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Abstract.

Formation and growth of multi-cellular organisms and tissues from several

genetically identical embryo cells is one of the most fundamental natural phenomena.

These processes are stimulated and governed by multiple biological signaling molecules,

which are also called morphogens. Embryo cells are able to read and pass the

genetic information by measuring the non-uniform concentration profiles of signaling

molecules. It is widely believed that the establishment of concentration profiles of

morphogens, commonly referred to as morphogen gradients, is a result of complex

biophysical and biochemical processes that might involve diffusion and degradation

of locally produced signaling molecules. In this review we discuss various theoretical

aspects of the mechanisms for morphogen gradients formation, including stationary

and transient dynamics, the effect of source delocalization, diffusion, different

degradation mechanisms, and the role of spatial dimensions. Theoretical predictions

are compared with experimental observations. In addition, we analyze potential

alternative mechanisms of delivery of biological signals in embryo cells and tissues.

Current challenges in understanding the mechanisms of morphogen gradients and

future directions are also discussed.

PACS numbers:
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1. Introduction

Development of various living organisms from initially a very small group of identical

embryo cells is one of the most fascinating and complex processes in biology [1–4]. A

critical stage in biological development is a pattern formation during which the eventual

fates of cells become determined at different times and different spatial positions. Several

classes of biological signaling molecules, known as morphogens, play a central role in the

tissue patterning and organ formation in all living systems [1–5]. The term ‘morphogen’

was first introduced by A. Turing in his seminal paper on mathematical modeling of

biological pattern formation [6]. In this pioneering work, Turing demonstrated that

diffusion and chemical reactions involving several species can produce spatial patterns

in an array of cells, which are very similar to patterns observed in nature. Recently

experiments provided a direct verification for Turing’s theory in artificial chemical

systems [61]. The next critical step was made by L. Wolpert who introduced the idea

of positional information [4,13]. He argued that the developmental pattern formation is

a result of interpretation of spatial positions decoded in external signals from biological

signaling molecules. Cells obtain the spatial information by somehow “measuring”

the concentration of morphogens around them. Different genes are turned on or off

depending on several concentration thresholds, producing eventually morphologically

different cells. Finally, F. Crick realized that dynamic aspects of the creation of

morphogen profiles are also important for proper development of tissues and organs [5].

He emphasized the important role of the diffusion because of limited time window

for development processes. These three fundamental concepts are the foundations of

modern theory of morphogen gradients [7–10,12].

Enlightened by these ideas, a large number of experiments on formation, regulation

and functioning of morphogen gradients has appeared in recent years. They clearly

show that the non-uniform concentration profiles of signaling molecules are responsible

for symmetry breaking, tissue development and organs formation in multi-cellular

organisms [7–10, 12, 14–19, 24–27, 29, 33, 41, 46, 83]. Although these investigations of

morphogen gradients were done on diverse biological systems, most studies focused

on two main examples. The first one is a Drosophila embryo where Bicoid (Bcd)

morphogen gradients and the corresponding patterns were monitored and analyzed

[7–9,16,27,33,46]. The second example is a pattern formation in vertebrate neural tubes

by Sonic hedgehog (Shh) morphogens [8, 20, 48, 49]. A large amount of quantitative

information has been assembled on these systems, which highlighted the importance

of morphogen gradients. Another striking observation is that, despite different

evolutionary origins, distinct cell biology and biochemistry, the formation of tissue

patterns is very similar in both organisms [8].

Analysis of developmental processes in different systems suggested the existence of

several universal mechanisms governing the establishment of signaling profiles and their

activities [7–9, 12]. Stimulated by these experimental observations, a large number of

theoretical ideas on the mechanisms of formation of morphogen gradients have been
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proposed [7–10, 12, 21, 21–23, 31, 32, 34–40, 43, 50, 51, 58, 59, 76–78, 80]. Most of these

studies suggest that the establishment of biological signaling profiles in development is

a result of complex physical-chemical processes that include the localized production of

morphogens that later can diffuse and be removed from the cellular medium by various

types of biochemical transitions [7–10, 12]. Based on some experimental observations

[64,65,67,68,70,71,74], the possibility of alternative mechanisms of the direct delivery of

morphogens to the target cells utilizing dynamic cellular extensions called cytonemes was

predicted [11, 64, 77]. It has been argued that the complex environment of the embryo

systems might prevent the free diffusion from establishing the distinguishable morphogen

gradients at different regions, implying a different mechanism of the biological signal

transduction [11, 64].

In this paper, a brief overview on the mechanisms of development of morphogen

gradients is presented. Because of the large number of excellent reviews on morphogens

[7–10, 12], we concentrate here only on the theoretical aspects of the formation of

biological signaling profiles. For this reason, the important subjects such as how cells

interpretate the graded signals and biochemical regulations of these signals are not

discussed [12, 47]. Furthermore, in analyzing the complex processes associated with

the establishment of morphogen gradients we benefited from multiple discussions with

many researchers. But this review presents our subjective view on the field, which might

disagree with some existing descriptions.

2. Development of Morphogen Gradients via Reaction-Diffusion Processes

The dominating view in the field is that the morphogen gradients are created by a

complex action of several reaction-diffusion processes [7–10, 12]. Two main theoretical

directions have been explored in clarifying the mechanisms of formation of signaling

profiles. One of them utilizes a continuum description, while another one is based on

more general discrete-state stochastic analysis of the processes. Below we discuss and

compare both of them.

2.1. Continuum Synthesis-Diffusion-Degradation Model

Experiments show that biological signaling profiles are not uniform as shown in Fig.

1. This lead to the formulation of the simplest and still the most popular idea on the

formation of morphogen gradients. It is known as a Synthesis-Diffusion-Degradation

(SDD) model [7–10,12]. It is the most frequently applied model for analyzing multiple

systems where the profiles of signaling molecules are formed [7–10,12].

To describe this model mathematically, let us consider a semi-infinite signaling

domain in which morphogens are produced at the origin, x = 0, with a rate Q. They

diffuse along the field of cells with a diffusion constant D or they might be degraded

with a rate k. One can define a function C(x, t) as concentration of morphogens at

position x at time t. The temporal evolution of the concentration profile follows from a



Mechanisms of Formation of Biological Signaling Profiles 4

gradient
morphogen

threshold 1 threshold 2

concentration of
signaling molecules

embryo cells

Figure 1. A schematic view of the morphogen gradient and its action on embryo cells.

Cells exposed to the morphogen concentration above the threshold 1 will activate a

“red” gene; cells exposed to the morphogen concentration below the threshold 1 but

above the threshold 2 will activate a “green” gene; and cells exposed to the morphogen

concentration below the threshold 2 will activate a “yellow” gene.

corresponding reaction-diffusion equation,

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− kC(x, t), (1)

with the boundary condition at the origin

∂C(x, t)

∂x
|x=0 = −Q. (2)

Assuming that initially there were no morphogens in the system, C(x, t = 0) = 0,

these equations can be exactly solved at all times, yielding the following concentration

profile [23],

C(x, t) = C(s)(x)

[
1 − 1

2
erfc

(√
Dt

λ
− x

2
√

Dt

)
− 1

2
e−2x/λerfc

(√
Dt

λ
+

x

2
√

Dt

)]
,(3)

where erfc(y) is the complementary error function, λ =
√

D/k, and C(s)(x) is the

stationary profile,

C(s)(x) =
Q√
Dk

exp
(
−x

λ

)
. (4)

The SDD model predicts that at large times (t → ∞) the morphogen gradient is

the exponentially decaying function of the distance from the source with a length scale

λ determined by the ratio of the diffusion and degradation rates. These predictions

qualitatively agree with many observations of morphogen gradients in various systems

[16, 19, 24, 27, 46]. However, the application of this model for more quantitative

measurements of the dynamics of formation of signaling profiles in Bcd led to some

controversial results [16]. Experiments suggested that Bcd molecules diffuse relatively
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slow with D ≃ 0.3 µm2/s [16]. The most distant location that is still affected by the

bicoid molecules is at L ≃ 375 µm [34]. Using the unbiased random walk arguments,

one can evaluate how long it takes for the morphogens to diffuse to this location,

τ = L2/2D ≃ 4000 minutes, providing the estimate for the formation of Bcd profile

in drosophila embryos. But this contradicts to the experimental observation that

the morphogen gradient is created in approximately 90 minutes in the whole embryo

system. Clearly, there is a discrepancy between these theoretical predictions and what is

measured directly in experiments [16]. Several early attempts to explain this controversy

turned out to be unsuccessful [79].

A progress in resolving this paradox of slow diffusion and fast formation of the

morphogen gradients has been achieved by Berezhkovskii and coworkers who introduced

a new method of analyzing the dynamics [21, 34–36,43]. They realized that the correct

estimate of the times to establish the morphogen gradient is given by relaxation times

to reach stationary-state profiles, which are labeled as local accumulation times (LAT)

[34–36]. To obtain LAT one has to define first local relaxation functions,

R(x, t) =
C(x, t) − C(s)(x)

C(x, t = 0) − C(s)(x)
= 1 − C(x, t)

C(s)(x)
. (5)

The physical meaning of these functions is that they represent a relative distance to

the stationary state: at t = 0 the distance is one, while at the steady state it is equal

to zero. The function
(
−∂R(x,t)

∂t

)
is the probability density for reaching the stationary

state at the position x at time t. The explicit formulas for the local accumulation

time can be derived then via Laplace transformations of the local relaxation function,

R̃(x, s) =
∫∞

0
R(x, t)e−stdt [34],

t(x) =

∫ ∞

0

t

(
−∂R(x, t)

∂t

)
dt = R̃(x, s = 0). (6)

For the SDD model, from Eqs. (3) and (5) it can be shown that the relaxation function

is given by

R(x, t) = erfc

(√
Dt

λ
− x

2
√

Dt

)
+

1

2
e−2x/λerfc

(√
Dt

λ
+

x

2
√

Dt

)
, (7)

which leads to a very simple expression for the LAT [34],

t(x) =
1

2k

(
1 +

x

λ

)
. (8)

For Bcd morphogen gradient, using the expression (8) along with the estimate of

the decay length λ ≃ 60 µm and with a better estimation of the diffusion constant D ≃ 1

µm2/s [22,53], the time to reach the stationary state at the most distant boundary was

calculated to be less than 200 minutes, which is much closer (although still not perfect)

to the experimental values (≃ 90 minutes). The difference between these theoretical

predictions and experiments is probably due to not precise measurements of the diffusion

constant and the decay length, as well as due to oversimplified theoretical assumptions

of the strongly localized source region, as we discuss below in more detail [34]. Thus,
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the systematic approach to evaluate LAT as a measure of the dynamics of the formation

of morphogen gradients was able to mostly resolve the paradox of slow diffusion [34].

However, it also raised several fundamental questions. Eq. (8) indicates a linear scaling

as the distance from the source for the SDD model instead of the expected quadratic

scaling for the unbiased random walk motion since there are no apparent external driving

forces in the system. It led to a conclusion that signaling profiles formed much faster

than was previously estimated [34, 45, 57]. But the mechanism of this acceleration was

not clear.

2.2. Discrete-State Stochastic Description

During the establishment of the signaling profile, the morphogen molecules are removed

from the medium at specific locations of the cells (usually at receptors), and this implies

that the overall process is intrinsically biochemically discreet. This suggests that the

continuum description of the formation of morphogen gradients is an approximation,

and it might not fully describe these processes at all conditions [57]. For this reason, a

more general discrete-state stochastic framework was introduced [57].

Qm

uu

k
L

Q0

Figure 2. A schematic view of the one-dimensional discrete-state SDD model for the

formation of the morphogen gradients. The production of morphogens is distributed

over an interval of length L. Signaling molecule are produced at the sites 0 ≤ m ≤ L

(shown in red) with rates Qm. The case of m = 0 and L = 1 corresponds to the source

localized at the origin. Particles can also diffuse along the lattice to the neighboring

sites with a rate u, or they might be degraded with a rate k. Adapted with permission

from Ref. [75].

The discrete version of the SDD model is presented in Fig. 2. It is assumed that

each embryo cell is associated with a lattice site. In the simplest version of the model,

the morphogens are produced only at the origin with a rate Q0 = Q (L = 1 case

in Fig. 2). Signaling molecules can diffuse with a rate u along the lattice. At any

position, the morphogen can be degraded and removed from the system with a rate k.

The continuum description is obtained in the limit of very fast diffusion, u ≫ k. To

simplify calculations, a single-molecule view, according to which the concentration of

morphogens at given site is equivalent to a probability to find the signaling molecule

at this location, was adopted [57]. A function Pn(t), defined as the probability to find

the morphogen at site n at time t, was introduced [57]. The temporal evolution of this

probability is governed by the following master equations,

dP0(t)

dt
= Q + uP1(t) − (u + k)P0(t) (9)
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for n = 0; and

dPn(t)

dt
= u[Pn−1(t) + Pn+1(t)] − (2u + k)Pn(t) (10)

for n > 0. At large times, where dPn(t)
dt

= 0, these equations can be easily solved,

producing the exponentially decaying profile,

P (s)
n =

2Qxn

k +
√

k2 + 4uk
(11)

with

x = (2u + k −
√

k2 + 4uk)/(2u). (12)

In the continuum limit, u ≫ k, Eq.(11) reduces, as expected, to the expression (4). The

characteristic length of the concentration decay is given by

λ = − 1

ln x
. (13)

In the case of fast diffusion rates, u ≫ k, this length is equal to λ ≃
√

u/k which is a well-

known result for the continuum SDD model. [34] In another limit of fast degradation

rates, k ≫ u, this length is very small λ ≃ 1
ln(k/u)

because the morphogen molecules

cannot move large distances from the source due to fast degradations [57].

Calculating LAT for the discrete-state version of the SDD model, the linear scaling

was found again [57],

tn =
1√

k2 + 4uk

[
2u + k +

√
k2 + 4uk

k +
√

k2 + 4uk
+ n

]
. (14)

In the limit of fast diffusion rates, which describes the continuum regime, this expression

reduces to Eq. (8), while at another limit of fast degradation rates it produces

tn ≃ (n + 1)/k. But for all regimes a linear scaling as a function of the cell position n is

again observed, implying faster than expected the formation of the morphogen gradient.

To explain such fast relaxation to the stationary-state profiles, the following

arguments were presented [57]. Initially, at t = 0, the morphogen molecules start at

the origin (n = 0), and there is nothing at the site n > 0. Then the relaxation time to

reach the stationary-state at the site n should be consisting of two contributions. The

first one comes from the fact that the signaling molecules first have to reach the site

n, and it can be associate with a mean first-passage time (MFPT) to arrive here. It is

expected that MFPT should strongly depend on n. The second contribution is due to

local fluctuations at the given site until the stationary-state conditions are reached. It

was argued that this term, labeled as a local rearrangement time, is weakly dependent on

the position along the lattice. Thus, at large distances from the origin (n ≫ 1) the local

relaxation time can well approximated by the MFPT, which can be calculated exactly

using the backward-master equations [57, 81, 82]. These arguments are illustrated in

Fig. 3 where the ratios of LAT to MFPT are plotted as a function of the distance from

the source. In all cases, both time scales approach to each other at large n. Later these

theoretical predictions were explicitly proven by Berezhkovskii and Shvartsman [35],
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who also showed that the local rearrangement time can be viewed as the LAT if the

source is localized at the observation point.

0 50 100 150 200
n

0

0.2

0.4

0.6

0.8

1

τn/tn k/u=0.01
k/u=1
k/u=100

Figure 3. Ratio of LAT and MFPT for one-dimensional discrete-state stochastic

SDD model as a function of the distance from the source for different diffusion and

degradation rates. Reprinted with permission from Ref. [57]. Copyright 2011 American

Chemical Society.

But the fact that the LAT can be well approximated by the first arrival time is not

enough to explain the fast relaxation to the stationary-state profiles. It was argued that

the critical part of the process is the particle removal from the medium [57]. Morphogen

molecules have a nonzero probability to be removed from the system at each site due

to degradation. To survive on the lattice, the morphogen molecules must move faster

or they will be removed. This corresponds to effective speeding-up of the surviving

signaling molecules. It can be also viewed as a fact that the degradation creates an

effective potential Ueff(n) that drives the morphogens along the lattice away from the

source. This potential can be estimated from the stationary-state profile [57],

Ueff ≃ kBT ln P (s)
n . (15)

For the discrete-state SDD model this leads to the strongly decreasing linear potential,

Ueff ≃ n ln x = −n/λ, which implies that there is a constant effective force,

Feff = −∂Ueff (n)

∂n
=

1

λ
, (16)

which drives the morphogens away from the origin. However, the most important

conclusion from these arguments is that the motion of signaling molecules in such

potential is a driven process. It is not the unbiased diffusion as was earlier assumed.

This should naturally lead to the linear scaling in times [57]. It is important to note

that each molecule has no bias in its motion, but because the concentration due to the

degradation decreases for larger n the overall flux in the system will be flowing in the
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direction of larger n. This is similar to the effect of the constant force acting in the

positive direction. These theoretical arguments provide a microscopic explanation for

the fast formation of morphogen gradients, and they also emphasize the critical role of

the degradation processes [57].

2.3. The Effect of Source Delocalization

Although the simplest SDD model was able to explain some aspects of the development

of morphogen gradients, it was pointed out that many realistic features of the process

that might strongly influence the dynamics are not taken into account [30, 31, 34–37,

57, 75]. Experiments show that in many biological systems the production region of

signaling molecules is not strongly localized as assumed in the simplest SDD model

[7–10,12,30]. Morphogens are protein molecules that must be first synthesized from the

corresponding RNA molecules, but the distributions of RNA species in various embryos

are more diffuse [42]. For example, for the bicoid system it is known that the maternal

RNA molecules can be found in the region of size 30-50 µm, which should be compared

with the total length of embryo of ≃ 400 µm [7].

To understand the role of spatial delocalization of the production region, several

theoretical investigations have been performed [31,37,75]. The formal general solution to

describe the formation of morphogen gradients from an arbitrary source (as presented

in Fig. 2) has been obtained using the Green’s function method in the continuum

approximation [31, 37]. In this case, the corresponding reaction-diffusion equation can

be written as

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− kC(x, t) + S(x, t), (17)

where S(x, t) is a function that describes the maternal RNA distribution. It was shown

that the time-dependent solution of this equation is given by [31, 37],

C(x, t) =

∫
ds

∫
dyG(x− y, t − s)S(y, s), (18)

where G(x, t) is the Green’s function for this system,

G(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
exp (−kt) . (19)

The physical meaning of this function is a probability to find the particle at the position

x at time t if it started from the origin at t = 0 [37].

Using this approach the problems of the formation of morphogen gradients with

the source production uniformly distributed over the interval has been analyzed [31,37].

It was found that the stationary-state profile is flattening near the origin, in agreement

with observations for Bcd signaling profiles. In addition, it was argued that the almost

constant profile at the beginning of the embryo region explains why the target genes

are never expressed close to the origin: a sharper gradient is needed in order to reliably

turn off genes at the specific locations [31, 37]. Furthermore, using this method more
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complex normal distribution of production over the whole embryo length as well as time-

dependent source productions were investigated. A similar analysis, which emphasized

more the diffusion of RNA in the establishment of the signaling profiles, has been

done in Ref. [62]. The dynamics of the development of morphogen gradients in the

continuum approximation was evaluated using the LAT [37]. Specifically, the case of

the exponentially distributed source over the semi-infinite interval, i.e. for L → ∞ in

Fig. 2, with the productions rates

S(x) =
Q

λs
exp

(
− x

λs

)
(20)

was studied. Here, λs is the average decay length for the exponential distribution. It

was shown that for this system LAT is equal to [37]

τL(x, λs) =
1

2k

[(
1 +

x

λ

) λe−x/λ

λe−x/λ − λse−x/λs

+
2λ2

s

λ2
s − λ2

]
. (21)

For the case of λs = λ this equation simplifies into

τL(x, λs = λ) =
1

4k

[
3 +

x2

λ(x + λ)

]
. (22)

This expression can be used to estimate the times to create Bcd morphogen gradients.

Using λ ≃ 60 µm, x ≃ 6λ, and D ≃ 1 µm2/s, one can obtain that τ ≃ 120 minutes,

which is very close to the experimentally observed 90 minutes [16]. These calculations

suggest that the extended source accelerates the dynamics of the development of

signaling profiles.

A more general theoretical method to evaluate the role of the source delocalization

was introduced later [75]. A discrete-state stochastic SDD model in one dimension with

the extended source range, as illustrated in Fig. 2, was considered. It was assumed that

the signaling molecules are produced over the interval of length L with rates Qm for

0 ≤ m ≤ L: see Fig. 2. The total production rates is equal to Q =
∑L

m=0 Qm. Because

the production of morphogens at different sites is independent from each other, it was

suggested that the general solution for the probability to find a signaling molecule at

the site n at time t with a delocalized production region as specified in Fig. 2, P (n, t),

can be written as a sum of the probabilities P (n, t; m) for the single localized sources

at the sites m [75]. More specifically, the probability function P (n, t; m) is governed by

the following master equations,

dP (n, t; m)

dt
= Qmδm,n + u[P (n − 1, t; m) + P (n + 1, t; m)]

−(2u + k)P (n, t; m) (23)

for n > 0, and

dP (0, t; m)

dt
= Q0δm,0 + uP (1, t; m) − (u + k)P (0, t; m). (24)

for n = 0. In the steady-state limit, t → ∞, these equations can be solved explicitly,

yielding

P
(s)
1 (n; m) =

Qm[(k +
√

k2 + 4uk)xm−n + (−k +
√

k2 + 4uk)xn+m)]

(k +
√

k2 + 4uk)
√

k2 + 4uk
(25)
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for 0 ≤ n ≤ m, and

P
(s)
2 (n; m) =

Qm[(k +
√

k2 + 4uk)xn−m + (−k +
√

k2 + 4uk)xn+m)]

(k +
√

k2 + 4uk)
√

k2 + 4uk
(26)

for m ≤ n. The parameter x is given in Eq. (12). Then using the superposition

arguments, it can be shown that

P (n, t) =






n∑
m=0

P2(n, t; m) +
L∑

m=n+1

P1(n, t; m), for 0 ≤ n ≤ L;

L∑
m=0

P2(n, t; m), for L ≤ n.

(27)

This method allowed to analyze the formation of morphogen gradients for arbitrary

length of the production region and for arbitrary production rates [75]. In addition, it

also lead to computing the dynamic properties for the development of the signaling

profiles by evaluating the relaxation to the stationary-state profiles [75]. To clarify

the role of the source delocalization, the development of the morphogen gradients

with uniform distributed production over the finite interval and with the exponentially

distributed production along the semi-infinite interval were compared with the formation

of the signaling profile in the case of sharply localized source at the origin [75]. The

corresponding density profiles are presented in Fig. 5, while the estimated LAT are given

in Fig. 6. It was concluded that the extended sources delivered the signaling molecules

much further in comparison with the single localized source. In addition, the delocalized

sources were able to create sharp boundaries which are needed to controllably turning

genes on. They were also generally faster in reaching the stationary states.

2.4. The Formation of Morphogen Gradients in Two and Three Dimensions

Most of theoretical models applied for describing the establishment of the biological

signaling profiles are essentially one-dimensional [34–37,57,75]. However, a more realistic

description of these processes should take into account a complex structure of the

embryos [22, 52]. This led to multi-dimensional generalizations of the original SDD

models [43, 44, 60].

First, continuum radially symmetric models were considered [43]. It was assumed

that the source region is a sphere of radius R around the origin, and that there is no

morphogens in the system at t = 0. In this case, the concentration profiles are described

by [43, 44]

∂C(r, t)

∂t
= D

[
∂2C(r, t)

∂r2
+

(d − 1)

r

∂C(r, t)

∂r

]
− kC(r, t). (28)

for a d-dimensional system. Here D is the diffusion constant, Q is the production rate

at the boundary of the source region, k is the linear degradation rate and r ≥ R. The

boundary conditions can be written as [43, 44]

−D
∂C

∂r
(R, t) = Q. (29)
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Figure 4. Stationary-state density profiles for the formation of morphogen gradients

with different production regions and for variable diffusion and degradation rates.

Red curves describe the single-site localized source, green curves describe the uniform

production over the finite interval, and blue curves describe the exponential production

over the semi-infinite interval. Adapted with permission from Ref. [75].

It was also assumed that far away from the production region the concentration of

signaling molecules disappears, C(r → ∞, t) = 0. At large times, the concentration

profiles approach the stationary state, which is given by [44]

Cs,d(r) =
Q√
Dk

Kd/2−1(r
√

d/λ)

Kd/2(R
√

d/λ)

( r

R

)1−d/2

, (30)

where Km(y) is the m-th order modified Bessel function of the second kind and λ =√
dD/k is the characteristic decay length of the concentration profile in d dimensions.

The application of the local relaxation functions provided the explicit expression for

times to reach the stationary state [43, 44],

τd(r) =
1

k
− (R

√
d/λ)

2D

Kd/2+1(R
√

d/λ)

Kd/2(R
√

d/λ)
+

(r
√

d/λ)

2D

Kd/2(r
√

d/λ)

Kd/2−1(r
√

d/λ)
. (31)

For two dimensional systems (d = 2), from Eqs. (30) and (31) one could derive the

concentration profile [44],

Cs,d=2(r) =
Q√
Dk

K0(r
√

2/λ)

K1(R
√

2/λ)
, (32)

and the LAT,

τd=2(r) =
(r
√

2/λ)

2k

K1(r
√

2/λ)

K0(r
√

2/λ)
− (R

√
2/λ)

2k

K0(R
√

2/λ)

K1(R
√

2/λ)
. (33)
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Figure 5. Local accumulation times for the formation of morphogen gradients with

different production regions and for variable diffusion and degradation rates. Red

curves describe the single-site localized source, green curves describe the uniform

production over the finite interval, and blue curves describe the exponential production

over the semi-infinite interval. Adapted with permission from Ref. [75].

In the case of d = 3, it was shown that [43]

Cs,d=3(r) =
QR2 exp [(R − r)

√
3/λ]

rD(1 + R
√

3/λ)
, (34)

and

τd=3(r) =
(r − R)

√
3/λ

2k
+

R
√

3/λ

2k(1 + R
√

3/λ)
. (35)

The analysis of the dynamics of the formation of morphogen gradients in two and

three dimensions led to some unexpected results [43]. It was found that, in contrast to

one-dimensional systems, there are multiple time scales for approaching the stationary

concentration profiles near the production region (r ≃ R). It was suggested then

that the dimensionality is an important factor in the morphogen gradients development

in multi-dimensional systems, although the mechanisms of this phenomenon were not

clarified [43].

These surprising observations were fully explained only when more general multi-

dimensional discrete-state stochastic models were introduced [60]. The d-dimensional

system with the production at the origin, as shown in Fig. 6, was investigated. In

this system, each lattice cite is characterized by d coordinates, ~n = (n1, n2, ..., nd). The

source of signaling molecules is at the origin, ~n0 = (0, 0, ..., 0), with the production

rate Q (see Fig. 6). Morphogens can diffuse to the nearest neighboring sites with
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the rate u, and the degradation rates at each site is equal to k (Fig. 6). To solve

the problem, a function P (n1, n2, ..., nd; t), defined as the probability density at the

cell ~n = (n1, n2, ..., nd) at time t, was analyzed at all times using the following master

equations [60],

dP (n1, n2, ..., nd; t)

dt
= u

∑

nn

P (n1, n2, ..., nd; t)−(2ud+k)P (n1, n2, ..., nd; t),(36)

where
∑

nn corresponds to summing over all nearest neighbors,
∑

nn

P (n1, n2, ..., nd; t) = P (n1 − 1, n2, ..., nd; t) + P (n1 + 1, n2, ..., nd; t) +

P (n1, n2 − 1, ..., nd; t) + P (n1, n2 + 1, ..., nd; t) + .... (37)

At the origin, the dynamics is slightly different,

dP (0, 0, ...; t)

dt
= Q + u

∑

nn

P (0, 0, ...; t) − (2du + k)P (0, 0, ...; t). (38)

k

u
u

u

u

Q

Figure 6. A schematic view of the multi-dimensional system with the formation of

morphogen gradients for d = 2. The signaling molecules are created at the origin with

the rate Q. They diffuse with the rate u in all directions without a bias. At each cell,

morphogens can be degraded with the rate k. Adapted with permission from Ref. [60].

At large times, the system achieves a stationary state with exponentially decaying

signaling concentration profile,

P (s)(n1, n2, ..., nd) =
2Qx|n1|+|n2|+...+|nd|

√
k2 + 4duk

=
2Q√

k2 + 4duk
exp (

− | n1 | − | n2 | −...− | nd |
λ

), (39)

where

x = (2du + k −
√

k2 + 4duk)/(2du), λ = −1/ ln x. (40)
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It was shown also that the dynamics of approaching the stationary state is specified by

the LAT [60]

t(n1, n2, ..., nd) =
(2du + k)

(k2 + 4duk)
+

| n1 | + | n2 | +...+ | nd |√
k2 + 4duk

. (41)

The equivalent expression for the LAT at the distance r from the origin produces [60],

τ(r) =
(2du + k)

(k2 + 4duk)
+ (

√
d√

k2 + 4duk
)r. (42)

In the fast degradation limit, k ≫ u, this equation gives

τ(r) ≃ 1

k
+

r
√

d

k
. (43)

In the continuum limit, u ≫ k, it was found that there is no dependence on the

dimensionality [60],

τ(r) ≃ 1

2k
+

r

2
√

uk
. (44)

This contrasts with the predictions of the radially-symmetric continuum models [43,44].

From Eq. (31) one could obtain for the localized source R = 0,

τd(r) =
1

k
+

(r
√

d/λ)

2D

Kd/2(r
√

d/λ)

Kd/2−1(r
√

d/λ)
. (45)

To rationalize these deviations between theoretical predictions, the LAT in two and

three dimensions for both approaches have been compared. The results are presented

in Figs. 7 and 8. One can see that the continuum limit of the discrete-state models

and radially-symmetric continuum models do not agree with each other, although for

large distances (r ≫ 1) the differences are getting smaller [60]. It was noticed also that

the radially-symmetric models predict that τ(r = 0) = 0, while for the discrete-state

case τ(r = 0) = 1/2k 6= 0. But the relaxation times to the stationary profiles can never

be zero because originally in the system there is no morphogens. Thus, the radially-

symmetric continuum models cannot properly describe the dynamics of the formation

of morphogen gradients for d > 1 near the production region. The main reason for

this is the assumption of spherically symmetric solutions of the corresponding reaction-

diffusion equations at all length scales. Theoretical approach based on the discrete-

state stochastic framework does not assume the spherical symmetry and this allows to

correctly describe the dynamics at all scales and in all dimensions [60].

The effect of dimensionality on the dynamics of the formation of morphogen

gradients have been also investigated using the discrete-state stochastic models [60]. The

results are presented in Figs. 9 and 10. It was found that the dynamics is determined

by the distance from the source and by the relative values of the degradation and

diffusion rates. LAT depend on d for fast degradation rates (k ≫ u), while there is

no dependence in the continuum limit(u ≫ k). The last observation can be simply

explained by noting that in the continuum case the diffusion rate is very fast and the

rate-limiting step is the production of morphogens, which is clearly independent of the
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Figure 7. Comparison of the LAT for discrete-state stochastic models and for radially-

symmetric continuum models as a function of the distance from the source r in two

dimensions. a) Fast degradation limit, k = 1, u = 0.01; b) comparable diffusion and

degradation rates, k = u = 1; and c) fast diffusion limit, k = 1, u = 100. Insets show

the same plots for larger length scales. Adapted with permission from Ref. [60].

dimension. Theoretical calculations also show that the LAT for the sites far away from

the source (r ≫ 1) increase with d, while for the sites near the production area (r ≃ 0)

the trend is reversed: see Figs. 9 and 10. The following arguments were presented

to explain these results [60]. There are two effects by which the dimension affects the

dynamics of morphogen molecules. Increasing d effectively increases the mobility of

the signaling molecules because there are more channels to escape from the given site.

At the same time, there are more pathways that connect the source region and any

other site on the lattice, and this should increase the relaxation times because there are

more long slow trajectories connecting the source and the target cell. The first effect

dominates at small distances near the source because there are less pathways to reach

the given cell. At the same time, the second effect is more important for large distances.

To investigate in more detail the dynamics of the formation of signaling profiles,

higher moments of the relaxation to the stationary states have been calculated [44,60].

From this point of view, the LAT is the first moment, τ ≡< t >. Using the discrete-state

stochastic method, the variance in the local accumulation times, σ ≡
√

< t2 > − < t >2,
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Figure 8. Comparison of the LAT for discrete-state stochastic models and for radially-

symmetric continuum models as a function of the distance from the source r in three

dimensions. a) Fast degradation limit, k = 1, u = 0.01; b) comparable diffusion and

degradation rates, k = u = 1; and c) fast diffusion limit, k = 1, u = 100. Insets show

the same plots for larger length scales. Adapted with permission from Ref. [60].

was estimated as [60]

σ(r) =

[
dr2 − 2

(k2 + 4dk)
+

2r
√

d(2du + k)

(k2 + 4duk)3/2
+

5(2du + k)2

(k2 + 4duk)2

]1/2

. (46)

In the limit of fast degradation rates, k ≫ u, this expression simplifies into

σ(r) ≃
√

dr2 + 2r
√

d + 3

k
, (47)

while in the limit of fast diffusion rates (continuum limit) the variance is

σ(r) ≃
√

5

2k
+

r

2
√

5uk
. (48)

These results suggest that, similarly to the LAT, the dependence of the variance of the

relaxation times to the stationary profile on the dimension disappears in the continuum

limit [60].

The first and second moments of the relaxation times have been further employed in

analyzing an important question on how biological systems might control the stochastic

noise during the processes of the formation of morphogen gradients [60]. It was argued

that the variance normalized by the LAT is a convenient measure of noise, and it is
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Figure 9. Local accumulation times at r = 10 as a function of the spatial dimension.

The blue curve corresponds to the fast degradation rates, k = 1, u = 0.01. The red

curve is for comparable degradation and diffusion rates, k = u = 1. The green curve

describes the fast diffusion limit, k = 1, u = 100. Adapted with permission from

Ref. [60].

presented in Fig. 11. Theoretical calculations show that the noise can be reduced by

increasing the degradation rate and the dimensionality of the system.

2.5. Nonlinear Degradation Mechanisms

Several experimental studies suggested that in some systems the development of

the signaling profiles might be associated with more complex nonlinear degradation

processes [51,54–56]. In these situations, the presence of other morphogens can catalyze

or inhibit the process of the removal from the medium, and this should affect the

dynamics of the formation of morphogen gradients. In this case, the temporal evolution

of the concentration profile can be written as [51]

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− kC(x, t)m, (49)

with m 6= 1. Using numerical solutions and mathematical bounds initial studies have

shown that the dynamics of approaching to the stationary state differs significantly

depending on the parameter m [51]. For m = 0 and m = 1 (linear degradation) LAT

are linear functions of the distance from the source, but for m = 2, 3 and 4 the scaling

changes from linear to quadratic.

The explanations for these surprising observations were presented in the theoretical

analysis that proposed to view the degradation process as an effective driving potential

[76]. The degradation creates a gradient by removing molecules from the system, and
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Figure 10. Local accumulation times at r = 0 as a function of the spatial dimension.

The blue curve corresponds to the fast degradation rates, k = 1, u = 0.01. The red

curve is for comparable degradation and diffusion rates, k = u = 1. The green curve

describes the fast diffusion limit, k = 1, u = 100. Adapted with permission from

Ref. [60].

this is equivalent to the action of the potential given in Eq. (15) that drives molecules

away from the production region. Then the original reaction-diffusion model with the

degradation can be approximated as a biased-diffusion model without degradation [76].

This is illustrated in Fig. 12.

It was assumed that the equivalent biased-diffusion model has L (L → ∞) sites [76].

The morphogens starts the motion at t = 0 at the origin. The particles can move to

the right (left) from the site n with the rate gn(rn): see Fig. 12. When the particle

reaches the site L it is instantaneously moved back to the origin, n = 0. The model

is non-equilibrium, so that there is always a flux in the system in the direction away

from the source. In the biased-diffusion model the probability to find the molecule at

the site n at time t is given by a function Πn(t) [76]. The temporal evolution of these

probability is described by master equations [76],

dΠn(t)

dt
= rn+1Πn+1(t) + gn−1Πn−1(t) − (rn + gn)Πn(t), (50)

for 0 < n < L, while for n = 0 and n = L, we have

dΠ0(t)

dt
= J + r1Π1(t) − g0Π0(t), (51)

dΠL(t)

dt
= gL−1ΠL−1(t) − rLΠL(t) − J, (52)

where J is the flux from the site L back to the origin n = 0. When the system achieves

the stationary-state behavior the flux through every site is equal to J .
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Figure 11. Normalized variance as a function of distance from the source for different

dimensions in the discrete-state stochastic models. a) Fast degradation rates, k = 1,

u = 0.01; b) comparable degradation and diffusion rates, k = u = 1; and c) fast

diffusion rates, k = 1, u = 100. Adapted with permission from Ref. [60].

[a]

[b]

Figure 12. Schematic view of equivalent models for the formation of morphogen

gradients. a) Synthesis-diffusion-degradation model; b) Biased-diffusion model.

Adapted with permission from Ref. [76].

Comparing the SDD model and the equivalent biased-diffusion model, it should be

clear that the mapping between them is not exact [76]. It can be seen by noting that

in the biased-diffusion model there is always a conservation of the probability, while
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in the SDD model the conservation is only achieved at the stationary-state limit. The

relations between the parameters of both models can be made quantitative by using the

following arguments. The diffusion rates gn and rn are related to each other via the

effective potential as can be shown using the detailed balance-like arguments [76, 82],

gn

rn+1
= exp

(
Ueff

n − Ueff
n+1

kBT

)
. (53)

The physical meaning of this expression is that the stronger the potential, the faster

the motion in the positive direction, gn > rn+1. But to obtain the explicit formulas for

transition rates a second condition is needed [76],

gn + rn = 2D + kCm−1. (54)

This implies that the residence of each molecule at site n is identical in both models.

Together, Eqs. (53) and (54) uniquely define the transition rates in the biased diffusion

model via parameters of the SDD model [76].

For linear degradation (m = 1) this approach leads to the following transition rates

in the equivalent biased-diffusion model [76],

gn = g =
2D + k

x + 1
, rn = r = x

2D + k

x + 1
, (55)

with x = (2D + k −
√

k2 + 4kD)/2D. The results for mean first-passage times from

both models are given in Fig. 13. We conclude that the approximate mapping works

quite well everywhere, but especially for large degradation rates.

Extending this method to nonlinear degradation processes, indicates that for m ≥ 2

the steady-state profile is given by [76],

P (s)
n ≃ 1

(1 + n/λ)
2

m−1

, (56)

where the parameter λ is defined as

λ =
1

m − 1

[
(2D)m(m + 1)

kQm−1

] 1
m+1

. (57)

This concentration profile corresponds to the logarithmic potential,

Ueff
n

kBT
≃ − 2

m − 1
ln (1 + n/λ). (58)

It can be shown that the mean first-passage times for equivalent the biased-diffusion

model at large distances from the source are equal to [76]

τn ≃ (m − 1)

(m + 1)

n2

2D
. (59)

This is an important result since it predicts a quadratic scaling for relaxation times with

the nonlinear degradation, as illustrated also in Fig. 14.

Theoretical calculations using the mapping of the SDD model to the equivalent

biased-diffusion model clearly show different scaling behavior depending on the

mechanisms of degradation. Linear scaling is observed for m = 0 or 1, while quadratic
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Figure 13. Ratio of calculated mean first passage times for the SDD model and for

the equivalent biased-diffusion model. a) The dependence on the distance from the

source; b) the dependence on the ratio of degradation rate over the diffusion rate.

Distance from the source is set to n = 104. Adapted with permission from Ref. [76].

scaling is found for nonlinear degradations with m ≥ 2 [51, 76]. The different dynamic

behavior was explained using the concept of the effective potentials due to degradation

[57]. Linear degradation corresponds to strong driving potential, as shown in Fig. 15.

In this case, there is a unique length scale λ across the whole system. This leads

to effectively driven diffusion which has the expected linear scaling. The situation is

different for the nonlinear degradation processes. The stationary state in this case

can be described by a power-law concentration profiles, which do not possess unique

length scales. As a result, the effective potential (logarithmic) is weak enough so that

it cannot destroy the quadratic scaling of the unbiased diffusion. It might only affect

the amplitude of the random-walk fluctuations for each signaling molecule.
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Figure 14. Theoretically calculated mean first-passage times as a function of the

distance from the source for different degrees of nonlinearity for the biased-diffusion

model. a)m = 2; b) m = 10. Adapted with permission from Ref. [76].

2.6. Alternative Mechanisms: Direct Delivery of Morphogens

Recent experimental advances in studying the development processes in various systems

revealed that there is a significant number of experimental observations that cannot be

explained by reaction-diffusion mechanisms [11, 47, 64, 65, 69]. In embryo systems with

complex internal structures simple free diffusion might not be always very efficient in

establishing the morphogen gradient [11, 64]. These observations stimulated new ideas

on how the genetic information can be transferred in such systems. An alternative direct

delivery mechanism has been proposed [11, 41, 63, 66]. It was suggested the signaling

molecules can be transported to target cells utilizing cellular tubes, which are called

cytonemes [11, 41, 63, 66, 69]. Cytonemes are dynamic cellular extensions that cells

can extend and retract very quickly with the help of actin filaments. Their length is

varying from 1 to 100 µm with the diameter of less than 100 nm. Cytonemes have

been recently observed in several biological systems, but their cellular functions were
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Figure 15. Effective potentials due to degradation. Linear degradation corresponds

to m = 1, while m = 3 and m = 10 describe non-linear degradation processes. Adapted

with permission from Ref. [76].

unclear [63–65, 68–71, 74]. It was proposed that morphogens can be transported by

myosin motor proteins along the actin filaments inside the cytonemes directly from the

source cells to the target cells, as shown schematically in Fig. 16 [11,68,69]. The direct

delivery mechanism thus avoids the problems where geometrically complex environment

prevents the free diffusion to form the signaling profiles.

N210

Figure 16. A simplified view of the direct delivery mechanism of signaling molecules

via utilization of cytonemes. The red cell is the source. Green cells labeled as

n = 1, ..., N are target cells. Cytonemes are shown as tubular extensions from the

source cell to the target cells. Morphogens are small red circles inside the cytonemes.

Adapted with permission from Ref. [77].

2.7. Transport through Cytonemes

Recently, a first quantitative physical-chemical method to describe the direct delivery

via cytonemes has been introduced [77]. It is based on discrete-state stochastic analysis

of the model presented in Fig. 16. The model assumes that there are N + 1 embryo
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cells in the system (shown as squares in Fig. 16). One of them (red square, n = 0)

is a special source cell where the signaling molecules are produced with a rate Q. The

source cell also generates N cytonemes that extend and attach to each of the target cell

(green squares in Fig. 16). It is assumed that the cytonemes are already established at

the beginning of the process and they are stable until the morphogen gradient is fully

established. Signaling molecules (shown as small red circles in Fig. 16) are transported

to the n-th target cell from the source cell with a rate wn (n = 1, 2, ..., N). When they

reach their target cells, morphogens can be degraded with a rate k. This is the minimal

model that takes into account the most relevant processes such as the direct delivery

via cytonemes and the degradation of morphogens.

This model can be solved by analyzing the single-molecule probability density

function Pn(t) of finding the morphogen at the site n at time t. The temporal evolution

of this probability function follows the set of master equations [77]

dP0(t)

dt
= Q −

N∑

n=1

wnP0(t), (60)

for n = 0, and

dPn(t)

dt
= wnP0(t) − kPn(t) (61)

for n > 0. Assuming that initially there were no morphogens in the system, Pn(t = 0) =

0 for all n, these master equations can be solved exactly at all times, which leads to

P0(t) =
Q

η

[
1 − e−ηt

]
; (62)

Pn(t) =

[
Qwn

η(η − k)

]
e−ηt −

[
Qwn

k(η − k)

]
e−kt +

Qwn

ηk
, (63)

where η =
∑N

n=1 wn is defined as a total productions rate from the source cell to all

target cells. These results imply that the concentration of signaling molecules at each

cell is an exponentially decaying function of the time. It can be viewed as a result of

balancing between two opposing processes: the direct delivery with the rate η and the

removal with the rate k. In the stationary-state limit, (t → ∞), the density profiles

reduce to,

P (s)
n =

Q

kη
wn, P

(s)
0 =

Q

η
. (64)

The dynamics of approaching the stationary state can be understood from analyzing

a local relaxation function, defined as Rn(t) ≡ Pn(t)−P
(s)
n

Pn(0)−P
(s)
n

[34]. Simple calculations yield

the following expressions for the local accumulation times [77],

< τn >=
1

k
+

1

η
, < τ0 >=

1

η
. (65)

The model predicts that there is no dependence on the target cell position, n, in

contrast to reaction-diffusion mechanisms of the formation of morphogen gradients. The
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relaxation dynamics to the stationary concentration profiles is identical for all target

cells. The main reason for this is that the processes at all target cells are independent

from each other, and the stationary state at each of them cannot be established until

the steady-state behavior is observed in the source cell [77]. This can only happen

simultaneously in all cells in the system (see Fig. 16).

Local relaxation functions have been also applied to obtain the second moment of

LAT, which allowed to evaluate the robustness of the direct-delivery mechanism [77]. It

was shown that

< τ 2
n >=

2(η2 + kη + k2)

k2η2
, < τ 2

0 >=
2

η2
, (66)

which are again independent of the position of the target cell, n. The normalized

variance was then computed to be [77],

σn =

[
η2 + k2

η2 + 2kη + k2

]1/2

, σ0 = 1. (67)

The normalized variances for the direct-delivery mechanisms are compared with the

corresponding predictions from the reaction-diffusion processes in Fig. 17. One can see

that σn is always less for the direct delivery transport. This means that moving signaling

molecules through cytonemes is a more robust mechanism of the formation of morphogen

gradients because it is affected less by the stochastic noise [77]. In the reaction-diffusion

mechanism signaling molecules can fluctuate spatially between different cells due to

diffusion, but this option is not available for the direct-delivery mechanism. So the

advantage of using the transport via cytonemes in creating signaling profiles is not

only in overcoming the geometric constraints but also in reducing the influence of the

stochastic noise [77].

To understand better how the direct delivery process works, a more microscopic

description of the transportation rates wn was utilized for calculating the dynamic

properties of the system [77]. In the first approach, it was suggested to use the fact

that motor proteins drive the morphogens along the cytonemes. It was assumed that

the rates are related to the free energy difference of moving the signaling molecule from

the source cell to the target cell [77],

wn = exp

[
−∆G(n)

kBT

]
, (68)

where ∆G(n) is the energy required to displace the morphogen to the target cell n. One

can assume that the length of the cytoneme to the target cell n, Ln is proportional to

n, i.e., Ln = An, and the motor proteins spend energy ε (in units of kBT ) by moving

every signaling molecule a distance l. Then the free energy difference can be written as

∆G(n) =
LnεkBT

l
=

AnεkBT

l
=

nkBT

a
, (69)

where a = l/Aε. The explicit expression for the transportation rate is given by

wn = exp
[
−n

a

]
. This finally leads to the following expression for the stationary
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Figure 17. Comparison of normalized variances as a function of the distance from

the source for reaction-diffusion and direct delivery mechanisms. Red lines correspond

to the SDD model with a diffusion rate u. Blue lines describe the direct delivery

via cytonemes with the total transportation rate η. Adapted with permission from

Ref. [77].

concentration profile [77],

P (s)
n =

Q

kη
exp

[
−n

a

]
, (70)

where the total transportation rate η is equal to

η =
N∑

n=1

exp
[
−n

a

]
=

exp
[
−1

a

]
− exp

[
− (1+N)

a

]

1 − exp
[
−1

a

] . (71)

This model predicts the exponential decaying morphogen gradient [see Eq. (70)],

which is similar to predictions from the reaction-diffusion models [7–10]. However,

the difference is that the decay length in the direct delivery mechanism, specified by

the parameter a, is larger for more efficient motor proteins that spend less energy in

driving the morphogens along the cytonemes. In the reaction-diffusion mechanism the

decay length is controlled by the ratio of diffusion and degradation rates [34, 57]. Thus

the energy dissipation in the transportation of signaling molecules through cytonemes

is important for direct delivery mechanism [77].

Because cytonemes are narrow cylindrical tubes, the transport of signaling

molecules can be viewed as effectively one-dimensional, and this suggested

intermolecular interactions, e.g., due to exclusion, might affect the dynamics [77]. This

possibility was investigated using the concept of totally asymmetric exclusion processes

(TASEP) [77]. TASEPs are nonequilibrium multi-particle models that were successfully
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utilized for uncovering the mechanisms of many complex biological processes [73]. It

was proposed that each cytoneme can be viewed as 1D lattice on which morphogens

move in the direction of the target cell. The problem of describing the dynamics of the

formation of morphogen gradients in such system is identical to a set of open-boundary

TASEP segments coupled at the source cell. Stationary-state fluxes for TASEP on finite

lattice segments with an entrance rate α and an exit rate β are well known [72],

J(α, β; n) =
Sn−1(1/β) − Sn−1(1/α)

Sn(1/β) − Sn(1/α)
, (72)

where

Sn(y) =

n−1∑

i=0

(n − i)(n + i − 1)!

n!i!
yn−i+1. (73)

For the model presented in Fig. 17, the entrance and exit rates on each cytoneme are

given by [77],

α = Q/N, β = k. (74)

The transition rate from the source cell to the target cell n can be written as

wn = J(Q/N, k; n). (75)

The stationary-state profile in this system of interacting morphogens is equal to

P (s)
n =

Q

kη

Sn−1(1/k) − Sn−1(N/Q)

Sn(1/k) − Sn(N/Q)
. (76)

Fig. 18 illustrates the morphogen gradients for this system of interacting signaling

molecules. The possibility of interactions between the morphogen molecules has a

dramatic effect on the stationary profiles. While at the distances not far away from

the source the effect is minimal, for larger distance the density profile saturates. But

this leveling is not useful for the morphogen gradients because the information can be

transferred efficiently only from strongly decaying profiles. It was suggested that these

intermolecular interactions might present a problem for the direct delivery mechanism

on very large distances, but experimental tests of these predictions are needed because

many other factors might change the outcome [77].

3. Concluding Remarks and Future Directions

To conclude, we presented a review of recent developments in theoretical understanding

the mechanisms that lead to the formation of biological signaling profiles. The

dynamics of formation of morphogen gradients was analyzed first using the reaction-

diffusion framework. This is assumed to be the main mechanisms for creating the

concentration profiles of signaling molecules that can efficiently transfer the information

in embryo systems. We discussed the critical role of the degradation processes, and

it was argued that its action is similar to the driving potential that accelerates the

dynamics of formation of morphogen gradients. Several other important aspects of the
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Figure 18. Stationary-state concentration profiles for interacting and non-interacting

signaling molecules during the transportation along the cytonemes. Adapted with

permission from Ref. [77].

development of signaling profiles, including the effect of the size of the production region,

dimensionality, nonlinearity in the degradation and discreteness of these processes, have

been thoroughly analyzed. We also discussed the alternative direct delivery mechanisms

in the establishment of morphogen gradients. The presented theoretical methods are

applicable to a broad range of biological development phenomena, as well as for cell

signaling and tissue and organ formation processes.

Although many features of the development of signaling profiles are better

understood now, there are many puzzling questions and observations in the field. Let us

briefly mention several of them. The production of the morphogens is a time-dependent

process with variable rates. But existing theoretical methods mostly assume that these

rates are constant. It is not clear how to take into account the temporal effect in the

source and what effect it might have on dynamics. Another challenging problem is if

the morphogen gradient needs to reach the stationary state or not in order to properly

transfer the information. There are controversial views about the possibility of the pre-

steady state decoding as the more efficient mechanism of information transfer [23,58]. It

is important to understand this because it might affect the dynamics and the robustness

of the system. Another critical question is related to the fact that embryo cells during

the formation of morphogen gradients are not frozen as implicitly assumed in current

theoretical models. They are dynamic systems that can grow, shrink, divide and change

the shape. New theoretical ideas are needed in order to couple the chemical and

biophysical processes of the formation of morphogen gradients with mechanical stability

and transformations in embryo cells. Finally, it is still unclear how exactly the embryo

cells read the information from the signaling profiles. Several ideas were expressed

but none of them is fully supported by existing experimental data [47]. It is critically
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important to combine multiple theoretical, computational and experimental methods to

advance our knowledge on mechanisms of these fundamental biological processes.
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