
User’s Guide for LMaFit: Low-rank Matrix Fitting

Yin Zhang

Department of CAAM

Rice University, Houston, Texas, 77005

(CAAM Technical Report TR09-28)

(Versions beta-1: August 23, 2009)

(Versions beta-2: September 8, 2009)

Abstract

This User’s Guide describes the functionality and basic usage of the Matlab package
LMaFit for low-rank matrix optimization. It also briefly explains the formulations and
algorithms used.

Version beta-2 change log: Only the matrix completion code is changed: (1) the field Prob.Unknwn

has been eliminated; (2) a new option opts.Zfull is added (see page 6) to help complete large ma-

trices with very low ranks.

1 Introduction

LMaFit contains a collection of solvers that can be used to solve three classes of low-rank
matrix optimization problems: (1) Matrix Completion (MC), (2) Sparse Matrix Separation
(SMS), and (3) Matrix Compressive Sensing (MCS). Although the first class is a subclass
of the third, it is special enough to deserve a solver of its own to take advantages of its
special structures.

The original, idealistic models for MC, SMS, and MCS are, respectively,

min
U∈Rm×n

rank(U) s.t. Uij = Aij , ∀(i, j) ∈ E , (1a)

min
U,Z∈Rm×n

rank(U) + µ‖vec(Z)‖1 s.t. U + Z = A, (1b)

min
U∈Rm×n

rank(U) s.t. A(U) = b, (1c)

1

where E ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, µ > 0, vec(Z) is the vectorization of the matrix
Z, and A(·) is a linear map from Rm×n to Rnb for some nb < mn.

Such rank minimization problems are generally hard. The standard approach is to
replace the rank of U by the sum of its singular values, or the so-called nuclear norm
of U . Such convex relaxations are known to produce the minimum rank solutions under
suitable conditions (see, for example, [1, 2, 3]). Still, nuclear norm minimization prob-
lems can become excessively costly as problem sizes and ranks increase. As a result, al-
gorithms based on nuclear norm minimization so far only have limited capacity for solv-
ing large-scale problems due to their slow speed when ranks are not extremely low. Fur-
ther information on some references and algorithms for nuclear norm minimization can be
found at the web sites: http://www.dsp.ece.rice.edu/cs and http://www.stanford.

edu/~raghuram/optspace/papers.html.
To improve our problem-solving ability for large-scale problems (particularly when ranks

are not extremely low), we consider slightly more restrictive versions of the three classes of
problems. First let us denote the set of rank k matrices as

Rm×n(k) , {U ∈ Rm×n : rank(U) = k}. (2)

Currently, LMaFit can be used to attack the following three problems:

Find U ∈ Rm×n(k) so that Uij ≈ Aij , (i, j) ∈ E , (3a)

Find U ∈ Rm×n(k) and sparse Z so that U + Z ≈ A, (3b)

Find U ∈ Rm×n(k) so that A(U) ≈ b where AAT = I. (3c)

These three problems will be called, respectively, MC(k), SMS(k) and MCS(k). It is worth
noting that, to accommodate noisy data, exact fidelity is not required in the above problem
formulations.

Our specific formulations for solving problems (3a)-(3c) are, respectively,

min
X,Y,Z

‖XY − Z‖2F s.t. Zij = Aij , ∀(i, j) ∈ E , (4a)

min
X,Y,Z

‖XY + Z −A‖2F /2 + µ‖vec(Z)‖1, (4b)

min
X,Y,Z

‖XY − Z‖2F + ρ‖A(Z)− b‖22, (4c)

where X ∈ Rm×k, Y ∈ Rk×n, Z ∈ Rm×n, µ ∈ (0,∞) and ρ ∈ (0,∞]. When ρ =∞ in the last
problem, the fidelity term becomes a constraint. Straightforward alternating minimization

2

algorithms are applied to these problems. In the constrained case corresponding to ρ =∞,
an alternating direction method based on augmented Lagrangian is applied.

Using direct factorization is not a new idea in dealing with low-rank matrix optimization
(see [4] for example). After an alpha version of our code was released, we found that very
recently, this idea has also been applied to the matrix CS problem by Haldar and Hernando
[5] using a different formulation, i.e., directly minimizing ‖A(XY)− b‖22 alternatingly with
respect to low-rank X and Y . The authors tested their algorithm on small problems with
matrices up to 50 by 50. (Since the method in [5] requires solving linear least squares
problems involving nb × mk or nb × nk coefficient matrices, it is questionable that this
approach would be effective for large-scale problems.)

2 Quick Start

LMaFit can be downloaded from the website:

http://www.caam.rice.edu/~optimization/L1/LMaFit/

It has a simple interface with 2 inputs and 1 output:

Out = lmafit(Prob, opts);

where Prob is a structure for problem specification and opts is a structure carrying options
such as the maximum number of iterations. The output Out is a structure for solutions.
Further information for the output and inputs structures is given in the next section.

After downloading and unzipping the package, you will have a new directory: LMaFit-xx
where “xx” will vary with LMaFit versions. Get into this directory and run the Matlab
script Run Me 1st.m, which sets necessary path and tries to compile a C++ code for fast
Walsh-Hadamard transform into a Matlab mex file (as such you will need a relevant compiler
installed on your system). Assuming that everything goes as it is supposed, then you will be
able to run the demo files in the directory (as well as the test files in the Tests directory).
These demo files demonstrate how to invoke the solvers.

Note: A function setProb.m is provided to help set up problem instances. Please see
the demo files for its usage.

3 Output and Input Structures

3.1 Output

The output variable Out is a Matlab structure with two or three main fields:

3

• Output.X and Output.Y: The former holds an m by k matrix X and the latter a k by
n matrix Y . The product U = XY is supposed to be a rank-k solution to a relevant
problem.

• Output.Z: This additional field exists in the case of (4b) representing a sparse matrix
Z so that XY + Z ≈ A.

Other fields exist that contain secondary output information. For example, Output.iter
gives the number of iterations taken.

3.2 Input

An input structure Porb always has the following 3 fields for matrix variable size, rank and
problem type, respectively,

• Prob.size = [m,n];

• Prob.rank = k;

• Prob.type = ’MC’ or ’SMS’ or ’MCS’;

In addition, each problem type requires additional fields.

3.2.1 Matrix Completion

An MC instance requires 2 additional fields:

• Prob.known: a vector containing a subset of the index set {1, 2, · · · ,mn},

• Prob.data: a column vector of the same length as Prob.known,

where Prob.known corresponds to the column-wise, linear arrangement of the index set E
in (4a) and Prob.data contains the column-wise, linear arrangement of the known elements
{Aij : (i, j) ∈ E}. (The field Prob.unknown has been eliminated from version beta-2.)

3.2.2 Sparse Matrix Separation

An SMS instance requires 2 additional fields:

• Prob.A: an m by n matrix,

• Prob.mu: a value for penalty parameter µ > 0.

4

3.2.3 Matrix Compressive Sensing

An MCS instance requires 3 additional fields:

• Prob.Amap: a linear map from Rm×n to Rnb ,

• Prob.b: a column vector of the length nb,

• Prob.rho: a value for penalty parameter ρ > 0 or ρ = inf,

where the first two fields represent the left and right-hand sides of the equation A(U) = b,
respectively, which will be treated as a constraint when ρ = inf.

Specifically, Prob.Amap can be (i) a Matlab structure, or (ii) a Matlab function handle.
In case (i), the structure Prob.Amap should have two fields:

Prob.Amap.times -- a function handle for Amap(x),

Prob.Amap.trans -- a function handle for Amap’(y),

representing the action of the linear map Prob.Amap and that of its adjoint. That is,
Prob.Amap.times(·) is from Rm×n to Rnb and Prob.Amap.trans(·) from Rnb to Rm×n.
For an example on how such a structure is defined, see the function pdwht operator.m in
the Utilities directory. In case (ii) the Matlab function, say F, represented by the handle
Prob.Amap should have two modes:

F(x,1) represents Amap(x),

F(y,2) represents Amap’(y).

3.3 Options

The following are the input options that can be reset by the user. The values in the brackets
“[]” are default values.

opts.tol = [set by user] (stopping tolerance)

opts.maxit = [500]; (maximum iterations)

opts.print = 0 or [1]; (silence/verbal mode)

The option opts.tol specifies the stopping tolerance and must be set by the user. To
get the best performance, its value should be set more or less consistent with the noise levels
in the observed data. In most practical situations where noise inevitably exists, opts.tol
values between 1E-3 to 1E-5 should generally be sufficient. Setting a tolerance value much

5

-

lower than noise level would only prolong computational time without the benefit of getting
a higher accuracy.

In version beta-2, an additional option, opts.Zfull, has been added for solving the MC
problem (4a):

opts.Zfull = 1 or 0; (full Z stored or not)

The code uses some heuristics to set a default value for this option, but you can overwrite
it by specifying a value. In general, for completing large matrices with very low ranks, this
option should be set to 0 in which case the matrix variable Z is treated as a sum of a low-
rank matrix and a sparse matrix. On the other hand, for smaller matrices with relatively
high ranks, the MC code can be faster when Z is stored as a full matrix.

References

[1] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex opti-
mization. Preprint, 2008.

[2] John Wright, Arvind Ganesh, Shankar Rao, and Yi Ma. Robust Principal Component
Analysis: Exact Recovery of Corrupted Low-Rank Matrices by Convex Optimization.
Preprint, 2009.

[3] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed Minimum Rank
Solutions to Linear Matrix Equations via Nuclear Norm Minimization. Preprint 2007.

[4] Samuel Burer and Renato D. C. Monteiro. A Nonlinear Programming Algorithm for
Solving Semidefinite Programs via Low-rank Factorization. Mathematical Program-
ming (Series B), 2003.

[5] Justin P. Haldar and Diego Hernando. Rank-Constrained Solutions to Linear Matrix
Equations using PowerFactorization. IEEE Signal Processing Letters, 16:584-587, 2009.

6

