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Abstract 

Perceptual Organization in Vision: 
Emergent Features in Two-Line Space 

by 

Anna I. Stupina 

What exactly are the "parts" that make up the whole object, and how and when 
do they group? The answer that is proposed hinges on Emergent Features: features 
that materialize from the configuration which make the object more discriminable 
from other objects. EFs are not possessed by any individual part and are processed 
as or more quickly than are the properties of the parts. The present experiments 
focus on visual discrimination of two-line configurations in an odd-quadrant task. 
RT data were obtained and compared with a prediction based on the number of 
EF differences in the odd quadrant (the higher the number of EF differences, the 
faster the discrimination was predicted). The results suggest that the EFs most 
responsible for the variations in RT might be lateral endpoint offset, intersections, 
parallelism, connectivity, number of terminators, and pixel count. Future directions 
include investigating the individual contributions and salience of EFs. 
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Introduction 

Gestalt psychologists have tried to understand how things humans see in the 

world are translated into perceptually-organized objects. Just thinking about the vast 

number of objects and their parts present in the visual environment, it is a wonder 

that our perceptual systems can accurately parse the relevant from the irrelevant in 

order to make sense of the world. It has been proposed that this process happens 

by the analysis of different parts or features which group together to make up the 

objects. For instance, Neisser (1967) proposed a two-stage system of perception: first, 

a pre-attentive process registers the basic features of an object; second, an attention­

demanding process integrates the basic features into objects. Another example is 

Treisman's Feature Integration theory (Treisman & Gelade, 1980), which states that 

individual features, or parts, of an object are massed together during a task of visual 

search. However, these approaches have been vague or inconsistent in defining exactly 

what makes a "part." 

One way to define the relationship between different parts of an object is to look 

at the Emergent Features (EFs) of that shape. EFs are features that result from the 

nonadditive combination of simple elements, and it is hypothesized that the presence 

of an EF diagnoses grouping. More specifically, an EF is defined as a salient property 

of an object, that does not appear in any of the individual elements but materializes 

only as the elements come together to form the new object. Moreover, EFs are 

processed as or even more quickly than are the properties of the individual parts. 
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Non-additivity refers simply to the fact that stimulus A, when presented together 

with stimulus B, does not simply make up a stimulus of A+B, but a completely or at 

least partly new stimulus, C. Some examples of such EFs are orientation, symmetry, 

closure, parallelism, and number of terminators (or end points). 

Presumably, a cluster of elements is more likely to form an object if salient features 

(EFs) emerge from the configuration. An object possessing many EFs is, therefore, 

more salient in a field of other objects lacking those EFs. Moreover, certain EFs might 

be more salient to the visual system than others. For example, it has been shown 

that proximity seems to be a particularly salient EF, while there was inconsistent 

support for symmetry as an EF (Portillo, 2006). Evidence for these results can be 

obtained by studying Configura! Superiority Effects (CSEs) and Configura! Inferiority 

Effects (CIEs). The phenomenon of these effects becomes evident during a task of 

visual discrimination. For example, the task involves making a discrimination between 

base images A and B. Then, a third image (context) C is added to both A and B, 

producing novel stimuli AC and BC. In most cases, adding the third image dilutes 

the differences between both images A and B, making the discrimination between the 

composite stimuli AC and BC harder than between A and B alone. Adding a context 

also increases total processing load, increases the chances that perceivers will attend 

to the wrong element, and increases the chances that the context will either mask 

or crowd the target. This is termed a Configura! Inferiority Effect (CIE), because 

the composite stimuli are significantly harder to discriminate in comparison to the 
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base images. However, in certain cases the stimuli will group together to form an 

EF which is highly salient to the visual system, thus producing a CSE. When this 

effect is present, the discrimination task on the novel, composite stimuli will become 

significantly easier as evidenced by reaction time to make the discrimination. 

Treisman and Paterson (1984) studied the CSE of arrows and triangles, which 

is a very powerful effect (Figure 1). Some other stimuli producing CSEs and CIEs 

were identified and studied also by Pomerantz et al. (1977) (for selected examples, 

see Figure 2). The question with stimuli producing CSEs is always what makes the 

odd quadrant so easy to tell apart from the other three? In essence, this boils down 

to the question of what are the feature differences between the quadrants? In the 

example of the arrow and triangle, it could be said that the arrow has just a single 

fork intersection, whereas the triangle has three V-intersections, and the triangle in 

turn has closure which is lacking in the arrow. Alternatively, it could be a terminator 

difference (the arrow has 3 end-points, while the triangle has none), or even pointing 

(the arrow indicates direction and the triangle doesn't, or, at least, not as well). 

However, these questions require a more principled approach with simpler stimuli to 

un-confound the multiple differences; apparently, stimuli such as arrows and triangles 

are already too complex. 

More recently, Portillo (2006) studied the EFs of dot patterns. Studying dots has 

the great advantage that dots seem to be the simplest stimuli that can be created 

or perceived. They can also be manipulated by changing the position of a single 
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Figure 2 : Examples of other CSEs 

dot while minimizing the number of upintended, confounded changes in the stimulus. 

However, the features that can be studied with dots are limited. For instance, Portillo 

studied properties such as proximity (the distance between two dots), orientation (the 

angle of one dot in relation to the other), linearity (whether three or more dots fall on 

a straight line), and surroundedness (whether one dot appears to be "surrounded" by 

three or more others in the sense of falling with their convex hull). In order to study 

more possible Emergent Features, it is necessary to move to the next most simple 
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stimulus than a dot: a straight line segment. 

With lines it is also possible to study proximity and orientation, but now there 

appear to be also new features: number of terminators (how many endpoints the 

figure has), collinearity (the degree to which two lines appear to be, or actually are 

in line with each other), symmetry, parallelism, lateral endpoint offset (the extent to 

which the end-points of two parallel lines are in line with each other) and number of 

intersections in the figure. With three or more lines, the additional features of closure 

(closed figure or open), area, zigzag, and inside/outside (whether a line is inside of 

a closed figure or outside when there are four or more lines) can be seen. Figure 3 

enumerates these properties of dots and lines. Some preliminary work has been done 

with lines (Portillo, 2006), but since then simple stimuli have not been well-studied. 

The following experiments represent an attempt to study and define the relation­

ship between the different elements of an object by focusing on the EFs of that object. 

In order to make sure that only those features which are studied are present (i.e. no 

confounded variables are present), and also to make the experiments manageable, the 

focus of these experiments is on stimuli made up of just two line segments. Thus, by 

being systematic and adequately sampling the stimulus space, empirical support can 

be shown for Emergent Features such as parallelism, symmetry, collinearity, number 

of terminators, and others. 

In Experiment 1, eight EFs were investigated. A model for predicting effective 

grouping via EFs was developed. Experiment 2 served as a replication of Experiment 
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1, and a validation for the predictive model. In addition, Experiment 2 addressed 

many limitations of Experiment 1, as well as was able to inform the discussion of 

CSE/CIE effects. 



Experiment 1 

Participants 

41 undergraduates (29 female; mean age 18.78) from Rice University took part in the 

experiment. They were compensated with participation credit, which partially fulfills 

course requirements. 

Materials and Methods 

Odd Quadrant Task 

Visual discriminations were made in the context of an odd-quad task. This task 

consists of a display that is divided into four quadrants, each of which contains one 

of two images: three of these images will be identical, with the odd image being the 

target (Figure 4 shows an example of an arrangement that the participants saw). 

Participants then judged which of the four quadrants contained the odd image by 

touching the appropriate image on a touch-screen computer monitor as quickly and 

accurately as possible. Reaction time (RT) and accuracy were measured. 

Test Setup 

Stimuli were generated by a computer drawing package (Corel Draw or Photoshop), 

and then converted to bitmap files. A programming package developed for psycho­

logical experimentation (E-Prime) was used to generate and run the experiment, as 
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Figure 4 : Screenshot of Display in Odd-Quadrant Task 

well as to collect RT, and other, data. The measurement accuracy obtained was to 

the millisecond level. 

The size of the touch-screen monitor was 15" diagonally. Participants viewed the 

screen from a distance of approximately 15". They were allowed to move around 

during the experiment, so it is possible that the viewing distance varied for all par-

ticipants (most likely between 12" and 17"). The size of each individual image in 

each quadrant was between 1" and 3" in size diagonally (depending on the particular 

configuration of the line segments). 
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Stimuli 

The procedure for mapping out a stimulus space has been hinted at by Shepard and 

Cermak (1973). A context, which does not add any extra information because it is 

the same for all four quadrants, was added to the stimuli (Figure 5). A space of 

composite stimuli is then created by systematically moving the context horizontally 

and vertically so as to sample uniformly a portion of the possible space of this type 

of stimulus (Figure 6). 

Base Context Composite 

Figure 5 : Generation of Stimuli in an Odd-Quadrant Task 

Using this technique, 48 such stimulus spaces were mapped out, using 2 line seg-

ments in varying orientations: horizontal, vertical, positively-sloped and negatively-

sloped diagonals. Each stimulus space consisted of 169 stimuli in a 13x13 grid. Each 

stimulus is denoted by its x and y coordinates within the space. Figure 7 shows all 

the possible combinations using varying orientations of 2 line segments. 

In Experiment 1, the focus was limited to the study of the combinations produced 

by combining Bases 1 and 2 with Contexts A, B, and C, thus generating six stimulus 

spaces. Search asymmetry (Treisman & Souther, 1985) was included as a factor by 
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Figure 6 : A Sample of 2-line Space 

including both Base 1 and Base 2 (horizontal line in a field of verticals, and vice 

versa). Table 1 shows a graphic representation of the stimulus spaces investigated in 

Experiment 1, and the entire spaces can be found in Appendix A (Figures 33-44). 

Due to the large amount of time it would take for a participant to be run through 

all (169 x 6 = 1014) stimuli, the six spaces were each divided into 4 regions. Spaces 

1A, 2A, 1B and 2B were each divided into four regions. Spaces 1C and 2C were each 

divided in half. These divisions produced 4 versions of the experiment, and they are 
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Base 2 Context A Space 2A 
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Table 1 : Stimulus Spaces - Experiment 1 
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graphically represented in Figure 8. Versions were counterbalanced between subjects. 

This division was based on the fact that the grid of stimuli is symmetrical along the 

horizontal and vertical axes in the case of Spaces lA, 2A, lB and 2B, and along the 

vertical axis for Spaces lC and 2C. It is expected that the symmetrical groups of 

stimuli would have comparable features and feature differences, and thus similar RTs 

for the discrimination. Therefore, it would be unnecessary for any one subject to be 

tested with the full stimulus space. 

Prediction Maps 

Prediction maps were generated for each stimulus space, based on the differential 

absence or presence of the features of interest. These predictions assumed that the 

relationship between EFs and RT was inversely proportional: that is, the greater the 
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Figure 8 : Versions of Experiment 1 
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number of EF differences between the odd quadrant and the other three quadrants, 

the better performance should be (as evidenced by lower RTs). Prediction maps were 

used to test whether any or all of the features listed above contributed significantly 

to any changes in RT among the stimuli by means of correlation analysis. 

The included EFs are described in Appendix B, and are: number of terminators 

(or endpoints) on th image, collinearity (whether two line segments fall in a straight 

lin ), ymmetry (in this case only axial symmetry is taken into account) , parall li m 

(whether two lines ar parallel or not) , lateral endpoint offset (the extent to which 

the endpoints of two parallel line segments begin and end together - more specifi-
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cally, the position in space of the two sets of terminators on the segments of parallel 

lines is compared), intersections (whether the two line segments intersect or not), 

connectivity (whether the two line segments are touching or not), and pixel count 

(the number of black pixels making up the image). In addition, all spaces were scored 

on spatial proximity. This score is a direct manifestation of the method of generating 

stimulus spaces (described earlier), and it reflects the distance between the midpoints 

of the two line segments according to their position (the x and y coordinates) in 

the stimulus space. Proximity scoring was identical for all spaces and served as a 

multiplier for the EFs of parallelism and symmetry. Proximity is one of the primary 

Gestalt grouping principles (e.g., Hochberg et al. (1956), Kubovy (1994), Pomerantz 

and Schwaitzberg (1975)), and thus it follows that the spatial distance between two 

line segments would influence their grouping, and, as an extension, the EF difference 

scores in the prediction model. 

Prediction map scoring for this experiment was assigned post-hoc. The scoring 

criteria for each EF were assigned in such a way so that the relationship between the 

EF scoring and the RT data was negative. For example, it was hypothesized that 

the greater the number of terminator differences between the odd and the other three 

quadrants, the higher the EF prediction score, and the lower the RT. For the sake 

of parsimony, scoring was based on a three-tier system: the display was scored as 

"O" if there were no feature differences between the target quadrant and the other 

three, or if the feature was not present in any quadrant; it was scored as "0.5" if the 
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EF was absent in the odd quadrant but present in the other three; finally, a score 

of "1" was awarded if the target (odd) quadrant differed from the other three on 

a particular Emergent Feature. The exception to this system was lateral endpoint 

offset, which was scored on a continuum from "O" to "1" in "0.2" increments based 

on the amount of overlap between the line segments. For full instructions on scoring, 

see Appendix C. Total scores for each display were computed by adding across all 

individual Emergent Feature scores. For the sake of parsimony, all EFs were assigned 

a weight of 1. The final score was then subtracted from a total possible score (in this 

case, if all the EFs received a score of 1, the total score would be 8). This was done to 

reverse the relationship between the EF scores and RT, so that it now became positive. 

Looking at the positive instead of the negative relationship facilitates presentation of 

the data, and the data will be referred to in this manner for the rest of this paper. The 

prediction maps were linearly transformed to match the RT data mean and standard 

deviation for the purposes of representing the EF difference scores in meaningful units 

(ms), and also facilitate graphical representation of the two maps. 

Results 

The means, standard deviations, and accuracy data are presented in Table 2. Spaces 

1A, 2A, 1B and 2B were similar in difficulty, and Spaces 1C and 2C were harder, as 

evidenced by the higher mean reaction time and lower average accuracy. 

The surface plots of mean RT for all stimuli, by space, are presented in Figures 9 -
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I Space II Mean (ms) I SD ( ms) I Mean Accuracy I 
lA 915 278 0.97 
2A 1061 309 0.94 
lB 1048 318 0.95 
2B 924 280 0.97 
lC 1349 429 0.92 
2C 1334 421 0.91 

Table 2 : Means, Standard Deviations, and Mean Accuracy - Experiment 1 

14. The x and y axes, labeled "X-Coordinate" and "Y-Coordinate" refer to the 

stimulus position in the space (see Appendix A). RT is presented on the z-axis, in 

ms. In addition to the RT data and the prediction map, a "difference" map is also 

presented. This difference graph is the subtraction of the predicted RTs from the 

obtained RTs. In other words, the difference map is a graphical representation of the 

variance in RT that was not accounted for by the prediction model. 

Repeated measures ANOVA analyses were performed on the RT data "surfaces" 

to determine whether RT differed based on the position of the stimulus within the 

space (x- andy-coordinate interaction effect is reported). Because of the experimental 

design, any given participant was tested on only 1/4th of spaces 1A, 2A, 1B and 2B, 

and 1/2 of spaces 1C and 2C. Therefore, the repeated measures ANOVA analysis 

was conducted by 1/4-space at a time for spaces 1A, 2A, 1B, and 2B, and 1/2-space 

at a time for spaces 1C and 2C. In the cases where fractional degrees of freedom 

are reported, the F and p values were corrected for violations of sphericity using the 

Greenhouse-Geisser correction. 

A multiple regression analysis was performed on the RTs averaged across subjects 
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for each space, correlating the RT data with prediction scores using the 8 individual 

EF scores as predictors. 
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sions 1, 2, 3, and 4 of the experiment , respectively). The prediction map for Space 1B correlated strongly with the data 
(R = .86, R2 = .75 , F(8, 160) = 58.71 , p < .01). t--.) 
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Figure 12 : Reaction Times, Prediction Map and Difference Map- Space 2B 
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ANOVA analysis on the RT data map reached significance only in version 1 (F(10.96, 186.24) = 2.82 , p < 
.01 ; F(6.85 , 61.60) = 1.94, p = 0.08; F(3.75, 15.01) = 1.05 , p = 0.41 ; F(4.86, 29.15) = 1.93, p = 0.12, for ver­
sions 1, 2, 3, and 4 of the experiment , respectively). The prediction map for Space 2B correlated strongly with the data 
(R = .87, R2 = .77, F(8 , 160) = 66.25 , p < .01). tV 
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Figure 13 : Reaction Times, Prediction Map and Difference Map - Space 1 C 
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AN OVA analysis on the RT data map reached significance in both versions (F(14.88 , 312.44) = 7.01 , p < 
.01 ; F(11.74, 176.13) = 4.54 , p < .01 , for versions 1 and 2, respectively). The prediction map for Space 1C corre­
lated moderately with the data (R = .66, R2 = .44, F(4, 164) = 31.65, p < .01). 
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Figure 14 : Reaction Times, Prediction Map and Difference Map - Space 2C 

Spoc:e2C-Mop 
1450 

1400 

1350 

1300 

1250 

1200 

1150 

1100 

1050 

1150 

X-Coordinolo 

300 

200 

100 

-100 

-200 

-300 

ANOVA analysis on the RT data map reached significance in both versions (F(14.88, 312.44) = 7.01 , p < 
.01; F(11.74, 176.13) = 4.54, p < .01 , for versions 1 and 2, respectively). The prediction map for Space 2C corre­
lated moderately with the data (R = .65, R2 = .43 , F(4, 164) = 31.01 , p < .01). 
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It is of note to mention that in Spaces lA, 2A, lB, and 2B the ANOVA analyses 

investigating the variability of RT across the stimulus space failed to reach statistical 

significance. This might be because of the way the conditions for the analysis were 

set up - i.e., when only a fourth of the stimulus space is considered for analysis at 

a time, the variability in RTs may, indeed, not be high in that quadrant of space by 

itself. In those cases when the stimulus spaces were split up into only 2 conditions, the 

ANOVA analyses for the variability of RT were highly significant. The significance 

of this analysis points to the fact that RT varied reliably within the entire stimulus 

space but less so in local regions of the space. 

In order to look at the individual contributions of EFs to the overall prediction 

score, correlations were calculated between the individual EFs and RT (Tables 3 & 

4). Table 5 presents the overall correlations between the overall prediction score and 

RT data. The R2 values represent the percentage of variance accounted for by the 

particular correlations. 



Space 1A 2A 1B 2B 1C 
r = 0.49 r = 0.62 r = 0.64 r = 0.60 r = 0.61 
R2 = 0.24 R2 = 0.39 R2 = 0.42 R2 = 0.36 R2 = 0.38 

Terminators F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
53.39 107.94 120.28 94.98 100.59 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.03 r = 0.05 r = 0.02 r = 0.06 
R2 = 0.00 R2 = 0.00 R2 = 0.00 R2 = 0.00 

Collinearity F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = N/A 
0.19 0.48 0.14 0.70 
p = 0.66 p = 0.49 p=0.7 p= 0.4 
r = 0.21 r = 0.26 r = 0.30 r = 0.13 r = 0.34 
R2 = 0.04 R2 = 0.07 R2 = 0.09 R2 = 0.02 R2 = 0.12 

Symmetry F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
7.75 13.07 17.43 3.31 23.08 
p < .01 p < .01 p < .01 p= .07 p < .01 
r = 0.53 r = 0.62 r = 0.65 r = 0.55 
R2 = 0.28 R2 = 0.39 R2 = 0.43 R2 = 0.31 

Parallelism F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = N/A 
65.26 104.95 126.24 73.37 
p < .01 p < .01 p < .01 p < .01 

Table 3 : Individual Correlations for EFs - Experiment 1 

2C 
r = 0.59 
R2 = 0.36 
F(1, 167) = 
92.86 
p < .01 

N/A 

r = 0.28 
R2 = 0.08 
F(1, 167) = 
14.53 
p < .01 

N/A 

!:...:> 
C;r1 



Space 1A 2A 1B 2B 1C 
r = 0.56 r = 0.71 r = 0.78 r = 0.61 r = 0.35 
R2 = 0.71 R2 = 0.52 R2 = 0.61 R2 = 0.38 R2 = 0.13 

Intersections F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
178.02 178.02 263.36 102.15 24.16 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.60 r = 0.41 r = 0.59 r = 0.60 

Lateral R2 = 0.36 R2 = 0.17 R2 = 0.35 R2 = 0.37 
Endpoint F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = N/A 
Offset 95.85 35.21 91.19 98.45 

p < .01 p < .01 p < .01 p < .01 
r = 0.48 r = 0.60 r = 0.65 r = 0.53 r = 0.35 
R2 = 0.24 R2 = 0.37 R2 = 0.42 R2 = 0.28 R2 = 0.13 

Connectivity F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
51.60 98.62 123.29 66.41 24.16 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.46 r = 0.52 r = 0.56 r = 0.54 r = 0.48 
R2 = 0.22 R2 = 0.28 R2 = 0.32 R2 = 0.29 R2 = 0.23 

Pixel Count F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
46.28 63.72 78.44 69.42 50.21 
p< .01 p < .01 p < .01 p < .01 p< .01 

Table 4: Individual Correlations for EFs- Experiment 1 (cont'd) 

2C 
r = 0.46 
R2 = 0.22 
F(1, 167) = 
46.85 
p < .01 

N/A 

r = 0.46 
R2 = 0.22 
F(1, 167) = 
46.85 
p < .01 
r = 0.44 
R2 = 0.20 
F(1, 167) = 
42.00 
p < .01 
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Ol 



Space 1A 
R = 0.80 
R2 = 0.64 

Overall F(8, 160) = 
35.88 
p < .01 

2A 1B 2B 1C 
R = 0.78 R = 0.86 R = 0.87 R = 0.66 
R2 = 0.61 R2 = 0.75 R2 = 0.77 R2 = 0.44 
F(8, 160) = F(8, 160) = F(8, 160) = F(4, 164) = 
31.68 58.71 66.25 31.65 
p < .01 p < .01 p < .01 p < .01 

Table 5 : Overall Correlations for EFs - Experiment 1 

2C 
R = 0.65 
R2 = 0.43 
F(4, 164) = 
31.01 
p < .01 

1:...:> 
~ 
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As can be seen from Table 5, overall multiple regression values ranged from .65 

to .87, and intersections, terminators, lateral endpoint offset and connectivity seem 

to consistently account for a big portion of the variance in the RT data (the variance 

between data and prediction represents the error in the model). It is worth noting 

here that due to the nature of the stimuli in Spaces 3A and 3B (the context line 

segment was always a diagonal), it was impossible to obtain the EF of parallelism or 

lateral endpoint offset in the physical stimuli and so these EFs could not be tested 

there. 

Conclusions 

This experiment showed that when people are asked to find the vertical line in a field of 

horizontals (or vice versa), their performance depends significantly on the orientation 

and placement of irrelevant, identical contextual lines that are added to the to-be­

discriminated lines. This result is interpreted to show that when context lines are 

placed near target lines, they form perceptual groups. Specifically, it is interpreted to 

mean that novel Emergent Eeatures result from placing lines near one another, and 

that these highly salient EFs drive discrimination performance. Thus, this experiment 

provides continued support for Emergent Features and demonstrates the specific EFs 

that appear when the stimuli consist of just two line segments. Reaction times differed 

within the stimulus space based on the position of the context, which hints at grouping 

as being the likely mechanism driving perception of these stimuli. In this experiment, 
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eight of these possible EFs were investigated. 

Using multiple regression analysis, support was shown for the prediction scoring 

paradigm, with correlations ranging from .65 to .87, with the percentage of variance 

accounted for (as evidenced by the R2 values) ranging from 43% to 77%. 

Given the data that was obtained in this experiment, it seems that lateral endpoint 

offset, intersections, parallelism, connectivity, number of terminators, and pixel count 

accounted for a lot of the variance between the data and the prediction. Collinearity 

failed to reach statistical significance possibly due to the small sample size of stimuli 

which contained this EF difference (only 2 stimuli per space). 

Limitations 

Despite strong support for the investigated EFs in Experiment 1, there were some 

limitations of this experiment. 

First, it is very likely that the EFs vary in their importance to the visual system. 

The property of parallelism, for example, might not be as salient as are intersections. 

It would be necessary to adjust the weights given to these features on the prediction 

map to better account for the remaining variance. 

Second, EF differences might be correlated amongst themselves in the same stim­

ulus space. For instance, if an image has the EF of connectivity, it likely also has 

the property of intersections, whereas if two lines have the EF of parallelism, they 

cannot then have intersections. Therefore, while this issue does not directly impact 
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the multivariate analysis, it is not possible to infer any one EF's contribution due to 

multi-collinearity. 

Third, comparing the same EF differences across the spaces might change the 

salience of those particular EFs. For example, spaces lC and 2C did not have some 

of the EF differences that spaces lA, 2A, lB and 2B had, and this, along with the 

possibility of EF inter-correlations, might have influenced the salience of some, or 

maybe even most, of the EFs in a way that was not uniform across all the spaces. 

Fourth, in order to investigate Configura! Superiority ( CSE) and Configura! Infe­

riority ( CIE) effects, a baseline measurement (RT for the discrimination of the odd 

quadrant in a base-only condition) is needed. 

Lastly, it is also necessary to validate the present prediction maps a priori. 



Experiment 2a 

Introduction 

Experiment 2a was designed to improve prediction coding for the EFs of symmetry 

and connectivity. Some of the image displays used throughout this series of experi­

ments were difficult to determine, objectively, as containing symmetry or connectivity, 

or not. For instance, there were cases where the two line segments were extremely 

close to each other (1 or 2 pixels apart), and inter-rater agreement on those displays 

regarding connectivity was low. In the case of symmetry, Palmer and Hemenway 

(1978) showed that symmetry along the vertical axis is perceptually more salient 

than symmetry along the horizontal, diagonal, or oblique axes, as had been noted in­

formally by Mach in the 1800s. Therefore, it was more beneficial to allow participants 

to code these two features, in a task which closely approximated the odd-quadrant 

discrimination task, and to use those scores in the prediction maps. 

Participants 

10 Rice University undergraduates (4 females; mean age 19.1) took part in this exper­

iment. They were screened to make sure they have not participated in Experiment 1, 

or other similar experiments. They were compensated with experiment participation 

credit, which partially fulfills course requirements. 



Materials and Methods 

Task 

32 

The stimuli were presented on a computer display identical to that used in Experiment 

1. On any given trial, a pre-generated configuration of two line segments was shown 

for 125ms in one of the 4 corners of the touch-screen. A blank screen was then 

provided for participants to make their judgment as to whether the image possesses 

the property of symmetry or connectivity. When the participants perceived the image 

as containing the property, they were required to press the "1" number key on a 

standard QWERTY keyboard. If they did not perceive the image as containing the 

property, they were required to press the "3" number key on the keyboard. Each 

participant was randomly selected to code for either symmetry or connectivity. 

Test Set-Up 

Test setup (stimulus generation, experiment programming, screen size, image size, 

and viewing distance) were identical to that used in Experiment 1. 

Stimuli 

Stimuli consisted of single configurations of two line segments. The configuration 

of the two lines was identical to the ones that were to be tested in Experiment 2b; 

that is, participants coded the stimuli that were going to be used in the subsequent 

experiment. 
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Analysis 

To analyze the data, the scores were averaged for each individual image. Inter-rater 

disagreement was resolved by the following sequence of methods: first, the coding 

assigned to the image by the majority of participants was kept. Ifthere was a "tie" 

(an equal number of participants coded a given image both ways), or a missing cell, 

the coding was replaced by that given to the same image on the other (symmetric) side 

of the two-line stimulus space. For example, an image located at coordinates (0,12) 

is symmetric to the image at coordinates (12,0), and (1,2) is symmetric to (11,10). 

Since each image in this experiment was only one quadrant out of the full displays 

used in Experiment 2b, the corresponding pair of image codings was combined (one 

was subtracted from the other to form the difference in EF score) to form the score 

for the whole display. The ratings obtained from this experiment were used as the 

symmetry and connectivity scores in prediction maps for Experiment 2b. 



Experiment 2b 

Introduction 

Experiment 2 was designed to be a replication and direct extension of Experiment 

1. First, the study and definition of the relationship between different elements of 

an object was continued by focusing on the Emergent Features (EFs) of that object. 

Second, Experiment 2 served as a replication of the results obtained in the previous 

experiment. Last, this experiment addressed many of the limitations of Experiment 

1. 

Participants 

22 Rice University undergraduates (11 females; mean age 18.9) took part in this 

experiment. They were screened to make sure they have not participated in Experi­

ment 1, 2a, or other similar experiments. They were compensated with experiment 

participation credit, which partially fulfills course requirements. 

Materials and Methods 

The method of this experiment was almost identical to that outlined earlier in Exper­

iment 1. Visual discriminations were made in the context of an odd-quadrant task. 

The display consisted of four quadrants, three of which contained an identical image, 

with the odd image being the target. Participants judged which quadrant contained 
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Alpha Beta Gamma Delta 

Intersections Collinearity 
Collinearity 

Intersections 
Symmetry Lateral Endpoint 

Lateral Endpoint 
Symmetry 

Parallelism Offset 
Offset 

Symmetry 

Table 6 : Patterns of EFs 

the odd image, and then selected it by touching it via a touch-screen monitor as 

quickly and accurately as possible. Reaction time (RT) and accuracy were measured. 

Test setup (stimulus generation, presentation, experiment programming, screen size, 

image size, and viewing distance) was identical to that used in Experiment 1. 

Stimuli 

Stimulus spaces were mapped out in a manner identical to that stated above. They 

were generated by combining two line segments in varying orientations. The orien-

tations were again limited to horizontal, vertical, positively-sloped, and negatively-

sloped diagonals. 

In an effort to be systematic and include spaces containing the most variety of 

grouping variations between two line segments, the 48 possible spaces (earlier pre-

sented in Figure 7) were classified based on the EFs present in the stimuli belonging 

to each space. Four distinct patterns emerged as a result of this grouping, and they 

are presented in Table 6. (Note: the EFs presented in this table are only those that 

manifest themselves in the odd quadrant. Terminators, connectivity, and pixel count 

are always present in all the patterns, and are coded in all the spaces.) 
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These patterns were used as a basis to decide which stimulus spaces were included 

in the experiment , with at least one space corresponding to each EF pattern. In 

addition to sampling from each EF pattern, the shape prototypes included in each 

space were also considered , with those prototypes not previously tested in Experiment 

1 included in Experiment 2. Figure 15 shows these prototypes (those already tested 

in Experiment 1 are underlined). 

Parallels SlantedVs 

I I ~ v - -
Ts Hockey Sticks 

T ~ r 1' - - - - ~ 
Pluses Xs 

+ +- X )c 
Ls Chromosomes 

L ~ -
Vs Colli nears 

v -- / 
/ 

Figure 15 : Shape Prototypes Resulting from Grouping 

Table 7 presents the stimulus spaces that were selected to be tested in this exper-

iment. The full stimulus spaces can be found in Appendix A, Figures 39 - 44. 

Due to time constraints and large number of stimuli to be tested , the spaces were 

again divided into regions, based on the axis of symmetry of the whole stimulus 

space, for the same reasons as stated in Experi1nent 1. In all the stimulus spaces 



Base Context Composite 

ITJITJITJ 
~ ITJ ~ 
Base 3 Context C Space 3C 

rnrnrn 
~ ITJ ~ 
Base 4 Context C Space 4C 

Base7 Context D Space 7D 

Base 8 Context D Space 8D 

Base9 Context D Space 9D 

Base 10 Context D Space lOD 

Table 7 : Stimulus Spaces - Experiment 2 
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Space 
3C/4C 

Space 
70/80 

Space 
90/100 

Version 1 OJ OJ OJ 
Veffiion 2 OJ OJ OJ 

Figure 16 : Versions of Experiment 2 

3 

selected for Experiment 2, the symmetry of the space was diagonal. Therefore, each 

participant was tested on half of each of th six spaces. This method resulted in 2 

experimental versions, and they are presented graphically in Figure 16. Versions wer 

counter-balanced between subjects. 

In addition to the stimulus spaces, which were tested as described in Experiment 

1, "baseline" measurem nts were also tak n. RT and accuracy data was recorded for 

displays which consisted of only the base image, without the context. This baseline 

measurement served as a basis for informing the discussion of Configura! Superiority 

Effects ( CSEs) and Configura! Inferiority Effects ( CIEs). If, for example, grouping 

greatly facilitates discrimination (as evidenced by lower RT in the composite condition 

than in the base-only condition, signifying a CSE) , a stronger case can be made for 

EF a a method for that grouping. 
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I Space II Mean ( ms) I SD ( ms) I Mean Accuracy I 
3C 1012 121 0.93 
4C 1185 183 0.93 
7D 1231 183 0.98 
8D 1257 139 0.96 
9D 883 100 0.98 
lOD 1084 171 0.95 

Table 8 : Means, Standard Deviations, and Mean Accuracy - Experiment 2 

Prediction Maps 

Prediction maps were generated, prior to data collection, in the same manner as in 

Experiment 1. The coding for lateral endpoint offset was adapted to accommodate 

diagonal line segments. Scores for symmetry and connectivity were obtained from 

Experiment 2a, described above. As in Experiment 1, all EFs were assigned a weight 

of 1, and the prediction maps were linearly transformed in the manner described 

earlier. 

Results 

Means, standard deviations, and accuracy data are presented in Table 8. 

Figures 17- 22 show graphical representations of the RT data, prediction map, and 

the difference map. The x and y axes, labeled "X-Coordinate" and "Y-Coordinate" 

refer to the stimulus position in the space (see Appendix A). RT is presented on the 

z-axis, in ms. The difference map is the unaccounted variance in the model, left over 

after the predicted RT was subtracted from the RT data. 
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Repeated measures analysis of variance (ANOVA) was conducted on the RT data 

for each space to test whether RT varied across the space (the x and y coordinate 

interaction effect is reported). Because of the experimental design, any given partic­

ipant was tested on only half of each space. Therefore, the analysis was conducted 

by versions (that is, by half-space at a time). ANOVA analysis on the RT data maps 

showed that none of the surfaces were fiat, that is, RT did vary reliably across the 

space (statistics are provided in the figures below). 

Multivariate regression was performed to assess the fit of the prediction model 

to the RT data. The eight EFs (terminators, (collinearity*proximity), (symme­

try*proximity), (parallelism*proximity), intersections, lateral endpoint offset, con­

nectivity, and pixel count) served as predictors. 
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Figure 17 : Reaction Times, Prediction Map and Difference Map - Space 3C 
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AN OVA analysis on the RT data map reached significance in both versions of the experiment (F(6.18 , 43.26) = 3.52, p < 
.01; F(9.49, 113.84) = 7.62 , p < .01 , for version 1 and 2, respectively). The prediction map for Space 3C correlated 
strongly with the data (R = .84, R2 = .71 , F(8, 160) = 48.87, p < .01). 
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Figure 18 : Reaction Times, Prediction Map and Difference Map - Space 4C 
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ANOVA analysis on the RT data map reached significance in both versions of the experiment (F(6.18 , 43.26) = 3.52, p < 
.01; F(9.49, 113.84) = 7.62 , p < .01 , for version 1 and 2, respectively). The prediction map for Space 4C correlated 
strongly with the data (R = .85, R2 = .73 , F(8 , 160) = 53.79, p < .01). 
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Figure 19 : Reaction Times, Prediction Map and Difference Map- Space 7D 
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AN OVA analysis on the RT data map reached significance in both versions of the experiment (F(5.85, 40.96) = 3.62, p < 
.01; F(8.30, 82.95) = 3.69, p < .01 , for version 1 and 2, respectively). The prediction map for Space 7D correlated 
strongly with the data (R = .60, R2 = .37, F(5 , 163) = 19.23, p < .01). 
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Figure 20 : Reaction Times, Prediction Map and Difference Map - Space 8D 
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AN OVA analysis on the RT data map reached significance in both versions of the experiment (F(5.85 , 40.96) = 3.62, p < 
.01; F(8.30 , 82.95) = 3.69, p < .01 , for version 1 and 2, respectively). The prediction map for Space 8D correlated 
strongly with the data (R = .67, R2 = .45, F(5, 163) = 27.05, p < .01). 
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Figure 21 : Reaction Times, Prediction Map and Difference Map- Space 9D 
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AN OVA analysis on the RT data map reached significance in both versions of the experiment (F(5.42 , 37.94) = 4.664, p < 
.01; F(9.08 , 108.95) = 6.66, p < .01 , for version 1 and 2, respectively). The prediction map for Space 9D correlated 
strongly with the data (R = .82 , R2 = .67, F(8 , 160) = 41.05 , p < .01). 
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Figure 22 : Reaction Times, Prediction Map and Difference Map - Space 10D 
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T-tests were performed on each base-only/composite pair within each space (for 

a total of 169 comparisons in each stimulus space). Since these comparisons were 

planned, a correction for multiple comparisons was not necessary. The results are 

presented graphically in Figures 17- 22 via the black contours, which show the average 

RT for discrimination made in the base-only display. All the points lying above that 

RT represent Configura! Inferiority Effects ( CIEs), where the discrimination without 

the context images was considerably faster than in the composite image. Conversely, 

all points lying below the baseline RT correspond to displays in which the context 

images greatly facilitated the discrimination, producing Configura! Superiority Effects 

(CSEs). 

In the following Figures (23 - 32), selected CSEs and CIEs are presented. In 

each case, first, the base image is presented, along with the baseline RT (the RT is an 

average of all subjects' measurements). Then, the context image is presented. Finally, 

the composite image is presented, along with its recorded RT. It is worth noting here 

that, for certain stimuli within the same space, the baseline RTs vary slightly for the 

same display. This is an artifact of the experimental design (i.e., different subjects 

were tested on different regions of the same space) and possible missing data for 

certain subjects. For each space, CSEs and CIEs are presented along with the EF 

difference prediction ratings of the composite stimuli for each one. Stimuli falling into 

3 ranges were included: those which had a high prediction rating (predicted RT was 

slow), a moderate prediction rating, and a low prediction rating (predicted RT was 
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fast). 2 of the spaces only produced one of the effects: space 3C did not produce any 

CIEs, and space 8D did not produce any CSEs. 

It is also worth noting that not all CSEs contained a great number of EF differences 

(i.e., a fast RT prediction). Conversely, not all CIEs contained few EF differences (i.e., 

slow RT prediction). These results will be revisited again in the conclusion. 

The correlations between individual EFs and RT data, as well as the overall (mul­

tivariate) model fit, are presented in Tables 9- 11. 
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Figure 23 : Space 3C - CSEs 
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Figure 27 : Space 7D - CIEs 
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Figure 28 : Space 8D - CIEs 
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Figure 29 : Space 9D - CSEs 
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Figure 30 : Space 9D - CIEs 
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Space 3C 4C 7D 8D 9D 
r = 0.31 r = 0.42 r = 0.52 r = 0.59 r = 0.47 
R2 = 0.10 R2 = 0.18 R2 = 0.27 R2 = 0.36 R2 = 0.23 

Terminators F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
18.36 37.44 62.84 92.64 49.00 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.06 r = 0.05 r = 0.04 
R2 = 0.00 R2 = 0.00 R2 = 0.00 

Collinearity F(1, 167) = F(1, 167) = N/A N/A F(1, 167) = 
0.71 0.30 0.30 
p = 0.40 p = 0.58 p = 0.58 
r = 0.51 r = 0.54 r = 0.46 r = 0.46 r = 0.47 
R2 = 0.27 R2 = 0.30 R2 = 0.21 R2 = 0.22 R2 = 0.23 

Symmetry F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
60.63 71.80 45.32 47.11 49.00 
p < .01 p < .01 p < .01 p < .01 p< .01 
r = 0.58 r = 0.68 r = 0.53 
R2 = 0.34 R2 = 0.47 R2 = 0.29 

Parallelism F(1, 167) = F(1, 167) = N/A N/A F(1, 167) = 
85.76 145.70 68.34 
p < .01 p < .01 p < .01 

Table 9 : Individual Correlations for EFs - Experiment 2 

10D 
r = 0.59 
R2 = 0.35 
F(1, 167) = 
91.08 
p < .01 
r = 0.04 
R2 = 0.00 
F(1, 167) = 
0.31 
p = 0.58 
r = 0.45 
R2 = 0.20 
F(1, 167) = 
42.68 
p < .01 
r = 0.50 
R2 = 0.25 
F(1, 167) = 
56.65 
p < .01 

I 

Cll 
--1 



Space 3C 4C 7D 8D 9D 
r = 0.63 r = 0.73 r = 0.34 r = 0.48 r = 0.52 
R2 = 0.40 R2 = 0.54 R2 = 0.12 R2 = 0.23 R2 = 0.28 

Intersections F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
111.24 193.56 21.77 51.28 64.85 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.54 r = 0.26 r = 0.39 

Lateral R2 = 0.30 R2 = 0.07 R2 = 0.15 
Endpoint F(1, 167) = F(1, 167) = N/A N/A F(1, 167) = 
Offset 70.50 12.62 29.91 

p < .01 p < .01 p < .01 
r = 0.61 r = 0.67 r = 0.36 r = 0.39 r = 0.47 
R2 = 0.37 R2 = 0.45 R2 = 0.13 R2 = 0.15 R2 = 0.23 

Connectivity F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
98.84 136.52 25.30 30.04 48.90 
p < .01 p < .01 p < .01 p < .01 p < .01 
r = 0.58 r = 0.74 r = 0.50 r = 0.45 r = 0.49 
R2 = 0.34 R2 = 0.55 R2 = 0.25 R2 = 0.21 R2 = 0.25 

Pixel Count F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = F(1, 167) = 
85.89 205.23 56.23 43.26 54.88 
p < .01 p < .01 p < .01 p < .01 p < .01 

Table 10 : Individual Correlations for EFs- Experiment 2 (cont'd) 

10D 
r = 0.70 
R2 = 0.50 
F(1, 167) = 
165.06 
p < .01 
r = 0.12 
R2 = 0.01 
F(1, 167) = 
2.45 
p= .11 
r = 0.57 
R2 = 0.33 
F(1, 167) = 
81.25 
p < .01 
r = 0.53 
R2 = 0.28 
F(1, 167) = 
65.26 
p < .01 
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Space 3C 
R = 0.84 
R2 = 0.71 

Overall F(8, 160) = 

48.87 
p < .01 

4C 7D 8D 9D 
R = 0.85 R = 0.60 R = 0.67 R = 0.82 
R2 = 0.73 R2 = 0.37 R2 = 0.45 R2 = 0.67 
F(8, 160) = F(5, 163) = F(5, 163) = F(8, 160) = 

53.79 19.23 27.05 41.05 
p < .01 p < .01 p < .01 p < .01 

Table 11 : Overall Correlations for EFs - Experiment 2 

10D 
R = 0.76 
R2 = 0.59 
F(8, 160) = 

28.83 
p < .01 
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As can be seen from Table 11, overall multiple correlation values ranged from .60 

to .85, and the EFs of terminators, symmetry, parallelism, intersections, connectivity, 

pixel count and lateral endpoint offset accounted for the majority of the variance. 

Due to the nature of the stimuli in Spaces 7D and 8D (horizontal and diagonal line 

segments), it was not possible to have the EFs of collinearity, parallelism, and lateral 

endpoint offset present in the physical stimuli, and thus it was not possible to test 

these EFs here. 

It is worth noting that the individual correlations between symmetry and RT 

data in this experiment are higher than those observed in Experiment 1 (a range of 

0.21-0.30 in Experiment 1, and 0.46-0.54 in Experiment 2). Interestingly, the same 

pattern is not observed with connectivity (range of 0.35- 0.60 in Experiment 1, and 

0.36-0.67 in Experiment 2). Both symmetry and connectivity were scored using an 

experimental, subjective, design in Experiment 2, but only the ratings for symmetry 

improved as a result of this procedure. This finding will be revisited in the following 

section. 

Conclusions 

Experiment 2 replicated and extended the results of Experiment 1, showing that per­

formance significantly varies with the orientation and placement of irrelevant, iden­

tical contextual lines near the target lines. This suggests that the targets and the 

contexts form perceptual groups, and that highly salient EFs drive this grouping. In 
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this particular experiment, support was shown for the EFs of terminators, symmetry, 

parallelism, intersections, connectivity, pixel count and lateral endpoint offset. Over­

all multiple regression values ranged from .60 to .85, with the percentage of variance 

accounted for (as evidenced by R2 values) ranging from 37% to 73%. 

Stronger support was shown for the EF of symmetry across all stimulus spaces in 

Experiment 2 than in Experiment 1. This might be due to the different strategies 

used to obtain the scores (objective in Experiment 1, and subjective in Experiment 

2). Perhaps the objective scoring system used in the present experiment (according 

to the coding criteria in Appendix C) to code for symmetry was not sensitive enough 

to the perception of this EF. Using participants' subjective scores for this EF was 

perhaps a more true representation of the perception of symmetry. It is interesting 

to note that connectivity, also scored subjectively by participants, did not experience 

such a benefit in its correlation with RT in Experiment 2 compared with Experiment 

1. It is possible that the differences among symmetric stimuli (i.e., those stimuli which 

vary in their axis of symmetry) are greater than those among stimuli which vary in 

their degree of connectedness. Thus, it might be possible that axis of symmetry is a 

stronger predictor of grouping than is connectivity, although further research will be 

needed to support this hypothesis. 

Support has been shown for strong CSEs. Due to the nature of the stimuli used, 

some spaces (7D, 8D, 10D) had a majority of, and sometimes exclusively, CIE effects 

(e.g., the discrimination between a vertical line segment and a diagonal was already 
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very fast, so most of the composite stimuli produced an inferiority effect because the 

context made the quadrants more similar than they were. However, it is important to 

note that it was not simply the addition of a context which diluted the dissimilarity 

of the quadrants which led to a CIE. Dilution of dissimilarity is presumably also 

operating in those cases where a CSE is obtained, but in the cases of CSEs the 

beneficial grouping effects from EFs trump other effects which work against grouping. 

These factors will be further discussed later on). Other spaces (3C, 4C, 9D) produced 

mostly CSEs (e.g., the initial discrimination was very hard, so any kind of context 

helped). However, it is interesting to note that there were 2 kinds of CIEs that 

were obtained in this experiment: those which arose from stimuli containing EF 

differences between the odd quadrant and the other 3, and those from stimuli without 

EF differences. Moreover, the CIE effects which arose from stimuli with EF differences 

were weaker than those without EF differences. So why weren't the CIEs with EF 

differences CSEs? It is possible that, just as EF differences help discrimination, other 

properties of the stimulus work to hinder it. One such property might be "crowding", 

or the effect which occurs when features from nearby objects combine together to 

form a jumble (Levi, 2008). Other such factors may include masking, additional 

processing load, and distraction from the target elements of the display. Thus, the 

observed RTs might be the the net difference of these two forces. In the case that 

crowding might be coded and accounted for, some CIEs with EF differences would 

become CSEs, providing stronger support for EFs. 
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Experiment 2 was an improvement over Experiment 1 in three ways. First, to 

address the concern that EFs behaved differently in combinations with different EFs, 

Experiment 2 sampled from 4 different patterns of EF presence in the odd quadrant 

(Alpha, Beta, Gamma, and Delta). This procedure did not affect the overall results 

as they were observed in Experiment 1. Second, Experiment 2 included baseline (base 

image discrimination only) RT measurements to inform the discussion of CSE/CIEs. 

Third, prediction scoring in Experiment 2 was apriori, and thus validated the pre­

diction method developed and employed in Experiment 1. 

Limitations 

Some limitations of Experiment 2 included 1) possibility of unequal salience of EFs, 

2) inability to tease apart the individual salience of EFs, and 3) insufficient data for 

some of the patterns. 

First, the possibility of unequal salience of EFs has not fully been addressed. This 

limitation is reflected in the present model, which does not account for this possi­

bility given the equal weights assigned to all EFs. However, very strong correlations 

have been obtained between the equal-weight predictions and the data despite this 

limitation. In fact, having fewer parameters and still accounting for 40-60% of the 

overall variance increases the parsimony of the model. 

Second, the problem of multi-collinearity has also not been addressed, and it is 

not possible in the present model to tease apart the individual salience of EFs. It 
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is not clear, for example, whether the EF of connectivity is as important as the EF 

of terminators. This limitation might be addressed by having fewer predictors, but 

the preferred method would be to collect more data (preferably on different stimulus 

spaces, as described below). 

Third, there was insufficient data for analyzing individual EFs in each of the 

patterns. Given this limitation, it is not possible to investigate EF contributions in 

the context of other EFs at present. 



General Discussion 

Both of the present experiments showed that performance during visual discrim­

ination tasks depends significantly on the identical "context" lines which are placed 

near the target line segments in all 4 quadrants. The target always remained the 

same, and in the same spatial position. This result is interpreted to signify that the 

target lines and context lines form perceptual groups. This can be shown by study­

ing CSEs and CIEs. What makes CSEs and CIEs work? An object which has more 

Emergent Features in its configuration will be more salient in its contrast with objects 

lacking such features. In the present experiments, eight such EFs have been identi­

fied. Support has been shown for such EFs as number of terminators, connectivity, 

intersections, parallelism, lateral endpoint offset, and pixel count. It follows from this 

argument that a cluster of elements is more likely to form a coherent object, or group, 

if it possesses these features. Thus, "parts" and "objects" can be defined using the 

relationship between elements based on Emergent Features. 

Future Research 

The methods for teasing apart the contributions of individual EFs are worth pursuing 

further. For instance, obtaining more data with stimulus sets which fall into the four 

patterns might lead to insights about EF salience when paired with other EFs within 

the same stimulus space. Conversely, it might be possible to devise new stimulus 

spaces where the displays vary only on one particular EF. 
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CSEs and CIEs might be possible to study further as the products of the differences 

between EF and crowding effects. This might be accomplished by finding properties 

of objects which would produce "clutter'' and coding them in much the same manner 

as was presented here with EFs. 

Lastly, further study will be needed to determine the correct relationship of the 

EF of symmetry to the perception of this EF with a scoring system which is more 

sensitive to this relationship. 
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Appendix A - Stimulus Spaces 
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Figure 33 Space lA 



70 

Stimulus 2 Context A 
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Stimulus 1 Context B 
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Figure 36 Space 2B 
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Stimulus 1 Context C 

Figure 37 Space lC 
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Stimulus 2 Context C 

Figure 38 Space 2C 
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Stimulus 3 Context C 
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Stimulus 4 Context C 
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Figure 40 Space 4C 
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Appendix B - Descriptions of Emergent Features 

Emergent Feature 

Terminators 

Collineari ty 

Symmetry 

Parallelism 

Description 

The nu1nber of nd-

points on an image 

The xt nt to which 

two line segments fall 

in a straight line 

The property that al­

lows th recreation of 

an image when ro­

tated around an axis 

Two line segments 

that nev r intersect 



Emergent Feature 

Lateral Endpoint Off­

s t 

Intersections 

Connectivity 

Pixel Count 

Description 

The extent to which 

two parallel line seg­

ments begin and end 

together in the same 

plane 

Whether two line seg­

ments cross each other 

Whether two line seg-

ments are 1n con-

tact with on another, 

making for a continu­

ous lin or shap 

The amount of black 

(figure) pix ls present 

in the image 

2 



Appendix C - Scoring Criteria and Instructions 

1. Terminators 

The number of "end points" in the image. 

Scoring is determined by counting the number of end-points in the odd image as 

well as in the distractor image. Scoring is then assigned according to the table below. 

# of Terminators in Odd Quadrant 

4 3 2 

4 0 0.5 0.25 
# of Terminators in 

3 0.75 0 0.5 
other 3 quadrants 

2 1 0.75 0 

I I II II -r -r 

I I II I - - -r I 

Terminator difference No terminator difference Less terminators in odd 

(1) (0) quad (.25) 
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2. Collinearity 

When the two line segments are in line with each other (valid only for 2 separate 

line segments). 

Code .5 for presence of collinearity in odd quadrant. 

Code 1 for absence of collinearity in odd quadrant, but presence in the other 3. 

Multiplied by Proximity for final score. 

I I I I 
- - I I 

I I I I 
- I I -

Collinearity difference No collinearity difference No collinearity in odd 

(.5) (0) quad (1) 
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3. Symmetry 

Symmetrical regardless of axis. If stimuli have symmetry along any axis, symmetry 

is coded. For this variable, it doesn't make a difference in the scoring whether the 

odd quadrant is symmetrical over a different axis from the other 3. 

Code .5 for presence of summetry in odd quadrant. 

Code 1 for absence of symmetry in odd quadrant, but presence in the other 3. 

Multiplied by Proximity for final score. 

L 

Symmetry difference (.5) No symmetry difference 

(0) 

'--

'--

No symmetry in odd 

quad (1) 



4. Parallelism 

Code 1 for absence of parallelism in odd quadrant. 

Code .5 for presence of parallelism in odd quadrant, but not other 3. 

Multiplied by Proximity for final score. 

1- 1-

1- I I 

Parallelism absence in No parallelism (0) Parallelism presence in 

odd quad (1) odd quad (.5) 

86 
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5. Lateral Endpoint Offset {horizontally and vertically) 

The extent to which two lines begin and end together. The range is from 0-1 in 

0.2 increments. 

For lateral endpoint offset in odd quadrant: 

Possible values: 0, 0.2, 0.4, 0.6, 0.8, 1 (arranged symmetrically along the grid) 

For lateral endpoint offset in the other 3 quadrants: 

Possible values: 0, 0.1, 0.3, 0.5, 0.7, 0.9 (arranged symmetrically along the grid) 

L 

L.E.O. in odd quadrant L.E.O. in other 3 L.E.O. in other 3 

(.8) quadrants (.5) quadrants ( 0) 
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Lateral Endpoint Offset (diagonally) 

The extent to which two lines begin and end together. The range is from 0-1 in 

1/7 increments. 

For L.E.O. in odd quadrant: 

Possible values: 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1 (arranged symmetrically along 

grid) 

For L.E.O. in other three quadrants: 

Possible values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (arranged symmetrically along 

grid) 

' 
L.E.O. in odd quadrant L.E.O. in odd quadrant 

(6/7) (1/7) 

,, ,, 
,, 

L.E.O. in other 3 

quadrants ( .2) 
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6. Intersections 

Code 1 for intersections in odd quadrant. 

Code 0.5 for intersections in other 3 quadrants, but not in odd quadrant. 

L 

Intersection difference No intersection No intersection in odd 

(1) difference ( 0) quad (.5) 
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7. Connectivity 

When the context and base are connected (touching) versus when they are not. 

Code 1 for connectivity in odd quadrant. 

Code 0.5 for connectivity in other three quadrants, but not in the odd quadrant. 

I I 
II II - -

I I 
II +- - I 

Connectivity difference No connectivity No connectivity in odd 

(1) difference ( 0) quad (.5) 
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8. Pixel Count 

Difference between the number of black (image) pixels between the odd quadrant 

and the other three. 

Code 1 for more pixels in odd quadrant. 

Code 0.5 for more pixels in the other three quadrants. 

II II 

II +-

More pixels in odd quad No pixel count difference Less pixels in odd quad 

(1) (0) (.5) 
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9. Proximity 

The center-to-center distance between the two line segments in the image. Based 

on the movement of the context across the grid. 

The coding shown below was used for all the spaces. The bold "coordinates" are 

the identifiers for each display. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 

10 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0 

9 0 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.1 0 

8 0 0.1 0.2 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.2 0.1 0 

7 0 0.1 0.2 0.4 0.6 0.8 0.8 0.8 0.6 0.4 0.2 0.1 0 

6 0 0.1 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0.1 0 

5 0 0.1 0.2 0.4 0.6 0.8 0.8 0.8 0.6 0.4 0.2 0.1 0 

4 0 0.1 0.2 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.2 0.1 0 

3 0 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.1 0 

2 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0 

1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 


