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Abstract 

Respiratory Motion Correction Techniques in Positron Emission Tomography/Computed 

Tomography (PET/CT) Imaging 

by 

GUOPING CHANG 

The aim of this thesis is to design, implement, and evaluate respiratory motion 

correction techniques that can overcome respiratory motion artifacts in PET/CT imaging. 

The thesis is composed of three main sections. The first section introduces a novel 

approach (free-breathing amplitude gating (FBAG) technique) to correct for respiratory 

motion artifacts. This approach is based on sorting the acquired PET data in multiple 

amplitude bins which is currently not possible on any commercial PET/CT scanner. The 

second section is focused on the hardware/software design of an in-house respiratory 

gating device that is necessary to facilitate the implementation of the FBAG technique. 

Currently there are no commercially available respiratory gating systems that can 

generate the necessary triggers required for the FBAG technique. The third section is 

focused on developing a joint correction technique that can simultaneously suppress 

respiratory motion artifacts as well as partial volume effects (PVE) which represent 

another source of image degradation in PET/CT imaging. Computer simulations, 

phantom studies, as well as patient studies are conducted to test the performance of these 

proposed techniques and their results are shown in this thesis. 
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1 

Introduction 

In Positron Emission Tomography/Computed Tomography (PET/CT) Imaging, 

patients' respiratory motion usually causes motion blurring artifacts in PET images as 

well as mismatch between PET and CT images. Both effects can lead to image 

degradation which could affect patient management. 

Several respiratory gating techniques have recently been proposed in PET/CT 

imaging to suppress motion artifacts. These techniques are divided into two categories: 

phase gating and amplitude gating. In phase gating, the respiratory cycle is divided into 

multiple phase ranges and the acquired data is sorted into each phase range based on its 

acquisition time within the respiratory cycle. This gating approach works well for 

patients with regular breathing cycles but results in strong artifacts with patients that have 

irregular respiration. As an alternative, amplitude gating has been proposed to divide the 

total respiration amplitude into different amplitude ranges (gate) rather than phase ranges. 

It has been shown that amplitude gating is better at suppressing respiratory motion 

artifacts when compared to phase gating. Current PET/CT scanners however, are only 

capable of phase gating. In this regard, the development of amplitude gating techniques 

in PET/CT imaging is currently the focus of many research groups. 

The aim of this thesis is to design, implement and evaluate respiratory motion 

correction techniques that can overcome respiratory motion artifacts in PET/CT imaging. 

The thesis is composed of five chapters. The first chapter provides a description of the 

fundamentals of PET imaging, including data acquisition, image reconstruction, and 

PET/CT multi-modality imaging. This chapter also includes a discussion of: respiratory 
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motion artifacts and partial volume effects that degrade PET/CT image quality and affect 

the accuracy of PET image quantification. These two effects and their possible correction 

methods represent the main focus of this thesis. In the following three chapters, we 

propose two novel approaches to correct for respiratory motion artifacts and partial 

volume effects. 

The second chapter introduces a novel approach to correct for respiratory motion 

artifacts by proposing a free-breathing amplitude gating (FBAG) technique. This 

technique has the ability to automatically sort the acquired PET data into multiple 

amplitude bins. The proposed FBAG technique can automatically match the patient's 

respiratory motion amplitudes captured during the CT and PET scans with minimal user 

interactions, patient's radiation exposure and image registration. The methodology 

behind the FBAG technique, its implementation and automation in current PET/CT 

scanners with minimum user interactions are described in this chapter. Furthermore, 

phantom and patients experiments to evaluate the performance of the proposed FBAG 

technique and their results are also presented in this chapter. The phantom study is used 

to evaluate the performance of this technique in a pseudo-clinical environment while the 

patient studies are used to test this FBAG approach in clinical environments. 

The third chapter of this thesis focuses on the design of an in-house respiratory 

gating device (hardware and software) which is necessary to facilitate the implementation 

of the FBAG technique since currently there are no commercially available respiratory 

gating systems that can generate the necessary triggers required to implement FBAG. 

This in-house respiratory gating system consisted of a respiratory sensor coupled to a 

National Instruments data acquisition device which was controlled by an in-house 
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Labview® software program. A volunteer study and a phantom study were conducted in 

this chapter to evaluate the performance of the in-house device. The aim of the volunteer 

studies is to test the capability of this device to detect respiratory motion waveforms 

while the aim of the phantom study is to evaluate its performance to suppress respiratory 

motion artifacts. The results from these studies are presented at the end of this chapter 

The fourth chapter of this thesis focuses on developing a technique that can 

improve the accuracy of PET image quantification by simultaneously suppressing 

respiratory motion artifacts as well as partial volume effect (PVE) which represents 

another source of image degradation in PET/CT imaging. In this chapter, a joint motion-

PVE correction approach is presented and tested. The proposed approach incorporates a 

model of motion blurring, PVE and object size/shape and is able to estimate the true 

tumor activity concentration (AC) and motion blurring kernel (MBK) by using a 

deconvolution algorithm. A simulation and a phantom study were conducted to evaluate 

the performance of this joint correction approach. The objective of these studies is to test 

the performance of this joint correction approach and evaluate its capability to improve 

the accuracy of PET image quantification. The results from these studies are presented at 

the end of this chapter. 

Conclusions of this thesis are summarized in the fifth chapter with a discussion of 

possible future work. 
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Chapter 1 

Overview of Positron Emission Tomography 

Positron emission tomography (PET) is a non-invasive imaging technique for 

probing the distribution of cell metabolic activity in the human body. It is clinically 

utilized for the diagnosis, staging and evaluation of the therapy response for patients with 

certain conditions that affect the brain, heart as well as certain types of cancer. This 

imaging technique first appeared in clinical diagnostic medicine in the early 1990s and 

had the unique capability to produce functional (Figure 1.1a) rather than anatomical or 

structural images (Figure 1.1b), such as those generated by X-ray computed tomography 

(CT) or magnetic resonance imaging (MRI). Functional images can reveal biochemical 

processes within the human body, such as blood flow, receptor density and glucose 

metabolism. A PET scan is a relatively simple procedure, involving the use of a small 

amount of radioactive material, similar to those that are used in other nuclear medicine 

procedures such as Planar Imaging and Single-Photon Emission Computed Tomography 

(SPECT). In PET imaging, the radioactivity is attached or tagged to a radioactive 

material that is intrinsic to the human body (e.g. glucose, water, and ammonia). The 

radioactive material is administered to the patient through injection or inhalation and a 

specially designed PET scanner monitors how the body processes this material. For 

instance, 18F labeled fluro-deoxy-glucose (18FDG) is a "glucose analog" that accumulates 

in regions having high metabolic activity such as brain, liver and malignant tumors 

18 

(Figure 1.1a). Consequently, accumulation (uptake) of F-FDG by the tissue is directly 

related to its metabolic state (hyper or hypo-metabolic), and an abnormal increase in 
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uptake would indicate the presence of malignant tumor cells. Thus, PET has the ability to 

non-invasively detect functional changes in vivo with high sensitivity and specificity [1]. 

An important additional advantage of PET imaging is its ability to quantify the amount of 

radioactivity taken up. This aspect is particularly important in the diagnosis, staging, and 

evaluation of treatment response. These advantages have enabled wide acceptance of 

PET imaging as a diagnostic and a research tool, with applications in oncology [2, 3], 

neurology [4], cardiology [5], and pharmacology [6]. 

This chapter starts with a brief introduction to the fundamentals of PET imaging, 

including the processes of PET data acquisition and image reconstruction. The closely 

related topic of PET/CT multi-modality imaging technique is also discussed, followed by 

the description of respiratory motion artifacts and partial volume effects in PET/CT 

v 

4 
(a) (b) 

Figure 1.1: Example of (a) PET image and (b) CT image 
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imaging as well as approaches that have been implemented to correct for these effects. 

This chapter ends with an introduction to the proposed respiratory motion correction 

techniques which will be the primary focus of this dissertation. 

1.1 PET data acquisition 

A PET scan requires the patient to either inhale or be injected with radioactive 

materials that are labeled with positron emitting radio-nuclides. The most commonly used 

positron-emitting nuclides are 18F, 150, 13N and nC, which constitute the most abundant 

elements in human's body. These positron-emitting nuclides can be used to label many 

compounds to make radio-pharmaceuticals such as nCO, 13NH3, 150-labeled water and 

± 
Coincidence 

Circuit 

_fl_ 

Figure 1.2: Process of PET imaging 
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F-FDG. These various radioactive labels decay by emitting positrons, which are the 

anti-particles of electrons. When positrons and electrons collide, they annihilate with one 

another, resulting in the production of two gamma photons. From the theorem of energy 

conservation, each gamma photon has an energy of 511 keV, and the two gamma photons 

emitted travel in opposite directions due to the conservation of momentum. 

The process of PET imaging is illustrated in Figure 1.2. When positron-electron 

annihilation occurs, the two gamma photons are emitted simultaneously in opposite 

directions, hitting two detectors within a time frame of several nanoseconds. 

Consequently, two detections made within such a small timing window are assumed to 

constitute a "coincidence event" resulting from positron-electron annihilation. A line 

connecting the two detectors is recorded (a "line-of-response (LOR)"), which indicates 

that the annihilation occurred somewhere along this line. As the scanning process 

W / > 

• 
sinogram 

Figure 1.3: Mapping relationship between LOR and sinogram data in 2-D mode 
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continues, additional coincidence events occur along each possible LOR. Data collection 

along each LOR is either sorted into a histogram (usually called a Sinogram) according to 

their locations (e.g., radial distance and view angle in 2-D mode as shown in figure 1.3), 

or stored on an event-by-event basis known as a List-Mode acquisition. As a rough 

approximation, the total number of coincidence detections along a specific LOR can be 

considered proportional to the line integration over the underlying radioactivity 

distribution. Using such a model, the sinogram constitutes a Radon transform of the 

original radioactivity distribution [7], which is formulated as: 

/•4-00 i*4-00 
g(p,Q)= P I g(x,y)S(p-xcosO - ysm0)dxdy (l.i) 

J-00 J- 00 

Here, the Randon transform g(p,8) is the line integration of the image g(x,y), which is 

specified by the line parameters (p, 6), where p is the distance from the center of the field 

of view (FOV) to the specific line and 0 is the pitch angle of the line. 

2D 

Figure 1.4: 2-D vs. 3-D mode in PET imaging 
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PET data can be acquired in either 2-D or 3-D mode (Figure 1.4). In 2-D mode, 

data are collected slice by slice, which is implemented using extendable septal barriers 

imposed between adjacent slices. These barriers are strips that can be extended from the 

scanner body to help stop gamma photons coming from other slices. An accepted LOR is 

therefore limited in the trans-axial plane, axially spanning no more than two adjacent 

detector rings. In the 3-D whole body mode, data is collected with these same septa 

retracted enabling a 3-D acquisition. Here, LORs are not constrained in the trans-axial 

planes and may span across many detector rings. 3-D acquisition affords better detection 

since it can accept more coincidences. However, the image reconstructed from 3-D 

acquisition is also corrupted by a greater amount scatter, which will be discussed later in 

this chapter. 

1.2 PET Image Reconstruction 

PET image reconstruction represents the inverse problem associated with PET 

data acquisition (i.e., formation of an estimate of the original object via analysis of the 

acquired image data). In PET imaging, the acquired PET data (sinogram/histogram or 

list-mode data sequence which is eventually rebinned as a sinogram) is first reconstructed 

to images prior to evaluation by a physician and quantitative mathematical analysis. 

Typically, a filtered back-projection (FBP) algorithm having widespread use in image 

reconstruction (e.g., [8]) is used to form an image of the distribution of the radio-

activities within the body from collected sinogram data. This FBP technique is performed 

under the assumption that sinogram data can be modeled as a Radon transform of the true 
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Figure 1.5: Filtered Back-projection (FBP) reconstruction for PET imaging 

object being imaged (see previous section). Data collected from each angle are first 

filtered with a chosen filter and then back-projected to image space (Figure 1.5). As more 

and more angles are projected, the original object appears. This FBP model, however, is 

algorithmic and does not adequately describe the various physical processes involved in 

the photon detection process. It also lacks the ability to account for detection noise. 

Statistical image reconstruction techniques provide more accurate system models 

and have been shown to generate images of better quality [9-11]. In this case, the PET 

imaging system is usually modeled as a discrete-discrete system [12] described by the 

expectation: 
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N 

E { y n } = Y u H n m X m + r n (1.2) 

n=1 

Here {y„} is the sinogram data vector. The vector {xm} is the image representation which 

contains the amount of radioactivity inside each pixel or voxel (3-D pixel), and the term 

rn in (1.2) accounts for background noisy counts, including random and scattered 

coincidences. Due to the statistical nature of PET imaging, rn is usually modeled as a 

Poisson noise distribution. Alternatively, random and scattered events can be 

incorporated into (1.2) via the term rn because of their statistical nature. Finally, matrix H 

is called the system matrix, whose elements Hnm are proportional to the probability that a 

photon pair originated from the voxel m can be detected along the LOR n. This design for 

the system matrix allows one to incorporate significant modeling detail including 

physical processes such as positron range, non-collinearity, attenuation correction, 

detector efficiency normalization and depth of interaction. Integrating such modeling 

detail into the system matrix description produces a product that can better reflect the true 

photon detection probability [13-14]. 

Statistical image reconstruction is generally formulated as an optimization 

problem in which a cost function is introduced that relates the image estimate to the 

measured data. A popular choice for this formulation is based on the maximum likelihood 

(ML) method, where an optimal image is the one that maximizes the probability of 

making a detection of the data that are actually measured: 
X' = argm2BLP(Y\X) (1.3) 

Here Y and X are the sinogram and image vector, respectively, and P(.) is the Poisson 

likelihood function. It is well-known however, that ML-based image reconstruction is an 
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ill-conditioned problem, in that small changes in the data can cause large variations in the 

reconstructed image [15]. When reconstructing a specific data set, it can be observed that 

as the ML algorithm progresses to high iteration numbers, the image becomes 

increasingly noisier. Consequently in practice, optimization of the ML cost function is 

usually terminated before convergence is reached. In addition, smoothing filters are 

usually applied to the image during or after the optimization process to suppress image 

noise. 

Iterative techniques are usually employed to solve the image reconstruction 

problem. For ML reconstruction, the most popular iterative technique is the expectation 

maximization (EM) algorithm [16], which has the advantage of employing a closed form 

updating equation: 

y(P+1) _ Xm V IT yj 

Here, is the value image voxel m after p iterations. A major drawback of the ML-EM 

algorithm, however, is its slow convergence. To accelerate the optimization process, 

variants of the EM algorithm based on the concept of subsets have been developed [17-

19], wherein a given EM iteration is divided into a number of sub-iterations, and each 

sub-iteration only deals with a subset of the whole acquired data (sinogram). The image 

resulting from one sub-iteration is then updated by the next sub-iteration. This variant of 

the EM algorithm is called the Ordered-Subset Expectation Maximization (OSEM) [17] 

which works much faster than ML-EM while achieving similar convergence. 

After the image reconstruction process, the PET images are displayed so that 
i o 

physicians can evaluate and diagnose patients' tumors based on F-FDG activity 
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concentration (AC, unit: Bq/ml or disintegration/second/ml). The AC can be normalized 

by the patient's weight (unit: gram) and injected dose (unit: Bq) to generate a 

standardized uptake value (SUV): 

SUV(g ! ml) = ^(Bq/ml) 
injected dose(Bq) / w eight (g) 

The SUV can be used to indicate the malignancy of the patient's tumor: as this value 

becomes higher and higher, there is larger and larger probability that the tumor is 

malignant. In clinical diagnostic PET imaging, a threshold of 2.5 is usually employed to 

distinct a malignant lesion from being benign. The whole process of PET imaging, 

including data acquisition, data storage and image reconstruction and display, is 

summarized in Figure 1.6. 

Figure 1.6: The process of PET imaging 
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1.3 PET/CT multi-modality imaging 

PET imaging has great advantages as a functional imaging technique since it 

measures the bio-radio tracer uptake distribution which is an indicator of patient's body 

function such as blood flow, glucose metabolism and receptor density. However, PET 

also has its limitations especially when dealing with anatomy-related tasks such as lesion 

localization and tumor volume measurement. This is due to its low image resolution and 

relatively high image noise level when compared to other anatomical imaging modalities 

such as CT and MRI. Consequently, functional images provided by PET and anatomical 

images provided by CT or MRI are usually combined/fused together to facilitate the 

diagnosis, staging and therapy response of various kinds of lesions. 

(a) (b) (c) 

Figure 1.7: Images generated in a PET/CT for the same patient, 
(a) CT, (b) PET, (c) Fused PET/CT. 
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Figure 1.7 shows an example of the PET/CT multi-modality imaging, where the 

PET, CT and fused PET/CT images are displayed side by side to provide both functional 

and anatomical information. An implicit assumption in this practice is that the PET image 

is properly aligned with the CT image, so that a lesion identified on the PET image can 

be readily localized on the CT image. If the patient needs to be transported between 

different scanners (PET & CT), a change in the external pose, as well as internal organ 

displacement could occur between the two imaging sessions. Consequently, an extra 

image registration step is often required to register the images acquired from different 

imaging sessions with one another [20]. This increases the complexity of the imaging 

process and reduces the reliability of the overall approach. In order to solve this problem, 

PET/CT combined imaging has been introduced as an alternative to the dedicated PET 

scanner. In current PET/CT scanners, the PET component is integrated with a modern 

multi-slice CT scanner while a CT scan followed by a PET scan are acquired for the same 

patient within the same imaging session (Figure 1.8) This imaging technique minimizes 

the patient motion between the PET and CT scans and facilitates better co-registration 

between the acquired PET and CT images. In addition, the well-registered CT image can 

also be used to correct for the PET data attenuation because some of the gamma photons 

generated during the PET scan is absorbed by the patient body tissues [23]. 

Nowadays, dedicated PET scanners are rarely made by major medical imaging 

equipment manufacturers but rather combined PET/CT scanners are usually supplied. 

The success of combined PET/CT scanners has motivated the exploration of other multi-

modality imaging techniques, such as the single photon emission computed tomography 

(SPECT)/CT imaging and PET/MRI imaging. 
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Fused PET/CT 

Figure 1.8: A schematic illustration of the PET/CT scanner. 

1.4 Primary Focus: Respiratory motion artifacts 

In this section, we will introduce the respiratory motion artifacts that are existent 

in PET/CT images which will be the primary focus of this thesis. Approaches that have 

been proposed to compensate for the respiratory motion artifacts on either the CT or the 

PET components of PET/CT imaging are also described and discussed. 

1.4.1 Introduction to respiratory motion artifacts 

A popular research topic in PET/CT imaging that has recently been attracting 

people's attention is the motion of the object to be imaged. Due to the low count rate of 

the data acquisition, long scan durations for PET imaging are required to accumulate a 

sufficient amount of photon counts in order to achieve reasonable PET image quality 

(resolution, contrast, noise, signal-to-noise ratio etc). In clinical settings, the scan 

duration for PET session is typically 3-5 minutes per bed position (around 15 cm axial 

extent) with a combination of usually 5-8 bed position for a whole-body scan. This is 
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primarily due to the tradeoffs between photon statistics and patient comfort, i.e. the 

longer the scan duration is, the more photon counts will be accumulated, but at the same 

time the more uncomfortable the patient will feel. During the long scan duration of PET 

session (>20 minutes for a whole-body scan), patient motion is unavoidable which 

includes accidental voluntary motion such as head movements and involuntary motion 

such as respiratory and cardiac motion. As a result, the acquired PET data reflects a 

motion-averaged object and the reconstructed image shows motion blurring artifacts that 

reduce image resolution and contrast and cause inaccurate image quantification such as 

the tumor SUV underestimation. Figure 1.9 shows a phantom study that illustrates this 

effect. In this study, a positron emitting line source is scanned on top of a motor-driven 

moving platform that can move vertically. The sinogram acquired for the stationary line 

source show a single sinusoidal curve, which is broadened when the source moves. 

Figure 1.10 shows another study where a phantom containing six spheres filled with 18F-

FDG water is placed on a moving platform that moves in the axial direction of the PET 

scanner while PET data are being acquired. The spheres on the reconstructed images 

show elongated shape and decreased contrast due to the existence of the motion. 

(a) (b) (c) 
Figure 1.9: A phantom study showing the effect of motion in acquired PET data, (a) The 
phantom setup, (b) Sinogram acquired when the line source is stationary, (c) Sinogram 
acquired when the line source moves. The vertical and horizontal axes in (b) and (c) 
correspond to projection angle and radial distance respectively. 
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(a) 

(e) (f) (g) 

Figure 1.10: A phantom study showing the effect of motion on the reconstructed PET 
image, (a) The set-up of the phantom study. The axial, coronal and sagital field-of-view 
for both the motion-blurred and motion-free PET images are shown in (b)-(d) and (e)-(g), 
respectively. 
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Besides the motion blurring effect in PET session itself, PET/CT imaging has an 

additional motion-induced artifact. Unlike PET, CT acquisition usually has a short scan 

duration since the CT scan is a "high-count" scan. A whole-body CT scan only takes 1-10 

seconds using modern multi-slice CT scanners while the scanning of the chest region is 

usually performed when the patient is holding his/her breath. In this regard, minimal 

motion is expected and the CT image can be regarded as a snapshot of the patient which 

is a "motion-free" image. As a result, there usually exists a mis-match between the 

respiratory motion amplitudes that are captured during the motion-averaged PET image 

and the CT snapshot. When the CT is used for attenuation correction of PET data, the 

mis-match between PET and CT can then cause image artifacts on the corrected PET 

image. An example of such artifacts is the "banana artifact" in PET/CT imaging of the 

chest region, whereby a shift of the diaphragm on CT image relative to its average 

position on PET image can cause a banana-shaped region with either over- or under-

estimation of the activity concentration on the attenuation- corrected PET image, 

depending on whether the diaphragm is shifted upward or downward (Figure 1.11). 

Figure 1.11: Banana artifacts due to the discrepancy between PET and CT. 
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1.4.2 Motion correction techniques in CT 

Approaches to correct for motion artifacts in PET/CT imaging, including both the 

motion blurring effects in PET images and mis-match between the PET and CT data, 

have been investigated on both CT and PET imaging modalities. As the CT induced 

motion artifacts are mainly due to the difference in durations of data acquisition between 

PET and CT scans, some researchers have suggested the use of a slow rotating gantry in 

the CT scan of the chest in order to produce a CT image with similar motion blurring 

effect as in the PET image [24]. The motion averaged CT can then be better aligned with 

the PET to avoid possible artifacts during the attenuation correction process. A problem 

with this approach is that the slow rotation of the CT gantry can cause inconsistency in 

the collected data as the object moves, thus producing new artifacts in the reconstructed 

CT image. Furthermore, the averaged CT image acquired using this method cannot be 

used for diagnostic purposes. A better approach is developed in [25] using 4D CT 

acquisition of the chest. In 4D CT acquisition, CT data are continuously acquired at a 

fixed bed position using a fast rotating gantry for a duration that lasts at least one motion 

cycle. The acquired data are then resorted to different time intervals spanning the 

acquisition period. CT images can then be reconstructed for each time interval, forming a 

sequence of snapshots of the moving object. This process is illustrated in Figure 1.12. 

Finally, a motion averaged CT image can then be generated by averaging the 4D CT 

image sequence and is then used for attenuation correction of the PET data. Since each 

image of the 4D CT sequence is acquired using a fast rotating gantry, minimal data 

inconsistency is expected and the resulting snapshots provide motion information about 

the object which can be used for diagnostic and treatment planning purposes. However, 
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both CT based motion artifacts correction techniques cannot remove motion blur in the 

PET image. Rather, they are targeted at the specific motion artifacts induced by CT based 

attenuation correction, by compromising the CT image quality to suit that of the PET 

image. Furthermore, the use of 4-D CT scan increases the patient X-ray radiation 

exposure since it captures multiple snapshots of single CT scan. The increased exposure 

associated with the 4D CT acquisition compromises its clinical applications in diagnostic 

PET/CT imaging. Consequently, in order to remove the motion blur effects, corrections 

have to be made to the PET data themselves. 

Respirat ion Signal 

C T 
Images 

Figure 1.12: Process of 4-D CT data acquisition. 

1.4.3 Motion correction techniques in PET 

1.4.3.1 Rigid motion 

Methods to compensate for motion artifacts in PET imaging is generally divide 

into two categories: rigid motion correction and non-rigid motion correction. For rigid 
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motion, Picard and Thompson have proposed a multiple-acquisition-frame (MAF) 

method [26], whereby motion is monitored by an external device and a separate image 

frame is acquired whenever the motion of the object exceeds a certain threshold. All 

image frames are then reconstructed individually and are transformed to a common 

location to get an averaged image. The main drawback of this method is that it will 

produce many low-count frames in case of frequent motion, resulting in a large number 

of noisy images. Another popular approach is to correct the PET data on an event-by-

event basis (list-mode) [27]. These types of approach also monitor motion using an 

external device. However, they differ from the MAF method in the treatment of the 

acquired data. In these types of approach, each recorded LOR is transformed back to the 

location it would have been detected had the object remained stationary, according to the 

measured motion. The motion corrected data can then be used by any image 

reconstruction algorithms to get the motion corrected image. These types of approach 

have the advantage that the image is reconstructed using data acquired during the entire 

scanning period, without generating noisy intermediate images as in the MAF method. In 

addition, LOR correction can be implemented efficiently using hardware, so that the 

acquired data can be corrected on-the-fly. The disadvantage of this method is that the 

transformed LOR may fall on gaps between detectors or go outside the scanner field of 

view and thus cannot be mapped to a corrected LOR. In such cases, data are either 

discarded or approximations have to be made. However, these methods can generate a 

large amount of errors when they are used for non-rigid motion for the following reasons: 

firstly, it is difficult to measure the internal non-rigid motion using an external 



23 

monitoring device; secondly, with non-rigid motion a one-to-one mapping between the 

measured LOR and the corrected LOR as in event-based approaches does not exist. 

1.4.3.2 Respiratory motion: 4-D PET/CT acquisition 

The two most important non-rigid motions in PET imaging are the respiratory and 

cardiac motion, with respiratory motion being more significant in terms of the amplitude 

of the motion. 

In order to compensate for respiratory motion artifact, 4-D PET data acquisition 

which is similar to 4-D CT acquisition has been traditionally introduced. In a 4-D PET 

acquisition, an external device is used to send a gating signal or trigger to the scanner 

each time a certain phase or amplitude of the motion cycle is reached. The scanner then 

divides the patient's respiratory motion cycle into a sequence of phase or amplitude 

ranges (bins or gates), and groups the data accordingly into these gates. Images of 

different phase or amplitude ranges can then be reconstructed from their corresponding 

data sets. In other words, a 4-D PET scan forms a sequence of snapshots of the moving 

object, each snapshot can be considered as a motion-free image provided that there is 

enough number of time bins or amplitude gates. Since each snapshot only constitutes a 

smaller amount of acquisition time with respect to the whole cycle, each frame of the 4-D 

PET images is characterized by low signal-to-noise ratio (SNR). In order to improve the 

image SNR, deformable registration methods are often employed to register and sum 

together the multiple frames of these image sequences to generate a high-SNR motion-

free PET image [28]. This process is illustrated in Figure 1.13 which uses a phase gating 

and amplitude gating scheme respectively. 
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Figure 1.13: Process of 4-D PET data acquisition using (a) phase gating and (b) 
amplitude gating scheme respectively. 
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The 4-D PET data acquisition, also referred to as "PET gating approach", is 

divided into two categories: phase gating (Figure 1.13(a)) and amplitude gating (Figure 

1.13(b)), based on whether the respiratory cycle is divide into multiple time ranges or 

amplitude ranges. Both of these two gating approaches can work well when the patients 

have regular respiratory cycles as shown in Figure 1.13. However, when the patient's 

respiratory cycles become irregular (e.g. varying amplitude or frequence), phase gating 

method will result in a large amount of error in each time bin since the acquired data 

within the same phase range but in different amplitudes are combined together to 

generate each data gate (Figure 1.14). This result has been verified by M. Dawood [29] 

who showed that amplitude gating approaches are advantageous to phase gating in 

correcting for respiratory motion artifacts and improving PET image quantification. 

However, despite its advantages, amplitude gating method is unavailable while phase 

gating is the only option on current PET/CT scanners 

Figure 1.14: Phase gating vs. amplitude gating 
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In either phase or amplitude gating based 4-D PET acquisition, deformable 

registration methods are employment to register the 4-D PET image sequences to 

improve the image SNR. Another approach that has recently been utilized to improve the 

SNR of 4-D PET image sequence is to incorporate motion information as part of the 

image reconstruction process [30-36]. These approaches, from here onward, are referred 

to as "motion-incorporated reconstruction" methods and can be further divided into two 

categories. Firstly, image reconstructions in [30, 32, 33, 35, 36] are performed in a 4D 

maximum a posteriori (MAP) or penalized maximum likelihood (PML) framework, 

whereby the sequence of the 4-D PET image sequences are treated as a single image, and 

a smoothing prior incorporating motion information is applied on the temporal dimension 

in a similar way a spatial image prior is applied. Image consistency across the 4-D PET 

image sequence can then be enforced through this temporal image prior. As a result, each 

image in the 4-D PET image sequence is reconstructed with contributions from data 

collected within other time bins as well, thus improving photon statistics and reducing 

image noise level. Secondly, the approaches employed by Qi et al [31] and Jacobson et al 

[34], on the other hand, incorporated the motion information into the system matrix 

without the need of prior parameters. 

Although 4-D PET data acquisition has encouraged the proposition of various 

approaches to correct for respiratory motion artifacts in PET/CT imaging, these methods 

however all require a corresponding 4-D CT data acquisition which is used to perform 

attenuation correction for the acquired 4-D PET image sequence. One disadvantage of the 

4-D CT data acquisition is that it increases the patient's X-ray radiation exposure, which 

may eventually result in secondary cancer in the patient's body. Another disadvantage of 
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the 4-D PET/CT acquisition is that since the patient's respiratory motion is a non-rigid 

motion, a deformable registration method needs to be applied to either the 4-D PET 

image sequences in order to improve the image SNR or 4-D CT images (motion-

incorporated reconstruction method) in order to derive the motion information among the 

different bins/gates. The deformable image registration methods, however, suffer from 

the problem of non-convergence and inaccuracy primarily due to the high noise content 

of each bin/gate of the 4-D PET data sequence and the mismatch between the 

corresponding bin/gate of the 4-D CT and 4-D PET data which is caused by the 

inconsistence of the patient's respiratory motion during the CT scan and the PET scan. 

Due to these limitations, 4-D PET/CT data acquisition is usually not recommended for 

diagnostic imaging purposes. Currently, there is a tendency in the field of PET/CT 

respiratory motion compensation that one single phase or amplitude range is preferred 

(single-gate scan) when compared to multiple phase/amplitude ranges (4-D image 

sequence) data acquisition. Using such "single-gate" gating scheme, the problems which 

are caused by the 4-D PET/CT data acquisition such as the increase in patient's X-ray 

radiation exposure and the requirement of deformable image registration methods can be 

automatically resolved since no 4-D CT scan is required in the single-gate PET/CT scan. 

However, in order to accumulate a sufficient amount of photon counts in the selected gate 

or phase/amplitude range, longer scan duration is usually required in the PET data 

acquisition as a tradeoff to the decreased patient radiation exposure and deformable 

registration. One such method that is employed to compensate for respiratory motion 

artifacts in PET/CT imaging is called "deep-inspiration breath hold" or "DIBH" 

technique. 
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1.4.3.3 Respiratory motion: deep-inspiration breath hold 

Recently, the deep-inspiration breath-hold (DIBH) technique has been proposed 

as a variant of the gating approach without the need to register the 4-D PET images or 

increase the patient X-ray radiation exposure [37-39]. This technique works as a single-

gate amplitude gating approach rather than a phase gating approach due to the proposed 

advantages of amplitude versus phase gating [29]. In this DIBH technique, patients are 

requested to hold their breath at deep inspiration for a relatively short period while both 

the CT and PET data can be acquired within this amplitude range. PET data acquisition in 

this respiratory state is then repeated multiple times in order to accumulate a sufficient 

amount of counts per pixel [37, 38]. The resultant multiple PET data sets are then 

summed together to generate a motion-free sinogram which is then attenuation-corrected 

by the corresponding CT image and eventually reconstructed into a motion-free image. 

The whole workflow of the DIBH technique is shown in Figure 1.15. 
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Figure 1.15: Deep-inspiration breath hold (DIBH) technique 
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The net result from the DIBH technique is a PET image that is matched in 

respiratory amplitude with a corresponding DIBH CT image since both the CT and PET 

data are acquired within the breath-hold periods which ensured the automatic match 

between the motion amplitudes "captured" or "freezed" in CT and PET. DIBH has been 

demonstrated to be feasible on current PET/CT scanners [37-39], However, a main 

disadvantage of this technique is ensuring patient compliance to hold their breath for the 

specified time and amplitude in each respiratory session particularly when the patients are 

at an increased state of anxiety due to their medical condition. Another disadvantage of 

DIBH is its extensive reliance on technologist-patient interaction to coordinate data 

acquisition during the multiple repetitive times to accumulate the necessary data 

particularly with patients that have hearing or language barriers. A third disadvantage is 

that when the patient is holding his/her breath at deep inspiration, the lung is completely 

inflated with air which can eventually result in a PET/CT image that captures the 

inaccurate shape and size of the lung. Furthermore, recent studies from a task group in 

American Association of Physicists in Medicine (AAPM) have shown that approximately 

60% of the lung cancer patients can not perform the DIBH technique successfully [40]. 

In this regard, the objective of this thesis is to propose a novel approach to 

implement and automate the respiratory amplitude gating technique in current PET/CT 

scanners that have the following characteristics: 

• No patient non-compliance problem (patients breathe freely) 

• No extensive interaction between patients and technologists 

• No increase in X-ray radiation exposure 
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• No requirement of deformable registration 

• Most important: motion amplitude match in CT and PET scans 

This proposed technique has the advantages from both the 4-D PET/CT acquisition and 

the DIBH technique, and is able to automatically match the motion amplitudes that are 

captured during the CT and PET scans. This proposed automatic respiratory amplitude 

gating approach, which will be referred to as the free-breathing amplitude gating (FBAG) 

technique, will be described and evaluated in Chapter 2. Chapter 3, on the other hand, 

will introduce an in-house cost-efficient respiratory gating device that is used to facilitate 

the implementation of the proposed FBAG approach. 

1.5 Secondary Focus: Partial Volume Effect 

1.5.1 Introduction to partial volume effect in PET/CT imaging 

Besides respiratory motion artifacts, partial volume effect (PVE) is another 

important factor in PET/CT imaging that can degrade PET/CT image quality and image 

quantification. This effect is primarily caused by the finite spatial resolution of the PET 

scanners which prevents accurate quantification for objects with size comparable and 

smaller than about two to three times the full width at half-maximum (FWHM) of the 

scanner's point spread function (PSF). This loss of quantitative accuracy for hot and cold 

spot contrast recovery is first recognized by Hoffman and Kessler [41-43]. Due to the 

existence of the partial volume effect in PET imaging, a small object will look blurred 
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and its activity concentration will spread into its surrounding image pixels in the resultant 

PET image as shown in Figure 1.16. 

Figure 1.16: Partial Volume Effect due to the finite spatial resolution of PET scanners. 

The PVE in PET/CT imaging is primarily caused by the finite spatial resolution of 

PET scanners. Compared to other imaging modalities such as CT, MRI and Ultrasound, 

the spatial resolution of PET scanners is pretty low. Currently, high-resolution PET 

scanners usually have a spatial resolution of 4.5 to 6 mm, while CT scanners can achieve 

a spatial resolution of less than 1 mm. PET image resolution is limited by physical 

parameters such as random, scatter, quantum noise, positron range, non-colinearity, 

motion as well as by the intrinsic spatial resolution of PET detectors [21]. The resolution 

of the final reconstructed PET image is even poorer than the best obtainable, intrinsic 

resolution because reconstruction algorithms typically trade off resolution for reduced 

noise. Either reconstructed using back-projection or EM-type algorithms, PET images 

contain much higher noise than the corresponding CT images, since the total counts of 

gamma photons that PET detectors accept are limited due to the short period of scan 

(usually 3-5 minutes scan clinically for each bed position). 
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Due to the existence of PVE in PET imaging, small objects will look blurred and 

its activity concentration will spread into its surrounding image pixels in the resultant 

PET images. As a matter of fact, even large object can be affected by this partial volume 

effect while the sharp edges of the objects will become blurred. A good example of such 

effect is shown in Figure 1.17. This figure clearly shows that the object size has a very 

influential impact on the partial volume effect. When the object size is larger, i.e. larger 

than twice of the full width at half-maximum (FWHM) of the PET scanner, the edges of 

the object will look blurred, however, the center part of the object still can display the 

same activity concentration as originally injected. On the other hand, when the object size 

becomes smaller, i.e. smaller than twice of the FWHM of the PET scanner, the object can 

not even recover the true activity concentration as originally injected. This under-

estimation of the PET activity concentration will result in inaccurate PET quantification 

which eventually leads to incorrect tumor diagnosis and treatment. 
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Figure 1.17: Partial Volume Effects in PET images due to the finite spatial resolution of 
PET scanners. As the object size becomes smaller and smaller, the object in the PET 
images will become more and more blurred. When the object size is less than twice the 
full width at half-maximum (FWHM) of the PET scanner, the original activity 
concentration can not even be recovered and thereby introducing quantification errors in 
the resultant PET images. 
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1.5.2 Partial volume correction techniques 

In an attempt to minimize the quantification errors due to the partial volume 

effects, the maximum activity concentration (ACmax) or maximum standardized uptake 

value (SUVmax) within a region of interest is often preferred over the volumetric mean 

activity concentration (ACmean) or mean SUV (SUVmean). Both are semi-quantitative 

measures of radiopharmaceutical uptake but PVE can cause more pronounced 

underestimations of mean values than of the maximum values. However, the choice of 

ACmax/SUVmax can be problematic because it is sensitive to noise and will be biased by 

definition. In addition, ACmax/SUVmax indicates uptake only in a single pixel or a small 

group of pixels. The tumor, however, may have very heterogeneous uptake, and its 

heterogeneity may change with time or therapy. A further advantage of the 

ACmean/SUVmean is that there is faster convergence of mean values compared with 

maximum values with iterative reconstruction. Thus, a measurement over the entire 

volume of interest (VOI) with correction for partial volume effects would be ideal. 

Approaches that were proposed for correcting PVE can be classified into two 

categories. The first category uses a higher-resolution anatomic image from CT or MRI 

to define the tumor boundaries. In this case, correction for partial volume effect involves 

using the anatomic information in the image reconstruction [44] or as a model to simulate 

the spill-in and spill-out effects of radioactivity to and from the VOI [45,46]. One 

disadvantage of these methods is that they require very accurate registration of the PET 

and the CT or MR images at the region of interest. Inaccurate segmentation or mis-

registration can contribute to errors in the correction of partial volume effect. The error 

due to the mis-registration between the PET data and CT data is especially obvious in 
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lung canner patients because lung lesions are moving along with the organs due to the 

patient's respiratory motion. The second category of correction techniques also uses 

anatomic information, either from an additional modality (CT or MRI) or from the PET 

data itself. In this method, one corrects for partial volume effect from knowledge of how 

PVEs affect radionuclide quantification in tumors of various sizes and background levels. 

A common correction technique uses a calibrated table of correction factors [47] based 

on phantom measurements to adjust the ACs or SUVs. However, it is not easy to estimate 

the true metabolic size from the apparent size of the PET image and frequently one must 

assume that the tumor shape is the same as the phantom shapes studied. In addition, one 

needs to know the background level in the vicinity of the tumor to account for spillover 

from background to tumor, which can be problematic if the tumor is located close to 

organs with high uptake. 

Since the patient's lung lesions suffer from both the respiratory motion artifact 

and partial volume effect in PET/CT imaging, we will propose and test a joint correction 

approach that can simultaneously compensate for both of the two effects. The description 

and evaluation of this joint correction approach will be discussed in Chapter 4. 

1.6 Forward to the Thesis 

In this Ph.D thesis, the author will propose, implement and evaluate approaches to 

compensate for the respiratory motion artifact as well as partial volume effect in PET/CT 

images. This thesis consists of three sections: (1) Automation of a Respiratory Amplitude 

Gating Implementation in Whole-body PET/CT Imaging, (2) Design and Performance of 
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a Respiratory Amplitude Gating Device for PET/CT Imaging, and (3) Joint-correction of 

Respiratory Motion and Partial Volume Effect in PET/CT Imaging. The first section 

focused on the methodology design of an automated respiratory amplitude gating 

approach that is used in whole-body PET/CT scanners. This respiratory amplitude gating 

approach is referred to as the free-breathing amplitude gating (FBAG) approach. In this 

section, phantom and patient studies are performed to evaluate this approach and the 

results from these studies are also discussed in this section. The second section of this 

thesis focused on the hardware and software design and implementation of an in-house 

cost-efficient respiratory gating device. This respiratory gating device can be used to 

facilitate the implementation and automation of the proposed FBAG approach in the first 

topic. This section will also describe the volunteer and phantom studies which are 

conducted to test the performance of this in-house device. This device has the added 

advantage of low cost and easy-to-use when compared to commercial respiratory gating 

devices that have similar performances. The third section of this thesis focused on the 

mathematical manipulation and algorithm design for a joint correction approach that can 

simultaneously compensate for the respiratory motion artifacts and partial volume effect 

(PVE) in PET/CT imaging. A simulation study as well as a phantom study is performed 

in this section to evaluate this technique. Conclusions and future works about this thesis 

will be discussed in the final chapter. With the description of the three sections, the 

primary contributions of this thesis are listed as follows: 

1. An automated respiratory amplitude gating approach is proposed in order to 

implement the amplitude gating technique which is current unavailable in any 

PET/CT scanners. This approach can automatically match the respiratory 
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amplitude capture during CT and PET acquisition. This proposed approach does 

not suffer from the limitations of other existing respiratory gating techniques: 

increase of patient radiation exposure, inaccuracy of deformable registration, 

patient non-compliance problem, and extensive interaction between patients and 

technologists during PET/CT acquisition. 

2. An in-house respiratory gating hardware/software system is designed and 

implemented. Compared to other commercially available device, this system is 

able to generate the necessary triggers while simultaneously monitoring the 

accumulated time within the preset amplitude range in order to facilitate the 

implementation of amplitude gating. This trigger generation scheme is 

unavailable in any other commercially available device. 

3. A joint motion blurring and partial volume blurring correction approach is 

proposed which can improve the accuracy of PET image quantification by 

simultaneously eliminating the effects from the respiratory motion and PET finite 

spatial resolution in lung/thoracic PET/CT imaging. This joint correction 

approach is the first approach that simultaneously compensates for all of the 

following effects in one single correction process: PET-CT mismatch, PET 

motion blurring, and finite spatial resolution of PET scanner. 
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Chapter 2 

Automation of Respiratory Amplitude Gating 

Implementation in Whole-body PET/CT Imaging 

Objective Amplitude gating techniques have recently been shown to be better at 

suppressing respiratory motion artifacts than phase gating. However, most commercial 

PET/CT scanners are equipped with only phase gating capabilities. The objective of this 

project is to propose and evaluate using phantom and patient studies an automated 

respiratory amplitude gating technique that can be implemented on current whole-body 

PET/CT scanners. A primary design feature of the proposed technique is to automatically 

match the respiratory amplitude captured during the CT scan with a corresponding 

amplitude during the PET scan. 

Methods The proposed amplitude gating technique consists of a CT scan 

followed by a list-mode PET scan. The CT scan is acquired while the patient's 

respiratory motion is recorded by a monitoring device that determines the respiratory 

amplitude captured during the CT scan. A Labview® software program is designed to 

inject triggers into the PET list stream whenever the patient's respiration crossed a 

selected amplitude range determined by the captured amplitude during CT. To implement 

this amplitude gating approach in whole-body PET/CT scan, a PET-first protocol is 

necessary in order to minimize the respiratory baseline drift between the CT and PET 

scans. In this implementation, a regular PET scan is first acquired over the patient's 

whole body but excluding the bed position that covers the lesion of interest. The whole-

body CT scan is then acquired followed by a list-mode PET acquisition over the bed 
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position that covers the area of interest (lesion). The above procedures have been 

automated on current PET/CT scanners using a Labview® software program. The 

performance of this automation method was tested using a phantom study as well as 13 

patients with 21 lung/thoracic tumors. 

Results The results from the phantom study showed that the amplitude gated 

image matched the CT anatomic information and had an average of 88%, 37% and 22% 

improvement in contrast, max and mean activity concentration respectively when 

compared to the ungated PET images. The spheres in the gated images showed better 

contrast using visual inspection and line profiles. In the patient studies, statistically 

significant improvements were whereby the gated images had an average 27% and 28% 

increase in max and mean SUV for all lesions when compared to the ungated images. 

Furthermore, the tumors in the gated images showed better contrast using visual 

inspection and line profiles. 

Conclusion The implementation of the proposed respiratory amplitude gating 

technique has been automated with minimal user interaction on current PET/CT scanners. 

Amplitude matched CT and PET data are automatically generated using our proposed 

procedures without requiring patients to hold their breath or increase the X-ray exposure. 

2.1 Introduction 

PET/CT imaging is increasingly being used to facilitate the diagnosis, staging and 

restaging of patients with a wide variety of cancers [48-50]. This is largely due to the 

ability of this imaging modality to provide anatomic and functional information about the 
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underlying disease state. Furthermore, the addition of the CT component to PET scanners 

has also provided an efficient attenuation map which has greatly reduced the total scan 

duration and increased the scanner's throughput [51]. However, the addition of CT to 

PET imaging has also introduced some disadvantages. In a PET/CT study, the CT scan 

captures the patient breathing cycle in a single state [52, 53], while the PET scan is 

usually acquired over many breathing cycles due to its longer acquisition time [54]. This 

discrepancy introduces a mismatch between the CT and PET images which results in 

mis-localization of small lesions and inaccurate quantification of the standardized uptake 

value (SUV) [55-57], These effects eventually compromise the diagnostic accuracy of 

PET/CT imaging and might result in patient mismanagement. 

To overcome respiratory motion artifacts in PET/CT imaging, PET respiratory 

gating techniques have been proposed [58-63]. These techniques can be divided into two 

categories: phase gating and amplitude gating [29], with phase gating being the only 

option available on current commercial PET/CT scanners. In phase gating, the respiratory 

cycle is divided into multiple phase ranges (or bins) and the acquired data is sorted into 

each phase range based on its acquisition time within the respiratory cycle. This approach 

works well for patients with regular breathing but results in large errors in patients that 

have irregular respiration (frequency or amplitude) primarily due to the introduction of 

large amounts of motion in each bin [29]. Recently, amplitude gating has been proposed 

as an alternative approach to phase gating [29]. Rather than dividing the respiratory cycle 

into different phase ranges, amplitude gating divides the respiratory amplitude into 

different amplitude ranges. In this regard, motion artifacts in phase gating are suppressed 
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with amplitude gating. However, amplitude gating is currently unavailable on any 

commercial PET/CT scanner. 

Approaches to implement amplitude gating on commercial PET/CT scanners are 

currently being investigated by many research groups [64-67], Some of the suggested 

methods rely on 4-D PET imaging whereby the acquired PET data are retrospectively 

sorted into multiple amplitude ranges by using commercial respiratory gating devices. 

The corresponding reconstructed images are then also retrospectively registered to one 

another to generate a motion-free image that is characterized by good signal-to-noise 

ratio (SNR) [64, 65]. Other methods, known as motion-incorporated reconstruction 

techniques, are focused on incorporating the motion information between the different 

bins of the 4-D PET images into the statistical reconstruction algorithm to reduce motion 

artifacts while maintaining good SNR [66, 67]. Both of these methods, however, require 

an additional 4-D CT scan, which is characterized by an increased patient radiation 

exposure, to attenuate-correct the corresponding 4-D PET data. Furthermore, the 

implementation of these methods also relies on deformable image registration techniques 

that might not result in accurate image registration due to the low SNR of the different 

PET bins or inconsistency in respiratory motion between CT and PET images. Recently, 

deep-inspiration breath-hold (DIBH) techniques have been proposed as a variant of 

amplitude gating without the need to register the 4-D PET images or increase patient 

exposure [37-39], In DIBH, patients are requested to hold their breath at deep inspiration 

for a relatively short period while both the CT and PET data are acquired. PET data 

acquisition in this respiratory state is then repeated multiple times in order to accumulate 

a sufficient amount of counts per pixel [37, 38]. The resultant multiple PET data sets are 
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then summed together to generate a motion-free sinogram which is then attenuation-

corrected by the corresponding CT image and eventually reconstructed into a motion-free 

image. The net result is a PET image that is matched in respiratory amplitude with a 

corresponding DIBH CT image. DIBH has been demonstrated to be feasible on current 

PET/CT scanners [37-39]. However, a main disadvantage of this technique is ensuring 

patient compliance to hold their breath for the specified time and amplitude in each 

respiratory session particularly when the patients are at an increased state of anxiety due 

to their medical condition. Another disadvantage of DIBH is its extensive reliance on 

technologist-patient interaction to coordinate data acquisition during the multiple 

repetitive times to accumulate the necessary data particularly with patients that have 

hearing or language barriers. Furthermore, recent studies have shown that approximately 

60% of the lung cancer patients can not perform the DIBH technique successfully [40]. 

In this project, we propose a novel approach to implement respiratory amplitude 

gating in whole-body PET/CT scanners that does not require any patient coaching or 

compliance with specific breathing conditions while maintaining the advantages of DIBH 

namely no increase in X-ray exposure nor deformable image registration. The main 

emphasis of this new approach is to perform respiratory amplitude gating with minimal 

patient and user interaction while at the same time minimizing data post-processing tasks. 

The proposed approach is similar to DIBH except that the respiratory amplitude range 

during the PET imaging is automatically selected to match the breathing amplitude 

captured during the CT scan. In this approach, patients are allowed to breathe freely 

during the CT acquisition. The respiratory motion amplitude that is captured during the 

CT scan is then automatically used during PET imaging in such a way that only PET data 
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falling within a corresponding amplitude range are used to generate the final PET image. 

In this regard, the drawbacks of the 4-D PET/CT acquisition and DIBH technique such as 

difficulty of 4-D PET registration, high patient X-ray exposure, and patient's non-

compliance will be eliminated. The objective of this project is to describe how such a 

respiratory amplitude gating scheme can be automated in whole-body PET/CT scanners 

and evaluate its feasibility in current PET/CT scanners using phantom and patient studies. 

The proposed automation of the amplitude gating approach and the setup of the phantom 

and patient studies will be described in section 2.2 and the results of these studies will be 

presented in section 2.3. Further considerations regarding this approach are discussed in 

section 2.4. Section 2.5 concludes this project. 

2.2 Materials and Methods 

2.2.1 The Automatic Respiratory Amplitude Gating Approach 

To automate the proposed amplitude gating approach on current commercial 

PET/CT scanners, two goals must be achieved without user interaction. First, the motion 

amplitude captured during CT imaging must be recorded, and second, a corresponding 

motion amplitude range should be selected during PET image acquisition. The reason for 

selecting an amplitude range rather than a single amplitude value during the PET scan is 

primarily to maximize the recorded count statistics at the corresponding CT amplitude 

while minimizing the total scan duration. In order to achieve these goals, we propose the 

following amplitude gating approach: (1) acquire a CT scan followed by a list-mode PET 

scan over the specific area of interest (usually a lesion in the patient's torso), (2) monitor 
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the patient's respiratory waveform during the CT scan and determine the breathing 

amplitude when the CT scan reaches the area of interest, and (3) extract from the list-

mode PET only the data that are acquired when the patient's respiratory amplitude range 

coincides with the breathing amplitude captured during the CT scan. In this regard, the 

motion amplitude captured during the CT and PET scans are automatically matched with 

one another without any technologist-patient interaction. The list-mode PET scan is 

designed to be terminated when 3 minutes worth of extracted PET list-mode data is 

accumulated. The 3 minute worth of accumulated data is used based on our standard scan 

duration per bed position at our institution. The following paragraphs describe the 

procedures to implement and automate the proposed amplitude gating approach in whole-

body PET/CT imaging as well as the hardware and software configuration needed to 

facilitate its implementation. 

To apply the proposed amplitude gating approach to whole-body PET/CT 

imaging with multiple bed positions requires modification of the standard protocol of a 

PET/CT scan. Rather than acquiring the usual whole-body CT followed by a whole-body 

PET, the implementation of the proposed approach necessitates that the PET and CT 

scans corresponding to the area of interest (lesion) be temporally acquired as close as 

possible to one another. This is primarily to ensure that the patient's breathing amplitude 

pattern during CT remains similar (or as close as possible) to that during PET imaging. 

Based on our experience as well as others, there exists a baseline drift in the respiratory 

waveform of the majority of patients imaged with PET/CT. This drift however stabilizes 

within 10 minutes from the time the patient is positioned on the PET/CT couch. Figure 

2.1 shows an example of a breathing waveform without and with baseline drift 
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respectively. The breathing waveform with baseline drift stabilized within a short period 

of time (5-10 minutes). 

0 100 200 300 400 500 600 700 800 900 1000 
Scan Duration (sec) 

Figure 2.1: A breathing waveform without and with baseline drift respectively. 

In this regard, in order to minimize the effect of this drift on matching the 

respiratory amplitude during the CT and PET over the area of interest (lesion location) 

while at the same time acquire a whole-body PET/CT, the proposed amplitude gating 

approach for whole-body PET/CT imaging will be based on a "PET-first" protocol as 

shown in Figure 2.2. In this design, the data acquisition is divided into three steps: (1) a 

regular PET scan over the patient's whole body but excluding the bed position that covers 

the lung or thoracic lesion of interest, (2) a regular whole-body CT scan, and (3) a single-
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bed list-mode PET data acquisition over the area of interest (lesion location). The bed 

position over the area of interest is skipped in step (1) in order to reduce the overall scan 

duration since the same bed position is acquired in step (3). Using this protocol, the 

baseline drift problem of the patient's breathing cycle is automatically resolved since the 

duration of the regular PET scan (step 1) excluding the field-of-view (FOV) of interest 

usually takes 10-20 minutes (4-6 bed positions) which is long enough for the baseline 

drift to subside. Furthermore, the PET and CT acquisitions over the lesion location in this 

design are performed at close temporal proximity to one another to further minimize any 

remaining breathing variations. 

Step (1): 

regular PET scan which 

skips tumor position 

0 

combine 

Step (2): 

whole-body CT scan 

Step (3): 

list-mode PET scan 

over tumor position 

Motion information 

0 

combine 

whole-body motion-free PET image 

Figure 2.2: The procedures of the amplitude gating implementation. The whole-body 
PET/CT data acquisition process was divided into three steps: (1) a regular PET scan 
over the patient's whole body but excluding the bed position that covers the lung or 
thoracic lesion of interest, (2) a regular whole-body CT scan, and (3) a single-bed list-
mode PET data acquisition over the tumor location. 
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Having ensured that the patient's breathing pattern during PET and CT is similar 

to one another, the next step in the process of implementing and automating the proposed 

approach is to first capture the respiratory amplitude during the CT scan and then match 

it to a corresponding amplitude range during the list-mode PET scan. Capturing the 

respiratory amplitude during the CT scan necessitates the identification of the tumor 

position on the CT image and the correlation of this position to the acquired patient's 

breathing waveform. To identify the tumor position, the whole-body CT scan is displayed 

to allow the technologist to select the axial slice corresponding to the center location of 

the tumor. The amplitude of the breathing motion corresponding to this slice location is 

then determined by correlating the patient respiratory waveform - as recorded by a 

respiratory gating device - with the start of the CT X-ray ON signal detected through a 

data acquisition device (both of which are described in section 2.2.2). Synchronization 

between the X-ray ON signal and the patient breathing cycle is performed by a trigger 

pulse from the respiratory gating device to the data acquisition device at the beginning of 

data acquisition. In this regard, the time associated with the X-ray tube passing the center 

of the tumor {T11 tumor) can be determined from the patient's recorded breathing waveform 

according to: 

Tr =Tr +(Td -Td } + T O n tumor Trigger \ Xray Trigger J Xray->tumor \ ) 

where T^ Trigger and T° Trigger represent the time of the synchronization trigger pulse 

recorded by the respiratory gating device and data-acquisition device respectively. The 

variable T°xray is the starting time of the X-ray ON signal which is also recorded by the 

data-acquisition device while Txray-> tumor represents the duration from the beginning of the 
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X-ray ON signal until the X-ray tube passes the center of the tumor. This duration (Txray-

> tumor) is automatically determined from the location of the tumor on the CT image which 

can be read from the user's control panel of the PET/CT scanner. The time tumor 

calculated from (2.1) is then used to automatically search the recorded patient's 

respiratory waveform and determine the respiratory amplitude corresponding to tumor-

This whole process is designed to occur following the acquisition of the whole-body CT 

scan and results in a motion amplitude that will be used to acquire a corresponding PET 

data. 

Following the determination of the respiratory amplitude during the CT scan, the 

next step is to match this amplitude with a corresponding amplitude range of the list-

mode PET scan. In order to achieve this aim, the respiratory gating device is configured 

to generate a gating signal whenever the patient's respiratory level falls within a ±10% 

range of the captured amplitude during CT. A list-mode PET scan is then acquired and 

automatically terminated when 3 minutes worth of PET data is accumulated within the 

selected amplitude range. Triggers are simultaneously injected into the PET list stream on 

both the beginning and ending stages of the selected amplitude range (section 2.2.2). The 

resultant PET list-mode data is then post-processed (details in section 2.2.2) to generate 

an amplitude-gated PET image. This gated image can be directly attenuation corrected by 

the whole-body CT data since the motion amplitudes captured in these two scans are 

matched with one another. 

To summarize, in order to implement the proposed amplitude gating approach on 

current PET/CT scanners, a regular whole body PET scan is first acquired with 3 minutes 

per bed position (the 3-minute duration is similar to the standard scan duration per bed 
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position used at our institution) while skipping the bed position of interest. The a-priori 

knowledge of which bed position should be skipped can be derived from previous 

PET/CT scans of the patient or images from other diagnostic imaging modalities. 

Following the regular PET scan, a whole-body CT scan is then acquired while the 

respiratory amplitude at the time the CT scan reaches the tumor position is derived by 

correlating the tumor position identified on the CT image with the patient's respiratory 

waveform. In order to match the motion amplitudes during the CT and PET, a list-mode 

PET scan is then acquired over the bed position of interest while triggers are injected into 

the PET list stream whenever the patient's respiratory level crossed the edges of an 

amplitude range that is determined by the amplitude captured during CT. The resultant 

PET list-mode data is then post-processed and reconstructed to generate an amplitude-

gated PET image after attenuation correction by the CT image. Similarly, the regular PET 

data is also attenuation-corrected by the CT image and is reconstructed. The regular PET 

image as well as the amplitude-gated image can then be combined together to generate a 

whole-body "motion-free" image. A flow chart of the above process for the amplitude 

gating implementation in whole-body PET/CT imaging is shown in Figure 2.3. 

The whole process of this amplitude gating implementation, except for the 

identification of the tumor location from the CT image and the configuration of the 

respiratory gating device to output gating signals based on the selected amplitude range, 

is automatically performed using in-house written Labview® programs without additional 

user interference. Furthermore, the respiratory motion amplitudes captured during the CT 

scan and the amplitude-gated PET image are also automatically matched with one 

another without user interaction. Therefore, this amplitude gating implementation can be 
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automated on current PET/CT scanners. In this project, a phantom study as well as 13 

patient studies will be conducted to test this amplitude gating automation approach and 

evaluate its ability to reduce respiratory motion artifacts. 

Start 
XL 

(1) Regular PET scan 

. A 
Start Respiratory 

Gating Device 
Start Data-

acquisition Device 

(2) Regular whole-body CT scan 

Locate tumor position 
XL 

Determine Respiratory Amplitude of the 
Time of CT Scan 

V 
XL 

Configure Gating device 

CT Attenuation 
Map 

XL V 

triggers (3) List-mode PET Scan 

V V 
Attenuation-Corrected Motion-free 

Amplitude-Gated PET Image 
Attenuation-Corrected 

Regular PET Image 

£ 
Attenuation-Corrected Motion-free 

Amplitude-Gated Whole-body PET Image 

Figure 3: Flow chart of the automation approach to implement respiratory amplitude 
gating in whole-body PET/CT imaging. 

2.2.2 Respiratory Gating Device 

The respiratory gating device that was used in this paper is the Anzai device (AZ-

733V; Anzai Medical Co. Ltd.). This device monitors the patient's breathing cycle via a 

pressure sensor placed in a belt secured around the patient's torso. This respiratory gating 
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device is comprised of the following components: (1) A strain gauge respiratory sensor, 

which tracks the pressure changes due to the patient's respiratory motion and generates a 

continuous respiratory signal, (2) A sensor port, which amplifies and transmits the analog 

signals generated by the sensor, and (3) A wave deck, which receives and digitizes the 

signals from the sensor port and send the digital signal to a personal computer. The 

respiratory sensor, sensor port, and wave deck are shown in Figure 2.4(a). 

/ Threshold 

Respiratory waveform 

h n i] a 
Gating Signal from Anzai Device 

5-volt TTL Triggers from NI device 

(d) 

Figure 2.4: (a) The Anzai respiratory gating device: respiratory sensor, sensor port and 
wave deck, (b) the Anzai software showing a continuous gating signal is generated 
whenever the respiratory amplitude exceeds 75%, (c) NI-cDAQ-9172 device, and (d) the 
relationship between the respiration signal, gating signal from the Anzai system and 
triggers from the Labview® program. 
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Figure 2.5: (a) The structure of the PET list-mode data with associated triggers after data 
acquisition, (b) list resorting process, and (c) data rebinning process. 

A software program (Figure 2.4(b)) which controls and manipulates the measured 

signal is installed on a personal computer and is provided with the respiratory gating 

device. This software has the capability to generate a continuous gating signal whenever 

the detected motion waveform falls within a selected amplitude range. This software also 

has the ability of monitoring the total scan duration and the time accumulated in the 

preset amplitude range. However, in order to match the motion amplitude captured during 

CT with a corresponding amplitude range during PET, the Anzai device should send a 

trigger signal on both the beginning and ending stages of that preset amplitude range. 

Unfortunately, the Anzai device (as well as other respiratory monitoring devices) can not 

be configured to perform that task while simultaneously recording the accumulated time 

within the preset amplitude range. In this regard, the continuous gating signal from the 

Anzai device was coupled to a NI-cDAQ-9172 device (National Instruments, Austin, TX) 
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(Figure 2.4(c)) and a Labview® program was designed to inject a trigger into the PET list 

stream whenever it detected the rising and falling edges of the gating signal. The 

relationships among the respiration signal, the gating signal from the Anzai device and 

the triggers from the Labview® program are shown in Figure 2.4(d). 

The structure of the resultant PET list stream with associated triggers is shown in 

Figure 2.5(a). The PET list stream contains alternating segments of data separated by 

triggers that were acquired within and outside the preset amplitude range (or gate). This 

list-mode data can then be post-processed by either rebinning as a static scan or filtered in 

such a way to generate a contiguous stream of PET list data acquired only within the 

preset amplitude range. This filtering process is necessary since the rebinning function of 

the PET/CT scanner can not be configured to only select events that were acquired within 

the preset amplitude range. In this regard, a list-resorting program was written (using the 

C computer language) and used to resort the list data in such a way that all events 

acquired at different breathing cycles but within the preset amplitude range were placed 

contiguously and in a chronological order in front of events that were acquired outside 

the selected amplitude range (Figure 2.5(b)). The list-resorting program was also 

designed to output the total amount of time accumulated within the selected gate. The 

resorted list file was then processed by the data-rebinning function of the scanner to 

extract the portion that was only acquired within the gated amplitude range (Figure 

2.5(c)). Since the extracted PET data only contained information that was acquired when 

the respiratory waveform fell within the gate, it can be directly reconstructed to generate 

an amplitude-gated PET image after attenuation correction. An alternative approach to 

process the acquired list-mode data is to store the recorded data into two different 
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memory locations corresponding to within and outside the amplitude range respectively 

using a prospective gating scheme. This approach however, requires the modification of 

the configuration of current PET/CT scanners and therefore is not used in this paper. 

2.2.3 PET/CT Scanner 

A GE Discovery RX PET/CT scanner (GE Healthcare, Waukesha, Wisconsin, 

USA) was used in this paper. The PET gantry of this scanner consists of 24 rings of 630 

detector crystals and has a trans-axial field-of-view (FOV) of 70 cm. The CT component 

of this scanner has a 50 cm trans-axial FOV. The description and performance 

characteristics of this PET/CT scanner have been published elsewhere [68]. All data in 

the patient studies were acquired in 3D mode and were corrected for attenuation, random, 

scatter and dead time and reconstructed using 3D OSEM algorithm (2 iterations, 21 

subsets). 

2.2.4 Phantom Study 

The objective of the phantom study is to test the proposed automation approach of 

the amplitude gating implementation and evaluate its ability to reduce respiratory motion 

artifacts. 

A phantom consisting of one stationary (33 mm) and two moving spheres (33 and 

22 mm) placed in a water tank was used. The stationary sphere was fixed to the bottom of 

the tank, while the two moving spheres were attached to a computer-controlled platform 

[69]. The platform was driven by a sinusoidal wave and translated the two spheres in the 

axial direction. The input waveform had a 2 cm peak-to-peak amplitude and a period of 5 
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seconds. The three spheres as well as the tank were filled with F-FDG water with a 

sphere-to-background contrast ratio (SBR) of 5.7:1. The activity concentration in the 

background was 2.8 kBq/cc. The setup of the phantom study is shown in Figure 2.6. 

Figure 6: The setup of the phantom study. 

The phantom was positioned centrally in the FOV of the PET/CT scanner and a 

three-bed protocol was selected to image the phantom, with each bed position covering 

15.7cm. The location of the three spheres fell within the second bed position. This 

configuration approximated a multi-bed whole-body PET/CT scan with the patient's 

torso occupying the second bed position. The pressure sensor of the Anzai device was 

attached to the moving platform via an elastic belt and the phantom was imaged based on 

the procedure described in section 2.2.1 data acquisition in 2-D mode was used for both 

the regular and list-mode PET scans. In this investigation an amplitude range of 80-100% 

of the maximum motion amplitude was selected which coincided with the sphere motion 

amplitude (91% of the maximum amplitude) captured during the CT scan. During the 

list-mode PET scan, the Anzai software was configured to monitor the total time the 

moving spheres were within the 80-100% motion amplitude range and stop the scan 
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when 3 minutes worth of data were accumulated. This imaging paradigm resulted in a 

total acquisition time of 12 minutes for the list-mode PET scan. 

The acquired list-mode data was then rebinned as a static scan (ungated) of 3 and 

12 min respectively and reconstructed using OSEM algorithm (2 iterations, 21 subsets). 

The 12 min ungated image was generated since it consisted of all the acquired data while 

the 3 min ungated image was reconstructed because this duration is similar to the 

standard scan duration per bed position used at our institution. Furthermore, the same list-

mode data was post-processed (section 2.2) and then reconstructed using the same 

algorithm to generate the 3 min amplitude gated image. The ungated 12 min, ungated 3 

min, and amplitude gated 3 min images were then compared to one another using visual 

inspection. The CT anatomic information of all the spheres (location and size) was 

superimposed on the PET images to evaluate their positions with respect to the PET 

images. Line profiles were also drawn along the three spheres on both the PET and CT 

images. Maximum and mean activity concentration (AC) as well as the contrast ratio (CR) 

were then determined from the line profiles for all spheres. The mean AC was defined as 

the average pixel value of a region-of-interest (ROI) drawn on the sphere based on the 

corresponding CT image. The ROIs for the moving spheres were shifted by 1 cm (half 

the motion amplitude) along the motion direction of the sphere in the ungated images to 

account for the mismatch between the CT and ungated PET images. The contrast ratio 

was defined as: 

CR = (P-T)/P (22) 

where P and T represent the peak and trough (valley) value across the line profile of the 

sphere respectively. All ACs and CRs are normalized to the AC and CR of the stationary 
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sphere in the ungated 12 min image. The improvements in maximum AC, mean AC and 

CR for the moving spheres on the gated images versus ungated images were also 

calculated. 

2.2.5 Patient Studies 

The objective of this paper is to test the proposed automation approach of the 

amplitude gating technique in clinical PET/CT patient studies. An institutional review 

board (MDACC IRB #2008-0851) was first acquired prior to the patient studies. 

13 patients (5 male and 8 female, age 64±9 years old) referred for PET/CT 

evaluation of lung or thoracic lesions were selected to test the performance of the 

proposed amplitude gating approach. All patients fasted for 4 hours prior to being 

injected intravenously with 296-444 MBq (8-12 mCi) of 18F-FDG. Imaging started 60-90 

minutes post injection. The amplitude gating procedures described in section 2.2.1 was 

applied in these studies while the whole imaging process consisted of a regular PET scan 

covering 4 to 6 bed positions (excluding the bed position that covered the tumor-of-

interest) depending on the patient's height, a whole-body CT scan, and a list-mode PET 

scan of one bed position which covered the tumor location. During the list-mode PET 

scan over the tumor location, the Anzai device was configured to monitor the total time 

the tumor fell within the preset amplitude range and stopped the scan when either 3 

minutes worth of data were accumulated in the selected amplitude range or a maximum 

of 10 minutes of scan duration was reached. This stopping condition resulted in an 

average of 8.3 minutes of list-mode PET scan duration and 2.6 minutes duration within 



57 

the gate for all of the 13 patients. The information on the patients and their scan 

conditions are summarized in Table 2.1. 

TABLE 2.1 
Summary of Patient Characteristics and PET/CT Imaging Conditions 

Patient 
ID Sex Age 

(y) 
No. of 
tumors Lesion site No. of FOV in 

regular PET scan 
List-mode PET scan 

duration (min) 
Accumulated time 
within gate (min) 

1 

2 

3 

F 

M 

F 

65 

81 

66 

2 

2 

1 

Left lower & right 
lower robe 

Left lower & right 
lower robe 

Upper liver 

5 

5 

6 

10 

10 

10 

2.4 

1.8 

2.2 

4 

5 

6 

M 

F 

F 

64 

47 

54 

1 

2 

1 

Upper liver 

Right middle 
lobe, close to rib 
Left lower lobe 

5 

6 

6 

8.9 

5.6 

10 

3.0 

3.0 

2.1 

7 F 57 1 Left upper lobe 6 10 2.2 

8 

9 

10 

11 

F 

F 

M 

M 

60 

68 

65 

71 

1 

2 

3 

1 

Left middle lobe 
Left upper & 

lower lobe 
Right upper lobe 

& upper liver 
Upper liver 

4 

5 

5 

6 

5.8 

8.7 

4.3 

5.6 

3.0 

3.0 

3.0 

3.0 

12 F 71 2 Middle rib 4 10 2.4 

13 M 69 2 Upper liver 6 8.8 3.0 

Average - - 64 - - - - - 8.3 2.6 

The acquired regular PET scan for each patient was then reconstructed using a 3D 

OSEM algorithm (2 iterations, 21 subsets) after attenuation correction by the CT image. 

In addition, the list-mode PET data was first post-processed (section 2.2.2) and then 

reconstructed using the same algorithm to generate the amplitude-gated image. This 

amplitude-gated image was combined with the regular PET image to generate a "motion-

free" whole-body PET image. For comparison purposes, the same list-mode data was 

rebinned as a 3-minute static scan (without resorting), reconstructed using the same 

algorithm and combined with the regular PET image to generate an ungated whole-body 

PET image. The amplitude-gated and ungated images were compared to one another 
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using visual inspection and line profiles. The maximum SUV, mean SUV, lesion SNR 

and lesion volume were determined for all lesions. The mean SUV and lesion volume of 

each lesion were calculated based on a region-of-interest determined using a 40% 

maximum SUV threshold. The lesion SNR was defined as the mean SUV of the lesion 

divided by the SUV standard deviation of a region-of-interest drawn in the lung. A 

statistical T-test was performed to evaluate the significance of the improvement in 

maximum SUV, mean SUV, lesion SNR and lesion size on the gated images versus the 

ungated images. 

2.3 Results 

2.3.1 Results from the Phantom Study 

The two moving spheres in the ungated 12 min, ungated 3 min and amplitude 

gated 3 min images are shown in Figure 2.7 (a)-(c) respectively. The corresponding 

images for the stationary sphere are shown in (d)-(f) respectively. Circles are 

superimposed on these images to represent the locations and sizes of the spheres on the 

CT images. Comparison between PET images and the CT anatomic information indicates 

that the two moving spheres in the gated PET images match well with their locations in 

the CT image, while in the ungated PET images (12 min and 3 min), the two spheres 

appear to be smeared and extend beyond their actual size in the CT image. The stationary 

sphere, however, matches well with its location in the CT image as expected in all of the 

three images. 
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No gating, 12 min Gatng, 3 min 

(C) 
Gating, 3 min 

(d) (e) (f) 
Line profile across two moving sphere Line profile across the stationary sphere 

Figure 2.7: The two moving spheres for the (a) ungated 12min, (b) ungated 3min, and (c) 
amplitude gated 3min image. The corresponding stationary spheres are shown in (d), (e) 
and (f), respectively. The circles represent the positions of the spheres in the 
corresponding CT images. The line profiles across the two moving spheres and the 
stationary sphere are shown in (g) and (h), respectively. 

From visual inspection, the two moving spheres are more blurred and elongated 

along their motion direction (axial direction) in the two ungated images (3 min and 12 

min) when compared to the gated 3 min image. Furthermore, the stationary spheres in the 

three images show similar AC as one another. However, the background noise in these 

images is different as expected due to the difference in scan duration (3 vs. 12 minutes). 

The maximum and mean ACs of the two moving and stationary spheres in the 

three PET images are summarized in Table 2.2(A). Data in this table is normalized to the 
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result of the stationary sphere in the 12 min ungated image. The improvements of the 

maximum and mean ACs in the amplitude gated image versus the ungated images (3 min 

and 12 min) are shown in Table 2.2(B). For the stationary sphere, the three images have 

similar mean and maximum AC as expected. For the 33 mm moving sphere, the 

amplitude gated image shows an average improvement of 10.9% and 5.2% in maximum 

and mean AC respectively compared to the two ungated images. These improvements 

increase up to 60.6% and 46.3% for the 22 mm moving sphere. 

TABLE 2.2 
(A) AC and CR Normalized to the 12min Stationary Sphere in Phantom Study 

(Data are normalized to the stationary sphere on the ungated 12min reference image) 

Gated 3min Ungated 3min Ungated 12min 

ACmax (Sphere 33mm) 1.12 1.03 0.99 

ACmax (Sphere 22mm) 1.06 0.66 0.66 

ACmax (stationary Sphere) 1.05 1.12 1.00 (ref.) 

ACmean (Sphere 33mm) 0.92 0.85 0.90 

ACmean (Sphere 22mm) 0.95 0.63 0.67 
ACmean (stationary Sphere) 0.97 0.96 1.00 (ref.) 

CR (Sphere 33mm) 1.04 0.78 0.73 

CR (Sphere 22mm) 1.05 0.52 0.45 

CR (stationary Sphere) 1.05 1.00 1.00 (ref.) 

(B) Improvement of AC and CR in Gated vs. Ungated Image 

Improvement (%) Gated 3min vs. 
Ungated 3min 

Gated 3min vs. 
Ungated 12min Average 

ACmax (Sphere 33mm) 8.7% 13.1% 10.9% 

ACmax (Sphere 22mm) 60.6% 60.6% 60.6% 

ACmax (stationary Sphere) -6.3% 5.0% 5.6% 

ACmean (Sphere 33mm) 8.2% 2.2% 5.2% 

ACmean (Sphere 22mm) 50.8% 41.8% 46.3% 

ACmean (stationary Sphere) 1.0% -3.0% 2.0% 

CR (Sphere 33mm) 33.3% 42.5% 37.9% 

CR (Sphere 22mm) 101.9% 133.3% 117.6% 

CR (stationary Sphere) 5.0% 5.0% 5.0% 
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Line profiles across the three spheres in all images (gated and ungated) are shown 

1 R 

in Figure 2.7 (g) and (h). The true F-FDG concentration was also drawn as a thin black 

line according to the CT anatomic information. The comparison between the PET and CT 

line profiles confirms that the two moving spheres match with their respective CT 

anatomic locations in the gated PET image but not in the ungated images. These line 

profiles indicate that the two moving spheres have higher CR in the gated 3 min image 

when compared to the two ungated images. The stationary sphere has similar results in all 

three images. Quantitative results in Table 2.2(B) show that the gated 3 min image has an 

average 37.9% and 117.6% improvement in CR for the 33 mm and 22 mm moving 

sphere respectively when compared to the two ungated images. 

2.3.2 Results from the Patient Studies 

The maximum and mean SUV, lesion SNR and volume for all the 21 tumors are 

summarized in Table 2.3 for both amplitude gated and ungated images. The percentage 

differences (%diff) of the SUV, lesion SNR and volume between the gated and ungated 

images are also calculated. This table shows that the maximum & mean SUV, and lesion 

SNR are improved in the amplitude gated images versus the ungated images. The average 

improvement for the maximum SUV (range 17-62%), mean SUV (range 13-77%) and 

lesion SNR (range -3.4-81%) is 26.8%, 28% and 26.3% respectively. The improvement 

in lesion SNR is primarily due to the improvement of the mean SUV of the tumor. The T-

test shows that the improvement in SUV and lesion SNR are statistically significant 

(p<0.05) in the gated versus the ungated images. The lesion volumes, as shown in Table 
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2.3, also decreased by 37.1% on average as a result of reducing the motion blurring using 

the proposed amplitude gating technique. The T-test also shows that the decrease in 

tumor volume in the gated image is statistically significant (p<0.05) compared to the 

ungated images. 

The results from two lung cancer patients are shown in Figure 2.8(A) and (B) 

respectively. The tumors on the ungated and the amplitude gated PET/CT fused images 

are indicated (arrows). The first patient has a non-small cell lung cancer (NSCLC) lesion 

in the lower left lobe and a big mass in the right lobe. The comparison between the 

ungated and gated images clearly shows that the mismatch problem between the CT and 

PET due to the respiratory motion has been resolved in the amplitude gated image. This 

result confirms that the gated PET image was acquired during the same respiratory 

amplitude captured in the CT scan. The maximum and mean SUV of the NSCLC lesion 

improved by 29.5% and 27.0% respectively after using the proposed amplitude gating 

technique. The second patient has a collapsed lung with two NSCLC tumors close to each 

other in the right middle lobe. The images in Figure 2.8(B) clearly show that the two 

tumors in the ungated PET images do not match their corresponding positions on the CT 

image (arrows) while in the gated images, the PET and CT information match well with 

one another. The maximum SUV for the two NSCLC lesions improved by 16.6% and 

21.4% respectively. Line profiles across the three NSCLC tumors for the two patients are 

shown in Figure 2.8(C)-(E) respectively. The CT anatomic structures of the three tumors 

are superimposed on these line profiles for comparison. These line profiles support our 

conclusion that the PET and CT images match well with one another when the proposed 

amplitude gating approach is applied. 
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Figure 2.8: Results from two lung cancer patients are shown in (A) and (B) respectively. 
The tumors in the ungated and gated images are indicated (arrow). The line profiles 
across the three tumors are shown in (C)-(E) respectively. 

2.4 Discussion 

In this project, we described a procedure to automate an amplitude gating 

approach that can be applied in whole-body PET/CT imaging. This approach enables the 

automatic matching of the respiratory amplitude captured during the CT and PET scans 

without requiring the patients to hold their breath or maintain any specific breathing 

pattern. Furthermore, this amplitude gating technique retains the same advantages of 

DIBH with no additional X-ray exposure nor deformable image registration. In order to 
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test the performance of this approach, a phantom study and 13 patient studies were 

analyzed. The results from these studies showed that tumors/spheres on the amplitude-

gated images matched well with their locations on the CT images and exhibited higher 

maximum and mean SUV when compared to the ungated images. Therefore, this new 

implementation of respiratory amplitude gating is feasible in clinical conditions and has 

the capability of reducing respiratory motion artifacts in PET images. 

One of the objectives of this project is to automate the proposed amplitude gating 

approach with minimal user interactions. In our suggested approach, the acquisitions of 

the regular PET scan and the whole-body CT scan are already automated since they 

follow the same setup as a standard PET/CT protocol in current PET/CT scanners. The 

remaining processes that need to be automated are the determination of the lesion motion 

amplitude during the CT scan and the selection of a corresponding amplitude range 

during the list-mode PET acquisition. Both of these tasks have been automated using an 

in-house software program while only requiring the technologists to identify (using the 

mouse) the tumor location in the CT image. The output of this software program is then 

manually entered into the Anzai device to subsequently inject triggers into the PET list 

stream. The list-mode PET data acquisition is then manually initiated and is also 

manually terminated when either 3 minutes worth of PET list-mode data is accumulated 

in the selected amplitude range or a maximum of 10 minutes of scan duration is reached. 

The manual termination can be further automated if the manufacturer allows injecting a 

trigger from the gating device (Anzai system) to stop the acquisition and terminate the 

scan. In this regard, the whole process of our amplitude gating implementation can be 

fully automated except for the manual delineation of the physical tumor location, manual 
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entry of the amplitude range in the Anzai gating system, and the manual initiation and 

termination of the list-mode PET scan. 

To capture the same respiratory amplitude during the CT and list-mode PET scans, 

the Anzai device was coupled to a data-acquisition device in order to send triggers into 

the PET list stream at both the beginning and ending stages of the selected amplitude 

range in each breathing cycle. The primary reason for the use of an additional device is 

due to the inability of the Anzai device to send these two separate triggers while 

simultaneously recording the accumulated time within the gate. As far as we know, other 

respiratory gating devices such as Real-time Positioning Management (RPM) system also 

can not achieve this objective without being interfaced to other signal processing devices. 

The primary reason for using the Anzai device rather than the RPM system in this paper 

is mainly due to the ability of the former to simultaneously monitor the total accumulated 

time within the gate while tracking the patient's breathing waveform. The PRM device 

however, does not have the ability to monitor the accumulated time within the gate which 

is a requirement for the implementation of the proposed amplitude gating approach. 

The respiratory amplitude captured during the whole-body CT scan is determined 

by correlating the axial slice corresponding to the center of the tumor to the recorded 

patient's breathing waveform. The identification of the tumor central slice on the CT 

image however is relatively more difficult when the tumor is large (e.g. several 

centimeters) and therefore may result in inaccuracy in the selection of the position of the 

amplitude range for the list-mode PET scan. However, since the bed travel is relatively 

fast during the CT scan (11 cm/sec), a ±1 slice inaccuracy in the determination of the 

center of the tumor will result in less than 0.05 second inaccuracy in bed travel time. 
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Compared to the average period of the patient's breathing cycles (5 seconds), this 

inaccuracy can only result in less than 2% error when selecting the amplitude range for 

the list-mode PET scan and therefore does not greatly affect the accuracy of the proposed 

amplitude gating approach. 

In the proposed amplitude gating approach, a ±10% amplitude range 

corresponding to the captured respiratory amplitude during CT was selected for the list-

mode PET scan. This amplitude range results in a residual motion of up to 4 mm in the 

final PET image if the tumor has a motion amplitude of 2 cm. A narrower range such as 

±5% would reduce this residual motion to 2 mm but at the cost of increased scan duration 

in order to accumulate a sufficient count density within the selected gate in the list-mode 

PET scan. Our phantom study which was based on a 2 cm motion amplitude, showed that 

the spheres on the gated image matched well with the CT anatomic information 

suggesting that the small residual motion did not result in an appreciable degradation in 

the quality and quantification of the gated PET image. 

The data acquired from the list-mode PET scan needs to be first filtered before it 

can be reconstructed to generate an amplitude gated image. This filtering process is 

performed using a list-resorting program followed by the data-rebinning process of the 

PET/CT scanner. One might argue that this process can be completed using a one-step 

approach whereby the data acquired outside the amplitude range can be directly removed 

from the list-mode data and only events that fall within the specified amplitude range are 

left. This suggestion however affects the total count rate which eventually results in 

different random, scatter and dead time correction and affects SUV in the reconstructed 

PET image which can eventually lead to inaccurate diagnosis. 
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In our proposed amplitude gating approach, a retrospective resorting of the 

acquired data is required before it can be reconstructed. To minimize this post-processing 

task of the data, we suggest that the manufacturer of the scanner directly store data 

acquired within and outside the gate in two different memory locations similar to phase 

binning where data in different phases are stored in different bins. In this case, the gated 

PET data can then be directly reconstructed (prospectively) to generate an amplitude 

gated PET image thereby further shortening the implementation of amplitude gating on 

PET/CT scanners. 

In our approach, the regular PET scan (step 1) is designed to skip one bed position 

over the area of interest (lesion location). This skipping step is realized by setting the 

scan duration of the bed position over the area of interest to the minimum allowable time 

(one second) since current PET/CT scanners can not be configured to skip over any bed 

position during a whole-body PET scan. Other approaches to realize the skipping step are 

possible such as acquiring two different PET scans over the patient's upper and lower 

body respectively separated by a gap representing the skipped bed position. The most 

optimal method however would be to require the manufacturer to allow the skipping of 

any bed position as determined from the scout scan. 

Another hurdle with the bed skipping step is that it requires an a-priori knowledge 

about the rough location of the tumor of interest. This information can be derived from 

either previous PET/CT scans or from other diagnostic images of the patient. For first-

time patients however, it is difficult to identify the location of the lesion of interest in 

advance. One method to solve this problem is to skip over the patient's whole torso 

during the regular PET scan (2-3 bed positions using one second per bed) since this 
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region is the area most affected by respiratory motion. A whole-body CT is then acquired 

followed by a list-mode PET acquisition over the entire torso. This method however is 

characterized by relatively longer scan duration since it requires additional bed positions 

for the list-mode PET scan. Another method to determine the tumor location for first-time 

patients is not to skip any bed positions but rather acquire a whole-body regular PET scan 

using 3 minutes per bed position. The center of the tumor can then be determined from 

either the regular whole-body PET image or the CT image and is then used to determine 

the motion amplitude that will be used during the list-mode PET scan. This method, 

however, increases the total scan duration by 3 minutes due to the extra bed position 

during the regular PET scan that would have otherwise been skipped. 

One disadvantage of our proposed approach is the relatively long scan duration of 

the list-mode PET scan and shorter time accumulated in the selected amplitude range. 

The long scan duration is due to the fact that only a small portion of the acquired PET 

data falls within the preset amplitude range. In order to reduce the total scan duration, the 

list-mode PET scan was designed to be stopped when either 3 minutes worth of data are 

accumulated or a maximum of 10 minutes of scan duration is reached. In this case, the 

overall scan duration increases by only 7 minutes. Our patient studies showed that the 

additional scan duration for our proposed amplitude gating approach was on average 5.3 

minutes (range 1.3-7.0 minutes) and therefore did not greatly impact the standard 

PET/CT imaging protocol. Furthermore, the limitation of 10-min overall scan duration 

during the list-mode PET acquisition could also result in a shorter time accumulated in 

gate especially when a transient amplitude (e.g. mid-inspiration) is captured during the 

CT scan. Our patient studies however have shown that the average accumulated time was 
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2.6 minutes with a range of 1.8-3 minutes suggesting that on average about 3 minutes 

within gate could be achieved if the total scan duration was 10 minutes. Approaches to 

increase the time accumulated in gate during the list-mode PET scan to make it exactly 3 

minutes include further increasing the scan duration of the list-mode PET acquisition or 

acquire data during the patient's end-expiration which is characterized by higher duration 

ratio in the respiratory cycles. This second approach however will require the patients to 

hold their breath at end-expiration during the CT scan in order to capture the same 

motion amplitude during the PET scan. Such an approach on the other hand will require 

patient compliance and technologist-patient interaction which will have the same 

problems as the DIBH technique as well as capture the lungs in a collapsed state that 

might affect the detectability of small lesions. 

2.5 Conclusion 

In this project, we described the methodology, hardware and software needed to 

implement and automate the proposed respiratory amplitude gating technique with 

minimal user interactions on whole-body PET/CT scanners. In this approach, the motion 

amplitude captured during the CT scan is automatically matched with a corresponding 

amplitude during the PET data acquisition. The results from the phantom and patient 

studies show that this approach can be successfully implemented on current PET/CT 

scanners and has the ability to suppress respiratory motion artifacts. 
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Chapter 3 

Design and Performance of a Respiratory Amplitude 

Gating Device for PET/CT Imaging 

Objective Respiratory amplitude gating techniques have recently been 

implemented and automated in PET/CT scanners. These techniques however, require 

specialized hardware and software components that are specifically designed to interface 

with commercial respiratory gating devices in order to generate and send the necessary 

triggers to facilitate amplitude gating on PET/CT scanners. The objective of this project 

is to introduce an in-house device that integrates all the necessary hardware and software 

components as well as tracks a patient's respiratory motion to realize amplitude gating on 

PET/CT scanners and test its performance using volunteers and phantom studies. 

Methods A piezoelectric transducer was coupled to a data-acquisition system to 

monitor the respiratory waveform. A Labview® program was designed to control the 

data-acquisition device and inject triggers into the PET list stream whenever the detected 

respiratory amplitude crossed a predetermined amplitude range. A timer was also 

programmed to stop the scan when the accumulated time within the selected amplitude 

range reached a user-set interval. To test the performance of this device, 10 volunteer and 

a phantom studies were conducted and the results were compared to those of an Anzai 

respiratory gating system. The volunteer studies focused on testing the ability of our 

device to generate respiratory waveform similar to those of the Anzai system while the 

aim of the phantom study was to evaluate its ability to generate the necessary amplitude 

triggers to suppress respiratory motion artifacts. 
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Results For all volunteers, the breathing waveforms generated from the two 

devices and their respective Fourier transforms were similar with an average correlation 

coefficient of 0.86 & 0.94 respectively. The two waveforms exhibited an average 

difference of less than 2.5% in their duration distribution in 8 amplitude ranges. In the 

phantom study, the amplitude-gated images from the two devices showed similar contrast 

(<3% difference) and activity concentration (AC) (<2% difference) and exhibited similar 

improvement in contrast (42.8% vs. 46.7%), ACmax (14.6% vs. 17.3%) and ACmean 

(23.1%) vs. 25.8%) when compared to the ungated images. 

Conclusion Our in-house respiratory gating device has a similar performance to 

commercially available respiratory gating systems. This device can realize the proposed 

amplitude gating scheme without the facilitation of other devices and therefore has an 

added advantage of low cost. 

3.1 Introduction 

Respiratory gating techniques have recently been proposed in PET/CT imaging to 

suppress motion artifacts [58-62], These techniques can be divided into two categories: 

phase gating and amplitude gating [29], In phase gating, the respiratory cycle is divided 

into multiple phase ranges (or bins) and the acquired data is sorted into each bin based on 

its acquisition time within the respiratory cycle. This gating approach works well for 

patients with regular breathing cycles but results in strong artifacts with patients that have 

irregular respiration. As an alternative approach, amplitude gating has been proposed to 

divide the total respiration amplitude into different amplitude ranges (or gate) rather than 
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phase ranges. It has been shown that amplitude gating techniques are better at 

suppressing respiratory motion artifacts when compared to phase gating [29]. 

Current PET/CT scanners are only capable of phase gating. The use of amplitude 

gating in PET/CT scanners is still being developed by many research groups [64-67]. 

Some of these developments rely on a 4-D PET/CT acquisition where the PET and CT 

data are acquired in multiple amplitude ranges respectively. PET Images reconstructed 

from the multiple bins, following attenuation-correction by the corresponding CT images, 

are then registered and summed together to generate a motion-free image [64, 65]. Other 

methods, referred to as the motion-incorporated reconstruction techniques, are focused on 

incorporating the motion information among the different gates of the 4-D PET images 

into the statistical reconstruction algorithm to reduce motion artifacts [66, 67], Both of 

these amplitude-gating approaches, however, are characterized by relatively high patient 

X-ray exposure due to their requirement of an additional 4-D CT acquisition as well as 

difficulties in registering the 4-D PET images due to their low statistical count density 

and high noise content. To overcome these drawbacks, deep-inspiration breath-hold 

(DIBH) techniques have been proposed as a variant of amplitude gating [37-39]. In this 

approach, patients are requested to repeatedly hold their breath at deep inspiration (only 

one amplitude range) for a certain period during the PET data acquisition in order to 

match the motion amplitude captured in the CT scan. DIBH techniques do not require an 

additional 4-D CT acquisition but suffer from patient non-compliance particularly when 

the patient is at an increased state of anxiety due to their medical condition as well as 

hearing and language barriers. Furthermore, recent studies have shown that 

approximately 60% of the lung cancer patients can not perform the DIBH technique 
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successfully [40]. Recently, we proposed a novel approach to implement and automate 

amplitude gating on current whole-body PET/CT scanners that neither suffered from high 

patient X-ray exposure nor patient non-compliance [70], This approach is similar to 

DIBH techniques except that patients are allowed to breathe freely during the entire data 

acquisition process while the respiratory amplitude that is captured during the CT scan is 

automatically matched with a corresponding amplitude range during a list-mode PET 

scan. 

To implement the proposed amplitude gating approach, several criteria had to be 

satisfied: (1) a respiratory monitoring device had to record the patient's breathing 

waveform, (2) triggers had to be sent to the PET list stream at the beginning and ending 

stages of the amplitude range corresponding to the amplitude captured during CT in each 

breathing cycle, and (3) a timer had to be designed to record the total accumulated time in 

the selected amplitude range in order to stop the scan when a predetermined accumulated 

time is reached. Currently there are no commercial respiratory gating systems that can 

accomplish all of these requirements. In this regard, the implementation of the proposed 

amplitude gating technique had to rely on a multitude of hardware and software 

components that were designed and interfaced to one another. In that implementation, an 

Anzai respiratory gating system (Anzai Medical Co. Ltd., Japan) running in amplitude 

gating mode was used to satisfy the requirement of recording the patient's breathing 

cycle as well as tracking the accumulated time within the selected amplitude range. 

Furthermore, a data acquisition and processing system along with a specialized software 

were designed to generate the necessary triggers and insert them into the PET list stream. 
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In this project, we describe an in-house respiratory gating device that has the 

ability to integrate all of these components into one system thereby facilitating the 

implementation of our proposed amplitude gating approach. The objective of this project 

is to introduce this device and test its performance by comparing it to the piecewise 

Anzai system using volunteers and phantom studies. The proposed respiratory gating 

device and the setup of the volunteer and phantom studies will be described in section 3.2 

and the results of these studies will be presented in section 3.3. Further considerations 

regarding this in-house device are discussed in section 3.4. Section 3.5 concludes this 

project. 

3.2 Materials and Methods 

3.2.1 Equipments 

3.2.1.1 In-house Respiratory Gating Device 

An MLT-1132 respiratory belt transducer (AD Instruments Inc., Colorado Springs, 

CO) was used to detect the patient's respiratory signal (Figure 3.1(a)). This respiratory 

belt transducer consists of a piezoelectric element that transforms pressure into an electric 

signal. It measures the changes in thoracic or abdominal circumference during respiration 

which is used to derive real-time breathing phases and amplitudes when attached to the 

patient's torso. The transducer is a solid-state device that requires no excitation, and has a 

measurement sensitivity of 5 milivolts/mm. The output voltage of the transducer ranges 

from 20 milivolts to 400 milivolts. The MLT-1132 connects directly to a BNC (Bayonet 
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Neill Concelmana connector) input on any signal processing device. The detailed 

description of this belt transducer can be found elsewhere [71]. 

Triggers, from the Labview Program to the PET List Data 

(C) 

Figure 3.1: (a) The MLT-1132 piezoelectric transducer along with the NI cDAQ-9172 
data-acquisition device and cRIO-9215 module, (b) the controlling and data manipulation 
software designed using Labview®, (c) the relationship between the respiration signal and 
triggers from the Labview® program. 

A NI-cDAQ-9172 data-acquisition device (National Instruments Corp., Austin, 

TX) was used to detect the respiratory waveform generated from the MLT-1132 

transducer through a CompactRIO™ cRIO-9215 module using a BNC connection 

(Figure 3.1(a)). The cRIO-9215 module has the capability to digitize the analog 

respiratory signal from the belt transducer and can measure a maximum voltage 
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difference of up to 10 volts. The detailed descriptions of the cDAQ-9172 device and 

cRIO-9215 module are available online [72, 73]. A graphical user interface (GUI) 

software tool (Figure 3.1(b)) was designed using Labview® (National Instruments Corp., 

Austin, TX) to manipulate and display the detected respiratory signal as well as to store 

the real-time respiratory signal into a file. Labview® is a development environment for a 

graphical programming language (G programming) that is usually used to create GUI 

software for hardware control and real-time signal display purposes. In order to enable 

the proposed device to acquire PET data in amplitude gating mode, the GUI software was 

also designed to inject a 5-volt TTL trigger into the PET list stream whenever the 

measured respiratory amplitude crossed the edges of a user-set amplitude range. The 

relationship between the respiratory signal detected from the belt transducer and the 

triggers generated by the Labview® software is shown in Figure 3.1(c). The occurrence of 

each trigger was also recorded in the saved file, which resulted in an automatic 

synchronization between the PET list stream and the recorded respiratory signal. A 

digital timer was also programmed in the Labview® software to stop the acquisition 

whenever the accumulated scan duration, within the gated amplitude range, reached a 

user-set interval. The lower and upper thresholds of the gated amplitude range as well as 

the sampling rate of the device can all be adjusted manually in the front panel of the 

software. The total scan duration and the accumulated time within the preset amplitude 

range are also displayed in the front panel. Using this in-house respiratory gating device, 

the implementation of our proposed automated amplitude gating approach [70] can be 

realized directly without using any additional devices. 
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Figure 3.2: The list-resorting and data-rebinning process of the list-mode PET data. 

The resultant PET list stream with associated triggers could be post-processed by 

either rebinning as a static scan or filtering to generate an amplitude gated scan. The 

filtering process was performed using a list-resorting program followed by the data-

rebinning function of the PET/CT scanner, similar to the method we described in the 

proposed amplitude gating approach [70]. The filtering process is necessary since the 

rebinning function of the scanner can not be configured to only select events that were 

acquired within the preset amplitude range. The list-resorting program was written in C 

and was used to resort the list data in such a way that all events acquired at different 

breathing cycles but within the preset amplitude range were placed contiguously and in 

chronological order in front of events that were acquired outside the selected amplitude 



range (Figure 3.2). This list-resorting program could also output the total amount of time 

accumulated within the selected gate which was then used for the data-rebinning process. 

The resorted list file was then processed by the data-rebinning function of the scanner to 

extract data that was only acquired within the gated amplitude range. This data was 

subsequently rebinned as a static scan, attenuation-corrected by the amplitude-matched 

CT attenuation map and eventually reconstructed to generate an amplitude-gated PET 

image. 

3.2.1.2 Anzai Respiratory Gating System 

The Anzai respiratory gating system (AZ-733V; Anzai Medical Co. Ltd.) was 

used in the volunteers and phantom studies to compare the performance of our in-house 

respiratory gating device to a commercially available system. The Anzai system consists 

of a strain gauge sensor secured in an elastic belt that is placed around the patient's torso. 

The sensor measures the patient's respiratory signal by detecting pressure changes. A 

sensor port then amplifies and transmits the analog respiratory signal to a wave deck for 

digitization. The digitized signal is then stored on a personal computer and the Anzai 

device is configured to output a continuous gate signal whenever the detected respiratory 

waveform falls within a preset amplitude range. In order to record both the beginning and 

ending stages of the selected amplitude range in the PET list stream, the NI-cDAQ-9172 

data-acquisition device (section 3.2.1.1) is interfaced to the Anzai device to send triggers 

into the PET list data whenever it detected the rising and falling edges of the gate signal. 

The detailed description of the coupling between the Anzai device and the data-

acquisition device is discussed elsewhere [70]. The resultant trigger-inserted PET list data 
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can be post-processed using the same method as described in section 3.2.1.1 and 

reconstructed to generate a motion-free PET image after attenuation correction. 

3.2.1.3 PET/CT Scanner 

A GE Discovery RX PET/CT scanner (GE Healthcare, Waukesha, Wisconsin, 

USA) was used for the phantom study in this paper. The PET gantry of this scanner 

consists of 24 rings of 630 detector crystals per ring and the ring diameter is 88.6 cm. The 

PET component has a trans-axial FOV of 70 cm and a 15.7 cm axial extent, and can 

achieve an axial and trans-axial resolution of 4.8 mm and 5.1 mm (measured as full-width 

half maximum (FWHM)), respectively. 

The CT component of this PET/CT scanner is a 64-slice LightSpeed CT with a 50 

cm trans-axial FOV and can acquire images with slice thickness ranging between 0.625 

and 5.0 mm. The tube current is variable between 10 and 675 mA, and the tube voltage is 

variable between 80 and 140 KVp, in increments of 20 kVp. All acquired PET data were 

corrected for attenuation, random, scatter and dead time and reconstructed using OSEM 

algorithm (2 iterations and 21 subsets). 

3.2.2 Performance Tests 

3.2.2.1 Volunteer Studies 

The objective of the volunteer studies is to investigate whether our in-house 

respiratory gating device can generate similar respiratory waveforms to the Anzai 

respiratory gating system. 
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The breathing cycles of 10 volunteers (6 male, 4 female, age 41±18 years old) 

were measured simultaneously using both the Anzai respiratory gating system and our in-

house device. The Anzai strain gauge sensor was attached to an elastic belt which was 

placed around the volunteer's torso while the belt transducer of our in-house device was 

secured right below the Anzai belt. Caution was exercised so that the two belts did not 

overlap or interfere with one another. All the volunteers were requested to breathe freely 

while lying down on the patient couch of the PET/CT scanner. For each volunteer study, 

data acquisition lasted 6 minutes, and the two recorded waveforms were synchronized 

using a trigger generated from the Anzai system that was recorded by the labview® 

software of our in-house device. After data acquisition, the two waveforms were then 

compared to one another by correlating the two waveform shapes. Correlation was also 

conducted between the respective Fourier transform of the two waveforms to assess the 

similarity between their frequency responses. In order to investigate the waveform's 

similarity in motion amplitude distribution, the amplitude of each waveform was then 

divided into 8 equal amplitude ranges (0-12.5%, 12.5-25%, 25-37.5%, 37.5-50%, 50-

62.5%, 62.5-75%, 75-87.5% and 87.5-100%) and the percentage duration distribution 

(PDD) for each amplitude range was calculated. The PDD was defined as the percent 

time out of the total scan duration when the respiratory amplitude fell within a specific 

amplitude range. Eight amplitude ranges were selected because this number has been 

proposed as the optimal number of gates for amplitude gating in PET/CT imaging [74], 

3.2.2.2 Phantom Study 
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The objective of the phantom study is to test the ability of our in-house respiratory 

gating device to generate the necessary amplitude triggers to suppress respiratory motion 

artifacts. This capability was tested by assessing the performance of our system in 

comparison to the piecewise Anzai device. 

The phantom consisted of one stationary (33 mm) and two moving spheres (33 

and 22 mm) placed in a water tank. The stationary sphere was fixed to the bottom of the 

tank, while the two moving spheres were attached to a computer-controlled platform [69]. 

The platform was driven by a sinusoidal wave and translated the two spheres in the axial 

direction. The input waveform had a 2 cm peak-to-peak waveform and a period of 5 

1 8 

seconds. The three spheres as well as the tank were filled with F-FDG water with a 

sphere-to-background contrast ratio (SBR) of 5.1:1. The activity concentration in the 

background was 3.1 kBq/cc. This setup approximated a patient with three tumors, one 

stationary and two moving under the influence of respiratory motion. The setup of the 

phantom study is shown in Figure 3.3. 

Figure 3.3: The setup of the phantom study. 
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The phantom was positioned in the central field-of-view of the PET/CT scanner 

and scanned in 3-D mode. The elastic belts of the Anzai and our in-house sensors were 

both strapped to the platform while making sure the two devices did not overlap or 

interfere with one another. List-mode PET/CT with amplitude gating was then acquired. 

In this case, we chose to acquire the CT data when the moving spheres were stopped at 

90% of the maximum motion amplitude. In order to "freeze" the same motion amplitude 

as captured during the CT scan, a preset amplitude range of 80-100% of the maximum 

motion amplitude was selected for the list-mode PET scan. In this regard, the Labview® 

software was configured to send a trigger to the PET list stream whenever the sphere 

motion crossed the edge of this preset amplitude range. For comparison purposes, the 

Anzai respiratory gating system (Anzai device coupled to the data-acquisition device) 

was also configured to record the sphere motion and store the result in a different saved 

file. Note that the Anzai system was not configured to inject triggers into the PET list 

stream so as not to confuse these triggers with those of our in-house device. The two 

recorded respiratory signals were synchronized by a trigger generated from the Anzai 

system in the beginning of data acquisition. PET data acquisition was stopped when 3 

minutes worth of data were accumulated within the preset amplitude range. The 3 minute 

duration was chosen since it was equivalent to our standard clinical acquisition duration 

per bed position at our institution. This imaging paradigm resulted in a total acquisition 

time of 10 minutes of the list-mode PET scan. 

The acquired list-mode data was first post-processed and then reconstructed using 

a 3D-IR algorithm (2 iterations, 21 subsets) to generate the MLT1132-amplitude-gated 

image. The amplitude-gated image corresponding to the Anzai system, however, was 
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generated using a "retrospective" gating approach. In this case, the triggers in the original 

PET List data were first removed and new triggers were inserted based on the gate 

information derived from the respiratory signal recorded by the Anzai system. This new 

list-mode data was also post-processed and then reconstructed using the same algorithm 

to generate an Anzai-amplitude-gated image. For reference purposes, the original list-

mode data was rebinned as a static scan (ungated) of 3 and 10 min respectively and 

reconstructed using the same algorithm. The 10 min ungated image was generated since it 

consisted of all the acquired data while the 3 min ungated image was reconstructed 

because this duration is similar to the standard scan duration per bed position used at our 

institution. 

The two amplitude-gated images as well as the two ungated images (3min & 

lOmin) were compared to one another using visual inspection. The CT anatomic 

information of all the spheres (location and size) was also superimposed on the PET 

images to evaluate their position with respect to the PET images. Line profiles were also 

drawn along the two moving spheres as well as the stationary sphere on the four images. 

Maximum and mean activity concentration (AC) as well as the contrast ratio (CR) were 

then determined from the line profiles for all spheres. The mean AC was defined as the 

average pixel value of a region-of-interest (ROI) drawn based on the corresponding CT 

image. The ROIs for the moving spheres were shifted by 1 cm (half the motion amplitude) 

along the sphere motion direction in the ungated images versus the gated image to 

account for the mismatch between the CT image and ungated PET image. The contrast 

ratio was defined as: 

CR = (P-T)/ P n n 
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where P and T represent the peak and trough (valley) value across the line profile of the 

sphere respectively. All ACs and CRs are normalized to the AC and CR of the stationary 

sphere in the ungated 10 min reference image. The percent improvements in maximum 

AC, mean AC and CR for the moving spheres on the gated images versus ungated images 

were also calculated. 

3.3 Results 

3.3.1 Results from the Volunteer Studies 

The respiratory waveforms generated from the Anzai respiratory gating system 

and our in-house device for one of the volunteers are shown in Figure 3.4(a). The average 

amplitude of each waveform was subtracted to suppress the DC components (zero 

frequency). The two waveforms are also normalized to the same scale with each other for 

display purposes. The similarity between the two waveforms in Figure 3.4(a) suggests 

that our in-house respiratory gating device has the capability to generate a similar 

respiratory waveform as the commercially available Anzai respiratory gating system. The 

Fourier transforms of the respective waveforms are shown in Figure 3.4(b). This figure 

also indicates that the two results contain similar frequency components. 

The correlation coefficients between the two waveforms and their respective 

Fourier transforms for all the 10 volunteers are summarized in Table 3.1(A). This table 

shows that the two waveforms have an average correlation coefficient of 0.86 while their 

respective Fourier transforms have an average correlation coefficient of 0.94. These 
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quantitative results support our finding that the two amplitude gating devices can 

generate similar respiratory waveforms. In addition, the PDDs in the eight different 

amplitude ranges from both respiratory waveforms for all the volunteers are summarized 

in Table 3.1(B). This table shows that the waveforms from the two gating systems exhibit 

similar PDD distribution. The average difference in PDD distribution over all the 

volunteers did not exceed 2.5%. 

Comparison between the Two Signals 
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Figure 3.4: Results from the volunteer studies: (a) the respiratory waveform detected 
from the Anzai respiratory gating system and the in-house device. The Fourier transform 
of the two waveforms are shown in (b). 



Table 3.1: Volunteer Studies 

(A) Correlation between the two waveform shapes and their respective Fourier transform 

Patient ID 1 2 3 4 5 6 7 8 9 10 Average 

Correlation 

Waveform 
shape 0.81 0.95 0.89 0.83 0.80 0.91 0.82 0.94 0.71 0.92 0.86±0.08 

Correlation 
Fourier 

transform 0.92 0.97 0.96 0.95 0.88 0.95 0.91 0.98 0.95 0.96 0.94±0.03 

(B) Percentage Duration Distribution (PDD) in eight amplitude ranges 

Patient 
ID 

Percentage Durarion Distribution (PDD) of Each Amplitude Range 
(Anzai / MLT-1132) Patient 

ID 
0-12.5% 12.5-25% 25-37.5% 37.5-50% 50-62.5% 62.5-75% 75-87.5% 87.5-100% 

1 18.7%/ 
16.2% 

22.8% / 
20.4% 

18.0%/ 
15.2% 

7.1%/ 
11.3% 

6.3% / 
8.3% 

6.9% / 
7.8% 

6.8% / 
8.7% 

13.4%/ 
12.1% 

2 13.9%/ 
15.3% 

34.1%/ 
31.9% 

11.1%/ 
12.7% 

7.9% / 
8.9% 

7.8% / 
7.5% 

7.6% / 
7.8% 

8.7% / 
8.9% 

9.0% / 
6.8% 

3 18.9%/ 
17.1% 

27.7% / 
24.6% 

10.6%/ 
12.5% 

9.2% / 
9.8% 

8.5% / 
10.2% 

9.2% / 
12.2% 

10.9%/ 
6.7% 

4.8% / 
6.5% 

4 13.9%/ 
12.7% 

21.5%/ 
20.1% 

12.6% / 
12.1% 

10.8%/ 
9.9% 

11.4%/ 
9.8% 

9.8% / 
12.7% 

9.9% / 
13.1% 

9.9% / 
9.4% 

5 17.1%/ 
16.9% 

20.5% / 
19.6% 

12.1%/ 
14.9% 

10.1%/ 
10.6% 

10.4%/ 
9.8% 

10.6%/ 
10.1% 

11.2%/ 
11.0% 

7.6% / 
6.9% 

6 9.2% / 
8.3% 

18.7%/ 
15.4% 

15.7%/ 
14.8% 

13.8%/ 
14.8% 

12.7%/ 
11.5% 

11.5%/ 
14.1% 

13.1%/ 
14.1% 

5.2%/ 
6.8% 

7 
14.4% / 
13.5% 

21.9%/ 
21.4% 

18.4%/ 
16.0% 

11.5%/ 
11.7% 

8.1%/ 
7.6% 

7.4% / 
9.6% 

4.1%/ 
2.4% 

13.9%/ 
17.8% 

8 13.1%/ 
14.7% 

38.7%/ 
33.0% 

12.3%/ 
13.1% 

8.8% / 
8.8% 

7.6% / 
8.1% 

7.1%/ 
7.8% 

7.5% / 
8.3% 

4.9% / 
6.0% 

9 
5.2%/ 
5.4% 

37.4% / 
36.7% 

14.0% / 
14.0% 

9.3% / 
10.0% 

8.5% / 
8.0% 

9.6% / 
10.2% 

11.0%/ 
11.9% 

5.0%/ 
3.6% 

10 
9.2% / 
7.6% 

36.3% / 
31.2% 

13.1%/ 
14.9% 

8.1%/ 
9.3% 

8.4% / 
9.1% 

9.6% / 
11.5% 

11.0%/ 
11.5% 

4.3% / 
4.8% 

| Diff. | 
1.2%±0.7 

% 
2.5%±1.8 

% 
1.6%±1.0 

% 
1.0°/o±1.2 

% 
1.0%±0.6 

% 
1.6%±1.1 % 1.5%±1.3 

% 
1.5%±1.0% 
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Table 3.2: Phantom Study 

(A) AC and CR for all images 
(Data normalized to the stationary sphere in the ungated lOmin reference image) 

Ungated Image Ungated Image Gated Image Gated Image 
10 min 3 min Anzai MLT-1132 

ACmax (Sphere 33mm) 0.97 0.97 1.09 1.05 

ACmax (Sphere 22mm) 0.76 0.85 0.98 0.97 
ACmax (stationary Sphere) 1.00 (ref.) 1.05 1.01 1.02 

ACmean (Sphere 33mm) 0.83 0.82 0.99 0.98 

ACmean (Sphere 22mm) 0.72 0.74 0.96 0.93 

ACmean (stationary Sphere) 1.00 (ref.) 1.01 0.98 0.98 
CR (Sphere 33mm) 0.73 0.73 0.97 0.95 
CR (Sphere 22mm) 0.57 0.63 0.96 0.93 

CR (stationary Sphere) 1.00 (ref.) 1.01 1.01 1.01 

(B) Percent Improvement of AC and CR in Gated vs. Ungated Image 

Improvement (%) 
Anzai Gated Anzai Gated 
vs. Ungated vs. Ungated 

lOmin 3min 

MLT1132 MLT1132 
Gated vs. Gated vs. 

Ungated lOmin Ungated 3min 
Average 

ACmax (Sphere 33 mm) 
ACmax (Sphere 22mm) 

ACmax (stationary 
Sphere) 

12.4% 

29.0% 

1.0% 

12.4% 

15.3% 

-3.8% 

8.3% 

27.6% 

2.0% 

8.3% 

14.1% 

-2.9% 

10.3% 

21.5% 

-0.9% 

ACmean (Sphere 
33mm) 

ACmean (Sphere 
22mm) 

ACmean (stationary 
Sphere) 

19.3% 

33.3% 

-2.0% 

20.8% 

29.8% 

-2.9% 

18.1% 

29.2% 

- 2 . 0 % 

19.5% 

25.7% 

-2.9 

19.4% 

29.5% 

-2.5% 

CR (Sphere 33mm) 32.9% 32.9% 

CR (Sphere 22mm) 68.4% 52.4% 

CR (stationary Sphere) 1.0% 0.0% 

30.1% 

63.2% 

1.0% 

30.1% 

47.6% 

0.0% 

31.5% 

57.9% 

0.5% 
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3.3.2 Results from the Phantom Study 

The respiratory waveforms of the phantom study from the Anzai respiratory 

gating system and our in-house device are shown in Figure 3.5(a). The average amplitude 

of each waveform was subtracted to suppress the DC components (zero frequency). The 

two waveforms are also normalized to the same scale with each other for display 

purposes. The Fourier transforms of the two waveforms are shown in Figure 3.5(b). 

Comparisons in Figure 3.5(a)&(b) show that the two waveforms and their respective 

frequency responses are identical to one another indicating that the two gating systems 

can generate similar respiratory waveforms. The correlation coefficients between the two 

waveforms and their respective Fourier transforms are 0.97 and 0.99, respectively. 

The two moving spheres in the ungated 10 min, ungated 3 min, Anzai-amplitude-

gated and MLT1132-amplitude-gated images are shown in Figure 3.6(a)-(d) respectively. 

The corresponding images for the stationary sphere are shown in (e)-(h), respectively. 

Dashed circles are superimposed on these images to represent the locations and sizes of 

the spheres in the corresponding CT anatomical images. Comparisons between these PET 

images and the CT anatomic structure indicate that the two moving spheres match well 

with their locations in the CT image in both of the two amplitude gated PET images 

(Anzai and MLT1132), while in the ungated PET images (10 min and 3 min), the two 

spheres appear to extend beyond their positions in the CT image. The stationary sphere, 

however, matches well with its location in the CT image in all of the four images (gated 

and ungated) as expected. 

From visual inspection, the two gated images exhibit similar contrast and AC 

while in the two ungated images (3 min and 10 min), the two moving spheres appear 
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blurred and elongated along their motion direction (axial direction) compared to the two 

gated images. Furthermore, the stationary spheres in the four images show similar 

contrast and AC to one another while the background noise in the ungated 10 min image 

is lower when compared to the other images due to its longer scan duration. 

Comparison between the Two Respiration Signals Comparison of Fourier Transform 
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Figure 3.5: Results from the phantom study: (a) Comparison between two respiratory 
waveforms detected from the Anzai and MLT-1132 transducers, and (b) comparison 
between the two respective Fourier transforms of the two waveforms. 

The maximum and mean ACs of the two moving spheres and the stationary 

sphere in the four PET images are summarized in Table 3.2(A). Data in this table are 

normalized to the result of the stationary sphere in the ungated 10 min reference image. 

Table 3.2(A) clearly shows that the two gated images (Anzai and MLT-1132) exhibit 

similar AC and have an average difference of 2.0% and 1.3% in max and mean AC, 

respectively. The improvements of the max and mean ACs in the two amplitude gated 

image versus both the 10 min and 3 min ungated images are summarized in Table 3.2(B). 

This table shows that the two gated images exhibit similar improvements in ACmax 

(17.3% vs. 14.6%) and ACmean (25.8% vs. 23.1%) when compared to the two ungated 

images. For the stationary sphere, the four images have similar mean and max AC as 
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expected. For the 33 mm moving sphere, the two amplitude gated images have an 

average improvement of 10.3% and 19.4% in max and mean AC respectively when 

compared to the two ungated images. These improvements increase to 21.5% and 29.5% 

for the 22 mm moving sphere. These comparisons indicate that our in-house respiratory 

gating device has similar ability at recovering AC due to motion blurring as the 

commercially available Anzai system, especially for small spheres/tumors (22 mm). 

Table 3.2 also shows that the results from the 33 mm moving sphere and the stationary 

sphere in the gated image are similar. 

Gated 3mn Anzai Gated 3min MLT-1132 

(a) 
Ungated lOmin 

(b) 
Ungated 3min 

(c) 
Gated 3mtn Anzai 

(d) 
d 3 min MLT-1132 

(e) (f> 
Line Profiles across Two Moving Spheres 

(i) 

(g) (h) 
Line Profile across the Stationary Sphere 

*Un$jated lOmin "••Ungated 3min - • Gated 3min Anzai 3min MLT-1132 

0) 

Figure 3.6: Results from the phantom study: The two moving spheres for the (a) ungated 
12min, (b) ungated 3min, (c) Anzai-amplitude-gated, and (d) MLT1132-amplitude-gated 
image. Their corresponding images for the stationary sphere are shown in (e)-(h), 
respectively. The dashed circles represent the positions of the spheres in the 
corresponding CT images. The line profiles across the two moving spheres and the 
stationary sphere are shown in (i) and (j), respectively. 
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Line profiles across the three spheres in all images (gated and ungated) are shown 

in Figure 3.6 (i) and (j). These line profiles indicate that the two gated images (Anzai and 

MLT-1132) have similar max and min AC thereby exhibiting similar CR for the two 

moving spheres. The line profiles in Figure 3.6(i)&(j) also suggest that the two moving 

spheres have higher CR in the two gated images when compared to the two ungated 

images, while the stationary sphere has similar results in all the four images as expected. 

These results are confirmed by the quantitative comparisons shown in Table 3.2(A)&(B). 

Table 3.2 shows that the two gated images exhibit an average 1.6% difference in CR 

between each other while they have an average 31.5% and 57.9% improvement in CR for 

the 33 mm and 22 mm moving sphere respectively when compared to the two ungated 

images. These comparisons indicate that the two amplitude gating systems have similar 

capabilities of improving the CR in PET images. 

3.4 Discussion 

In this project, we described an in-house respiratory gating device that can be 

used to implement and automate the respiratory amplitude gating technique in PET/CT 

imaging that was previously described by our group [70]. This in-house device consists 

of a commercially available piezoelectric transducer as well as a National Instruments 

data-acquisition device that are controlled by a Labview® GUI software program. This 

device has the ability to detect the patient's respiratory waveform and send triggers to the 

PET list stream at predetermined amplitude settings in each breathing cycle while 
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simultaneously monitoring the accumulated time within the gate. In this regard, this 

device has the advantage of integrating a multitude of features that otherwise would have 

required a commercially available system such as the RPM (Real-time Positioning 

Management system, Varian, Palo Alto, CA) and Anzai system to be interfaced to a 

multitude of components to achieve the same objective. We tested the performance of 

this in-house device by comparing its ability at suppressing respiratory motion artifacts to 

a piecewise commercially available respiratory gating system (Anzai) that was previously 

used [70] using both volunteers and phantom studies. The results from these studies 

showed that our in-house respiratory gating system had similar performance as the Anzai 

system. 

Our in-house respiratory gating system was designed specifically for amplitude 

gating. The reason for using this gating scheme is primarily due to its proposed benefit 

over phase gating techniques as has been shown by Dawood et al [29]. However, our 

Labview® software can also be configured to output triggers into the PET list stream 

whenever the detected respiratory signal crossed a user-set phase range rather than 

amplitude range and hence allowing the device to function as a phase gating system. In 

the phantom study, only one amplitude range was selected to test the performance of this 

• 12 

device which is a requirement for our proposed automatic amplitude gating approach as 

well as the DIBH technique. This device was not designed to generate multiple amplitude 

triggers as in 4D PET/CT acquisition since such gating methods are not recommended 

due to their disadvantages of increased X-ray exposure. 

One potential advantage of our proposed gating device is its low cost when 

compared to other commercially available respiratory gating systems such as the Anzai 



and RPM systems whose costs range in the tens of thousands of dollars. A breakdown of 

the total cost of the system includes: (1) $235 for the MLT-1132 piezoelectric transducer 

from AD Instruments Inc., (2) $1049 for the NI-cDAQ-9172 data-acquisition device from 

National Instruments Corp., (3) $499 for the CompactRIO™ cRIO-9215 module from 

National Instruments Corp., and (4) $2599 for the Labview® Full Development 

environment. The Labview® software is installed in a PC or laptop with the following 

recommended system requirements: Pentium 4 or above, 1GB memory, 40 GB hard disk, 

1024x768 screen and Windows® XP or Vista operating system. The cost of a typical 

laptop that satisfies these requirements is about $628 (http://www.dell.com), bringing the 

total price of all the hardware and software components to $5010. This price constitutes 

less than 10% of the total cost of either the RPM or Anzai systems. 

One disadvantage of our in-house respiratory gating device is its relatively higher 

noise and hence lower SNR in detecting respiratory waveforms when compared to the 

Anzai system. The high noise from the MLT-1132 transducer can be easily identified 

from its frequency responses shown in Figure 3.4(b) and 3.5(b). In these figures, the 

MLT-1132 waveforms always exhibited larger high-frequency components versus the 

Anzai waveforms. In our volunteer and phantom studies, the MLT-1132 transducer 

exhibited a noise level of less than 1 milivolt while the amplitudes of the detected 

respiratory waveforms were usually larger than 20 milivolts. In such cases, a SNR range 

of 20 to 50 was usually recorded. We believe that this SNR is acceptable for amplitude 

gating because the noise component constitutes less than 5% of the total detected 

respiratory signal. However, errors could be perceived to occur whenever the detected 

respiratory signal falls within the preset amplitude range due to the effects of the noise 

http://www.dell.com
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while in reality the patient's respiration has not reached that level. Similarly, errors could 

also exist whenever the detected respiratory signal falls outside the preset amplitude 

range while in reality the patient's respiration level is still within that range. Such sources 

of error could potentially lead to additional blurring in the resultant gated PET images 

and can partly deteriorate the effects of the respiratory gating techniques. To overcome 

these drawbacks, filters can be designed in the Labview® software to suppress the high-

frequency components in the detected waveforms. The addition of such a filter can 

improve the SNR of the detected respiratory signal but at the cost of a phase delay which, 

on the other hand, can also introduce similar errors into the gated images. Since the two 

amplitude gated images (MLT-1132 & Anzai) from the phantom study exhibited similar 

contrast and AC, we feel that the higher noise content in the MLT-1132 detected 

respiratory signal is within an acceptable range and does not greatly affect the image 

quality of the resultant gated images. 

3.5 Conclusion 

In this project, we described an in-house respiratory gating device that can be 

used to implement and automate the amplitude gating technique in PET/CT imaging 

without using any additional specialized devices. This device has the ability to send 

triggers to the PET list stream at pre-determined amplitude settings while simultaneously 

monitoring the accumulated time within the gate. The results from the volunteer and 

phantom studies show that this in-house device has similar performance as the 



commercially available Anzai respiratory gating system. This device also has the added 

advantage of low cost ($5010 for both hardware and software). 
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Chapter 4 

Joint Correction of Respiratory Motion Artifact and 

Partial Volume Effect in Lung/Thoracic PET/CT Imaging 

Objective Respiratory motion artifacts and partial volume effects (PVE) are two 

degrading factors that affect the accuracy of image quantification in PET/CT imaging. In 

this paper, we propose a joint correction approach to improve PET quantification by 

simultaneously correcting for respiratory motion artifacts and PVE in lung/thoracic 

cancer. The objective of this paper is to describe this approach and evaluate its 

performance using simulation and phantom studies. 

Methods The proposed joint correction approach incorporates a model of motion 

blurring, PVE and object size/shape. A motion blurring kernel (MBK) is then estimated 

from the deconvolution of the joint model while the activity concentration (AC) of the 

tumor is estimated from the normalization of the derived MBK. To evaluate the 

performance of this approach, a computer simulation and a phantom study were 

performed while a uniformly-distributed and a sinusoidal motion waveform were used to 

control the tumor/sphere motion respectively. The resultant MBK was compared to the 

true MBK by measuring a correlation coefficient between the two kernels. The measured 

tumor AC derived from the proposed method on the other hand was compared to the true 

AC as well as the ACs in images exhibiting PVE only, motion blurring only and images 

exhibiting both PVE and motion blurring. 

Results For the simulation and phantom studies, the estimated MBK 

approximates the true MBK with a correlation coefficient of 0.94 and 0.92 respectively. 
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In both studies, the tumor ACs following the joint correction technique were similar to 

the true AC with an average difference of 0.4% and 1.0% respectively. Furthermore, the 

tumor ACs on the PVE only images, motion blurring only images and images with both 

effects were on average 70.2% (75%), 54.8% and 49.8% (47.5%) of the true AC 

respectively for the computer simulation (phantom study) study. 

Conclusion The proposed joint correction approach can improve the accuracy of 

PET quantification by simultaneously compensating for the respiratory motion artifacts 

and PVE in lung/thoracic PET/CT imaging. 

4.1 Introduction 

Combined PET/CT imaging plays an important role in the staging and response to 

therapy of various types of cancers. The use of PET/CT imaging in lung/thoracic cancer, 

however, is limited by the patient's respiratory motion artifacts [56, 80] and partial 

volume effects (PVE) [81] both of which result in inaccurate PET image quantification. 

There are two sources of error that can exist due to respiratory motion artifacts; these are 

motion blurring effects and mismatch between the PET and CT images. Motion blurring 

in PET images is primarily caused by object motion during the long scan duration which 

is necessary in PET imaging, while the mismatch between the PET and CT is primarily 

due to the discrepancy between the scan durations of the two imaging modalities [54]. 

PVE, on the other hand, is mainly caused by the finite spatial resolution of PET scanners 

[82]. Due to this limited resolution, PET images underestimate the radiotracer uptake 

when the tumor size is less than 2-3 times the scanner's spatial resolution, which is 
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typically 4-8 mm full width at half maximum (FWHM) on current commercially 

available scanners. 

Several approaches to correct for respiratory motion artifacts in PET/CT imaging 

have recently been introduced. One such approach, known as 4D PET/CT, acquires PET 

and CT data in multiple time frames according to the respiratory phase or amplitude 

captured in each frame [59, 83]. Since each frame captures only a small portion of the 

whole motion, these 4-D PET/CT images can be regarded as motion-free images. 

However, a major problem of this approach is that each single frame only contains a 

small amount of counts and therefore is characterized by low signal-to-noise ratio (SNR). 

In this regard, various deformable registration techniques have been proposed to register 

these frames to one another in an effort to generate a motion-free PET image with 

improved SNR [59, 83]. Another approach that has been proposed to achieve the same 

objective is to incorporate the motion vectors between the different frames as part of the 

reconstruction algorithm to generate a final motion-free image [66, 67], All of these 

techniques however, suffer from high patient X-ray exposure due to the additional 4-D 

CT scan as well as inaccuracies in the image registration process due to the low SNR of 

each PET/CT frame. To overcome these drawbacks, techniques maximizing the acquired 

data in a single phase/amplitude bin such as repeated breath hold (DIBH) or increasing 

scan duration in a single bin have recently been proposed and implemented [37-39]. With 

such techniques, PET/CT data is acquired in a single phase/amplitude while maximizing 

the duty cycle of this specific gate and therefore results in reduced patient X-ray exposure 

and no requirement of deformable registration. In all of these approaches however, 

respiratory monitoring devices are used to acquire the patient's breathing waveform. 
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Furthermore, signal processing devices may be required in some of these techniques to 

generate triggers in order to indicate the onset of each frame or gate. 

As with motion correction techniques, several methods to compensate for PVE 

have also been proposed in PET/CT imaging. These methods can be divided into two 

categories: those applied at the regional level and those applied at the pixel level [82], 

The PVE correction methods applied at the regional level do not yield PVE-corrected 

images but rather PVE-corrected regional values (e.g. max or mean AC) which are 

suitable for the quantification of tumor uptake but not for visual analysis. In this regard, 

images with PVE correction techniques that are applied at the regional level should not 

be used for visual assessment. Examples of the most commonly used methods that utilize 

this approach are the recovery coefficient [84] and geometric transfer matrix [85] largely 

due to their relative ease of implementation. Both of these methods strongly rely on the 

technique used to measure the tumor size and shape and its corresponding accuracy, and 

therefore require precise delineation of the tumor since different tumor sizes and shapes 

may result in drastically different correction factors. Other approaches that are used to 

correct PVE include deconvolution [86], fitting methods [87] and modeling the PVE 

during reconstruction [44], These techniques are either applied at the regional or pixel 

level to correct for the PVE with certain success and limitations. However, none of these 

approaches can simultaneously correct for PVE as well as respiratory motion artifacts as 

applied to lung/thoracic cancer. 

Recently, a combined motion and PVE correction approach was proposed by 

Wiemker et al to correct for both the motion blurring and PVE effects in pulmonary 

nodules [88]. In that paper, both PVE and motion blurring were corrected by delineating 
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the tumor size and shape from the CT image while a point spread function (PSF) which 

incorporated both the PET image resolution and motion blurring was estimated and used 

to generate a corrected AC. Such an approach however, assumes that the motion blurring 

is a Gaussian function (which is not usually the case) and requires that a manual 

registration step is performed to maximize the correlation between the PET and CT data. 

To our knowledge, no other investigation has considered the simultaneous correction of 

respiratory motion and PVE. 

In this project, we propose a novel approach to improve the accuracy of PET 

image quantification by simultaneously correcting for respiratory motion artifacts and 

PVE in lung/thoracic tumors. The proposed method does not make any assumptions 

about the motion blurring function or require any image registration step while at the 

same time has the ability to jointly correct for PVE and motion blurring. The proposed 

approach is applied at the regional rather than the pixel level to generate the corrected AC 

and in this regard is suitable for lesion quantification only and not image visualization. 

The objective of this paper is to describe how such a joint correction approach is 

formulated and evaluate its ability to improve the accuracy of PET image quantification 

using simulation and phantom studies. 

4.2 Materials and Methods 

4.2.1 The Joint Correction Approach 
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In this section, we propose a mathematical framework to correct for both the 

respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging. 

In PET/CT imaging, PET images are usually much more blurred when compared 

to corresponding CT images. This blurring effect, known as PVE, is primarily caused by 

the finite spatial resolution of the PET scanners, which is not only limited by the detector 

size/design (PET intrinsic resolution) but also affected by the reconstruction parameters. 

In this regard, the resultant PET image can be modeled as the convolution between the 

PSF of the PET system and the true PET image (object) that would be obtained if no PVE 

existed: 

Iobs=Ilme®PSF (4.1) 

where I0bs is the observed PET image, Itrue is the true PET image (object) and 

® represents the convolution process. The PSF represents the point spread function of the 

system which includes the effects of both the intrinsic resolution of the PET scanner and 

the reconstruction algorithm. 

Under the effects of respiratory motion, lung/thoracic lesions will look even more 

blurred along the tumor motion direction. Since the patient's respiratory motion is usually 

non-rigid, a single motion blurring function is insufficient to represent the motion 

blurring effect of the whole body since different body parts can have different motions. 

However, in this study we will assume that the whole lung lesion has a locally rigid 

motion due to its small size. In this regard, the motion blurring effect for this lung lesion 

can be modeled as an additional convolution between the PVE-blurred PET image and 

the motion blurring kernel (MBK) defined in a region-of-interest (ROI) drawn around the 

tumor: 
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(4.2) 

This equation from here onward is referred to as the overall-blurring equation since it 

represents the overall blurring effect in lung/thoracic PET imaging (PVE+motion). 

For lung/thoracic lesions, the following assumptions are made: (1) The lesion has 

a homogeneous AC distribution and any non-homogeneity in the observed PET image is 

due to the effect of PVE and motion blurring, and (2) negligible radiotracer uptake exists 

in the surrounding background since this area is mainly composed of lung tissue with 

very low activity. Based on these assumptions, an ideal PET image (Itrue) of a tumor with 

uniform activity concentration that is not affected by PVE nor motion blurring can be 

represented as: 

where IF represents the indicator function of the lung lesion which has unit values inside 

the lesion but zeros outside the tumor. The IF can be derived from the delineation of the 

tumor in the corresponding CT image. In addition, ACmean represents the mean AC 

distribution of the lung lesion which is usually not affected as much as the maximum AC. 

When (4.2) and (4.3) are combined with one another, we have: 

This equation shows that the observed PET image depends on the convolution between 

two terms. The first term, IF® PSF, can be derived from the tumor delineation on the 

CT image and measuring the PET scanner resolution respectively. The second term 

(ACmeanx MBK), on the other hand, can be calculated by deconvolving the observed PET 

image by the first term in equation (4.4). In order to suppress the noise amplification 

(4.3) 

Kbs = (ACmean x IF) <S> PSF <8> MBK 
= (IF ® PSF) <g> (ACmean x MBK) 

(4.4) 
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which is a characteristic of the deconvolution operation, we employ an expectation 

maximization (EM) deconvolution algorithm which is an iterative approach [60]: 

if g(x,y) = h(x,y)®f(x,y) 

then fM(x,y) = fk(x,y)x h(-x,-y)® ^ ^ 1' (4.5) 
h(x,y)® fk(x,yy\ 

where fk(x,y) is the estimation of f (x ,y ) during the Ath iteration and any multiplication and 

division are point-by-point within the image. In this paper, 20 iterations were selected 

during the implementation of this algorithm which has been tested to be sufficient to 

reach convergence [60]. In the above equation, we had the following substitutes: 

g(x,y) = Iobs 

h(x,y) = IF®PSF (4.6) 
f(x,y) = ACmeanxMBK 

Since the MBK represents the probability of a tumor to appear in a specific location, its 

integration over the whole space/image/ROI should be equal to unity: 

JJMBK(x, y)dxdy = 1 (4.7) 

In this regard, the mean activity concentration of the tumor ACmean can be derived from 

the normalization of f(x,y)\ 

ACmean = jj / (x, y)dxdy = \\{ACmean x MBK)dxdy (4.8) 

and the MBK can then be simultaneously calculated from 

MBK = f(x,y)/ACmean (4.9) 

In summary, the whole process of the proposed joint correction approach consists 

of the following steps: (1) delineation of the lung lesion on the CT image to generate an 

indicator function IF, (2) determination of the PET image spatial resolution PSF, and (3) 
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incorporation of IF and PSF in the overall-blurring equation (4.4) to derive the mean 

tumor AC and MBK by deconvolution. The by-product of this joint correction approach 

is the MBK which can be used for other applications such as motion control, motion 

extent estimation and motion trajectory monitoring. In this project, both a computer 

simulation and a phantom study will be performed to evaluate the ability of this proposed 

joint correction approach to improve PET image quantification. 

4.2.2 PET Spatial Resolution 

A GE Discovery STE PET/CT scanner (GE Healthcare, Waukesha, Wisconsin, 

USA) was used for the phantom study in this paper. The PET gantry of this scanner 

consists of 24 rings of 560 detector crystals per ring and the ring diameter is 88.6 cm. The 

PET component has a trans-axial FOV of 70 cm and a 15.7 cm axial extent. 

In order to obtain the spatial resolution of a PET image reconstructed using a 

specific set of parameters, a point source is usually imaged and its FWHM is measured 

after image reconstruction using a predetermined reconstruction parameter set. In this 

paper, however, a more practical and automated approach is employed to measure the 

PET resolution which utilizes the routinely available uniform cylindrical phantom [89]. 

This resolution measurement approach enables the derivation of a scanner PSF from 

deconvolving the PET image from the corresponding CT image in Fourier transform 

space. The FWHM of the derived PSF is then measured using a Gaussian fit to represent 

the PET image resolution. This approach has been tested to be robust and accurate [89]. 

Figure 4.1 shows the results from the cylindrical phantom measurement for the scanner 

used in this paper. The CT image, PET image and the derived PSF image are shown in 
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Figure 4.1(A) while the results from the Gaussian fitting are shown in Figure 4.1(B) for 

both the radial and tangential line profiles through the PSF image. The results were based 

on the following reconstruction parameters: 3D OSEM (2 iterations, 20 subsets), 256 mm 

FOV, 256x256 matrix size, 2-mm filtering. These parameters were chosen since our 

phantom images were generated using these parameters. The two Gaussian fittings 

indicate that the radial and tangential FWHM of the PSF are 4.5 and 4.7 mm respectively. 

Therefore, in the phantom study of this paper, a PSF with 4.6 mm FWHM is used to 

represent the PET spatial resolution. 

CT PET PSF 

B 

Radial Line Profile 

* Measured Data] 
—Gaussian Fit 

Tangential Line Profile 

* Measured Data 
--•Gaussian Fit 

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 

Figure 4.1: Spatial resolution measurement for the PET scanner. (A) The CT image, PET 
image and the derived point spread function (PSF). (B) The radial and tangential line 
profiles across the PSF image and the Gaussian fitting. 
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4.2.3 Computer Simulation 

The objective of the computer simulation is to test the performance of the 

proposed joint correction approach and evaluate its ability to improve the accuracy in 

PET quantification. All the simulation codes were written in a Matlab® environment 

using Jeff Fessler's Image Reconstruction Toolbox [90]. 

A total of 9 combinations of different tumor shapes (square, circle and triangle) 

and sizes (side/diameter: 30, 20 and 10 mm) were simultaneously simulated in a PET/CT 

scanner. These tumors were simulated to contain 10 kBq/cm radioactivity concentration. 

No background radioactivity was simulated in this study. A CT image was first captured 

when the tumors were stationary while during the PET scan, a 2-cm uniformly distributed 

motion function was applied in the vertical direction to control the motions of all the 

simulated tumors. A PSF with 5 mm FWHM Gaussian distribution was applied during 

the PET acquisition to simulate the finite spatial resolution or PVE of the PET scanner. 

After data acquisition, the CT and PET images were reconstructed using FBP and OSEM 

algorithms (2 iterations, 21 subsets) respectively. The reconstruction FOV was selected 

as 256 mm while a 256x256 and 512x512 matrix size were used for PET and CT 

reconstructions respectively. The reconstructed PET image was then upsampled to a 

512x512 matrix size corresponding to the CT image. For each simulated tumor, a square 

ROI was drawn around the tumor and an IF was delineated on the corresponding CT 

image. The derived IF as well as the scanner PSF (5 mm FWHM Gaussian) were then 

incorporated into equations (4.4) and (4.5) to estimate the PET AC and MBK. 

For each simulated tumor (shape and size), the estimated AC obtained using the 

proposed joint correction approach was compared to the true simulated AC. Furthermore, 
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the estimated MBK was compared to the true MBK by calculating the correlation 

coefficient between the two MBKs to represent a measurement of their similarity. For 

reference purposes, a PET image that had PVE only (no motion was simulated) as well as 

a PET image that had motion blurring only (no PVE was simulated) were also simulated 

in this study and reconstructed using the same reconstruction parameters. The average 

AC for each simulated tumor on these two PET images was also calculated based on a 

ROI drawn on the CT anatomical image. The same simulation was repeated 50 times and 

a standard deviation was calculated for each tumor AC on each PET image. An ANOVA 

test was conducted among the tumor ACs derived from the joint correction approach, 

PVE only images, motion only images and PET images with both motion blurring and 

PVE in order to determine whether their differences were statistically significant. 

4.2.4 Phantom Study 

The objective of the phantom study is to evaluate the performance of the proposed 

joint correction approach in a controlled pseudo-clinical environment. 

The phantom consisted of two moving spheres (33 and 22 mm diameter) which 

were attached to a computer-controlled platform [69]. The platform was driven by a 

sinusoidal waveform which translated the two spheres in the left-right direction on the 

transaxial plane. The input waveform had a 2 cm peak-to-valley amplitude and a period 

of 5 seconds. The two spheres were filled with 18F-FDG water with an activity 

concentration of 39.7 kBq/cm . This setup approximated two moving lung lesions. The 

setup of the phantom study is shown in Figure 4.2 with the two spheres placed one after 

the other along the axial direction (the smaller sphere is hidden behind the bigger sphere). 
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The phantom was placed in the central FOV of the PET/CT scanner and a CT 

scan was first captured when the two spheres were stationary. PET data were acquired 

twice using 3-D mode. During the first scan, the phantom was moving according to the 

controlled motion waveform while during the second scan no motion waveform was 

applied. The duration of both scans was set to 3 minutes based on the standard clinical 

protocols in our institution. The aim of the second PET scan was to generate a PET image 

without any motion blur (PVE only image) for reference purposes. After data acquisition, 

the two PET images as well as the CT image were reconstructed using OSEM (2 

iterations, 20 subsets, and default filter) and FBP respectively. The matrix size used for 

PET and CT reconstructions were 256x256 and 512x512 respectively while the PET 

image was then upsampled to a 512x512 size corresponding to the CT image. All 

reconstructions were performed using a FOV of 256 mm. 

For each sphere, a cubic volume-of-interest (VOI) was drawn around the sphere 

and an IF was delineated based on the CT image. The sphere segmentation was based on 

CT numbers of ±8 that represented water which was then further refined by the 

comparison between the segmented and the true sphere volumes. The derived IF as well 

as the measured scanner PSF in section 4.2.2 were then incorporated into equations (4.4) 

and (4.5) to estimate the true PET AC and MBK. For reference, the maximum and mean 

AC of both spheres on the PET image with PVE only and the PET image with both 

motion blurring and PVE were also calculated. Furthermore, the derived MBK was 

compared to the true MBK and a correlation coefficient was determined. 
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Figure 4.2: The setup of the phantom study. 

4.3 Results 

4.3.1 Computer Simulation 

The CT image and PET image reconstructed from one of the 50 simulations are 

shown in Figure 4.3(A) and (B) respectively. All the simulated shapes in Figure 4.3(B) 

exhibit an elongated blurring artifact in the vertical direction due to motion. The MBK 

estimated from the joint correction approach is displayed in Figure 4.3(C). This MBK 

indicates that the motion of these tumors is uniformly distributed along the vertical 

direction and has an amplitude of 2 cm (40 pixels with 0.5 mm/pixel). This result 
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matches the true motion blurring function applied in this simulation study. The 

correlation coefficients between the estimated and true MBK for all the tumors in the 50 

simulations are summarized in Table 4.1. This table shows that the average correlation 

coefficient between the two MBK is 0.94±0.004 suggesting that the MBK derived from 

the proposed joint correction method approximates the true MBK very well. 

The PET images with PVE only, motion blurring only and the PET image after 

joint correction are displayed in Figure 4.3(D)-(F) respectively. These three PET images 

as well as the reconstructed PET image in Figure 4.3(B) are displayed using the same 

color scale. One thing to note here is that the PET image after joint correction (Figure 

4.3F) is not a real PET image but rather only a binary image (IF) multiplied by the 

derived ACs (Equation 4.3). Since the proposed joint correction approach is applied at 

the regional rather than the pixel level, the results produce a corrected AC value rather 

than an image. We have however opted, to show this corrected value using a visual 

representation (Figure 4.3F) in addition to the numerical result shown in Table 4.1. The 

average ACs for all tumors on the four PET images are summarized in Table 4.1. These 

results indicate that the PET image generated using the joint correction method can 

recover the tumor AC to an average of 99.6±0.7% of the true AC while the PET images 

with PVE only and motion blurring only can only recover the tumor AC to 70.2±0.7% 

and 54.8±0.6% of the true tumor AC respectively. The PET image with both motion 

blurring and PVE, on the other hand, only exhibits around 49.8±0.5% of the true tumor 

AC in this simulation. The result from the ANOVA test shows that the AC differences 

among these four PET images are statistically significant (p<0.05). 
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CO LU 

Figure 4.3: Results from the computer simulation. (A) The CT image, (B) the PET image 
with motion blurring and PVE, (C) the derived motion blurring kernel (MBK), (D) the 
PET images with PVE only, (E) the PET image with motion blurring only and (F) the 
PET image generated using the joint correction method. 
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4.3.2 Phantom Study 

The PET images that had both motion blurring and PVE, PVE only and the image 

following the proposed joint correction method (Equation 4.3) are shown in Figure 

4.4(A)-(C) respectively for both spheres (top row: 33 mm spheres, bottom row: 22 mm 

spheres). All the PET images are normalized to the same color scale for display. Similar 

to Figure 4.3(F), Figure 4.4(C) does not represent a real PET image but rather is used for 

reference only. Quantitative results of the AC for both spheres in all the PET images are 

shown in Table 4.2. This table indicates that the average AC derived from the joint 

correction approach approximates the true AC very well with an average difference of 

only 1%. The other two PET images (with PVE only and with both motion blurring and 

PVE) however, exhibit an average of 25% and 53% decrease in their average AC from 

the true values respectively. 

Table 4.2 
Results from the Phantom Study: Activity Concentration (AC) 

(All data are normalized to the true AC) 

Joint 
Correction 

Motion 
True Joint 

Correction Correction No Correction Joint 
Correction Only 

Average AC 
(33 mm sphere) 1.00 0.99 0.77 0.52 

Average AC 
(22 mm sphere) 1.00 0.99 0.73 0.43 

Maximum AC 
(33 mm sphere) N/A N/A 0.95 0.89 

Maximum AC 
(22 mm sphere) N/A N/A 0.85 0.72 
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Figure 4.4: Results from the phantom study. The two spheres (top row: 33 mm and 
bottom row: 22 mm) on (A) the PET image with motion blurring and PVE, (B) the PET 
image with PVE only, and (C) the PET image generated using the joint correction 
method. The estimated MBK from the joint correction approach is shown in (D). 
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The estimated MBK from the proposed joint correction approach is displayed in 

Figure 4.4(D). This MBK has a 2-cm amplitude and also shows a non-uniform 

distribution consistent with the sinusoidal motion profile that was applied to the spheres. 

The correlation coefficient between the estimated and true MBK is 0.92 indicating that 

the estimated MBK approximates the true MBK very well. 

4.4 Discussion 

In this project, we proposed a novel approach to improve the accuracy of PET 

image quantification by jointly correcting for respiratory motion artifacts and PVE in 

lung/thoracic PET/CT imaging. This method incorporates a model for PVE, motion 

blurring and object size/shape to estimate the true tumor AC and MBK using an EM 

deconvolution algorithm. In order to test the performance of this approach and evaluate 

its ability to improve the accuracy in PET quantification, a computer simulation and a 

phantom study were conducted. The results from these studies showed that the corrected 

tumor AC on the resultant PET images and the derived MBKs approximated the true 

injected tumor AC and the true MBKs very well. 

The proposed joint correction approach is classified among those techniques that 

are applied at the regional rather than the pixel level [82], In this regard, this approach 

produces a corrected AC or SUV value rather than a corrected PET image. In this regard, 

the proposed joint correction approach should be utilized to improve the accuracy of PET 

lesion quantification and not to generate a corrected image that is adequate for 

visualization. The corrected AC or SUV value, on the other hand, can then be multiplied 
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by the IF (Equation 4.3) to generate a "pseudo" PET image that is both motion- and PVE-

corrected. This pseudo PET image however, should only be used for quantification 

purposes and not for visualization 

One of the main advantages of this proposed technique is that it can correct for 

respiratory motion artifacts and PVE without the need to acquire the patient's respiratory 

waveform and therefore does not necessitate the use of motion monitoring devices. 

Furthermore, unlike other motion correction techniques, this approach does not require a 

4D CT scan and therefore does not result in high patient X-ray exposure nor require the 

use of deformable registration. Another advantage of this technique is that the trajectory 

and extent of the lesion motion (which are usually important components for radiation 

therapy planning using PET/CT) can be determined from the MBK, which is the by-

product of the proposed approach, since it represents the probability distribution of the 

tumor position at a specific location. The caveat in this advantage however, is that the 

direction of motion can not be determined from the MBK. 

Wiemker et al [88] have proposed a similar approach to correct for respiratory 

motion blurring and PVE in PET/CT imaging which also does not require the acquisition 

of the patient's motion waveform nor a 4D CT scan. Their approach however, 

necessitates a local registration refinement step to maximize the correlation between the 

PET and CT images which could be affected by the noise content in the PET images. Our 

proposed approach, on the other hand, does not require such a registration step but rather 

automatically resolves any such mismatch during the joint correction process which is 

represented by the probability distribution of the derived MBK. Figure 4 proves this 

capability by showing that although the PET and CT were acquired with a 1cm mismatch 
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(Figure 4D shows that the average location of the MBK has a 1cm position shift with 

respect to the CT), the results of the proposed joint motion and PVE correction technique 

can automatically resolve this mismatch accurately as shown on Figure 4.4C and table 

4.2. Furthermore, the approach of Wiemker et al [88] assumes that the motion blurring in 

the PET image can be approximated by a Gaussian blurring function. An analysis of the 

patient's respiratory motion blurring functions however shows that the MBK can not be 

described using a Gaussian function but rather using a motion blurring function that is 

caused by a near-sinusoidal respiratory motion. Furthermore, since different patients have 

different respiratory styles and can exhibit different motion blurring effects, the MBK can 

not be accurately estimated unless the patient's respiratory waveform is acquired using 

respiratory monitoring devices. Our joint correction approach, on the other hand, does not 

impose any specific restrictions to represent the MBK but rather treats this MBK as an 

unknown in the overall-blurring equation and estimates it during the joint correction 

process. In this regard, this joint correction approach does not suffer from any 

inaccuracies in the estimation of the motion blurring function. 

An implicit assumption of the proposed technique is that the true tumor volume 

on the PET image can be derived from the corresponding CT image. Such an assumption 

although debatable is the basis behind the well established and popular "recovery 

coefficient" approach for correcting for PVE as well as all segmentation techniques that 

rely on CT images to derive the PET tumor volume for PTV determination [84, 88, 91-

93]. In these techniques, tumors are usually assumed to be spherical and the diameters of 

the tumors are estimated from CT while the uptake is assumed to be uniform throughout 

the tumor. This assumption allowed us to accurately delineate the tumor boundaries on 
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the CT rather than on the PET image to derive the IF necessary to calculate the corrected 

mean activity concentration and MBK. The delineation of the tumor boundary from the 

CT image was relatively easy to accomplish and had been automated in both of our 

computer simulation and phantom studies since the CT numbers of the simulated tumors 

or spheres were largely different from those of the background. In real clinical scans 

however, this process may be more difficult to achieve, especially when the lesion is 

attached to other organs such as the lung wall, hilum or diaphragm. In such cases, the aid 

of manual delineation techniques will be required and necessitate more user interaction. 

Techniques to achieve this task have been discussed elsewhere with various degrees of 

success[94-97]. 

In this project, no clinical studies were performed to evaluate the performance of 

the proposed joint correction technique, primarily due to the fact that the true tumor AC 

or SUV is not known a-priori. However, in order to assess the effect of the proposed 

approach on clinical data, the SUVs of 2 patient studies with 3 lung lesions were 

evaluated using the joint correction approach and the results were compared to those 

derived for the PET images without any correction as well as those with motion-corrected 

PET images using a respiratory amplitude gating approach [70]. The results from these 

studies showed that the tumor SUVs from the joint correction approach (7.5, 8.9 and 6.3) 

are higher than both of the PET images without correction (4.5, 5.4 and 3.1) and the 

amplitude-gated images (5.3, 6.5 and 4.0). These results suggest that the proposed joint 

correction approach may improve the accuracy of PET image quantification if used in 

clinical studies. 
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One simplification that was adopted for the computer simulation and the phantom 

study in this paper was that the motions of the tumors/spheres were defined as a ID 

motion. However, our proposed joint motion-PVE joint correction method can also be 

applied to 2D and 3D motions with similar performance. This was confirmed using 

computer simulations (data not shown). 

One disadvantage of the joint correction approach is that no background activity 

was assumed in the derivation of the overall-blurring equation. This assumption was 

based on the fact that the radiotracer uptake in the lung background is relatively 

negligible particularly in F18-FDG imaging. This assumption however, is sometimes not 

exactly true and might affect the accuracy of the proposed approach especially when the 

lesion is close to other organs with high activity concentration. One method to solve this 

problem is to modify the IF in the overall-blurring equation by incorporating the 

contributions of the surrounding tissues in the IF based on a measured tumor-to-

background ratio (TBR). The measurement of TBR for lung lesion however, is also 

affected by the PVE and motion blurring and can not be accurately estimated before 

motion and PVE correction. 

One limitation of the proposed approach in this paper is that the PSF used in the 

overall blurring equation is associated with a specific scanner and can only be used for a 

specific combination of reconstruction parameters: 3D OSEM, 2 iterations, 20 subsets, 

256 mm FOV, 256x256 matrix size and 2-mm filtering. For other scanner models and 

reconstruction parameters, a different PSF has to be derived. A practical method to do 

this is to create PSF look-up tables corresponding to various scanner models and 

reconstruction parameter combinations. PSFs for reconstruction parameters that are not 
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part of a look-up table can then be interpolated or extrapolated from the existing data 

points. 

Another limitation of the proposed approach is its implicit assumption that the 

tumor is confined to rigid motion only throughout the CT and PET data acquisitions. This 

assumption is necessary to ensure that the contour corresponding to the lesion 

segmentation form the CT image maintains its same shape and size the same on the PET 

image. Such an assumption is valid for solid lesions which do not undergo any 

deformations during the patient's respiratory cycle. For non-solid lesions however, the 

tumor AC will be over- or under-estimated depending on the tumor size and shape that is 

captured on the CT image due to its expansion or compression. This over- or under-

estimation in tumor AC eventually can lead to inaccurate PET image quantification. One 

approach to solve this problem is to acquire phase matched CT and PET images since 

such a process can capture a similar tumor size and shape during the two imaging 

modalities. This approach however, suffers from the same problems as 4D PET/CT 

acquisition and therefore is not recommended in this project. 

3.5 Conclusion 

In this project, we proposed a joint correction approach which can simultaneously 

compensate for the respiratory motion artifacts and PVE in lung/thoracic PET/CT 

imaging. It has the potential to increase the accuracy of PET quantification and improve 

PET image resolution and contrast. 
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Chapter 5 

Summary and Future Work 

5.1 Summary 

In this thesis, I presented techniques that can be used to compensate for 

respiratory motion blurring artifacts in lung/thoracic PET/CT imaging. The primary 

contributions of this thesis are as follows: 

1. An automated respiratory amplitude gating approach is proposed in order to 

implement the amplitude gating technique which is current unavailable in any 

PET/CT scanners. This approach can automatically match the respiratory 

amplitude capture during CT and PET acquisition. This proposed approach does 

not suffer from the limitations of other existing respiratory gating techniques: 

increase of patient radiation exposure, inaccuracy of deformable registration, 

patient non-compliance problem, and extensive interaction between patients and 

technologists during PET/CT acquisition. 

2. An in-house respiratory gating hardware/software system is designed and 

implemented. Compared to other commercially available device, this system is 

able to generate the necessary triggers while simultaneously monitoring the 

accumulated time within the preset amplitude range in order to facilitate the 

implementation of amplitude gating. This trigger generation scheme is 

unavailable in any other commercially available device. 
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3. A joint motion blurring and partial volume blurring correction approach is 

proposed which can improve the accuracy of PET image quantification by 

simultaneously eliminating the effects from the respiratory motion and PET finite 

spatial resolution in lung/thoracic PET/CT imaging. This joint correction 

approach is the first approach that simultaneously compensates for all of the 

following effects in one single correction process: PET-CT mismatch, PET 

motion blurring, and finite spatial resolution of PET scanner. 

Based on these contributions, this thesis is divided into three major sections. The 

first section focused on the methodology design of an automated respiratory amplitude 

gating approach that is used in whole-body PET/CT scanners. This respiratory amplitude 

gating approach is referred to as the free-breathing amplitude gating (FBAG) approach. 

The design features of this FBAG approach include: 

• This FBAG approach is used to implement the respiratory amplitude gating 

technique in PET/CT imaging which is currently unavailable in any PET/CT 

scanners, rather than phase gating approach which has already been accepted as 

standard gating approach in PET/CT scanners. 

• This FBAG approach can automatically select a matched amplitude range (gate) 

during the list-mode PET scan corresponding to the respiratory motion amplitude 

captured during the CT scan thereby ensuring accurate attenuation correction for 

PET data and generation of respiration-matched PET/CT images. 

• The proposed FBAG approach does not require any interaction between the 

patient and technologist. In this regard, the patients can breathe freely during the 
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entire PET/CT data acquisition and the patient's non-compliance problem in 

DIBH techniques is automatically resolved. 

• The proposed FBAG approach does not require the acquisition of either 4-D CT 

scan or 4-D PET scan, therefore this approach does not increase the patient X-ray 

radiation exposure or require any deformable image registration methods which 

are characterized by inaccuracy and non-convergence. 

• The proposed FBAG approach does not suffer from the baseline-drift problem of 

the patient's respiratory waveform which exists in all PET/CT respiratory gating 

approaches (phase gating and amplitude gating). This FBAG approach resolves 

this baseline-drift problem by using a PET-first protocol while the whole PET 

session is divided into two parts: regular PET and list-mode PET. The CT session 

is acquired following the regular PET acquisition but before the list-mode PET 

scan thereby ensuring the matched motion amplitude captured during CT and list-

mode PET. 

The performance of the proposed FBAG approach is tested and evaluated using a 

phantom study as well as patient studies. The results from these studies show that this 

proposed FBAG approach can be used to suppress the respiratory motion artifacts and 

improve the accuracy of PET image quantification. 

The second section of this thesis focused on the hardware and software design and 

implementation of an in-house cost-efficient respiratory gating device. This respiratory 

gating device can be used to facilitate the implementation and automation of the proposed 

FBAG approach in the first topic. The design features of this in-house device are: 



125 

• The in-house respiratory gating device consisted of a piezo-electric respiratory 

transducer coupled to a National Instruments signal processing device which is 

under the control of an in-house Labview® software program. 

• The in-house respiratory gating device can detect the patient's respiratory cycles 

and generate the necessary triggers corresponding to both the beginning and 

ending stages of a preset amplitude range while simultaneously monitoring the 

total accumulated time within this preset amplitude range. This trigger generation 

scheme is currently unavailable in any commercial respiratory gating devices. 

• An in-house program is designed using C/C++ programming in order to resort the 

acquired PET data sequence in such a way that only the PET data acquired within 

the preset amplitude range can be extracted and reconstructed in order to generate 

an amplitude-gated PET image. 

• The in-house respiratory gating device has the added advantages of low cost and 

simplicity. The same capabilities will require the commercially available 

respiratory gating devices to be interfaced to other signal processing devices in 

order to generate the necessary triggers to realize the FBAG approach proposed in 

the first section. 

This in-house cost-efficient respiratory gating device has been tested using volunteer 

studies and a phantom study. The results from these studies show that this respiratory 

gating device can detect similar respiratory waveforms to commercially available devices 

and is able to generate the necessary triggers to facilitate the implementation of the 

proposed FBAG technique. 
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The third section of this thesis focused on the mathematical manipulation and 

algorithm design for a joint correction approach that can improve the accuracy of PET 

image quantification by simultaneously compensating for the respiratory motion artifacts 

and partial volume effect (PVE) in PET/CT imaging. The design features of this joint 

correction approach are: 

• The proposed joint motion-PVE correction approach consists of a motion blurring 

model, a PVE blurring model and the lung/thoracic lesion size/shape. The true 

tumor activity concentration (AC) as well as the tumor motion blurring kernel 

(MBK) can be estimated by deconvolution of an overall-blurring equation. 

• An expectation maximization (EM)-type algorithm is employed to deconvolve the 

overall-blurring equation to estimate the true tumor AC and MBK. The EM-type 

algorithm is specifically used in this joint correction approach to suppress the 

noise amplification which is a character of any deconvolution method. 

• A point spread function (PSF) needs to be determined for the PET component of 

the PET/CT scanner before the application of the proposed joint correction 

approach. The determination of the PSF is based on a deconvolution method in 

Fourier transform space and a Gaussian fit method applied to the derived PSF 

image. 

The performance of this proposed joint motion-PVE correction approach is tested and 

evaluated using computer simulations as well as a phantom study. The results from these 

studies show that this joint correction approach can be used in lung/thoracic PET/CT 

imaging to correct for both the respiratory motion artifacts and PVE simultaneously 

thereby improving the accuracy of PET image quantification. 
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5.2 Future Work 

Approach to compensate for respiratory motion artifacts in PET/CT imaging 

remains to be a popular research topic in recently years. This is primarily due to the 

reason that respiratory motion artifacts can greatly affect the accuracy of quantification of 

PET/CT images which eventually results in inaccurate lung/thoracic cancer diagnosis, 

staging and evaluation of therapy responses. As can be seen from the three major sections 

of this thesis (Chapter 2-4), each proposed motion compensation method or technique has 

its own advantages but still suffers from other drawbacks or limitations. Currently there 

are no methods that can solve all the existing problems without introducing new 

limitations. In this regard, this section will focus on presenting some fresh ideas that may 

become future research topics in PET/CT motion compensation field. 

5.2.1 Free Breath Hold Technique 

The motivation of the proposed FBAG approach in Chapter 2 of this thesis is that 

the existing DIBH technique requires an extensive patient-technologist interaction in 

order to acquire the CT and PET data when the patients are holding their breath at deep 

inspiration. Using the proposed FBAG approach, the patients can breathe freely and no 

patient non-compliance problem exists any more since this technique does not require 

any interaction between the patients and technologist. However, this free-breathing 

scheme also poses a new limitation: the duty cycle of a preset amplitude range will be 

very low if inappropriate motion amplitudes are captured during the CT acquisition, i.e. 

the mid-inspiration or mid-expiration. In such cases, either insufficient amount of 
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coincidence events can be acquired within the preset amplitude range or longer scan 

duration will be required to accumulate sufficient counts (3 minutes of data). 

In order to avoid capturing such inappropriate motion amplitudes during CT scan 

and use these motion amplitudes to select a corresponding amplitude range during the 

list-mode PET scan as used in the FBAG approach, a technique similar to DIBH but 

requires some patient training session can be proposed as follows: (1) capture the 

patient's respiratory motion amplitude when the patient is holding his/her breath at end-

inspiration or end-expiration during the CT scan, (2) provide visual feedback to the 

patient during the list-mode PET acquisition and request the patient to try his/her best to 

repeatedly hold the breath at a similar motion amplitude level (or amplitude range) as 

captured during CT, (3) generate the same triggers as the FBAG approach in both the 

beginning and ending stages of the preset amplitude range and insert the triggers into the 

PET list-mode data. This technique only requires the patient's compliance during the CT 

acquisition rather than the whole PET/CT sessions which is required by the DIBH 

technique. In this regard, capturing inappropriate motion amplitude (mid-inspiration / 

expiration) can be avoided during the CT scan. Furthermore, although this technique 

requires the patient to hold his breath at a certain amplitude level either during the PET 

scan, there will be no trouble if the patient fails to hold his breath since triggers will be 

generated if the patient's respiration falls out of the preset amplitude range. 

This proposed amplitude gating technique can be referred to as the "visual 

feedback free breath hold" or "free breath hold" since this technique does not require the 

patients to hold their breath for any certain amount of time but rather request them to 

"freely" hold their breath. As the FBAG approach, this free breath hold technique does 
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not require extensive interaction between the patients and technologist either but has the 

added advantage of higher duty cycles of the preset amplitude range since no 

inappropriate motion amplitude will be captured during the CT scan. Unlike the FBAG 

approach, this free breath hold technique does require the interaction between the patient 

and technologist during the CT scan. However, since the CT scan usually takes a very 

short time (5-15 seconds) to complete when compared to the PET scan (3 minutes/bed), 

we believe that this interaction does not greatly affect the implementation of this free 

breath hold technique. The performance of this free breath hold technique needs to be 

tested and evaluated using patient studies in the future. 

5.2.2 Clinical Evaluation of the Joint Correction Approach 

Although the proposed joint motion-PVE correction approach in Chapter 4 has 

been tested and evaluated using a computer simulation and a phantom study, no clinical 

evaluation of the performance of this approach has even been conducted. When applied 

to patient applications, this joint correction approach may suffer from the following 

problems or limitations: 

• Difficulties to delineate the lung lesions from the CT image. When the lesion is 

attached to other organs such as lung wall, it may become difficult to segment the 

tumor from such organs. A GUI software can be designed to facilitate the 

delineation of the tumor from the CT image. 

• Effects of background activity. Although the activity concentration in the lung is 

relatively low in FDG-PET imaging, its effect is not negligible. Removal of the 
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background activity can be realized by thresholding the lesion based on an 

estimated average activity in the background. 

• Lack of gold standard. In patient studies, the true tumor activity concentration is 

never known, which becomes a restriction to the performance evaluation of the 

joint correction approach in patient studies. 

Although there are several restrictions in its clinical evaluation, this proposed 

joint motion-PVE correction approach is prospective in both diagnostic imaging and 

radiation therapy applications. In diagnostic imaging especially nuclear medicine imaging, 

the accuracy of the quantification of nuclear medicine images can greatly affect the 

accuracy of lesion staging and therapy responses. Since the proposed joint correction 

approach can simultaneously compensate for respiratory motion artifacts and PVE, this 

approach will be beneficial to improve the quantification capability of nuclear medicine 

imaging because both of the two effects can affect the quantification accuracy of the 

images. In radiation therapy, this proposed joint correction approach can be beneficial for 

treatment planning purposes because the by-product of this approach, the MBK, can also 

be estimated during the joint correction process which is directly related to the tumor 

motion extend or trajectory. The motion extent or trajectory is an important factor in 

treatment planning since such an extent will be used to delineate the tumor boundary to 

be treated. Usually a 4-D CT scan is required to derive this tumor boundary which is 

characterized by increased patient exposure. In this regard, this joint correction approach 

has the added advantage of reducing the high patient X-ray exposure due to the 

acquisition of a 4-D CT scan. 
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