(TE+.LT+-0+.5E~18) GO TO 70

RTI=0
GO TO 80
70 TE=-TE

X1=RTR+DSQRT(TE)
X2=RTR-DSQRT(TE)
PRINT3sZETALFZETA+ X1 X2
GO TO 100
75 RTI=DSQRT(TE) -
80 FA(KP)=AR
GA(KP)=AS
EA(KP)=1.0
WA(KP)=RTR
ZA(KP)=RTI]
WAC(KP)=RTR
ZAC(KP)==RTI1
PRINTG
PRINTS.DELP,DELQ
PRINT6sR+S
PRINT7,ZETALFZETA
PRINT8+RP
1 FORMAT(/S5Xs(E20.12))
3 FORMAT(/SXe* INITIAL ZETA='9sF10e7/SXs*FINAL ZETA=*3F10e77710X,
$ 'REAL ROOTS*/SXs®*X1='3E20e12/5X+*X2=",E20.12)
4 FORMAT(/SX+*NOe OF ITERATIONS=',13)
S FORMAT(/SX+*CHANGE IN CDEFFIC!ENTS'/SX!'DELP".EZO.IZ/SXo
$ 'DELQ=*4E20.12)

6 FORMAT(/SXs*THE, REMAINDERS'/SX s *R=°®+E20s12/5X+°S=*,E20.12)
7 FORMAT(/SXs*INITIAL ZETA=*sFl0e7/5Xs *FINAL ZETA=!4F1047)
8 FORMAT(/SXs*RADIUS=*4E20.12)
100 RETURN
END

SUBROUTINE PRMUL(EE +EF +EGoKK)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PR/XX(128) ¢ IN
OIMENSION EE(100)+EF(100)+EG(100)+Z2(128),YY{3)
IN=3
XX(F)=EG(1)

XX{2)=EF{’)
XX¢{3)=EE(1)
IF(KK<EQes1) GO TO 100
DO 10 I=2,.,KK
IK=3
YY({1)=EG(I)
YY(2)=EF(I)
YY(3)=EE(I)
IDIMZ=IN+IK-1
DO 20 1Z=1,I01MZ
20 zzt12)=0



30

40
10
100

10

20

13
12

434
433

15

00 30 JJ=1,1K ' 63
DO 30 II=1.IN .
NK=JJ+IIL-1
ZZINK)=XX(II1)%RYY(JJ)+Z2Z(NK)
IN=IDIMZ

DO 40 J=1.IN

Xx(JI)=2Z(J)

CONT INUE

RETURN

END

SUBROUTINE PMPTYY(Z+IOMZ X+ IDMXsY, IDMY)
IMPLICIT REAL%*8 (A-~H,0-2)
DIMENSION Z(lOO)QX(128)oY(128)
IDMZ=1DMX+IDMY~-1

00 10 I=1+1DMZ

Z(1)=0

DO 20 I=1,1IDMX

D0 20 J=1,1DMY

K=l¢+J=-1

ZIK)=SXCI)ARY(JI)+2(K)

RETURN

END

SUBROUTINE FFT(CsDeNsNEWI 4NSTUECIK)
IMPLICIT REAL*8 (A-Hs0-2)
DIMENSION C(512)+,D(512)
DIMENSION CO{512),S1(512
INTEGER P .

PI2 = 8.0D00%¥DATAN(1.0D0)

DO 13 J=1,9

M=J

IF(N=-2%%M)13,12,13

CONT INUE

CONT INUE

IF{IKeNE«.1) GO TO 433
WRITE(65434)

FORMAT (1HO ¢ * kkk %X INVERSE TRANSFORM *X&kkxgt)
CONTINUE

NN=1

NA=N/2

XN=N

NB=NA

DO I6 I=1eN

iIA=0

IC=1-1

DO 15 J=1.M

P=M=J

P=2%%xpP

IB=1C/P

IC=IC~18%p

P=2%%x(J-1)

IA=TA+IB*P

TA=1A+1

IF(1.GE.1A) GO.T01166



A=C(1I)
8=D(1)
C(I)=C(1A)
C(IA)=A
D(I)=D0(1A)
D(IA)=8B
166 CONTINUE
16 CONTINUE
X=N
X=Pl12/X
Co(1l)=1.0
SI(1)=0.0
00 3 JU=1sM
IF(NNJEQ.1)GO TO &
DO 6 L=1,NC :
I[=NC-L+1
K=2%[~-1
CO(K)=COo(1)
6 SI(K)=SI(1)
P=0
DO 1 L=1,NC
P=P+NB
U = DCOS(X*P)
V = —DSIN(X*P)
IF(IKeEQel ) V==V
[IA=2%)
CoO(I1A)=U
SI(IA)=vV
1 P=P+NB
S P=1
I11=0
D0 2 I=1,NA
II=11+1
KKK=P+NN
A=C(KKK)*CO(II)-D(KKK)*SI(IIL)
‘C(KKK)*SI(ll)fD(KKK)*CD(II)
C(KKK)=C(P)~A
D(KKK)=D(P)~-B
C(P)=C(P)+A
D(P)=D(P)+B
IF(IT.LT.NN)GO TO 77
I1=0
P=P +NN
77 P=pP+1
2 CONTINUE
NC=NN
NB=N3/2
NN=2 kNN
3 CONTINUE
RETURN
END
SUBROUTINE SFFT(XsN+sNPOINT)
IMPLICIT REAL*8 (A-H,0-Z)



DIMENSION X(128),A(512).8(512) 65
DG 10 I=1,N
ACT)I=X(T)

10 B8(I)=0
MPOINT=NPOINT
IF(MPOINT«GT<4) MPOINT=NPOINT/2+2
IF(N.EQ.NPOINT) GO TO 13
NP1 = N+1
DO 28 I = NPl +NPOINT
A{I)=0

28 B(I)=0

13 CALL FFT(A+BsNPOINT yNPOINT ¢NPOINT¢~1)
PRINT 14
RNORM =DATAN2(B(2),A(2))
PHASEl1= RNORM
DO 15 12=1,MPOINT
RMAG=DSQRT(A(I2)*A(12)+B(I2)%*B(I2))
PHASE2 = DATAN2(B(I2),A(I2))
DELAY = (PHASEZ - PHASEI)/RNORM
PHASELl =. PHASE2
PRINT 16.12.RMAG.9HA551.DELAY

15 CONTINUE

14 FORMAT(SX,?* MAGNITUDE PHASE "GROUP PHASE DELAY?)
16 FORMAT (lX-I305XoF15012.3X'F1501293X0F15012)
’ RETURN

END

SUBROUTINE RECIP(EK.FKsGKsXReXIeKK)
IMPLICIT REAL*8 (A~H,0-2)
COMMON/LI/ZA(128) oF N
COMMON/MB/ZETASETA RP oL L
COMMON/QB/ASUB(128) + FSUB,NSUB
DIMENSION 8(128)oC(128).EK(lOO).FK(lOO).GK(lOO)sXR(lOO).X!(lOO)
DO 210 I = 1,128
BCI) = 0.0
C(I) = 0.0
210 CONTINUE
LTV = 0
LoP = 0
LCT = 0
LP =0 ,
=—DCOS(ETA*ZETA)

ND=D+Dr 2
_P=RP
IF(P.LEsO.1) P=140
LM=0

35 J=0
BIN)=A(N)
NM2 = N-2
DO 10 I=1,NM2

10 3(N-1)= A(N-t)-No*(p+1/p)*e(N-t+x)-B(N-t+2)
C(N)=0
DO 15 I=1,NM2 . ‘

15 CAN=I)==ND*(1-1/7(P*%2) ) kB(N=-I+1)=ND*(P+1/P)#C(N~1+1)



$ —C(N~-I+2) _ 66
R=A(1)-NO*(P+1/P)*B(2)-8(3)

S=F-B(2)
T==ND*(1-1/7(P*%2) ) %B(2)-ND*(P+1/P) %C(2)~C(3)
v==C(2)

TV=Thk%k24+VE %2
IF(TVeGT.0) GO TO 130
P=P-4,005
LTV=LTV+1
IF(LTV.GT«S) GO TO 130
GO TO 35
130 IF(LM.EQ.1) GO TO 135
IF(LCT.EQ«2) GO TO 135
DELP==(TAR+VXRS)/Z(T*%X2+V%k%k2)
IF(DABS(DELP) eLTe0e25) GO TO 135
LOP=LDP+1
IF(LDP.GT«4) GO TO 140
P=P=-4005
GO TO 33
140 P=P-0e1
33 IF(P.GE«Oel) GO TO 35
LCT=LCT+1
P=0.995
LTV=0
GO TO 35
135 PT=P
PC=R*k¥2+Sk%k2
25 OPC=PC
LP=0
30 P=PT
DELP==(TRR+VKS)/(Thk24+V%%k2)
J=J+1
IF{DABS{DELP) +L.T«0.5€E-08) GO TO 55
IF(J.GTLL) GO TO S5
L=0
ALPHA=1.0
40 PT=P+ALPHA*DELP
IF(PT.LE.0) GO TO 45
B(N)=A(N)
DO 110 I=1,NM2
110 B(N-I)—A(N—l)-ND*(PT+1/PT)*B(N-[+1)-B(N-l+2)
C(N)=0
DO 115 [=1sNM2
115 CIN=-I)==ND*{1~- 1/(PT¢*2))*B(N—x+1)-ND#(PT+1/Pf)*c(N-1+1)
$ -C(N-I+2)
R=A(1)-ND*(PT+1/PT)%*B(2)-8(3)
S=F-B(2)
PC=R®%2+Sk%2
T=-ND*(1~ l/(PT**Z))*B(Z)-ND*(PT+1/PT)*C(2) ~C(3)
rvr=r¢*2+v**2
IF(TVT.EQ.0) GO TO 45
IF(PC.LT.OPC) GO TO 25
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9C

55

65

66

100

- ~NOOU &

L=l +1

ALPHA=ALPHA/2 ) 67
IF(LeLT+S) GO TO 40

IF(PT.GT.0) GO TO 90

LM=LM+1]

IF(LM.EQe.1) GO TO S50

GO TO 100

P=0.5

LTV=0

GO TO 35

LP=LP+1

IF(LP.LT<4) GO TO 30
IF(PC.GT«05€E-6) GO TO 100
IF(P.LE+1.0) GO TQ 65

P=1/P }

AS=-ND*P

RP = P

pPP=1/P

EK(KK)=0

FK{KK)=1.0

GK(KK)==AS

XR{KK)=AS

XI(KK)=0

NSUB=N-2

FsuB=8(2) ’

DO 66 I=1,NM2

ASUB(TI)=B(1+2)

PRINTA4.J

PRINTS,DELP

PRINT6+R»S

PRINT7+RP

GO TO 101

KK=KK=-1

PRINT8,PC .
FORMAT(/5X+*NO. OF ITERATIONS=',13)
FORMAT (/75X *CHANGE IN ROOT=¢,E20.12)
FORMAT(/5X+* THE REMAINDERS®*/5Xs'R=*,E20.12/5X¢'S=",E20.12)
FORMAT(/5X+*RADIUS=?,E20.12) )
FORMAT(/5Xs*PC=*3E20.12)

RETURN

END

SUBROUTINE NEWT(A.FsN)

IMPLICIT REAL*8 (A-H,0-2Z)
COMMON/F I/RR ¢ KSP
COMMON/BAZ/EB(100)+E(100)+EC(100)eX(100)sY(100)+XC(100),

$ YC(100)+KS

COMMON/CD/EA(100)+FA(100)+GA(100)»WAL100)+ZA(100)swAC(100),

$ ZAC(100)KP

COMMON/MB/ ZETAETAsRPoLL
DIMENSION A(128),FP(128)+FDA(128)
L =0

P=RR

LM=0



35 4=0

D0 S5 I=1,N
S FP(I)=((P)xx])%A(1)

FOA=F
DO 10 I=1,N

10 FOA=FOA+FP(I)
NM1 = N - 1
DO 15 I=1,NM1

15 FDA(I)=(I+1)%A(TI+1)%((P)%%x])
FDOA=A(1)
D0 20 I=1,NMi

20 FDOA=FDOA+FDA(I)
IF(FDOA.NE.O) GO TO 24
P=P+.05
GO TO 35

24 PT=P
PC=FOAX*2

25 0OPC=PC
LP=0

30 P=PT
DELP=—FOA/FDOA
J=Jd+1
IF(DABS(DELP) «LTe0+5E=12) GO TO 55
IF(J«GTolLL) GO TO 55
L=0
ALPHA=1,0

40 PT=P+ALPHAXDELP
DO 70 I=1eN

70 FPUI)=C((PT)*%x[)*ACI)
FOA=F
DO 75 I=1,N

75 FOA=FOA+FP(1)
DO 80 I=1,NM1

80 FDA(II={(I+1)%A(I+1)*((PT)%%])
FDOA=A(1)
DO 85 I=1,NM1

85 FDOA=FDOA+FDA(I)
IF(FDOAEQ.0) GO TO 4S5
PC=FOA*%2
IF(PC.LT.OPC) GO TO 25

45 L=L+1 )
ALPHA=ALPHA/2
IF(L.LT.5) GO TO 40

90 LP=LP+1
IF(LPLT.4) GO TO 30

55 IF(PC.LT.0.5E~-15) GO TO 95
LM=LM+1
IF(LM«GT3) GO TO 102
RR=RR+0+5
P=RR
GO TO 35

102 IF(LM.GTe+4) GO TO 101
RR==0.9



95

65

105

115

-Q~NO &

210

35

P=RR

GO TO 35

IF(DABS(P).LEs1) GO TO 65

pP=1/pP '

GO TO 35

RR=P

PRINTG 4

PRINT6,DELP

PRINT?,FOA

PRINTB,RR

PP=1/P

IF(KSP.EQ.0) GO TO 101
IF(P)1054+101,115

KS=KS+1

EB(KS)=0,0

E(KS)=1.,0

EC(KS)==P

X{KS)=P

Y(KS)=0.0

GO TO 101

KP=KP+1

EA(KP)=0.0

FA(KP)=1.0

GA(KP)=~P

WA (KP)=P

ZA(KP)=0.0

FORMAT(/5Xs*NUOe« OF ITERATIONS=¢,13)
FORMAT (/75X *CHANGE IN APPROXe OF ROOT=',E20.12)
FORMAT(/5Xes*VALUE OF FUNCTION AT ROOT=¢,E20.12)
FORMAT(/5X+*RADIUS=* ,E20.12)
RETURN )

END

SUBROUTINE REIM(EKsFKsGKeXRsXI ¢KK)
IMPLICIT REAL%*8 (A-Hs0~Z)
COMMON/LIZA(128)FoN

COMMON/MB/ ZETASETA+RPHLL
COMMON/QB7ASUB(128) s FSUB,NSUB
DIMENSION D(128)

DIMENSI''N B8(128)+C(128)+EK(100),FK{100)+GK(100)+sXR(100)+XI{100)

DO 210 I = 1.128
B{(I) = 0.0

C(I) =" 0.0
D(I) = 0.0
CONT INUE

DDO=-DCOS(ETA*ZETA)
ND=DD+DD/2

P=RP

LM=0

X=ND*(P+1/P)

¥=1.0 -

J=0

BIN)=A(N)

NM2 = N - 2
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DO 10 I=1,NM2 70
10 B(N=I)=A(N-1)=X*B(N-I+1)-Y*B(N=-I14+2)
C(N)=0
DO 15 I=1,NM2
15 CIN=I)=—-B(N-I+1)=X*C{N=14+1)=YRC(N~-1+2)
D{(N)=0
DO 20 I=1,NM2
20 DIN=I)==X%D(N-I+1)~-B(N-1+2)=Y%D(N=1+2)
R=A{1)-X*B(2)-Y*B8(3)
S=F-Y*8(2)
T==8(2)=-X¥C(2)~-Y%*C(3)
U=-B(3)~-X%*D(2)-Y*D(3)
V==Y%C(2)
W==8(2)-Y%*D(2)
TV=T%W=UxV
IF(TV.NE.0.0) GO TO 135
P=P+4005
LTV=SLTV4+1
IF(LTV.GT.5) GO TO 135
GO TO 35
135 XT=X
YT=Y
PC=R&X24S5%%2
25 OPC=PC
LP=0
30 X=XT
Y=yYT )
DELX=(~R&W+S%kU)/( TRW=U%V)
DELY=(-T*S+R%V)/( TEW=U%V)
J=J+1 i
IF(DABS(DELX) LT ¢0+5E—10+ AND«DABS(DELY )L T.0.5E~-10) GO TQ 55
IF(JeGTeLL) GO TO 55
L=0 :
ALPHA=1.0
40 XT=X+ALPHA*DELX
YT=Y+ALPHAXDELY
IF{YTWE.O0) GO TO 45
BI(N)=A(N) )
DG 110 I=1,NM2
110 BIN=-I)=A(N~I)=XT*B(N-1+1)~YT*B(N~-1+2)
C(N)=0
DO 115 I=1,NM2
115 CAN=I)==B(N=-I+1)=-XTRC(N-I¢1)~-YT*C(N=-1+2)
$ —(PT*%2)%C(N-1+2)
D(N)=0
DO 120 I=1,NM2
120 D(N=I)==XTRD(N~I+1)-BI(N-142)-YTH*D(N~L+2)
R=A(1)=XT*B(2)-YT*B(3)
S=F-YT*B(2)
PC=REX2+SK %2
T==B(2)~XT*C(2)=-YT*C(3)
U=-B(3)-XT*D(2)=-YT*D(3)
=-YT%C(2)



45

90

65

77
76

70

80

75

8s

66

W=-8(2)-YT*xD(2)
TVTI=T*W=UxV

IF{TVT.EQes0+0) GO TO 45
IF(PC.LT.OPC) GO TO 25
L=L+1

ALPHA=ALPHA/2

IF(L.LT«S) GO TO 40
IF(YT«GT«0) GO TO 90

GO 7O 100

LP=LP+}

IF(LP.LT.4) GO TO 30
IF(PCeGE «eQ0eSE~6) GO TO 100
IF((ND%X) +GT+0.0) GO TO 65
PRINT 11

GO 70O 100

TE=X*%x2/4~Y

REP==X/2 .
IF(TE«GE+0+5E-20) GO TO 70
IF(TE«LE«—~0+5E~20) GO TO 75
P==X/2

IF(DABS(P)+LEel1+0) GO TO 76
IF(DABS(P) eLE«(1.0+0.5E-12)) GO TO 77
PRINT7.P

GO TO 100

P==~ND*140

RTR=P

RTI=0.0

GO TO 85
AROT=REP-DSQRT(TE)
IF(DABS(ARQOT)}.LE+1) GO TO 80
AROT=REP+DSQRT(TE)
RTR=AROT

OTR=1/RTR

RTI=0

GO TO 85

TE=-TE

RTR==X/2

RT I=DSQRT(TE)

CTI=-RTI1

PRINT 9

GO TO 100

RP=RTR

EK(KK)=0.0

FK(KK)=1.0

GK(KK)==RTR

XR{KK)=RTR

XI{KK)=0.0

NSuUB=N-2

FsuBs=8(2)

DO 66 I=1.NM2
ASUB(I)=B(1+2)

PRINTA4+J

PRINTS+DELX+DELY
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100

a4
5

Lad
-0 ®~N®

101

70

80

90

PRINT6+RsS 72

PRINT7.RP

GO TO 101

KK=KK=1

PRINT8,PC

FORMAT(/SXes*NOe. OF ITERATIONS=',13)

FORMAT(/5X + *CHANGE IN COEFFICIENTS*/SXetX COEFF=*,E20e12/5X,
*CONST TERM=',E20.12)

FORMAT (/5Xs *THE REMAINDERSY/5Xs'R="4E20412/5Xe?S=*,E20e¢12)

FORMAT(/S5Xs*RADIUS = *,E20.12)

FORMAT(/S5Xs*PC="4E20.12)

FORMAT (/5X, *COMPLEX ROOTS')

FORMAT (/5X+*SIGN DISAGREES?)

RE TURN

END

SUBROUTINE PDIV(P+IDIMP X+ IDIMXeY, IDIMY)
IMPLICIT REAL*8 {A-Hs0-Z)

DIMENSION P(128)+X(128),Y(30)
IDIMP=IDIMX-IDIMY+1

IDIMX=1IDIMY-1

I=IDIMP

II=I+IDIMX

PCI)=X(II)/Y(IDIMY)

DO 80 K=1,IDIMX

J=K=1+1

X(JII=X(IDI=-PLI)%xY(K)

CONT INUE

I=1-1

IF(1)90490,70

RE TURN

END
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7
IMPLICIT REAL*8(A-H.,0-2Z) '
PROGRAM TO FIND BEST CHEBYSHEV COMPLEX APPROXIMATION TO A
DESIRED L.OW PASS FILTER ON A FIMITE POINT SET USING THE
METHOD OF LAWSON ( REFERENCE =~ JeRes RICEese THE APPROXIMATION
OF FUNCTIONS, VOLe. [I PAGES 298-304)

Jeo De FISHER RICE UNIVERSITY, HOUSTONs TEXAS _MAY, 1973

THE LAWSON ALGORITHM USES A SUCCESSION OF BEST WEIGHTED LEAST
SQUARES APPROXIMATION.
AT EACH STEP OF THE ALGORITHM THE OPTIMAL LEAST
SQUARES APPROXIMATION IS GIVEN BY
X = (A%EHRQXA) Xk= L XkALXHXQRD WHERE
THE (I.X) ELEMENT OF A IS GIVEN BY EXP(—-J*(K=1)*((I-1)%2 PI/M)
K = loeeeN WHERE N IS THE LENGTH OF THE FILTER
I=lveseM WHERE M IS THE NUMBER OF POINTS IN THE
- ~ FINITE POINT SET ONE IS APPROXIMATING ON

A**H DENOTES A CONJUGATED AND TRANSPOSED

Q@ IS A MXM WEIGHTING MATRIX
AND DO IS THE DESIRED RESPONSE

THE INPUT IS CURRENTLY SET UP TO HANDLE THE INPUT
OF D IN TWO DIFFERENT MANNERS

IN THE FIRST CASE A DESIRED LOWPASS ' FILTER IS SPECIFIED
WITH A GIVEN LINEAR SLOPE WHICH IS SOME FRACTION OF NORMAL
LINEAR PHASE SLOPE .

THE CARD SET UP IS AS FOLLOWS
CARD 1 = NH = FILTER LENGTH (ENTERED FIRST 3 COLUMNS)

CARD 2 = NPOINT= = NUMBER OF POINTS ON (0ese5) (FIRST 3 COLUMNS)

WHERE (0e+e5) DENOTES THE NORMALIZED FREQUENCY VARIABLE
BOTH Oe AND +5 ARE INCLUDED IN THE POINT SET
CARD 3 = FP = PASSBAND CUTOFF (F10.5)

CARD 4 = FS = STOPBAND CUTOFF (F10.5)
CARD S5 = NUMIT = NUMBER OF ITERATIONS BEFORE STOPPING(FIRST 3
COLUMNS)
CARD 6 = [D = INPUT OPTION = 0 FOR LINEAR SLOPE FACTOR
= SSLOPE = LINEAR SLOPE FACTOR(Fi4.10)

.

CARD 7
HENCE A SAMPLE CARD SET UP WOULD BE

009
065
10
20
050
0

«7S

WHICH WOULD SPECIFY A LENGTH 9 FILTER ON A FINITE POINT SET
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75

OF 65 EVENLY SPACED POINTS INCLUDING 0s AND S WITH A
PASSBAND CUTOFF OF +10 AND A STOPBAND CUTOFF OF 0,2
PROCEEDING FOR S0 ITERATIONS TRYING TO APPROXIMATE A

LOWPASS. FILTER WHOSE SLOPE FACTOR IS 075 THAT OBTAINED BY AN
EXACTLY LINEAR PHASE FILTER

THE SECOND MODE OF INPUT ALLOWS ONE TO ENTER HIS OWN
DESIRED PHASE TO GO WITH A DESIRED MAGNITUDE OF

ONE IN THE PASSBAND

CARDS 1 - S ARE THE SAME AS BEFORE

CARD 6 = ID = OPTION CARD = 1|
CARD 7 = ON = THE VALUE OF THE DESIRED PHASE (F10.5)
HENCE A SAMPLE CARD INPUT WOULD APPEAR

009
065
ol
«20
0S50
1

AND THEN THE CARDS WITH THE PHASE SPECIFICATIONS (IN RADIANS)
ol

2

«3 ETC

THIS SET OF SPECIFICATIONS wWouLbDd DENOTE A FILTER OF LENGTH

9 OM A POINT SET QF 65 POINTS, WITH PASS AND STOPBAND CUTOFFS OF
ol AND 42 RESPECTIVELY, HAVING A DESIRED RESPONSE AT THE FIRST
POINT OF MAGNITUDE 1 PHASE .1 RADIANSs AT THE SECOND POINT
MAGNITUDE 1, PHASE <25 AT THE THIRD POINT MAGNITUDE 1
PHASE «3 ETC.

ok ok ok K Kk X K K K K K X & Kk K & K £ K & X & k Kk Kk k %
AT THIS TIME THE DIMENSION OF THE ARRAYS MUST BE CHANGED TO
REFLECT THE LENGTH OF THE IMPULSE RESPONSE CALLED FOR ===
IN THIS CASE THE MATRICES ARE SET UP TO HANDLE A FILTER OF LENGTH
9 ON A MAXIMUM DENSE GRID OF 129 POINTS ON THE HALF INTERVAL

COMPLEX =16 A(12909)0AC0NG(12909)00(lZﬁ)cRNE“A(12909,
COMPLEX *16 R(129)+TEMPR(129) s SUM

COMPLEX %16 COMPN s RHOLD1 o RHOLD2

REAL *8 WT(129), DEV(lZQ’.TVT(129’QPUT(129)OAPASS(909)OBPA$$(9)0
1 TEMPH(9),TEMPD(129)

COMMON/BACK1 /REALN

COMMON/BACK2/AIMAGN

COMMON/DOWN/COMPN

AAA = 0.000 TTree ey

L1
888 = 1.D0
CCC=2.D0



350

506

106

222

32

33
31

76

WRITE (641)
FORMAT (° ENTER LENGTH OF IMPULSE (13)°)
READ (54102) NH
FORMAT (13)
WRITE (64+2)
FORMAT (* ENTER NUMBER OF POINTS ON HALF INTERVAL(I3)*)
READ (S5+102) NPOINT
WRITE (6+3)
FORMAT (* ENTER PASSBAND CUTOFF FP (F10.5)°)
READ(S5.354) FP
WRITE (6+4)
FORMAT (* ENTER STOPBAND CUTOFF FS (F10.5)°)
READ(S5,354) FS
WRITE (6+5)
FORMAT (' ENTER MAXIMUM NUMBER OF ITERATIONS (I3)°)
READ (5+102) NUMIT
WRITE (6+350)
FORMAT(®* TO ENTER OWN DESIRED PHASE ENTER A 1°)
READ(S,106) 1ID
IF (ID«EQsl) GO TO 222
WRITE(6+506)
FORMAT(®* ENTER SLOPE FACTOR(F10.5)°)
READ (5+180) SSLOPE
SLOPE = SSLOPE
FORMAT (I1)

TCHEBY = 1405
IQ=NPOINT
RNTOTD=NPOINT
RINT=e5/(RNTOTD~-1.)

START=0.,0
IGOT = 0
IGOT2 = 0

DO 31 I = 1.NPOINT
IF(IGOT2.EQs1l) GO TO 31
IF(FP.GE+START.OR«IGOT.EQ.1) GO TO 32
1GOT=1
NFL = 1
IF(DABS{FP=START4+RINT) eLTeO0e¢1%(RINT)) NFL=I-1
FRACT = DABS((NFL=2.)%RINT - FP)/RINT
IF(FS<GE+START) GO TO 33 ’
160ov2=1
NFS = [=-1
IF{DABS{FS~NFS*RINT)aL.Te01*RINT) NFS=1
START = START + RINT
CONT INUE
RINDEX = =1.D0
IFIRST = 0
ITER = 0
MITER=0



annNnn

55555

40

a1

Pl = 3.14159265358979D00
RMULT = PI * 2., % RINT

M = NH
MM = M%M
N =1

-EPS = 14D-S

NTRAN = NFS = NFL - 1
N2 = NPOINT -~ (NFS - NFL)
IQ=N2 + 1

RiQ=IQ

WTI=¢5/R1Q

GENERATE BASIS FUNCTIONS (MATRICES A AND ACONG)

RNH = NH - 1

DEG = SLOPE % (RNH/CCC) %= RMULT
DO 55555 J = 1s NPOINT

WT(J) = WTI

PWT(J) = wWTI

CONTINUE

NFLM1 = NFL - 1

DO 6 K = 1, NH

RKK = K = 1
DO 40 J = 2¢NFLM1
RJJ = Jd - 1

OMEGA = RJJRRMULYT

RAA =DCOS(RKK * OMEGA)

RAAI =DSIN(RKK * OMEGA)
A(J+K) =DCMPLX(RAAs—RAAI)
ACONG(JeK) =DCMPLX(RAA+RAAI)
CONTINVE

LINFL = NFL + 2

DO 41 J = IINFLWN2

RJJ = J + NTRAN - 1

OMEGA = RJJ*RMULT

RAA =DCOS(RKK * OMEGA)

RAALI =DSIN(RKK * OMEGA)
A({JeK) =DCMPLX (RAA+—~RAAI)
ACONG(JeK) =DCMPLX(RAA,RAAI)

CONTINUE
A{1eK) = CMPLX(1¢0+000)
A(IQ +K) = DCMPLXCDCOS((K=1)%PL)sAAA)

ACONG{1+K) = A(14K)

ACONG(N2+1¢K) = A(N2+1,4K)

RAA = DCOS(RKK*FP*2+.%P])

“TALI=DSIN(RKK*FP*2 ¢ *P[)

A FrneK) = DCMPLX{RAAs—=RAAI)

SC NG(NFL+K) = DCMPLX(RAASRAAI)

R:A = DCOS{RKKEFSX24%P])

JAAI=DSIN(RKKXFS*2 ¢ %P )
AINFL#1+K) =DCMPLX(RAA+~RAAI)

ACONGINFL+1+K) = DCMPLX(RAARAAL)

77



78
6 CONTINUE :

C
C GENERATE CHARACTERISTIC TO BE APPROMIMATED (D VECTOR)
DO 2222 I = 1.1Q
2222 D{(1) = DCMPLX (AAA,AAA) )
IF(1ID.EQ.1) GO TO 351
354 FORMAT(F10+5)
507 DO 11111 I = 2.NFLMI
RT =1 -1
DR =DCOS(RT*DEG)
DI ==-DSIN{(RT*DEG)
D(I) =DCMPLX{(DRs DI)
11111 CONTINUVE
D(1) = DCMPLX(B8BBsAAA)
RT = NFLM1 + FRACT -~ 1
DR DCOS(RT*DEG)
DI - DSIN(RT*DEG)
D(NFL) = DCMPLX(DRsDI)
GO 7O 357

NFL IS THE NUMBER OF POINTS IN THE PASSBAND
IQ IS THE TOTAL NUMBER OF POINTS LEFT TO DO THE
APPROXIMATION ON ONCE THE TRANSITION POINTS
HAVE BEEN TAKEN OUT OF THE POINT SET

TO MODIFY THE WAY THE PROGRAM HANDLES YOUR OWN ENTERED
DESIRED RESPONSE MODIFY THE NEXT 8 CARDS ACCORDINGLY
351 RMAG=1.
DO 353 1 = 1.NFL

READ(S+354) PHASE

RHOLD1 = DCMPLX(RMAGsAAA)

RHOLD2 = DCMPLX(AAA,PHASE)

RHOLD1l = RHOLD1 * CDEXP(RHOLD2)
D(I) = RHOLD1

OOOOOOOODO

353 CONTINUE
357 CONTINUE
WRITE(6.,48)

48 FORMAT(* THE FOLLOWING PRINT OUT IS THE MAX DEVIATION AFTER EACH
1 ITERATION')
c
C NOW HAVE ALL MATRICESes JUST MULTIPLY OUT AND DONE
c
300 CHEBY = 040
DO 13 1I8= 1.NH
DO 12 17 = 1, IQ
12 RNEWA(I7+18) = ACONGC(I7,1I8) % WT(I7)
13 CONTINUE
DO 7 I1 = 1.NH
DO 8 I2 = 14NH
SUM = DCMPLX{AAA,AAA)
00 9 13 = 2, N2
9 SUM = SUM + RNEWACI3.I1) * A(I3,12)
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11

10

COMPN = SUM

CALL SORRY

TEMP1 = REALN

COMPN = RNEWA(1,I1) * A(1,12)
CALL SORRY

TEMP2 = REALN

COMPN = RNEWA(N2 + 1,1I1) * A(N2¢+1,12)

CALL SORRY

APASS(I1+:12) = 2.%TEMP1 + TEMP2 ¢+ REALN

CONTINUE
CONT INUE
00 10 I4 = 1+NH
SUM = DCMPLX(AAAsAAA)
DO 11 IS = 2+NFL
SUM = SUM + RNEWA(IS5,14) * D(15)
COMPN = SUM
CALL SORRY
TEMP1 = REALN
COMPN = RNEWA(1.,14) * D(1)
CALL SORRY
TEMP2 = REALN
BPASS(I4) = 2.*TEMP1 4+ TEMP2
CONTINUE

BPASS HAS ANSWER APASS IS DESTROYED
CALL GLEG (M, MM, Ns EPS, IER, APASS, BPASS)

NOW CALCULATE WHAT HAVE AND COMPARE IT WITH WHAT WE WANTED

IF(IER«EQe~1) GO TO 9999

RESPONSE = A*X

215 00 21 J1 = 1. IQ

22

21

99

996

995
997
316

SUM = DCMPLX(AAAsAAA)
DO 22 J2 = 1oNH g
SUM = SUM + A(J1.,J2) =% BPASS(J2)
R(J1) = SUM :
CONT INVE
DO 99 J3 = 1,1Q
DEV(J3) =CDABS(R(J3) - D(JI3))
TEMP = DEV(J3)
IF ((CHEBY = TEMP).LT<0.0) CHEBY
CONTINUE
WRITE (64+120) CHEBY
IF (CHEBY.GE.TCHEBY) GO TO 997
DO 996 II1 = 1sNH
TEMPH(II1) = BPASS(II1)
TCHEBY = CHEBY
DO 995 Ii2= 1,.1Q
TEMPR(II2) = R(112)
TEMPD(II2)=DEV(112)
CONT INUE
DO 316 L4 = 1.1Q
IF(WT(LA) ¢EQe0s0) WT(LA)I=PWT(LS)

-
-

TEMP
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302

303

304
191
410
311
318

200

20

30

a7

796

45

9999
188

110
120
140
160
170
180
186
187
201

42

DO 302 L1 = 1s1Q

TWT(LL1) = WT(L1)%DEV(L.1)
RSUM = 0.0
00 303 L2 = 1,10
RSUM=RSUM + TwT(L2)

DO 304 L3 = 1s1Q

WT(L3) = TWT{L3)/RSUMN
FORMAT (El10+4)
DO 311 LS = 1,
PWT(LS) = wT(LS)
ITER= ITER + 1
IF (ITEREQ.NUMIT) GO TO 200
GO TO 300

DO 20 I = JlaNH

WRITE(6+4110) I+TEMPH(I)
CONTINUE

WRITE(6+140)

DO 30 K1 1+1Q

COMPN = TEMPR(K1)

CALL SORRY

RR = REALN

RIM AIMAGN

RMAG DSQRT(RR*RR + RIMXRIM)
RPHASE =DATAN2(RIMsRR)

RINDEX =RINDEX + 1

FR = RINT % RINDEX
IF(K1+EQeNFL) RINDEX
IF(K1+EQeNFL) FR=FP
IF(K1<EQeNFL#1) FR=FS
WRITE(64+4201) K1sFR«RMAGsRPHASE
CONT INUE

WRITE(6+42) NHs 1QeFPFS
IF({ID«EQe0) WRITE(6+47)

Ia

RINDEX + NTRAN

SLOPE

FORMAT(®* WITH A PHASE FACTOR OF *4F10.5)
WRITE(6+4796)

FORMAT(®* THE ERROR VECTOR ON THESE POINTS [S°*)
DO 45 I = 1, IQ '

WRITE(6+160) TEMPD(I)

GO TO 10000
PRINT 188
FORMAT (* ERROR IN SUBR.
GO TO 10000

FORMAT(®* H(®3[3,%) =¢,F14,8)
FORMAT (°* E s F10.8)
FORMAT(*
FORMAT(F14,i0)
FORMAT(IS)
FORMAT(F14.10)
FORMAT (2F12.7)
FORMAT (12)
FORMAT({I3:,3F10.5)
FORMAT(1Xe" LENGTH

GLEG®)

MAGNI TUDE PHASE?)

913¢° ON *,14+°* POINTS
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WITH FP =

*+F10.5




46

*+® AND FS = *4,F10.5) 81
FORMAT(F10.5)

10000 DUMMNY = AAA

aOnonOn

0o

nDOOnN

~Nou e

9

sTOP

END :

SUBROUT INE GLEG (M, MMs No EPSs, IERs As R)
IMPLICIT REAL*B(A-H,0-2)

DIMENSION R(5),A(25)

IF(M)23623,1

SEARCH FOR GREATEST ELEMENT IN MATRIX A
IER=0

PIV=0.

MM=M%M

NM=N*M

DO 3 L=1,MM

Tl =DABS(A(L))

IF(T1-PIV) 3,3,2

Plvy = T1
I=L
CONTINUE

TOL=EPS*PlV .
A(I) IS PIVOT ELEMENT. PIV CONTAINS THE ABSOILUTE VALUE OF A(E)e

START ELIMINATION LOOP
LST=1

D0 17 K=1.M .
TEST ON SINGULARITY

IF(PIV)23,23,4

IF(IER)7:+547

IF(PIV-=TOL)6:6,7

IER=K~1

PIVI=1e/A(1)

J=(I=-1)/M

I=l=-JxM=K

J=Jd+1-K

I+K IS ROW~INDEXs J+K COLUMN-INDEX OF PIVOT ELEMENT

PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE R
DO 8 L=KsNMeM

LL=L+I

TB=PIVI*R(LL)

RILL)=R(L)

R(L)=TB

IS ELIMINATION TERMINATED
IF (K-M) 9, 18, 18

COLUMN INTERCHANGE IN MATRIX A
LEND=LST+M~K
IF(J)L12,12410



OO Nn

10

11

12

13

14

15

16

166
17

18
19

II=J%M .

DO 11 L=LSTs LEND
TB=A(L)

LL=L+II
A(L)=A(LL)
A(LL)=TB

ROW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A

DO 13 L=LSToeMMM
LiL=L+]
TB=PIVI*A(LL)
A(LL)=A(L)
A(L)=TB

SAVE COLUMN INTERCHANGE INFORMATION
A(LST) = J

ELEMENT REDUCTION AND NEXT PIVOT SEARCH
PIV=0e.

LST=LST+1)

J=0

D0 166 II=LSTILEND
PIvi==-A(ll)

IST=I1+M

J=J+1

DO 1S5S L=ISTsMMsM
LL=L~-J
A{L)=A(L)+PIVIXA(LL)
Tl =DABS(A(L))
IF(T1=-PIV) 1S5,15+14.
PIV = T1

I=L

CONT INUE

DO 16 L=KsNMsM
LL=L+J
RILL)=R(LL)+PIVIRRIL)
CONTINUE

LST=LST+M

END OF ELIMINATION LOOP

BACK SUBSTITUTION AND BACK INTERCHANGE
IF(M~=1)23+22,19
IST=MM+M
LST=M+1

DD 21 I=2.M
II=LST-1I
IST=IST-LST
L=IST-M

L = A(L) + .5
D0 21 J=IIeNM.M
TB=R{J)

tL=J

82
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20

21
22

23

DO 20 K=ISTeMM¢M
LL=LL+]
TB=TB-A(K)*R(LL)
K=J+L

R{J)=R(K)
R(K)=T8

RETURN

ERROR RETURN
IER=-1

RETURN

END

83
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SUBROUTINE SORRY

REAL %8 COMP(2)+A+B .
SUBROUTINE SORRY MERELY FINDS THE REAL AND IMAGINARY
PARTS OF COMPLEX * 16 NUMBERS

COMMON/BACK1 /A

COMMON/BACK2/8

COMMON/DOWN/ COMP

DO 1 1 = 1.2

A = COMP(1)

8= COMP(2)
CONTINUE

RETURN

END
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