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A ROBUST MODIFICATION OF NEWTON'S

METHOD FOR NONLINEAR OPTIMIZATION

by -

Naresh Kumar Garg

ABSTRACT

A numerically stable algorithm is presented, which essentially
uses the preconditioned conjugate gradient method to iteratively
solve the linear systems which arise in Newton's method. Directions
of negative curvature are obtained and dealt with in an efficient
and natural manner. A main feature of the algorithm is that the
amount of storage required can be controlled by the choice of the
preconditioning matrix. Preliminary numerical experimentation
indicates that the method compares favorably with the now standard

techniques to solve the particular optimization problem.
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1. INTRODUCTION.

This thesis is concerned with the development and implementation
of a numerical algorithm for solving finite dimensional nonlinear
optimization problems. Our primary objective is to manifest tech-
niques that can be used as practical tools. For this reason, special
emphasis is given to robustness, by which is meant the ability of an
algorithm to cope with adverse circumstances, whether due to the
pathologies'df a particular problem or to the shortcomings of finite
precision computer arithmetic. The possession of nice theoretical
properties is a necessary but far from sufficient condition for an
algorithm to be effective for a wide range of practical problems.

Another obvious measure of the complexity of an optimization
problem is its size, measured in terms of the number of unknown
variables or the number of comstraints. Much of the early theory
associated with nonlinear optimization concerned the derivation of
necessary and sufficient conditions for a solution. In the last ten
or fifteen years the question of computation has been seriously dealt
with, and several good algorithms for nonlinear optimization have been
proposed. lowever, 1i
algorithms that are well-suited for large problems. Most of the
algorithms cannot be applied to large problems because of their stor-
age requirements, We will be concerned with the development of an
algorithm that can operate effectively with the storage available
for a particular problem., Also, a major concern will be strategies

that can force convergence from poor starting approximations. The



typical assumptions upon which theoretical analyses are usually
based--nonsingularity or positive definiteness of matrices, con-
straint qualifications, etc.--are frequently violated by real-life
problems. Such contingencies must be taken into account if the
algorithm is to be effective. The algorithms developed in this
thesis reduce, in favorable circumstances, to an existing algorithm
whose theoretical analysis is well known. As a result, we do not
dwell on the particular point of carrying convergence analysis for
the proposed algorithms. Instead, we try to deal with questions
like '"What to do until the local convergence theorem applieg, and
what if it never appliesf"

In order to make this thesis reasonably self-contained, relevant
notation and the necessary background material such as definitions,
statement of problems to be considered, optimality conditions, and
some computational tools from numerical linear algebra are given
in section 2. Sections 3 and 4 contain a brief survey of existing
methods--most of which are currently in use. Some of the difficulties
of these methods are pointed out in section 5, and design goals for
the proposed algorithms are set. In section 6 we present the under-
lying theory for our algorithms. Sections 7 and 8 describe the newly
developed algorithms. Computational results of these algorithms when
applied to a collection of test problems are presented in section 9,
Some thoughts on what might be done next along the lines of the
algorithms presented are included in section 10. There is also an
appendix which describes a matrix update technique, which we believe

to be the most appropriate update method for the purposes of our

algorithms.



2. NOTATION AND BACKGROUND

In devising our notation consideration has been given to those
symbols in common use which result in the least ambiguity or con-
fusion. The background is taken from Dennis (1978a), Gill and
Murray (1974), Heath (1978), Tapia (1977)(1978).

In our work, all vector spaces are finite dimensional; all
scalars, vectors and matrices are real. All vectors are column
vectors unless transposition is explicitly indicated. The inner
product of two vectors x and y in the n-dimensional Euclidean
space .Rn is denoted by {x,y) or by xTy . The Euclidean norm,
x|l = {x,x), will be the only norm used. Usually, but not always,
upper case letters are used for matrices, lower case letters for

vectors and Greek letters for scalars. The space of all nXmn

matrices is denoted by Rnxtn; the matrix A whose (i,j)th element
is aij is sometimes denoted by (aij); and the transpose of A
is denoted by AT . The identity matrix is usually denoted by I,

when we wish to emphasize the order we use Ik . The i-thnatural
basis vector (i.e., the i-thcolumn of 1I) is denoted by e; -
Approximate equality between numerical quantities is denoted by = .
In the statement of‘algorithﬁs the symbol := 1is used in the sense
of replacement, as in some programming languages. The symbol

is reserved for the machine tolerance which is the smallest floating

point number on a given computer such that 1+ 7>1 .
The notation [dl’dz""’d ] is used to denote the linear span
£ th d d, €R® i i ix A€R"*™
of the vectors dl’ greresdy . Given a symmetric matrix €

n . .
two nonzero vectors d1 and d2 €ER are said to be A-conjugate
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(or A—orthogonal) if <Ad1’d2> =0, If A is also positive definite
the vectors d1 and d2 can be proved to be linearly independent.

The Fréchet derivative of an operator f at x is denoted by 3df(x),
and the Jacobian matrix by Jf(x) . We also use the notation Vf(x)
for Jf(x)T . In this way when £ is a functional V£(x) denotes

the gradient of f ; and hen.e our notation makes sense. When f is
an operator of several vector variables, say x and A, we use the
subscript x or A to denote differentiation with respect to x or
A, respectively. In this context, no subscripts imply differentiation

with respect to the total variable (x,\) . Thus we may write

VEG,N) = QLGN 5 TEEA) = 2 E(,0)

VE(x,\) = ax,kf(x,x) = of(x,)) ; etc.

For second derivatives, we write
PE@A) = 3REE,N) 5 Ly EE) = 2 QEEN)
Ve, =3, (0, £() ; ete.

Thus it should be obvious that when £ 1is a functional, sz(x)
represents itsHessian matrix at x . An elementary discussion on the
differentiation of nonlinear operators may be found in Tapia (1971),.
In order to understand the efficiency of an algorithm in terms
of its convergence rate we review some fundamental notions of conver-
gence from Ortega and Rheinboldt (1970, Chapter 9). If a sequence

{xk]an converges to x* , then for p¢€[l,0) the quantity



o () = ﬁa{nx* - L - 2P

is called the quotient factor, and

Tim Il - <5117k

k

, if p=1
Rp{xk}=<

k
lim Hx*-kal/p , if p>1
k

-

the root factor for the sequence {xk}. Moreover, the quantities

oQ{xk} inflpe [1,°°)=Qp{xk] = o}

and

it

OR{xk] inf{pe€ [l,w):Rp{xk} =1}

are called the Q-order and R-order of convergence of {xk}, respec-
tively. The sequence is said to be Q-superlinearly convergent to

x* if
Qlixk} =0,
and R-superlinearly if
| ﬁlka} =0 .

It may be observed that Q-convergence guarantees good behavior at

each iteration, whereas R-convergence guarantees only that the

average behavior is good. Thus the numerical termination criterion

of checking the difference between successive iterates is dangerous

when the existence of Q-convergence of the sequence is not known.
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In this sense it seems desirable for an algorithm to be Q-convergent.
In the two classes of optimization problems that we consider,

all the functions are assumed to be as smooth as necessary to support

the thoery upon which the algorithms are based. Since a maximization

problem can always be transformed to the one in.minimization, we treat

the optimization problems in terms of minimization. The uncon-

strained optimization problem of concern may be stated as follows:
(2.15 minimize f£(x); x€R"

where f£(x) 1is a prescribed nonlinear functional, £:R%-R
Notice that we will find the solution x*, if it exists, among the
zeros of the system of nonlinear equations VE£(x) =0 . It is useful
to note that the Jacobian of this system, being the Hessian of £,
is symmetric.

The constrained optimization problem of interest is the following:

(2.2) minimize £(x); =x€ R®

subject to h(x) =0

where the objective function £:R">R and the constraint nonlinear

5 D - ara nraarrihad
unctions n::n b are preecribed, u 2 n LAY

to equality constrained problems. The inclusion of inequality
constraints will be considered in future work.

Let us develop some terminology relevant to the above problems
which will be useful later. A point x satisfying the constraints

is said to be a feasible point. The set of all feasible points is

termed the feasible set. In the case of unconstrained optimization,



7.
the feasible set is all of R" . A feasible point x* is a local
minimizer of £ if f(x*j sf(x)' for all feasible x in some

neighborhood of x* . A feasible point x* is a global minimizer

of £ if f£(x*)<f(x) for all feasible x . Note that problems
(2.1) and (2.2) are stated for global minima. In practice it is
extremely difficult to find or verify global minima, so we will
content ourselves with algorithms for identifying local minima only.
A feasible point x is called regular if Vh(x) has full rank,.

At a regular feasible point x, the space tangent to the constraint

manifold is given by

2.3) T(x) = {z:Vh(x) 2z =0} .

Clearly, for unconstrained problems the space T(x) is all of

Rn for all x . The function
1 T
2.4) P(x,r) = £(x) +; h(x) "h(x)

where r is a non-negative scalar; is called the penalty function

associated with problem (2.2). The classical Lagrangian function

for the problem (2.2) is defined as
2.5) 2(x,1) = £(x) + A\ h(x)

where the vector }\ERm is called the vector of Lagrange multipliers.

The augmented Lagrangian function for problem (2.2) is given by
(2.6) 2(x,),€) = £(x) + \h(x) + 5 h(x) h(x)

where ) 1is as above and ¢ 1is a non-negative scalar



known as penalty constant. The point x€R" is said to be a

critical point of problem (2.2) if there exist Lagrange multi-
pliers }\élRm such that (x,)) €Rn+m is a solution of the non-

linear system
2.7 Ve(x,\) =0
where by our notational convention

Vx!, (x,\) VE(x) + Vh(x)\
VL (x,)\) = .
V)\E (x,M) h(x)

It is well known that if a solution x* of problem (2.2) is a regular

point, then it is also a critical point of problem (2.2), and the
Lagrange multipliers )* associated with x* are unique. Observe

that a solution of (2.7) also satisfies
(2.8) V£L(x,A,c) =0 ,

and vice-versa. Note that

) [-vfe(x,x,c)—] fo(x)+Vh(X)(x+ ch(X))-]
V(x4 h,5c) = = ’

V)\aﬁ(x,}\,c) h(x)

A characterization of the solutiion is conveyed by the following

optimality theorems,

Theorem 2.1.

Sufficient (necessary) conditions that a point x* be a local

minimizer of £ in problem (2.1) are



VE(x¥) =0
and

sz(x*) is positive (semi) definite.
Proof. See Luenberger (1973), pp. 110-114.

Theorem 2.2.

Sufficient (necessary) conditions that a point x* be a local

constrained minimizer of £ in problem (2.2) are

I*€R" such that VA(x* 3*) =0
and

Viﬂ(x*, *) is positive (semi) definite on T(x*).
Proof. See Luenberger (1973), pp. 224-227.

|
Note that for either problem the optimality conditions involve

a stationary point of a nonlinear functional (or a solution of a set
of nonlinear equations) and a criteria for determining if this .
stationary point is in fact a local minimizer. This provides a

common basis for seeking algorithms to solve these problems and a

Many advances in iterative algorithms for optimization have gone
hand-in-hand with improved techniques in numerical linear algebra.
The algorithms discussed in this thesis make vital use of matrix
factorizations. We provide below enough of an outline to make
this concept understood in the sequel. More details can be found

in Householder (1964), Stewart (1973), Wilkinson (1965).

In order to solve a system of simultaneous linear equations
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Ax=b , AER™*™ | x,beR™;

b

numerical methods usuélly involve decomposing the matrix A into

a product of from two to four simple matrices. The form of de-
composition depends on the properties of A and the computing
enviromment, and the candidate factors are such that it is easy

to solve the linear system which has one of the factors as the
coefficient matrix. In general, if A=A1A2A3 then the required
solution of the linear system may be obtained by solving

Alx1 =b for X and then A2x2 =Xy for X, and finally

A3x=x2 for x . However, in practice, some of the intermediate
linear systems are often solved as the decomposition proceeds.

As an example, during the traditional Gaussian elimination which
corresponds to a factorization A=BTLU where P is a permutation
matrix and L and U are lower and upper triangular respectively,
the solution to PTx1=b as well as that to Ix =x1=Pb are often

2

generated as the decomposition stage proceeds. This leaves Ux =X,
as the only obvious system to be solved. We close this section by

briefly cataloging the most commonly used factorizations,

The LU factorization: This is essentially Gaussian elimination, and

is intended for general nonsingular matrices. The decomposition

actually yields
T
PA=1LU or A=PLU

vhere P is a permutation matrix, L is unit lower triangular
(.@ii=1) and U is upper triangular. (See Stewart (1973),

Wilkinson (19653)).
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The Cholesky factorization: When A 1is symmetric and positive

definite, the factorization A= LLT, where L is lower triangular,
can be obtained in about half the work and storage required to obtain
the LU factorization of a general matrix. Generally, in practice,

the decomposition A= LDLT, where L 1is unit lower triangular and

D is a positive diagonal matrix, is used. (See Forsythe and Moler

(1967), Stewart (1973)).

The symmetric indefinite factorization: If the matrix A is

symmetric but not positive definite, then the decomposition
A=PLDLTPT, where P is a permutation matrix, L is unit lower
triangular and D is a block diagonal matrix of 1x1 and 2Xx2
blocks, may be obtained. (See Bunch and Kaufman (1977), Paige and

Saunders (1975)).

The QR decomposition; If A has no special properties (in fact it

could even be rectangular), we can write A=QRPT where P 1is a
permutation matrix, R is upper triangular and Q is an orthogonal

matrix (QTQ=I). (See Golub (1965), Lawson and Hanson (1974)).

The SVD or singular value decomposition: The decomposition A=UDVT

where U and V are orthogonal matrices and D 1is a nonnegative
diagonal matrix, is very useful. The rank of A is the same as that
of D. The SVD is related to the polar decomposition

A= (UVT) (VDVT). (See Forsythe and Moler (1967), Golub and Reinsch

(1970)).



3. EXISTING METHODS FOR UNCONSTRAINED PROBLEMS.

A large number of algorithms have been suggested for the solu-
tion of unconstrained optimization problems, and it is not our inten-
tion to describe them all. Instead we attempt to state some of the
most common techniques that are currently in use. The procedures
described are of course the ones related to the algorithms developed
in this thesis. The exclusion of a particular approach from our
discussion does not imply that in our opinion it is either unreliable
or inefficient. A more complete survey of the field may be found in
texts like Avriel (1975), Himmelblau (1972), Luenberger (1973),
Murray (1972), and in survey papers e.g., Dennis and Morie (1977),
Dixon (1974), Powell (1971)(1976), in addition to the references
cited below.

Following the observation made in the previous section (Theorems
2.1 and 2.2), let us consider an operator F:R™R™ and the problem

of finding a point x€R" such that
(3.1) F(x)=0.

By a quasi-Newton method for problem (3.1) we mean the iterative

procedure

- -1
(3.2) Xx=x-B F(X)
(3.3) B = @(x,X,B)

where @B(x,%X,B) is in some sense an approximation to the Jacobian

matrix JF(x*). Note that, for convenience, we have suppressed the



13.

iteration counter and denoted the quantities corresponding to the
successive iteration by placing a bar over them.

As special cases of quasi-Newton methods we have

Newton's method:

(3.4) B(x,x,B) = JF(x)

Discrete Newton method:

(3.5) B(x,%,B) = (El—i— EFi(;+ te ) - Fi@)])

where Fi’ i=1l,...,n represents the ith component of F and

ts i=1,...,n is a small positive scalar (ideally close to /7).

Secant methods:

(3.6) 8(x,x,B) =%8(s,y,B)

where s=;-x, y=F(;) -F(x) and B satisfies the secant equation
3.7) B(s,y,B) « s=y .

Observe that for the case n=1, (3.7) completely determines B

and (3.2) becomes the well-known secant iteration in one dimension.
Nevertheless, other names have been used for secant methods in the
literature; viz, quasi-Newton, variable metric, modification methods,

etc.

Remark 3.1.
We must emphasize that quasi-Newton methods are seldom imple-

mented as in (3.2) - (3.3). Instead, (3.2) is replaced by
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x=x- aB-lF (xj

where the step-length parameter « is determined so that an
improvement over the current estimate for the solution results.
Improvement is measured by means of a scalar valued function 1,

called the merit function, which has a local minimum at the solution

and is convex in a neighborhood of the solution. A standard require-

ment is that the descent condition

(3.8) ¥(x - 0B TP (x)) < $(x)

be satisfied at each step. In this context, a direction p is said

to be a descent direction for ¢ at x if

(3.9) Vi(x) p <0 .

We now turn to another important class of algorithms, called the
conjugate gradient methods. Perhaps the most general class of methods
for unconstrained optimization is the one called conjugate direction
methods. However, it must be stressed that (as will be obvious below)
the conjugate direction method designates a class of algorithms. It
is interesting to point out that in the special case of a strictly
convex quadratic function, both the secant and the conjugate
gradient methods turn out to belong to this class. In fact, more is
true than just that, but we will leave this discussion until a later
section. We first present below an outline of conjugate gradient
methods, and then consider some of the specific forms assumed by
secant methods in practice. Further knowledge may be gained from

a
Fletcher (1970a,b), Gill and Murray (1972). Several efficient



15.
conjugate direction algorithms are proposed in Davidon (1975), Gill,
Murray and Pitfield (1972), Greenstadt (1978), Lenard (1978),

Nazareth (1977a,c), Shanno and Phua (1976)(1978b).
For the unconstrained minimization of £ in (2.1), a local
quadratic approximation to £ at a point x is given by the trun-

canted Taylor's series
T 1, T2
(3.10) f(x+ M)~ fX)+VE(RX) MAx+50x V E(x)Ax .

Minimizing this quadratic form leads one to the solution of the linear

system
(3.11) V2 £(x) - Ax = ~£ (%)

which is simply Newton's method for problem (2.1). With this in

mind, consider the quadratic problem

(3.12) minimize q(x) =%{Ax,x) - (b,x)+c ; =xER"

where bERn, c €ER are fixed constants and AGRnxn is a symmetric

matrix. The matrix A 1is assumed to be positive definite unless

The basic conjugate direction algorithm for the problem (3.12)

is defined as (Luenberger (1973))

(3.13) oy = (g, 4, ) /{Ad,d; )

k+1_ k
(3.14) x =% +c1fkdk

0 _pn . e s s e .
where x €R is an initial guess for the minimizer x* of q,
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An-1
. . . n
is a sequence of non-zero A-conjugate vectors in R, and

} 5=0
8, Trepresents the gradient vector Vq(xk) of q at xk, i.e.,

gk=Axk-b . Note that since A is positive definite, x* is

given by x*=A-1b .

Remark 3.2.

Observe that an induction argument using
<8k+1,dj) =<gksdj>+ak<Adk’dj>’ i<k

and (3.13) shows that Bletl is orthogonal to the linear span
[dl,dz,...,dk]. Further, since q 1is strictly convex, it is evident
that xk+1 minimizes q in the hyperplane xo+ [dl,dz,...,dk]; and
thus the algorithm converges to x* inat most n iterations.

Conjugate gradient (CG) methods sequentially generate the
required directions. A useful generalization of CG methods as sug-
gested by Concus, Golub and O'Leary (1976) is as follows:

Given xOERn as an initial estimate of the solution x°

for problem (3.12), and D,H ERan any symmetric positive

definite matrices; let

do = -Hgg
and for k>0, define

ak = "(DAdk9 gk) /<Adk’DAd-k>

xk-'-l = xk+ akdk,

B = (Ady gy ) /(A )
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Q1 = “HEpyy + By

With the particular choice D=A-1 and H=1I, the above
algorithm reduces to the basic CG method originally introduced
by Hestenes and Stiefel (1952), Hestenes (1956) as a means of
solving linear systems and later extended to nonlinear optimization
by Fletcher and Reeves (1964).

In the case D=A-1 and H is an arbitrary symmetric positive
definite matrix; the above generalized conjugate gradient algorithm
gives rise to the so-called preconditioned conjugate gradient
method (PCGM) which was developed by Axelsson (1974) (1975) to solve
large sparse linear systems involved in the solution of various
partial differential equations. We will make extensive use of PCGM
in the sequel, so let us rewrite it as:

Define

(3.15) do = -Hgo

and for successive iterates

(3.16) oy = ~(g ,d, ) /{Ad, ,d, )
(3.17) X =%t 4

(3.18) B, = (Adk,Hgk 410 /(Aq,,d.)
(3.19) dyyq = -Hep 1+,

Douglas and Dupont (1976) used the above algorithm in Galerkin

methods for solving nonlinear Dirichliét problems. Several interesting



implementations of conjugate gradient methods have been reported
by Nazareth (1977a5 and Shanno (1978a,b).

It should be obvious that for problem (2.1), £ is a natural
choice for the merit function discussed earlier in this section.
Similarly, the function ¢q 1is a natural merit function for problem
(3.12). It is now easy to see that the directions (dk’ k;:O)
generated by the generalized conjugate gradient algorithm are
descent directions on q in the sense of (3.9), and that the PCGM
also inherits this property.

In the case of quasi-Newton methods for problem (2.1), it is
readily seen from (3.2), taking F(x)=VE£(x) in (3.1), that the
direction p==-B-1Vf(x) is a descent direction on f if B is
positive definite. Thus the classical steepest descent method
(B=1) of Cauchy (1847) makes sense. Also, in view of Theorem 2.1,
Newton's method may be expected to generate descent directions at
least locally. It is interesting to note that, according to our
terminology, both these methods for unconstrained optimization are
quasi-Newton methods which are not secant methods (see (3.7)).

For gecant m
modifications made by Fletcher and Powell (1963), suggested an
update formula (DFP) for the approximation matrix B (see (3.3) and
(3.6)) so that the successive approximation B inherits symmetry
and positive definiteness from B while satisfying the secant
equation (3.7). Later, Broyden (1965) (1967)(1969)(1970) introduced
a family of such update formulas. Today, a member of this family is

usually used for updating the approximation matrix B in (3.3).

18.
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The Broyden's class of updates may be given by (assuming <y,s> >0

for positive definiteness)

B=B+ - -(——BSSTB + 3w 3 wh
y,s Bs,s) ? ere

(3.20)

3 B
w=(Bs,s)" [(y},’s) B (BS?S)] ?

s=;-x, y=Vf(§)-Vf(x), and €>0 may depend

In particular, &=1 gives the Davidon-Fletcher-Powell (DFP) update

formula

(3.21) B=B+ (v-B8)y +y(y-Bs)" _{y-3Bs,s)

T .
y»8) (7,8)2

¥y

whereas &=0 yields the well-known Broyden-Fletcher-Goldfarb-Shanno

(BFGS) update (Broyden (1969),(1970), Fletcher (1970a), Goldfarb (1970),
Shanno (1970))

T

= vy - Bss B
(3.22) B=B+ 3,5y " (Bs,s)

Note that 0(n3) arithmetic operations are needed to compute

pP= -B-]'Vf (x) . Toward this end, numerous methods have been suggested
to update the Cholesky factors of B thus requiring only 0(n2)
operations to calculate p (Fletcher and Powell (1974), Gill, Golub,
Murray and Saunders (1974), Gill and Murray (1972), Goldfarb (1976)
(1977)). We describe one such technique (given by Dennis (1978b)) in
the appendix. Another approach is to approximate the inverse Hessian

sz(x)-l by a matrix, say H, and update H 1instead of B. Inverse
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updating formulas for the Broyden's class, the DFP and the BFGS
updates may be obtained from (3.20), (3.22) and (3.21) respectively,
with B, s and y replaced by H, vy and s respectively.

To insure descent in secant methods, generally one of the

following choices for o (see (3.8)) is suggested

o = arg (miEimize f(xi—&p)) (Cauchy (1847))
a>0
or
(3.23) o = min {&>0:(VE(x+ap),p) =0) (Curry (1944))
or
o =

mind @>0: £(x+ap) <£(x+p); [@-a Se}

for small values of e>0

As may be realized either choice is unrealistic in practice. However,
in the case of quadratic problem (3.12), it is trivial to calculate

the unique closed form solution from any of the aforementioned choices

as

(3.24) o = '(gsp)/<AP’P> .

For general nonlinear function £ (problem (2.1)) steplength
algorithms have been devised which constitute sophisticated termina-
tion criteria for conventional algorithms designed for simple descent
or approximate minimization. The main idea is to predict the function
decrease that can be expected along the given search direction and
stop only when some specified fraction of this decrease has been

realized. This work originated with Goldstein (1962) and has been
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further developed by Armijd (1966), Goldstein and Price (19675,
Wolfe (1969)(19715, among others. Important aspects of practical
implementation are considered in Gill and Murray (1974b). Two other
reliable techniques which may be used for the purpose are given in
Bell (1978) and Fox, Lasdon, Tamir and Ratner (1975).

We are now in a position to write the precise secant algorithm
for unconstrained optimization. For the sake of definiteness we
outline the secant method for problem (3.12) using the inverse
Hessian approximation H and steplength given by (3.24) as follows:

Given xOERn as an initial estimate for x* and a

nxn

symmetric positive definite matrix HOER , for
k>0 , define
(3.25) = -H, Vq(x") = -
: P = Hvalx) = -Heg
(3.26) 8y = (~(g;.»P, ) /{Apy P, )) "Dy
(3.27) xk+1 = xk+ Sy
ktl k
(3.28) Vip1 = VAE ) mva(x) =gy 4 - g
s,s, T H, vy yIH T
(3.29) Hepr =B 7 kl;}_(k ka k)TL ViV b
k%K ek
ir %k B e ]
where v, = ,H 2 -
k <yk kYk) [( M sk) 'ﬁyk’Hkyk>

and '?5_>_0 may depend on sk’yk’Hk .
Before closing this section, some alternatiye strategies need be

mentioned. Several hybrid-type algorithms which improve the
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robustness of the straightforward quasi-Newton methods have been
proposed (see Heath (19785). Goldstein and Price (19675 suggested
the use of the quasi-Newton direction at each iteration if possible,
but if trouble is encountered (indefinite matrix, failure to attain
descent, etc.), then to switch to the negative gradient direction
for the line search. Gleyzal (1959) had the interesting idea of
searching simultaneously along both the quasi-Newton and the gradient
directions, but he made no indication as to how such a two-dimensional
search might be effectively carried out. A more tractable method
along these lines was considered by Levenberg (1944) and Marquardt
(1963) and later by Goldfeld, Quandt and Trotter (1966), who
suggested shifting the entire spectrum of the Hessian by a positive
constant -- only to discover later that an appropriate value for

this constant is difficult to obtain. A way around this difficulty
was proposed by Powell (1970) with his so-called "dogleg" algorithm.
Powell, in his algorithm, avoided the use of line searches and in-

stead defined a region of trust, typically a ball about the current

estimate for the solution in which the linearization may be con-

gidered adequate and therefore the quagi-Newton gstep mav be emploved.
A larger value of the radius r of the current trust region biases
the step toward the quasi-Newton direction, while a smaller value of

r biases the step toward the negative gradient direction. This idea
has been further developed by Dennis and Mei (1975) in their so-called
"double-dogleg'" method, which introduces an early bias toward quasi-

Newton direction ~- thus increasing the efficiency of the algorithm

in the vicinity of a solution.
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If at the current iterate x the Hessian vzf(xj has a
negative eigenvalue, then the corresponding eigenvector, say u,
satisfies (sz(x)u,u)<:0 and the sign of u can be chosen so
that (Vf(x),u) <0. Any vector u having these two properties

is called a direction of negative curvature, and the above remark

shows that at least one such vector exists whenever sz has a
negative eigenvalue. Geometrically, along this direction the
current point x is on a hill rather than in a valley. Therefore,
aside from using quasi-Newton and negative gradient directions,
another possibility is to descend along a direction of negative
curvature whenever the Hessian matrix is not positive definite,
Fiacco and McCormick (1968, pp. 166-167) proposed this strategy in
the indefinite case but could only suggest a costly eigenvalue-
eigenvector decomposition as a means of computing a suitable direc-
tion of negative curvature, so it appeared to be a theoretically
interesting but impractical idea. Recently, there has been a lot
of research activity in this area. Fletcher and Freeman (1975)
suggested symmetric indefinite block-diagonal factorization of
sz(x) at each iteration in order to obtain either the quasi-
Newton step or a direction of negative curvature, depending on
whether the factorization shows sz(x) to be positive definite.
Another algorithm using directions of negative curvature was
proposed by McCormick (1977) and developed by Moré and Sorenson
(1979). 1In this approach if the Hessian has any negative eigen-
values, then a direction of negative curvature is coupled with an

ordinary descent direction (either the negative gradient or the
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quasi-Newton step), and a line search is performed along a param-
eterized curve in the plane defined by the two directions. More
and Sorensen recommend systematic use of the symmetric indefinite
block-diagonal factorization (Bunch and Parlett (19715) to de-
termine if the Hessian is positive definite, perturb it if necess-
ary, solve for the quasi-Newton step, and compute the negative
curvature direction., Heath (19785 presented an algorithm which is

a synthesis of most of the ideas discussed thus far.



4., EXISTING METHODS FOR CONSTRAINED PROBIEMS

We now consider the constrained optimization problems. As
noted earlier, we will restrict our discussion to equality constrained
problems. The major practical difficulty with inequalities is that it
is not known at the outset which constraints are active (hi is
active at x if hi(x)==0) at the solution. We review some of the
methods which are related in various ways to the algorithm developed
for problems with equality constraints. Once again, this survey is
not meant to be an exhaustive compilation of methods, nor is the dis-
cussion of those methods which are included more than a sketch. The
purpose is to acknowledge the influence of previous research in the
field and to place the ideas expressed in this thesis in the perspec-
tive of existing algorithms, A detailed survey of the methods in
this area is given in books such as Avriel (1975), Fiacco and McCormick
(1968), Gill and Murray (1974a), Mangasarian (1969), Zangwill (1969),
and in survey papers, e.g., Dixon (1975), Fletcher (1977), Murray
(1976), Powell (1975;). Equivalence between some of the more commonly
used methods for equality constrained problems was established by
Tapia (1978).

Methods for minimizing a function subject to nonlinear con-
straints can be divided broadly into two classes ~-- those which set up
an equivalent unconstrained minimization problem by adding a penalty
term to either the objective function (see (2.4)) or the Lagrangian
function (see (2.5) and (2.6)), and those which seek to generate a
sequence of feasible-descent steps (e.g., Reduced-gradient and

Projected-gradient methods). Since our objective is to develop an
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algorithm which is closely related to one for the unconstrained
case, we resort to the former. Regarding methods in the latter, we
simply list some of their original references and leave them out of
any further discussion.

The projected gradient method is due to Rosen (1960)(1961).
The reduced gradient method for linearly constrained problems was
introduced by Wolfe (1963), and generalized to include nonlinear
constraints by Abadie and Carpentier (1969). Computer implementa-
tion of the generalized reduced gradient (GRG) algorithm is mainly
due to Lasdon et al (1978). Another method of this type is the
gradient-restoration algorithm of Miele et al (1969).

Perhaps the earliest approach to the constrained optimization
problem is that of using penalty functions -- originally suggested
by Courant (1943) and explored in detail by Fiacco and McCormick
(1968). For problem (2.2) a penalty term is added to the objective
function, and the resulting function (2.4) is minimized for a de-

creasing sequence of values of penalty parameter r . Fiacco and

McCormick established that there exists some r>0 such that for
all 0 _<_r<;' a minimizer of the penalty function P(x,r) exists,
and if we let x(r) denote this minimizer, then

lim x(r) = x
0

where x* 1is the anticipated solution to problem (2.2). Although

this method is robust and has been used successfully in many
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practical applications, it has some severe disadvantages. First of
all, it involves a sequence of exact unconstrained minimizations
which can be very expensive. Second, the method may get into serious
problems if the initial estimate of the penalty constant r is

taken to be larger than Tt -- which is undeterminable (at least in
practicei. This is illustrated through an example by Dixon (19755.
Third, and the most serious drawback with penalty methods, is that as
r—- 0 the Hessian ViP(x,r’ of the penalty function becomes increas-
ingly ill-conditioned. This feature is imposed by the trangformation
and is unavoidable, thus limiting the extent to which modifications
to the algorithm may alleviate the computational difficulties which
exist.

Hestenes (1969), and independently., Powell (1969), proposed adding
the penalty term to the classical Lagrangian function (2.5) to get
the augmented Lagrangian (2.6), and then to use a "penalty-type"
method on this latter function. In order to describe their method
and for other approaches to come, let us introduce some definitions
following Tapia (1977).

Any nonnegative function H:Rn*ﬂﬂ'l-'R is called a penalty

Rn+m+1_‘Rm

congtant update formula . An operator U: is said to

be a multiplier update formula if

¥ =Ux*,\*,0), c>0

whenever (x*,)\*) 1is a critical point of problem (2.2). Further,
if U is independent of A (explicitly, i.e., VXU(x,k,c)==0) we

qualify U as a multiplier approximation formula. If (x*,\*) is
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a critical point of problem (2.2) then x* is said to be a non-

singular critical point of problem (2.2).' if sz(x*,}\*) is in-

vertible. Note that nonsingularity implies regularity.
The basic multiplier method of Hestenes and Powell may now be
written as the iterative procedure:
given )\0 and c0>0; repeat the following sequence until
the convergence tolerance is met,
. compute x such that =£(;,)\,c) =min #(X,\,c)
X

. Set :=H(;,)\,c)

. and A=U(x,A,c) .

As with the penalty method, the exact minimization required to update

x could be expensive. Note that the Hessian of #(x,A,c) is given by

m
%.1) V£ (x) + cvh (x)Vh(x) -+ Z O+ chi(x))Vzhi(x) vh(x)
i=1
V2t (x, \5¢) =
vh(x) T 0
Following Hestenes (1969) (also see Buys (1972)), it may be shown

that if (x*,}\*) is a solution of problem (2.2) then there exists

0>

~ N e -~
, ~ S UL Ll

2 hn Wamadan nz_p/..* PR

enls Sl Lan 11 -~ - e
L= e N &y ol ’ LG MO0 LML Vx*,\ﬁ s e . bl E -4

<>
positive definite. But this result makes use of optimality condi-
tions, and so, far away from a solution, a value of ¢ which makes
v}2‘£(x,)\,c) positive definite may not exist. The choice of ¢ is
rather delicate because too large a value can cause the Hessian to

be ill-conditioned, while too small a value can cause it to be in-

definite or nearly singular. In fact, Tapia (1977) established that
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the multiplier method is Q-superlinearly convergent if and only if
cteo .

While most practical augmented Lagrangian algorithms incorporate
heuristic rules for adaptively refining the penalty constant, much of
the research has been concerned with efficient update formulas for the
Lagrange multipliers. The following list of multiplier update formulas
is compiled from Tapia (1978). (We leave out the arguments of a

function when they are obvious.)

(4.2)  U(x,\,e) =A+ch Hestenes (1969), Powell (1969)
(4.3)  U(x,\,c) = -(VhVh) 1vnlve Rosen (1960)
(.4)  U(x,\,c) = (ThVh) "L (h - vhIvE) Miele et al (1971)
4.5)  U@\,e)= A+ (V5 vm) hh Buys (1972)
(4.6)  U(x,h,c) = (Vh'DVh) "L (h - Th'DVE) - ch Tapia (1974a)
4.7)  U(z,\,e) = A+ [Vh'DVR+A] " [k - VhTDY 2] Tapia (1977)

where in (4.6) and (4.7) DE R®*X ™ ang AERmxm may depend on
X,A, and ¢. A comprehensive discussion of these formulas and their
interrelationships is presented by Tapia (1977).

In view of the computational expense of repeated unconstrained
minimizations involved in the multiplier method, Tapia (1977) suggested
an attractive variant of this approach where the unconstrained minimi-
zations are carried out only as far as one step (however, several steps
may optionally be taken), i.e., A\ is updated after each step of an
iterative method for minimizing the augmented Lagrangian. In this

approach, if Newton's method is used for the unconstrained minimization
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step and formula (4.6) for the multiplier update (with D= x£ ),
then the algorithm yields essentially Newton's method for solving

the extended system (2.7), i.e., the iterative procedure involving

the solution of the linear system

s Vh || Ax VL
(4.8) . =] %
Vht 0 ||an h

where B represents Vii-l in Newton's method (but may be an
approximation there of, in secant methods), giving the new estimate
of the solution as (x+ Ax, A+ A\). It must be carefully noted, how-

ever, that the extended system is not solved in Tapia's method --

which may be outlined as follows:

given xo, A ¢ and By, repeat until the convergence

tolerance is met.
. X=U(x,}\,c)
— _1 -—
. X=X-B er(x,)\,c)
. c=I(x,%,c)

—nde e A T\- nA
TB\AySRy Ay Ay D)

v3|

where ﬁ(x,;,)\,-)t,B) is an approximation to Vi:ﬁ(x*,)\*,c) . Several
advantages of this procedure are observed by Tapia, (also by Byrd
(1978)), including the fact that the penalty constant need not go to
infinity in order to assure local Q-superlinear convergence. In fact,
in most practical situations, e¢=0 is the optimal choice near a

solution (see Bertocchi et al (1978).)v.
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An alternative way of implementing Newton's method for solving
the nonlinear system (2.75, given by the first order necessary con-
ditions for problem (2.2), is to think of it as forming and solving
a succession of linearized subproblems. Toward this end, using a
quadratic approximation to the augmented Lagrangian function and a
linear approximation to the constraint functions, we get the quad-
ratic programming problem
min £(x,1,e) + {V_£(x,},¢) , A + 5(BAx, Ax)

Ax
4.9

subject to  Vh(x) Ax+h(x) =0
where B 1is an approximation to Vi:ﬁ(x,k,c). Notice, however, that
the solution of (4.9) is given by the linear system (4.8), which also
yields the Lagrange multiplier AMA for (4.9).

The use of successive quadratic programming subproblems for
solving nonlinearly constrained optimization problems is a part of the
optimization folklore and was described by Wilson (1963), and has
since been treated by Murray (1969), Gill and Murray (1974a), Han
(1977a,b), Palomares and Mangasarian (1976), Powell (1977a,b)(1978a,b).
Biggs (1972)(1975)(1978) also uses a successive quadratic programming
approach, though following a different derivation -- based on the
penalty function (2.4). It is interesting to comment that his method
turns out to be equivalent to Tapia's (1977) approach with update
formula (4.6) (D==B-1 and c¢=0), at least close to the solution,

The inclusion of inequality constraints in the recursive quad-

ratic programming algorithm is obvious. However, Biggs (1976)
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observed that his recursive quadratic programming method may be
efficient starting close to the solution, but the Lagrangian methods
display better behavior away from the solution (also Han (1978)).
Biggs also noticed that the methods using augmented Lagrangian
functions are more suitable for large problems. Similar comments
may be concluded from the numerical study conducted by Schittkowski
(1978). Tapia (1978) established equivalence between several of these
seemingly different approaches.

Another possible linearization is to linearize the constraints
but leave the objective function alone, so that the resulting sub-
problem is a general linearly comstrained nonlinear minimization
problem. This approach is taken by Rosen and Kreuser (1972),
Robinson (1972) and Rosen (1978), a local convergence analysis is
given by Robinson (1974).

One major drawback of the last two approaches is that the per-
formance of any computer implementation of these methods is entirely
based upon the particular code employed to solve the subproblem
involved. This is certainly true for the Rosen-Kreuser method, and
also for the quadratic programming subproblem in the presence of
inequality constraints. Besides, as with all Newton-based methods,
algorithms resulting from simple linearizations cannot be relied
upon to converge when started from a poor initial estimate for a
solution,

There have been some other interesting develooments, one of
which is the search for an "exact penalty function" -- a function
whose unconstrained minimizer also solves the constrained optimi-

zation problem (Fletcher (1973), Han and Mangasarian (1978)). Some
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functions with this property are readily suggested, but they are
not smooth at the minimizer, which renders them unsuitable for use
with established efficient unconstrained minimization techniques.

An algorithm which features a two-part line search, and is -
based on the explicit recognition of the saddlepoint nature of
solutions (x*,h*) to problem (2.2), is due to Bard and Greenstadt.
(1969). It is interesting to find that their algorithm implic¢itly
uses a special case of (4.6) for the multiplier update formula.

The Bard-Greenstadt algorithm offers separate line searches, one on
Ax and the other on A)\, with the clear-cut objective of attaining
descent and ascent, respectively. Nevertheless, one main drawback
is that these line searches are conducted on the Lagrangian function,
which may be unbounded at times (especially when away from the
solution).

Heath (1978) also proposed an algorithm using a two-part line
search -- one on the range space of the gradients of (active) con-
straints and the other on the corresponding null space T(X).

This approach bears a strong resemblance to the two distinct phases
of the proiected gradient method. An important difference., however,
is that Heath uses a Newton step in the null-space search rather
than the negative gradient direction as is done in the projected
gradient approach. The.effect of this, along with some other
differences, is that his algorithm gives Newton-type behavior near
a solution and is superlinearly convergent, while the projected
gradient algorithm has only linear asymptotic convergence -- at

least in its standard formulation.
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In general, most of the foregoing approaches have the usual
advantages and disadvantages expected of Newton's method, such as
having rapid -- but rather localized -- convergence. The most
serious unreliability of Newton's method, in the context of con-
strained optimization, comes from the fact that it is not clear if
a solution of (2.7) is a constrained minimizer of problem (2.25,
since (2.75 also holds at a constrained maxima or at a constrained
saddle point of f(x). (Note that a similar observation may be made
for the unconstrained case.)

A consensus seems to be growing -- the use of successive quad-
ratic programming subproblems, simultaneous updating of x and 3
in augmented Lagrangian methods, the use of second order terms in
projected gradient algorithms, etc. -- which indicates an ever
increasing rate of quasi-Newton methods in constrained optimization,
with the result that all these algorithms take on a uniform appearance.
For this reason, the algorithms we develop in this thesis are based
directly on Newton's method, thereby allowing the problem of robustness
to be tackled in the open. This approach also simplifies the con-
vergence analysis of other quasi-Newton methods since it make possible
the direct application of general theory (Byrd (1978), Dennis and More
(1977), Glad (1976), Han (1976), Powell (1978b), Robinson (1974),
Tapia (1977)).



5. MOTIVATION FOR THE NEW ALGORTTHMS.

The similarities among the methods (within each sectionj dis-
cussed earlier are no accident. As Fletcher (19775 observed, the
borrowing of ideas which work well in one method for use in another
has led to a blurring of the usual distinctions between the various
classes of methods. In fact, all the methods are, in some sense, a
variant of Newton's method on an appropriate equivalent problem.
Perhaps for this reason all the methods depend on the positive defi-
niteness of the Hessian matrix (sz in the unconstrained case,

Viﬂ in the space T(x) in the constrained casei. Newton's method
is locally Q-quadratically convergent, yet unfortunately this rate of
convergence is not realized globally; moreover, the method must be
modified to insure convergence -- simply because the Hessian matrix
is not positive definite in certain regions along the path of the
algorithm. If the Hessian is indefinite at a point away from a
solution, it may be reasonable to replace it with a positive-definite
matrix, as is done in secant methods, and then proceed as usual. How-
ever, for problems in which the Hessian is not positive definite at a
solution such a practice is open to question and may not, in general,
result in Newton-like asymptotic behavior. In fact, in some such
cases, even the convergence could be doubtful,

In view of the above we propose to use directions of negative
curvature when one appears and otherwise stay on the subspace where
the Hessian is positive definite.

Most state of the art algorithms in unconstrained optimizati on

employ secant methods with some form of inexact line search, as
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discussed in section 3. The basic motivation behind secant methods
is to try to obtain the rapid convergence associated with Newton's
method without explicitly evaluating the Hessian at each step. This
is accomplished by constructing approximations to the Hessian based
on the information gathered during the iteration process. Newton's
method does not guarantee descent at each step, whereas secant
methods do. This is due to the fact that the Hessian approximation
is always kept positive definite which leads to a descent direction
at each step. Although only local convergence has been established
for secant methods (Dennis and Moré (19775}, these methods can be
made to exhibit good global convergence properties by using line
searches for step length control.

This suggests the natural question: "Why does an implementation
of a secant method with no step length control exhibit disastrous
behavior while outside the domain of local convergence of the basic
algorithm." Recall the secant equation (3.7), which can be written

as
(5.1) Bs =y

where, as usual, the 'bar notation is used to denote quantities at

a subsequent iteration. As mentioned earlier in section 3, this
equation forms the basis of all secant methods; and it is trivial to
verify that the Broyden's class of rank-2 updates (3.20) satisfies it.
If there is no step-length control (a¢=1), from (5.1) we have for

the unconstrained problem

(5.2) 3 L(vE(x+p) - VE(x)) =p
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where p is the secant direction. If p is not small but
VE(x+p)~VE(x) (which is often possible in nonlinear problems),
then Ehl is necessarily large. However, with the step-length

control, we may write (5.1) as

(5.3) g1 v-f(ﬁ:+ap5 -~VE(x) _
o

p .

Thus, when ¢ is small -~ which is to be expected in secant methods
when far away from the solution -- we see that the secant equation

(5.1) is approximately
(5.4) 3P e@)p=p .

The above motivates the use of short steps in secant update formulas,
at least far away from the solution. Using short steps we can expect
to obtain better approximations to the Hessian away from the solution.
Several scaling techniques (Oren (1973), Oren and Spedicato (1976),
Shanno and Phua (1978a), Spedicato (1976)(1978)) have been suggested to
obtain a better conditioning of the approximate Hessian matrices Bk .
In most of these techniques a scale factor is incorporated directly
into the update formula.
It is also felt from the above remarks that it can be fruitful
to follow the quadratic model problem (3.10) whenever this is possible.
If nothing else, at least that is the motive behind Newton's method.
In fact, most methods are invariably invented and analyzed for the
pure quadratic problem; and once the techniques work ouﬁ for this
problem they are then extended to more general problems via quadratic

approximations. It may be argued that; since near the solution every
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problem is approximately quadratic, convergence behavior can be

expected to be similar to that for the pure quadratic case.

In order to handle large problems we require our algorithms
to be able to work with limited storage. With this feature -- the
so-called variable storage capability ~-- in our algorithms, we
expect to use full storage whenever it is available, and still
solve the problem when full storage is not available.

Some of the above objectives have simply been explained in terms
of unconstrained optimization problems just for convenience. It is
obvious that they have counter parts in constrained optimization
problems (in terms of augmented Lagrangian function). At this point,
it is perhaps valuable to summarize some of the main themes behind
our motivating philosophy for the optimization algorithms developed.

1. To be competitive the algorithms should be at least

locally Q-superlinearly convergent.

2. The algorithms should be able to converge to the desired
solution without requiring a close estimate of the solution
(robustness).

3. The algorithm should be able to stay clear of, or descend
from, saddlepoints and maxima (use of directions of negative
curvature).

4., The computational expense involved in using directions of
negative curvature should be minimized.

5. We should use short steps in update formulas for Hessian
approximation,

6. The algorithms should be able to incorporate variable

storage capability in order to handle large problems.
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7. The performance of algorithms should not be critically
dependent on a judicious choice of parameters such as
penalty constants, tolerances, etc., and "fine tuning"
should not be required for individual problems.

Some other design goals as desirable of any algorithm for
optimization problems include natural use of optimality conditions.
This is important not only in guiding the algorithm in seeking a
solution but also in verifying that a point to which it has con-
verged is in fact a solution to the problem. Also, the numerical
linear algebra techniques involved in an optimization algorithm
should be both stable and efficient. For example, factorizationg
should be updated, if possible, rather than recomputed when the
matrix changes. Finally, as usual, although higher derivatives of
problem functions may be assumed to exist for theoretical analysis,
practical algorithms should require only first derivatives at most,
to be analytically defined, and second derivatives, if needed, should
be approximated.

0f course, it is unlikely to fully attain all these objectives

4]
|
i}
)
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A AL
in choosing among various alternatives in algorithm design and convey

the spirit of our approach to the subject (Heath (1978)).



6. A UNIFIED THEORY FOR THE NEW ALGORITHMS.

The algorithms developed in this thesis can be regarded as
being somewhat intermediate between the method of steepest descent
and Newton's method.

First consider the quadratic problem (3.125 with Hessian
matrix A assumed to be positive definite, and note the following
properties of the preconditioned conjugate gradient method and the

secant methods in this context.

IEMMA 6.1.
If the preconditioned conjugate gradient method (3.15)--— (3.19)"

is applied to problem (3.12) starting at any xOGRn with an arbi-

nxn,

trary symmetric positive definite matrix HER and termination

does not occur at xk, then

(6.1) [HgyHe,, .- ey ] = [Hey,HAlig,, . . ., (BA) Hg,]
(6.2) (504,008, ] = [Hey,HAHE, . .., (HA) Hg,)
(6.3) (Adj,dk) =0 for all j=k

(6.4) o =<Hg .8, ) /(Ad,,d )

(6.5) By = CHEy 18141 / CHEY - 8

Proof: The proof follows from a slight modification of the one

given for the conjugate gradient method by Luenberger

(1973, pp. 174-175), "

LEMMA 6.2

I1f the secant method (3.25) - (3.29) is applied to problem (3.12)
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starting with any xOGRn and an arbitrary symmetric positive def-

inite matrix HOERn, then
(6.6) (Asj,sk>=0 ,» Jtk
(6.7) Hkyj = sj . j<k

and the method terminates in at most n iterations. Moreover,

-1
Hn _A .

Proof: This result is well known and may be found in Droyden (1967).

The following theorem establishes the equivalence between the
preconditioned conjugate gradient method and the secant methods when

applied to the minimization of a strictly convex function.

Theorem 6.1.

For the quadratic problem (3.12), starting with the same xOERn

and the same symmetric positive definite matrix Hy eR™X ™

the two
algorithms -- the preconditioned conjugate gradient method (3.15) -
(3.19) and the secant method (3.25) - (3.29) -- yield identical

iterates.

Proof: Comparing (3.16), (3.17), and (3.26),(3.27) we notice that
if in the two algorithms the iterates =X are the same and
the directions d and p satisfy p=od for some o #0,
then the next iterate x would also be the same for these

algorithms. We assume that up to the k-th iteration, the

J

iterates x-, j<k are identical in the two algorithms

and that pj =doj for some F #£0, j<k, and show by



induction that the conditions also hold at the (k+ 1)-th

iteration. From Lemma 6.1 we have

(6.8) [pO’pl’ ces ’pk] = [Hogo,Hogl, cee ,Hogk] = [do,dl, .o ‘dk]
and

(6.9) [HOgO’Hogl"' .,Hogk'_l_l] = [dO’dl""’dk-I-I]
We would like to obtain

(6.10) [ogsPys -+ sPpy] = [HoBgotgBy s+« sBgByy ]
because then, using (6.9) gives

(6.11) [po’pl"“’Pk+1] =[d0,d1,...,dk+1],

and by the A-~conjugation of the vectors d's and p's we would
have Prsl =°k+1dk+1 for some °k+1#0 since we already have

pk=ojdj for cj;eo, j<k (induction hypothesis).

The arithmetical details may be worked out to show that using
Lerma 6.2 and the update formula (3.29) we have
Pry1 = 1+ DBoBiyg+ (8 16 )P

k k+1

.
¥ Z{Hogm-j D, ek

j=1 i=kt2-j

KHL
* P z ai(°k-j,i+j-k+9k-j,i+j-k)}
i<ket2-]

where ek,'e =~=(1 -é:k)<yk’Hkgk+E>/<yk’Hkyk>

ak 2 = -}\'kgk<yk’ﬂkgk+£>/<yk’sk>

42,
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and a; denotes the coefficient of Hogi, i 51&1 .
Note that the scalar (1+6k 15 cannot be zero since
9’
otherwise p € [pO""’Pk] which using (6.6) implies
that pk+1==0. Thus (6.12) gives (6.10) which establishes

the theorem, .

It is immediate from the above theorem that if Hy=vI, v#0,
then the secant algorithm (3.25) - (3.29) is equivalent to the basic
conjugate gradient algorithm, a result of Myers (1968)'. It must be
acknowledged that a result along the lines of Theorem 6.1 might be
true was suggested to the author by Peter Percell. Although our
work was done independently, we have since learned that Nazareth
(1977b) has established essentially the same theorem.

So far we have assumed that the Hessian A of the quadratic
function is positive definite. This gives us the nice feature of
search directions being directions of descent at every step in either
the PCGM or secant methods. In practice, however, the algorithm must
be able to accommodate the possible non-positive definiteness of the
Hessian matrix which might occur at regions remote from the solution.
As observed in section 3, a direction of negative curvature should
be a fruitful direction in which to search for a function decrease.
Ideally, we would like to define or modify the algorithm so that we
do not need to go out of our way to take care of negative curvature
at each step, if it exists, and so that the implementation remains

simple. The results below have precisely this purpose.
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IEMMA 6.3
K

For the quadratic problem (3.12) if the vectors {dj} , k<n
j=0
are A-conjugate and if A 1is positive definite in these directions,
then any conjugate direction algorithm of the form (3.13).-(3.14)

satisfies

(gk_'_l,dj> =0 for all j<k .

Proof: Follows immediately using an induction argument since for

the quadratic problem we have et = gk+ Q’kAdk

IEMMA 6.4
The preconditioned congugate gradient method, when applied to
the quadratic problem (3.12), generates a direction which is A-con-

jugate if A 1is positive definite in all the previous directions.

Proof: Follows directly from Lemma 6.1 since positive definiteness
of A in all the previous directions suffices for that

lemma.

IEMMA 6.5

The preconditioned conjugate gradient method, when applied to the
quadratic problem (3.12), generates a descent direction for the
objective function q if A is positive definite in all the previous

directions.

Proof: The assumptions of Lemma 6.3 are fulfilled using Lemma 6.4.
The result follows on premultiplying (3.19) by gi+1 since

H is positive definite. -
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THEOREM 6.2
The preconditioned conjugate gradient method, when applied to
the quadratic problem (3.12) in which A is indefinite, yields a

direction of negative curvature in at most n iteratations.

k
Proof: Let [dj } j=1 be the directions of positive curvature of A,

generated by PCGM. By Lemma 6.4 these directions must be
A-conjugate and hence linearly independent. The result now
follows by contradiction if k=n, because then A would

be positive definite.

THEOREM 6.3
For the general unconstrained problem (2.1), suppose the pre-
conditioned conjugate gradient method is applied to minimize the

quadratic approximation at =x
q(tx) = £(x) + (VE@), 0% ) + (VO£ (x) B, bx)

and the iterates Axl,sz,. . .,Axk (taking Ax0=0) are generated.

If the vectors {ij - ij_l] be the directions of positive curv-
j=1

ature of £ at x, then Axk is a direction of descent for f at

X .

Proof: Since Ax0=0, d0 = -Hvq(0) = -HVE(x), the PCGM iterates may

be written as
k-1

Axk = Axk-1+dk-1dk-1 = Z afjdj ;  k>1.
j=0

Since H 1is positive definite, do is a direction of descent
for f at x and for q at Ax, . Hence Ax, is a

direction of descent for £ at x . By induction, let
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k-1
{ij}j=1 be the directions of descent for f at =x .
By Lemma 6.5, ak-ldk-l is a direction of descent for q

at Axk-l . Thus, using Lemma 6.4 we have
(VE(x) ,wk_ldk_l) <0 .

The result is now immediate from the definition of Axk

using the induction hypothesis

The significance of the above theorem may be understood by
realizing what it offers, namely, that so long as the PCGM directions
satisfy (sz(x)dj,dj):>0 they are all directions of descent for
f at x, and the first direction dk for which (sz(xidk?dk><<o
is a direction of negative curvature of f at =x. Also if the
Hessian calculations are avoided, but the product (sz(x)d,d) is
available, then it is sufficient to declare whether the Hessian is
positive definite in the particular direction d . By Theorem 6.1
these comments also apply to secant methods.

In the case of equality constrained optimization, we know that
the variables x and the multipliers A may be updated by calculating
the respective changes Ax and A\ obtained by solving the extended
linear system (4.8). However, increasing the dimension of the problem
to n+m while seeking to solve (4.8) directly seems highly un-
desirable, vet decoupling this system may not be justified either,
at least far away from the solution where regularity conditions
might not hold., With this in mind, we consider solving the extended
system (4.8) using the preconditioned conjugate gradient method, This
also offers the option of not having to solve any linear system, as

such, if the pure conjugate gradient method is employed. We postpone
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details on this issue until section 9, and for now concern outselves
with the appropriate modifications that might be required to apply
PCGM to the linear system (4.85.

The presence of the zero block in the lower right corner of
(4.85 immediately shows that the matrix involved in the system is not
positive definite. Using Theorem 2,2, however, this matrix may be
expected to be non-singular, at least near a solution. Now suppose
the preconditioned conjugate gradient method (3.15) - (3.19) is
applied to the linear system Ax=b, where A 1is symmetric and non-
singular. 1In all generality it seems fair in this case to allow
having a preconditioning matrix H which is symmetric and nonsingular
but not necessarily positive definite. The following results provide

our necessary extension,

COROLIARY 6.1

Suppose A is symmetric and non-singular, and the nonzero
vectors dl’d2”"’dk are A-conjugate. Then the vector dj’ 1<j<k

is linearly independent of the vectors [dl’dz""’dj-l’dj+1"'"dk}

-

if (Ad.,d.)#0 .
(ad;,d) #

COROLLARY 6.2

Let {dj}?=1 be a set of nonzero A-conjugate vectors and
(Adj,dj)séo Y j . Then if the conjugate direction algorithm (3.13)-
(3.14) is applied to the symmetric non-singular system Ax=Db, the
iterates converge to the unique solution x*==A-1b in at most n

steps. (As expected, gk==Axk- b.)
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COROLIARY 6.3

Let the preconditioned conjugate gradient method (3.15) - (3.19)
be applied to the symmetric non-singular system Ax=Db starting at
any xOERn with an arbitrary symmetric non-singular matrix HERMXD ,
and for some k>0, let (ng,gj) #0 where 8 =ij -b, and
(Adj,dj) #0VY j<k . Then we have (6.1) ~ (6.5) if the termination
does not occur at xk .

The proofs of the above corollaries are omitted since they easily
follow their positive definite counterparts. The conditions in
corollary 6.3 might be thought of as too strong at first sight.
Notice, however, that if the preconditioning matrix H is taken to
be positive definite, then the condition (ng,gj) #0 is no longer
required, because then (Hgk,gk) =0 only if gk=0, in which case
xk is the desired solution. In our numerical computations with
various equality constrained problems, the condition (Adj,dj) £0
was never violated and (Hg j,gj) happened to vanish only when
gj =0 -- even when H was only taken to be symmetric non-singular.
It seems that a result stronger than Corollary 6.3 may be proved in
the context of constrained optimization problems, i.e., when the
matrix A takes the special form (4.1). At this stage, however, we
proceed to give a result which serves as some consolation besides
numerical evidence. For the purpose of the following lemma, assume

that the constraints in problem (2.2) are not all satisfied at the

point x .
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IEMMA 6.6

If the preconditioned conjugate gradient method is used to

solve the linear system

V,z{._,:ﬁ Vh bx v

vhe 0 A h

then 3 r>0 such that the first direction d0 (in the PCGM

algorithm) is always a descent direction for the penalty function

1

e+inth .
r

Proof: The proof follows directly using (3.9). (Also see Biggs
(1978)).

The assumption that h(x) #0 should not distract us from
rendering the above lemma useful, since in practice h(x) =0 is
seldom realized, if ever. Note that the result holds even if the
preconditioner is not positive definite or is singular. However,
the submatrix corresponding to the Hessian Vi;{ is assumed to be
positive definite, which seems reasonable in view of Theorem (2.2).

In view of the above lemma, whenever the assumptions of
Corollary 6.3 are not satisfied, we may resort to a line search on
the penalty function (2.4) along the direction do . In this
context the penalty function seems to be a logical choice for the
merit function, although several other merit functions have been

proposed, e.g., see Han (1977b) .



7. THE UNCONSTRAINED OPTIMIZATION ALGORITHM
Let us recall that Newton's method for the unconstrained
problem (2.1) may be thought of as solving the quadratic problem

(7.1).. minimize q(Ax) = £(x) + (VE(x),Ax) +%(V2f(x)”Ax,Ax> .
Ax

By the optimality condition (Theorem 2.15, if x is near a local
minimum of £, then sz(x) can be expected to be positive
definite so that problem (7.1) is well defined. Far from the
solution when sz (x) 1is not positive definite we know that Newton's
method may lead to trouble. However, using the theory developed in
the previous section we may expect to do reasonably well using the
PCGM or equivalently secant methods to solve the quadratic model
problem (7.1). This suggests setting up an inner loop (say,
iterated k times, k<n) in our algorithm. A basic model may be

outlined as:

given x and B (symmetric, positive definite)

I
—> B:=
B
Ax:= 0
= u= sz(x)Ax+Vf(x)
g al p:= "B-lﬂ
o} [«1 ]
(7.2) ™ .3§ yi= VEE(x)-p
- I e
g 83 B:= "(u,p)/.(vy’p)
o g~
Ax:= Ax+@p
B r r
- B:= B+yy /{y,p) - Bpp B/{Bp,p)

x4+ AxX

%
"
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Although identical behavior of secant methods with different
matrix updates is expected on the quadratic problem (Dixon (1972a)),
we have used thé BFGS formula above just because numerically it is
supposed to be more stable. It is interesting to note that Blue (19775
independently suggested a similar inner loop philosophy for solving
nonlinear equations. Since in this case the Jacobian matrix is no
longer guaranteed to be symmetric, our theory in section 6 will not be
applicable here. Also, recently, Best (1978) approached the uncon-
strained problem via a modified conjugate direction algorithm which is
similar to ours; but in his algorithm, Best does not take advantage
of the secant approximation to the Hessian which may be built in our
approach, Instead, he generates new directions from a linear combina-
tion of the old ones (once n linearly independent directions have
been obtained).

Some observations about the model (7.2) must be addressed here.
Note that the inner loop index k may be varied to get different
algorithms, For k=n, the model essentially gives discrete Newton
method. With k=1 and B set to I, we have the gradient method.
If k=1 and B is updated, we obtain a secant method with a short-
step Hessian approximation. In the case that (y,p) <0, we imme~
diately have p as a direction of negative curvature. Hessian
approximations satisfy the equation (5.4), and the algorithm requires
no line searches, except in the case of negative curvature.

Notice that the second order information which appears in the
above model algorithm may be computed easily using a finite difference

approximation of the form
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Pe(-am EELED TE@ | 4

where T is the machine tolerance. Also, the inner loop may be
written equivalently in terms of PCGM. Although PCGM never updates
the preconditioner and yet essentially gives the secant method on a
quadratic function there is one drawback, viz., it does not yield an
approximation to the Hessian which, otherwise, could be used as the
preconditioner for the subsequent inner loop in the next iteration.
On the other hand, secant methods do not generate the same iterates
if only a part of the Hessian is approximated due to limited storage
available. For this reason we intend to use the PCGM in the inner
loop and still update the preconditioner to obtain a better approxi-
mation to the Hessian at the end of an inner loop. It may be pointed
out that it is possible to carry out PCGM and also keep updating the
preconditioner, after calculating the new direction, without altering
the net effect of the algorithm in the inner loop because ngk =
Hogk, j<k where Hj is obtained via any secant update formula in
Broyden's class, However, this is true only so long as we have full
storage at our disposal to approximate the Hessian, i.e., only if we
are approximating the full Hessian.

In order to include the possibility of not having enough storage
and having to apprdximate only a part of the Hessian, we will keep a
duplicate copy p of the matrix B, so that P will be used as the
preconditioner and B will be updated in the inmner loop to get an
improved approximation of the Hessian. Substituting these ideas

into the model algorithm (7.2), we propose the following algorithm,
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given x and B (symmetric, positive definitej

i I
— = B:=
B
P:= B
Ax:= O
u= VE(R)
s1= <P 1y
(7.3) . %(Vf(x+ ts) - VE(x) ; t=w/llsl|
B:= -<u,s>/(y,s>
= &~ Ax:i= Ax+8s
9 212 T T
g B: = g4 _Bss'B
§ o (y,s) (Bs,s)
o
=i~ u:= u+py
-1
- 8:1= -P-lu-!-%)—u‘ﬁ s
¥,8)
L . %= x4+ Ax

At first glance it might seem better to keep an inverse Hessian
approximation H rather than the direct Hessian approximation B.
But matrix B being symmetric and positive definite may be kept

in factored form and these factors may be updated instead of using
the BFGS formula on B as given in (3.22). 1In this case, the work
involved in computing P-lu is no more than that in forming Hu .
Moreover, it is a general feeling among experts in the field that
updating the factors of B is more stable than updating the inverse
Hessian approximation H. Since the factors may also be updated
within the same order of arithmetic operations, there is no increase
in computation (Fletcher and Powell (1974), Gill, Bolub, Murray and

Saunders (1974), Goldfarb (1976)). One such techmique to update the
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Cholesky factors is given in the appendix.

A few more points about the algorithm in (7.3) may be mentioned
at this time, First, as noticed before, if (y,s) <0 during some
inner loop iteration, say the j-th, it must be terminated immediately
because the directions that follow may no longer be Hessian-conjugate.
If j>1, then according to Theorem 6.3 we have ij-l as a
descent direction for £ and sj as a direction of negative curva-
ture. This defines a descent pair which can be used in the line search
technique of McCormick (1977), Mor€ and Sorensen (1979). If j=1,
then -Vf may be regarded as a descent direction and d1 is still a
direction of negative curvature and again we have a descent pair.

We may comment here that in our experiments only using dj in a
simple line search routine produced results comparable to those ob-
tained from the use of the descent pair.

Second, it is advisable to check ||Ax|| against some step-length
bound, say A . This is similar to the trust region philosophy dis-
cussed in section 3. If ||Ax||<A then Ax is accepted, no function
check is made. If ||Ax||>A and if f£(x+Ax) <f(x), Ax is accepted
and A set to equal |lAxll . If llaxll>A and f£(x+Aax)>£(x), Ax
is temporarily accepted and the next inner loop is carried out -- say
it gives Ax . Now if £(x+ Ax+E:-)<f(x), x is set to x+ Ax+A_x-
and A= HEx—H . If not, a "weak" line search is performed along Ax
at x to compute o>0 such that f(x+oldx)<f(x) and A is set to
ollax|l . Note that the existence of « is guaranteed since Ax is a
descent direction for £ at x . We call this touchstone level-2

descent simply because we allow the jump in function one time, but not
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twice -- expecting our method to be acting like Newton's method
away from the solution.

Third, we recommend that if HBjsjlhselﬂij_IH for some pre-
assigned small e1:>0, then the inner loop should be terminated
since the contribution of any further iterations is negligible.

Fourth, for some cases where the function f is known to have
maximum and/or saddle points which may hinder the algorithm on its
path toward a minimum, it might be beneficial to have, what we call,

a pre-optimality loop as an option. In this option the algorithm

should be allowed to run a full inner loop with index k=n some-
time after ||Vf (x)lls\/éo where €,>0 is some preassigned tolerance
on ||Vf]] which might determine the stopping criteria for the
algorithm, viz., stop if HAf(x)H:;eo . Note that the purpose of a
full inner loop is to generate a direction of negative curvature

(if one exists) which will necessarily exist around a maxima or
saddle point. If no such direction is obtained, essentially a dis-
crete Newton step takes place, and if we are in the region of quad-
ratic convergence, the algorithm may be expected to stop right after
the pre-optimality loop is completed.

We now turn to the important consideration of incorporating
variable storage capability in the algorithm given in (7.3). As a
preliminary step, observe that if B 1is set to I in each outer
loop then updating B in the inner loop has no effect, thus both
matrices P and B are not needed in the algorithm. Recall that
in this case the algorithm uses the basic conjugate gradient method

in the inner loop and no matrices are required.
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L]

For large problems it may not be possible to store the full
Hessian approximation. The actual Hessian is assumed to be positive
definite at the solution, and in many cases it may actually be
diagonally dominant. Thus it seems reasonable to use the available
storage to approximate as many diagonals as possible, starting with
the main diagonal, and assume that the rest of the matrix is zero.

Even if the Hessian matrix sz is sparse, we know that the
inverse Hessian V2£ ! may still be full, and hence we must work
with an approximation B to sz rather than an approximation H
to sz-l to take advantage of sparsity. In this way, sparsity in
B can easily be translated into sparsity in the corresponding
Cholesky factorization of B, in the case that B is banded along
the main diagonal.

To implement variable storage it is advisable to keep B and
P (see (7.3)) in the same array. 1In fact we prefer to think of B
and P as different storage blocks (denoted [B] and [P] respec-
tively) of the same array. Let n, be the total number of locations

available for storage of [B] and [P] combined. Clearly, if
2

n Sifn
n >2{n

-

s +1n)/2 then amnle apace is available to carry out the inner

loop using the secant method directly, without the use of [P]

(see (7.2)). 1If ns<<2n then not enough storage is available even
to store a diagonal matrix in [B] and in [P] separately so that they
may be changed from step to step. In this case, [B] and [P] are
both assumed to represent identity matrices and no updates are per-
formed, so the_ basic.conjugate gradient method is used for the inner

loop. If 2n5ns<(n2+n)/2 then the number, say ng, such that
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ny =max{k| (2n+1 - k)“kgns}

gives the maximum number of diagonals that may be updated in [B]
and used as a preconditioner in [P]. Note here that due to
symuetry ng only counts the main diagonal and the super diagonals
(or sub diagonalsi.

Before concluding this section, we mention that the problem of
having to preserve symmetry, positive definiteness and sparsity along
with satisfying the secant equation using a rank-2 update was con-
sidered by Marwil (19785, and independently by Toint (19775. Their
procedure requires the solution of an additional sparse linear system.
Moreover, in the case of a full Hessian, the Marwill-Toint update
reduces to the Powell-symmetric-Broyden (PSB) formula which does not
preserve positive definiteness. (Also see Toint (1978))

Schubert (1970), and independently Broyden (1971), presented
a modification of Broyden's (1965) method for solving nonlinear
equations which takes gparsity into account. This method, although
very successful in sparse nonlinear equations, unfortunately does not
retain symetry. One straightforward approach would be to carry out
Schubert's sparse update and then symmetrize the resulting matrix.

I1f required, positive definiteness may also be forced, but the secant
equation would be violated.

An ad-hoc technique, which we find easy to use, is to update the
gparse Cholesky factors of B and then zero out the appropriate
parts (incomplete Cholesky factorization), In this case the update
inherits symmetry, positive definiteness and sparsity, but the~u

secant equation is not necessarily satisfied.



8. THE CONSTRAINED OPTIMIZATION ALGORITHM.

Consider Newton's method using the augmented Lagrangian to solve
the equality constrained problem (2.2). As noticed earlier in
section 4, the system of linear equations that must be solved in order

to get x and )\ corrections is

eane) VA | | M 7,20, 1,€)

(8.1) = -

Vh(x)T 0 A h(x)
L .

where Vi—ﬁ(x,)\,c) is given by

m
(8.2) VE(x,0,€) = VO£ (x) + evh (x)Vh(x) "+ z (A + ch, (2))v?h, (%)
i=1
As in unconstrained optimization, suppose thaﬁ V%ﬁtx,x,c) is being
approximated by a matrix B which will be improved using secant up-
date formulas as the iteration progresses. Recall that following
Hestenes (1969), the matrix Véﬁ(x,x,c) may be assumed to be positive
definite for ¢ large enough, at least in the neighborhood of a
solution., Following the approach in section 7, a model algorithm may
now be written as (8.3) on the following page. Note that the sub-
vectors Ve and VX of an n+m vector v denote the parts of v
corresponding to x and A, respectively.

As implied by Corollary 6.3, the inner loop in the algorithm (8.3)
may only be run as long as both ({u,p) and {y,p) are non zero. Note
that since B is taken to bge positive definite and is maintained that
way through the secant updates B, the matrix P is nonsingular if

Vh is of full rank. If not, modified Gaussian decomposition for



given x,)\,c and B (symmetric, positive definite)-

——> Ax:= 0
Al = 0
—> P:= [B Vh(x)]
[Vh(x)T 0

s = vzzcx,x,a(’*’;) +%2(x, M)
A

p:= 2l
& o y: = V2£(x,h,<=)p
L1 ) _
8.3) T TIR  B:= (w2 /{y,p)
2l EL Ax= Ao
8| A T TP

>
e
[

AN+ Bp)\

L Bi= B(p,,Te(x,0,0)P,,B)
xi= x+Mx

A= A+ AN

b ¢:= (%, )\,c)

59.



60.

symmetric indefinite matrix may be used to force nonsingularity in
P. Moreover, if PCGM is used in the inner loop then this decomposi-
tion will be required only in the outer loop.

Also the second order information involved in the algorithm
may be avoided by using finite differences to calculate Vi:&(x,)\,c)
and the rest of the information is already available. It must be
noted .here that (y,p) <0 is of no significance to us; instead, if
(ijgaﬂ(x,)\,c)px,px) <0 then we conclude that Py is a direction of
negative curvature of Vii(x,h,c) . Unfortunately, we do not know the
component of Py which lies in the orthogonal complement of Vh(x).
For this reason, we must try to keep v§£(x,x,c) positive definite all
the time by the chéice of a big enough ¢ . In fact, the penalty
constant update formula II(x,)\,c) that we have used in the outer loop
above is used primarily to indicate this situation. If, however,
v§£(x,x,c) cannot be made positive definite--which could be true far
away from the solution--we could perform a‘line search along the first
direction in the inner loop using the penalty function (Lemma 6.6).

Some interesting observations from the model are apparent as
follows. Of course, for k=n the method gives essentially Newton's
method. For k=1 it turns into Tapia's method as discussed in
section 4 with the update formula (4.6) (U, in Tapia (1977)).

With k=1 and P set to the diagonal matrix [In 0;], the model
0 -

yields gradient methods on both x and ) variables --on ) in
terms of the dual problem -- see Tapia (1977). As in the unconstrained

case, the Hessian approximations obtained here may be expected to be
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numerically stable because of short-steps. Also the only line
searches that the algorithm requires are those to take care of
the case when Viaﬁ(x,x,c) is indefinite.

The variable storage capability may be incorporated following
the presentation in the previous section. One extreme case is of
importance, however. This is the case when P 1is set to the

0

diagonal matrix [In ] . Note that in this case no matrix

0 -I
m

storage is required and no linear system needs to be solved.
Besides, this option could be very useful far away from the solu-
tion since it takes the first step along the steepest descent
direction as noted above.

Putting together some of the preceding ideas the algorithm
may be stated in the form of (8.4).

It should be remarked that in the options for P in (8.4), the
inverse notation simply indicates that a modified Gaussian elimina-
tion of the corresponding matrix is contained in P. Of course,
in its first option the matrix P is not actually used. The
computation of vector Pu is carried out via an elimination process
rather than actual matrix-vector multiplication., The decomposition
which we have been calling modified Gaussian elimination is simply
a symnetric indefinite factorization of Bunch-Parlett type which
forces nonsingularity in the matrix.

Note that 2z represents the vector Vi:ﬁ(x,).,c)sx , and the
components of vector y are obtained using simple matrix-vector
multiplication. Once again, the penalty constant update formula

simply indicates that ¢ 1is updated if Vﬁﬁ(x,x,c) turned out to be
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given x,\,c and B (symmetric, positive definite5

I
—————> B:=
B
(1 o7
n
LO --Im
P:=<4 & }
10 vh(x)] !
T
| Lvh(x) 0
Ax: = 0
A\ = 0
u = Vx=£(x, AsC)
uyi= h(x)
8:= -Pu
] V;:é(x+ tsx,}\,c) - vx£(x,k,c)
8.4) > ws - ;= /sl
5
S Vgl = z+Vh(x)s}\
_ T
y)\.— Vh(x) S,
B:= -{u,s) {y,s)
81~
K § Ax: = Ax+ Bsx
8|5 A= AA+B
gl Am= 25\
i zz’T Bsxs;EB
B:= B+ -
(Z,Sx> <Bsx’sx>
us = u+ By
"—— g:= ~Pu+ ({Pu,y)/{y,s))s
X:= x4+ Ax
A= A+ AN

c:.= n(x,A,c)
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indefinite. Some updating rules as indicated by Pierre and lowe
(1975)‘, and Glad (19765, may be used successively in order to
maintain Viﬁ(x,k,c) positive definite. Also notice that each
time the penalty constant ¢ changes to c, Viﬁtx,k,c) changes

by the amount o
(c - ¢) (Vh(x)vh(x) L+ z h, (x)V?h(x)).
i=1
Since Vh(x) is known, the first term can be compensated for by

replacing B with
-~ T
B+ (c - ¢)Vh(x)Vh(x)~ .

The penalty parameter r in the penalty function (2.4)
deserves mention here. Recall that in Lemma 6.6 we establish that
the first direction in each inner loop of (8.4) is a descent direc-
tion on the penalty function, If the product (VP,sx) is simplified,

then it turns out that starting with

(8.5) r=%%%’{>% s 0<y<l

the result holds for some r>0 . 1In practice, however, the above
choice of r wusually suffices for the descent property to hold. 1If
not, r may be replaced by r where

2<h’h> o e >fo

(8.6) 'r'=2 —;
T (b)) +(vB,s ) +e

to get the descent property to be satisfied. Also note, by the way,

that instead of (8.5)



(8.75 r = Zﬁ]}.\lﬁﬂ ; 0<y<l1

may alternatively be used.
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9. COMPUTATIONAL RESULTS

Experimental computer programs have been coded which implement
the algorithms given in (7.35 and (8.45 with sufficient generality
to subsume the different options provided in these algorithms.

These programs are intended as a pilot project to test the fundamental
validity of the ideas developed in this thesis. The programs have not
had the benefit of a lengthy development process nor the exhaustive
testing necessary to produce high quality mathematical software.

For these reasons the programs will not be documented here nor will
the coding be discussed in great detail. In particular, no extra-
ordinary efforts were spent on the efficiency of the programs in ob-
taining solutions and in economizing execution time. Indeed, a
number of potential savings in this area were deliberately foregone
in order to avoid complications in the coding. In view of the

rather preliminary nature of the numerical testing at hand, precise
comparisons with other well-documented algorithms in the literature
are difficult to make. However, we hope to address these issues in
subsequent work.

A simple descent strategy is employed in line searches. The
original search direction is normalized and a unit step size is
tried. If the unit step size is acceptable (the merit function
attains lower value), the step size is doubled successively until a
point with a higher merit function value than its precedent is
reached; and then the preceding step size is accepted. If the step
size of one is not acceptable, the step size is successively halved

until a point with a lower merit function value is found.
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In the unconstrained optimization algorithm, Cholesky factors
of the Hessian approximation B are updated using the BFGS formula
in the composite-t algorithm of Fletcher and Powell (1974). 1In the
constrained optimization algorithm, the matrix B is updated
directly using the BFGS formula as in (8.4). A modified Cholesky
decomposition is used to obtain the indefinite symmetric factorization
of matrix P and to force nonsingularity in it. Also in either case,
the initial matrix B, if used, is taken to be the identity matrix.

Most of the test problems selected are well-known examples
taken from the literature. For each problem all published starting
points were used and in most cases several additional starting points
were added, usually to probé some form of difficulty, such as viola-
tion of optimality conditions (Theorems 2.1 and 2.2) or starting
relatively far from a solution.

A fair summary of the results is that the algorithms converged
to a correct solution from all of the starting points for most of
the problems and from most of the starting points for virtually all
of the problems. Although precise comparisons with other algorithms
seem pointless to report at this time. vet the performance of our
programs in this regard was generally satisfactory, ranging from
quite good on several problems to fairly poor on a few. Thus the
methods developed here appear to show great promise as the basis for
robust algorithms in nonlinear optimization.

We now list numerical results for the test problems. The con-
vergence test consisted simply of a tolerance of 107 for vl

in the unconstrained case and for max{vain,HhH} in the constrained



case. In the tables that follow, the number of evaluatioms of the
problem functions (NFj and their derivatives (ND) is given, along
with an approximate total CPU time to attain the accuracy noted
above. As a means of preliminary comparison, in the unconstrained
case, similar information was obtained from Shanno and Phua's
(1976) quasi-Newton algorithm (denoted by QNSP below) and from
Polak-Ribiere conjugate gradient algorithm (denoted by CGPR below)
(see Klessig and Polak (1972)) using Lasdon's line search routine
(see Fox et al (1975)). In the constrained case, Biggs' (1975)
program, OPRQP, using recursive quadratic programming was em-
ployed. All computations were performed in double precision arith-

metic on the ITEL AS/6 computer using the same FORTRAN compiler.

Unconstrained Optimization Problems (UCOP)

UCOP1l: Chebyquad function (Fletcher (1965))

n
£ = ) (&,
i=1

where

3 fr

1
8, (%) = -__[‘0 T(DAE+ S )

n
Nt x,)
bl J
j=1

and Ti is the i-th Chebychev Polynomial on (0,1).

Starting points:

(1) x(i’ =i/(n+ 1) .

67.
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UCOP2: Mancino function (Shanno and Phua (1978a))

n
£ = ) (3, (0)°
i=1

where n
Qi(x) = 2[1/ x§ + i/j (sindlogv x? + i/j + cosdlogq/ x§ + i/j)]
J'=1 .
it

+ Box, + (i-n/2)Y

Starting points:

0 -nf
(L) x =
B2n? - (@+1)%(n-1)

5 (8(0),8,(0),...,8 (0))

UCOP3: Oren function (Oren (1973))

n
2 P
f(x) = :E:ix. with p =2,

1
i=1
Starting points:
1y =V =(,1,1,...)

UCOP4: Rosenbrock extended function (Shanno (1978a))
n-1 n=-

-1
£(x) = Z(xi - 1% + 100 z(x?.L - xi+1)2
1

i=1 i=



Starting points:

0

(1) x° = (70,70,...)

@2) x° = (50,-50,50,-50,...)
3) 2 = (2,2,2...)

%) % = (-3,-3,-3,...)

-

UCOPS:. Rosenbrock separated function (More et al (1978))

n/2 n/2
£(x) = Z (kg 1~ 1D? + 100 z oy - %)’
i=1 =}

Starting points:

@ =0 = ¢12,1,1,1,...)
@) =0 = (-1.2,1,-1.2,1,-1.2,1,...)
3) = =(2,3,2,3,2,3,...)

UCOP6: Sine-Exponential function (unpublished)

n n
X i
f(x) = Z(i+2n)e i 2(9—;-'—-1-) x2i + Il sin X,
‘ . £ i=1
i=1 i=1

Starting points:

1y =° = (15,15,15,...)
@) = = (1,2,3,1,2,3,1,2,3,...)
(3) x° = (-2,-2,-2,...)



Equality Constrained Optimization Problems (ECOP)

ECOP1: (Miele, et al (1971))

£ = Gt - DZ 4+ (xp - x)0 + (%, - xp)

hy(x) = x(L+ %)+ xg -4 -3

Solutions obtained:

(1) x* ~ (1.1049, 1.1967, 1.5353)

Starting points:
a =°

(2) x
3) =0 = (1.4,1.5,1.9)

]

(11,12,15)
0

It

(2.7,2.9,3.8)

ECOP2: (Miele et al (1971))

£Gx) = (5 -1 + (xp - x)7 + (xy - DZ+ (x, - DY+ (xg D)

hl(x) xéxi + s:‘.n(x4 - xs) - 2/2

4 2
hz(x) %, +x3x4 -8 -2
Solutions obtained:

(1) x*~ (1.1661,1.1821,1.3802,1.5060,.6109)

(2) x* ~ (-.9868,-.9142,-1.303,1.893,.4976)
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Starting points:
0

(1 x = (2,2,2,2,2)
@) =0 = (-1,3,-.5,-2,-3)
3) = = (12,13,14,15,7)

4) x° = (5.7,5.9,6.9,7.5,3.1)

ECOP3: (Miele et al (1971))
n=5 M=3

f(x) = (x1 - 1)A2 + (xl - xz)v2 + (x2 - x3)2 + (x3 - xl&)‘4 + (x4- x5§’

hl(x)=x1+x§+x§-2-3\/2
h,(x) = x, - 2+x +2 -2"
2 2 T ¥ TR

h3(x) = X Xg - 2

Solutions obtained:
(1) x* ~ (L1911,1.3626,1.4728,1.6350,1.6790)
(2) x* a (-.7662,2.667,-.4682,-1,619,-2.610)

(3) x* ~ (-2.702,-2.990,.1719,3.848,-.7401)

Starting points:

0

1y x = (2,2,2,2,2)
0

@) 20 = (-1,3,-.5,-2,-3)

3) x° = (5.9,6.8,7.3,8.1,8.4)
0

(4) x = (150,160,170,180,190)
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ECOP4: (Powell (1969))

f(x) = X ¥y XoX, X

_2,2,2, .2, .2
hl(x) Xy + X, + X, + Xy + Xg 10

h2(x) = X,%3 - 5x4x5
_ .3 3
h3(x) =x; + X, + 1

Solutions obtained:

(1) x* ~ (-1.7172,1.5957,1.8272,.7636,.7636)
(2) x* ~ (-1.7172,1.5957,1.8272,-.7636,-.7636)
(3) x* ~ (-.6991,-,.870,-2.790,-.6967,~-.6967)

(4) x*=~ (.3920,-1.020,0.,2.968,0.)

Starting points:

1y =% = (-1,2,1,-2,-2)

@) =0 = (-2,2,2,2,2)

3) = = (-2,2,2,-1,-1)

@y x° = (-1,-1,-1,-1,-1)

) =° = (-100,100,100,50,50)

ECOP5: (Himmelblau (1972), problem 4a, pp. 396)

n=10,m=3
10 x; [ 10 .
f(x)=z e c]._+xi--1nz:eJ
i=1 ' j=1
X

X X X X
hl(x) = e ! + 2e 2 + 2e 3 + e 6 + e 10 _ 2



73.

, X X X X
hz(x) = e 4 + 2e > + e 6 + e 7 -1

. X X X X X
h3(x) = e 3 + e 7 + e 8 + 2e 9 + e 10 -1

and ¢, are given by
¢c = (~6.089,-17.164,-34.054,-5.914,-24,721,-14,986,-24.1,

-10.708,-26.662,~22.179)

Solutions obtained:

(1) =x* a:(-3.2,-1.91,-.24,-6.56,-.72,-7.27,-3.6,-4.02,-3.29,-2.335

(2) x* ~ (-2.3,-.35,-15.2,-6.46,-.76,-6.51,-2.78,-3.06,-1.61,

-.713)

Starting points:

a =L =(.5,.75,2.2,1.5,1.7,1.5,.7,.75,.5, .25)

@) x° = (-.by=.7,-2,-1.5,-1.5,-1.4,-.75,-.8,-.6,-.3)
3) 20 = (.1,.2,.3,.4,.5,.6,.7,.8,.9,.7)

@ x° = (7,9,-6,3,8,8,7,6,7,8)
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TABIE 1: UNCONSTRAINED TEST RESULTS
Algorithm (7.3)
CGPR B: al B: =8 QNSP
NF/ND NF /ND NF /ND NF/ND
Problem qa < CPU sec. CPU sec. CPU sec. CPU sec.
ucorl S (1) 28/4 4/13 4/12 31/31
_.0284 .0339 .0376 L0447
7 1) . 62/12 11/34 11/46 34/34
.0591 .0774 L1376 .0759
9 (¢)) 148/30 12.71 30/102 46/46
.1537 .1682 .3917 .1589
Ucop2 10 (1) 44/6 13/7 13/7 13/13
.3881 .1703 L1712 .2251
15 ) 43/6 13/7 13/7 11/11
L8474 3645 .3661 .4183
20 (1) 58/8 17/9 17/9 13/13
2.0243 .8262 .8279 .8666
25 (1) 57/8 17/9 17/9 13/13
3.1340 1.2873 1.2893 1.3525
gcor3 10 (1) 64/11 47/24 47/24 140/140
.0465 .0482 .0482 .3808
15 (¢5) 72/14 69/35 69/35 211/211
.0558 .0780 .0780 .9285
20 (1) 86/16 23/84 23/39 262/262
.0679 .1601 2169 1.7260
25 (9)) 9%/18 21/102 21/45 316/316
079 .2087 .3699 2.9676
Ucors 20 (L) 2478/474 42/392 26/10S 322/322
1.3152 . 6906 7946 2.0331
20 (2) 481/101 12/406 12/220 334/334
.2866 .7033 1.7161 2.1517
20 (3) 339/74 16/112 16/51 60/60
.2118 .2058 .3756 .3250
20 %) 885/199 21/391 21/211 197/197
.5398 L6777 1.6087 1.1734
Uceos 20 (1) 148/23 10/3s 10/33 40/40
.0783 .0686 .2249 .1873
20 2) 148/23 48/143 17/144 60/60
.0787 ,2408 9113 .3425
20 3) 80/12 8/30 8/37 67/67
.0498 .0606 2727 L3475
UCOPé 20 (L 54/9 23/23 23/27 99/99
.1029 .1166 .2246 .8625
20 2) 46/8 9/13 9/14 246/24
.0907 .0705 .1283 L1710
20 (3) /6 3/14 3/21 20/20
0712 .0699 L2125 .1906



TABIE 2: EQUALITY CONSTRAINED TEST RESULIS

75‘

ALGORITHM (8.4 BIGGS' OPRQP
x0 x NF/ND NF /ND
Broblem wused found CPU sec. CPU sec.
ECOP1 (1) (1) 12/34 37/29
074 .056
) (1) 10/28 31/28
.064 .054
3 @O 6/16 19/19
.043 .046
ECOP2 (L (¢)) 9/33 52/35
.095 114
(2) (2) 32/124 3911/1000*
.310 2.916
3 (1) 18/68 219/92
.178 .285
(%) (1) 17/65 41/43
.169 128
ECOP3 (L) 1) 8/22 17/17
.073 .070
2) (2) 6/16 16/16
.057 .067
3 n 11/27 30/24
.095 0%
%) 3 28/82 e
.233 &
ECOP4 (1) ) 10/28 23/22
.089 .088
) 1€5) 7/19 21/20
.064 .082
3) (2) 8/22 27/23
.073 .091
%) 3) 16728 28/23
.089 .093
(5) %) 19/55 sevede
.158 (13
ECOPS5 (1) (L) 14/9% 946/461
458 3.955
@) ) 14/105 setede
480 28)
3) ) 14/100 et
473 (38
O ) 21/151 95/31%***
.755
*: Algorithm stopped due to excessive function evaluatioans.
%% lagrange multiplier equations singular at the indicated
{iteration.
“ick: Saarch directioa uphill at fhe indicated iteration.
dededede o

Line search failed;

£ -10", ilhilas 10°



10. CONCLUDING REMARKS

The equivalence of preconditioned conjugate gradient methods
and secant methods for quadratic problems is used to develop numer-
ically stable algorithms for unconstrained and equality constrained
problems of nonlinear optimization. Robust algorithms for nonlinear
optimization are by necessity complex. The strategy underlying any
such algorithm inevitably depends on using local information to de-
duce global properties that lead to an improved estimate of the
solution. Our algorithms tend to stay as close to Newton's method
as possible without getting influenced by the short comings of the
Newton iteration. A successful strategy should not depend on con-
ditions that hold only for special cases, or in a close neighborhood
of the optimum. The algorithms described in this thesis are able to
adapt to difficult circumstances, so that progress can be guaranteed
far from the solution, even when local indications are misleading.

The algorithms presented are well suited for large problems,
because it is possible to implement them without involving any
matrices. The numerical results obtained by using an ad-hoc method
(described in section 7) are not satisfactory.

The algorithm for equality constrained optimization needs two
major improvements. First of all, a clever use of the penalty constant
in the augmented Lagrangian is desired. We believe the inner loop
iterations in (8.4) should predict an appropriate value for this par-
ameter. Second, it is necessary to modify the algorithm to incorporate
inequality constraints. Newton's method, in the usual sense, is not

directly applicable to inequality comstrained problems. Therefore,
Yy ap q
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a number of methods have been proposed which convert the inequality
constrained problem into an equality constrained problem or an un-

constrained problem.



APPENDIX: A FACTORIZED SECANT UPDATE PROCEDURE.

Since the detaiied enumeration of any numerical algorithm can
make especially dull reading and need be absorbed only by the most
enthusiastic of readers, we describe a procedure to obtain rank-2
updates of the form (3.20) in this appendix so as not to disrupt
the continuity of the main body of this thesis,

Notice that since the Hessian approximation matrix B is
always kept symmetric and positive definite «y,s)>0 in (3.20)),

a nonsingular lower triangular matrix L can be obtained via
Cholesky factorization of B such that B==11F . We consider a
method to update L to get 1 such that E==ii? where B is
obtained from B by a rank-2 update of the type (3.20).

First suggested by Gill and Murray (1972), several elegant
methods (Gill, Golub, Murray and Saunders (1974), Fletcher and Powell
(1974)) have been proposed to update the Cholesky factor L when a
rank-1 correction is added to B . Since the rank-2 correction term
in (3.20) can be expressed as the sum of two symmetric rank-1 terms,
these procedures need to be performed twice. Goldfarb (1976) suggested
direct methods to carry out such updates on L . Recently, a clever
derivation of (3.20) was presented by Dennis (1978b) requiring only a
rank-1 Broyden update on L to effectively get a rank-2 update on
B . We describe this approach below. TFor the sake of convenience,
we restrict our discussion to the BFGS update formula (3.22).

Since we want the updated matrix B to be symmetric, positive
definite ({(y,s)>0) and satisfy the secant equation §§==y, we seek

to find a vector v and a matrix J such that
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(A.l)“ v=JTs and y=Jv,

and then reduce J by an orthogonal transformation Q to a lower

triangular matrix T so that

B=JJ =1IQQL =

implies that L is the required Cholesky factor of B .
Suppose we know v, then J can be obtained by updating L

using the rank-1 Broyden formula

T
_ -Iv)v_ _ T . _y-iv
(A.2) J—L+-Qz—)——v,v> =L+zv ; 2z v.v

which satisfies Jv=y . Using the other condition v=JTs of (A.1)

and (A.2) we obtain

(A.3) v=y) LE 1Tg |

It is easy to verify that §=JJT is exactly the BFGS update on
B(= 1L)).

In order to reduce J to a lower triangular matrix, note that
(A.4) J=L(I+%) ; vhere =z .

Goldfarb (1976) suggested two efficient methods using 1) Givens' plane
rotations and 2) Householder's transformations to determine orthogonal
maitrix Q@ such that (I-i—’%‘vT)Q =f, where I is lower triangular.

Thus the required L matrix is given by (using A.4)

(A.5) L=1L .
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Given L, s and y we summarize the algorithmic approach for
updating L= ('eij)- . Since Goldfarb's method based on Householder's
transformations seems to require slightly fewer computations, we
adopt this to triangularize I+'%’vT in the algorithm below. As for

storage, it requires three extra vectors as work space.

Step 1. Set w:= t’s and then wv:=V yTs/wTw ‘W

Step 2. If |vi|<'r|\v|| » 1<i<n consider v=0 and hence there is
is no change in L, thus terminate. Otherwise, determine
m=max{ii|vi[2'rllv||}; and set w :=0. If m=1, go to
step &4 .

. _ . L 2
Step 3. For j=m,m-1,..,,2; set wj-l '_Wj+v_"l
Step 4. Compute z:= (y- Lv)/(~w1+ v%)

Step 5. Set z:= zl/zu
i-1
For i=2,...,n ; set z;i=|z; - z ‘e’ijzj ’cii
j=1
Set E&:=1 TM¢=0 and j:=1, If m=1 go to step 8.

Step 6. Set, in order, 5:=§zj -'ﬂvj

9:=1+6vj

v:=- (sgn(8)) \/92+ azwj
pe=9 vj+6Wj

o= pEly

wi= (&=-puM/y

g:= -E/Y

M= -+ 82/(0 - V) /y
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Step 7. For i=j,j+1,...n; set Lij:=£ijy.

For k=j+1,j+2,...,n ; do the following sdequence:.

Set 0:= vy +oz,

For i=k,k+1,...,n ; set 'cij:= zij+zike .

If j=m, wupdating of L is complete; terminate.
Otherwise set j:= j+1 . If j<m, go to step 6 .

Step 8. Set 'v=1+(§zm-'nvm)vm. If m<n; set p,=0,c=§vm,

and go to step 7. Otherwise set J&nn:= .enn'y; and terminate.

Note that wv=0 if and only if s=0 because L is non-
singular. Thus, checking ILls)l in step 1 is recommanded to avoid
division by zero. Observe that step 2 takes care of the possibility
v;=0 for m+1<i<n and v # 0, in which case the last n-m
columns of L are unchanged. (Recall that T is the machine
tolerance.) Step 5 solves IZ=z for % . Step 6, repeated m-1
times, reduces I+’§’VT and follows directly from Method 2 of Gold-
farb (1976). Step 7 multiples II. as a new column of 1 1is gener-

ated.
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