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Abstract 

The construction of elementary unitary matrices that transform a complex 
vector to a multiple of e1 , the first column of the identity matrix, are studied. We 
present four variants and their software implementation, including a discussion on 
the LAPACK subroutine CLARFG. Comparisons are also given. 

1 Introduction 

The goal of this paper is to survey elementary unitary matrices. We begin by first 

discussing elementary unitary matrices that are Hermitian. Let w be a complex vector. 
Define the elementary Hermitian matrix U = I - 2wwH, where wH w = 1. It is easily 
verified that U is both Hermitian and unitary. In particular, if w is a real vector, then 
U is orthogonal and symmetric, and is commonly referred to as a Householder reflector. 
Since U is unitary, its inverse is readily available. 

Two important applications of elementary Hermitians include the computation of 
the QR factorization of a matrix, and the orthogonal reduction of a square matrix 
A into upper Hessenberg form. The former application is often used for the stable 
computation of a solution for the linear least squares problem. The latter application 
is needed for many eigenvalue computations. The literature on elementary Hermitians 
is vast. For information on applications concerning Householder matrices see Golub 
and Van Loan [4]. Parlett [7] examines the algorithmic and stability issues of computing 
Householder matrices. A detailed error analysis by Wilkinson [10] shows the stability of 
numerical techniques using elementary Hermitians. Besides these excellent numerical 
properties, their application demonstrates their efficiency. If A is a matrix, then U A = 
A - 2w( AH w )H, and hence explicit formation and storage of U is not required. Only 
the ability to form the matrix-vector product AH w and a rank one update to A. 

Fundamental to the use of elementary Hermitians in the above applications is their 
ability to transform a vector x to a multiple of e1 , the first column of the identity 
matrix. As we will show, an elementary Hermitian is not always defined when x is to 
be transformed to a real multiple of e1 • However, the crucial property of unitariness 
may be preserved. The purpose of this paper is to review and examine the details of 
constructing an elementary unitary matrix so that a complex vector x is transformed 
to a multiple of e1. 
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The paper is organized as follows. In § 2 the mathematical problem is stated and 
general conditions for constructing elementary unitary matrices are derived. The four 
approaches for construction are then introduced in § 2.1-§ 2.4. The first one is imple
mented in EISPACK [8] and is based upon a development by Wilkinson [9, pages 48-50]. 

The LINPACK [2] approach is the second one studied. The third approach is due to 
Hammarling and Du Croz. It is implemented in the NAG Fortran Library subrou
tine F06HRF [6]. The final variation is implemented by the LAPACK [1] subroutine 
CLARFG. The details of this software implementation are also discussed. Section three 
is a comparison and summary of our findings. In fact, our attempt to understand the 
differences between the Wilkinson approach and the alternate formulation implemented 
by LAPACK led to this study. 

We employ Householder notational conventions. Capital and lower case letters 
denote matrices and vectors, respectively, while lower case Greek letters denote scalars. 
In particular, (i = ef x denotes the i-th element of the vector x. Unless otherwise stated, 
all quantities are assumed to be complex and i = P. The real and imaginary part of 
a complex number a are denoted by_lk{a) and Im(a), respectively. The vector norm 
used is the Euclidean one: llxll = ..r;;r;. The reader is also reminded that ia:1 2 = aa 
where a is the complex conjugate of a. 

2 Elementary Unitary matrices 

Let us clearly state the problem at hand. Find an elementary unitary matrix that 
satisfies the following three conditions: 

(1) 

where x is a vector with n components. The third condition is a consequence of 
the second one since IIUH xll/llxll = h'I- The second condition gives that xHuH x = 
1ilxllxHe1 implying that U is an elementary Hermitian matrix if and only if a and 
,'XH e1 are real. 

The matrix U as defined by ( 1) is a special member of the more general class of 
elementary matrices defined by 

E ( w, v; a) = I - awvH. (2) 

See Householder [5] and Wilkinson [11] for introductions. Dubrulle [3] presents a com
prehensive study for the case of real w, v and a, that includes a discussion to block 
implementations. 

Let us determine general conditions for an elementary matrix to be unitary. Since 
E( w, v; a) must be unitary, 

I= (I - awvH)H(I - awvH) = I - avwH - awvH + aa(wHw)vvH. 

Cancelling terms results in 

aa( wH w )vvH = avwH + awvH. (3) 

Rearranging terms gives ( aa( wH w )v - aw )vH = avwH, and a row space argument 
implies that w and v are linearly dependent. Substituting v = w into (3) gives 

(4) 
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as the required relationship between CT and w. Note that the above relationship contains 
some redundancy. Scaling w by a complex number ry and dividing CT by lrJl 2 still 
satisfy the relationship. This scaling also satisfies the second condition of ( 1) since 
(alrJl-2)(wry)(wry)H = CTWWH. Finally, the second condition of (1) gives that w is a 
linear combination of x and e1 . 

Four sets choices for w, CT and I are the subject of the § 2.1-2.2. A standard 
modification for w = µx + ve1 is that µ6 and v share the same sign. In floating 
point arithmetic, this choice of sign leads to a small relative error when computing 
w. For example, if µ = l the sign of e1 is that of Re( ~1). Parlett [7] presents a 
thorough discussion on the choice of sign when computing Householder reflectors. For 
the remainder of the paper, v = Sign(Re(6))11xff. 

Note that an elementary Hermitian ( and Householder) matrix chooses w = ( x + 
ve1)/llx + ve1II so that wHw = l, 1 = -1. Conditions (1) and (4) are satisfied. 

2.1 The Wilkinson Approach 

Wilkinson [9, pages 49-50] suggested the following modification. Let 6 = i 01 161 where 
0 ::; 01 < 271" and 

Then even if 6 has a non-zero imaginary part, ef y is a real number, an elementary 
Hermitian P may be constructed so that Py is a real multiple of e1 • Thus, condition ( 4) 
is satisfied as already discussed. Set U = ei01 P and 

where 1 = -1. The matrix U is a multiple of an elementary unitary matrix. Since the 
first component of y is a non-negative number, 01 is zero. 

Although EISPACK [8] does not have a subroutine that computes an elementary 
unitary matrix, the subroutines CORTH and HTRIDI implement a slight variation of 
the Wilkinson approach. CORTH [8, pages 300-305] and HTRIDI [8, pages 357-363] 
orthogonally reduce a general and Hermitian matrix to upper Hessenberg and tridiag
onal form, respectively. They set U = P directly and thus transform y to -ei01 llxlfe1. 
The software sets w = x + i 81 llxlle1(= ei81 (y + llxlle1)) and CT= 2(wHw)-1. Hence 
wH w = 2llxll(llxll + l~1 I) and CT = 1/llxll(llxll + 161) thus satisfying condition ( 4). A 
simple calculation shows that 

where 1 = -ei01 • In order to prevent possible overflow when computing CT, the vector 
x is is initially normalized by 0 = 1Re(6)1 + 1Im(6)1 + · · · + IRe(~n)I + IIm(fn)I. 

2.2 The LINPACK Approach 

As in EISPACK, LINPACK does not have a general purpose subroutine implementing the 
solution of problem (1). However, subroutines CQRDC [2, chapter 9] and CSVDC [2, 
chapter 11] employ elementary unitary matrices. Subroutines CQRDC and CSVDC 
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compute the QR factorization and singular value decomposition of a complex matrix, 
respectively. 

The LINPACK form for an elementary unitary matrix is easily derived by scaling 
the w used by EISPACK with T/ = e-i01 /llxll- From the remarks regarding the scaling 
of equation (4), CT= llxll/(llxll + 161) and the LINPACK U is such that UH x = ,llxlle1 
where 1 = -ei01 . Note that for non-zero x, .5 ~ CT ~ l thus avoiding the risk of overflow 
possible in the in the (unscaled) EISPACK variant. 

2.3 The NAG Approach 

The second form for an elementary unitary matrix is due to Hammarling and Du 
Croz [6], (Introduction - F06). Unlike the previous two versions, this one computes an 
elementary unitary matrix U so that UH x is a real multiple of e1. As explained at the 
beginning of§ 2, the resulting CT cannot be real unless 6 is also. 

Choosing CT = (xHw)- 1 where w = x + ve1 results in UHx = (I - awwH)x = 
x - ( awH x )w = 1 ve1 where 1 = -1. This choice of CT will satisfy ( 4) as we now 
demonstrate. First 

wHx = (xH + vei)x = xHx + v6 = v(v + 6), 

which determines CT and llwll 2 = (xH + vei)(x + ve1) = 2v(v + Re(6)). Finally 

H H l 1 
(w x)(x w)(----w-+ ~), 

W X X W 

XHW + WHX, 

v(v + (i) + v(v + 6), 
2v(v + Re(6)), 

shows that ICTl 2 (CT +a)= llwll 2 as claimed. Note that when 6 is real, U is Hermitian. 
This version does not appear to be as widely known as the Wilkinson one. 

The NAG subroutine F06HRF computes an elementary unitary matrix so that 

(5) 

for some scale factor T/· First note that ef w/(6 + v) = l. Then, from the manner in 
which v was chosen, it follows that Re(CTl6 + vl- 2

) = (llxll + 1Re(6)1)/llxll- Hence the 
choice of T/ = v(llxll + 1Re(6)1)/llxll/(6 + v) is such that 

llxll + 1Re(6)1 

llxll 

d I 
1
_2 _ llxll + Sign(Re(6))6 

an T/ CT - llxll + 1Re(6)1 ' 

and the two conditions (5) on T/ are satisfied. Note that 1 ~ ITJl- 2 ICTI ~ 2. 

2.4 The LAPACK approach 

The LAPACK subroutine CLARFG is a slight variant of the one used by the NAG 
subroutine F06HRF. The resulting code is an excellent example of the art of developing 
software from a numerical algorithm. Using the notation of the previous section for w 
and CT, let T/-I = ~1 + v and hence e[TJw =land l111- 2 CT = (6 + v)/v. Conditions (1) 
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Problem Statement: 

Compute u = I - awwH where uH X = 1'llxlle1, uHu = I, and 11'1 = l. 

Notation: 

~i = e; x for i = 1 : n, v = Sign(Re(6))11xll, 
6=ei01 161 where O::; 01 < 21r, ,-,, = (1Re(6)1 + llxll)/llxl\ 

Method w (1 1' 

EISPACK x + ei01 \\x\je1 1/\\x\\(\6\ + \\x\\) -ei01 

LINPACK xe-i01 /1\xl\ + e1 l\x\\/(\6\ + l\xl\) -ei01 

NAG (x + ve1)-Jti,/(~1 + v) (6 + v)/v1-,, -1 

LAPACK (x + ve1)/(6 + v) (6 + v)/v -1 

Table 1: Comparisons for the four variants used to compute an elementary unitary 
matrix 

and ( 4) are satisfied since w and a are scaled here by T/ and ITJl- 2
, respectively. Note 

that 1 ::; ITJl- 2 lal ::; 2. If x is a real multiple of e1 then T ,---- 0 and U ,---- I. 
Representing U for use in further computation only requires storage for the complex 

T. The storage for x may be re-used to write both v and the essential part of w, that 
is x ,---- [v, 6/(6 + v), ... , ~n/(6 + v)f. 

One who reviews subroutine CLARFG will notice the programmer took care not to 
reciprocate the number \\x\\ that may fall below a certain machine dependent tolerance, 
SAFMIN. The value SAFMIN, computed by the LAPACK auxiliary subroutine SLAMCH 

is a machine dependent lower bound for numbers that may be safely reciprocated and 
not cause an overflow condition. If llxll is less than the lower bound then the vector 
x is scaled by a multiple of the reciprocal of SAFMIN until it is at least as large as 
SAFMIN. Defining the integer k to represent the number of scalings required, let 0 = 
k/SAFMIN. The number a may now be safely computed as a,---- (v+06)/v where v ,---
Sign(Re(06))(ll0x\\). The essential part of u is computed as (06 +0v)-1 [06, ... , Otnf. 
This same scaling technique is also used by the real precision version of CLARFG

SLARFG. 

3 Comparisons and Conclusions 

Four different forms of elementary unitary matrices were presented to solve the 
elimination problem defined by (1). Table 1 presents a summary of the four approaches. 
We now briefly analyze the information in the table. 

• The EISPACK approach. Benefit: Real a. Cost: An initial scaling of x to prevent 
possible overflow when computing a and storing a possibly complex 1'. 

• The LINPACK approach. Benefit: Real a; .5 ::; \al ::; l. Cost: Storing a possibly 
complex 1 . 
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• The NAG approach. Benefit: Directly obtains a real "Y· Cost: Storing a possibly 
complex a and forming a square root; 1 ::; !al ::; 2. 

• The LAPA CK approach. Benefit: Directly obtains a real , . Cost: Storing a 
possibly complex a; 1 ::; !al ::; 2. 

Examining the application of U to a matrix A allows the following analysis: 

• The EIS PACK and LIN PACK approaches require computing A - aw(AH w )H with 
real a. 

• The LAPACK and NAG compute A - aw(AHw)H with possibly complex a. 

Since computing the QR factorization of a matrix,the bidiagonal, Hessenberg, and 
tridiagonal reductions, involve applications of elementary unitary matrices to A, the 
computation is always cheaper with real a. 

The benefit of directly computing a real , is that it allows reuse of software. For ex
ample, when reducing a Hermitian matrix to tridiagonal form, the resulting tridiagonal 
matrix is real, and the symmetric tridiagonal QR algorithm may then be employed [1]. 
The same may be said about the preliminary reduction of a matrix to bidiagonal form 
needed by the singular value decomposition: see [1, page 42] and [2, chapter 9]. A 
third example is when computing a QR factorization of a matrix A. For stable compu
tation of a solution to a linear least squares problem, a triangular system of equations 
involving R is often required. Directly computing a real , results in real numbers on 
the diagonal of R. Thus the careful scaling algorithms used by LAPACK when solving 
triangular system of equations may be employed. 

On the other hand, when using either the EISPACK and LINPACK forms of elemen
tary unitary matrices, a diagonal unitary matrix D may always be computed to allow 
reuse of software or the use of careful scaling algorithms. For example, when computing 
a QR factorization of a matrix A with m rows and n columns, let D = Diag( 81, . .. , 8m) 
be the diagonal matrix where Dj = ef Rej/lef Rejl for j = 1 : min(m, n) and Dj = 1 

otherwise. It then follows that A =QR= (QD)(DH R), QD is unitary and the diag
onal elements of DH R are real numbers. Similar procedures may be employed when 
further reducing a Hermitian tridiagonal matrix to real symmetric tridiagonal form 
and when reducing a matrix to real bidiagonal form. Further computation and storage 
is required. The elementary unitary matrices based on the Hammarling and Du Croz 
approach implicitly perform this post-processing step. 
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