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Abstract

Geometrical Optics for Quasi-P Waves:
Theories and Numerical Methods

by

Jianliang Qian

The quasi-P wave in anisotropic solids is of practical importance in obtaining
maximal imaging resolution in seismic exploration. The geometrical optics term in
the asymptotic expansion for the wave characterizes the high frequency part of the
quasi-P wave by using two functions: a phase (traveltime) function satisfying an
eikonal equation and an amplitude function satisfying a transport equation.

[ develop theories and numerical methods for constructing the geometrical optics
term of quasi-P waves in general anisotropic solids. The traveltime corresponding
to the downgoing wave satisfies a paraxial eikonal equation, an evolution equation
in depth. This paraxial eikonal equation takes into account the convexity of the
quasi-P slowness surface and thus has a built-in reliable indicator of the ray velocity
direction. Therefore, high-order finite-difference eikonal solvers are easily constructed
by utilizing Weighted Essentially NonOscillating (WENQ) schemes.

Because the amplitude function is related to second-order derivatives of the trav-
eltime. a third-order accurate eikonal solver for traveltimes is necessary to get a first-
order accurate amplitude. However, the eikonal equation with a point source has

an upwind singularity at the source which renders all finite-difference eikonal solvers



to be first-order accurate near the source. A new approach combining an adaptive-
gridding strategy with WENO schemes can treat this singularity efficiently and can
vield highly accurate traveltimes and amplitudes for both isotropic and anisotropic
solids.

A variety of numerical experiments verify that the new paraxial eikonal solver
and adaptive-gridding-WENO approach are accurate and efficient for capturing the
anisotropy. Therefore, the two new methods provide tools for constructing the geo-

metrical optics term of the quasi-P wave in general anisotropic solids.
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Chapter 1

Introduction

In modern seismic exploration for hydrocarbon reserves, one takes surface reflection
survevs at increasingly larger distances both for image enhancement and for improved
estimation of elastic parameters. However. in order to obtain a better imaging resolu-
tion as well as better understanding of the subsurface structure from solving inverse
problems (i.e.. inverting these surface reflection data). one must take into consider-
ation the anisotropy at different length scales in the subsurface because shales are
almost always anisotropic. and they make up over 70 percent of hydrocarbon explo-
ration targets.

Two kinds of techniques are used to solve these inverse problems: one is the
search-based iterative (optimization) techniques (Tarantola [Tar86], Mora [Mor89].
Symes and Kern [SK94], Debski and Tarantola [DT93]); the other is the direct lin-
carized method which seeks direct, closed-form solutions (Beylkin [Bey85]. Beylkin
and Burridge [BB90], Symes et. al. [SVST94], Burridge et. al. [BdHMS9g], de
Hoop et. al. [dHSB99]). Because the computation cost of the direct linearized
method is cheaper than that of the search-based optimization technique, the industry
favors the direct linearized inversion method. To construct the closed-form expres-
sions for the inverse problem solution, the majority of the direct methods utilize
the Born (or Rytov) approximation and the asymptotic ray theory to model the
wave scattering and propagation (de Hoop et. al. [dHSB99]). Solutions are then
obtained by mappings, such as generalized Radon transform (GRT), which require
further asymptotic approximations (de Hoop and Bleistein [dHB97], Symes [Sym95]).

Because the asymptotic theory originated in the field of geometrical optics (Born and
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Wolf [BW64]). the better way to understand this is to put it in the context of ge-
ometrical optics. In the first place. the relation between the geometrical optics and

the asymptotic method is reviewed.

1.1 Geometrical optics and asymptotic methods for wave
equations

What is the geometrical optics? Born and Wolf ([BW64]. p 109) defined the geo-
metrical optics as “the branch of optics which is characterized by the neglect of the
wavelength. i.e. that corresponding to the limiting case (wavelength) A\¢ — 0. since in
this approximation the optical laws may be formulated in the language of geometry.”
This definition is based on the short wavelength assumption of light and can be gen-
eralized to deal with other wave phenomena as well. The linear or nonlinear partial
differential equations describing these wave propagations involve a parameter. such as
the wavelength A. which is small compared to all other lengths in the problem (Keller
and Lewis [KL95]. White [Whi99]). The asymptotic method is for the asymptotic
solution of partial differential equations governing these wave propagations (Keller
and Lewis [KL95}).

The asymptotic method is based on progressing wave expansions (Courant and
Hilbert [CH62]) and is used to construct an asymptotic expansion of the solution

which is valid near A = 0 (“short wavelength”), or equivalently for the wave number
-)~

k= -T‘ near infinity (“high frequency™) (Keller and Lewis [KL95]). Because, on the
one hand, the solutions of these equations oscillate with the small wavelength \; on
the other hand. the short wavelength A may be thousands of times smaller than the
length scale of interest. it is often expensive and impractical to find these solutions

by direct numerical discretizations of the related partial differential equations.



The progressing wave expansion for the asymptotic method involves a “phase func-
tion~ and an infinite sequence of ~amplitude functions.” The phase function satisfies
a nonlinear partial differential equation of first-order called the eikonal equation: the
amplitude functions satisfv a sequence of successive “transport equations™ (Courant
and Hilbert [CH62]. Keller and Lewis [KL95]). The leading term in the progressing
wave expansion can be constructed in terms of quantities which occur in the geomet-
rical optics: therefore. the leading term is called the geometrical optics term by
Keller and Lewis [KL95]. The asymptotic method has been successfully used to con-
struct the asymptotic solution for acoustic wave equations (Keller and Lewis [KL95].
Symes [Sym93]), deep-water wave equations (White [Whi99]), Maxwell’s equations
(Born and Wolf [BW64]. Cornbleet [Cor83], Keller and Lewis [KL95]) and linear
elastodynamic wave equations (Fedorov [Fed68], Musgrave [Mus70], Cerveny [Cer72].
Berryman [Ber79]. Burridge et. al. [BAHMS98], de Hoop et. al. [dHSB99], Fuki et.
al. [FKN93]).

For the linear elastodynamic wave equation in elastic anisotropic solids. three
different waves, i.e., quasi-longitudinal (quasi-P) and two transverse waves, are cou-
pled together (Fedorov [Fed68]|. Musgrave [Mus70]). Because the quasi-P wave is of
practical importance in obtaining maximal imaging resolution in seismic exploration
(Thomsen [Tho86], Tsvankin and Thomsen [TT95], Anderson [And96], Pratt and
Chapman [PC92], Cherret and Singh [CS98]), this dissertation is devoted to develop-
ing theories and numerical methods for constructing the geometrical optics term (the
leading term) in the asymptotic expansions for quasi-P waves in anisotropic solids,
where the phase function is the so-called traveltime.

To obtain the phase and amplitude function, I will solve the quasi-P eikonal and

transport equations by finite-difference methods.



1.2 Finite-difference methods for quasi-P eikonal equations

The eikonal equation can be solved by the method of characteristics (Courant and
Hilbert [CH62], Evans [Eva94]) which constructs the characteristic curves called
“rays.” The phase (traveltime) function and the amplitude function satisfy linear or-
dinary differential equations along the rays. The methods based on the characteristic
equations are called “ray-tracing methods™ (Cerveny [Cer72]. Shearer and Chapman
[SCS8]. Pereyra [Per92]), and they work for both isetropic and anisotropic solids.
But ray-tracing methods have some drawbacks. The nonuniform distribution of trav-
eltime data from ray-tracing methods gives rise to cumbersome and expensive interpo-
lations for the application in seismic imaging. Therefore. many researchers appeal to
finite-difference methods for solving the eikonal equation directly on regular Cartesian
grids.

The finite-difference eikonal solvers compute the approximate first-arrival times
directly on a prespecified grid. involve rather simple data structures. and are easy
to code efficiently (Reshef and Kosloff [RK86], Vidale [Vid88]. van Trier and Symes
[vTS91]. Schneider et. al [SRBK92]. Qin et. al. [QLO*92], Schneider [Sch95], El-
Mageed [EM96]. Sethian and Popvicci [SP99]. Kim and Cook [KC99]). However,
the methods cited describe only finite-difference traveltime algorithms for isotropic
solids. Extension of these methods to anisotropic wave propagations is not entirely
straightforward. Qin and Schuster [QS93] and Eaton [Eat93] extended the expanding-
wavefront scheme developed by Qin et. al. [QLO*92] to the anisotropic medium; but
their extensions work only for 2-D cases and have first-order accuracy only.

The finite-difference eikonal solvers mentioned above depend on the fact that for
isotropic media the ray velocity vector. i.e., the group velocity, has the same direction
as the traveltime gradient, i.e.. the phase velocity, so that we can use the traveltime

gradient as a reliable indicator of energy flow (and thus causality, a.k.a stability) in
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extrapolating the traveltime field. However. this is not true for anisotropic media
(Dellinger and Symes [DS97]). One of the goals of this dissertation is establishing a
reliable indicator of quasi-P ray velocity direction for finite-difference eikonal solvers
by formulating a relation between the group velocity direction and the phase ve-
locity direction. Furthermore. the dissertation will present theoretical formulations,
implementation details, and illustrative applications of finite-difference methods for
traveltimes of first-arriving quasi-P waves in heterogeneous anisotropic solids.

The mathematical foundation of the finite difference approach to traveltime com-
putation is the observation of Lions [Lio82]: the first-arrival traveltime is a generalized
solution of the eikonal equation. A generalized solution concept is necessary because
the eikonal equation does not generally have solutions in the ordinary sense through-
out its domain. However. generalized solutions are not unique because of the existence
of several branches of traveltime in the presence of strong refraction. Lions and oth-
ers abstractly characterized a particular generalized solution. the so-called viscosity
solution. which turns out to be the first-arrival. Because of its stability with re-
spect to the medium parameters and the source location, this generalized solution is
computable by finite-difference approximation.

Lions™ findings [Lio82] pertain to isotropic media, but the central hypothesis of
this dissertaion is that the first-arrival quasi-P traveltime is also a stable generalized
solution and therefore computable by suitable finite-difference schemes. Also by anal-
ogy with the isotropic case, the so-called upwind scheme is expected to be particularly
successful. Dellinger and Symes [Del91] [DS97] investigated this possibility but did
not give full details of a workable algorithm. This dissertation presents a family of
workable algorithms of Essentially NonOscillatory (ENO) type (Osher and Sethian
[OS88], Osher and Shu [0OS91]), applied to a depth-evolution (“paraxial”) form of

the eikonal equation. The computed solution gives an accurate approximation of the



traveltime at every point of a Cartesian grid. which is connected to the source by a
first-arriving ray whose velocity vector makes an angle less than a prescribed angle
with the vertical. A similar approach has proven quite successful for the isotropic
traveltime (and amplitude) computation for use in prestack modeling. migration. and
inversion for seismic data processing (Symes et. al. [SVST94], El-Mageed [EMKS97].
Qian et. al. [QBS99]).

Because the transport equation for the amplitude in the geometrical optics term
involves the second-order derivatives of the phase (traveltime) function. which in turn
is obtained by numerical computations, it follows that to obtain first-order accurate
amplitudes the computed traveltime function itself must have at least third-order
accuracy. However, the eikonal equation with a point source has an upwind singularity
at the source. To obtain highly accurate traveltime functions, I have to treat this

singularity first.

1.3 Adaptive treatment for the upwind singularity at the
source

The traveltime field is mostly smooth. and the use of upwind differencing in the
eikonal solvers confines the errors due to singularities which develop away from
the source point (Reshef and Kosloff [RK86|, Vidale [VidS88], van Trier and Symes
[vTS91]. Schneider et. al [SRBK92], Schneider [Sch95], El-Mageed [EM96], Sethian
and Popvicci [SP99]. Kim and Cook [KC99]). The source point itself is, however, also
an upwind singularity. The truncation error of a pth order method is dominated by
the product of (p + 1)st derivatives of the traveltime field and the (p + 1)st power of
the step(s). The (p + 1)st derivatives of the traveltime field, however, behave like the

(—p + 1)th power of the distance to the source. Therefore, near the source - when
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the distance is on the order of the step - the truncation error is quadratic in the step.
i.e.. first-order. This inaccuracy spreads throughout the computation and renders
all higher-order methods first-order convergent. Moreover. the resultant inaccuracy
in traveltimes prevents reliable computation of auxiliary quantities such as takeoff
angles and amplitudes.

This inaccuracy afflicts all point source traveltime computations using gridded
eikonal solvers. In the few published convergence tests. implementers have resorted
to imposing a grid-independent region of constant velocity near the source. in which
the traveltimes are initialized analytically. This is the approach taken. for instance,
by Sethian [Set99b] in demonstrating second-order convergence for a version of his
fast marching method. This approach has two obvious drawbacks: (1) the velocity
may not be homogeneous near the source; and (2) the size of the region of analytic
computation must be set by the user and bears no obvious relation to the grid param-
eters. In principle. highly accurate ray-tracing methods could be used to alleviate the
first difficulty, but the second remains: it introduces a “magic number” into the use
of eikonal solvers. Kim and Cook [IKC99] take a different approach. similar to the one
we advocate: they refine the grid several times near the source so that the reduced
grid spacing compensates for the increased truncation error. However, their grid re-
finement strategy appears to be ad-hoc. and once again involves a “magic number,”
namely the number of grid refinements near the source, without a clearcut selection
criterion.

In this dissertation, I show how to use adaptive-gridding concepts commonplace
in the numerical solution of ordinary differential equations (Gear [Gea71]) to resolve
the difficulty caused by this inaccuracy, for both isotropic and anisotropic media. The
adaptive-gridding has already been used in numerical solutions of PDEs (Berger and

Oliger [BO84]. Berger and LeVeque [BL97]). Generally, the grid refinement must be
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localized in several dimensions. leading to complex data structures. Fortunately. the
nature of the traveltime field for isotropic media permits a relatively straightforward
adaptive-gridding strategy as first established in Belfi and Symes [BS98]. I improve
the algorithm of Belfi and Symes through the use of the more accurate Weighted
Essentially NonOscillating (WENQO) difference schemes and extend it to solutions
of advection equations for various geometrical optics quantities in both isotropic and
anisotropic media. The efficiencies achieved by the adaptive-gridding are considerable
- usually more than an order of magnitude reduction in computation time for prob-
lems of typical exploration size, compared to the fixed-grid method giving the same
level of accuracy. I also obtain significant improvements in the accuracy of computed
geometrical optics quantities. such as takeoff angles and geometrical amplitudes.
The essential principle of the adaptive gridding is simple and is based on a hi-
erarchy of difference schemes of various orders. Presumably a higher-order step is
more accurate than a lower-order step. so that the higher-order step can serve as
a substitute for the exact solution in evaluating the local error in the lower-order
step. Therefore, one can combine the step computations of two different orders to ob-
tain a so-called a posteriori estimate of the truncation error for the lower-order step.
Since the lower- and higher- order truncation errors stand in a known asymptotic
relation. this permits an estimate of the higher-order truncation error as well. The
asymptotic form of the truncation error then permits prediction of a step that will
result in a lower-order truncation error less than a user-specified tolerance. So long
as the steps are selected to maintain this local error, standard theory predicts that
the higher-order global error, i.e., the actual error in the solution computed using
the higher-order scheme, will be proportional to the user-specified tolerance. This
straightforward idea is embedded in most modern software packages for solutions of

ordinary differential equations (Gear [GeaTl]). Its use for partial differential equa-



tions is a little more complicated because it is usually necessary to adjust the grid
of the non-evolution variables along with the evolution step. However. as shown by
computational experiments in Belfi and Symes [BS98]. the solution of the (paraxial)
eikonal equation changes in a sufficiently predictable way to make grid adjustment

practical.

1.4 Outline of the dissertation

This chapter has given an overview of geometrical optics and asymptotic methods
for wave propagations and how the geometrical optics term is computed in seismic
explorations. Because of its practical importance, the finite-difference method for
computing the geometrical optics term is emphasized. The difficulties are identified
in designing finite-difference schemes for general anisotropic solids, i.e., the reliable
indicator of the group velocity direction and the upwind singularity at the point
source. To overcome these difficulties [ propose a paraxial eikonal equation which has
a built-in indicator of the group velocity direction for quasi-P waves and an adaptive-
gridding WENO approach to treating the upwind singularity at the source. The rest
of the dissertation is devoted to constructing paraxial eikonal equations, developing
new algorithms for solving these equations, implementing these algorithms and the
new adaptive-gridding WENO approach. and verifving these new numerical methods
on various anisotropic solids.

Chapter 2 presents the theories of the geometrical optics for quasi-P waves in
anisotropic solids. In section 2.1, the eikonal equation for traveltimes and the trans-
port equation for amplitudes are derived by applying the high frequency asymptotics
to the linear elastic wave equations. Section 2.2 constructs the paraxial eikonal equa-
tion for the quasi-P wave traveltime by making use of the convexity of the slowness

surface. and the existence of the construction is proved in Appendix A. Section 2.3 de-
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rives the amplitude formula in Cartesian coordinates from the one in ray coordinates.
including two new advection equations for ray parameters.

Chapter 3 describes the numerical methods of the geometrical optics for quasi-
P waves in anisotropic solids. Section 3.1 presents algorithms for computing the
paraxial Hamiltonian needed in solving the paraxial eikonal equation. along with a
new algorithm for initializing traveltimes in finite-difference schemes. Section 3.2
gives a new derivation of a first-order Godunov scheme by using a local paraxial ray-
tracing technique. Section 3.3 details high-order ENO and WENO finite-difference
schemes. which are used to solve the paraxial eikonal equation for traveltimes and
the advection equation for take-off angles.

In Chapter 4. the theories and numerical methods developed in Chapters 2 and
3 are applied to solving the paraxial eikonal equation in transversely isotropic (TI)
solids. Section 4.1 gives a simplified paraxial Hamiltonian for TI solids with a vertical
symmetry axis (VTI). Section 4.2 builds an inclined TI (ITI) model by rotating
a VTI model. In Section 4.3. extensive numerical experiments are performed to
verify the feasibility of the theory and the efficiency and accuracy of the numerical
algorithms. including examples for 2-D VTI solids, 3-D VTI solids, and isotropic
and anisotropic Marmousi models. Because of the generality of inclined TI solids,
Section 4.4 consisting of numerical examples for IT1 solids is specialized in illustrating
the efficiency and accuracy of the algorithms developed in Chapter 3 for general
anisotropic solids.

In Chapter 3, the adaptive-gridding WENO approach is proposed to compute the
amplitude function in isotropic and VTI solids. Section 5.1 formulates the geometrical
optics term for isotropic solids, including the paraxial eikonal equation for traveltimes
and the advection equation for take-off angles. Section 5.2 briefly mentions the high-

order WENO schemes for traveltimes and take-off angles, with details presented in
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Chapter 3 and Appendix C. Section 5.3 describes in detail the adaptive-gridding
WENO approach for the upwind singularity at the source. including an algorithm
framework. In Section 5.4, some numerical experiments are performed to show that
the adaptive-gridding WENQ approach is efficient and accurate. In Section 5.5 and
5.6. the adaptive-gridding WENO approach is applied to computing the traveltime
and amplitude in VTI solids, along with some examples showing that the approach
works for anisotropic solids as well.

Finally. Chapter 6 concludes the dissertation. summarizing contributions of the

dissertation and suggesting some research directions which merit further investigation.



Chapter 2

Geometrical Optics for Quasi-P Waves: Theories

In velocity structures with mild lateral heterogeneity. most reflected wave energy
propagates down to the target. then up to the surface. That is, the energy in such a
wavefield propagates along downgoing rays: the r3 (“z”) component of the ray velocity
vector remains positive from source to target. The traveltime along such downgoing
rays increases with depth and should be the solution of an evolution system in depth.
For isotropic wave propagation. Gray and May [GM94] suggest modifying the eikonal
equation in such a way that (i) the modified equation defines a depth evolution of
traveltime. and (ii) solutions of the modified and original eikonal equation are identical
at every point connected to the source by a first-arriving ray making a angle with
the vertical less than 90 degrees. The principal purpose of this chapter is to explain
such a modification, resulting in a pararial eikonal equation, for anisotropic wave
propagation. Solving the paraxial eikonal equation yields the phase function for the
geometrical optics term. To finish the construction of geometrical optics term. two
new advection equations for ray parameters have to be solved to obtain the amplitude

term.

2.1 High frequency asymptotics

In this section the Einstein summation convention is assumed (Musgrave [Mus70]).

Hooke’s law states that stress o;; is related to strain ey by a stiffness tensor Cijxr.

oij = Cijriex.
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Therefore. the motion equation without body force is

*uU
—5 = V.o 2.1
P57 o (2.1)

where U = (1) is the displacement vector.

By the symmetry of the stiffness tensor. the motion (wave) equation is

U, 9 Ay :
P 8t2 - a.‘l','(cukl 61, ) (

[SV]

.

N
~—

The progressing wave expansion (Courant and Hilbert [CH62]; Cerveny [Cer72]:

Burridge et. al. [BAHMS98]) assumes that the solution is of the form

>

Ur.t) = Y AD(X)falt — 7(x)). (2.3)
fir = o
where the wavefront is
t = 7(x). (2.4)

Upon inserting the ansatz (2.3) into the wave equation and equating individual
coefficients of f,_, to zero successively, starting with the most singular term n = 0, [
have a recursive system for the phase 7 and amplitudes A (). Because the geomet-
rical optics term consisting of the phase and amplitude function is determined by
the zeroth-order term (n = 0) and the first-order term (rz = 1), I am interested in
only these two terms.

Equating the zeroth-order term to zero gives rise to the Christoffel’s equation,
0 5 =
(Tie — 8:)AL = 0, (2.5)
which leads to the eikonal equation for the phase function T,

det([“jk—é_,-k) = 0,

det(a;upipt — djx) = 0, (2.6)
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where p = (pi;) = V7 is the slowness vector normal to the wavefront (2.4): 7 is the

Cijrl i i i
“™ are the density-normalized elastic

traveltime or phase of the wave mode: a;ji; =
parameters: [,z = a;jupipi; dji is the Kronecker delta. §;x = 1 if j = k. 64 = 0
otherwise. Note that all of these quantities depend on the spatial coordinate vector
X = (Iy.r3,r3). though in this and some of the following displays this dependence
has been suppressed for the sake of clarity.

Next equating the first-order term to zero vields

(1) a4y 9 (0) o -
(aijupipt — 8jx) Ay +p‘a'j"’—8z, +p E;j(PafjupzAk) = 0. (2.7)

By the symmetry of the stiffness tensor a;;x; and equation (2.5). equation (2.7) is
reduced to a divergence form (Burridge et. al. [BdHMS98]),

HNajuAY AL p)
al'j

By equation (2.5), A(® is a multiple of the normalized eigenvector g of matrix (Cjx)-

= 0. (2.8)

so Al9 = 10g in equation (2.8) leads to

d (a.-jkzg.'gk(A(o))zPI) d (Uj(A(O))z)

dz; - Jdr; =0 (2.9)
where the group (ray) velocity vector v = (v;) is used,
% =vU; = aijugigePi- (2.10)
Finally. the transport equation for the amplitude function is
V- ((A9v) = o. (2.11)

Equation (2.6) is a sextic polynomial equation in the slowness vector p: that is,
the slowness vector p lies on a sextic surface. which consists of three sheets, each

surrounding the origin ( Figure 2.1). To understand this, introduce

pi = — (2.12)
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Figure 2.1 The slowness surface for typical anisotropic media: a
sextic surface which consists of three slowness sheets.

where n = (n;) is the unit normal vector to the wavefront and V" is the normal or

phase speed of the wavefront. Then equation (2.6) yields
det(a,-jk,n,-nl - ""Z(Sjk) = O, (213)

which is a cubic characteristic polynomial equation with respect to V"2, hence it has
three eigenvalues corresponding to a quasi-longitudinal (“quasi-P” or "qP") and two
transverse waves. Moreover, experiment shows that the velocity of the quasi-P wave is
always greater than those of the transverse waves (Fedorov [Fed68], p 95). Hence the
largest eigenvalue of equation (2.13) corresponding to the quasi-P wave propagation
is simple (uniquely defined), and the quasi-P slowness sheet is the innermost one
detached from other two sheets. Furthermore. the quasi-P slowness sheet is convex
by the following simple argument (Musgrave [Mus70], p 92): if the inner detached
slowness sheet is not wholly strict convex, a straight line could intersect the inner

sheet at 4 or more points and yet make at least 4 further intersections with the
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remaining sheets: but any straight line must intersect the slowness surface at only 6
points. real or imaginary because the slowness surface is sextic.
The convexity of quasi-P slowness sheet is essential in constructing the paraxial

approximation for the quasi-P eikonal equation.

2.2 The Paraxial eikonal equation for quasi-P waves

The Christoffel matrix C;x = 3_;;a;jupipi is positive definite and scales as p? = p - p.
Therefore each eigenvalue takes the form v?(x. p)p®. where v is a homogeneous func-
tion of degree zero in p. Because the largest eigenvalue, denoted v;’p(x, P). is simple
(Fedorov [Fed68], p 93), it depends smoothly on the components of the Christoffel

matrix. i.e.. on p and the Hooke tensor. The slowness vector p for which
S(x.p) = Iple,p(x,p) = L. (2.14)

forms the qP slowness surface. and v,p is the qP phase velocity. Note that these

vectors solve the Christoffel equation (2.6).
The P wave eikonal equation results from combining the slowness surface condi-

tion (2.14) with the slowness identity p = Vr:
S(x,Vr)=1. (2.15)
The method of characteristics relates its solution 7 of the slowness surface equa-

tion (2.13) to the rays of geometrical optics, which are the solutions of the ordinary

differential equations

dx

& V,S(x.p), 2.
di VP (Xp) ( 16)
P~ _VSxp), (2.17)

where the homogeneity of the eigenvalue v4p in p is used, so that 7 = ¢ has dimension

of time.
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. . dr
Downgoing rays correspond to the part of the slowness surface on which 73 > 0.
¢
A useful description of this part of the surface follows from its convexity (Musgrave

[Mus70]. p 92). Theorem A.1 shows that

e for each x and horizontal slowness vector (p,, p;). there are at most two choices

of ps for which p = (py. p2. p3) solves slowness surface equation (2.15);

e when two distinct solutions exist, only one satisfies (Figure 2.2)

drz  9JS(x,p)
= .p) > 0.
dt Jdps (x.p) 20

By Definition A.l. this choice defines p3 as a function of x, p;. p:
P3 = H(X,pl,pz), (2'18)

which is also a partial differential equation for 7.

The characteristics (rays) of eikonal equation (2.18) are downgoing. so they can

be parameterized by r3 = = and satisfy

d.’l‘,‘ 3H
oo =12 2.19
drs 3 (2.19)
dr oH oH
L = H-pa— —p 2 2.20
drs Pi ap P2 P ( )
The ray group velocity is
aH\? a9H \?
; \/ﬁ) +(5) +1 (2.21)
’ H(pi.p2) — goip1 — 5%py”
where
oH _ _GiHPIYigk (2.22)
7 as;kpigige’ o
oH __92,uPig;igk (2.23)
Ip2 as;upigige’ o
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Figure 2.2 The p3 components of outward normals at the two
intersections on the convex slowness surface have opposite signs.

with g; the eigenvector corresponding to v,p: the Einstein summation convention is
assumed in equations (2.22) and (2.23).

However. neither the partial differential equation (2.18) nor its rays are well-
defined for all p;.p.. To remedy this defect. by Theorem A.3. I introduce another
family of Hamiltonian functions Hy (Definition A.2 and A.3). each of which is iden-
tical to A along “safely downgoing™ rays and defined everywhere in phase space. It
is convenient to parametrize the horizontal variables (p;,p2) by polar coordinates:
(p1.p2) = (pcos @, psing). Corollary A.l says that for each planar angle ¢, the
family of planes perpendicular to (cos @,sin @,0) is tangent to the slowness surface
at exactly one point (Pmax(®)cos @, pmax(@) sin @, p3(¢)). By Definition A.3, choose
0 <A<, for d,p < (1 = A)pmax(@). set Ha(pcos @, psinod) = H(pcos ¢.psin @);
this is the unique root of § = 1 with p3 > p3(@); for 90.p > (I — A)pmax(®). set

Ha(pcoso.psin @) = H((1 — A)pmax(@) cos @, (1 — A)pmax(@) sin ¢). By construction,
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rays of H, are rays of H. and hence of the anisotropic elastic model. so long as their
horizontal slowness components (pcos ¢. psin o) satisfy p < (1 — A)pmax(0).
By convexity of quasi-P slowness surface and Corollary A.2. the ray angle ¢ with

the vertical axis stays safely away from 90 degrees:

(] -G)

tan @ = ‘0_1_3
aT
8HA)2 (aHA) ? 1
\] ( dp: dp: (A) ( )
Numerical algorithms for the paraxial eikonal equation
ar Jr Ot
LA TN R an 2.25
61‘3 HA (x 31’1 ‘ 01:2) ' ( ))

require explicit bounds on tan ¢». Because of the convexity of the slowness surface.
[ need only look for these at the boundary of the region where Hy = H. i.e.. where

P = (1 — A)pmax(@). Since H, is radially constant outside this region, the required
OH, 0H,
dp1 *~ 9p2
{p = (1 — A)pmax(®)}. The solution of the paraxial eikonal equation is the same

bound is simply the maximum length of the 2-vector ( ) over the set
as the solution of the original eikonal equation so long as the horizontal slowness
components (pcos @, psin @) satisfy p < (1 — A)pmax(D)-

In Chapter 3 I will develop numerical algorithms for the construction of the parax-

ial Hamiltonian in general anisotropic solids.

2.3 Quasi-P wave amplitudes in Cartesian coordinates

If rays start from the point source, the amplitude A = A satisfies that (Burridge

et. al. [BAHMS98]. de Hoop and Bleistein [dHB97])

I
A = — 2.26
R S LV (2:26)




with

dW(x.s)|x

5 (2.27)

M = |e(s)|V(x)

Here V'(x) is the qP phase velocity at x: dS(s) and dW(x. s) are surface area elements
of the slowness surface 2 at s and the wavefront " at x, respectively. The mapping
from Q(s) to W(x.s) is defined by integrating the ray-tracing equations from (s, p(0))
at 7 =0to (X.p(7)) at 7 = 7(x.s). where p(7) is the slowness vector. For the source
s fixed. X varies on W (x.s) as p(0) varies on Q(s), and X(7(x.s)) = x for some p(0)
on ((s).

To expedite the numerical implementation. [ introduce the so-called ray coordi-
nates 7.q.q.. where ¢, and ¢, are the ray parameters of the ray. In the case of a
point source. ¢, and g2 can be taken as take-off angles of the ray at the source. ¢; and
q> characterize the given ray, and 7 characterizes the position of the point on the ray.

7. q. and ¢, can be considered the curvilinear coordinates on the wavefront: that is,

r; = zi(7T.q1, q2)- (2.28)
Also. ¢, and ¢ parametrize the slowness surface Q(s),
pi = pi(qi.q2). 1 =1,2,3, (2.29)

for P = (plep'lap:i) on Q(S)-

By ray coordinates, the surface area elements on the wavefront and slowness sur-

face are. respectively,

ox Ix
dW(x,s) = |— x —|dq,d 2.30
(x,s) 20, < 9q,| {0122 (2.30)
and
dp OJp
dS = |— x —|dqdq,. 2.31
)aql X aq2 qQaq2 ( )




So finally I have

dx dx

—— x —
I Iq2|, (2.32)

dp ap| o
0% 0‘12 s

M = Ju(s)|V(x)

Because [ want to compute the amplitude by finite-difference methods in Cartesian

coordinates rather than in ray coordinates. [ have to reformulate the amplitude for-

mula in Cartesian coordinates.

To do so. note that the Jacobian from ray coordinates (7.q;.q2) to Cartesian

coordinates satisfies that

d(x)

Jgx (oJx Ox
A |l X5 2.33
NT.q1-q2) ar (dql 0q2) ( )
IOx Ox
= WV(x)|— X — 2.34
) Iq 0‘12 ( )
then it follows that
. -1
ox  Ox 1 (0(f,q1,qz)> (2.35)
dq1  Oq2 Vi(x) d(x)
1 1
= — 2.36
Vi(x)|Vr- (Vg x V)l ( )
where V is the gradient operator with respect to x. Therefore.
A(xis) = R(q(x:s),@(x:s)) (IV7- (Vg x Vga)|)? (2.37)

where the anisotropic radiation pattern is

| (I dp Op
- X
4r (p(s)p(x)|v(s)))? \|9q ~ Og2

)5. (2.38)

In the above formula. the traveltime 7 comes from the finite-difference solution

R (qi(x;s). g2(x;8)) =

of the paraxial eikonal equation introduced in the last section. Now [ will derive two
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new advection equations to compute Vq; and V¢,. Because along a ray the two ray

parameters are constant. the derivatives of ¢; and ¢, with respect to T vanish,

dqi _ 9q Jdz, 4 dq 0z, + dq, Oz3

= = 0. 2.3¢
dt dry, 0r Jz, Ot  Ox3 OT (2:39)
d dq, 0 dq, 0 dq, 0
492 _ 992 .1‘1 + ‘Qz .12 + .(12 -fs - 0. (2.40)
dr dry, 0r Oxry Or  Oz; OT
Once the traveltime 7 is known. v; = ()—1:(1 = 1.2.3) can be computed from the ray
equations,
al',' or
Yo == —— = AL e, 2.4
V= gy = Gumgkg; 5 (2.41)

Therefore. equations (2.39) and (2.40) are advection equations in Cartesian coordi-

nates for the two ray parameters ¢q; and gs.

0ql aql dql
N , . — 0. 2.42
"o T8z, T o5, 0. (242)
3‘1’2 qz dq2
v ; =0. 2.4
) 9z, + ”azz + L3axa (2.43)

Because the paraxial eikonal equation characterizes the traveltime along down-
going rays, vz always has a positive lower bound; therefore, I can have evolution

equations in depth direction z3 = = for the two ray parameters,

d 7] 2 O
Ch __ 7 29 (2.44)
01’3 Ug 0:1:1 U3 31‘2
- a ,
92 _ _ndn _v0n (2.45)
dzs vadx, vz 0Ts
. . d (
To finish the amplitude computation I still need to compute % and —0£ Because
1 q2

the quasi-P slowness surface is convex, the mapping from the slowness vector to the
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group velocity vector is one to one: therefore. p is uniquely determined from known ¢
and ¢;. Because the mapping from the slowness vector to the ray direction is explicit.

I can solve a nonlinear system to obtain p° from known ¢ and ¢ at a point x.

q(p1-p2. Ha(x.p1.p2)) = 4qf. (2.46)

g2 (p1-p2- Ha(x.p1.p2)) = 4¢3 (2.47)

for example. Newton method can solve this system effectively (Dennis and Schnabel

IDS83]). Later [ will design an algorithm to solve this nonlinear system.

2.4 Final words

The geometrical optics term was first derived from the reduced wave equation in
the frequency domain by Sommerfeld and Runge in 1916, and it was intended to
provide an asymptotic approximation to the exact solution of the wave equation
(Keller and Lewis [KL93]). In this chapter. the term is derived in the temporal
domain by applying the progressing wave expansion (Courant and Hilbert [CH62]) to
the wave equation: the latter approach is equivalent to the former after the Fourier
transform. However, a question remains to be answered: assuming that the solution
of the wave equation exists and is unique, is the constructed “asymptotic expansion”
indeed the asymptotic expansion of the exact solution? The modern theory of linear
partial differential equations has proved that the answer is true for large classes of
problems. and the proofs have required new concepts and techniques such as Fourier
Intergral Operators, wave front sets (Keller and Lewis [KL935], Taylor [Tay96]).

The solution of the eikonal equation (2.6) can be understood as a geodesic on a
region with a general Riemannian metric (Taylor [Tay96]). These equations appear in

a variety of applications, including problems in shape offsetting, shape-from-shading,



optimal path planning around obstacles and computer vision: see Sethian [Set99a] for
an excellent review.

In anticipation of the subsequent algorithm development for computing paraxial
Hamiltonians. a few more comments are in order.

First of all. the group (ray) velocity direction coincides with the energy flux direc-
tion ( Musgrave [Mus70]), which is essential in extrapolating the traveltime field by
finite-difference schemes. In isotropic solids, the group velocity direction is the same
as the wave front normal which appears in the eikonal equation explicitly, so the
energy flux direction can be easily determined in order to extrapolate the traveltime
field. However. in anisotropic solids the situation is completely different as shown
in this chapter. Consequently. [ have to incorporate the information of the group
velocity direction into the paraxial Hamiltonian by some strategy. Naturally. at the
outset [ imposed an explicit aperture limitation on the group velocity vector, and this
limitation in turn implied an implicit restriction on the slowness vector. However.
the mapping from the group velocity vector to the slowness vector is implicit and the
only readily available information is the slowness vector, so the explicit limitation on
the group velocity vector cannot give rise to an efficient algorithm for the paraxial
Hamiltonian. Thanks to the strict convexity of the slowness surface, the explicit lim-
itation on the slowness surface as done here also implies an implicit one on the group
velocity vector. Therefore, this way leads to an efficient algorithm, and the resultant

Hamiltonian has a built-in reliable indicator of the group velocity direction.
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Chapter 3

Geometrical Optics for Quasi-P Waves: Methods

In Chapter 2 I presented the theoretical formulation of paraxial eikonal equations
for traveltimes and related advection equations for amplitudes. However. due to the
complexity of wave propagations in anisotropic solids, in general it is difficult to find
an explicit form of the paraxial Hamiltonian. Therefore [ have devised some numerical
algorithms for computing the paraxial Hamiltonian. Since the theoretical results
proved in Appendix A are constructive, the design of the algorithms basically follows
those constructions. As a by-product, an algorithm is also designed for initializing
the traveltime in finite-difference schemes. Once the paraxial Hamiltonian is in place,
I can use upwind finite-difference schemes to solve the paraxial eikonal equation. To
motivate the design of the finite-difference schemes. I present a new derivation of a
first-order Godunov's scheme. In addition, high-order schemes can be constructed by

using this first-order scheme as a building block.

3.1 Algorithms for computing paraxial Hamiltonian H,

The slowness surface equation (2.6) is a sextic polynomial equation in p;(: = 1,2.3).
which characterizes three wave modes; that is, the slowness surface is sextic and con-
sists of three sheets. The innermost sheet is convex and corresponds to the quasi-P
wave mode. By introducing the planar polar coordinates. [ have transformed this sex-
tic polynomial equation into a sextic polynomial equation in p and p; for each planar
angle o: hence | now have a two-dimensional problem to deal with. In the following
development of algorithms, I will concentrate on the numerical construction of the

paraxial quasi-P Hamiltonian for the two-dimensional general anisotropic media.



Suppose that the two-dimensional slowness surface is given by
F(P1~P3) = 07 (31)

where F' is a sextic or quartic polynomial in p; and p3. respectively. The sextic case
corresponds to three wave modes coupled, namely. quasi-P and two transverse waves
(see Figure 2.1). The quartic case corresponds to two wave modes coupled. namely.
quasi-P and one transverse wave modes (see Figure 3.1). Specifically. in this section
I assume that F is a sextic polynomial in p, and ps: the quartic case can be treated
similarly.

For arbitrary pj there are four possiblities for the roots ps of sextic polynomial
equation F(p7,p3) =0: (1) no real roots at all; (2) two real roots; (3) four real roots:
(4) six real roots; see Figure 2.1. [ am especially interested in case (4) since this case
means that among the six roots there are two roots corresponding to the quasi-P
wave. Because the quasi-P slowness surface is convex. separated from and nested
inside other two ovoid surfaces, the straight line p, = p] has two intersection points
with the quasi-P slowness surface if p;y = p] belongs to the quasi-P slowness surface.
Since the origin (p,.p3) = (0.0) is in the domain enclosed by the quasi-P slowness
surface, p{ can be chosen small enough to guarantee that the straight line p, = p}
has six real intersection points with the slowness surface F(p,.p3) = 0. among which
two intersection points are on the quasi-P slowness surface. The six real roots can be
sorted into ascending order; moreover, the third and fourth roots correspond to the
two intersection points with the quasi-P slowness surface, denoted as p3® and pd". 1

use Algorithm 3.1 to find (p, p3°) and (p], p3"):

Algorithm 3.1

e Input: a (0 < @ < 1), 0 = 0.0000001 and a quasi-P slowness vector

with first component p{ nonzero.
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Figure 3.1 The decoupled slowness surface for typical anisotropic
media: a quartic surface which consists of two slowness sheets.

e Set pj = pj.

e Set the norm of imaginary parts of roots: norm_imag_.p3 = 10.0.
e While norm_imag_p; > o do
— pi & api:
— root_ps « all roots of F(p}.ps) = 0.0.
— norm_imag_p3 <— Norm of imaginary parts of root_ps.
e Sort the roots in ascending order: root_p; « sort(root_p3).
e Output: pj,

— if F is sextic: p3P « root_p3(4), p3" « root_ps(3).
3

— if F is quartic: p3® < root_p3(3), pd® « root_p3(2).

Because the quasi-P slowness surface is strictly convex and closed, there are two
. . oF . .
extreme points at which F' = 0 and I = 0. To locate such points. as shown in
P3
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Appendix A. I need two pairs of intersection points (p;. p3") and (pj.p3®). which can
be produced by Algorithm 3.1 with p? chosen as positive and negative. respectively.

Assuming that (p}, p3") and (p}.ps°) are known on the quasi-P slowness surface.

[ can find on the quasi-P slowness surface a point (p". pT') at which a—(p’l"

P3

.p3) =0.

and Algorithm 3.2 achieves this goal.

Algorithm 3.2

e [nput: p;. p3". p5P and o = 0.00001.

. oF
e Set p3 « p3°. pb < p* and — « 100.

dps

e Compute: p§ « %(p% + pb).

e \While -()—[:—‘ > o do
dps

— root_p, < all roots of F(p;.pS) = 0.0.
— Sort the roots in ascending order: root_p, < sort(root_p,).
— If F is sextic:
* [f pi > 0. then p{ < root_p,(4); else p{ « root_p,(3): end.
— If F is quartic:
* If p; > 0, then p{ « root_p,(3); else p§ « root_p(2); end.

. oF ¢ .
— Compute 5; at (p{.p5)

JF
- If g— > o; then p§ « pS, pS « 0.5(p3 + pB); end.
P3
oF . b
- If Er < —o; then p§ « p§. p§ « 0.5(p3 + p3): end.
P3

e Output: pT « p{ and pT « pS.

Algorithm 3.2 is a bisection method for the root of a monotonic function (the first-

order derivative of a convex function), so it has only linear convergence; nevertheless.
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in practice it converges very fast. To obtain quadratic convergence for the root of the
first-order derivative induced equation. I have to use the information of the second-
order derivative. Therefore, I embed Newton's method into the algorithm. and the

algorithm reads:

Algorithm 3.3

e Input: p;. pd". p3® and o = 0.00001.

oF

e Set p3 « pi®. p2 « pd" and — « 100.
dps

e Compute: p§ « 1(p3 + p§).

While > o do

0])3

— root_p; « all roots of F(py,p5) = 0.0.

Sort the roots in ascending order: root_p; « sort(root_p;).
— If F is sextic:

* If p; > 0. then p{ « root_p,(4): else p{ « root_p;(3); end.
— If F is quartic:

* If p{ > 0, then p{ « root_p,(3); else p « root_p;(2): end.

. ( d*F
- Compute -0; and 0—p§ at (p}.p5)
e e (PF L oF

P3 P3 apg aPS

e Output: pP" « p{ and pF* « pS.

Once the two extreme points are located by Algorithm 3.2 or Algorithm 3.3,

Algorithm 3.4 yields paraxial Hamiltonian Ha,.

Algorithm 3.4

e Input: A (0< A < 1), pf. p; and p,.
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o Set pi « (1 —A)py: pit « (1 —A)pt.

o If pit < p; < pft. then py = pi.
o If p; < p't. then p; = pit.
o If py > p*. then p; = pi*.
® root_py «— all roots of F(p;,p3) = 0.0.
e Sort the roots in ascending order: root_p; < sort(root_p3).
e Pick out the one for downgoing qP wave:
— if F is sextic: p3z « root_p;(4).

— if F is quartic: p3 < root_p3(3).

Output: Ha(pr) « p3.

Supposing that [ have two extreme points (pf.p¥) and (py.p3). where F = 0 and
oF
dps
points correspond to the rays which point to the horizontal directions (positive or

= 0. the ray tracing equation says that the outward normals at these two extreme

negative, respectively):

dr, OF OF\~' 9F
dar (p‘3p1+p36p3) apy’
drs OF IF\ "' oF
P (pl@px+p33m) dps’
dp, oF AF\~"' OF
dps OF OF\~"' oF
a —(Pla—g-i-mﬂ) e

(3.2)

Once realizing this, I can design a shooting method to compute the traveltime

from the source point to a specific point in homogeneous anisotropic media. Since
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the group angle is known. the goal is to find the corresponding slowness vector to

give the correct group angle. The resultant algorithm follows.

Algorithm 3.5

o Input: (r}.2}). (£9.27). (p{.p7) and (pr.p3)-
e Set p? « pi and p® « pf.

o Compute: pj « 3(p} + pP).

r{ —r}
V(Eg— 22 + (13— 23)?
While p? < p§ and p$ < pb, do

Compute: gcos

— root_p3 « all roots of F(p{,ps) = 0.0.
— Sort the roots in ascending order: root_ps < sort(root_p3).
— Pick out the one for downgoing qP wave:
* if F is sextic: p§ < root_p;(4).
* if F'is quartic: p§ < root_ps3(3).
— Compute the group velocity vector at (p, pS):

o ( OF ap)“ 13
s = Plapl p33p3 ap
( OF ap)" AF

v3 —
Y P dpy + p33p3 dp3
pl
— Compute: gvel « 2 .
\/(05)2 + (v3)?

— If gvel > gcos, then p} « pf and p§ « 0.5(p} + p}); else p} « pS
and p§ « 0.5(p* + pb).
V(@s —21)2 + (2§ — 23)?
JeEr+ e

e Compute traveltime: t =
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Once again. Algorithm 3.5 is a bisection method which has only linear convergence:
however. unlike Algorithm 3.2, it is not entirely straightforward to embed Newton's
method into this algorithm. since the mapping from the group angle to the phase
angle is not explicit.

Note: Because the take-off angle is the same as the group angle in the homoge-
neous media. with a few changes Algorithm 3.5 can be modified to solve the nonlinear

svstem (2.46) and (2.47) to obtain the quantity needed in the amplitude computation.

3.2 A new derivation of a first-order Godunov scheme

Equation (2.23) is a nonlinear first-order PDE for traveltime 7. However. traveltime
is not unique: when the elastic parameters vary with position. in general many rays
pass over at least some points in the subsurface. More than one traveltime may be
assigned to each such point. One choice of unique traveltime for each subsurface point
is the least time (“first arrival time™). It turns out that this first arrival time field
is a solution of the eikonal equation (in a generalized sense). These assertions were
established some time ago (Lions [Lio82]) for isotropic problems, and I surmise that
they apply as well to anisotropic problems with a convex slowness surface.

To compute the first-arrival traveltime field by grid-based finite difference schemes,
I derive a first-order scheme from ray tracing rather than directly from the eikonal
equation. Nonetheless, the end result will be recognizable as a difference approx-
imation to the eikonal equation. Because the use of ray tracing in the derivation
inherently honors causality, the resulting difference scheme is upwind, a term more or
less synonymous with causality in this setting. [ consider the two-dimensional case to
illustrate the idea, which means all out-of-plane components vanish in the equations
formulated for 3-D media and all rays stay in the z,z3 plane. The three-dimensional

case is similar.
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The first-order finite difference approximation to the qP eikonal equation rests on

several approximations; that is, [ may approximate locally near a grid point:

1. the group velocity v, by a constant:

[

. the rays by straight line segments:
3. the traveltime by piecewise linear functions of z, with nodes at the grid ponit.
Given a Cartesian grid (mAurx,.nAur;) in two-dimensional space. Figure 3.2, let

T = T(mMmAr;.nArs), (3.3)

m

be the grid function approximating the traveltime. Near (mAur,.nAz3). [ define the
approximation of derivative 7., at (r;,nAr3) by

n _ .n

Dimh = L——m—_l for (m — 1)Azr; < r; < mAr, .
TS L (3.4)
Dfrn = ol M for mAzT < oy < (m o+ 1)Azg:
Al‘l
the group velocity is given by
\/ %(Di-n))2+l
vE = Ipy n'm (3 5)
¢ = H(DErp) - ZL(DErp)DE

A ray segment meeting the line r3 = nAx; at r, and passing through (mAz,.(n+

1)Ar3) has length

—_— /\ 2
L = Aq;s\j]_.}r (ﬂ_ﬂ) , (3.6)
A.l‘;;

so that the time predicted at (mAz;,(n + 1)Ax3) under the foregoing assumption is

L
™+ (z) —mA:L'l)D;*'lT,',‘1+—+ for mAz, <, <(m+1)Azx,,
n+l [ g -
Fitl 7 (3.7)
Tm + (1 — mAz)D; 7+ — for (m — 1)Ax, <1y < mAx,.
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m-1 m m+1 01

Figure 3.2 Cartesian grid : a possible ray hitting point A

Finally. the ray velocity vector should obey the ray equation (2.19).

oH , .
_.l'l—nlA.l‘[ =d.l‘| - dp (Drl m) for mA-TlSIlS(m'{"l)AIIe(:}S)
Ars drj _Qﬁ([);,—;) for (m — A, < 1y < mAr,.
dp
i.e..
Al‘:;—(D:l ) for mAr, <z <(m+1)Ar, .

L —mAr = Iy (3.9)

A.rgd (D7,mh) for (m —1)Ar <z, < mAr,.
Substituting expression (3.9) into (3.7) and carrying out the algebra, I arrive at
noy + on , N
T;H _ T + AxzH (DI Tm) for mAzr, <z < (m+ 1)Az, , (3.10)
T+ ArsH (Drl Tm) for (m — 1)Az, <, < mAz,.

where r, is chosen to satisfy (3.8) if possible.

Next I have to examine the significance of the condition switching the branches
of (3.10). If mAr, <z, < (m + 1)Ax,, i.e.. the ray slope is nonpositive. it follows
from (3.8) that

OH

+ E
o == (Drr*) > o. (3.11)

ry'm



Similarly. the second branch occurs when

—.aH(D;T,Z) < o (3.12)
()Px
When neither of these occur, i.e..
o by < 0< P pg ). (3.13)
Ip, ' dp '

rays fan away from (mAx, nAr3); that is, this point is a center of rarefaction. Then

to good approximation. the ray entering (mAx;.(n + 1)Azj3) is vertical: i.e. along it

oH
— = 0. 3.14
7/ ( )
Finallyv. if both conditions are satisfied. i.e.,
—dH(DflT,'l) > 0> —QH(D;TZL (3.15)
dm dp1

then two rays converge on (mAx;.(n + 1)Ar;). and I should select the least of the
two times provided by (3.10).
Because the Hamiltonian H is concave (Appendix A), all four of these options can

be combined in the simple formula

Tt = P 4 AxH (maxmod(max(D; 72.0), min(D} 7 0))) . (3.16)

m ry m?*

where the function maxmod returns the larger value in modulus.

The scheme just proposed is identical to the so-called Godunov first-order scheme;
see Osher and Sethian [OS88] and Osher and Shu [OS91]. The problem I have solved
to obtain this scheme is the so-called Riemann problem for the eikonal equation. in
which the initial traveltime data are piecewise linear.

There remains one further detail to take care of: the approximate ray might meet

r3 = nAr; outside the interval (m — 1)Ar; < z, < (m + 1)Ar,. The difference
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scheme (3.16) would necessarily become unstable. as the numerical domain of depen-
dence of (mAxr.(n + 1)Ar3) (namely. the three points on r3 = nAr; in the scheme
(3.16)) would no longer contain in its convex hull the continuum domain of depen-
dence {r}. In order that this Courant-Friedrichs-Lewy (“CFL”) criterion be satisfied

with certainty. I limit the slope of ray:

max{ oH (D%, 72)]|-

Ip
By Definition A.3 of H,. for given \ > 0, there exists pya. such that

Al’]
< . 317
} - A.L';; (31‘)

S (Dm72)

H(Pl)-. lfpl<(1— )pmax
Ha(p1) = (3.18)
H ((1 — A)pmax) - else.
Furthermore. by Corollary A.2 I need to choose just A > 0 such that
Al’[ 1
—). 3.19
=z o3 (3.19)

Then I can find pmax needed in the defintion of H5 (see Definition A.3). Finally, the

resulting difference scheme is
Tt = 72+ ArzHa (maxmod(max( D, 73.0). min( D7, 72.0))) . (3.20)
which is consistent with the paraxial eikonal equation

p3 = Ha(p). (3.21)

Solutions of (3.21) are identical to solutions of the eikonal equation at points whose

. Az . .
associated rays make angle < ¢ = arct::m(A l) with the vertical (z; = constant)
I3
throughout their length. (For the point source problem, the associated ray is the first-
arriving ray connecting the subsurface point with the source point). Thus with this

paraxial limitation, the scheme is suitable for computing the traveltime of downgoing

ray fans.



3.3 ENO and WENO schemes

To compute the first-arrival traveltime field by a grid-based finite difference scheme.
in the last section I derived a first-order upwind scheme from ray tracing rather than
directly from the eikonal equation. However. because the amplitude involved in the
geometrical optics term is related to the second-order derivatives of traveltimes. a
first-order accurate amplitude field requires a third-order accurate traveltime field. It
is necessary to construct high-order accurate finite-difference schemes. In this section
I will use the first-order scheme as a building block to design high-order schemes.

To increase the order of convergence of finite-difference schemes. [ employ higher-
order Essentially NonOscillatory (ENO) and Weighted ENO (WENO) refinements.
ENO schemes were introduced by Osher and Sethian [{OS88] and Osher and Shu
[0S91] for solving Hamilton-Jacobi equations. WENO schemes were first proposed
by Liu et. al. [LOC94] to overcome the drawbacks of ENO’s. Jiang and Peng [JP97]
made further improvements and extensions for Hamilton-Jacobi equations. Because
WENO schemes are extensions of ENO schemes. I will present second- and third-order
ENO schemes first.

Given mesh sizes Ar;, Az, and Ar;, denote T & as the numerical approximation
to the viscosity solution 7(z7*, x5, r2) of equation (2.25) at the grid point (r}*, r%, r?).
Define the backward (—) and forward (+) first-order difference quotient approxima-
tions to the left and right derivatives of 7(z, 2, z3) at the location (z]*, z%. z}) with

respect to r, and z, as

Dt i”,ﬁﬂ.k = Tk Dt 4 Tkl — Tk (3.22)
Iy mL Al‘[ H r2 ml. A-’L’g . -

The second-order and third-order ENO refinements of DE 7% ; (Osher and Sethian
[OS88]) are

Di*rne = DimniF5 Axl m(DE D72 . DI D th ). (3.23)



DEP5r . = —émxl) m(D% DE DE % .. Df D} D7 7% . DY D7 D772 )
+ Dfl-'l TR (3.24)
where
m(r.y) = min(max(r.0),max(y.0)) + max (min(z.0),min(y,0)).

ENO refinements for DZ 77, ;. are defined similarly.

The upwind jth order ENO approximations for i and i are
dr, or,
D-’ 7 = modmax(max( D’ 7,0), min(D}7.0)), (3.25)
D:,r = modmax(max( D7’ . 0). min( D}7.0)). (3.26)

where the modmax function returns the larger value in modulus.

The second-order and third-order ENO Runge-Kutta steps are

& = AiHy (D2, 7. D%r).

§r = é(;,—+Ax§"HA (DZ,(7 + 647). D2 (7 + 817))) (3.27)
and

sr = AzH, (D2, 7. D7),

Br = 1 (8 + AafHa (B2, (7 +8r). Dy + 847))

Br = %(25§T+25$§ﬂ[{;\ (D2, (+ + 82r). D2, (7 + 827))) .

—
(V]
h
[N
o

e

The depth step AzSP must satisfy the stability condition

AHA\?® [0H5\? Ar, Az,
AV 3 —_— < . 3.29
Z3 (E“%‘J ( o ) + ( 3ps ) | = VA2t Ang? (3.29)

with the maximum taken over the relevant range of p; and p,. Since H, is concave

(Appendix A). inequality (3.29) reduces to

Ay max o e I )
{(P5.p5):0< o <27} \\ Im 9p VAzZ 2+ Azy?
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where (p5.p5) = (1 — X)pmax(0) €05 0. (1 — A)pmax(0) sin o).

The jth-order scheme is then
R A (3.31)

forn =0.1.2.---.

In the upwind framework. second-order ENO schemes are total variation dimin-
ishing (TVD): hence they have at least subsequences which converge to weak so-
lutions (Shu [Shu97]. LeVeque [LeV90]). There is no known convergence result for
ENO schemes of order higher than two. even for smooth solutions (Shu [Shu97]).
However. Jiang and Shu [JS96] proved that WENO schemes converge for smooth
solutions. In practice. | have observed that the gradient of the take-off angle based
on the third-order ENO traveltime is too noisy to lead to an accurate amplitude
field: see Chapter 5. To alleviate this phenomenon. instead of ENO third-order re-
finements, [ use WENO third-order refinement (Jiang and Peng [JP97]) in the third-
order Runge-Kutta step for traveltimes and WENO second-order refinement (Jiang
and Peng [JP97]) in the Runge-Kutta step for take-off angles, which yield an accu-
rate amplitude field (see Chapter 5). To be complete, I present the second- and third-
order WENO schemes in the following.

The WENO second-order schemes for DZ 7, « are (Jiang and Peng [JP97])

DN 27 = é(D;ﬁ Tm—tk + D Tmi) — “_T“( D} Tz — 2D} T_i ke + DF T k).
Djlw‘sz.k = %(D; Tm—tk + Df T i) — EU_Zi(D;_*‘l Tmstrk — 2DF T + DF, Tm_1 k).
where
- - 2
e A £ v (322
+ D+ 2
“STEED TR BbRe .
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The WENO third-order schemes for D 7« are (Jiang and Peng [JP97])

- 1
+W.3_ _ + -+ -+ + _
DEYrmi = T3 (=Df Tmesi + DX et + TDF Tk = D, Tms1i)

WENO - N+ - - N+ - N+ - N+
+ Arnd (D, Df, 7ms2k: D7, D}, Tmz1 k- D7, D}, Tk D7, DY, T i) -

where
WENO 1 : 1 1 .
] (a.b.c.d) = :}-wo(a —2b+c)+é-(w2 — ;)(b—lc-{-d)
with weights defined as
Qg (8 )]
We = —————— Wy = ————————,
ao + a, + a3 ag + a; + a3
l 1 l

TN AR T W NTAL I RN B34
Bo = 13(a —b)® +3(a — 3b)°,
31 = 13(b—c)>+3(b+c)?

32 = 13(c—d)? +3(3c — d)>.

In the denominators of equations (3.32), (3.33) and (3.34). the small positive
number ¢ is added to avoid dividing by zero. The WENO second- and third- order

schemes for sz Tm.k are defined similarly.

3.4 Closing remarks

The algorithms developed in Section 3.1 depend upon an efficient polynomial root
finder: in the current implementation the root finder in MATLAB™! has been used
to find all the roots. In practice, the problem of finding all the roots of a polynomial
equation may be turned into an eigenvalue problem, and plenty of algorithms are
available to solve the eigenvalue problem (Golub and Van Loan [GVL96]). On the

other hand, since all the roots need to be found at every grid point, a highly efficient
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root finder is required in practice. Because the traveltime field is mostly smooth.
the slowness vector (the gradient of traveltimes) behaves similarly: it follows that
the slowness vector at grid point (r;.r3) should provide good estimates for those at
neighbors (r; + Ar,,z3 = Ar3). Therefore, a Newton-like method could use roots
at (ry.r3) as very good initial estimates for roots at (r; £ Axy..r3 £ Arz). This is
a possible approach to constructing an efficient root finder; however, [ leave it as a
future topic because the current goal is to verify the feasibility of the formulation of
the paraxial eikonal equations.

The derivation of a first-order Godunov scheme serves as a tutorial on how the
upwind finite-difference scheme works and illustrates how the aperture limitation
comes into play in the evolution step.

ENO schemes were initially developed for hyperbolic conservation laws (Harten
et. al. [HEOCS7]) and later were extended to solve Hamilton-Jacobi equations
(Osher and Sethian [OSS88]. Osher and Shu [0S91]). WENO schemes were devel-
oped for hyperbolic conservation laws, using a convex combination of all candidate
stencils instead of just one as in the original ENO (Liu et. al. [LOC94]); then Jiang
and Shu [JS96] implemented WENO schemes efficiently for hyperbolic conservation
laws. Later they were extended to solve Hamilton-Jacobi equations (Jiang and Peng
[JP97]). WENO schemes behave like central-difference schemes in regions where the
solution is smooth and emulate ENO schemes near the singularities of the solution.
Then the problem is whether the central-difference scheme applies to solving the
paraxial eikonal equation. Lin and Tadmor [LT98] developed a second-order central
Godunov-type scheme for Hamilton-Jacobi equations and presented some numerical
results. However, on the one hand, there is no numerical result for using central-
difference schemes reported on the eikonal equation with a point source; on the other

hand. the amplitude computation needs a third-order finite-difference scheme. These
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considerations lead to my use of ENO/WENO schemes in the subsequent numerical

computations.



Chapter 4

Eikonal Solvers for Transversely Isotropic Solids

In Chapter 3 [ developed some numerical algorithms for solving the paraxial eikonal
equation in general anisotropic solids. In this Chapter I will apply those numerical al-
gorithms to transversely isotropic solids so as to verify the feasiblity of the algorithms
and the convergence order of finite-difference schemes.

Although a general anisotropic solid has 21 independent elastic parameters. the
transversely isotropic (TI) solid has only five independent elastic parameters. But it
has. nevertheless. the essential anisotropic features that [ want to capture; therefore.
it is convenient to use TI solids as models to illustrate how the approaches work. In
the first place I will consider the simplest case for Tl solids. i.e.. TI solids with vertical
symmetry axes. Then I will construct inclined TI models by rotating VTI models.
Because the slowness surface equation for the inclined TI model is a sextic polynomial
equation which has the essential features of a general sextic slowness surface and
admits no explicit solutions. it is suitable to use the model to test the proposed
algorithms. Extensive numerical experiments show that the proposed algorithms are

accurate and efficient.

4.1 The paraxial Hamiltonian for VTI solids: simplified

The elastic modulus matrix for transversely isotropic media with vertical symme-
try axes (VTI) has five independent components among twelve nonzero components
(Musgrave [Mus70], Thomsen [Tho86]). A closed form solution exists in this case for
the eigenvalue problem (2.6). The quasi-P and quasi-SV slowness surface for VTI

can be represented as a quartic polynomial equation (where the quasi-SH slowness
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surface is decoupled from the whole slowness surface).

G(pi.ps) = apl+cpips +capy +capl +esp3 +1 =0, (4.1)
where
1 = a11Q44. (4.2)
C; = apaas+ ady — (a3 + aqg)’. (4.3)
C3 = Qa33dyy. (4.4)
¢y = —(an + agy). (4.5)
c; = —((133 + (144). (4.6)

In the above formulae. the Voigt recipe is assumed to simplify the elasticity tensor
aijri to obtain a;; (Thomsen [Tho86]).

Consequently. the slowness surface for the quasi-P wave can be simplified as

- ')c
S < P2. = 2 — — = 0. 4.7
(P1:p2. p3) P3 b+ Vb? — dac : (4.7)
where

a = agﬁg, (4.8)

2

«Q
b = 20333(1+6+(e—6)§§)(pf+p§)—a§—ﬂ§, (4.9)
¢ = ((1+2€)aj(p + p3) ~ 1)(B5(p} +p3) — 1). (4.10)

Thomsen’s parameters ([Tho86]) involved in the above coefficients are defined by

ag = /d3z3.
3o = Aag,
a;; — ass (4.11)
€E = —,
2a33
5§ = (@13 + aq4)? — (asz — aq4)?

2a33(azz — aqy)



where ag and Jy are the vertical sound speeds for qP and S waves: € and ¢ are two
measures of anisotropy.
Although S is different from S, they are equivalent in the sense that they charac-
terize the same P slowness surface. Clearly.
as

. = 2p3>0 (4.12)
Ips

2c
= > 0. 4.13
Ps \/—b + V6% — dac ( )

So the qP eikonal equation for VTI is

H \/ 2c
Pz = (p1-p2) = _b+m.

To obtain the paraxial Hamiltonian. I need to consider only the case of radial angle

(4.14)

o = 0 in the horizontal slowness space because of the rotational symmetry about the

vertical axis. First note that for VTI media, I have

2 2 sin § s
VPt +p2 oap(0) (4.15)

cos @
= . 4.16
P3 oo (0) (4.16)
where 0 is the phase angle with the vertical direction. v,p(8) is the qP phase velocity

as
= 2p3; = 0, p3 has to be zero. hence the

for phase angle §. Secondly, to make

. It follows that

poas(®) = (VoI+R) =— (4.17)

max UqP(%).

phase angle § =

tof =)

Thus

1—A
H(Phpz)sp=\/Pf+P§S'(—£—l;
Ha(piop2) = vap(3) (4.18)
alpPip2) = ((1—A)cos¢> (I—A)siné) )
H . else.

vr(3) T ue(3)




46

Next I want to simplify the above Hamiltonian. For 0 < A < 1. [ apply

iné T
Intermediate Value Theorem to function f(8) = SM®_in interval [0. ;]: then there
vep 2
exists 0 < Omax < 5 such that
1 omax 1-A
St %max (__r) (4.19)
qu(gmax) qu( E)

Substitute the above relation into paraxial Hamiltonian (4.18) and combine two

branch statements into one. and | have

(4.20)

H,,..( ) ( - Cosz(omx))
. = max ’ ’
Omax (P1- D2 —b+ m ng(omax)

where [ have used the subscript 8,5« to emphasize the dependence of the Hamiltonian
on phase angle Opax- I call pax the maximum phase angle. This Hamiltonian implies
that [ can set up a maximum phase angle to obtain a paraxial Hamiltonian in VTI.

Finally I have a paraxial eikonal equation for the quasi-P wave in VTI.

2c c052(Bmax)

= H - = 5 — - . 4.21
p3 Omax (P1-P2) \Jma‘( (——-b T V0 dac vgp(amax) ) ( )
The two derivatives needed in the numerical algorithms satisfy that
OH _ pi(203(1 + 2€)33(p} + p3) + Bp3 — aj(1 + 2¢) — 38) (4.22)
Ip p3(20353p3 + B(p} + p3) — of — 5}) ' o
OH _  pa(205(1 + 2€)33(p} + p3) + Bp3 — aj(1 + 2¢) — 57) (4.23)
9p2 Pa(20333p3 + B(p} + p3) — of — 33) " -
with
B = 2a%(al(e — &) + B3(1 + §)). (4.24)

4.2 Inclined TI solids

To illustrate how the new approach works for a general anisotropic solid, I gener-

ate a two-dimensional transversely isotropic model with an inclined symmetry axis.
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Consider the quasi-P and quasi-SV slowness surface equation (4.1) for VTI. Rotate

0q1q2 axes by angle v,

QG = tupr + tiaps.
g3 = lzipr + t33ps.
where ¢y} = t33 = cos v". t|3 = —l3; = sin .

Substituting the above relation into equation (4.1). [ have a quartic polynomial

equation in variables p;. p3.

F(pi:ps) = wip] + wapips + wapips + wap1p3 + wsp3

+wep] + wrpyps + wsp} + we = 0.

where

atl, + bt} 5, + ct3,

wy, =

wy = 4daty bz + 26(83 t31833 + titiat3)) + det3 taa.

wy = 6atd 1}, + b(E3,t3, + At tiataitas + t3582) + 6¢t2, t2,,
wy = dat 5+ 2b(ttiatis + ataitas) + dcts b,

ws = atls + bt3,t5, + ctis,

we = dt? + et?,

wr = 2dtyt13 + etz sz,

ws = di?; + et

wg = 1.

The two partial derivatives are given by

oF
dp
oF
dps

= 4w p} + 3wzpapi + 2(wap] + we)p1 + (wap3 + wr)ps,

= 4dwsp3 + Jwyp1p2 + 2(wap? + ws)ps + (wp? + wr)p,.

(4.27)

(4.36)

(4.37)

(4.38)
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Figure 4.1 The quasi-P slowness surface: unrotated one (solid line)
and the one after being rotated 45 degrees (dashed line).

Figure 4.1 shows an original TI quasi-P slowness surface with a vertical symmetry

axis and its rotated version.

4.3 Numerical experiments, I: VTI solids

To give some idea of the accuracy obtainable with the difference schemes outlined in
Chapter 3. [ demonstrate a scheme on smooth VTI models and the (isotropic and
anisotropic) Marmousi model; that is, I will solve the paraxial eikonal equation (4.21)
by using a second-order ENO scheme. All examples are assumed to be of constant
density.

First [ have to address the traveltime initialization. Due to the singularity of the
traveltime field at the source which will lead to the contamination of global numerical
accuracy. to initialize the traveltime [ have to use some special techniques, such as the
adaptive-grid method (Qian et. al. [QBS99]) and the local uniform mesh refinement

(Kim and Cook [KC98]). However, here I assume a homogeneous layer near the source
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and start the finite difference scheme some distance away from the source. Precisely.
with a homogeneous layer near the source I use a nonlinear iteration method to
compute the group velocity and directly initialize the traveltime at every grid point
on a surface away from the source. This initialization technique. called the analytic

method. is a modification of Algorithm 3.5 and is detailed in Appendix B.

4.3.1 2-D VTI

The first example occupies the rectangle {—0.5 km < z; < 0.5km. 0 < r3 <1 km }:
the source is located at r; = 0.0 km. r3 = 0.0 km. The four Thomsen’s parameters

of homogeneous Green River Shale are
ag = 3.330km/s.
30 = L1.768km/s,
e = 0.193,

é = —0.220.

Because the parameter § has the same magnitude as ¢, the near-vertical anisotropic
response is dominated by 8§ (Thomsen [Tho86]); so this example is used to demonstrate
not only the accuracy of the second-order scheme, but also the capability of the
scheme in capturing the anisotropy of wave propagation. The initial data depth is at
r3 = 0.24 km: that is, the initial data for the finite-difference scheme is given at this
depth. The maximum phase angle is taken as 0,,,x = 80 degrees.

The results are shown on Table 4.1. where Az, is the z, direction grid sampling,
Aur; the rj3 direction grid sampling (taken as Ar; = 0.01 km), Abs.Err the maximum
absolute error and Rel.Err the maximum relative error (both measured at bottom

r3 = lkm). The formulae for the two errors are

Abs.Err(7.Axzy) = max|Tanea — Tﬁf‘l, (4.39)



Table 4.1 Convergence order of a second-order ENO scheme for VTI

Ar; | Abs.Err(7. Az )(s) | Rel.Err(7. Ax;) | a

0.08 7.3754e-04 0.00168

0.04 2.1380e-04 6.1296e-04 1.45

0.02 5.5932e-05 1.6035e-04 1.93

0.01 1.4162e-05 4.0602e-05 1.98
0.005 3.5643e-06 1.0218e-05 1.99

max |Tona — Tﬁ‘f‘ |

Rel.Err(7.Ax;) = . (4.40)

max |Tanal

where 7,,, denotes the traveltime from the analytic method and 744 the traveltime

from the finite-difference scheme. Finally. a is the estimated convergence order:

(4.41)

O =

l o Rel.Err(r,2Ax,)
log 2 & Rel.Err(7.Az,) )~

From this table. both the absolute error and relative error are decreased almost
four times as Aurx; is halved. and the accuracy order a is going to 2 as Ar, goes to
zero. so this scheme is of second-order accuracy. When Azry = Arz = 0.01 km. the
maximum absolute traveltime error at bottom is less than % ms.

[n the second example, the model occupies the rectangle {—0.5 km < z; < 0.5
km.0 < r3 <1 km }, and the source is located at r;, = 0.0 km, z3 = 0.0 km. The

four elastic parameters are

Qo = \/11.0889+I1+I3,

30 = V3.1329 + 0.5z, + 0.5z3,
43247 4+, + z3
2(11.0889 + r, + r3)’
(4.9477 + &, + x3)% — (7.9560 + 0.5z, + 0.5r3)>
2(11.0889 + , + x3)(7.9560 + 0.5z, + 0.5z3) °

e =
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which are perturbations to Thomsen’s parameters of homogeneous Green River Shale.
To simulate the VTI media. these parameters necessarily satisfy the stress-strain
coefficient inequalities in Berryman [Ber79]. This example is designed to test the
capability of the scheme in dealing with both vertical and lateral variations.

The grid sampling is Ar; = Arz = 0.01 km and the maximum phase angle is
taken as 0., = 80 degrees. Because of vertical and lateral variations of the example
near the source. [ cannot apply the initialization technique used in the first example.
Instead. I use horizontal quasi-P sound speed (= (14+¢€)ag) and an adaptive integration
method (Stoer and Bulirsch {SB92]) to obtain the traveltime at 3 = 0 km. Figure 4.2
(left) shows the traveltime isochrons for the 2-D model. Because the lateral variation
is not symmetric with respect to the source, the isochrons could not reach the same
depth at r; = 0.5 km and r, = —0.5 km. the isochron of 0.262 s, for example. Also,
from the figure we can see that the limitation on the maximum phase angle (artificial
plane wave approximation) plays a role when the phase angle is near 90 degrees.
Figure 4.2 (right) shows the calibration result for the traveltime at bottom r3 = 1.0
km from the ENO scheme and the ray-tracing method (Cerveny [Cer72]). Because the
ray-tracing method cannot yield traveltimes at grid points directly and every traced
ray is not guaranteed to pass through the bottom, I have to use a linear interpolation
method to extract the traveltime for some points (not necessarily grid points) from
the ray-tracing solutions. The ray-tracing method uses the traveltime as a running
parameter along the ray: namely, (z,,r3,p;,p3) are parameterized by traveitime 7.
When a ray passes through the bottom r3 =1 km, I pick out the nearest two points
on the ray which embrace the bottom. Then I approximate by linear interpolation
the r; coordinate and traveltime of the intersection point between the ray and the
bottom. In the computation, the ray-tracing method traces rays from phase angle -80

degrees to 80 degrees with a sampling interval of = degrees. Because the ray fan from
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ray-tracing is rarefving quickly away from the source. most of the intersection points
are not at the grid point. so it is not appropriate to assess the accuracy of the ENO
scheme and ray-tracing method this way. Nevertheless. they are perfectly consistent
with each other (Figure 4.2 (right)). Also. the effect of the lateral variations of the

model is evident on the traveltime curves at the bottom.

4.3.2 3-D VTI

The first 3-D VTI example is the homogeneous Green River shale. and the four
Thomsen parameters are the same as in the 2D homogeneous case. The model occu-
pies the cube {—0.5 km <z, < 0.5 km. -0.5km <12, <05km.0 < r3 < 1.0 km }.
and the source is located at the center of the surface r; = 0.

The grid sampling is Ar; = Ar; = Azrz = 0.02 km. and the maximum phase
angle is taken as fmax = 65 degrees. | assume the initial homogeneous layer is at
0.1 km: that is. I start the finite difference scheme at 0.1 km. To initialize the
traveltime at 0.1 km. I still use the analytic method (Appendix B). Figure 4.3 (left)
shows the isochrons at the bottom r3 = 1 km. and the isochrons are circles because
of the transverse isotropy. Figure 4.3 (right) shows the vertical traveltime profile at
r; = 0.3 km. and the anisotropic effect is evident. Figure 4.4 shows the traveltime
comparison at gridline z; = 0.2 km and r3 = 1.0 km between the ENO traveltime
and the analytic traveltime, and the maximum absolute error is less than 0.19 ms.

The second 3-D VTI example has the same geometry as the first model. The four

Thomsen’s parameters are

ag = +/11.0889 + z3,

,30 = \/3.1329 + 0.5133,
43247 ‘+’ I3
2(11.0889 + z3)’




o (49477 + 13)? — (7.9560 + 0.525)°
T 2(11.0889 + r3)(7.9560 + 0.5.r3)

For this model, the discretization parameters are the same as that used in the home-
geneous model. Because of the vertical variation near the source. the finite difference
scheme is started at rz3 = 0 km with the initial traveltime assigned by using the
horizontal qP sound speed, and the results are shown in Figure 4.5.

These two 3-D examples show that the scheme can be used to compute the first

arrival traveltime field of 3-D smooth VTI models.

4.3.3 Isotropic and anisotropic Marmousi models

Because the Marmousi model is well known as a complex velocity model. I test the
ENO scheme to see its robustness and stability on the original isotropic and the
anisotropic Marmousi model created by Alkhalifah [Alk97]. [ take portions of these

two models to test the method; that is, the sampling domain is
{4.5km < z7; < 7.5km.0 < r3 < 2.9875km},

and the lateral and depth samples are 241 and 240, respectively. with the sampling
intervals equal to 12.5 m.

In the computation, the maximum phase angle is taken as 0,,,« = 75 degrees. The
source is located at r; = 6.0 km, r3 = 0.0 km. For the isotropic Marmousi model,
[ initialize the traveltime at z3 = 0 km by using the constant surface velocity. For
the anisotropic Marmousi model, the traveltime is initialized by using the horizontal
sound velocity. The final results are shown in Figure 4.6 for windowed portions of

the two models, corresponding to

{5.4km < z; < 6.8km, 1.5km < 3 < 2.9875km}.
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Because the vertical velocity in the anisotropic Marmousi model is the same as the
isotropic Marmousi model. the portion of the wavefront corresponding to vertical
wave propagation is similar (Alkhalifah [Alk97]). which can be seen by subtracting
the two traveltime fields. with results shown in Figure 4.7. However. there are still
some differences between the two models. especially near the upper-right corner where
n (Alkhalifah [Alk97]) is larger than other places. and the maximum traveltime differ-
ence is 5.9 ms. Because a second-order finite-difference scheme is used, [ believe that
these traveltime differences are due to the anisotropic effect rather than to the nu-
merical errors. The above computations show that the scheme can deal with complex

geological models.
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Figure 4.2 Left: traveltime isochrons for a 2-D model with vertical and
lateral variations: anisotropic effects and lateral variations on the wave
propagation are evident. Right: traveltime comparison at r3 = 1.0 km for
the model with vertical and lateral variations: ENO traveltime (*) and
Ray-tracing traveltime (-); they are consistent.
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Figure 4.3 A 3-D homogeneous VTI model. The source is located at
ry = ro = z3 = 0.0. Left: the horizontal traveltime slice at z3 = 1.0 km:
isochrons are circles because of the transverse isotropy. Right: the vertical
traveltime slice at ; = 0.30 km; at the lower left and right corners, the
paraxial modifications have effects on the wave propagation.
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Figure 4.4 Traveltime comparison at gridline r, = 0.2 km. r3 = 1.0 km for
a 3-D homogeneous VTI model: ENO traveltime (*) and Analytic traveltime
(-): ENO traveltime has almost the same accuracy as the analytic traveltime.
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Figure 4.5 A 3-D VTI model with vertical variations. The source is
located at r; = r, = 3 = 0.0. Left: the horizontal traveltime slice at
r3 = 1.0 km; isochrons are circles because of the transverse isotropy. Right:
the vertical traveltime slice at 2 = 0.30 km; at the lower left and right
corners, the paraxial modifications have effects on the wave propagation.



Figure 4.6 Traveltime contours overlaying the model. The source is
positioned at r; = 6.0 km, r3 = 0.0 km. Left: the isotropic Marmousi
velocity model with a velocity unit k7n/s. Right: the anisotropic Marmousi
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Figure 4.7 Anisotropic effects on the wave propagation. Left: nonzero
contours of traveltime differences between the two Marmousi models
concentrate on the region where 7 is larger. Right: contours of traveltime
differences overlaying n model. The maximum traveltime difference is 5.9ms.
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4.4 Numerical experiments, II: Inclined TI solids

[ have designed algorithms to be used for general anisotropic solids. In this sec-
tion [ test the algorithms on the inclined TI solids. As aforementioned. inclined TI
solids have the general features to be used in the tests. I will compute the paraxial
Hamiltonian by Algorithm 3.4 and solve the paraxial eikonal equation (2.25) by using
a second-order ENO/WENO scheme (in Section 3 of Chapter 3). All examples are
assumed to be of constant density.

First I have to address the traveltime initialization. Here [ assume a homogeneous
layer near the source and start the finite difference scheme some distance away from
the source. Namely, I use Algorithm 3.5 to compute the group velocity and initialize
directly the traveltime at every grid point on a surface away from the source.

The first example occupies the rectangle
{—0.5km < r; <0.5km.0 < r3 < lkm}:

the source is located at £; = 0.0 km, z3 = 0.0 km. The four Thomsen's parameters

of a homogeneous Green River Shale are

ap = 3.330km/s,
Bo = 1.768km/s,
e = 0.195,

§ = —0.220.

To obtain a ITI model from the VTI model, the rotation angle ¢» is 45 degrees.
Because the parameter § has the same magnitude as ¢, the anisotropic response

along the new symmetrical axis is dominated by § (Thomsen [Tho86)); so this example

is used to demonstrate not only the accuracy of Algorithm 3.4 and the second-order

ENO scheme, but also the capability of the algorithms in capturing the inclined



Table 4.2 Convergence order of a second-order ENO scheme for ITI

Arg Abs.Err(7, Az )(s) | Rel.Err(7. Ax,) a

0.04 3.3201e-04 9.5187e-04

0.02 9.3945e-05 2.6934e-04 1.82

0.01 2.4175e-05 6.9309e-05 1.96

0.005 6.1834e-06 1.7734e-05 1.97
0.0025 1.5602e-06 4.4731e-06 1.99

anisotropy of wave propagation. The initial data depth is at z3 = 0.24 km: that is.
the initial data for the finite-difference scheme is given at this depth. The paraxial
parameter A is taken as 0.02.

The results are shown on Table 4.2, where Ar, is the x, direction grid sampling,
Axzj is the z3 direction grid sampling (taken as Az; = 0.01 km): Abs.Err is the
maximum absolute error and Rel.Err is the maximum relative error. both measured
at the bottom. a is the estimated convergence order, where [ use the traveltime
from Algorithm 3.5 as the exact solution to calibrate the traveltime from the finite-
difference scheme. See formulae (4.39), (4.40) and (4.41) for definitions of these three
quantities.

From this table, both the absolute error and the relative error are decreased almost
four times as Az, is halved. and the accuracy order « is going to 2 as Ar; goes to
zero. so this scheme is of second-order accuracy. When Ar, = Az; = 0.01 km, the
maximum absolute traveltime error at bottom is less than %0 ms.

The calibrations for the slowness surface and the traveltime are shown in Figure
4.8. To obtain the extreme points on the slowness surface, Algorithm 3.2 (the bisec-

tion method) needs 26 iterations, but Algorithm 3.3 (Newton method) needs only 6

iterations.
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Figure 4.9 shows the traveltime coutours from both the analytical and numerical
approaches. and the two coutours are almost the same except for a tiny difference
along the aperture.

The second example is generated by rotating the model of Zinc (a kind of metal)

by the angle ¢* = 30 degrees. The four elastic parameters are ( Musgrave [Mus70]. p

280):
ay; = 15.90,
azz = 6.21,
aijz = 4.82.
ay, = 4.00;

which can be transformed into Thomsen’s parameters,

ag = 2.492km/s,

‘130 = 2.001\'[1’1/5,

e = 0.7802,
d = 2.6562.

According to the notion of Thomsen’s weak anisotropy, these parameters show that
the anisotropy is strong rather than weak. Therefore, this model will serve as an
assay for the algorithms developed in Chapter 3 and will be examined systematically.
To do this, I will apply both ENO and WENO second-order schemes (in Section 3 of
Chapter 3) to both unrotated and rotated models.

Figure 4.10 (left) shows the slowness surface for Zinc with a vertical symmetry axis,
and Figure 4.10 (right) shows the slowness surface after being rotated 30 degrees. To
generate these Figures, the extreme points are first located by Algorithm 3.3 (Newton

method). and then a number of samplings are made on an interval of p;. In order
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to locate the extreme points. Algorithm 3.3 needs one and four iterations for the
unrotated and rotated model, respectively.

Figure 4.11 (left) is the traveltime contours computed by the second-order ENO
scheme for the VTI (unrotated) Zinc model. Figure 4.11 (right) is the traveltime
calibration for the ENO scheme by using Algorithm 3.53. and the calibration shows
that the traveltime produced by the two approaches match with each other very
well. Similarly, Figure 4.12 (left) and Figure 4.12 (right) show similar results for the
second-order WENO scheme. From Figure 4.11 (left) and Figure 4.12 (left). it can be
seen that the horizontal velocity is faster than the vertical velocity because a;; > aas.

Figure 4.13 (left) is the traveltime contours computed by the second-order ENO
scheme for the inclined TI (rotated 30 degrees) Zinc model, and the traveltime con-
tours are oscillating on the upper part of the figure. Figure 4.13 (right) is the trav-
eltime calibration for the ENO scheme by using Algorithm 3.3, and the calibration
shows that the traveltime produced by the ENO scheme fails to match with the ana-
lytical one by Algorithm 3.5. The failure of ENO scheme is because the ENO scheme
is very sensitive to the zeros of the solution and its derivatives (Shu [Shu97]). As can
be seen on the Figure 4.11 (left), the horizontal component p;, = 5—2 of the slowness
vector is almost zero on later wavefronts. After rotation, these zeros will show up
along an inclined wavefront, as shown in Figure 4.13 (left). In Figure 4.11, the sen-
stivity did not appear because the symmetry axis of Zinc is along the vertical and is
consistent with the grid line. However, it does appear in Figure 4.13 for the inclined
T1 model.

Figure 4.14 (left) is the traveltime contours computed by the second-order WENOQO
scheme for the inclined TI (rotated 30 degrees) Zinc model, and the traveltime con-
tours are smooth. Figure 4.14 (right) is the traveltime calibration for the WENO

scheme by using Algorithm 3.3, and the calibration shows that the traveltime pro-
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duced by the WENO scheme matchs with the analytical one obtained by Algorithm
3.5. The success of the WENO scheme is because WENQO schemes improves ENO
schemes by overcoming the drawbacks of ENO schemes. such as the sensitivity to the

zeros of the solution and its derivatives (Shu [Shu97]).

4.5 Final comments

Although paraxial Hamiltonians do not have explicit forms for general anisotropic
solids. some special cases such as VTI solids admit simplified Hamiltonians because
the extreme points of the horizontal slowness surface set are known.

Rotating VTI slowness surface equations to obtain ITI slowness surface equations
was inspired by Kim [Kim99]. The sextic slowness surface equation of ITI has the
essential features of the slowness surface equation of general anisotropic solids so that

it can be used to assay the algorithms developed in Chapter 3.
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Figure 4.8 A 2-D homogeneous ITI model obtained by rotating VTI
model 45 degrees. Left: slowness surface calibration: the analytical slowness
surface (solid line) vs. the numerical solution (dashed line) by Algorithm 3.2.
Right: the comparison of the traveltimes at the bottom by Algorithm 3.5
(solid line (-)) and the paraxial eikonal solver (star (*)).
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Figure 4.9 A 2-D homogeneous ITI model obtained by rotating VTI 30
degrees. The source is located at z; = z3 = 0.0; the initial depth is 0.02km
and Az, = Arz = 0.02km. Left: analytical traveltime contours by Algorithm
3.5. Right: contours of the traveltime from the paraxial eikonal solver. The
paraxial eikonal solver yields the maximum absolute error 0.84ms and the
relative error 0.25 percent at r3 = lkm.
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Figure 4.10 The 2-D homogeneous Zinc model. Left: the original VTI
slowness surface. Right: the inclined slowness surface with rotation angle 30
degrees. The two slowness surfaces are generated by sampling an interval of

p1 which is determined by Algorithm 3.3.
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Figure 4.11 The 2-D homogeneous VTI Zinc model with a second-order
ENO scheme. The source is located at z; = z3 = 0.0; the initial depth is
0.02km and Ar; = Arz = 0.02km. Left: traveltime contours by the paraxial
eikonal solver with the ENO scheme. Right: the traveltime calibration at
I3z = lkm.



Figure 4.12 The 2-D homogeneous VTI Zinc model with a second-order
WENO scheme. The source is located at z; = r3 = 0.0; the initial depth is
0.02km and Ar; = Ar; = 0.02km. Left: traveltime contours by the paraxial
eikonal solver with the WENOQO scheme. Right: the traveltime calibration at

Iz = lkm.
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Figure 4.13 The 2-D homogeneous inclined (30 degrees) TI Zinc model

with a 2nd-order ENO scheme. The source is located at z; = 3 = 0.0; the

initial depth is 0.02km and Az, = Az3z = 0.02km. Left: traveltime contours

by the paraxial eikonal solver with the ENO scheme. Right: the traveltime
calibration at 3 = lkm.
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Figure 4.14 The 2-D homogeneous inclined (30 degrees) Tl Zinc model
with a 2nd-order WENO scheme. The source is located at r, = r3 = 0.0: the
initial depth is 0.02km and Az, = Axr; = 0.02km. Left: traveltime contours
by the paraxial eikonal solver with the WENO scheme. Right: the traveltime

calibration at z;3 = 1km.
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Chapter 5

Amplitude Computations by Adaptive Gridding

Extensive numerical experiments in Chapter 4 have shown that the proposed algo-
rithms compute the traveltime (phase function) accurately and efficiently. To con-
struct the geometrical optics term. nevertheless. the amplitude function is needed as
well. Because the amplitude function is related to the second-order derivatives of the
phase function (i.e., the curvature of the wavefront). the accuracy of the computed
amplitude is sensitive to the errors (noises) of the numerical phase function. In other
words. the accuracy of the computed amplitude is determined by that of the com-
puted traveltime. Therefore, if the amplitude is required to be of first-order accuracy,
the numerical traveltime should be of at least third-order accuracy. However. for
point-source problems. the traveltime field has an upwind singularity at the source.
To obtain a highly accurate traveltime field, this singularity must be treated appropri-
ately. The “recipe” is adaptive gridding borrowed from numerical methods of ODEs.
To better understand the adaptive gridding for the eikonal equation and the depen-
dence of the amplitude upon the traveltime, I will start from the simplest model. i.e..

the isotropic solids. Finally, I will treat the VTI model as well.

5.1 Geometrical optics for isotropic solids

Because the isotropic solid is a special case of anisotropic solids, the traveltime field
in an isotropic solid also satisfies an eikonal equation. Here I consider the two-
dimensional case, so I use r and = rather than x| and r3 to denote the coordinate
variables. Denote by (z,,zs) the coordinates of a source point, and by (z.z) the

coordinates of a general point in the subsurface. The first-arrival traveltime field



T(r.z:r5.24) 1s the viscosity solution of the eikonal equation

ar\? ar\’> 2 -
(5;) + (I) = s°(r.z) (5.1)
with the initial condition

lim 7(r.z:r5.2s) _ I - 0
@ —r 2+ (s =) v(E2)

. 3 L. . .
as (r.z) — (r,.z4). where v is the velocity. and s = — is the slowness (Lions [Lio82]).
v

Since the isotropic solid is a special case of the VTI solid. the paraxial eikonal

equation reads (Gray and May [GM94]):

d C ar\?
8—2 = Hom" (%) = smmax (32 - (0_1:) 552 COS2 0max) ) (52)
where smmax is a smoothed max function with a > 0.
4 l .
5@ if r <0.
']': 4 4. ]
_—a+2$—3(1—:£) 1f0§.r<g.
smmax(zr,a) = { 2 a L a 2
(r —a) 4r—a, .. a
+ 2 — (I + ¢ ) if - <r<a.
a 2
| T ifr>a.

Equation (5.2) defines a stable nonlinear evolution in z. suitable for explicit
finite-difference discretization. The smoothed max function makes the numerical
Hamiltonian smooth enough so that the standard truncation error analysis can be
carried out for schemes of up to third-order accuracy. The solution 7 is identical to
the solution of the eikonal equation provided that the ray makes an angle < Oax < 5
with the vertical.

Based on the traveltime computed by solving the paraxial eikonal equation, [ can
approximate the amplitude field by solving a transport equation. The amplitude

satisfies the transport equation (Cerveny et. al. [CMP77]:

VT-VA-{’-%AVQT = 0. (5.3)
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The equation (5.3) is a first-order advection equation for the amplitude A. The
Laplacian of the traveltime field is involved in this advection equation, which implies
that a third-order accurate traveltime field is needed to get a first-order accurate
amplitude field (Symes [Sym93]. El-Mageed [EM96]. El-Mageed et. al. [EMKS97]).
For convenience in the following presentation. I first introduce the ray coordinates.
The ray coordinates are defined by (7.0} = (7(x. z: L5, 25), &(x. 2; Ts. 25) ), where 7 and
o are the traveltime and take-off angle of a ray from source point (z,.zs) to a general
point (r,z) in the subsurface, respectively. In two-dimensional isotropic media with

a line source. the amplitude also satisfies the formula (Friedlander [Fri58])

v(ry. zs)

szz\/m
_ E’;’—\'/‘%’)\/WT < V. (5.4)

where J(z, z: x,, =5) is the Jacobian of the transformation from Cartesian coordinates

A(z.z) =

(x.z) to ray coordinates (7, ¢). The Jacobian J can be computed by

dr 0= ar oar |™!

. O 3. . 1 ..
I=|8 0| =18 8| =vrres (35)

do 06 dz 9=

where V¢ and V7 are the gradients of the takeoff angle and the traveltime, respec-
tively.
Since the take-off angle ¢ is constant along any ray,

. 0rde | 9Td ]
VT-V@——B—IE'FE@—Z = 0. (3.6)

That is. for an isotropic solid, the wavefront normal V is tangential to the ray and
thus is pointing to the ray velocity direction; the gradient V@ is tangential to the
wavefront. Equation (5.6) is slightly easier to solve numerically than equation (5.3)

because no second-order traveltime derivatives are explicitly involved in the equation
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(5.6). Having solved equation (5.6) for ¢. one produces the amplitude A through
(5.4).

Since the typical seismic source is a point source. [ need to compensate for the
out-of-plane radiation in the two-dimensional (2-D) line-source amplitude formula.

The 2-D amplitude with a point source (2.5-D amplitude) can be computed by

A(r.z) = f'(i;f—’)\/ryy[vrxv¢|. (5.7)

where the out-of-plane curvature 7, satisfies another advection equation (Symes et.
al. [SVST94]):

ﬁ.arﬂ + ?Iaryy
dr Or o0z 0z

(1]
o
~—

2
+ Tyy = 0. (

Supposing that the amplitude is required to be first-order accurate. then the
two gradients V7 and V¢ involved in the amplitude formulae should have at least
first-order accuracy. However, because V& depends on second-order derivatives of
traveltime 7. it implies that to get a first-order accurate Vo, the traveltime 7 itselfl
should have at least third-order accuracy. The final conclusion is that a third-order
traveltime solver is required to get first-order accurate amplitudes. as noted before.

Zhang [Zha93] used equation (5.7) in polar coordinates to compute the geometrical
spreading factor, but his computation of the takeoff angle was based on the first-order
traveltime field. Consequently, the gradient of take-off angle computed by his scheme

was inaccurate. Vidale and Houston [VH90] encountered a similar difficulty.

5.2 High-order WENO Runge-Kutta schemes

As presented in Chapter 3, ENO and WENO schemes are used for the following
reasons: (1) stable schemes of arbitrarily high-order accuracy exist, permitting ac-

curate solutions on coarse grids (a factor which is critical to the mesh refinement
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or coarsening): (2) versions exist in any dimension so that the methodology can be
straightforwardly extended to the three-dimensional case.

All of these schemes take the form of recursive depth stepping rules.

T T+6j-"r. (5.9)

> o« 4 A= (5.10)

Here &7 is a nonlinear update operator expressing the WENO-Runge-Kutta rule of
order j. depending on Az, Ar and the slowness field s. and defining a difference
scheme of formal jth-order accuracy. The detailed forms of Jj: (7 = 2.3) have been
shown in Chapter 3.

Similarly. [ solve the advection equation for the takeoff angle ¢ and the out-of-

plane curvature 7,, by using WENO schemes: see Appendix C for details.

5.3 Adaptive gridding for the upwind singularity at sources

To initialize our algorithm, the user supplies a local error tolerance s; o, and o,
are two user-defined positive functions of ¢ which are used to control the coarsening
and refinement. For example, take oy = 0.1¢ and o, = =. [ use the 2nd and 3rd
order eikonal solvers [equations (3.27) and (3.28] for the two-dimensional case ) and
estimate the truncation error of the 2nd-order scheme as e; = max |82 — 37| over
the current depth. So long as oi(c) < ez < 02(<) at every point of the current depth
level. simply proceed to the next step: it is well known and explained in Gear [GeaTl]
that an efficient adaptive stepping requires rather loose control of the local error.
When €; < (<), the step is increased by a factor of two, i.e., Az < 2Az, and the 1
update and e; are recomputed. Similarly, when e; > 03(<), the step is decreased by
a factor of two. As soon as the local error is once again within the tolerance interval,

the depth-stepping is continued. A very important point is that I retain the 3rd-order
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(a more accurate one) computation of 7 at the end of each depth step as the actual
update. discarding the 2nd-order computation. which is used only in step control.

The usual step adjustment in ODE solvers would change A= by a factor com-
puted from the asymptotic form of the truncation error (Stoer and Bulirsch [SB92]. p
449). This is impractical for a PDE application because it would require an arbitrary
adjustment of the spatial grid (i.e.. the z-grid in the difference scheme) and. there-
fore. expensive interpolation. Scaling Az by a factor of two. however. implies that
the stability may be maintained by scaling Ar by the same factor. For coarsening.
this means simply throwing out every other grid point, i.e.. no interpolation at all,
which dramatically reduces the floating point operations required. Since the typical
behavior of the traveltime field is to become smoother as one moves away from the
source. the truncation errors tend in general to decrease. Therefore, most of the grid
adjustments are coarsenings and very little or no interpolation is required. Since the
slowness field comes in a gridded form. an interpolation is always required to supply
estimates of slowness at the points appearing in the WENO-Runge-Kutta formula.
A local quadratic interpolation in r and = is used. the third-order accuracy of which
is compatible with that of the difference scheme.

Since the traveltime field is nonsmooth at the source point, the truncation error
analysis on which the adaptive step selection criterion is based is not valid there.
Therefore, it is necessary to produce a smooth initial traveltime field. [ do this
by estimating the largest zjn > 0 at which the constant velocity traveltime is in
error by less than o,(c). Details of the =i, calculation are given in Appendix D.
Having initialized 7 at zj;, the algorithm invokes adaptive gridding. Since zj,;, is
quite small, T changes rapidly, resulting in a large number of grid refinements at the
outset. However, no interpolation is performed, as 7 is given analytically on = = z;,.

This initially very fine grid is rapidly coarsened as the depth stepping proceeds.
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In the current implementation. I maintain a data structure for the computational
grid that is independent of the output grid: the desired quantities are calculated
on the computational grid and interpolated back to the output grid. As a safeguard
against pathological program behaviors. such as the number of grid refinements being
very large. a maximum number of permitted grid refinements, MAXREEF. is specified.

A simplified algorithm framework is as follows:
e Input s. r,. z;. Omax. Az. MAXREF.

o Initialize Azr. 7, = = zinie. REF = 0.

e Do while = < target depth.

— compute €2 = max |87 — 837 over the current depth level = ;
— if e < 0y(¢) and REF > 0.

* Az« 2Az,

* Ar « 2Ar,

* REF < REF — 1,

* upsample T (throw out every other point).
— else if e; > 02(¢) and REF < MAXREF,

* Az « Az/2,

* Ar « Azx/2,

* REF « REF + 1,

+* downsample 7 (interpolate)
— else

* = =+ Az,

* T 7+ &37.



— end if

e end do

This description leaves out the output step of the algorithm: a full implementation
monitors the depth level of the next set of output points and quadratically interpolates
the traveltime field onto them as soon as = passes this depth. using the current and
last two depth levels of 7. Local quadratic interpolation preserves the third-order
accuracy of the computed 7.

To avoid unnecessary computations. the algorithm updates 7 only within the
triangle {(x.z) : [r—1s] < |z —zs|tan Opnax}- All rays with takeoff angles less than 8,
must lie inside this triangle. and it is only along such rays that the paraxial eikonal
equation produces correct first-arrival times. Output points outside the triangle are
assigned 7 = MANX.FLOAT. Since times at output points which are inside the triangle
but not lying on rays with takeoff angles less than 6., also receive erroneous time
values. they must be washed out of any subsequent computations. For high frequency
asymptotics computations, this masking is most easily accomplished by zeroing the

geometrical amplitude at such points.

5.4 Numerical experiments, I: isotropic solids

To illustrate how the adaptive-gridding approach works. I test the method on a con-

stant velocity model, v = lkm/s. with two-dimensional geometry
{{z,z) : =0.5km < r < 0.5km,0 < z < 1.0km},

in which case the behaviors of traveltime fields and amplitude fields are well under-

stood.
In the constant velocity case, all the desired quantities have obvious analytical

solutions to compare against the computed solutions. I compare the results obtained
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by fixed- and adaptive- grid algorithms. Both algorithms use a third-order WENO
scheme to compute 7: the adaptive-grid scheme uses a second-order ENO scheme for
local truncation error estimation. The ouput grid is 51 x 531 with Ar = Ax = 0.02.
For adaptive-grid algorithms, MAXREF is set to be 5 with the coarsest grid 17 x 17.
o, =0.1z and ¢, = =.

Table 5.1 shows the traveltime error and computation cost by the fixed grid, and
Table 5.2 shows the traveltime error and computation cost by the adaptive grid. where
Flops denote the number of floating point operations. The error is the maximum
absolute error at the bottom row of the gridpoints (- = 1km). Because the computed
portion of this depth level ( —0.5km< r < 0.5km ) lies entirely within the computation
aperture (fmax = 78 degrees), it consists of accurately computed 7 values. From the
two tables. it is easy to see that to reach the same level of accuracy, the adaptive-
gridding approach requires an order of magnitude lower computational cost than does
the fixed-gridding approach.

Figure 5.1 shows the traveltime contours produced by the two approaches. No
difference can be seen from the figure because, on the one hand, the fixed-gridding
algorithm still has first-order accuracy. and on the other hand. the resolution of the
graphics is limited. Figure 5.2 shows contours of 7. computed by two approaches.
[t can be seen that 7, by the fixed grid is oscillating, but 7. by the adaptive grid
traveltime solver is convergent. Similar phenomena are observed for .. as shown in

Figure 5.3. Because the fixed-gridding approach produces only a first-order accurate

Table 5.1 Fixed-grid eikonal solver: a constant velocity model

dr Abs.Err(7, dzx)(s) Flops
0.01 0.001232 261,590
0.00125 0.000219 16,632,765




Table 5.2 Adaptive-grid eikonal solver: a constant velocity model

5 Abs.Erc(7.dz)(s) | Flops
0.000025 0.001041 39.815
0.00000169 0.000160 928.77

traveltime field. the resultant traveltime derivatives have only zero-order accuracy
and exhibit oscillations which do not decrease in magnitude as the grid is refined.
as shown in Figure 5.2 (left) and Figure 5.3 (left). However. the adaptive-gridding
approach yields far more accurate traveltime fields; thus the traveltime derivatives
are still accurate, as shown in Figure 5.2 (right) and Figure 5.3 (right).

Now [ discuss the takeoff angle and its derivatives. Figure 5.4 shows contours
of the takeoff angle ¢ by two approaches. Because the coefficients in the advection
equation for takeoff angles depend on the traveltime gradient. the accuracy of o is
decided by the utilized traveltime solver. Since the first-order traveltime field from
the fixed-gridding approach results in inaccurate V7, the resultant takeoff angle is
inaccurate. as shown in Figure 5.4 (left). However. the takeoff angle based on the
traveltime field from the adaptive-gridding approach is accurate, as shown in Figure
5.4 (right). Figure 5.5 shows ¢, by the two approaches. Because the takeoff angle
based on the traveltime field from the fixed-gridding approach is inaccurate. the
resultant derivatives ¢, are divergent, as shown in Figure 3.5 (left). However, the
adaptive-gridding approach produces accurate traveltime gradients, which leads to
the convergent ¢, as shown in Figure 5.5 (right). Similar observations hold for o.,
as shown in Figure 5.6.

To further illustrate the differences of the accuracy between two approaches,

Figures 5.7 and 5.8 show the distribution of relative errors along the depth direc-



tion for o, and o.. The error along the depth direction is defined as

e(z) = MaX-0sgrcos |fOMP(r.2) — for. )] (5.11)
- max_g.s5<r<o.s | f2"3(z, =) .

where f°™P is the computed solution. and f*"* the analytic solution. For instance.
substituting f with o, in Equation (5.11). I get the error distribution for ¢, along the
depth direction. From Figure 5.7 and Figure 5.8. I can conclude that the adaptive-
gridding approach produces much more accurate Vo than does the fixed-gridding
approach. The resultant amplitudes with a line source based on Vr and Vo by the
two approaches are shown in Figure 5.9. The amplitude in Figure 5.9 (left) is divergent
by the fixed-gridding approach. but the amplitude in Figure 5.9 (right) is accurate
by the adaptive-gridding approach. Note the episodic nature of the convergence for
the adaptive-gridding algorithms. Because I have allowed the local error estimate to
vary by an order of magnitude before adjusting the grid and then permitted only step
changes by factors of 2, the error exhibits “sticky.” discontinuous behaviour.

Finally. Figure 5.10 shows the computational results for the out-of-plane curvature
Tyy and the amplitude field with a point source by the adaptive-gridding approach.
The computed 7, is accurate and the resultant amplitude is convergent.

To test the robustness of the new adaptive-gridding WENO approach on synthetic
models. I have embedded the new adaptive-grid traveltime and amplitude solver in 2-
D Kirchhoff prestack migration and inversion code (Symes et. al. [SVST94]). Figure
5.11 shows the impulse response of the inversion by an ENO third-order eikonal solver,
where the Beylkin determinant required by the inversion is computed by using the
information from traveltimes and takeoff angles. The impulse response is not smooth
because the numerical derivative 7. generated by ENO schemes is not guaranteed to
be continuous. Figure 5.12 shows the impulse response of the inversion for a WENO

third-order eikonal solver, where the Beylkin determinant required by the inversion is
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computed by using the information from traveltimes and takeoff angles. The impulse
response is smooth as expected because the numerical derivative 7. generated by

WENO schemes is continuous.



0.9¢

0.8

0.7

0.6} 0.6

===

~0.5¢ ~ 0.5}
04 0.4
0.3f 0.3f
0.2 0.2
0.1} { //—_\\ \ 1 asl

25 5 ws 3

Figure 5.1 Traveltime contours for a constant velocity
model. Left: fixed grid. Right: adaptive grid.
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Figure 5.2 7. for a constant velocity model. Left: 7. by fixed grid is
oscillating. Right: 7. by adaptive grid is convergent.
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Figure 5.3 r. for a constant velocity model. Left: 7. by fixed grid is
oscillating. Right: 7. by adaptive grid is convergent.
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Figure 5.4 Takeoff angle ¢ for a constant velocity model. Left: ¢ by fixed

grid is not accurate enough to be differentiated; notice the tiny oscillation on

the upper part of the figure. Right: ¢ by adaptive grid is accurate enough to
be differentiated.
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Figure 5.5 ¢, at = = 1 for a constant velocity model. Left: fixed grid:
solid line (-): true solution: star (*): computed solution. Right: adaptive
grid: solid line (-): true solution; star (*): computed solution.
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Figure 5.6 ¢. at = = 1 for a constant velocity model. Left: fixed grid:
solid line (-): true solution; star (*): computed solution. Right: adaptive
grid; solid line (-): true solution; star (*): computed solution.
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is almost 45 percent. Right: adaptive grid. maximum relative error is less
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than 1.5 percent.
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Figure 5.9 2-D amplitude with a line source for a constant velocity model.
Left: the amplitude by fixed grid is divergent. Right: the amplitude by
adaptive grid is convergent.
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grid; solid line (-): true solution; star (*): computed solution. Right: 2-D
amplitude with a point source for a constant velocity model by adaptive grid.
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Figure 5.11 The impulse response by inversion with the adaptive-gridding
ENQ traveltime-amplitude solver. The response is not smooth because the
numerical derivative 7. generated by ENO schemes is not guaranteed to be

continuous.
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Figure 5.12 The impulse response by inversion with the adaptive-gridding
WENO traveltime-amplitude solver. The response is smooth as expected
because the numerical derivative 7. generated by WENO schemes is
continuous.
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5.5 Geometrical optics for 2-D VTI solids

A paraxial eikonal equation for VT is already presented in Chapter 4. To be suitable

for using adaptive gridding, a smoothed version of equation (4.21) for 2-D VTI is

utilized:
or ar 2c cos?(fmax) -
== = — ] = . . 5.12
ER Hg_., (81‘) \Jsmmaw ( PRI/ pead ERT ) : (5.12)
where
a = als;. (5.13)
92,32 ar 2 a2 -
b = 2a505 |1+ + (e — ) 3_:1: — a5 — 3. (5-14)

A a0\ 2
c = ((1+‘26)03 (g—z) —1) (ﬂ{'{ (—g—:) —1), (5.15)

with ag. 3o, € and & being Thomsen’s parameters [Tho86].
As presented in Chapter 2. a certain Jacobian from Cartesian coordinates to ray

coordinates is needed in the amplitude computation. Here the ray coordinates are

defined by
(r.q1) = (7(z.2:5,.2,). (2. 21 75, 24)) (5.16)

where 7 and g, are the traveltime and take-off angle of a ray from source point (z,, =)
to a general point (z, z) in the subsurface, respectively.
In two-dimensional anisotropic media with line sources, the amplitude satisfies

the formula
R (ql(l‘? 21Ty, :s))
A(r.z) = ‘/,_
[/
= R(qi(z,2;25, %)) \/IVT x Vgq|. (5.17)

In equation (5.17), R is the radiation pattern of the source and J(z, z: z,. z,) is the

Jacobian of the transformation from Cartesian coordinates (z. =) to ray coordinates
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(7.q1). The Jacobian .J can be computed by

dr Oz
-— = 1
_ T T _ =18
S = g‘l gi T Vrx Vg’ (5.18)
a‘11 301

where V¢, and VT are the gradients of the takeoff angle and the traveltime. respec-
tively.
As derived in Chapter 2. the take-off angle ¢, satisfies an advection equation,

which written in evolution form in depth is

Iq _ vy Iq -
9z = vz dr’ (5.19)
where for 2-D VTI
vr = pi(2ag(1 +2€)35p; + Bpl — a3(1 + 2¢) — 33)/D. (5.20)
vs = pa(2a385p5 + Bpi — af — 53)/ D, (5:21)
with
ar
= —, 5.22
Dt oz’ (5.22)
p3 = -g—:-, (3.23)
B = 202(a2(e— &) + B(1 +6)). (5.24)
= 2 (ad(1+¢€) + f2)p? — (al + B)p. (5.25)

As in the isotropic case, I will use the adaptive-gridding approach for solving the
paraxial eikonal equation (5.12). The technique for solving equation (5.6) shown in
Appendix C could be modified to solve equation (5.19) as well, so the detail is omitted

here.
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5.6 Numerical experiments, II: VTI solids

To show that the adaptive-gridding strategy is efficient and accurate for anisotropic
media as well. [ demonstrate some numerical experiments for a two-dimensional VTI
soild.

To compute the traveltime, the adaptive-gridding approach is used for solving the
paraxial etkonal equation (3.12). To initialize the traveltime in homogeneous media.
[ use a modification of Algorithm 3.5, presented in Appendix B. Note that in the
homogeneous anisotropic media the take-off angle and its derivatives have analytic
forms. which [ can use to calibrate the numerical results for the simple homogeneous
media.

The example occupies the rectangle {—0.5 km < z < 0.5 km.0 < =z <1 km };
the source is located at r; = 0.0 km. r3 = 0.0 km. The four Thomsen’s parameters

of homogeneous Green River Shale are

ag = 3.330km/s,

8o = L.768km/s.
e = 0.195,
6 = —0.220.

Because the parameter § has the same magnitude as ¢, the near-vertical anisotropic
response is dominated by § (Thomsen [Tho86]); hence I use this example to demon-
strate not only the accuracy of the adaptive-gridding approach, but also the capability
of the approach in capturing the anisotropy of wave propagation.

The grid sampling size is Ar = Az = 0.0lkm. The adaptive-gridding approach
has a computational grid which is independent of the output grid. For the adaptive
gridding. MAXREF is set to 5 with the coarsest grid 17 x 17, and the error tolerance

is set to be 0.0001. To simplify the implementation for weak VTI media, [ set the
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radiation pattern of the source to be constant (as stated in Chapter 2. I need to solve
a nonlinear equation to get the anisotropic radiation pattern of the source. and it is
left as a future topic). The computational results are shown in Figures 5.12 to 5.18.

Figure 5.12 (left) is the traveltime contours of the 2-D VTI model. and the
anisotropic effects on the wave propogation are evident. Figure 5.12 (right) is the
traveltime calibration at the bottom = = lkm for the adaptive-gridding approach by
using a simplified version of Algorithm 3.5. presented in Appendix B: the comparison
shows that the traveltimes by different approaches match very well.

. .. 0 :
Figure 5.13 (left) is the contours of derivatives ()—T computed by the adaptive-
T

gridding approach. Figure 5.13 (right) is the calibration result for —T The analytical

Jzr

solution is computed by using the algorithm presented in Appendix B. and the two

—

. . . . . . - ¢
computed derivatives match very well. Similar observations hold for derivatives —:

-~

see Figure 5.14.

Now [ will discuss the computational results for the takeoff angle and its deriva-
tives. Figure 5.15 (left) is the contours for the takeoff angles by the adaptive-gridding
approach: the contours are straight lines because the rays in homogeneous anisotropic
media are still straight. The analytical solution for takeoff angles has an explicit form
now. therefore the calibration in Figure 5.15 (right) shows that the takeoff angle
computed by the adaptive-gridding approach is accurate.

Figure 5.16 (left) is the contours of derivatives Z—qxl computed by the adaptive-
gridding approach. Figure 5.16 (right) is the calibration result at the bottom : =
lkm for the adaptive-gridding approach by using the analytical solution. Because
q1 = 0 is a sonic point where the accuracy of numerical derivatives % is poor, this
inaccuracy is observed near the apex in Figure 5.16 (right). Away from the sonic point,

the adaptive-gridding solution and analytic solution match very well. Figure 5.17

ad . I~
(left) is the contours of derivatives i__l computed by the adaptive-gridding approach.

-~
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Figure 5.17 (right) is the calibration result at the bottom = = lkm for the adaptive-
gridding approach by using the analytical solution. and the result demonstrates that

] .. dq; .
the numerical derivatives g s accurate.

-~
o~

Finally, Figure 5.18 shows the amplitude field computed by the adaptive-gridding
WENO approach. The amplitude field is smooth as expected.

The computational results have shown that the adaptive-gridding approach works
very well for the traveltime and amplitude computation of the VT solid. [ expect that
the approach can handle the traveltime and amplitude computation of the general

anisotropic media as well.

5.7 Closing comments

The adaptive-gridding strategy requires an a posteriori estimate of the local trun-
cation error to perform grids adjustment. Since the traveltime field. the solution of
an eikonal equation. behaves in a predictable way as established in Belfi and Symes
[BS98]. a pair of finite-difference schemes of different orders can effectively predict
the local errors. However, for general nonlinear partial differential equations, it is not
a simple task to obtain an a posteriori error estimate; see Cockburn [Coc98] for the
discussion on nonlinear hyperbolic conservation laws.

Numerical experiments showed that the new method yields an efficiency gain of
more than an order of magnitude in computational time. Adaptive gridding does
not altogether eliminate the “magic number” feature, for which other approaches
were criticized in the introductory chapter of this dissertation; however, the “magic
number” here is the local-error tolerance . In principle, the local-error tolerance
¢ is proportional to the (global) error in the computed solution. but the relation is
complex (as the numerical example shows) and not a by-product of the algorithm.

Nonetheless I maintain that the simplicity and homogeneity of the algorithm, and
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Figure 5.13 Left: traveltime contours for a 2-D VTI model by the
adaptive-gridding approach: anisotropic effects on the wave propagation are
evident. Right: traveltime comparison at = = 1.0 km for the model:
adaptive-gridding traveltimes (*) and analytic traveltimes (-) match very
well.
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Figure 5.14 Left: contours of a—: for a 2-D VTI model by the
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adaptive-gridding approach. Right: comparisons of —z at = = 1.0 km for the

z
model: the adaptive-gridding solution (*) and analytic solution (-) match
very well.
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Figure 5.15 Left: contours of ir_ for a 2-D VTI model by the
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adaptive-gridding approach. Right: comparisons of 0—7:- at = = 1.0 km for the

model: the adaptive-gridding solution (*) and analytic solution (-) match

very well.
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Figure 5.16 Left: take-off angles for a 2-D VTI model by the

adaptive-gridding approach: the contours are straight along the ray. Right:
take-off angle calibration at z = 1.0 km for the model: the adaptive-gridding

solution (™) and analytic solution (-) match very well.
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Figure 5.17 Left: contours of da—ql- for a 2-D VTI model by the
T

adaptive-gridding approach. Right: calibrations of %ﬂ at z = 1.0 km for the

T
model. Since ¢; = 0 is a sonic point where the accuracy of numerical
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derivatives i is poor, this inaccuracy is observed near the apex. Away

o
from the sonic point, the adaptive-gridding solution (™) and analytic solution

(-) match very well.
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adaptive-gridding approach. Right: calibrations of qul- at z = 1.0 km for the
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del: the adaptive-gridding solution (*) and analy{ic solution match very
well.
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Figure 5.19 Amplitude contours for a 2-D VTI model
by the adaptive-gridding WENO approach.
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the direct if not apparent relation between = and the global solution error, make the
adaptive-gridding scheme easier to use than its alternatives. Also, the considerable
success of the variable-step selection methods for ODEs (Gear [GeaT7l]). which have
the same indirect error control feature, supports this contention.

At the outset of implementing the adaptive-gridding approach for amplitudes. [
used a third-order ENO schemes for solving the eikonal equation, which led to an
inaccurate amplitude field. The reason is that the third-order ENO scheme does not
produce a smooth flux. though the Hamiltonian was smoothed to some degree. So |

turned to WENO schemes. which yield the desired amplitude field.
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Chapter 6

Conclusions

From the inception. the objective of this dissertation has been to use upwind finite-
difference schemes to compute traveltimes and amplitudes in anisotropic solids. which
are needed in constructing the geometrical optics term for anisotropic solids. Because
of the theoretical work on the viscosity solution which is related to the first-arrival
traveltime. the specific objective of this dissertation is to develop theories and numer-
ical methods for constructing the geometrical optics term of quasi-P waves in general
anisotropic solids.

To that end. the first chapter not only overviewed the geometrical optics and the
asymptotic method for PDEs but also identified two difficulties associated with devel-
oping upwind finite-difference methods for traveltimes and amplitudes in anisotropic
solids. The first difficulty is the lack of a built-in reliable indicator of the ray velocity
direction. and the second one is the upwind singularity of the traveltime field at the
source. To overcome the first difficulty. | proposed a paraxial eikonal equation which
has a built-in reliable indicator of the ray velocity direction. To eliminate the second
difficulty, I proposed an adaptive-gridding WENO approach.

Chapter 2 presented the theories of the geometrical optics for quasi-P waves in
anisotropic solids. Section 2.1 applied the high frequency asymptotics to the linear
elastic wave equations to derive the eikonal equation for traveltimes and the trans-
port equation for amplitudes. With the eikonal equation in place, in section 2.2 |
constructed the paraxial eikonal equation for the quasi-P wave traveltime by making
use of the convexity of the slowness surface, which has a built-in reliable indicator of

the ray velocity direction. In addition, the existence of the construction was proved
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in Appendix A. Based on the paraxial eikonal equation. the amplitude formula in
Cartesian coordinates was derived from the one in ray coordinates (Section 2.3). To
compute the auxiliary quantities needed in the amplitude formula. I derived two new
advection equations for ray parameters (Section 2.3). The paraxial eikonal equation
and the two new advection equations provide sound foundations for the following
algorithm development.

The focus of Chapter 3 was developing the numerical methods of the geomet-
rical optics for quasi-P waves in anisotropic solids. The centerpiece of the chapter
was Section 3.1. In this section, I presented algorithms for computing the paraxial
Hamiltonian needed in solving the paraxial eikonal equation, along with a new algo-
rithm for initializing traveltimes in finite-difference schemes. Section 3.2 served as a
tutorial and gave a new derivation of a first-order Godunov scheme by using a local
paraxial ray-tracing technique. Based on the first-order Godunov scheme. Section 3.3
explored the construction of high-order ENO Runge-Kutta and WENO Runge-Kutta
finite-difference schemes, which are used to solve the paraxial eikonal equation for
traveltimes and the advection equation for take-off angles.

Chapter 4 applied the theories and numerical methods developed in Chapters 2
and 3 to solving the paraxial eikonal equation in transversely isotropic (TI) solids. To
appreciate the construction of the paraxial eikonal equation. in Section 4.1 I simplified
a paraxial Hamiltonian for TI solids with a vertical symmetry axis (VTI) by using
the maximum phase angle condition. To obtain a general slowness surface, in Section
4.2 I built an inclined TI (ITI) model by rotating a VTI model. In Section 4.3,
extensive numerical experiments were performed to verify the feasibility of the theory
and the efficiency and accuracy of the numerical algorithms, including examples for
2-D VTI solids, 3-D VTI solids, and isotropic and anisotropic Marmousi models.

Because of the generality of inclined TI solids, Section 4.4 consisting of numerical
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examples for [TI solids was specialized in illustrating the efficiency and accuracy of
the algorithms developed in Chapter 3 for general anisotropic solids. The numerical
examples demonstrated that the theories developed in Chapter 2 are feasible and the
numerical algorithms described in Chapter 3 are accurate and efficient in capturing
the anisotropic wave propagation.

In Chapter 5. the adaptive-gridding WENO approach was proposed to treat the
upwind singularity at the point source and compute the amplitude function for both
isotropic and anisotropic solids. It started with formulating the geometrical optics
term for isotropic solids (Section 5.1), including the paraxial eikonal equation for
traveltimes and the advection equation for take-off angles. Section 5.2 briefly men-
tioned the high-order WENO schemes for traveltimes and take-off angles, with details
presented in Chapter 3 and Appendix C. In Section 5.3, I plunged into the details
of the adaptive-gridding WENO approach for the upwind singularity at the source.
including an algorithm framework. To illustrate the adaptive-gridding WENOQO ap-
proach. Section 5.4 presented some numerical experiments to show that the approach
is efficient and accurate. In Section 5.5 and 5.6, the adaptive-gridding WENO ap-
proach was applied to computing the traveltime and amplitude in VTI solids. along
with some examples showing that the approach works for anisotropic solids as well.
The numerical examples showed that the adaptive-gridding WENO approach yields
accurate amplitude fields for both isotropic and anisotropic solids.

The theoretical and numerical results from Chapter 2 to Chapter 5 illustrated
that (i) the paraxial eikonal equation has a built-in reliable indicator of the quasi-P
ray direction so that it can be used safely for extrapolating the traveltime field by
using upwind finite difference schemes; (ii) the adaptive-gridding-WENQO approach
can treat efficiently the upwind singularity of the traveltime field at the source and can

vield an accurate amplitude field as well. Hence. the theories and methods developed
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in this dissertation provide tools for constructing the geometrical optics term of the

quasi-P wave in general anisotropic solids.

6.1 Contributions

The first contribution of this dissertation is the introduction and algorithmic devel-
opment of paraxial eikonal equations for quasi-P waves. The second contribution is
the use of adaptive-gridding WENO strategy in treating the upwind singularity at

the point source when computing the amplitude field.

6.2 Future work

There are several directions which merit further investigation:

l. The central hypothesis of the dissertation is that the first-arrival traveltime
in anisotropic solids is a viscosity solution of a nonlinear partial differential
equation. It is necessary to verify this hypothesis by using the viscosity theory

(Crandall and Lions [CL83] [CL84]).

2. The current research concerns only the computation of quasi-P traveltimes by
finite-difference schemes. Because of cusps in the quasi-transverse (quasi-S)
wave propagation, it is unclear how to compute the related traveltimes on
Cartesian coordinates by finite-difference schemes, though there are some at-

tempts in this direction; see Steinhoff et. al. [SFWO00], Ruuth et. al. [RMO99].

3. The paraxial eikonal equation introduced in this dissertation produces only a
limited aperture traveltime field along r3-direction. A natural question to ask
is how to generate a full aperture traveltime field. Notice that the methodology

presented here can be used to formulate the paraxial eikonal equation in other
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directions as well. Then based upon these paraxial formulations of eikonal
equations and Fermat’s principle. the down-and-out (DNQ) technology. first
introduced by Dellinger and Symes [DS97] and then extended by Kim and
Cook [KC99]. may be used to generate the full aperture traveltime field. This

possibility is left as a future topic.

This dissertation is interested only in first-arrival traveltimes and related ampli-
tudes. If one wants to capture caustics. the situation is totally different and the
amplitude formula presented in the dissertation does not hold. Benamou and
Solliec [BS99| have formulated an Eulerian method for capturing the caustics
in isotropic solids: therefore. it is promising and challenging to capture caustics

in anisotropic solids using an Eulerian method.

The purpose of constructing the geometrical optics term is providing tools
for seismic imaging: hence it is natural to embed the anisotropic traveltime-
amplitude solver in the Kirchhoff inversion/migration codes to see how it works

in practice.

The 2-D version of the adaptive-gridding WENO traveltime-amplitude solver
vields an efficiency gain of more than an order of magnitude in computational
time. Because all the difference schemes presented in the dissertation are for the
three-dimensional case, there is no difficulty in implementing a 3-D version of the
adaptive-gridding traveltime-amplitude solver for both isotropic and anisotropic
solids. Moreover, the efficiency gain in computational cost is expected to be even

more dramatic in 3-D cases.

. With the anisotropic traveltime-amplitude solver in hand, it is attractive to

extend differential semblance optimization (DSQO) for the velocity analysis in
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isotropic media to the velocity analysis in anisotropic media (Symes [Sym90].
Symes and Carazzone {SC91]. Chauris and Noble [CN99]) in that the velocity

of the medium is one of the ultimate goals in the seismic inversion.



Appendix A

Some Results from Convexity

Assuming that the slowness surface S is C'. bounded. closed and strictly convex. I

prove the following results.
Theorem A.1 For any given

(p1-p2) € {(p1-p2) : 3p3 s.t. S(p1.p2.p3) = 0}, (A.1)

draw the straight line passing through (p},p3;) and parallel to p; axis
in the (p,.p2-p3) space. then there exist at most two intersection points
(pi.p5-pL) and (pi.p3.p3). The outward normals at the two intersection

points have p; components of opposite signs.

Proof: Consider 2-D case; 3-D similar. By strict convexity of the slowness surface.
for pi given, there are at most two intersection points. Without loss of generality,

for pi given. assume that there exist p} and p3 such that S(p},p}) = S(p;.p?) = 0.

Figure 2.2.

Let p} > p3. For p; € [p%, p}]. define two functions

f(ps) = sup{a:S(a,ps) =0.a > pi}. (A.2)

g(ps) = inf{a:S(a,p3) =0,a <pl}. (A.3)

Both f and g are well defined and convex (or concave) by convexity of S, and one of

them must satisfy that

flps) = pi = fpd) (A.4)
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or
g(py) = p;=g(p3). (A.5)

Without loss of generality, suppose f satisfies the above constraint, then its graph
corresponds to a section of slowness surface S.

By Rolle’s mean theorem. there exists a £ € (p2, p}) such that

df
o (© (A.6)
However. T s strictly monotonic by strict convexity of f. so
aps
df . df -
E(ps)dps(m) < 0. (A.T)
df

)
Assuming that i(pé) < 0 and (p2) > 0. they define the tangents at those two

dps dps
points: see Figure 2.2. [t follows that the outward normal at (p], p}) has acute angle
with positive p3 direction, so it has positive p; component. Similarly, the outward
normal at (pi.p3) has negative p; component.

By Theorem 1, the following function is well defined.

Definition A.1 For (plepz) € {(P17P2) : 3p3 s.t. S'(plrp27p3) = O}-

define p3 = H(p,.p2) satisfying that
aS
S(p1.p2. H(p1,p2)) = 0, a—p—a‘(l’hpz, H(p1,p2)) > 0. (A.8)

Theorem A.2 2-D case. Suppose 9Q = {(p1,p3) : S(pi1,p3) =0} is a

bounded closed set. Under the assumption of Theorem 1, the following

two sets are both nonempty:

F = {p{:3ps.05 = f(p3) = p} = f(P3)}. (A.9)
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G = {p;:3ps.p5 = 9(p}) = p; = g(p3)}. (A.10)
where p] satisfies that there exist p} and p3 such that
S(pi.p3) = S(pi.p3) =0, (A.11)
and f and ¢ are defined in Theorem 1. Moreover, inf F < sup G.

Proof: Obviously, at least one of them is nonempty. Without loss of generality.
let F' be nonempty. Suppose G is empty, it means that all the p, € {p, : Ips s.t.
S(pi.p3) = 0} is in F. Because F'is a closed bounded set. 3 = inf F > —oc. For
p; = 3. 3 p} and p? such that % is strictly monotonic in [p3.p}], hence S can
not be closed, which is a contradiction: it follows that G is nonempty. Moreover.

if inf F© > sup G. S consists of two branches which are not connected: therefore, it

cannot be a closed convex set. It follows that inf FF < sup G.

Theorem A.3 2-D case. Under the assumption of Theorem 1 and

Theorem 2. among all (p,.p3) such that
as
S(plvp:‘}) = 0'. ()_(Pl-p?») Z O’ (‘L\IZ)
P3

there are p™in, pax such that

. : 1 a9s, . ;
SGP. HGE™) =0, S (P HT™) =0, (A.19
b(pl L) (pl )) =07 |stlap3(pl : (pl )) =0' (‘.\'14)

For0< A< 1andp €[(1-— A)PTin~(1 — A)pP].

1 as
W%(Ph”(lh)) > 0O(A)>0. (A.15)
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Proof: By Theorem 1 and F # 0, for Vp; € F. 3f such that d—f <0 and d—f— is
P3 P3

d
strictly decreasing in [€, p3]. where —f(f) = 0. Define pT"** = f(&). then € = H(px).
o (A.14) holds. By strict monotomcxtv of function f in [£, pi]. for py = (1 — A)pPax

there exists n € (£, pl) such that

fny =(1=27)p™ . o=——(n) <O. (A.16)

1 d
Then the out\l\'ard normz:; at (f(n).n)is( T \/IIO_: = ). Because # is strictly
decreasing, -('—f—(pg,) < —f—(n) < 0 if p3 > n. Furthermore. for p; € F and p; <
dp3 dps
(1 _A)pmax.

1 aSs
|\—’5(P1~, H(py)) I 0

Similarly, by G # 0. there exists p™" such that (A.13) holds. Also. for p; € G.
p1 > (1= X)pPn,

(pi.H(py)) =2 O(A) > 0. (A.17)

1 as
IV S(pi. H(p1))| Ops

Finally. by inf F < sup G, for p; € [(1 — A)pPi", (1 — A)pPa*] we have

1 a8
IV S(pi. H(p1))| Ops

Definition A.2 2-D Hamiltonian H,. Given A > 0, p®, p"®* defined

(pr.H(p1)) 2 O(A) >0. (A.18)

(pr.H(p1)) = O(A) >0. (A.19)

as in Theorem 3, for Vp, € R!, define function Ha:

H (p) if pr € [(1 — A)pP™™, (1 — A)pP],
Ha(p) ={ H((1—A)pf") elseif py < (1 — A)pPn,
H ((1 — A)py™) elseif py > (1 — A)p™™
(A.20)
Theorem A.4 Suppose S is C2. The Hamiltonian H, is concave, C?
in the interval ((1 — A)p™™, (1 — A)pP>*) and C° in R.
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Proof: Only need to consider H, in the interval ((1 — A)p™". (1 — A)p>*). By

S(pi.p3) = S(pi.H(p:)) =0, (A.21)

take the derivative twice with respect to p; in the above,

T

RS 32s e s
L Toipi Fpiors by,osed (A.22)
3H 225 azs IH dp3 OpOp,
dpy Ip1dps  Ipa3dps 3py

The Hessian matrix in the above is positive definite by S strictly convex and d—s > 0.
so we have % < 0. It follows that H is concave in ({1 — A)pPin, (1 — A)pPax). H,

max

is constant outside ((1 — A)pTin, (1 — A)pT2¥), so it is concave.

Theorem A.5 3-D case. Given A > 0, for any radial plane p; = kp;
cutting through slowness surface S. two intersection points (pf™". kpPin) =

(PFn(k). kp™(k)) and (pI*, kpPa=) = (pP™(k). kp=(k)) exist such that

S(pmin kpTin, H(pT®, kpPi®)) = 0. (A.23)
1 85
min k min H mln mln —_ :\‘24
S(p™=, kp™<, H(p™, kp™)) = 0, (A.25)
lvgl a p p p H pl - . SR

For p1 € [(1 — A)pn(k), (1 — A)pF=*(k)] and p, = kpy,

1 a9s -
Ivsl (Pl D2. H(PI-P2)) 2 O(A) > 0. (“‘\'2‘)
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Proof: When & = 0 or £ = oc. the Theorem reduces to the 2D case. which
is proved in Theorem 3. Otherwise we can rotate the axes of the coordinates by

orthogonal transformation

1 0
V142 V14+k?
[ = & 1 I8
M 1+42 V14k2 0 (A"'b)
0 0 1

such that the new op; lies in the plane p, = kp, and op, is perpendicular to it. Thus
we have reduced the 3-D problem to a 2-D problem in op, ps coordinate plane. By
Theorem 3, there exists p;™" and p,™* such that

o o
1 5, iin

i ’ "' min — 9
IVS'I aps (pl N fI (pl )) 0? (_..\__9)

Svl(p'lmin? Hl(p’lmin)) =0.
I 98

IVSIl-a_p_;(pl H'(py™*)) = 0. (A.30)

§'(p™. H'(p,™)) = 0.

where S" and H' are intersections of the slowness surface S and Hamiltonian H with
op} ps plane (or radial plane p, = kp;), respectively.
Performing the inverse transform to pull the above result back to original co-

. - H H ’ H
ordinates. we have an interval [p", pP**], where p™" = 71:_71’1""" and p"** =

1:4:'— P;max~ such that for p, = kp; Theorem 5 holds.

[t is convenient to parameterize the horizontal plane (p,, p:) by polar coordinates
(p1.p2) = (pcoso,psing), (A.31)
and I can summarize Theorem 5 into a Corollary.

Corollary A.1 For each planar angle ¢, the family of planes with out-

wrad normal (cos @, sin ¢, 0) is tangent to the slowness surface at the point

P = (pmax(é) cos é~pmax(é) sin o, Ps(O)). (A‘}?)



which is unique and satisfies
S(Pmax(@) cos O. prmax(@) sin d. p3(@)) = 0. (A.33)

1 9§

I\_/—Slﬁ(pmax(o) COS @. Pmax(@) sin . p3(0)) = 0. (A.34)

For 0 < A < L. p < (1 = A)pmax(9) and (p1.p2) = (pcos 0. psin @). we

have

1 a8
—a—(p1.p2. H(p1.p2)) = O(A) > 0. (A.35)
|V S| dps

Proof: The uniqueness follows from the strict convexity of the slowness surface.
Remark: By the method of characteristics, we can see that Theorem 3 just puts a
positive lower bound for the third component of the normalized ray direction: namely.

the group angle of the ray with the vertical axis never goes near 90 degrees.

Definition A.3 Three-dimensional Hamiltonian H5. Given A > 0. for

any

(PleP?) = (PCOS Q-,PSin O).
there exists pmax(®) as in Corollary 1; define function Hx:

H(py.p2). if p < (1 — A)pmax(0);

H (1 ~ A)pmax(@) cos @, (1 — A)pmax(@) sin @) . else.
(A.36)

Hx (p1.p2) = {

Corollary A.2 Under the assumption of Corollary 1, the inequality

OHA\? [0HA\? 1
A < — A.37
J(@m) +(3P2) - O(A) (A.37)

holds.
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Proof: By using ray equations (2.16), (2.19) and (2.20). we have

Q

a8 Ior
9% _ _ . (A.38)
Ip H — Pl% - Pz%

as =

== 3915'2 oH * (A.39)

dp2 H —pi5 — P25,

as 1

=2 = ; . (A.40)
dps  H—pi5t —p25t

The inequality follows by using Corollary 1.



110

Appendix B

Initialization of Traveltimes in VTI

Assuming that the VTI medium is homogeneous. | only need to consider the 2-D
case because of the transverse isotropy with respect to the vertical symmetry axis.
Given source point (], r3}) and target point (z$.z3), I will try to find the traveltime

between these two points. Suppose r] — r{ > 0 and r§ — 5 > 0. then the group

. , rs — x3 ‘ , .
angle o at (rj.r3) satisfies that tano = —3—3 and ¢ = &(0) where 4 is the phase
Iy — I

angle at (rj.r3). I can find the phase angle by a bisection iterative method just
like Algorithm 3.5 in Chapter 3. and then I can compute the group velocity from
the raytracing equation. Finally the traveltime follows from the group velocity. The

following algorithm is a simplified version of Algorithm 3.3.
e Input: (r},r}), (3, %) and aq. Jo, €. .

o Set ry =10 —r}, z3=x5— 3, 7 = (1.0)T, 7, = (0.1)T:

| =

o Compute 7 = 3(fi) + 7i2); 7 =

Sy

e do

— Compute (vgl, vg)T = ﬁ(fi, ao, Po- €, 6).

3
v I3 . - — —
- 1f—‘i2-—— i, =n;else i, =n
v T
g
- - I )
— Compute i = 3(, + y); 1 = iR

e until (n,(2) > n(2) or n(2) > n,(2))

. Vi + 23
e Compute traveltime t = ———=x—.
S+ (53
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In the above algorithm. I use the raytracing equation (F denotes the righthand

side):
vy = pi(2a5(1 +2€)85p7 + Api — aj(1 + 2¢) — 33)/ D,
e} = pa(202380% + APk — o} — 33)/D.
with
A = 2ai(eg(e —8) + 35(1 + 6)).
D = 2—(a3(l+¢)+33)p} — (o) + 33)p3:

P1- p3 can be computed from the phase velocity and phase normal 7.



Appendix C

WENO Schemes for Advection Equations

Recall the advection equation for the takeoff angle.
To match with the evolution form of the eikonal equation in depth. I formulate

the advection equation as an evolution equation in depth as well. i.e.,

, A\ =L ,

2% = - (g_’) o (C.2)
To fully take advantage of the accuracy of traveltimes produced by the WENO

Runge-Kutta third-order scheme for the eikonal equation and simplify the implemen-

tation. [ embed the third-order scheme for equation (C.2) into the third-order scheme

for the eikonal equation.

At first. introduce the approximations for x-derivative and z-derivative of 7 in the

above advection equation:

-—gT ~ D.[r] = max(D;V?7,0) + min(DFV37.0), (C.3)
T
g—f ~ H(D%r). (C.4)

. . . . . 99 .
Next, define the upwind difference approximation for ()— Because the choice of
T

stencil in ENO schemes is too sensitive to the zeros of solution (Liu et. al. [LOC94],

Jiang and Shu [JS96], I use WENO schemes to approximate the derivative g—g.
I

Because the coefficient of the discretized advection equation has only second-

order accuracy, which is computed from the eikonal equation by a third-order WENO
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do
scheme. | use a second-order WENO scheme to approximate the derivatives Er The
r
second-order WENO scheme is based on the second-order ENO stencils. so it does
not give rise to any new complexities in the coding. See Chapter 3 for details.

The second-order WENO schemes for ¢ are (Jiang and Peng [JP97]):

or
(%?‘MD;““@')? = (D+ '+ DFol) — "(D;“éf_z—zD;‘af-‘_wD:oé‘)
(%‘f)."zw:‘“zo')f = L(Drek, + Do) — SE(Dret,, —2DFof + Dok,)
where

v = | L _ 8+ (D7 DZ of)?

T T 1422 T T 5§+ (D-Dreb)?

s — 1 . 5+(D+D+ )2

*T 122 YT S+ (D-Drob)

and ¢ is a small positive constant to avoid the denominators from becoming zero.
] . do .
Now [ define the upwind WENO difference for ()— which corresponds to the up-
T

wind direction of é—— as follows:

Jdr
‘ D;%2sf if Dalr]f 20,
Drs; = . (C.5)
DWV2ok  else.
Finally, I can formulate the third-order WENO Runge-Kutta scheme for the ad-

vection equation as

8o = A—~\IJ(“~‘ &),
82 = (53‘¢+_\ ¥(D3(r + &7). 6+ 839)) ,
$Bo = ()6§¢+u W(D(r + 8%7). 6 + 830)) . (C.6)

where

_D.[r]Drg.

Hre) H(DA(r))
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The third-order scheme for ¢ is then
o = o +830* (C.8)

for &/ = 0.1.2.---. But this scheme is really a second-order scheme. because the
coefficients have only second-order accuracy.
With a few changes. the above scheme can be modified to solve the advection

equation for 7,. the out-of-plane curvature.



Appendix D

Estimate the Initial Step

To initialize the traveltime for finite-difference schemes. I assumed that the velocity
near the source is constant and equal to the source velocity. Now [ desire to analyse
the traveltime error caused by this assumption and furthermore compute an a priori
estimate of the initial step.

Assuming that the source is at origin, consider the two-dimensional ray-tracing

equation. By the method of characteristics, [ have

r = vzp, (D.1)
P = viq. (D.2)
1 dv
) = ———, D.3
P vir’ (D.3)
1 dv
] = ———, D.4
1 vads’ (D-4)
where the dot - denotes the differentiation with respect to time ¢ along the ray: p = ?
] z
and ¢ = 3—;
Denote the group angle as 8. then we have
r = vusinb, (D.5)
Z = wvcosb; (D.6)
furthermore. equations (D.1) and (D.2) yield
sin g
= , D.7
p o(z.2) (D.7)
cos @
q = (D.8)

v(r,z)
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Differentiate equation (D.7) with respect to time ¢ and simplify the resultant

equation. then [ have

dv

6 = —cosﬂ%-}-sinHa. (D.9)

Now [ introduce polar coordinates, i.e..
I = rsing, (D.10)
z = rcosy. (D.11)

Differentiating equations (D.10) and (D.11) with respect to time ¢ and solving for r
and ¢-. I have
r = vcos(d — v). (D.12)
b o= gsin(ﬂ—u). (D.13)

Next [ want to estimate (8 — ¢*). First of all. I have |§ — ¢*| < =, since for the

downward wave propagation both 6 and ¢ lie in the interval (—3. ). Define

a(t) = 0. (D.14)
b(t) frfts'(no(a_——df;) (D.15)
then by (D.9) and (D.13) I have an ordinary differential equation for (8 — ¢*).
i—d = a)- "o vy (D.16)
its solution is
t t
9 — v = /0 dm(r)exp(-/T dab—g—)-). (D.17)

Because b(¢) > 0 and the function a is bounded by aa.. which is equal to the
supremum of the length of gradient of the velocity, i.e., |a] < amax. equation (D.17)

vields an estimate for 6 — v,

10 — ] < amaxt. (D.18)
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Now [ can get an approximate relative error estimate for the traveltime. Denote
to as the approximation to the exact traveltime ¢t when using the constant velocity v

at the source as the approximation to the exact velocity v. Since

to = I = icos (0 — ). (D.19)
Vo to
we have
to—i = (Li—1)cos(0—¢')+cos(0—¢')—l; (D.20)
"0

furthermore.

lto — | < :—’—1‘+|cos(0—¢)—1l. (D.21)
’0

Noticing that if |t — £| < ¢, then |to — t] < =t. So let’s specify that

v
——1] <
o

(VAN

and

|cos(8 — ) — 1| <

[VEREY

Expanding v at the origin (the source) by Taylor theorem with remainder. I have
o(2.2) = ot TG )T+ D (Gorma) (D:24)
where ((;.m) and ((2.n2) lie in
D = {(¢.n):min(z,0) < ¢ < max(c,0).0 <7y <=} (D.25)
Consequently,

oz, 2) — vol < V2rsup{|Vu(¢,n)|: [¢] < [z],0 < n < =} (D.26)

by Cauchy inequality.



Because [ am only bounding the error inside the aperture.

|z| < = tan Gmax. r< ——— (D.27)
c0S Omax

it follows that

V2r

——| < T sup{IVe(Cn)l £ [0l < s tanfna 0 < 7 < )
2
S U;r sup{[Vv(C.n)l : ICI S “max tan omaxvo _<_ n S :max}
D~
< VB (D-25)

o cOs Opax

where zpax is the maximum depth and
B = SUp{IVU(C.I])I 1 ¢ € zmaxtanbma,0 <n < :max}- (D.29)

For (D.22) to hold. by (D.28) = should be chosen such that

Ugs COS omax E
—W . ( D .-30 )

Finally I choose = so that (D.23) holds. and a lemma is needed to do so.

¥

<5o=

Lemma 1 Along a ray segment {(x(7),=(7)) : 0 < 7 < t}, the following

inequality holds:

t< L (D.31)
Umin
where r = /z2(t) + z2(t); Umin is the minimum velocity along the ray

segment.

Proof: Denote the true ray path as s and its length |s|, and the straight ray path
as [ and its length |{| which is equal to r. In addition, [ is used to approximate the

true ray path s. Then by Fermat’s principle, I have

z=/@lg/w35/@-l i (D.32)
s v { v {

Vmin Umin
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Using (D.18) and Lemma L. [ have

) 6 — v
|cos( —v) — 1| = |—2sin® ( 5 )

< (6 — ¢)?
- 2

2 2
< r amax
- Urznin

2 2

r‘B
< IR

Umin

where [ have used the relation amax < B inside the aperture. Hence to make (D.23)

hold implys that

& Umin 6 ax
<z = \/;_v___(_:_;_s_m__ (D.33)

So for error tolerance =. zjn; should be chosen such that
Zinic = min(z;. ). (D.34)

Although both z; and =2 depend on B (the bound of gradient of velocity model).
there are at least two ways to estimate B. One way is simply setting B to be a
big number which is larger than the actual value; the other way is computing the
gradient of velocity model from the given discretized model. Both ways will produce

a reasonable initial step.
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