


ABSTRACT

A Systematic Measurement of µ+µ� Production in p+p and p+Au Collisions at
p

sNN = 200 GeV with the STAR Detector

by

James Daniel Brandenburg

Most of the matter around us today is made up of protons and neutrons, but in the first

few moments of the universe the temperature and density were too high for tightly bound

protons and neutrons to form. Instead of being bound inside protons and neutrons, quarks

and gluons existed in a plasma-like fluid called the Quark Gluon Plasma (QGP). As the

universe cooled and expanded, the matter that we have today began to form. An under-

standing of nuclear matter and the transition from QGP to normal matter (and vice versa)

can in principle be ascertained from the fundamental theory of the strong interaction, Quan-

tum Chromodynamics (QCD). In practice though, the current state-of-the-art calculations

provide only limited information about the properties of QCD matter. The transition from

normal matter to QGP can be studied in the laboratory using relativistic heavy-ion collisions

like those produced by the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National

Laboratory.

Studying the QGP through heavy-ion collisions has its challenges though, since the cre-

ated matter evolves through many stages before the final state particles can be detected.

Learning about the earliest stages of the system requires penetrating probes, capable of car-

rying information from inside the medium out to the final state. Electromagnetic probes,

such as leptons, are inert to the strong force. For this reason, they carry pristine information

from all stages of the created medium. Dileptons (l+l�) are even more valuable, since the

various production mechanisms and time periods of the system can be distinguished through

the invariant mass of the pair. For instance, the suppression in production of heavy quark



(charm and bottom) bound states, which can be identified through dileptons, has long been

considered a direct probe of the QGP [1]. At lower masses dileptons can be used to measure

the spectrum of thermal radiation of the medium, acting as a “fireball thermometer” [2].

Dileptons are also linked to the phenomena of spontaneous chiral symmetry breaking (and

its expected restoration inside the QGP) through the ⇢-meson which decays into dileptons [3].

In this thesis, the first measurements of the dilepton invariant mass spectra through the

dimuon (µ+µ�) channel with the Solenoidal Tracker at RHIC (STAR) are presented. The

µ+µ� invariant mass spectra is measured in data from p + p collisions at
p

s = 200 GeV

and p+Au collisions at
p

sNN = 200 GeV. The first measurement of the � ! µ+µ� spectra

at STAR is also measured in p + p collisions at
p

s = 200 GeV. For these analyses novel

muon identification techniques were developed to combat the contamination from hadrons

and secondary muons resulting from weak decays. Techniques are presented for training

and employing deep neural networks for the identification of muons and for the rejection

of backgrounds. Data-driven techniques are presented for the measurement of muon-purity

and for the estimation of physical backgrounds to the µ+µ� invariant mass spectra. The

measurement of the µ+µ� invariant mass spectra in p+p and p+Au collisions is also compared

with the expected dimuon yields from light hadron decays, open heavy flavor decays, and

the Drell-Yan process. Finally, the potential for future dilepton measurements at STAR is

discussed in light of the new datasets collected in the recent years.
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Chapter 1

Introduction

1.1 The Standard Model

Curious minds have long sought to understand the fundamental realities of nature. This task,

once relegated to philosophers, has in recent times become the work of science. Physics,

from the ancient Greek ���◆⌘́ for “nature”, is the modern incarnation of this pursuit.

Reductionism has been the favored tool of physics: perpetually explaining large complex

systems by breaking them down into their constituent parts and interactions [4]. Over the

course of hundreds of years, this discipline has slowly but surely shed light on the fundamental

constituents of matter and the forces governing their interactions. The Standard Model (SM)

of particle physics is the current state-of-the-art description capable of describing most matter

and three of the four known fundamental forces (gravity is not yet included).

The Standard Model, shown in Fig. 1.1a, consists of matter particles (fermions, spin

1/2) and force carriers (bosons, spin 0 or 1). The matter particles interact through the

fundamental forces via the force carrier particles (see Fig. 1.1b) and are sub-divided into

quarks and leptons. James Maxwell first described classical electricity and magnetism in

1873 [5]. In the SM these forces, combined into the electromagnetic (EM) force and mediated

by the photon (�), are described by Quantum Electrodynamics (QED). Shortly after, the

theory of weak interactions (10�11 times weaker than the EM force) mediated by the massive

W± and Z0 particles was developed to explain Earnest Rutherford’s 1899 discovery of �

decay [6, 7]. The SM’s current form was born in 1961 with Sheldon Glashow, Abdus Salam,

and Steven Weinberg’s Nobel Prize winning accomplishment combining the descriptions of

electromagnetism and the weak force [8–11]. Before that time the description of these forces

stood somewhat alone as mostly disconnected islands of understanding. Later the third

fundamental force in the SM, the strong force, was developed to explain how the dense nuclei

of atoms remained bound despite the EM force pushing the positively charged protons apart.

The strong force, mediated by the color charge carrying gluon, is described by Quantum
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(a) (b)

Figure 1.1 : (a) The particles included in the Standard Model of particle physics. The
quarks and leptons make up the spin 1/2 matter particles called fermions. The spin 0 or
1 bosons make up the force carrier particles. (b) A schematic of the interactions between
matter particles and force carriers in the Standard Model of particle physics.

Chromodynamics (QCD) and is the main force of interest in this work. Despite providing

some of the most accurate predictions of any scientific theory, the SM is not complete [12].

It does not include a description of the fundamental force of gravity or a viable candidate

for dark matter, and until recently could not explain the mass of the fundamental matter

particles. The Higgs mechanism, named after Peter Higgs but simultaneously proposed by

several individuals in the 1960s, postulates the existence of the Higgs field responsible for

giving finite masses to the W± and Z0 force carriers as well as the mass of the quarks and

leptons [13].

The most recent addition to the SM came on July 4th, 2012 when the Compact Muon

Solenoid (CMS) and A Toroidal LHC ApparatuS (ATLAS), experiments at the Large Hadron

Collider (LHC), jointly announced that their search for the Higgs Boson led to the discovery

of a new particle with a mass of ⇠125 GeV/c2. At the time it was not known for certain if the

particle they had discovered was in fact the Higgs Boson, responsible for giving mass to the

other fundamental particles. Since that time countless measurements have been combined to

precisely measure the properties of this new particle, confirming that this is in fact the Stan-

dard Model Higgs [14,15]. This discovery earned Peter Higgs and Francois Englert the 2013

Nobel Prize in Physics and marked a monumental achievement for the international scien-
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Figure 1.2 : The masses of the 6 known flavors of quarks shown in MeV/c2. The mass
generated by the Higgs mechanism is shown in blue while the mass generated by the QCD
vacuum is shown in taupe [16].

tific community. The discovery of the Higgs Boson represents decades of work by thousands

of scientists around the world. The search for the Higgs Boson was motivated by a simple

question: what gives fundamental particles like the W± and the Z0 their mass? However, the

mass of the proton and neutron, the constituents of almost all the matter we see around us, is

not entirely explained by the Higgs mechanism. Unlike the fundamental particles, the mass

of these objects is believed to be an emergent property of the fundamental characteristics of

QCD. My own interest in high energy nuclear physics was largely born from this question of

how the protons and neutrons gain their observed mass. Before returning to this question,

an introduction to QCD and higher energy nuclear physics will be discussed.
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Figure 1.3 : Step-like lines show the spectra of non-strange mesons as a function of mass.
The lowest curve includes roughly the set of mesons that Hagedorn originally used. The
higher two curves include measurements from later experiments. The solid and dashed lines

are exponential fits of the form dN/dM / Mae
M

TH to the data. [17]

1.2 High Energy Nuclear Physics and QCD

1.2.1 Historical Origins

The origins of high energy nuclear physics and the development of QCD are intimately con-

nected to advances in particle physics. The advent of higher and higher energy particle

colliders led to an explosion in the number of hadronic states discovered in the 1960s and

1970s. So many states were found that Enrico Fermi is quoted, somewhat jokingly, saying:

“If I could remember the names of all these particles, I would have been a botanist!” Rolf

Hagedorn, a researcher of the Max Planck Institute at the time, began working on this prob-

lem to understand the exponential increase in observed hadronic states as a function of their

mass. While few clues existed, he took note of the exponential drop in the transverse mass

spectra of secondary particles, the lack of scaling with collision energy (expected from Boltz-

mann’s Law) of the momentum distribution and the exponential drop of elastic scattering

at wide angles [17]. These clues led him to believe that the products of these reactions were

emitted from a common thermal source or “fireball”. However, Hagedorn was not the first to

propose a statistical mechanical description of these excited nuclear levels. Already in 1936

H. A. Bethe suggested that the density of states should rise exponentially (⇢(E) / eb
p

AE

with constant b and mass number A) [18]. These early models failed to describe the spectra

of the lightest hadrons though (specifically ⇡±, m⇡± ⇡ 139.5 MeV/c2). Hagedorn remedied

these di�culties in the Statistical Bootstrap Model (SBM) of Hadronic States [17,19,20]. In
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Figure 1.4 : The nonet of mesons with spin 0 predicted by the quark model.

his model (see Fig. 1.3), the fireball temperature, called the Hagedorn Temperature (TH),

was extracted by fitting the hadronic mass distribution to an exponential. Using an expo-

nential of the form dN/dM / Mae
M

TH , the Hagedorn Temperature is found to be TH ⇡

160 MeV (⇡ 2⇥1012 K) [20]. In Hagedorn’s model, the heavy hadronic states, composed of

lighter point-like constituents, form a gas that radiates like a thermal source at a constant

temperature. The Hagedorn Temperature represents the maximum temperature of the gas

at which further energy added to the system is added as latent heat needed to populate the

higher excited states. As more and more excited states are populated the relevant degrees of

freedom of the system grow.

The constituents of these heavy hadronic states were not known until the 1969 Nobel prize

winning work of Murray Gell-Mann (and George Zweig among others) in which he introduced

the quark model [21]. The quark model proposed fundamental particles called quarks (see

Fig. 1.1) and organized the various hadron states according to their quark content. An

example of the organization scheme of the quark model can be seen in Fig. 1.4. In the quark

model, the lightest three flavors of quarks, up (u), down (d) and strange (s) (with masses

mu ⇡ 2.3 < md ⇡ 4.8 ⌧ ms ⇡ 95 MeV/c2) are arranged in an SU(3)flavor symmetry. The

flavor subscript in SU(3)flavor denotes that the symmetry is with respect to flavor e.g. u,

d and s. Since the strange quark is significantly more massive than the up or down, a more

nearly exact SU(2)flavor symmetry exists with only the two lightest flavors. This SU(2)flavor

symmetry, often called isospin, in analogy to quantum mechanical spin, is used to explain

the symmetries between the proton and neutron. Since the u and d quark masses are not
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actually identical, the SU(2)flavor symmetry is not exact, thus the di↵erence between the

proton and neutron mass. The quark model allowed Gell-Mann to predict the existence of

new hadronic states such as the spin 3
2 ⌦

� baryon consisting of three strange quarks (sss)

with a mass of ⇠ 1.6 GeV/c2. The discovery of this state at Brookhaven National Lab

in 1964 was the confirmation that the quark model needed. However, according to Pauli’s

exclusion principle, fermions should not be able to fill states with identical quantum numbers.

Therefore, explaining the spin 3
2 ⌦

� (and spin 3
2 �

++ etc.) required the introduction of a new

quantum number. This new quantum number, unlike the electromagnetic force which has a

single charge (and its corresponding anti-charge), needed to have 3 “charges” to distinguish

the 3 identical fermion states in e.g. the spin 3
2 ⌦

�. The new quantum number was dubbed

“color” making analogy to the 3 primary colors: red, green, and blue. Along with the

quark model came the development of QCD. QCD is the theory describing the various quark

flavors and the color force between them mediated by massless gluons. In QCD the color

force is an exact SU(3) symmetry. Each quark carries a color charge while the gluons carry

a combination color + anti-color charge resulting in 8 possible color combinations for the

gluons.

1.2.2 Quantum Chromodynamics

At this point it is helpful to consider QCD in its modern formulation. The gauge invariant

QCD part of the Standard Model Lagrangian can be written compactly as:

LQCD =  ̄ (i�µD
µ � m) � 1

2
Ga

µ⌫G
µ⌫
a (1.1)

with

Ga
µ⌫ = �µA

a
⌫(x) � �⌫A

a
µ(x) + gfabcA

b
µ(x)Ac

⌫(x) (1.2)

Dµ is the gauge covariant derivative:

Dµ = �µ � ig
�a

2
Aa

µ(x) (1.3)

where g is the QCD coupling constant, fabc are the SU(3)color structure constants,  are the

quark fields (implicit sums over quark flavor), and �µ are the Dirac matrices. �a are the
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Figure 1.5 : (a) The behavior of the strong coupling constant ↵s (shown here as ↵qq) as a
function of r for several di↵erent temperatures and at zero temperature (solid line). This is
the result using the qq calculation scheme described in Ref. [22] (b) Experimentally measured
values of ↵s for several di↵erent values of Q [23].

Gell-Mann matrices, a generalization of the Dirac matrices in SU(N). Ga
µ⌫ are the gauge

invariant field strength tensors and Aa
µ are the gluon fields (a = 1, 2, ...8). We can gain further

insight into the unique characteristics of QCD by considering its three distinctive attributes:

1) Confinement, 2) Asymptotic Freedom, and 3) Spontaneous Chiral Symmetry breaking.

Confinement refers to the fact that isolated quarks have never been observed. Instead

hadronic states are always found as color neutral (or more precisely, color singlet) configura-

tions of multiple quarks. Color singlet states can be formed as quark anti-quark pairs (qq̄)

called mesons or as bounds states of three quarks or anti-quarks (qqq) called baryons. There

was no direct evidence for color singlet bound states of more than 3 quarks until recently

when the LHC Beauty (LHCb) experiment observed evidence for tetraquark (qqqq) and pen-

taquark (qqqqq̄) states through the decays of B̄0 and ⇤0
B [24]. The fact that quarks are found

only in color neutral bound states suggests that the interaction between quarks and gluons

must be very strong at large distances. The natural length scale of the strong force is set

by the size of the nucleus, dictating that it should be relatively short ranged, acting over

distances of roughly 1 fm. According to its behavior at extremely short and long ranges, the

static QCD potential can be expressed as:
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Figure 1.6 : Feynman diagrams for screening (left) and anti-screening (right) e↵ects in
QCD. The anti-screening interaction is only possible with gluon self-interactions.

Vs = �4

3

↵s

r
+ kr (1.4)

where ↵s is the coupling constant of the strong force. The first term dominates at small

distances and resembles the Coulomb potential between two charges in QED. At larger dis-

tances, the second term takes over causing the force between quarks and gluons to grow

linearly with distance. As quarks are separated from one another, the color force between

them concentrates into narrow tubes that grow stronger the more they are stretched (like a

stretched rubber-band). At some distance it is more energetically favorable for a new qq̄ pair

to be formed from the vacuum, severing the long distance tube-like color connections, than

for the original quarks to continue to separate. This striking di↵erence between QED and

QCD arises from the behavior of the force carriers. In QED the force carrier is the photon

which does not carry electric charge and therefore does not interact with itself (at least not

directly, see Ref. [25]). However, in QCD the gluon does carry color charge and is therefore

able to undergo self interactions. These self interactions give rise to an anti-screening e↵ect

which leads to the linearly growing potential as a function of distance. Figure 1.6 shows the

diagrams that contribute to screening and anti-screening e↵ects in QCD.

Asymptotic Freedom refers to the behavior of the QCD coupling constant ↵s at large

momentum transfers Q and at small distances. An apparent contradiction to confinement

was observed when deep inelastic scattering (DIS) experiments showed evidence that the

quarks and gluons within hadrons behave as quasi-free point-like particles [26]. According to

the static QCD potential in Eq. 1.4 the potential between two quarks should grow infinitely
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Figure 1.7 : Diagrams for various �� ! �� interactions: Delbruck scattering (left), photon
splitting (middle), and elastic light-by-light scattering (right). These types of interactions
are forbidden in classical electromagnetism. The ATLAS detector at the LHC has recently
found evidence for these types of reactions [25].

strong as r ! 0 (Landau Pole). These apparent contradictions and the Landau Pole problem

were resolved for QCD through the discovery of asymptotic freedom by David Gross, Frank

Wilczek, and David Politzer in 1973, earning them a Nobel Prize in 2004 [27]. The e↵ective

coupling constant for the strong force can be written as:

↵s(|q2|) ⌘ g2
s(|q2|)
4⇡

⇡ 12⇡

�0ln(|q2|/⇤2
QCD)

(1.5)

where �0 = (11nc � 2nf ) is a constant for a given number of colors (nc) and quark flavors

(nf ) active at the energy scale Q. The scale parameter, ⇤QCD, is a constant that must be

determined experimentally and is found to be ⇤QCD ⇡ 250 MeV/c. The behavior of ↵s as a

function of Q can be seen in Fig. 1.5b. The value of ↵s drops from ↵s ⇠ 1 for Q ⇠ 1 GeV to

↵s ⇠ 0.118 for Q ⇠ MZ = 91.2 GeV [23]. Asymptotic freedom can be succinctly summarized

as an asymptotic weakening of the coupling constant as the energy scale increases or the

distance scale decreases.

Asymptotic freedom has several important ramifications. Firstly, at high enough Q2 (or

small enough distance scales) when ↵s ⌧ 1 perturbative methods can be used to predict cross

sections by expanding in powers of ↵s. This is in stark contrast to the low Q2 processes where

↵s ⇠ 1 and higher order terms (in powers of ↵s) will have larger and larger contributions

resulting in a divergent approximation.
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In the confinement regime, where ↵s � 1, perturbative QCD cannot be employed. There-

fore other techniques must be found to solve QCD calculations. A large amount of success has

been achieved performing QCD calculations in the low Q non-perturbative regime through

a technique called Lattice QCD. Lattice QCD (LQCD) carries out calculations on a finite

lattice in space and time (with lattice spacing parameter a). In the limit of an infinite lattice

with infinitely small spacing between grid-points (a ! 0), LQCD can recover the contin-

uum result [28]. Another technique for evaluating QCD calculations in the non-perturbative

regime that has arisen out of string theory in recent years is the anti-de-Sitter/conformal

field theory (AdS/CFT) correspondence [29–33]. This technique relates theories of quantum

gravity to conformal quantum field theories and can be applied to some QCD-like theories.

1.2.3 The Quark Gluon Plasma

Another ramification of asymptotic freedom is the possibility that at extremely high temper-

ature and/or densities quarks and gluons may become deconfined. In these extreme condi-

tions a new state of matter would be formed. This state of matter, called the Quark Gluon

Plasma (QGP) gets its name from analogy with an electric plasma. In an electric plasma, the

force between bound electrons and ions becomes screened by the background cloud of other

electrons and ions when the distance scales are comparable to the Debye screening length.

This screening leads to a dissolution of bound states, allowing the electrons to move freely

through the plasma leading to extremely high electrical conductivity. By analogy, the QGP

is a plasma made of quarks and gluons in which the color charge between quarks and gluons

within a hadron are screened su�ciently enough to liberate the quarks from the hadronic

bonds. It is important to note that the conditions of the early universe (e.g. extremely high

temperature) likely resembled those required to form a QGP.

With LQCD and the QGP in mind we can now revisit the discussion of the Hagedorn

Temperature, recognizing its continued importance to the study of the QGP today. In the

Hadron Resonance Gas model, TH represents the temperature of the system while energy

is transferred into it to liberate excited hadronic states. Or from the QGP’s point of view,

TH is the approximate freeze-out temperature at which point the fluid-like QGP evaporates

into a hadron gas. Figure 1.8a shows the chemical freeze-out temperature measured in heavy

ion collisions. At low baryon chemical potential (µb) the chemical freeze-out temperature is
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Figure 1.8 : The chemical freeze-out temperature versus µb measured in heavy-ion collisions
(a). The measured yield (dN/dy) versus the yield from a grand canonical statistical model
(b) [34]

similar to the Hagedorn Temperature. Figure 1.8b demonstrates that the yield of excited

hadronic states can be well described by a statistical model [34]. Lattice QCD calculation

shown in Fig. 1.9a, depict "/T 4 (proportional to the number of degrees of freedom of the

system) as a function of T/Tc with values of the " shown at various values of T [35]. The

LQCD result is consistent with the HRG picture in which the number of degrees of freedom

rise rapidly near some critical temperature, Tc ⇡ 150�180 MeV, with the increasing number

of hadronic states created. It is clear from the LQCD results that the temperature of the

HRG is not actually constant as Hagedorn thought though. LQCD results indicate that the

critical energy density is "c ⇠ 0.6 � 1 GeV / fm3 or about the energy density of a single

proton inside a cube with 1 fm sides [36]. In this figure, the T 4 scaling becomes apparent,

requiring ⇠ 23 times the energy density to reach T = 2Tc.

Above Tc the energy density (in units of T 4) and the number of degrees of freedom begin to

flatten as the system approaches degrees of freedom defined by deconfined quark and gluons.

The LQCD calculation shown in Fig. 1.9a has almost no dependence on T above about

T ⇠ 1.5Tc. A flattening of the energy density as a function of temperature is generally found

in an ideal gas e.g in a non-interacting photon gas. For this reason, in the year 2000 when the
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Figure 1.9 : (a) Lattice QCD calculations of the energy density in units of T 4 (which scales
with the number of degrees of freedom) vs. temperature [35]. The red squares show the result
of the calculation with 4 temporal bins. The black circles show the result of 6 temporal bins
(finer lattice spacing). (b) Normalized pressure, energy density, and entropy of the Hadron
Resonance Gas (solid lines) compared to Lattice QCD (bands).

Figure 1.10 : An example QCD phase diagram in the temperature versus baryon chemical
potential (T �µb) plane [37]. The points of reference are the limits of µb i.e. µb ! 0, µb ! 1
and the µb of nuclear matter all at T = 0. Lattice QCD predicts a crossover transition from
a hadron gas to a QGP at a temperature Tc ⇡ 155 MeV at µb = 0. The location and validity
of the remaining features is largely speculative and is the source of much activity in the field.
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Relativistic Heavy Ion Collider (RHIC) began operations, the community expected to find

an ideal gas of nearly massless, quasi-free quarks and gluons. However, Fig. 1.9a and 1.9b

both show that the "/T 4 curves do not reach the Stefan Boltzmann limit (non-interacting

gas of massless quarks and gluons) indicated with arrows in the upper right of each plot.

After years of study gaining evidence to the country at the RHIC and LHC, we now know

that instead of an ideal gas, the QGP is more like an almost “perfect liquid” (defined by its

shear viscosity to entropy ratio, ⌘/s [38–43]). Looking back we can see that the deviation in

"T 4 from LQCD calculations compared to the expectation in the Stefan Boltzmann limit is

likely due to residual strong interactions between quarks and gluons.

Figure 1.10 shows an example of the QCD phase diagram in the temperature versus

baryon chemical potential (T �µb, µb / ⇢2/3 in the Fermi gas model) plane [44]. Lattice QCD

provides strong constraints along the T axis (µb = 0) suggesting that an analytic crossover

transition from a hadronic gas to a QGP should occur at a critical temperature of about

Tc ⇡ 155�180 MeV [37,45–47]. However, at finite values of µb the LQCD technique becomes

intractable due to the numerical sign problem (a rather generic di�culty when numerically

integrating highly oscillatory functions of several variables) [48]. Though significant progress

has been made to extend LQCD to finite µb, LQCD is still not viable at intermediate baryon

chemical potentials (µb ⇡ 250 MeV) in the region where a 1st order phase transition may

be expected [45, 49]. If a 1st order phase transition does exist at finite µb, Gibbs’ Phase

Rule requires that there be a critical point connecting the smooth crossover predicted by

LQCD with the 1st order phase transition. A system near a thermodynamical critical point

would exhibit critical phenomena, namely the divergence of the correlation length, power law

divergences of the susceptibilities, and universality to name a few. Currently there are no

direct predictions from LQCD showing evidence of a 1st order phase transition and critical

point. These indications are mostly motivated by other models which are arguably less robust

and trustworthy than LQCD [50].

1.2.4 Chiral Symmetry

In addition to the global SU(3)color symmetry and the approximate SU(3)flavor symmetries

in the QCD Lagrangian, there exist other global and local symmetries as well. At momentum

transfers of Q ⇠ 1 GeV/c the lightest three quark flavors (u, d, and s) can be treated as
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approximately massless. In the limit of massless quarks the Lagrangian in Eq. 1.1 (neglecting

the gluon component) can be expressed as:

L = i ̄f�
µ�µ f (1.6)

where f = u, d, s indicates the quark flavor. The important characteristic of this Lagrangian

is its global symmetry under both vector and axial-vector transformations:

 ! ei↵a

V

�a

2  (1.7)

 ! ei�5↵a

A

�a

2  (1.8)

The vector and axial-vector wave functions can be expressed in terms of their left and

right chiral components as

 R,L =
1

2
(1 ± �5) (1.9)

When considering the chiral forms  R and  L the transformations in Eq. 1.7 and 1.8 can be

expressed as:

 R ! e�iaa

R

�a

2  R, L !  L (1.10)

 L ! e�iaa

L

�a

2  L, R !  R (1.11)

In this form the symmetry of the Lagrangian under vector and axial-vector transfor-

mations can clearly be seen to constitute a global symmetry with respect to the left and

right-handed chiral components as well. This global SU(Nf )R ⇥ SU(Nf )L symmetry in the

massless quark limit is called chiral symmetry.

The non-zero quark masses in the QCD Lagrangian can be viewed as a perturbation of

of the Lagrangian (�L = �m ̄ ) in Eq. 1.6. The presence of non-zero quark masses breaks

the symmetry under axial-vector transformation and therefore breaks the chiral symmetry.

Symmetry breaking can arise as either explicit symmetry breaking or spontaneous symmetry

breaking. In explicit symmetry breaking, the symmetry present in the Lagrangian is broken

in the equations of motion. However, in spontaneous symmetry breaking, the equations of

motion retain their invariance but the system’s symmetry is broken because the lowest energy

ground state of the system is not invariant.
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(a) (b)

Figure 1.11 : (a) The Goldstone “Mexican Hat” potential V (�) [51]. (b) Comparison of
the quark masses from the Higgs mechanism and from chiral symmetry breaking in QCD.

This situation can be visualized as a physical system like the one shown in Fig. 1.11a. In

this picture, Goldstone’s “Mexican hat” is a symmetric potential but the state of the system

(the ball in Fig. 1.11a) is very unstable [51]. Any small perturbation will cause the ball

to fall into one of the infinite number of ground states in the lower energy trough. This

instability results in spontaneously broken symmetry, in this case, of chiral symmetry. In

the case with 3 massless quarks, we expect 8 degenerate, massless Goldstone bosons (with

JP = 0�). While there are in fact eight mesons with these quantum numbers (⇡±, ⇡0, K±,

K0, K̄0, and ⌘) the spontaneous breaking of chiral symmetry leads to non-zero masses. For

instance, the lightest of these mesons, the ⇡0 has mass m⇡0 ⇡ 135 MeV/c2 while the lightest

mesons containing an s quark are the K± with mass mK± ⇡ 494 MeV/c2. The broken chiral

symmetry leads to a non-zero vacuum quark anti-quark condensate. This can be seen by

considering the Gell-Mann-Oakes-Renner relation, which relates the pion mass (m⇡) to the

quark condensate (hq̄qi):

m2
⇡f

2
⇡ = �2m̄h0|q̄q|0i (1.12)

where m̄ ⇠ 6 MeV/c2 is the mean mass of the u and d quarks. From this relation we

find that the vacuum quark anti-quark condensate has a value h0|q̄q|0i ⇡ (-250 MeV)3. A
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non-zero quark anti-quark condensate is synonymous with chiral symmetry breaking. The

a↵ects of chiral symmetry breaking are also experimentally visible in the masses of chiral

multiplets like the ⇢0(770) and the a1(1260). In the absence of chiral symmetry breaking

these states would be degenerate. However, experimental measurements have shown that

their masses are actually significantly di↵erent (m⇢0 ⇡ 770 MeV/c2, ma1 ⇡ 1260 MeV/c2).

Such a large di↵erence in the masses cannot be describe simply by the di↵erence in the u

and d quark masses but strongly suggests that chiral symmetry breaking is the source of the

mass separation.

Modification of the quark anti-quark condensate is expected in a su�ciently hot (T >

T chiral
c ) and dense (n > nchiral

c ) medium [52]. For this reason a phase transition from the

hadronic phase (with spontaneous chiral symmetry breaking) to a chiral-restored phase is

predicted in such environments [53]. It should be noted that the phase transition to chiral-

restored QCD matter need not be coincident with the phase transition to a state of deconfined

QCD matter like the QGP. In generally we may expect that the critical temperature follow

T chiral
c > TQGP

c at a given baryon chemical potential. This implies that a QGP could exist even

if chiral symmetry restoration is not achieved. On the other hand, this ordering states that

chiral symmetry restoration requires deconfinement of quarks and gluons. Chiral symmetry

restoration has the important experimental ramification of a re-established degeneracy in

the masses of the ⇢0 and a1 chiral partners. Measuring these two states, and the di↵erence

in their masses is therefore a direct experimental technique for observing chiral symmetry

restoration.

At one extreme of the T �µb phase diagram, such high energy density can be achieved by

increasing the density of the system (µb) at T ⇡ 0. In this region of the QCD phase diagram,

a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface

is expected [53]. Due to the presence of Cooper pairing, this phase of QCD is called a “color

superconductor”. Rigorous perturbative QCD calculations in this regime are limited to the

highest densities, the so-called color-flavor locked (CFL) phase. Compact stars, such neutron

stars are expected to reach core densities su�ciently high to produce such a state of QCD

matter. Astrophysical measurements of compact stars provide valuable constraints on the

equation of state of super dense hadronic matter [54, 55].
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Spectators

Participants

b

before collision after collision

Figure 1.12 : Left: Before colliding, length contracted ions approach with an impact
parameter b. Right: During the collision, participant nucleons interact while the participant
nucleons continue traveling almost undeflected in the forward and backwards directions. [56]

1.3 Heavy-Ion Collisions

Unlike compact stars that are expected to exist at relatively low T but high µb, heavy-ion

collisions provide a technique for producing extremely hot QCD matter with relatively low

µb. Since each heavy-ion collision follows a specific trajectory through the T �µb phase space,

they can be used to explore the phase diagram of QCD matter. The approximate trajectory

through phase space can be controlled by changing the collision species and by changing the

collision energy per nucleon pair (
p

sNN). At RHIC top energies of
p

sNN= 200 GeV, gold

ions (197Au) are accelerated to speeds greater than 99.99% the speed of light resulting in

� ⇡ 100.

At these relativistic speeds, the nearly spherical ions are length contracted into flattened

discs. Each time the beams of flattened ions pass each other, there is a chance of collision with

impact parameter b (see Fig. 1.13). Collisions with b ⇡ 0 are called “central” collisions while

those at the opposite extreme with b ⇡ 2R are called “peripheral” collisions. The nucleons

that collide, called “participants” are often deflected at large angles while the non-interacting

nucleons, called “spectator”, continue mostly una↵ected. Since b cannot be measured directly,

collisions at various impact parameters (centralities) must be selected based on the number of

charged particles produced in the collision (see Fig. 1.13). Monte Carlo Glauber simulations

are used to relate the number of charged particles to the initial impact parameter [57, 59].

By controlling collision energy and by selecting on centrality, the lifetime, system size, initial

temperature, and µb can be controlled.
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(a) (b)

Figure 1.13 : (a) An example of the correlation between the geometric impact param-
eter b (not directly observable) and the final-state-observable charged-particle multiplicity
(Nch). [57]. (b) Schematic view of the nucleon positions as a function of the longitudinal (z)
and one transverse direction (x) shown for two di↵erent collision energies [58].

When heavy-ions collide, hot and dense matter is produced, beginning its journey through

the QCD phase diagram. A space-time diagram showing the collisions various stages is shown

in Fig. 1.14 while a more schematic digram is shown in Fig 1.15. The initial collision proceeds

through a combination of hard and soft scatterings between participant nucleons. Not much

is known about the dynamics of the earliest moments (⌧ < 1 fm/c) after the collision. These

first moments, called the “pre-equilibrium” stage are described by various models such as the

Color Glass Condensate (CGC) [60–62]. Within ⇡ 1 fm/c approximate local thermalize is

assumed [63] and a QGP is formed if the initial temperature and energy density are su�ciently

high (T > Tc, " > "c) [63]. In recent years, increasingly sophisticated viscous hydrodynamical

models have been employed to model the QGP phase of the system with great success [64].

As the system cools to below Tc, the QGP begins to freeze-out (⌧freezeout ⇠ 15, 30 fm/c at

RHIC and LHC respectively) at which point a mixed phase may exist for a short time. As

the system continues to cool and expand as a hadron gas, the inelastic scatterings capable

of changing the particle species cease. This marks the chemical freeze-out of the system,

at which point the relative yields of hadronic states are fixed (See Fig. 1.8b). After further

expansion and cooling, the system reaches kinetic freeze-out when mean free path for scatters
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Figure 1.14 : A space-time diagram of the evolution of a heavy-ion collision. [65]

is too long to allow any more interactions. After kinetic freeze-out the momenta spectra are

fixed and the particles finish their journey by free-streaming to the experimental detectors.

The entire evolution of a HIC must be reverse-engineered from the final-state-observables,

namely the energy and momentum of long lived charged particles and the energy of neutral

particles. Figure 1.15 nicely highlights the trajectories of di↵erent types of particles through

the system’s evolution. Photons and leptons, being inert to the strong force, are able to

escape from the QCD matter with little disturbance. For this reason they make superb

probes of the medium, as will be discussed in further detail in the next section.
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Figure 1.15 : A schematic of the evolution of a heavy-ion collision. [66]
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Chapter 2

Dileptons

2.1 Dilepton Production in Heavy Ion Collisions

Since leptons are inert to the strong force, dileptons (l+l�) make an ideal probe of the

medium. Leptons interact through the EM force not the strong force, so dileptons carry

pristine information about the system from even the earliest stages after the collision. The

various production mechanisms responsible for dileptons can be distinguished through mea-

surement of the invariant mass of the lepton pair. Dileptons are an especially essential tool

for studying hot and dense QCD matter because the dilepton invariant mass spectra is the

only experimental observation which can give direct access to measurements of an in-medium

QCD spectral function [2].

The dilepton invariant mass spectra can be partitioned to isolate specific production

mechanisms and time-periods of the collision. The majority of the dileptons in the high

mass region (HMR, Mll � MJ/ , MJ/ = 3.096 GeV/c2) result from the earliest stages of the

collision when partons interact through hard scatters. The HMR is populated with dilepton

pairs from Drell-Yan production (qq̄ ! �?/Z ! l+l�), semi-leptonic heavy flavor (bb̄) decays,

and the decay of heavy quarkonia states like the J/ ,  (2S), and the ⌥ states.

Quarkonium suppression due to the Debye screening of inter-quark potentials has been

predicted as a direct signature of QGP formation for sometime [1, 67, 68]. The theoretical

framework for the production and suppression of heavy quarkonia states is still under active

investigation, but leading candidates include the Color Singlet Model (CSM) and the Color

Evaporation Model (CEM) [69]. For this reason, precisely measuring the yield of heavy

quarkonia states through their dilepton decays provides an important insight into the systems

produced in HICs and the properties of the QGP.

In HICs at RHIC and LHC energies, the intermediate mass range (IMR, M� < Mll <

MJ/ , M� = 1.02 GeV/c2) is dominated by production from correlated open heavy flavor

decays (cc̄ ! l+ + l� + X). Models also predict significant dilepton production from the
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(a) s-channel Flavor
Creation

(b) t-channel Flavor
Creation

(c) Flavor Excitation (d) Gluon Splitting

Figure 2.1 : The Feynman diagrams for flavor creation (a,b), flavor excitation (c), and
gluon splitting (d) [70–72]

medium’s thermal radiation, resulting from qq̄ annihilation. However, separating the thermal

radiation from the open heavy flavor decays is very challenging at RHIC and LHC energies.

At lower energies like the SPS energy regime, the thermal sources and open heavy flavor

contributions can be adequately separated. Other measurements in HICs at RHIC and

LHC energies have shown evidence for substantial modification to the open heavy flavor

production cross section [73]. This makes separating thermally produced dileptons in the

IMR double challenging, since the medium induced modifications to the open heavy flavor

contribution must be taken into account. One technique that has been proposed is to measure

the cc̄ ! e + µ spectra in order to constrain the cc̄ contribution in the l+l� decay channels.

Another di�culty arises since the various possible cc̄ production mechanisms can lead to

varying strength azimuthal correlations between the final state dileptons. Each of the open

heavy flavor production Feynman diagrams shown in Fig. 2.2 contribute di↵erently to the

azimuthal correlations of the final state dileptons. Even in vacuum production (e.g in p + p

collisions) the relative contributions from these processes is not well constrained [70]. Any

change in the amount of correlation / de-correlation between the final state leptons directly

a↵ects the invariant mass density of the dileptons produced by open heavy flavor decays.

Therefore, understanding the amount of correlation / de-correlation in-medium is important

for extracting the dileptons from thermal radiation.
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Figure 2.2 : The Feynman diagrams for various dilepton production mechanisms (shown for
e+e�): the direct decay of a vector meson (⇢,!,�) through a virtual photon (a); the Dalitz
decay of a vector (V), pseudo-scalar (P), or scalar (S) meson into a neutral particle and an
e+e� pair (b); the four-body decay of a pseudo-scalar or vector meson into e+e� and two
pseudo-scalar mesons (⇡ or ⌘) through an intermediate state containing a virtual photon or
vector meson (c); the decay of a nucleon or � resonance into a nucleon and a vector meson
which further decays into an e+e� pair. [74]

Measurement of the in-medium ⇢0 meson o↵ers an important link to chiral symmetry

restoration in the QGP. Since the lifetime of the ⇢0 (⌧⇢ ⇡ 1.3 fm/c) is so much shorter

than the lifetime of the QGP (⌧QGP ⇡ 10 fm/c at top RHIC energies in central Au+Au

collisions), the ⇢0 spectral shape is significantly modified by interactions with the medium

(mostly due to very strong coupling via ⇡+ + ⇡� � ⇢ channel). As discussed in Sec. 1.2.4,

when chiral symmetry is restored, the masses of the ⇢0(770) and the a1(1260) should become

degenerate. The a1 is notoriously di�cult to measure because, being an axial-vector meson,

it decays preferentially to 3⇡ states. Isolating the dileptons from the ⇢0 ! l+ + l� decays

is also challenging due to the significant background from the l+l� decays and Dalitz decays

of long-lived hadronic states (!,�, ⌘ etc.) in the low mass region (LMR, Mll  M�). The

contribution from these hadron decays must be removed in order to isolate the in-medium

⇢0-meson invariant mass distribution. The invariant mass distribution of all known hadronic

decays, often referred to as the “hadronic cocktail”, is generally simulated using the yields

of each hadron measured through other decay channels. Finally, since the LMR region is

populated with dileptons throughout the entire evolution of the system (both before and

after T = Tc), the excess yield over the hadronic cocktail is directly related to the lifetime

of the emitting medium. The excess yield over the hadronic cocktail can therefore provide a
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means for measuring the lifetime of the system [2].
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2.2 Survey of Past Dilepton Measurements

A wealth of dilepton measurements in various nuclear environments has been conducted

over the years. For instance, the CERES/NA45 [75–77], HELIOS-3 [78], NA38/50 [79, 80]

experiments at SPS; HADES at SIS18 [81–83]; PHENIX [84,85] and STAR at the RHIC [86–

89]; ALICE at the LHC [90, 91]. In this section, I will briefly survey the measurements (by

experiment in roughly chronological order) that have marked milestones in our understanding

and capabilities.

(a) (b)

Figure 2.3 : Inclusive e+e� invariant mass spectra for p+Be (a) and p+Au (b) collisions at
450 GeV. The data points are shown in filled circles while the hadronic cocktail is shown in
black curves [92]. The systematic uncertainty on the hadronic cocktail is shown as a shaded
band.

Cherenkov Ring Electron Spectrometer (CERES), also known as NA45, was a fixed

target experiment at the CERN Super Proton Synchrotron [75]. As the name suggests, the

CERES experiment was an electron spectrometer dedicated to the study of low-mass e+e�

pairs in nuclear collisions. Electron identification was carried out with two symmetric ring

imaging Cherenkov detectors (RICH) [93]. Early measurements from CERES in p+A col-

lisions demonstrated the capability of the detector for dielectron measurements. Figure 2.3

shows the CERES measurement of e+e� pairs in p+Be and p+Au collisions at proton beam

energies of 450 GeV. Dilepton measurements are challenging in part due to the physical back-

grounds and the immense number non-physical combinatorial pairs that must be removed.
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(a) (b)

Figure 2.4 : Inclusive e+e� invariant mass spectra in S+Au collisions at 200 A GeV (a)
and in Pb+Au collisions at 158 A GeV. The dashed line shows the cocktail+vacuum ⇢
contribution. Models of the thermal radiation are shown for two competing scenarios: the
dropping ⇢ mass (dot-dashed line), and the broadened ⇢ (solid line). While the vacuum ⇢ is
disfavored by data, within the statistical uncertainties, the two competing thermal models
cannot be distinguished [92].

The remaining real dilepton pairs result mostly from Dalitz decays of light neutral mesons.

The measurement shown in Fig. 2.3 demonstrates that, after taking the various background

sources into account, the yield of e+e� production can be well described by the expectation

from the hadronic cocktail. These measurement in p+Au and p+Be collisions also demon-

strate that initial state cold nuclear matter a↵ects can be well described by the hadronic

cocktail.

In addition to the p+Be and p+Au measurements, the CERES experiment also measured

the e+e� invariant mass spectra in heavy-ion collisions. Figure 2.4a shows the e+e� invariant

mass spectra in S+Au collisions at 200 A GeV. In this measurement a very clear excess is

observed over the hadronic cocktail. The nature of this excess was further investigated by

measuring the e+e� invariant mass spectra in Pb+Au collisions at 40 and 158 A GeV [77].

In this dataset the excess over the cocktail was found to scale strongly with centrality and

to result mostly from low pee
T pairs. Several models attempted to explain this excess by

incorporating the thermal radiation of the medium due to ⇡++⇡� � ⇢ ! e++e�. However,
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Figure 2.5 : The NA60 detector setup near the target. The addition of the high granularity
silicon-based vertex tracker was crucial for the NA60 µ+µ� measurements. [97]

models using the vacuum ⇢ spectral function were not able to adequately describe the excess

yield. Instead, two di↵erent models for the in-medium ⇢ spectral functions were proposed that

approximately equally described the data: a dropping ⇢ mass scenario [94], and a broadened

⇢ scenario [95]. The precision o↵ered by the CERES e+e� invariant mass spectra in Pb+Au

did not allow these two competing scenarios to be distinguished. The HELIOS-3 experiment

measured a similar excess with respect to the hadronic cocktail in S+W collisions at 200

GeV through the µ+µ� channel [96]. Unfortunately, their precision was also too limited to

distinguish between the dropping mass and broadening scenario.

The NA60 experiment was a fixed target experiment at SPS. NA60 was specifically

designed to study the deconfinement phase transition in nuclear matter with a novel setup.

In addition to its high quality muon spectrometer (inherited from NA38/50 [97]) NA60 also

included a fast-readout, high granularity, silicon-based vertex tracker inside a 2.5 T dipole

field. The setup of the vertex tracker can be seen in Fig. 2.5. Matching between the

muon spectrometer hits and the vertex tracker hits allowed NA60 to achieve very good mass

resolution on the order of 20 MeV/c2. The precise tracking (�x < 10 µm and �y < 15

µm) allowed each track’s vertex o↵set to be measured. Precise vertex o↵set measurement

is important for two reasons. First, it allows the substantial backgrounds from weak decays

of ⇡± ! µ± + ⌫µ(⌫̄µ) and K± ! µ± + ⌫µ(⌫̄µ) to be rejected. Second, precise vertex o↵set

measurement is essential for separating the prompt (Drell-Yan and thermal radiation) and

non-prompt (open heavy flavor decays) sources of dimuons. With this setup, NA60 was able

to achieve a very high quality measurement of the low-mass µ+µ� invariant mass spectra



28

in In+In collisions at
p

sNN= 17.3 GeV. With this data set, NA60 had su�cient statistics

to investigate the low-mass µ+µ� invariant mass spectra di↵erentially in centrality. They

found that the hadronic cocktail (including a vacuum ⇢ contribution) describe the spectra

from peripheral collisions quite well [98]. However, an excess showing strong centrality and

pµµ
T dependence was observed in semi-central collisions.
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Figure 2.6 : (a) The µ+µ� invariant mass spectra in the acceptance of NA60 for In+In
collisions without centrality selection before (red circles) and after (black triangles) sub-
tracting the hadronic cocktail (without ⇢). (b) The excess µ+µ� invariant mass spectra in
semi-central collisions for the acceptance of NA60. The predicted excess spectra is shown for
several theoretical models.

Figure 2.6a shows the µ+µ� invariant mass spectra without any centrality selection after

subtracting the background from combinatorial and physical sources. The µ+µ� invariant

mass spectra is shown before (red circles) and after (black triangles) subtracting the hadronic

cocktail of all relevant sources except the ⇢0 meson. Figure 2.6b shows the µ+µ� invariant

mass spectra in semi-central collisions after subtracting the cocktail contributions. Figure

2.6b also shows representative models for several scenarios: the cocktail ⇢, the scaled vac-

uum ⇢, the dropping ⇢ mass scenario, and the ⇢ broadening model. Unlike the CERES and

HELIOS-3 measurements, the NA60 µ+µ� measurement provides more than su�cient pre-

cision for separating between the dropping ⇢ mass scenario and the ⇢ broadening scenario.
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This measurement clearly shows that the dropping ⇢ mass scenario is strongly disfavored by

the data while the ⇢ broadening model describes the region from 0.2 < Mµµ < 0.8 GeV/c2

reasonably well.
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Figure 2.7 : (a) The µ+µ� invariant mass spectra in the acceptance of NA60 for In+In
collisions without centrality selection before (red circles) and after (black triangles) sub-
tracting the hadronic cocktail (without ⇢). (b) The excess µ+µ� invariant mass spectra in
semi-central collisions for the acceptance of NA60. The predicted excess spectra is shown for
several theoretical models.

An excess at higher masses (Mµµ > 0.8 GeV/c2) that was not consistent with any of

the in-medium modified ⇢ scenarios was also observed. The open heavy flavor decay of

cc̄ ! µ+ + µ� is the dominant contribution in this mass region. The charm cross section

used for the hadronic cocktail was determined by appropriately scaling NA50’s measurements

of the charm cross section in p+Al, p+Ag, p+Cu, and p+W collisions [99]. The precise vertex

o↵set measurement was essential for determining whether or not the observed excess resulted

from an enhanced open heavy flavor contribution. By fitting the vertex o↵set distribution,

shown in Fig. 2.7a, it was clear that the observed excess originated from prompt dimuons,

not additional open heavy flavor decays. At this point, the next logical step was to investigate

the possibility that the observed excess resulted from enhanced Drell-Yan production. By

comparing the pµµ
T spectra from the excess with the pµµ

T spectra of Drell-Yan pairs, this

possibility was ruled out. Instead, the pµµ
T spectra from the excess was found to be more
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similar to the spectra from open heavy flavor decays than Drell-Yan.

The high statistics NA60 data also allowed a di↵erential study of the mT -spectra (mT =

(p2T + M2)1/2) for various invariant mass bins. Each mass bin was fit with the form 1/mT

dN/dM / exp(�mT /Teff ), where the inverse slope parameter (Teff ) is interpreted as the

e↵ective temperature of the medium. The value of Teff (shown in Fig. 2.7b) was found to

depend strongly on the invariant mass, rising at low invariant masses (consistent with the

mT -spectra of hadrons) before suddenly dropping for Mµµ > 1.0 GeV/c2. The combination of

the sudden drop in Teff along with the other clues suggested that a hadron-like source could

not explain the observed excess in the intermediate mass region. Instead, a more natural

explanation is that of prompt thermal emission from a partonic source, i.e. qq̄ ! µ+µ�.
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Figure 2.8 : (a) Top panel: The HADES measurement of the e+e� mass spectra in C+C
collisions at 1 A GeV incident energy compared with expected sources. (a) Bottom panel:
The ratio of the measured yield in 1 and 2 A GeV collisions to the respective cocktail A at
each energy. (b) The inclusive multiplicity of the excess yield in the mass range 0.15 < Mee <
0.5 GeV/c2. The solid curves show the excitation functions for ⇡0 and ⌘. The dotted curve is
the excitation function for the ⇡0 scaled down by an arbitrary factor while the dashed curve
shows the scaled contribution of the ⌘ excitation function [100].

The High-Acceptance DiElectron Spectrometer (HADES), is a fixed target exper-

iment operated at GSI with beams provided by the SIS18 synchrotron [101]. HADES has

measured the e+e� invariant mass spectra in multiple collision systems, but most notably
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Figure 2.9 : First measurement of the e+e� invariant mass spectra. The hadronic cocktail
describes the production over the full mass range. At RHIC energies the intermediate mass
region is dominated by pairs from correlated open heavy flavor decays(a). The first PHENIX
measurement of the e+e� invariant mass spectra in Au+Au collisions at

p
sNN = 200 GeV

showed a very large excess in central collisions at low mass.

in 12C+12C at 1 and 2 A GeV [81, 100]. The e+e� invariant mass spectra in the HADES

acceptance is shown for 1 A GeV collisions in Fig. 2.8a. The comparison shown in 2.8a

include a second hadronic cocktail with � resonances and the ⇢ meson. Even with these

additional components, the excess is not well described. Additionally, the enhancement over

the cocktail is found to be stronger at 1 A GeV than at 2 A GeV. The scaling of the excess

in 0.15 < Mee < 0.5 GeV/c2 is shown in Fig. 2.8b as a function of the beam energy. For

comparison, the excitation functions of the ⇡0 and ⌘ are also shown. The evolution of the

excess yield with Eb is found to be roughly consistent with the excitation for ⇡0 but incon-

sistent with ⌘ Dalitz decay suggesting that the excess may be a result of light resonances like

the � contributing to the ⇡0 yield. A more concrete conclusion requires further comparisons

with models incorporating various a↵ects.

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is one

of the two large collider experiments at RHIC. PHENIX was specifically designed with the
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measurement of electrons, muons and photons in mind. A detailed description of the detector

and its subsystems can be found in Ref. [102–104]. PHENIX has electron identification

capabilities provided by a RICH detector and an electromagnetic calorimeter [105].

The dielectron spectra was first measured by PHENIX in p + p collisions at
p

s = 200

GeV. Figure 2.9a shows the measured inclusive e+e� invariant mass spectra in the PHENIX

acceptance along with the cocktail of expected sources. The cocktail, which includes a very

sizable cc̄ contribution at intermediate masses, is found to describe the spectra reasonably

well across the entire mass range (Mee < 4.0 GeV/c2). The Pythia event generator (v6.42)

was used to simulate the contributions from cc̄, bb̄, and Drell-Yan.

PHENIX later measured the e+e� invariant mass spectra in Au+Au collisions at
p

sNN = 200

GeV [85,106]. A sizable excess over the hadronic cocktail was observed in the low mass region.

The excess observed in the first PHENIX measurement of e+e� pairs in Au+Au collisions [85]

was qualitatively consistent with the excess observed by NA60, but the yield was much larger

than predicted. A later measurement [106] included updated techniques for rejecting hadron

contamination and showed an excess consistent with STAR’s recent measurements in Au+Au

collisions at the same energy [88]. Figure 2.10b shows that the excess observed by PHENIX

scales strongly with centrality as NA60 observed. The dielectron yield in the low mass region

for PHENIX acceptance is shown in Fig. 2.10a along with the expected contributions from

the cocktail (excluding ⇢) and a model including ⇢ broadening and QGP thermal radiation.

The uncertainties do not allow a strong statement to be made, but the excess is found to

scale with Npart consistently with the broadened ⇢+QGP model.

Recently, PHENIX has also published µ+µ� invariant mass spectra from p + p collisions

at
p

s = 200 GeV [70, 107] seen in Fig. 2.11. In this measurement they sought to provide

greater insight into the production mechanisms for dilepton pairs from open heavy flavor

decays. Each of the diagrams shown in Fig. 2.2 result in di↵erent azimuthal correlations

between the final state leptons. Changes in the correlations are important because they

a↵ect the density of pairs as a function of pair mass. In these measurements, PHENIX

isolated cc̄ production via µ+µ� pairs in the intermediate mass region and bb̄ production via

the high mass like-sign (µ±µ±) pairs. With these measurements, PHENIX placed limits on

the total charm and bottom cross sections. Figure 2.12 shows fits to the �� performed to

determine the relative contribution for the di↵erent production mechanisms which lead to
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Figure 2.10 : Comparison between the measured excess of e+e� pairs and the prediction
from the broadened ⇢ + QGP model (a). The centrality dependence of the e+e� excess
yield. [106]

di↵erent final state correlations.

The Solenoidal Tracker at RHIC (STAR) is one of the two large collider experiments

at RHIC. Its dielectron program began in earnest with the installation of the Time-of-Flight

(TOF) detector. By combining dE/dx information from the main tracking detector and ��1

measurements from the TOF detector, STAR is able to achieve 94.6 ± 2 % electron purity

in minimum bias Au+Au collisions at
p

sNN = 200 GeV [88].

STAR first measured the e+e� invariant mass spectra from p + p collisions at
p

s = 200

GeV collected in 2009. A later, significantly higher precision measurement shown in Fig.

2.13a was made in the same collision system and energy using the substantially larger data

set collected in 2013 [109]. In these measurements the inclusive e+e� invariant mass spectra is

found to be in good agreement with the sum of hadronic and open heavy flavor (from Pythia)

sources. STAR has also measured the e+e� invariant mass spectra in Au+Au collisions at
p

sNN = 200 GeV using data collected in 2010 and 2011 (shown in Fig. 2.13b) [86,110]. The

excess yield observed by STAR within the ⇢-like mass region (0.30 < Mee < 0.76 GeV/c2) at
p

sNN = 200 GeV is 1.76 ± 0.06 (stat) ± 0.26 (systematic) ± 0.29 (cocktail). The excess yield

from the updated PHENIX results and the STAR measurement agree within uncertainties.

The excess yield is compared with an e↵ective many-body model and a dynamical microscopic

transport model [95, 111–114].

STAR has systematically studied the e+e� production in Au+Au collisions as a function
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Figure 2.13 : STAR measurement of the e+e� invariant mass spectra within STAR accep-
tance from p + p collisions at

p
s = 200 GeV (a) [109]. Top panel of (b): The measurement

of e+e� invariant mass spectra within STAR acceptance from 0 � 80% central Au+Au col-
lisions at

p
sNN = 200 GeV. Lower panel (b): The ratio of the measured spectra to the

hadronic cocktail (excluding ⇢) compared to an e↵ective many-body model and a dynamical
microscopic transport model [111,113].

of center-of-mass energy for
p

sNN = 19.6, 27, 39, 62.4, 200 GeV. The invariant mass spectra

measured at each energy in 0 � 80% central Au+Au collisions is shown in Fig. 2.14. At

each energy, a significant excess over the hadronic cocktail is observed in the ⇢ mass region .

Additionally, when volume e↵ects are taken into account, the excess observed at
p

sNN = 19.6

GeV is consistent with the excess observed by NA60 in In+In collisions at
p

sNN = 17.3

GeV [110]. The volume normalized, full-phase space excess is shown in Fig. 2.15 for minimum

bias (0�80%) Au+Au collisions at
p

sNN = 19.6 and 200 GeV from STAR, for In+In collisions

at
p

sNN = 17.3 GeV from NA60, and for a theoretical model which includes an in-medium

modified ⇢ spectral function and thermal emission from a QGP [111]. Agreement with the

collection of STAR data over a wide range of energies demonstrates that the broadened ⇢

model is a robust description of the excess dilepton production mechanism.
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Figure 2.14 : The e+e� invariant mass spectra within STAR acceptance from 0 � 80%
central Au+Au collisions at

p
sNN = 19.6, 27, 39, 62.4, 200 GeV. Statistical (bars) and

systematic (boxes) uncertainties are shown with the data points. The total hadronic cocktail
is shown for each energy while the individual components are shown only for the

p
sNN = 62.4

GeV data [115].
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Figure 2.16 : The stopping power (�hdE/dxi) of µ+ in copper as a function of �� = p/Mc
[116].

2.3 Motivations for µ+µ� Measurements

There are several advantages to measuring the dilepton spectra through the dimuon channel

in addition to the dielectron channel. The momentum smearing caused by bremsstrahlung

energy loss of electrons directly a↵ects the mass resolution achievable in the dielectron decay

channel. The a↵ect of bremsstrahlung on the mass resolution of the J/ can be clearly seen in

STAR’s dielectron results shown in Fig. 2.13a. The mass blurring caused by bremsstrahlung

makes it more di�cult to distinguish nearby states like the ⌥(1S),⌥(2S), and ⌥(3S). At

lower masses poor mass resolution can make it more di�cult to distinguish between the

many overlapping contributions to the dilepton spectra. The probability that a charged

particle traveling through an electric field emits a photon as bremsstrahlung radiation is

/ 1/M2. Since muons are about 200⇥ heavier than electrons (mµ = 105 MeV/c2 compared

to me = 0.511 MeV/c2) muons are far less likely to produce bremsstrahlung radiation (at

equal momentum). Practically speaking, muon bremsstrahlung does not become a significant

problem except for muon momenta at the TeV level as Fig. 2.16 shows.

At very low masses, the dielectrons invariant mass spectra can become swamped with

e+e� pairs from � ! e+ + e� conversion. For this reason, special purpose detectors like the
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High Acceptance DiElectron Spectrometer (HADES) are specifically designed to minimize

the amount of dead material to limit the photon conversion probability. Pair production

of µ+µ� through � conversion is not an issue due to the much higher mass of the muon

compared to the electron. This is beneficial for the measurement of the lowest mass dimuon

pairs (just above threshold).

Muons are also ideal for studying chiral symmetry restoration through ⇢0-meson decays.

Again, the heavier mass of the muon compared to the electron limits the number of low

mass mesons that can decay via the dimuon channel or through Dalitz decays with muons.

With fewer sources in the LMR, the ⇢0 meson is significantly easier to isolate. This benefit

was powerfully demonstrated in NA60’s measurement of the ⇢0-meson broadening in In+In

collisions at
p

sNN = 17.3 GeV.

The advantage is not entirely on the side of the dimuon channel though. A serious

disadvantage of the dimuon channel comes from the secondary muons resulting from weak

decays. Since pions are the most common product in HICs and the ⇡+ ! µ+ + ⌫µ branching

ratio is ⇠99.9%, secondary muons can be produced in copious amounts. The situation

is slightly improved by the relatively long lifetime (2.6⇥10�8 s) of pions since this decay

proceeds via the weak force. This means that the majority of the secondary muons resulting

from these decays will originate a finite distance from the primary interaction vertex. Detector

complexes which combine muon detectors and precise (often silicon based) vertex tracking

detectors can very e↵ectively reject backgrounds from weak-decay secondary muons. This

combination in NA60 is what allowed such a high quality result. By far the best option is

to simply study the dilepton production in HICs through both the dielectron and dimuon

channels.
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Chapter 3

Experimental Apparatus

3.1 Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy-Ion Collider located at Brookhaven National Laboratory consists two

independent 3.8 km accelerator/storage rings. With the flexibility of two rings, RHIC is

a versatile complex capable of colliding a diverse set of heavy ions and polarized protons.

Since beginning operations in 2000, RHIC has collided systems of p+p, p+Au, p+Al, d+Au,

3He+Au, Cu+Cu, Cu+Au, Au+Au and U+U at various energies. The top energy attainable

for a p beam is ⇠ 500 GeV, while the top energy for a Au ion is ⇠ 100/u (due to the Z/A

ratio). The wide array of species and collision energies available at RHIC allow it unique

avenues to study the properties of the QGP and the QCD phase diagram through ultra

relativistic heavy ion collisions. In addition, as the world’s only high energy polarized p + p

collider, it provides unparalleled opportunities to study the fundamental spin structure of

protons. A schematic of the RHIC accelerator complex is shown in Fig. 3.1b.

The RHIC accelerator is built o↵ of the infrastructure that has existed for some time

at BNL. The major components used to inject beams into RHIC are shown in Fig. 3.1a.

Since the 1970s, the Tandem Van de Graa↵ at BNL has been providing ions for experimental

research. As part of RHIC, the Tandem Van de Graa↵ provided the heavy-ions for many

years until recently when an electron beam ion source (EBIS) was installed. The EBIS is

now the primary source of ions for RHIC, though the Tandem Van de Graa↵ is still used

in some special scenarios. In the EBIS the negatively charges gold ions are accelerated to 2

MeV/u (MeV per nucleon) and stripped to a charge of Q = +32 before being delivered to the

Booster Synchrotron. In the Booster Synchrotron, the ions are accelerated to ⇠100 MeV/u

and stripped to a charge of Q = +77. The Alternating Gradient Synchrotron (AGS) receives

the beams from the Booster Synchrotron. Inside the AGS, the ions are fully stripped to a

charge of Q = +79 and accelerated to 8.89 GeV/u before being transferred through the AGS-

to-RHIC (AtR) transfer line. Upon entering RHIC, the beams can be accelerated further
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(a) (b)

Figure 3.1 : The RHIC accelerator complex. The AGS area is shown in (a) along with the
EBIS, the Linac, the Booster and the AGS-to-RHIC line. The RHIC rings are shown in (b)
[119].

and stored for several hours.

RHIC has successfully delivered Au+Au collisions at energies ranging from
p

sNN=7.7 to

200 GeV. The targeted design luminosity for Au+Au collisions was 2⇥1026 cm�2s�1, but in

recent years the achieved average luminosity has been 87⇥1026 cm�2s�1, 44 times the design

goal. At a speed of ⇠99.995%c, the beams take about 12µs to travel around the ring one

time. When RHIC is fully injected, it has 111 bunches per beam filled with ⇠ 109 ions/bunch.

Each of RHIC’s rings accelerate the bunches using powerful electric fields in resonant radio

frequency cavities. The beams are steered with 1,740 superconducting magnets into six

interaction points along the rings. At the start of its operations, RHIC had four main

experiments: BRAHMS, PHOBOS, PHENIX and STAR. The PHOBOS experiment was

decommissioned in 2005 and a year later the BRAHMS experiment was too. The PHENIX

experiment was decommissioned and cleared from its interaction region in 2015 to make room

for a new detector called sPHENIX [117,118]. STAR is the only one of the four experiments

still in operation today.
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3.2 Solenoidal Tracker at RHIC

The Solenoidal Tracker at RHIC (STAR) detector sits at roughly the 6 O’clock position in

the RHIC ring. The origin of the STAR coordinate system is at the center of the solenoidal

magnet. The x-axis points approximately south from the center of RHIC along its radius

to where STAR is. The y-axis points upwards and the z-axis points in the direction of the

clockwise circulating beam (west when viewed from above). The transverse momentum (pT )

of charged particles are measured via the tracks’ curvature in the x�y plane. The azimuthal

angle � is measured in the x�y plane starting from the positive x-axis. The polar angle ✓

is measured in the z�y plane from the positive z-axis. However, instead of using ✓ the use

of the pseudorapidity (⌘ = � ln(tan(✓/2)) ) is far more common since it is additive under

Lorentz boosts, similar to velocities under Galilean transformations. A render of the STAR

detector from one corner can be seen in Fig. 3.2.

The STAR detector was built for the express purpose of studying high energy heavy-ion

collisions [120]. To satisfy this purpose, STAR was built as a multi-purpose detector designed

to have large, uniform acceptance in 0 < � < 2⇡ and |⌘| < 1. It was also important that

STAR be able to provide charged particle tracking down to low momenta (⇠ 100 MeV/c)

and in high multiplicity environments. For this reason, the STAR detector is composed of a

0.5 T solenoidal magnet and a central Time Projection Chamber (TPC) for charged particle

tracking. Outside the TPC are several other detector subsystems that provide advanced

particle identification or energy measurement capabilities.
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Figure 3.2 : The STAR detector system. [121]

The work reported in this thesis makes use of the Time Projection Chamber, the Ver-

tex Position Detectors (VPD), the Barrel Time-of-Flight (BTOF) detector, and the Muon

Telescope Detector (MTD). These detectors will be describe in more detail below. More

information about STAR as a whole and about other STAR subsystems can be found in

Ref. [120].
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3.2.1 Time Projection Chamber

Figure 3.3 : A schematic of the STAR Time Projection Chamber [122].

The Time Projection Chamber is at the heart of STAR with the rest of the detectors built

around it. The TPC is itself a 4.2 m cylindrical detector built around the beam pipe. It has

an inner radius of 50 cm and an outer radius of 200 cm. At the time of construction it was

the largest TPC in the world, capable of tracking 3000 charge particles at a time [122]. One

of the most desirable characteristics of the TPC is that it is mostly empty volume, making

it cost-e↵ective and providing a low material budget. The volume of the TPC is filled with

P10 gas (90% Argon, 10% Methane) at +2 mbar above atmospheric pressure to assure that

no water moisture enters the TPC exposing the internals to the dangers of oxidation. A

-28kV central membrane and two grounded cathodes provide a well-defined constant electric

field of ⇡135 V/cm which permeates the TPC volume parallel to the z-axis. Inner and outer

field cages use precision resistor chains to provide 182 equipotential regions within the TPC

to keep the electric field constant. The ⇡135 V/cm electric field results in an electron drift

velocity through the P10 gas of 5.45 cm/µs.
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The TPC uses multi-wire proportional chambers (MWPC) to readout the charges that

drift toward either end. Twelve trapezoid-shaped MWPCs are used on either end-plane of

the TPC to cover the full range in azimuth. The MWPC are segmented into an inner and an

outer wire plane. The inner plane consists of 13 wires while the outer consists of 32 wires for

a total of 45 readout locations in the radial direction. Each of these 45 pickup wires allow

for a measurement of the position and ionization energy loss of a track traveling through the

TPC.

The TPC accomplishes its goal of charged particle tracking via measurements of ionization

in the P10 gas. A charged particle traversing the TPC volume will ionize Argon atoms freeing

electrons along the way. These freed electrons drift away from the central membrane towards

the read-out electronics near the cathodes. The spatial location in the x�y plane of electron

clusters are measured with a maximum of 45 spatial points by the MWPC array. Each

cluster provides a position measurement with a resolution of ⇠500µm. At the same time the

z-position is measured by time-binning (⇠ 100 ns time bins) the readouts and extrapolating

based on the electron drift velocity.

Track trajectories are reconstructed in 3D from the 45 x�y hits plus the z-positions mea-

sured by the TPC. The conversion from discrete hits into helices is accomplished using the

Kalman filtering process - a method of iteratively fitting helices to determine the most accu-

rate track trajectories in a uniform magnetic field. Once the tracks have been reconstructed

they constitute “global tracks” in the STAR jargon. Next, all of the global tracks are ex-

trapolated to the z-axis and a �2 minimization technique is used to group tracks that point

towards the same vertex. In this way one or more “primary” vertices are formed which rep-

resent the location of a heavy-ion collision. Sometimes one of the primary heavy-ion beams

may cause a collision with the beam-pipe material which results in a real collision producing

enough charged particles to reconstruct back to the collision vertex. This type of background

event can generally be rejected (after the even is reconstructed) by requiring that the x�y

position of the primary vertex be within the empty vacuum region of the beam-pipe. Any

particular event may have several primary vertices reconstructed.
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Figure 3.4

In central heavy-ion collisions it is generally not too hard to pick out the “real” primary

vertex since it may have more than 1000 charged particles associated with it. In peripheral

heavy-ion collisions and p+p collisions this can be more challenging though and may require

additional constraints. One such constraint is provided by the VPDs and will be discussed

next. After determining which global tracks are associated with which primary vertices, the

tracks are refit with the position of the primary vertex as an added point along their trajecto-

ries. The primary vertex generally has very precise position resolution, since it benefits from

many track measurements. The addition of the high precision primary vertex position to the

track helix fit significantly improves the momentum measurement and therefore improves

the momentum resolution. With the addition of the primary vertex point along a particle’s

track, the TPC obtains momentum resolution of ⇠1�2% (depending on the particle species)

at pT ⇡ 1 GeV/c. The direction of curvature of the track helix is also used to determine its

charge, assumed to be ±e.

In addition to charged particle tracking, the gas ionization measurements provided by the

TPC are also useful for particle identification. In addition to simply measuring the location

of electron clusters produced by ionization energy loss, the TPC is also able to measure

the number of electrons in each cluster which is proportional to the amount of energy lost
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per unit length traveled. The ionization energy loss per unit length traveled (dE/dx) by a

charged particle through a medium is described by the relativistic Bethe-Bloch formula:

�hdE

dx
i =

4⇡

c2me

nz2

�2

e4

(4⇡✏0)2


ln

✓
2c2�2me

I · (1 � �2)

◆
� �2

�
(3.1)

n =
NA · Z · ⇢
A · Mu

(3.2)

where c is the speed of light, ✏0 is the vacuum permittivity, � = v/c, e is the electron

charge, me is the electron mass, I is the mean excitation potential, and z is the particle’s

charge in units of e. The number density of the material is given by n where ⇢ is the density

of the material, Z is its atomic number, A its atomic mass, NA is Avogadro’s number,

and Mu is the molar mass constant. Since �� = p/m, particles of di↵erent masses can be

distinguished with a precise enough momentum measurement. The Bethe-Bloch formula

was further improved upon by tailoring the equation specifically for the P10 gas in the

TPC. The result of this tailoring was the Bichsel parameterization [123]. Using the Bichsel

parameterization, the measured dE/dx values can be rescaled with respect to the expected

value for a given particle. After being rescaled and divided by the resolution, the measured

dE/dx value is called n� (e.g. n�⇡ for a ⇡). This formulation of the dE/dx measurement is

very convenient since it allows particles to be roughly identified by selecting on ranges of n�.

3.2.2 Vertex Position Detector

The Vertex Position Detectors are two identical photo-multiplier tube (PMT) based detectors

covering the forward and backward regions (4.24 < |⌘| < 5.1) approximately 5.7 m from the

center of STAR [124]. Each VPD consists of nineteen identical detectors formed from a Pb

converter, a fast plastic scintillator, and a PMT. The fast scintillators and PMT readouts

along with high-quality signal digitization electronics allow the individual VPD tubes to

measure particles passing through with a precision of �single�tube ⇡ 100 ps. When all the hits

are combined, the “start time” of an event can be measured with a precision of a few tens of

ps. This level of timing precision can be recast as a longitudinal measurement of the collision

vertex position with a precision of �z ⇡ 1 cm (in Au+Au collisions at
p

sNN = 200 GeV) [124].

The precise timing and vertex position measurement provided by VPD are very impor-

tant for “triggering” - i.e. almost instantly choosing which events to keep and which to



48

gRefMult/10
10 20 30 40 50 60

(V
pd

Vz
-T

pc
Vz

)
σ

0

1

2

3

4

5

6

7

8

9

10

Earliest TAC with the Jitter

Earliest TAC Jitter Removed

Mean of TACs with Jitter

Mean of TACs Jitter Removed

Figure 3.5 : The VPD vertex resolution using the trigger electronics as a function
of gRefMult (the number of global tracks in ±0.5 units of ⌘) in Au+Au collisions atp

sNN = 200 GeV. Four di↵erent configurations are shown. The default going into the
2016 run year provided �vz ⇡ 4 cm. The improved version developed for the HFT provided
�vz ⇡ 1.5 cm at high multiplicities.

throw away. The VPD has two independent sets of electronics for digitizing the PMT sig-

nals. The electronics for the trigger logic use Time-to-Analog Converters (TACs) while the

electronics used for o✏ine data acquisition use CERN developed High Performance Time to

Digital Converters (HPTDC). Since the VPD and TOF systems are largely a Rice University

contribution to STAR, one of my main responsibilities as a Ph.D. student was to calibrate

the electronic systems for the VPD. The response of the PMTs varies with collision species,

so various VPD parameters must be tuned for each data taking period to ensure optimal

performance.

The calibration and definition of the VPD trigger was especially important during the

2016 collection of Au+Au collisions at
p

sNN =200 GeV data. For this dataset, a special

silicon wafer-based Heavy Flavor Tracker (HFT) capable of providing additional track points

with a spatial resolution of 50µm was installed inside the TPC just around the beam-pipe.

The addition of the HFT allows the reconstruction of secondary decay vertices from heavy

flavor decays (D0 ! K�⇡+, c⌧ ⇡ 120 µm). However, the HFT only covered a longitudinal

region of ±6 cm. For this reason, the HFT could only provide tracking information for

collisions within that region. The VPD was used to select in real-time only those collisions
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Figure 3.6 : A photo of the Vertex Position Detectors before being installed around the
beam-pipe (a). A schematic drawing the the VPD detector assembly, (b) and a schematic
each single detector enclosure used by the VPD (c).

that occurred within �6 < vZ < 6 cm. The improved calibration and trigger algorithm

shown in Fig. 3.5 improved the HFT event purity from ⇠ 60% to ⇠ 90%.

The VPD also plays a crucial role for the MTD based triggers which will be discussed in

detail below. The precise time measured by the VPD also acts as the “start-time” (t0) for

the Barrel Time-of-Flight and MTD detectors. The Time-of-Flight detector measures the

“stop-time” (t1) of tracks as they pass through the BTOF detector. Together, the VPD and

BTOF detectors allow the precise measurement of a particle’s velocity. More details about

the BTOF detector are discussed next.
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Figure 3.7 : A schematic of the MRPCs used in the STAR BTOF. [125]

3.2.3 Time-of-Flight Detector

The Barrel Time-of-Flight (BTOF) detector is a cylindrical detector installed just outside

the TPC at a radius of 210 cm [125,126]. The BTOF detector is constructed from Multi-gap

Resistive Plate Chambers (MRPC). An MRPC is essentially the evolution of the Resistive

Plate Chamber (RPC) detector design. Each MRPC is a stack of thin layers (0.54 mm for

inner layers, 1.1 mm for outer layers) of resistive glass (⇢ ⇡ 1013 ⌦/cm) separated by gas

filled gaps of 0.22 mm. For an RPC the gas in the gaps is generally ⇠ 95% Freon R-134a

(C2H2F4) with ⇠5% being isobutane and/or SF6. Electrodes on either side of the MRPC

are held at a potential di↵erence of 10�15kV. Outside the electrodes, copper pads are used

to pickup and readout the signals.

The RPC and MRPCs operate based on the production of Townsend avalanches within

the gaseous gaps. When a charged particle passes through the gas filled gaps, electrons are

freed through ionization. The strong electric field accelerates the free electrons, causing them

to free more electrons via ionization of the gas’ atoms. The MRPC has advantages over the
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Figure 3.8 : A schematic of a TOF tray showing the layout of the MRPCs within [126].

single gap RPC design. Making several narrow gaps instead of one large gap reduces the

jitter caused by the primary ionization event. The existence of multiple gaps also leads to

several independent avalanches, thereby allowing the final signal to be an average of multiple

independent events thus improving the resolution. There is a balance that must be found

though, since smaller gaps generally have a larger relative uncertainty due to the physical

di�culty of defining very narrow separations uniformly. Also narrow gaps can increase the

susceptibility to non-uniformities in the glass. A peak on the surface of a glass layer can cause

thermionic emission induced by the breakdown of the electric current. This results in a noisy

detector with fake signals that do not result from charged particles passing through. Over the

past many years, RPC and MRPC-based detectors have been thoroughly studied [127–130]

and their performance has been found to be very robust. A schematic diagram of the MRPCs

used in the STAR Barrel Time-of-Flight can be seen in Fig. 3.7.

The BTOF detector is segmented into 120 essentially identical trays, with 60 on the

east and 60 on the west side of STAR. Each tray measures 241.3⇥21.6⇥8.9 cm3. The 120

trays cover 2⇡ in azimuth and approximately ±0.9 units in pseudorapidity, similar to the

coverage of the TPC. Each tray contains 32 individual MRPCs and each MRPC contains

6 channels for a total of 120 ⇥ 32 ⇥ 6 = 23,040 channels. The MRPCs within each tray

are staggered in such a way as to point nearly perpendicular to the expected trajectory of

a particle emanating from the origin of the STAR coordinate system. The side view of one

tray can be seen in the schematic of Fig. 3.8. Like the VPD, the BTOF electronics need to

be calibrated for each collision species and data taking period. One of my responsibilities as

a student was to calibrate all 23,040 channels of the BTOF detector. A table summarizing

the TOF performance for a selection of data sets can be seen in Table 3.1.

The purpose of the Time-of-Flight (TOF) system in STAR, composed of the BTOF and

VPD detectors, is to provide precise timing information of particle trajectories for particle

identification (PID). By measuring the time di↵erence between the VPD start-time and
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Table 3.1 : A summary of the performance of the TOF system in STAR from the year 2012
to 2017. The total time resolutions marked with a “*” indicate that the VPD was not used
for the start-time determination. Instead a bootstrapped start-time was calculated from the
pions in the event using only the BTOF information.

Year Collision System
and

p
sNN (GeV)

VPD Single
PMT Resolu-
tion (ps)

Stop-side res-
olution (ps)

Total Resolu-
tion (ps)

2012

p + p 200
p + p 510
U+U 193
Cu+Au 200

100
100
70
92

70
70
70
75

120
120
75
78

2013 p + p 510 133 80 150

2014
Au+Au 14.5
3He+Au 200
Au+Au 200

170
96
68

84
79
70

146*
125*
73

2015
p + p 200
p + Au 200

122
122

75
90

113
98

2016

Au+Au 200
d+Au 200
d+Au 62.4
d + Au 39
d + Au 19.6

78
114
126
152
160

74
85
90
83
83

75
88
95
121*
128*

2017
p + p 510
p + p 510 RHICf

137
125

90
82

114
101
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the BTOF stop-time (�t = t1 � t0) the TOF system achieves a total time resolution of

approximately �TOF ⇡ 100 ps [124]. Particle velocity information alone has limited usefulness

for separating particles of di↵erent masses. Unless the path length (�s) of the particle’s

trajectory and the momentum (p) of the particle is also known, the TOF information cannot

be used for PID. However, the TOF system works in concert with the TPC. The TPC tracking

provides the momentum measurement and the trajectory which can be projected to the TOF

volume to determine the total path length. With all three detectors working together (VPD

for start-time, TPC for p and �s, and TOF for stop-time) the particle velocity (expressed

as ��1 = c/v, c being the speed of light) can be measure with:

��1 = c
�t

�s
(3.3)

With the addition of the p measured by the TPC, the mass of the particle can be inferred

with:

m =
p

��c
=

p
p

1 � �2

�c
=

p

c

p
��2 � 1 (3.4)

making the separation and identification of ⇡±, K±, and p/p̄ possible out to p ⇡ 1.5 GeV/c.

An example of the TOF’s particle identification capabilities can be seen in Fig. 3.9 for Au+Au

collisions at
p

sNN =7.7 GeV. Information from the TOF detector is not used directly for

muon identification in these studies. Instead the use of 1/� measurements from the TOF

detector are used in Sec. 4.3 to separate various sources of hadron punch through that leave

signals in the MTD.
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Figure 3.9 : The ��1 vs. p measured by the TOF system in STAR for Au+Au collisions atp
sNN =7.7 GeV. The expected ��1 is shown for each particle species. Taken from Ref. [131]
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(a) (b)

Figure 3.10 : Schematic views of the MTD geometry. The magnet return steel is shown
in (a) with numbers indicating the order of the MTD backlegs. An isometric view of the
MTD modules (b) showing that some backlegs contain 5 modules and others contain only 3
modules due to space constraints.

3.2.4 Muon Telescope Detector

The Muon Telescope Detector (MTD) is a Multi-gap Resistive Plate Chamber (MRPC) based

detector installed outside the magnet’s return yoke steel at a radius of 410 cm [132]. The

60 cm thick magnet steel acts as the hadron absorber, o↵ering ⇠ 5 interaction lengths of

material at its thickest. The MRPC-based design allows the MTD to be a large coverage,

cost e↵ective detector [133]. The view of the magnet and MTD from the east side of STAR is

shown in Fig 3.10. The MTD divides the azimuthal angle into 30 backlegs with each backleg

covering 12 degrees. The active area covered by the MTD in each backleg is about 8 degrees

with 2 degrees of gap on either side of the active region. In the longitudinal direction (beam

direction) 5 modules are installed in backlegs 1-8, 10, 21-22, and 24-30. Backlegs 13-20 have

only the central 3 modules installed due to physical constraints. Backlegs 9 and 23 do not

have modules installed.

The backlegs with 5 modules installed cover approximately -0.6 < ⌘ < 0.6 and the backlegs

with only 3 modules cover approximately -0.3 < ⌘ < 0.3 for collisions at the center of the

STAR magnet. On average the MTD system covers ⇠ 45% of the azimuthal direction within

|⌘| < 0.5. Each MTD module is an MRPC with 12 double-ended readout strips. Each strip

is 87 cm long and 3.6 cm wide. There is a gap of about 0.6 cm between each strip. The
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Figure 3.11 : A schematic of the side-view of an MTD LMRPC module. [133]

MTD was installed progressively over the course of several years. In 2012 the first 12 modules

(10%) were installed. The next year an additional 63 modules were installed (61%) before

completing the installation of all 122 modules in 2014.

The MRPCs used in the MTD are similar to the ones used in the BTOF but with a few

important di↵erences. While the BTOF used small MRPCs with single ended readouts, each

of the modules in the MTD are Long-Strip MRPC (LMRPC) with readout electronics on

both ends [133]. In tests conducted at Fermilab, this design provided better than 70 ps time

resolution and spatial resolution of approximately 1 cm along the readout strips [134, 135].

The LMRPC design also showed better than 95% detection e�ciency. A schematic of the

LMRPC design used for the MTD is shown in Fig. 3.11. The LMRPCs have four inner panes

of glass (0.7 mm thick) and two outer panes of glass (1.1 mm thick) for a total of five 250µm

gas gaps. Special highly resistive glass was used with a surface resistivity of ⇠1013⌦·cm.

High voltage electrodes are attached on either side of the outer panes of glass. The total

active area of the LMRPC, defined by the area of the inner glass panes, is 875 ⇥ 543 mm2.

Each of the twelve double-ended readout strips in the LMRPCs measure 870 mm long

by 38 mm wide with a gap of 6mm between neighboring strips. Like the VPD and BTOF

detectors, the MTD is a fast detector used for triggering. For this reason the MTD has

two parallel but separate sets of electronic readout equipment. One set of electronics is

used to readout the MTD modules as part of the trigger logic while the other is used to

readout information into the o✏ine data acquisition system. The o✏ine electronics use the

same HPTDC chips as the BTOF detector electronics. The trigger electronics divide the 122

modules into 28 “trigger patches”. Most trigger patches are comprised of 5 MTD modules,



57

Figure 3.12 : A schematic drawing of the MTD trigger logic. Most trigger patches consists
of 5 modules while some consist of only 3. The modules in a trigger patch are always grouped
from position of equal ⌘. The red and magenta trigger patch numbers mark the location of
various electronics boxes. The violet numbers mark trigger patches with some channels
disabled where there is no material guarding the module [136].

while some contain only 3 modules. Modules from the same ⌘ position but di↵erent azimuthal

angles are grouped together in each trigger patch. The grouping in ⌘ is meant to help ensure

that all signals will arrive at the MTD trigger logic electronics at roughly the same time,

since tracks with equal ⌘ should have roughly equal track lengths. The first layer of trigger

logic is implemented in QT boards. The signal from all of the trigger patches are received

in the QT boards MT001-MT004. The QT boards at this stage determine the fastest hits

(largest TAC value) from each trigger patch. The fastest signals from MT001-MT004 are

sent to MT101 where the times are compared with the trigger electronics’ start-time provided

by the VPD. The final stages of the trigger logic (TF201) tests to determine if two or more

of the time di↵erences (from two or more di↵erent trigger patches) fall into the pre-defined

timing window. If acceptable times are found then the event is sent to the Trigger Control

Unit (TCU) to be kept. A schematic diagram of the MTD trigger logic can be found in Fig.

3.12.
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(a) (b)

Figure 3.13 : A map of the magnetic field of the STAR detector in the transverse plane.
(a). The energy loss parameterization used in the STAR MTD track matching algorithm (b).
The energy loss is parameterized as a function of track momentum by averaging the energy
loss from GEANT over many events for several sub-systems [136].

MTD Track Matching

The most important information that the MTD can provide for muon identification is whether

or not a given track produced a hit in the MTD. The matching of tracks reconstructed from

hits in the TPC to MTD hits is accomplished by projecting the TPC tracks out to the MTD

radius. The MTD modules’ double-ended readout strips allow the local Z position of hits

to be measured via the di↵erence in time between the signals on either ends of the strip.

The local Y position is determined simply based on which strip registered the signal. The

�Z and �Y variables are formed from the residuals between the local Y and Z measured

position and the track’s projected position. If MTD hits are found in the vicinity of the track

projection’s local position at the MTD then the closest MTD hit is assigned as the match

(smallest �Z and �Y ). If multiple tracks are able to match to the same MTD hit, then the

closest track is chosen.

The track projection procedure takes small steps along an ideal helix to determine a

tracks position at the MTD radius. After each small step taken along the track’s helix, the

energy loss is calculated and used to modify the trajectory. Since the magnetic field direction

changes between the inside and outside of the magnet, the magnetic field direction is checked

at each step. The magnetic field map in the transverse (x�y) plane is shown in Fig. 3.13a.
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Figure 3.14 : The luminosity of collected dimuon triggered events as a function of time
through the run. The red line shows the initial luminosity goal, the black shows what was
actually collected, and the blue shows a projection based on the first several days of data
collection. The p+p dataset is shown in (a) and the p+Au dataset is shown in (b).

Within the inner magnet, the magnetic field is a uniform -0.5 T in the z direction. Inside the

magnet steel the field strength is +1.6 T and 0 outside the magnet. Instead of computing

the energy loss on a track-by-track basis, the average energy loss based on a GEANT [137]

simulation was parameterized as a function of the track momentum. This parameterization,

produced by averaging over the energy loss contribution from multiple detectors is shown in

Fig. 3.13b.

3.3 Data Sets and Event Selection

This study uses data from p+p collisions at
p

s = 200 GeV, p+Au and Au+Au collisions at
p

sNN = 200 GeV collected during the years 2014 and 2015. Data from the MTD related

triggers is stored in the st mtd data stream. See Table 3.2 for the triggers included in the

st mtd data stream along with the number of events collected, their trigger IDs, and the

sampled luminosity. All of the studies in this work use data from only the dimuon trigger

condition.

Events were selected from those triggering the dimuon trigger condition by applying a cut

on the primary vertex position in the longitudinal direction, by requiring that the di↵erence

between the primary vertex z position and the z position measured by the Vertex Position

Detector was less than 6 cm, and by requiring a primary vertex ranking greater than or equal
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Table 3.2 : Triggers included in the st mtd data stream. The # of events, trigger ids, and
sampled luminosity are given for each where available.

System Trigger # of Events
(M)

Trigger IDs Sampled Luminos-
ity

p + p single-muon 74.1 470600, 480600, 490600 0.475 pb�1

p + p dimuon 320.4 470602, 480602, 490602 122.13 pb�1

p + p e-muon 102.6 470601, 480601, 490601 45.92 pb�1

p + Au single-muon 14.8 500600 0.74 nb�1

p + Au di-muon 266.2 500602 409.97 nb�1

p + Au e-muon 53.5 500601 60.62 nb�1

Table 3.3 : Cuts applied to select events from the data collected by the dimuon trigger
condition.

Quantity Cut Criteria

|zTPC| < 100 (cm)
|zVPD � zTPC| < 6 (cm)
ranking � 0
# of MTD matched tracks � 1

to zero. The detailed event selection cuts are shown in Table 3.3.

Each event level distribution is shown in Fig. 3.15 before any of the cuts are applied. The

cuts applied to each distribution are shown with solid lines. In Fig. 3.15a and Fig. 3.15b the

values between the lines are accepted. In Fig. 3.15c and Fig. 3.15d the events with values

to the right of the lines are accepted. Finally, a summary of the number of events passing

the application of each cut is shown in Fig. 3.15e.



61

150− 100− 50− 0 50 100 150
z vertex (cm)

310

410

510

-1
 d

N
/d

vz
 (c

m
) Entries    3.051691e+08

(a)

50− 40− 30− 20− 10− 0 10 20 30 40 50
vpd z - z vertex (cm)

310

410

510

610

-1
 d

N
/d

vz
di

ff 
(c

m
) Entries    3.051691e+08

(b)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5 3
ranking*1e-6

310

410

510

610

710

810

910

 d
N

/d
ra

nk
in

g Entries    3.051691e+08

1.
01
89
7e
+0
8

74
72

2.
03
26
5e
+0
8

(c)

0 2 4 6 8 10
# of mtd_match

1

10

210

310

410

510

610

710

810

910

 d
N

/d
 #

 o
f m

td
 m

at
ch Entries    3.051691e+08

2.
09
11
5e
+0
8

8.
69
80
5e
+0
7

8.
89
06
7e
+0
6

17
82
82

38
80

21
5

58

32

19 15

52

(d)

All Trigger
bad vtx vtx_delta

ranking
mtd_match

tree
 Cut

710

810

910

 #
 E

ve
nt

s Events

5.
05
00
8e
+0
8

3.
09
55
4e
+0
8

3.
05
16
9e
+0
8

2.
85
65
1e
+0
8

1.
76
41
7e
+0
8

1.
24
02
8e
+0
8

4.
27
51
1e
+0
7

2.
26
15
3e
+0
7

Events

(e)

Figure 3.15 : The Event selection cuts shown for the data collected from p+p collisions
at

p
s = 200 GeV. The primary vertex position (|zTPC|) before cuts is shown in (a). The

di↵erence between the TPC and VPD vertices (|zVPD � zTPC|) is shown in (b). The primary
vertex ranking is shown in (c). The multiplicity of MTD-matched tracks is shown in (d). In
(a) and (b), the red lines show the cut applied to those quantities with the region between
the red lines accepted. In (c) and (d) the red lines show the cut applied, with all events to
the right of the red line being accepted. Summary of events surviving each cut (e). The bin
labels correspond to : All events, dimuon triggered (after day 50), pass bad run rejection,
pass |zTPC| < 100 cm, pass |zVPD � zTPC| < 6 cm, pass ranking � 0, has at east one MTD
matched track, and has at least one MTD matched primary track. The events surviving all
cuts in the ”tree” bin are saved to a tree for further analysis.
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Chapter 4

Muon Identification

Charged particle identification in STAR has traditionally been carried out using a combina-

tion of dE/dx and Time-of-Flight. However, these techniques are not viable for distinguishing

muons from charged pions since the charged pion mass (m⇡+/� = 139 MeV/c2) and the muon

mass (mµ = 105 MeV/c2) are so similar. Since their masses are so similar the muon and

charged pion dE/dx bands almost completely overlap (See Fig. 4.1a). Similarly, for p > 0.35

GeV/c the ��1 bands for charged pions and muons merge and become indistinguishable (See

Fig. 4.1b). Before any measurement can be done with muon pairs, muon identification must

take place. The identification of low momentum (p < 0.35 GeV/c) muons will be discussed

first. Next, the identification of muons at higher momenta using the MTD will be discussed.

4.1 Identifying Low Momentum Muons with the TPC and TOF

The time of flight for a particle as a function of mass and momentum is given by :

��1 =

s

1 +

✓
m

p

◆2

(4.1)

where m is the particle’s mass and p its momentum. Due to this relation between ��1 and

a particle’s mass, a precise measurement of ��1 can be used to distinguish particles of di↵erent

masses. It can be seen however, that for any mass m, when p � m the ��1 ⇡ 1.0. Since the

charged pions and muons have very similar masses they become practically indistinguishable

for p > 0.35 GeV/c. Below this momentum, it is possible to distinguish muons and charged

pions with a reasonable purity. With ��1 alone, electron contamination would make it

impossible to separate muons from electrons. However, a cut on dE/dx can be used to

e�ciently reject electrons which would otherwise significantly overlap with the muon ��1

band. In principle, the mean of the ��1 distribution for ⇡ and µ could be obtained by simply

evaluating Eq. 4.1 with the respective masses. However, due to imperfect calibrations the
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(a) (b)

Figure 4.1 : The dE/dx (a) and ��1 (b) for charged particles. Since both of these quantities
are proportional to the particle’s mass, they can be used to identify charged particles.

��1 distributions may have significant momentum dependent shifts and broadening. In order

to select µ using the ��1 distributions we need to determine the precise location of the ⇡

and µ distributions along with their widths (�). To ease in fitting and visualization the ��1

distribution is centered around the expected ��1 for ⇡ according to:

zb =
X

s=⇡,µ

⇥
ws · (��1

measured + µs(hpi) � µs(p))
⇤
� µ⇡(hpi) (4.2)

Where ��1
measured is the value measured, µs(hpi) is the expected mean of the ��1 distribution

for species s found by evaluating Eq. 4.1 with the mean momentum in the given momentum

bin, µs(p) is the expected mean of the distribution for species s found by evaluated Eq. 4.1

with the track’s measured momentum, and ws is a factor which weights the contributions for

each species s based on proximity to that species expected mean. Finally, the factor µ⇡(hpi)

is the expected mean value for the ⇡ evaluated at the mean momenta in the bin. This term

is subtracted o↵ the re-weighted distribution to center it around the expected mean of the ⇡

peak.

After applying the re-weighting and re-centering procedure, the zb distribution can be fit

to determine the precise mean(µ) and sigma (�) of the ⇡ and µ contributions. Ideally the

contribution to the zb distribution for each species would be Gaussian. However, in practice

this is not the case. In p+p collisions at
p

s = 200 GeV the start time for the ��1 measurement
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Figure 4.2 : Comparison of Gaussian (a) versus a Pearson VII (b) distribution for the pion
and muon ��1 shapes. The Gaussian significantly underestimates the tails of the distribu-
tions. Since the yield of the ⇡ is much larger than the µ, underestimating the ⇡ tails could
significantly e↵ect the fit to the µ contribution. The Pearson VII distribution, with a free
parameter related to the distribution’s kurtosis, provides a much better description of the
tails in the ��1 distributions.
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comes from the Vertex Position Detector (VPD). Events with varying event activities will

lead to varying number of hits in the VPD. The time resolution of the VPD’s start-time

improves with additional hits in its photo multiplier tubes (PMTs). For this reason, events

with more hits in the VPD will have a better ��1 resolution than events with fewer hits in

the VPD (See Fig. 3.5). In addition to the start time contribution, the non-gaussian tails

of the ��1 distribution could also result from combining measurements for tracks of various

lengths, variations in momentum resolution, and from an imperfect calibration of the 23,040

cells in the barrel Time of Flight detector.

Since the particle peaks in the zb distribution have non-gaussian tails, we investigate

alternatives to the Gaussian distribution for fitting the ⇡ and µ peaks. The Pearson VII

distribution was chosen as a possible improvement over the Gaussian distribution because

it has a free parameter which can account for the kurtosis () of the distribution. The

Pearson VII distribution is a special case of the family of Pearson distribution, in which the

skewness (⌫) is fixed at 0 to enforce a symmetric distribution. The density of the Pearson

VII distribution is given by:

p(x|�, �, m) =
1

↵B(m � 1/2, 1/2)

"
1 +

✓
x � �

↵

◆2
#�m

(4.3)

Where B is the Beta function and ↵ = �
p

2m � 3. In this parameterization, the free

parameters �, �, and m control the mean, variance (�2), and the kurtosis () of the distri-

bution. The distribution is only well defined for m > 3/2. It should be noted that if the �

and � parameters are held constant while the parameter m approaches infinity, the standard

normal distribution arises. Additionally, the Pearson VII distribution is equivalent to the

Student’s t-distribution under the transformations :

� = µ

↵ =
p
⌫�2

m =
⌫ + 1

2

(4.4)

with the requirement that ⌫ > 0. Figure 4.2 shows a comparison of the fits to the zb

distribution in 0.26 < p < 0.265 GeV/c for the Gaussian and Pearson VII distributions.
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It can be seen that the Gaussian distribution significantly underestimates the tail of the ⇡

contribution while the Pearson VII distribution provides significantly better agreement as is

visible in the ratio plots in the lower panels. In these figures the fit regions are shown with a

shaded grey box. The ⇡ fit contribution is shown in red and the µ fit contribution is shown

in blue. The total fit for ⇡ and µ is shown in black. In each figure the lower panel shows the

ratio of the data to the fit result.

4.2 Muon Identification Information from the MTD

At momenta above ⇠0.35 GeV/c muons can no longer be separated from charged pions

and electrons with using dE/dx and ��1 alone. For this reason, muon identification at

higher momenta employs the MTD. The MTD provides several variables that aide in the

identification of muons and the rejection of pions, kaons, and other hadrons. The information

provided by the MTD consists of precise timing (⇠100 ps resolution) and position (⇠1-2 cm

resolution). A total of 11 variables (6 MTD variables and 5 track variables) are used for

MTD based muon identification. The full list of quantities measured by the TPC, and MTD

detectors that are used in this study for muon identification are:

• �TOF - Di↵erence between the calculated time-of-flight using a muon hypothesis ver-

sus the time-of-flight measured by the MTD.

• �Z - Di↵erence between the local Z position calculated using a muon hypothesis versus

the position measured by the MTD.

• �Y - Di↵erence between the local Y position calculated using a muon hypothesis versus

the position measured by the MTD from the center of the matched strip.

• cell - the geometric strip index ranging from 0 - 11 with 0 and 11 at the outside edges

of each module. The average amount of steel between the interaction point and the

MTD module is lowest at the edges.

• module - the geometric module index ranging from 0 - 4 along the z direction of the

STAR coordinate system.

• backleg - the geometric backleg index ranging from 0 - 29. The amount of material
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between the interaction point and the MTD backlegs varies as a function of backleg

since the detector is not fully symmetric in the � direction.

• n�⇡ - the dE/dx information measured by the TPC. The value normalized by the

expected value for the ⇡ and corrected for detector resolution is used for simplicity.

The value of n�⇡ for muons is on average ⇠+0.5.

• DCA - Distance of closest approach of the track to the primary collision vertex.

• pT - Transverse momentum of the track. The �TOF , �Y , and �Z resolutions depend

strongly on pT .

• q - the track charge measured from its curvature.

These ”features” will be used as the inputs when training neural network classifiers in

Sec. 4.4.

4.3 Preparation of Training Datasets

4.3.1 Simulation of Muon Telescope Detector

In Section 4.4 the training and use of ANNs to perform a two-class classification problem

to distinguish signal muons from various types of backgrounds is discussed. This type of

ANN based classification is an example of supervised learning and therefore requires labeled

datasets for the training phase. A Monte Carlo (MC) simulation procedure is used to generate

the labeled signal and background datasets needed to train the supervised learning algorithms

discussed in Section 4.4. We define our signal class to be muon tracks reconstructed within

the tracker, associated with the primary event vertex, and that are matched to a hit in the

MTD. In contrast, the background class includes all other sources of tracks that may match

to a signal in the MTD and result in a reconstructed track in the tracker. The main sources

of background are a result of:

• Punch through hadrons: e.g. ⇡±, K±, and p/p̄

• Charged pion decays: ⇡ ! µ + ⌫

• Charged Kaon decays: K! µ + ⌫
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Figure 4.3 : Simulated MTD cell (a) and �Z distributions for signal (primary µs) and
background sources. The signal and background distributions are normalized for comparison.
The e↵ect of varying amounts of steel in the � direction can be clearly seen in the cell
distribution. Hadrons are significantly more likely to punch through the steel guarding the
edge cells (0 & 11) than the central cells.
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It should be noted that, since particle decay is a stochastic process, some fraction of

⇡ and K will decay at or near the primary vertex producing a daughter µ that travels in

almost the same trajectory as the parent and is reconstructed as part of the same track

in the tracker. With only the PID variables considered here, these types of tracks will be

indistinguishable from muons created at the primary interaction point. Secondary decays

can be better distinguished from primary produced muons with the help of a tracker with

finer DCA resolution such as STAR’s Heavy Flavor Tracker (HFT) [138]. However, due to

compounding e�ciency and acceptance, the number of tracks reconstructed with both the

HFT and the MTD information is far too limited for a physics analysis.

The procedure used to forward model the signal and backgrounds consists of three main

steps: kinematic event generator, a simulation of the STAR detector, and full event recon-

struction. First, events are generated with ⇠20 particles/event to mimic the multiplicity of

primary tracks in a p+p collision at
p

s =200 GeV. Each track in the event is randomly cho-

sen to be a µ, ⇡, K, or p. The kinematics of each particle are sampled from flat distributions

in 0 < pT < 10.0 GeV/c, |⌘| < 0.8, and �⇡ < � < ⇡. The particle species and kinematics are

then fed into a GEANT3 [137] based simulation of the full STAR geometry. The GEANT3

simulation performs decays of unstable particles, models energy loss of particles traversing

media, and interactions with detector materials. Finally, full event reconstruction is per-

formed on the result of the GEANT3 based simulation. This step performs charged particle

reconstruction using the simulated hits in the TPC, determines the event’s primary interac-

tion vertex, and computes the dE/dx of reconstructed tracks. After tracking is complete the

tracks are matched to the simulated MTD hits. The result of this simulation is a set of the

PID variables for each of the signal and background processes. An example of the MTD �Z

and cell variables are shown for signal and background in Figure 4.3.

The simulation code discussed in this section was used to investigate the types of pro-

cesses that contribute to the background candidates. The MonteCarlo simulation provides

information about all generated tracks and interactions. With this information we can look

at the lineage of any ⇡ matched to the MTD. Using this technique we find that the ⇡ back-

ground can be separated into three rough categories including 1) clean punch-through, 2)

material interaction, 3) secondary decays.

The clean punch-through tracks are pions that do not interact hadronically with any
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Option Value

STAR Library Version SL16j
STAR Geometry Version y2015c
Magnetic Field RFF
Chain Options DbV20160418 y2015c ReverseField fzin mtdSim tpcX

AgML tpcDB TpcHitMover Idst ITTF UseXgeom BAna
VFMinuit l3onl emcDY2 fpd trgd ZDCvtx btof mtd mt-
dCalib BEmcChkStat CorrX OSpaceZ2 OGridLeak3D
tpcrs TpxRaw VFMCE TpxClu big MakeEvent IdTruth
McEvent McAss

Table 4.1 : Configuration options used for the MTD Simulation. The code can be found
here: https://github.com/jdbrice/MtdSimGun.

material including the magnet steel before crossing the MTD’s active regions. These tracks

will not loose energy due to hadronic interactions and therefore will not deviate significantly

from the expected trajectory of a muon track making them di�cult to reject with the MTD

�Y , �Z or �TOF variables.

The second class of ⇡ tracks interact with the beam pipe, magnet, or other material. In

these cases the primary ⇡ track will cause a shower of secondary particles that may match

to the MTD. These tracks are most likely to have a large MTD �Y , �Z or �TOF variable

and are therefore most easily distinguished.

pi+ (RC) (4,-0.42,1.7)

|--pi+ (MTD) (0.38,0.55,2.1)

| |--PROTON(0.18,0.54,2.4)

| |--pi+(0.11,-0.54,-0.71)

| | |--mu+(0.023,-0.76,-1.5)

| | | |--e+(0.027,-0.76,-0.92)

| | | |--NEUTRINO(0.032,0.19,-2.8)

| | | |--NEUTRINO(0.034,0.47,1.1)

| | |--NEUTRINO(0.023,0.76,1.7)

| |--PROTON(0.095,-1.4,-2.5)

Listing 1: An example lineage tree for a primary ⇡ that interacts with material and has
a daughter ⇡ hit the MTD. RC indicates that the MC track was reconstructed and MTD
indicates that the MC track produced a hit in the MTD. The tuple after each particle is its
(pT , ⌘,�)

The third class of ⇡ background is the case in which the ⇡ ! µ + ⌫ decay occurs outside

the tracking detector such that the ⇡ track is reconstructed as primary (by construction).
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Secondary muons that result from decays so early that the muon track is fit to the primary

vertex are not distinguished by this stage of the muon identification. A very tight DCA cut

is needed to reject muons resulting from decays very near the primary vertex. The DCA

resolution of the TPC does not allow rejection of such secondary muons.

pi+ (RC) (3.8,-0.51,1.2)

|--mu+ (MTD) (2.5,-0.52,1.1)

|--NEUTRINO(1.2,-0.52,1.2)

Listing 2: An example of the lineage tree for a ⇡ ! µ + ⌫ decay

4.3.2 Extracting �TOF distributions from Data

Due to complications simulating the timing electronics, the MTD simulation does not provide

time-of-flight information. Since the �TOF distributions are not provided by the MTD

simulation a data-driven approach is employed to determine these distributions separately

for the signal and background classes.

For this procedure 1D cuts are applied to all PID variables except �TOF . See Table

4.2 for the cut values used for signal and background classes. With these cuts we can

obtain a relatively pure J/ sample from which to extract the �TOF probability distribution

functions (PDFs) for signal. Specifically the signal PDF is extracted from the J/ mass peak

(3.0 < M < 3.2 GeV/c2) with the background under the peak estimated using the like-sign

pairs in the same mass region. The �TOF from the like-sign background is properly scaled

and subtracted from the peak region to remove background contributions. The signal �TOF

PDF is shown in Figure 4.5. The background �TOF PDF is extracted from tracks passing

an inverted set of cuts meant to exclude all signal muons. These cuts are shown in Table 4.2.

The background �TOF distribution is further separated into the contributions for ⇡, K,

and p. The sub-sample of tracks which match to both the MTD and BTOF are used to

extract the MTD �TOF distribution for ⇡, K, and p separately. The ��1 distribution for

all tracks passing basic track cuts matched to both the MTD and BTOF are shown in Fig.

4.4b. In this figure, there are clear ��1 bands corresponding to ⇡ + µ, kaons and p. The

MTD �TOF distribution for these three distributions were extracted by cutting around a
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J/ mass. The N-1 cut technique is used to maximize the J/ significance by cutting on all
MTD PID variables except the �TOF distribution. A pleadingT > 1.5 (GeV/c) cut is applied
to further improve the purity in the J/ mass region. The ��1 vs. momentum distribution
for all tracks passing basic QA cuts that are matched to hits in the MTD and the BTOF
detectors. (b) The ��1 calculated from the BTOF information shows clear contributions
from ⇡, K, and p/p̄.
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J/ Selection Cuts

3.0< Mµµ <3.2 (GeV/c2)
DCA < 1.0
-1< n�⇡ <3
|�Y| <3� (+0.5, pT > 3.0(GeV/c) )
|�Z| <3� (+0.5, pT > 3.0(GeV/c) )

pleadingT > 1.5 (GeV/c)

Table 4.2 : Cuts used for determining the signal and background �Time-of-Flight PDFs.
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K0
S Selection Cuts

0.472< M⇡⇡ <0.522
decay length > 2.7 cm
daughter mutual DCA < 1.5 cm
pointingAngle < 0.162+0.1123pT +0.025p2T
|n�⇡| < 3

Table 4.3 : Cuts used to select K0
S ! ⇡+⇡� decays. The daughter pions provide a ⇡-

enhanced sampled that can be compared to the ⇡ Monte Carlo simulation.

given species ��1 distribution from BTOF.

4.3.3 Background MC Closure Test Using Identified K0
S ! ⇡+⇡� and � ! K+K�

Decays

Selecting K0
S ! ⇡+⇡� decays in data provides a ⇡± enhanced sample that can be used to test

the validity of the MC simulation procedure for the ⇡± background sources. The selection

of K0
S candidates is carried out by applying the topological selection cuts listed in Table 4.3.

In order to increase the available statistics for comparison, only one of the K0
S daughters is

required to have a matching hit in the MTD. Figure 4.6a shows the ⇡+⇡� invariant mass

distribution near the K0
S mass used to select ⇡± daughter tracks. The ⇡± �Y, �Z, and

Cell distributions are computed using the unlike-sign distribution minus the scaled like-sign

distribution for each variable in the K0
S mass region (497 ± 25 MeV/c2).

Distributions with an enhanced kaon yield can be selected from daughters of � ! K+K�

decays. The K+K� invariant mass distribution around M� is shown in Fig. 4.6b for the case

in which one track is matched to an MTD hit. The K± �Y, �Z, and Cell distributions are

computed using the unlike-sign distribution minus the scaled like-sign distribution for each

variable in the � mass region (1.019 ± 0.007 MeV/c2). The comparison between the �Y, �Z

and MTD Cell distributions from MC and data for ⇡± and K± tracks are shown in Fig. 4.6c

and 4.6d. The data / simulation ratios show that the �Y, �Z and MTD Cell distributions

agree within ⇠ ±20%.
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Figure 4.6 : The M⇡+⇡� distribution near the K0
S mass shown for the cases in which only

one track is matched to an MTD hit (a) and the MK+K� distribution near the � mass shown
for the cases in which only one track is matched to an MTD hit (b). The �Y and �Z data
/ simulation ratio for both ⇡± and K± (c). The MTD Cell data / simulation ratio for both
⇡± and K± (d).
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4.4 Training and Evaluation of Artificial Neural Networks

4.4.1 Introduction to Artificial Neural Networks and Machine Learning

In this section dense Multilayer Perceptrons (MLP), a type of feedforward ANN, are trained

as continuous classifiers for the purpose of muon identification. Back-propagation is used

to train all of the neural networks in these studies. Since back-propagation is the key to

training an artificial neural network, a description of the technique is included in Appendix

A. First, shallow artificial neural networks (SNN) will be discussed. A shallow artificial neural

network is defined by the presence of a single hidden layer of neurons between the input and

output layers. The universal approximation theorem [139,140] states that a feedforward ANN

with certain activation functions and at least one hidden layer containing a finite number of

neurons can approximate any continuous function on compact subsets of Rn. However, the

universal approximation theorem makes no claim about the size of the hidden layer required

to approximate a given function. In practice the number of neurons in the hidden (NH)

layer may need to be intractably large to approximate the desired function with acceptable

error. In addition, with increasing number of neurons the risk of over training can increase

resulting in a model capable of representing the input data with small error but with very

poor generalization performance.

4.4.2 Shallow Neural Networks

In this section an exploration of the performance of a large set of SNNs as a function of the

number of neurons in their hidden layer is presented. The models are trained using the Toolkit

for Multivariate Data Analysis with ROOT (TMVA) [141]. Table 4.4 lists the parameters

used in the training phase for all models. Each model is trained on a random subset of 100K

signal events and 100K background events. A disjoint testing sample is drawn from 250K

signal and 250K background events to test the model’s response and to evaluate the over

training score. The use of a Monte Carlo generator for producing the labeled training samples

allows an essentially unlimited number of labeled data sets and allows independent samples

for training and testing. When an unlimited labeled data set is not available, bootstrapping

techniques can be used to evaluate model performance [142, 143]. The SNN models include

a bias neuron in the each of the input and hidden layers to account for trivial o↵sets in the
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Figure 4.7 : An example of a dense multilayer perceptron neural network architecture. The
shallow neural networks have only a single hidden layer of neurons between the input and
output layers. The deep neural networks have two or more. Bias neurons in the hidden layers
are marked with a “B”.
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Figure 4.8 : The signal vs. background rejection power as a function of the number of
neurons (NNHL) in the hidden layer of a shallow neural network. The performance of the
SNN’s are quantified using the AUC - the area under the background rejection vs. signal
e�ciency curve (See 4.4.4 in text). The points are the mean value of 10 models trained with
di↵erent random samples. The uncertainties show the 1� variance of the models assuming a
Gaussian variance.
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Table 4.4 : Parameters used in the training phase for the shallow and deep neural networks.

Parameter Value

Neuron Activation Function tanh
Estimator Type Mean Square
Neuron Input Function sum
Training Method Back-Propagation
Learning Rate 0.02
Decay Rate 0.01
Learning Mode Sequential
Max # Training Cycles 500
Testing Rate 100

mean value of the data. The bias neuron is always ”on” - i.e. it provides an input of 1 so

that weights between it and other neurons are constant factors. The use of a bias node in

the input and each hidden layer has become standard practice in neural network architecture

design. An example of one SNN from the set of SNN with 15 neurons in its hidden layer can

be seen in Fig. 4.7 along with its classifier response.

Shallow neural networks were trained with 1 to 500 neurons in the hidden layer. For

each value of NH , 10 models were trained with di↵erent randomized training and testing

samples. The result of the SNN scan are summarized in Fig. 4.8 where the background

rejection power quantified through the AUC, the area under the background rejection vs.

signal e�ciency curve (higher is better), is shown as a function of NH . Each point shows

the mean response of 10 models with uncertainties that show the 1� variation between the

response of the 10 models assuming a Gaussian variance. The background rejection power

of the SNN shows clear improvement as NH is increased until NH ⇡ 30. Above NH ⇡ 30,

adding more and more neurons provides relatively smaller and smaller improvement in the

background rejection power.

4.4.3 Deep Neural Networks and Hyper-parameter Optimization

Deep neural networks, in contrast to SNN which contain only a single hidden layer, contain

two or more hidden layers. The additional hidden layers can allow a network to learn complex

relationships between input features with far fewer neurons and connections than a shallow

network would need. Depending on the application it is also common for DNNs to combine

various types of layers, such as convolutional layers, to promote the learning of specific types
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of relationships. The term, “Deep Learning” is often used when a DNN contains several

hidden layers with varying types of relationships. In this case, only the simplest type of

DNNs is explored, specifically dense multi-layer perceptrons.

For the case of muon identification, the goal is to determine if DNNs can provide a

better classification performance than SNNs with a reasonable number of neurons. Answering

this question is not trivial though, since the performance and response of a deep MLP can

depend strongly on the number of hidden layers and the number of neurons in each layer.

The process of determining the optimal DNN architecture is often referred to as hyper-

parameter optimization. A grid-search strategy is used in this case to search the optimal

DNN architecture on a grid of the # of hidden layers and the number of neurons in each

layer. The order of the hidden layers was also encoded so that a network with hidden layers

HL=5,6,7 (i.e. 5 neurons in the first hidden layer, 6 in the second, and 7 in the third) would

be a distinct grid-point compared to one with HL=7,6,5 despite having the same # of hidden

layers and number of neurons. For each grid-point a DNN was trained and evaluated based

on the following criteria:

• Signal vs. background rejection power

• Prefer simplest NN architecture (fewer # of neurons is better and fewer # of hidden

layers is better)

• Prefer monotonically increasing signal-to-background ratio as a function of NN response

These three criteria were considered in order to determine the optimal set of DNN hyper-

parameters. Each DNN was trained using the parameters listed in Table 4.4 with only the

architecture related parameters varying. Training DNNs can require significantly more time

and larger labeled samples compared to SNNs to reach convergence. The DNNs were trained

with 1M signal and 1M background events and took between 10 and 100 times longer to train

than the set of SNNs depending on the specific architecture. However, the time-cost required

to train DNNs can be greatly reduced by employing modern libraries like TenserFlow that

have been heavily optimized for parallelized network training using GPUs [144].
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Figure 4.9 : A Neural Network with two hidden layers containing N=30,20 neurons (a) and
its output for simulated signal and background tracks (b).

4.4.4 Comparison of Multivariate Classifiers

In the previous section neural networks were trained as classifiers for the purpose of separating

signal muons from various background sources. The performance of the neural network based

classifiers are compared using modified receiver operating characteristic (ROC) curves in Fig.

4.9 by plotting the background rejection power (1 � "bg) vs. the signal e�ciency ("sig). The

performance of a classifier can be succinctly summarized with the area under the curve (AUC)

of the background rejection vs. signal e�ciency curve. An ideal classifier is able to reject

100% of the background while providing 100% signal e�ciency and has an AUC of 1. On the

other hand, a random guess classifier has an should have a 50/50 chance of correctly guessing

the class and has an AUC of 0.5.

The neural network classifiers shown in Fig 4.9 are also compared with classifiers employ-

ing optimized 1D cuts, 1D likelihood ratios, and boosted decision trees (BDTs). The cuts

used in the 1D cut classifier were optimized on the J/ peak in p+p collisions at
p

s = 200

GeV. Both the 1D likelihood ratio classifier and the BDTs were trained using the TMVA

package. The 1D likelihood ratio classifier was trained with default parameters using spline

interpolation when building the feature PDFs. The track pT and charge (q) variables were

removed from the 1D likelihood classifiers since they should not be used directly for muon
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Figure 4.10 : The classifier response for the BDT (a) and DNN (b). These are the responses
for all simulated tracks, so the distribution is mostly dominated by the high pT tracks.

identification. Additionally, since 1D likelihoods cannot properly incorporate the pT depen-

dence of the �TOF, �Y, and �Z features, the 1D likelihood classifier was evaluated only

for tracks in a narrow pT range (1.4 < pT < 1.6). A more thorough look at using likelihood

ratios for muon identification with the MTD can be found in [145]. The BDT classifier was

trained with NTrees=250 and MaxDepth=5 with all other parameters set to the defaults.

4.4.5 Identification of Muon Pairs

The DNN classifier out-performed the other multivariate classifiers investigated in Sec. 4.4

based on an analysis of the background rejection power vs. signal e�ciency evaluated on

a testing sample of simulated events. We can further test the performance of the DNN

classifier by applying it to the dimuon data collected from p+p collisions at
p

s = 200 GeV.

The decay of resonances to muons, like the � ! µ+µ� decay, provides a self-analyzing set of

data for testing muon identification techniques. Muon pairs are selected in the data by first

evaluating the DNN response for all muon candidates in an event. Pairs are then formed

from oppositely charged muons. Signal pairs are selected based on the pair DNN response

rpair:

rpair =
q

r2a + r2b (4.5)

where ra and rb are the DNN responses for paired muons a and b, respectively. The DNN was

specifically optimized to promote a response of r ⇡ 1 for signal muons and a response of r ⇡ 0
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Figure 4.12 : Raw yield extraction of the � meson using optimized traditional 1D PID
techniques (a) compared to the DNN based PID (b).
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from deep neural network based PID. The distributions are scaled in the intermediate mass
region to make comparison easier.

for background sources. For this reasons the pair response for a µ+µ� pair will be rpair ⇡
p

2.

The optimal rpair cut for selecting � ! µ+µ� decays was determined by maximizing the �

significance (S/
p

S + B) in steps of rpair = 0.01. The signal and background contributions

were extracted by fitting the raw µ+µ� invariant mass spectra in 0.85 < Mµµ < 1.5 GeV/c2.

A 4th-order polynomial was used to model the background and a Gaussian was used for

the � peak. The optimal cut was found to be rpair > 1.36 which provides a � significance

of ⇠8.3 and a S/B ratio of 0.33. Figure 4.12 shows the raw � yield extraction fits using

traditional 1D cuts optimized on the J/ for muon identification and using the DNN-based

muon identification. The DNN-based muon identification simultaneously provides higher S/B

ratio, significance, and signal e�ciency compared to the optimized 1D muon identification.

In Fig. 4.13, the raw µ+µ� invariant mass spectra in the range 0 < Mµµ < 4.5 GeV/c2 is

shown for optimized 1D cut-based muon identification and compared with the DNN-based

muon identification. In addition to improving S/B and significance of the ! and � mesons,

the DNN-based muon identification allows the  (2S) at Mµµ ⇡ 3.7 GeV/c2 to be visible.
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4.4.6 Data-Driven Muon Purity Measurements

Since no individual feature among the set of PID features clearly separates signal from back-

ground contributions, it is not possible to fit any one of the features in order to extract the

muon purity of tracks in data. Given the signal and background PDFs for each of the 8

PID features (neglecting pT and q), one could in principle conduct a simultaneous fit to all

8 distributions in order to extract the yield of signal and background contributions. Since

each distribution would need to be fit to a µ, ⇡, K, and p contribution it would require simul-

taneously fitting 8 distributions with 32 templates constrained by 4 free yield parameters.

While possible, in practice a simultaneous fit with so many distributions and templates is

technically challenging and often proves unstable.

Instead, the complexity of the problem can be greatly reduced by simply fitting the

DNN response for muon candidates with the template shapes for signal and background

components. In this setup the DNN combines all PID features, so only a single distribution

needs to be fit with the 4 template shapes for signal and background each with a free yield

parameter. Figure 4.14 shows the result of this procedure applied to muon candidate tracks

in the range 1.5 < pT < 1.55 GeV/c. The template for each component is computed by

evaluating the DNN on simulated tracks in the same kinematic regions as those in the data.

The data/fit ratio shown in the lower panel of Fig. 4.14 shows that the fit is capable of

describing the DNN response for muon candidates to within ⇠20% over the entire range of

DNN responses.

After determining the yield of each signal and background contribution, the DNN response

can be projected back onto all of the 8 PID features to verify that the DNN is properly

combining the information from all variables. Ensuring that the projection onto each PID

feature results in a good description of the data is a strong demonstration that the DNN is not

over-training on artifacts in the training samples. Projections onto the �Z and DCA features

are shown in Fig. 4.15a and 4.15b. This technique allows the increased signal vs. background

separation power provided by the DNN-based muon identification to be leveraged for data-

driven muon purity measurements. At the same time, the ability to project the muon purity

fit results back onto the PID features provides a data-driven strategy to test for over-training

and poor model generalization.
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Figure 4.15 : The result of the DNN response fit for µ, ⇡, K, and p contributions projected
back onto the �Z (a) and DCA (b) distributions. The ratio of fit / data is shown in the
lower panels of each figure.
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Chapter 5

Dimuon Analysis Details

This chapter describes the steps involved in the analysis of the dimuon invariant mass spectra

in p + p collisions at
p

s = 200 GeV and p+Au collisions at
p

sNN = 200 GeV. Specifics of

the inclusive � ! µ+µ� yield measurement for |y| < 0.5 are given as well. The organization

of the chapter is as follows: 1) the cuts used for muon candidate selection and track quality

assurance are discussed, 2) the muon purity in data is measured as a function of transverse

momentum for all muon candidates. Upper bounds on the muon purity are investigate

through the application of increasingly tighter muon identification cuts. 3) techniques for

extending the single track DNN-based PID technique for pair identification are introduced

and compared, 4) backgrounds from combinatorial and physical sources are discussed. A

statistical analysis is presented to motivate the techniques that will be used for background

estimation in later sections. A toy MonteCarlo event generator is used to further demonstrate

the nuances that must be taken into account in the background estimation strategies. 5) The

data-driven background measurements are presented and the signal dimuons are extracted.

6) The techniques used to simulate the hadronic cocktail resulting from light hadron decays,

open heavy flavor, and Drell-Yan are presented. 7) The determination of the e�ciency

and acceptance corrections using a folding procedure is developed. 8) The estimation of

systematic uncertainties are discussed.

5.1 Track Selection and Muon Identification

Muon candidates are formed from all tracks matched to a hit in the MTD that pass basic

track quality cuts:

• mtdMatchF lag > 0 : Require that the track be matched to an MTD hit.

• mtdTriggerF lag > 0 : Require that the MTD hit fire the trigger (dimuon trigger).

• nHitsF it > 15 : The number of hit points used to to reconstruct the track must be
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Figure 5.1 : The invariant mass of muon candidate tracks shown for unlike-sign pairs and
like-sign pairs.

greater than 15. This cut rejects low quality tracks and helps ensure that the tracks

have consistent momentum resolution and DCA resolution.

• nHitsDedx > 15 : The number of hits used to determine the dE/dx information

must be greater than 15. This cut improves the dE/dx resolution, aiding in particle

identification.

• nHitsF it/nHitsMax > 0.52 : The ratio of number of hits used to reconstruct track

compared to the possible number of hits must be greater than 0.52. This cut ensures

that a single tracks is not split into two track segments during reconstruct.

• DCA < 3 cm : The distance to closest approach of the global track to the primary

vertex must be less than 3 cm. In the STAR reconstruction software, tracks associated

with the primary collision vertex must be within ⇠3 cm.

• pT > 1.1 GeV/c : The track’s transverse momentum must be greater than 1.1 GeV/c.

This cut is used to remove tracks with very low MTD matching and response e�ciency

in the range 0.9 < pT < 1.1 GeV/c.

The invariant mass of all muon candidate tracks is shown in Fig. 5.1. The J/ peak is
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Figure 5.2 : The neural network response for positive and negative tracks in p+p collisions
at

p
s= 200 GeV (a) and p+Au collisions at

p
sNN= 200 GeV (b).

Table 5.1 : Weak decay processes through which single muons may be created.

Process Branching Ratio

⇡+ ! µ+ + ⌫µ 99.9 %
K+ ! µ+ + ⌫µ 63 %
K+ ! ⇡0 + ⇡+ ! ⇡0 + µ+ + ⌫µ 3.8 %

clearly visible but the low mass region is highly obscured by background sources. In Chapter

4, techniques for training deep neural networks (DNN) for muon identification were discussed.

The trained DNN can be applied to the tracks from data and the output can be used to select

muons and reject background.

5.2 Hadron Contamination and Muon Purity

Since the MTD has only a single layer of steel providing ⇠5 interaction lengths at its thickest,

hadron contamination from punch-through pions, kaons, and protons is a major source of

background in this analysis. Hadron punch-through is not the only significant source of

contamination though. For the purpose of measuring µ+µ� pairs, a significant background

arises from secondary muons that are produced as singles - i.e. not in pairs. The dominant

source of secondary muons come from the decays:

⇡+ ! µ+ + ⌫µ (5.1)
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Table 5.2 : GEANT simulation of ⇡± and K± in the STAR detector. These values represent
the probability of each event occurring before exiting the STAR detector (specifically within
the MTD, since it is the detector in STAR at largest radius).

No Decay Muonic Decay Hadronic Decay Elastic Inelastic Absorption

⇡+ 86.6% 3.7% — 0.03% 9.7% —
⇡� 86.8% 4.2% — 0.05% 8.9% 0.01%
K+ 79.6% 9.5% 4.7% 0.01% 6.2% —
K� 80.6 6.8% 3.5% 0.01% 8.3% 0.87%

⇡� ! µ� + ⌫µ (5.2)

K+ ! µ+ + ⌫µ (5.3)

K� ! µ� + ⌫µ (5.4)

Since the charged pion and kaons decay into muons via the weak interaction they are long

lived with ⌧(⇡±) ⇡ 26 ns and ⌧(K±) ⇡ 12 ns. The decay length is given by:

L = �⌧c (5.5)

Therefore, at 1 GeV (� ⇡ 10) the charged pion decay length is ⇡ 76 m and the charged

kaon decay length is ⇡ 35 m. Since these decay lengths are much longer than the radius

of the TPC, most pions and kaons will escape the TPC before they decay. However, since

particle decay is a stochastic process, a significant number may still decay either before they

exit the TPC or after exiting the TPC but before entering the MTD. Table 5.2 shows the

results of a GEANT simulation in which ⇡± and K± were embedded into real events. Flat

1 < pT < 10 GeV/c, �1 < ⌘ < 1, and 0 < � < 2⇡ kinematic distributions were used for the

simulated ⇡± and K± tracks. Each track was simulated from the primary collision vertex

until it exited the volume enclosed by the MTD. Interactions were identified using GEANT’s

codes for decay, elastic collisions, inelastic collisions, and absorption. The decays were further

identified using the decay products where applicable. Even though the charged kaons have

a lower muonic decay branching ratio than charged pions, the shorter lifetime contributes to

a higher overall percentage of muonic decays within the MTD volume. However, since the

dN/dy of pions is ⇡ 50 times larger than that of kaons in p + p collisions at
p

s= 200 GeV,

the absolute yield of secondary muons from charged pion decays is larger.
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Figure 5.3 : The muon purity as a function of track pT for all muon candidate tracks and
for various DNN-base pid cuts.

In Chapter 4 a technique was presented for measuring the muon purity in data by lever-

aging the separation power of the DNN-base muon identification. This technique can be

applied systematically to determine the muon purity as a function of track pT .

For this procedure, the DNN response template for signal and each background source is

determined using the simulated data samples. Since the shape of the DNN response varies

as a function of pT , ⌘ and �, the templates are extracted from the simulated events using

the same kinematic cuts as the given data sample. The purity is determined in slices of pT

for all ⌘ and �. In each pT slice, the fits are conducted as a maximum likelihood fit with the

TMINUIT minimization library. The only free parameters are the yields of each template.

For pT < 2.0 GeV/c the ⇡, K, and p sources are used as background sources. The proton

contribution template is no longer used above pT > 2.0 GeV/c and the K contribution is no

longer used above pT > 3.0 GeV/c. Dropping the proton and kaon contributions at higher

pT values where they are no longer significant sources helps improve the quality and stability

of the fit.

While the hadron punch through can be reduced using the DNN-based pid, there remains

a significant amount of impurity. We can see from Fig. 5.3 that the average muon purity, even
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with a tight DNN cut, is ⇠70%. For comparison, the STAR dielectron analysis in Au+Au

collisions at
p

sNN= 200 GeV achieved approximately 95% electron purity average for 0�80%

central collisions. The relatively high electron purity allowed the dielectron analyses to

consider hadron contamination only as a source of systematic uncertainty. In this analysis, the

low muon purity necessitates data driven techniques to estimate the contamination from the

significant hadron contamination. These techniques will be discussed in the remainder of this

chapter. To make matters worse, the purity quoted in in Fig. 5.3 includes a significant portion

of secondary muons resulting from the weak decay of pions and kaons (via process listed in

Table 5.1). These decays can be very e�ciently removed with a dedicated high-precision

vertex tracker for reconstructing secondary decay vertices. In the previous discussion of

NA60’s dimuon results, it was noted that the novel setup including a silicon-based vertex

tracker near the target was essential for that measurement.

The lack of tracking information from a high precision tracker near the collision vertex

in these datasets makes it impossible to separate muons produced in the initial collision

from those that result from a decay at or near the collision vertex. Furthermore, the very

small mass of the neutrino results in a decay muon that is very collimated with the parent

particles trajectory. For this reason, even decays that happen a significant distance from

the collision vertex, or even outside the TPC, may still produce a hit in the MTD close

to the projected track position. The presence of hadron-punch through contamination and

secondary muons introduces a significant amount of background into the dimuon invariant

mass. These background sources and the techniques for removing them will be discussed

further in Sec. 5.5.1

5.3 Identification of Muon Pairs

In this section the identification of muon pairs is discussed. Even if the DNN-based PID

provides an ideal discriminator for selecting single muons, there are still some variations in

the way that muon pairs can be selected. Figure 5.4 shows the DNN response of daughter

1 (rNN
1 ) versus the DNN response of daughter 2 (rNN

2 ). One way to select pairs would be

to simply require that rNN
1 > x and rNN

2 > x where x is a given cut value. This simplified

approach may not be optimal though. Since the single muon selection still leaves a large

amount of contamination from hadrons and secondary muons, choosing an optimal technique
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Figure 5.4 : The DNN response of daughter 1 (rNN
1 ) versus the DNN response of daughter

2 (rNN
2 ) for p + p collisions at

p
s = 200 GeV.

for pair selection is crucial. Additionally, since the response of the DNN has some variation

as a function of the pT of each track cutting on a single rNN value for all pT may not be

optimal.

The templates used for muon purity fits can also be used to aid in the determination of

the optimal pair selection criteria. If we consider that the tracks can fall into one of two

categories - signal or background (combining ⇡, K, and p together), then we have a total of

three possible pair types:

• Background Pair: The result of pairing a background track with another background

track. These pairs are the easiest to reject since they are generally well discriminated

by the DNN.

• Cross Pair: The result of pairing one background track with one signal track. These

pairs can be very similar to real signal pairs, since the DNN template for background

has a large tail near rNN ⇡ 1. Some amount of these pairs are indistinguishable from

real signal pairs. Techniques for removing them will be discussed further.

• Signal Pairs: The result of pairing two signal tracks together. These pairs are most

likely the result of a real dimuon pair, though combinatorial backgrounds and secondary

muons may still be included.
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(a) (b) (c)

Figure 5.5 : The three categories of pairs: Signal pairs resulting from signal + signal
(a), cross pair resulting from background + signal (b), and background pair resulting from
background + background (c).

These three types of pairs can be seen in Figures 5.5a, 5.5b, and 5.5c for signal pairs,

cross pairs, and background pairs, respectively. A deep neural network, similar to those

used in Chapter 4 for single track identification, can be trained to output the optimal pair

discrimination value while at the same time normalizing di↵erences in single track DNN

response as a function of pT if needed. The purpose of this procedure is not necessarily to

use a neural network for evaluating the pair PID score, but to test various naive techniques

for pair selection against the pair neural network. If the naive selection techniques perform

just as well as the pair neural network, the naive selection can be safely used without fear

that it is sub-optimal.

Figure 5.6a shows the architecture chosen for this task. The input features for the pair

DNN are the single track DNN response rNN and pT for each daughter track. While a formal

grid-search minimization was not performed, several di↵erent neural network architectures

of decreasing complexity were tested (by using 2 hidden layers and decreasing the number of

neurons in each layer). The templates shapes for signal pairs, cross pairs, and background

pairs shown in Fig. 5.5 were used in the training phase. The output of the trained pair DNN

is shown in Fig. 5.6b for each of the three categories.

In order to determine what the pair DNN learned, various linear and nonlinear combina-

tions of the single track DNN response can be compared with the pair DNN output. If the

single track DNN had no variation in pT then the sum in quadrature would be nearly optimal
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Figure 5.6 : The neural network architecture used for the selection of signal pairs (a). The
inputs are the pT and neural network response rNN of each daughter track in the pair. The
output of the pair DNN for the three di↵erent categories of pairs (b). Note: In this figure
mixed pairs=cross pairs.

for separating signal and background pairs. The pair DNN response can be compared to the

sum in quadrature to determine if the pair DNN has learned any additional relationship

between the single track DNN responses. This comparison is shown in Fig. 5.7a with the

sum in quadrature (x-axis) scaled to be in the range of 0 to 1. The comparison shows that

the quadrature sum performs nearly as well as the pair DNN. Figure 5.7b shows the three

pair categories using the simpler sum in quadrature instead of the pair DNN response.

5.4 Sources of Background

The foreground dimuon spectra made by pairing all muon candidates is shown in Fig. 5.1.

This distribution includes both the signal pairs (S) and various background contributions.

Isolating the yield of signal dimuons pairs requires removing the pairs from background

processes. Background pairs can be organized into two main categories:

• Uncorrelated combinatorial background pairs (CB): this background arises from the

random pairing of muons from di↵erent parents. The existence of this uncorrelated

combinatorial background is by construction in the sense that it results from the in-

tentional pairing of all positive muon candidates with all negative muon candidates in
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each event. In high multiplicity environments, like Au+Au collisions, the combinatorial

background can easily account for upwards of 90% of the total background pairs. At

lower multiplicities, such as p + p and p+Au collisions at
p

sNN = 200 GeV there are

few events with more than one positive and one negative muon candidate, reducing the

relative contribution of uncorrelated combinatorial background to the total background.

• Correlated background pairs (CP):

– Jet-like pairs (JP) : correlated background pairs may result from jet or jet-like

pairs in various ways. Jets may produce back-to-back hadrons that punch-through

to the MTD. Another possibility is to produce a spray of particle which travels

through one of the regularly spaced gap in the steel producing multiple hits in the

MTD detector. These hits are most likely in the edge-cells of nearby backlegs. If

tracks from the initial jet or other event activity are matched to the MTD hits

then a correlated pair is produced. Further details are discussed below.

– Hadron decays (HD): The large amount of contamination from punch-through

hadrons results in a significant susceptibility to correlated pairs from hadron de-

cays. For instance, the ⇢ ! ⇡+⇡� decay (with a branching ratio of ⇠100%). More

examples of these background sources will be discussed in greater detail below.

– Secondary hadron decays (SHD): In addition to the correlated pairs resulting

from hadron decay (mentioned above), the large branching ratio for ⇡± and K±
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decay to muons causes correlated pairs from secondary decays of the hadron decay

products. This can be illustrated using the previous example of the ⇢ ! ⇡+⇡�

decay. Since the branching ratio for ⇡± decay to a muon is ⇠99%, a large number

of correlated decays will be formed in which one or both of the daughter pions

further decays. The resulting pair, either a µ±⇡⌥ pair or a µ+µ� pair, will be less

strongly correlated than the HD pairs, but still present in the foreground dimuon

spectra. On the one hand, these types of pairs will be enhanced with respect to

HD due to the significantly larger e�ciency for muons to match to the MTD than

for hadrons. On the other hand, the lifetime of the pion and kaon significantly

reduce the probability that the secondary decays will occur within the volume of

the MTD.

Based on these sources, the foreground dimuon spectra (FG+�) can be expressed as

(notation partially borrowed from Ref. [106]):

FG+� = S + CB+� + JP+� + HD+� + SHD+� (5.6)

while the like-sign spectra (µ+µ+ and µ�µ� separately) can be written as:

FG++ = CB++ + JP++ (5.7)

FG�� = CB�� + JP�� (5.8)

FG±± = FG++ + FG�� (5.9)

5.4.1 Uncorrelated Combinatorial Background

From the formulation it is clear that the foreground like-sign spectra will not contain contri-

butions from hadron decays and secondary hadron decays. In past STAR dielectron analyses,

the foreground like-sign spectra are subtracted from the foreground unlike-sign spectra to iso-

late the signal pairs. This technique is suitable when the detector acceptance is identical for

like-sign and unlike-sign pairs (e.g. for 2⇡ acceptance in azimuth) and when the combina-

torial background is charge-symmetric. In these cases the shape of the foreground like-sign

spectra can be expected to closely reproduce the shape of the combinatorial background in
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the foreground unlike-sign spectra. This approach can be summarized as follows. When aver-

aging over a large number of events, the mean number of unlike-sign pairs from combinatorial

pairing in a given invariant mass bin can be expressed as:

hCB+�i = hn+ihn�i (5.10)

and the number of like-sign pairs in the same invariant mass bin is:

2hCB++i = hn+(n+ � 1)i

= hn2
+i � hn+i

(5.11)

2hCB��i = hn�(n� � 1)i

= hn2
�i � hn�i

(5.12)

We can notice that in the special case that positive and negative particles are produced

in pairs and are distributed according to a Poisson distribution, then the following equality

holds:

hn2i = hni2 + hni (5.13)

Therefore, the above simplify to:

2hCB++i = hn+ihn+i (5.14)

and

2hCB��i = hn�ihn�i (5.15)

Finally it can be seen that the combinatorial like-sign pairs can be used to estimate the

combinatorial unlike-sign pairs as:

hCB+�i = 2
p

hCB++ihCB��i (5.16)

This result shows that in ideal cases, the geometric mean of the foreground like-sign pairs

can be used to estimate the combinatorial background in the foreground unlike-sign pair.

However, in practice this procedure can not be applied directly due to detector acceptance
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a↵ects which cause asymmetries in the invariant mass spectra of like-sign versus unlike-sign

combinatorial pairs. The important take away from this exercise is that two assumptions are

needed to ensure the applicability of this approach. They are:

• The positive and negative particles are produced in pairs

• The underlying production distribution is Poisson

The first assumption is clearly broken when considering µ+µ� pairs, due to the large

contribution from weak decays of pions and kaons. This implies that the foreground like-sign

spectra - even corrected for acceptance a↵ects - is not capable of reproducing the shape and

magnitude of the combinatorial background present in the foreground unlike-sign distribu-

tion.

We now consider in full rigor the derivation of the proper background scaling for the

combinatorial pairs with the previous assumptions neglected. Namely, we allow some posi-

tive and some negative particles to be produced independently of one another. We further

generalize by assuming a binomial distribution (instead of Poisson) for the number of recon-

structed pairs in order to incorporate finite e�ciency e↵ects. The derivation in this section

is based heavily on the appendix A in Ref. [85]. To begin, we assume that the true number

of pairs produced in a given event is found by sampling a Poisson distribution:

Npairs = P (hNpairsi) (5.17)

where P is the Poisson distribution whose PDF is:

P (k) = e��
�k

k!
(5.18)

with k being the number of events sampled and � being the mean of the distribution. In

order to determine the number of reconstructed pairs we must take into account the e�ciency

of reconstructing the individual tracks in the pair. Therefore the number of reconstructed

pairs is given by sampling a binomial distribution with the pair e�ciency:

p(nreco
pairs) = B(nreco

pairs; Npairs, "pair) (5.19)

where "pair = "+ ·"� with "+ and "� being the single track e�ciencies for positive and negative
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tracks, respectively. B is the binomial distribution whose PDF is given by:

B(k; n, p) =

✓
n

k

◆
pk(1 � p)n�k (5.20)

with
�

n
k

�
= n!

k!(n�k)! and k is the number of successes given n total trials each with a

probability of success given by p.

For convenience we let:

nlost
pairs = Npairs � nreco

pairs (5.21)

Where nlost
pairs represents the number of pairs that are not fully reconstructed, either be-

cause one track was lost or both. Given the number of pairs reconstructed in a given event

the probability for the remaining observable outcomes is given by sampling a Multinomial

Distribution:

p(n+, n�) = M(n+, n�; nlost
pairs, "+ · (1 � "�), "� · (1 � "+)) (5.22)

p(n�) =

nlost
pairsX

n+=1

M(n+, n�; nlost
pairs, "+ · (1 � "�), "� · (1 � "+)) (5.23)

p(n+) =

nlost
pairsX

n�=1

M(n+, n�; nlost
pairs, "+ · (1 � "�), "� · (1 � "+)) (5.24)

As noted before, nlost
pairs are the number of pairs that are not fully reconstructed and

may have a single track reconstructed, either positive or negative, or be lost entirely. The

Multinomial distribution’s Probability Mass Function (PMF) is given by:

M(x1, ..., xk; p1, ..., pk) =

�

✓P
i

xi + 1

◆

Q
i
�(xi + 1)

kY

i=1

pxi

i (5.25)

The Multinomial distribution can be thought of as modeling the outcomes of rolling a k

sided dice n times where each side of the dice has a probability of landing, p1, ... pk with all

pi > 0. Each of the k-sides of the dice are mutually exclusive outcomes. Therefore, applied

to this case, sampling a multinomial distribution ensures that:

p(n+) + p(n�) + p(nlost) = 1 (5.26)
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That is, that the probability of the three possible outcomes for pairs that are not fully

reconstructed sums to unity. The total number of unlike sign pairs is then computed as:

n+� = nreco
pairs · nreco

pairs + nreco
pairs · n+ + nreco

pairs · n�

= S + BG+�

(5.27)

the total number of positive like-sign pairs is given by:

n++ = (nreco
pairs + n+) · (nreco

pairs + n+ � 1)/2

= BG++

(5.28)

and the total number of negative like-sign pairs is given as:

n�� = (nreco
pairs + n�) · (nreco

pairs + n� � 1)/2

= BG��

(5.29)

At this point we can note that when averaging over a large number of events we can

recover the earlier results, i.e. that the geometric mean of the foreground like-sign pairs is

a good approximation for the combinatorial background in the foreground unlike-sign pairs.

That is in this notation:

hBG+�i = 2
p

hBG++i · hBG��i (5.30)

We can make the simple addition of adding the possibility of single particle production

independent of the pair production and reconstruction. That is, a certain number of single

positive nsingle
+ and single negative nsingle

� are produced according to:

p(nsingle
+ ) = B(nsingle

+ ; N single
+ , "+) (5.31)

and

p(nsingle
� ) = B(nsingle

� ; N single
� , "�) (5.32)

with the true number positive and negative tracks (N single
± ) produced according to a

Poisson distribution:

N single
± = P (hNpairs

± i) (5.33)
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With the addition of independently produced positive and negative particles the fore-

ground unlike-sign pairs becomes:

n+� = nreco
pairs · nreco

pairs + nreco
pairs · n+ + nreco

pairs · n� + npairs · nsingle
+ + n� · nsingle

+

+ npairs · nsingle
� + n+ · nsingle

�

(5.34)

and the foreground like-sign pairs become:

n++ = (nreco
pairs + n+ + nsingle

+ ) · (nreco
pairs + n+ + nsingle

+ � 1)/2 (5.35)

n�� = (nreco
pairs + n� + nsingle

� ) · (nreco
pairs + n� + nsingle

� � 1)/2 (5.36)

This leads to the conclusion that when single particle production is present:

hBG+�i > 2
p

hBG++i · hBG��i (5.37)

and instead we may only estimate that, in the limit where Npairs ⌧ N single
+ · N single

� the

combinatorial background, averaged over many events can be estimated by the product of

the mean multiplicities:

hBG+�i ⇡ hnreco
pairs + n+ + nsingle

+ i · hnreco
pairs + n� + nsingle

� i (5.38)

The results of this mathematical derivation were implemented in a toy Monte Carlo

simulation in order to visualized the various background estimation techniques. Figure 5.8

shows the yield per event versus the cumulative number of events for two scenarios. In the

top panel, the e+e� case is shown, in which all particles are produced in pairs. A charge

asymmetry is produced by letting "+ 6= "� to demonstrate that the direct mean (lower violet

curve) does not estimate the background well and therefore under predicts the signal yield.

However, the geometric mean does converge to the signal yield (black line) even with a charge

asymmetry. The lower panel of Fig. 5.8 shows the case in which single particle production

is included. In this case, both the direct and geometric mean under predict the background

and therefore over predict the signal. When using the background estimated by the mean

multiplicity (blue) the measured yield converges to the signal yield. The under estimation of
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the background by the geometric mean is a general result - it can be expected that in data

the mean like-sign distribution will underestimate the background, not over estimate it.
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Figure 5.8 : Plots of the yield / event from a toy Monte Carlo simulations with various
types of combinatorial backgrounds present. The solid black line shows the true amount
of signal / event. Top: Combinatorial background resulting from an e+e�-like case, i.e.
approximately Poisson pair production. In this case the geometric mean of the like-sign
reproduced the background correctly. A charge asymmetry is introduced to demonstrate
that in this case the direct mean does not reproduce the background correctly. Bottom:
Combinatorial background in the case with independently produced singles. The direct
mean and geometric mean both underestimate the background, leading to an overestimation
of the signal. The combinatorial background estimated via the mean multiplicities gives a
more accurate estimate of the unlike-sign background.
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Table 5.3 : Processes through which correlated dimuon backgrounds can be produced.

Hadron Decay Processes Branching Ratio

⇢0 ! ⇡+⇡� ⇠100%
K0

S ! ⇡+⇡� 69%
⇤ ! p + ⇡� 63%
� ! K+K� 49%

5.4.2 Physical Background Sources

In addition to the uncorrelated combinatorial backgrounds, there exist several sources of

physical backgrounds as mentioned earlier. The background pairs originating from physical

sources will result in some degree of correlation between the final state tracks. Each category

of background will be addressed individually below.

Jet-like pairs result from jets or high-pT hadrons that produce hits in the MTD.

Back-to-back jets may lead to correlated pairs of punch-through hadrons (or decay muons)

with a large opening angle. Due to the regular gaps in the spacing of the magnet steel, the

spray of particles from a single jet or from a high-pT hadron interaction with material may

cause multiple hits in the MTD. This type of background is most likely to produce hits in the

edge-cells of neighboring backlegs. These hits can in turn be matched to tracks in the event.

While the tracks themselves may be random products of other event activity, the MTD hits

have a small opening angle. For this reason, the resulting pairs formed will peak at very

specific invariant mass values. Also, the significant acceptance di↵erences between like-sign

pairs and unlike-sign pairs causes the specific invariant masses to be di↵erent. While the most

background is observed in the edge cells, in principle there is a slightly di↵erent background

mass distribution for every possible combination of cells, i.e. edge + edge, edge + center, etc.

These pairs will contribute to the correlated background at low masses (Mµµ < 1.5 GeV/c2).

Hadron decays produce correlated hadron pairs. Due to the significant level of hadron

contamination present in the muon candidates, correlated hadron pairs are likely to exist in

the foreground unlike-sign dimuon distribution. The dominant channels contributing to the

hadron decay background are listed in Table 5.3. For instance, the ⇢0 ! ⇡+⇡� decay (with a

branching ratio of ⇠100%) will produce a relatively large amount of correlated ⇡+⇡� pairs.

Since the e�ciency for a ⇡± to have a match in the MTD is about 1%, these pairs will be
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Figure 5.9 : The M⇡+⇡� distribution near the K0
S mass (a) and the MK+K� distribution

near the � mass (b). Only MTD matched tracks passing all quality cuts are used.

suppressed but still present. Despite the low reconstruction e�ciency, these decays are still

significantly more common than the signal decay ⇢0 ! µ+µ� which occurs with a branching

ratio of only ⇠ 4.55⇥10�5. When this type of correlated hadron pair is reconstructed as part

of the dimuon invariant mass spectra, the pair mass will be shifted do to the assumption that

the daughters have the mass of muons. Since the charged pion and muon masses are so similar,

the pair mass shift is small. On the other hand, the mass shift for a K+K� pair is much larger

since the charged kaon mass is several hundred MeV/c2 larger than the muon mass. Very

obvious peaks are visible from K0
S ! ⇡+⇡� decays (Fig. 5.9a) and from � ! K+K� decays

(Fig. 5.9b) despite the requirement that both tracks are matched to the MTD and pass

quality cuts. As described above, the peaks from the background sources are shifted as part

of the dimuon invariant mass spectra with the K0
S peak being most shifted. The low mass

dimuon invariant mass distribution from p + p collisions at
p

s = 200 GeV is shown in the

top panel of Fig. 5.10. In the lower panel of Fig. 5.10 simulated background contributions

from combinatorial pairs, � ! K+K� decays, K0
S ! ⇡+⇡� decays, and ⇢0 ! ⇡+⇡� decays

are shown. The scaling is arbitrary and meant only to show that the vast majority of the

pairs from muon candidate can be explained with background-only sources.

Secondary hadron decays produce correlated pairs, though with a weaker degree

of correlation between final state particles compared to a single decay. Examples of the

decay processes contributions to this type of background are listed in Table 5.4. Generally

speaking, the weaker the correlation between final state particles, the more smeared-out the
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Table 5.4 : Processes through which correlated dimuon backgrounds can be produced.

Secondary Hadron Decay Processes Total Branching Ratio

⇢0 ! ⇡+⇡� ! ⇡±µ⌥ + X (⇠100% ⇥ 99%) = 99%
K0

S ! ⇡+⇡� ! ⇡±µ⌥ + X (69% ⇥ 99%) = 68%
⇤ ! p + µ� + X (63% ⇥ 99%) = 62%
� ! K+K� ! K±µ⌥ + X ( 49%⇥63%) = 30%

⇢0 ! ⇡+⇡� ! µ+µ� + X (⇠100% ⇥ (99%)2) = 98%
K0

S ! ⇡+⇡� ! µ+µ� + X (69% ⇥ (99%)2) = 67%
� ! K+K� ! µ+µ� + X ( 49%⇥ (63%)2) = 19%

invariant mass distribution will be. For this reason, the hadron decays will produce the most

prominent peaks in the dimuon distribution. The secondary hadron decays will contribute

much broader background distributions.



106

)2M (GeV/c
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1 )2
dN

/d
M

 (G
eV

/c

0

100

200

300

400

500

600
=200 GeVsRun15 p+p at 

 < 0.8)1,2
NN

Muon Candidates (r

unlike-sign
like-sign

)2 (GeV/c -µ+µM
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1 )2
 (G

eV
/c

 -
µ+

µ
dN

/d
M

100

200

300

400

500
-K+ K→ φ

-π+π → S
0K

-π+π → 0ρ
Combinatorial Pairs
Sum

Figure 5.10 : Top: The invariant mass of muon candidates in the low mass region (M <
1.0 GeV/c2) with a cut on the NN response of both daughter 1 and 2 (r1,2NN < 0.8) to
select predominantly background-like pairs. Bottom: The simulated dimuon invariant mass
distribution for hadron decay sources and combinatorial backgrounds. Scaling is arbitrary,
meant to show that the distribution in data can be qualitatively described by background-
only sources.
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5.5 Signal Extraction

5.5.1 Like-Sign Ratio Background Estimation Technique

In the previous section, the contributions from uncorrelated combinatorial backgrounds and

physical correlated backgrounds were discussed. In order to isolate the dimuon signal from

these background sources, a technique is needed to accurately estimate the absolute yield of

background sources as a function of invariant mass. While Monte Carlo simulations could

provide approximate measures of these contributions, in order to reach the level of precision

required, we instead explore data-driven techniques.

In this section the like-sign ratio (LSR) background estimation method is developed.

Throughout the course of this research several techniques were investigated but none were

found to perform as well as this method. The basic idea of this strategy is to parameterize

the ratio of background in the foreground unlike-sign distribution to the foreground like-

sign distribution. By using the LSR instead of the mean (direct or geometric) of the like-

sign distribution, multiple e↵ects can be taken into account simultaneously. For instance,

this method naturally accounts for the significant acceptance di↵erences between like-sign

pairs and unlike-sign pairs. It is also capable of simultaneously accounting for uncorrelated

background sources and physical background sources.

The LSR method consists of a few steps:

1. Compute the ratio of unlike-sign background to foreground like-sign, R(M ; background),

in a region where the unlike-sign background can be isolated.

2. Compute the transfer function for R(M ; background) ! R(M ; signal), where R(M ; signal)

is the ratio of unlike-sign background to foreground like-sign for signal pair selection

criteria.

3. Correct the foreground like-sign distribution with signal selection criteria as

FG++/��(M ; signal) ⌦ R(M ; signal)

The first step in this procedure, computing R(M ; background), is accomplished by select-

ing background-only pairs using the pair response rpair. Figure 5.11 clearly demonstrates that

the background-only, foreground unlike-sign distribution (FG+�) contains significant sources

that are absent in the like-sign distribution (FG±±). The excess is observed mostly at low
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Figure 5.11 : The FG+� and F±± distributions for two di↵erent background-only rpair se-
lection criteria. In both cases the FG±± distribution fails to describe the FG+� distribution.

to intermediate masses, which is consistent with our expectations from physical background

sources. This figure also shows that at high masses, where combinatorial background dom-

inates, the foreground like-sign distribution underestimates the unlike-sign distribution as

expected. The lower set of curves in Fig. 5.11 show that R(M ; background) clearly changes

as a function of the rpair cuts applied, even in background-only regions.

The second step in this method depends heavily on the continuous PID response provided

by the DNN-based PID. The pair response, rpair, computed from the DNN-pid can be used

to approach the signal PID region in a smooth, continuous manner. In terms of the rpair

value, ⇠ 0 is a very high probability of being a background pair, ⇠ 1 is a high probability

of being a cross pair, and a value of ⇠
p

2 is a high probability of being a signal pair. It

is also very important to point out that while the physical background, like K0
S ! ⇡+⇡�,

will produce correlated background pairs, the PID response of each daughter in the pair

will be independently sampled from the underlying PID distribution. This means that the

yield of cross pairs, which contribute the vast majority of the background for rpair > 1.0,

can be constrained with the yield of background-only pairs. Additionally, it means that the

PID template shape for cross pairs (even for correlated pairs) can be accurately produced by

independently sampling the single-track background and signal PID templates.

In order to develop the transfer function for computing R(M ; signal) a more di↵erential

approach can be used. Instead of expressing the ratio as a function of mass (i.e. R = R(M))
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Figure 5.12 : An example of determining the like-sign ration as a function of rpair, i.e.
R = R(rpair) in the ! mass region, 0.7 < Mµµ < 0.85 GeV/c2 (a) and the J/ mass region,
3.0 < Mµµ < 3.2 GeV/c2. The blue points show the FG+� distribution, the red points show
the FG±± distribution, and the black distribution shows the ratio R ⇥ 10 to make it visible
on the same axis. A dotted black line is added to show where R = 1 would be.

for discrete ranges of rpair, the ratio can be expressed as a function of rpair for a given mass

range, e.g. R = R(rpair; 0.7 < Mµµ < 0.85 GeV/c2) for part of the ! mass range. Figure 5.12

shows the FG+� (blue) and FG±± (red) distributions as a function of rpair for the mass range

0.7 < Mµµ < 0.85 GeV/c2. In black 10 ⇥ R(rpair) = FG+�/FG±± is shown for the same

mass range. A dotted line is drawn to show where R = 1 would appear. From this plot and

the value of R, it is clear that across the entire range of rpair, FG+� has ⇠ 2⇥ excess over

the FG±± distribution. A small (large) uptick in the ratio is visible for the highest values of

rpair for the ! (J/ ) mass region due to the presence of signal pairs.

Expressing the like-sign ratio as a function of rpair shows that the value of R in the

background only region cannot be used in the signal region directly. However, the value

of R cannot be measured directly in the signal region, since the presence of signal will

increase R by construction. For this reason, some technique is needed to transfer the value

of R(rpair; background) into the signal region. While a simple zeroth-order or first-order

polynomial appears to be a good choice in some mass bins, these are clearly not a good

choice for other mass bins. For instance, a linear extrapolation function used in the � mass

region can give values of R(rpair; signal) that vary by over 60% depending on the specific

fit range used. Instead of guessing at some fit function, it would be better to understand

the evolution of the three categories of pair types (background, cross, and signal pairs) as a

function of rpair so that the exact contributions can be computed in the signal region.
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A template fitting strategy similar to the one used to extract the muon purity can be used

to determine the yield of background, cross, and signal pairs from a FG+�(rpair) distribution.

In order to fit the rpair distribution, the corresponding template shapes must be built from the

simulated signal and background sources. It was crucial to match the exact kinematic ranges

used in data when generating the single track templates, otherwise the shapes would not

agree well and the fit quality would su↵er. In the case of pairs the single track kinematics as

well as the correlations in pT -space must be taken into account in order to match the shapes

found from pairs in data. Since the single track background shape changes depending on how

much ⇡, K, and p fractions are present, this also must be taken into account. Therefore, for

each fit of FG+�(rpair) or FG±±(rpair) pair templates are generated according to:

T pair
background(pT,1, ⌘1,�1, pT,2, ⌘2,�2) =

⇣
T single�track
background (pT,1, ⌘1,�1, Y⇡(pT,1), YK(pT,1), Yp(pT,1))

⌦T single�track
background (pT,2, ⌘2,�2, Y⇡(pT,2), YK(pT,2), Yp(pT,2))

⌘
· w(pT,1, pT,2)

(5.39)

T pair
cross(pT,1, ⌘1,�1, pT,2, ⌘2,�2) =

⇣
T single�track
background (pT,1, ⌘1,�1, Y⇡(pT,1), YK(pT,1), Yp(pT,1))

⌦T single�track
signal (pT,2, ⌘2,�2)

⌘
· w(pT,1, pT,2)

(5.40)

T pair
signal(pT,1, ⌘1,�1, pT,2, ⌘2,�2) =

⇣
T single�track
signal (pT,1, ⌘1,�1)

⌦T single�track
signal (pT,2, ⌘2,�2)

⌘
· w(pT,1, pT,2)

(5.41)

where T single�track
signal (. . . ) and T single�track

background (. . . ) are the single track template shapes for signal

and background, respectively. Each single-track template is a function of the daughter track’s

kinematic variables (pT , ⌘,�). In order to take into account the variations in background

template shape due to di↵erent hadron contamination levels, the single-track background

template is also a function of the relative yields of ⇡, K, and p (Y⇡, YK , and Yp respectively)
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Figure 5.13 : Fits to the rpair (pairPid) distributions FG+�(rpair) (a) and FG±±(rpair) (b).

for the given pT value. The ⌦ operator represents an outer product between the template

shapes. Additionally, the transverse momentum space correlations between the daughter

particles is taken into account. These rather complex forms were developed iteratively by

adding features to improve the correspondence between the pair template shapes and the

data. An example fit using the pair templates can be seen in Fig. 5.13 for the mass range

3.0 < Mµµ < 3.05 GeV/c2. Each distribution is fit to:

f(Ysignal, Ycross, Ybackground) = Ysignal · T pair
signal + Ycross · T pair

cross + Ybackground · T pair
background (5.42)

Where Ysignal, Ycross, and Ybackground are the only free parameters. The �2/ndf values are

computed as a metric of the goodness-of-fit using only the statistical uncertainty on the data

points. Figure 5.13 shows that the fits work equally well for the FG+� distributions as the

FG±± distributions.

With template fits to the FG+�(rpair) and FG±±(rpair) distributions, R(rpair) can be com-

puted without needing to guess at the proper extrapolation functions. In order to calculate

R(rpair) without the contribution from real signal pairs, R is computed as follows:

R(rpair) =
Y +�

background · T+�
background + Y +�

cross · T+�
cross + Y ±±

signal · T±±
signal

Y ±±
background · T±±

background + Y ±±
cross · T±±

cross + Y ±±
signal · T±±

signal

(5.43)

This is equivalent to taking the ratio of unlike-sign to like-sign template fits, but with

the substitution of the like-sign signal yield into the unlike-sign result. This ensures that
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the real signal in the FG+� is not used when computing R, which should only measure the

background sources. An example of the result of this procedure is shown in Fig. 5.14. In

this figure, the ratio of FG+� to FG±± is also shown for comparison since they should be

approximately equal in the background only region. The computed value of R(M ; signal)

using this technique is shown in Fig. 5.15. At this point, the full background for the

FG+� signal distribution could be computed using R(M ; signal) and the FG±± distribution.

However, the incredibly limited statistics available in the FG±± after applying the signal

selection pid cuts result in large statistical fluctuations in the FG±± distribution, especially

in small mass bins like those used under the resonances.

5.5.2 Correlation Weighted Event Mixing Technique

The standard event mixing technique is to make pairs from tracks in di↵erent events, thus

breaking any correlation between the two tracks. Using this method a nearly infinite number

of uncorrelated combinatorial pairs can be produced with the same acceptance constraints

as the same-event pairs. In past STAR dielectron analyses, the event-mixing technique has

been used to compute the acceptance di↵erences between like-sign and unlike-sign pairs to

arbitrary precision. In some cases the uncorrelated combinatorial mixed-event background

can describe the background in the foreground unlike-sign distribution su�ciently well enough



113

)2 (GeV/cµµ M
0 1 2 3 4 5 6

-1 )2
 (G

eV
/c

µ
µ

 d
N

/d
M

210

310

 > 1.2
pair

(++)+(--) r
=200 GeVsRun15 p+p at 

Same-Event

Standard Mixed-Event

(a) (b)

Figure 5.16 : The standard mixing-event technique compared with the same-event like-sign
distribution (a). The mixed-event distribution is able to match the same-event shape only at
very high Mµµ. The opening angle versus pair pT used to weight the mixed-event distribution
in order to produce a mixed-event that reproduces the shape of the same-event distribution
(b).

to be used as the background estimate.

In this analysis, the goal is to produce a replacement for the same-event like-sign dis-

tribution. This replacement, hopefully free of statistical fluctuations, would then be used

as the baseline background in the like-sign ratio background method discussed in the pre-

vious section. However, producing a replacement distribution for the FG±± using standard

event-mixing is not possible since there exist correlated pairs even in the FG±±, though not

as many as in FG+�. This can be clearly seen in Fig. 5.16a, where the same-event FG±±

distribution is plotted along with the distribution resulting from a standard event-mixing

procedure (ME±±). The ME±± distribution is somewhat able to reproduce the shape at

large invariant masses, but completely fails to at low and intermediate masses. Since the goal

is to replace the FG±± distribution especially at low mass under the ! and � resonances,

the standard event-mixing is not su�cient.

Instead of using the standard mixing event technique, the ME±± distribution can be

intentionally weighted to achieve the same correlations as found in the FG±± distribution.

One way this can be accomplished by measuring the same-event two-particle correlations �⌘

and �� and then re-weighting the contribution from each mixed event pair as the ME±±

distribution is built. This approach was found to be only partially successful though. The �⌘

vs. �� map needs a su�ciently high granularity to reproduce the shape of the same-event

correlations. However, with too many bins the statistical uncertainty originally embedded in
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Figure 5.17 : The mixed-event distribution weighted by the pair opening angle as a function
of pair pT .

the FG±± invariant mass distribution, becomes embedded in the correlation map and simply

transferred to ME±± when the weighting is applied. The end result is a distribution with

the correct correlations but with the same statistical fluctuations as the FG±±.

Instead it was found that weighting the distribution according to the pair opening an-

gle as a function of pµµ
T was more e↵ective. Using the opening angle (↵) to measure the

correlation between tracks reduces the degree of the problem to 1D. Additional statistical

stability is gained due to the symmetry inherent in measuring the opening angle (↵ and �↵

are interchangeable). The same-event ↵ vs. pµµ
T distribution is shown in Fig. 5.16b. This

distribution can be used to weight the standard ME±± distribution, resulting in a mixed-

event distribution with the same correlations as in same-event, but with significantly better

statistical stability. This result can be seen in Fig. 5.17 for like-sign pairs with rpair > 1.2,

though the technique works equally well for all PID ranges and also for background only

unlike-sign pairs.
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5.5.3 Raw Signal Extraction

The raw signal extraction procedure will be discussed first for the � meson and then for the

invariant mass distribution. The � ! µ+µ� spectra is extracted in four momentum bins: pT

= 2.2�3.0, 3.0�3.5, 3.5�4.0, and 4.0�6.0 GeV/c. In each momentum bin, the raw number

of �, N� is extracted through a maximum likelihood fit in which a Gaussian is used for the �

resonance while a fourth-order polynomial is used for the background shape. The TMINUIT

library is used for the minimization procedure. The MINOS algorithm was used to compute

the uncertainties of the fit [146]. The raw data points along with the maximum likelihood

fits is shown for each pT bin in Fig. 5.18.

The signal dimuons can be extracted from the foreground µ+µ� distribution by subtract-

ing o↵ all background sources. The like-sign ratio method, discussed in Sec. 5.5.1 is used to

correct the foreground like-sign distribution. The signal is given by:

S = FG+� � FG±±(M) � R(M ; signal) (5.44)

where R(M ; signal) is the correction factor needed to incorporate the missing correlated

backgrounds that are not present in the FG±± distribution. Where the � symbol is used for

the Hadamard product, i.e. that the correction is applied on a bin-by-bin bases. The low

muon purity necessitates a very tight cut on rpair which reduces the already limited statistics

of the data samples. The statistical fluctuations in FG±± are prohibitively large, especially in

the small mass bins used underneath the resonances. For this reason, the correlation weighted

mixed-event technique is employed to produce a statistically stable mixed-event distribution

(ME±±) that reproduces the major features of the FG±± distribution. Therefore, instead of

using the same-event foreground like-sign distribution to extract the signal we can use the

mixed-event distribution as follows:

S = FG+� � ME±±(M) � R(M ; signal) (5.45)

The ME±± distributions is shown in Fig. 5.19 before and after applying the correction

factor R(M ; signal) needed to reproduce the correlated backgrounds. The FG+� distribution

is shown in Fig. 5.20 along with the ME±± distribution and the correlated background

estimate. The resulting raw signal dimuon distribution is also shown in that figure. Figure
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Figure 5.18 : The maximum likelihood fits used to extract the raw � ! µ+ + µ� yields in
four momentum bins. Each fit used a Gaussian for the � peak and a fourth-order polynomial
for the background shape. The nominal fit range was 0.85 < Mµµ < 1.2 GeV/c2.
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Figure 5.19 : The raw ME±± (red) and the correlated background (blue) for p + p (a) and
p+Au collisions at

p
sNN = 200 GeV.

5.21 shows the resulting signal-to-background ratio for the raw signal with respect to the

correlated background estimate in p + p and p+Au collisions.
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Figure 5.20 : The FG+� distribution (black) along with the ME±± distribution (red) and
the correlated background estimation (blue). The signal dimuons are shown in magenta.
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Figure 5.21 : The signal over background ratio as a function of invariant mass for p + p
(top) and p+Au (bottom).
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5.6 Contributions from Hadronic Decays

5.6.1 Decay Channels, Branching Ratios, and Kinematics

Light and heavy hadron decays account for a significant amount of the µ+µ� pairs produced

in p+p and p+Au collisions at
p

sNN =200 GeV. The significant sources for the µ+µ� channel

are listed below:

• Di-muon decays: ⌘ ! µ+µ�, ! ! µ+µ�, ⇢ ! µ+µ�, � ! µ+µ�, J ! µ+µ�,

 (2S) ! µ+µ�

• Dalitz decays: ⌘ ! �µ+µ�, ! ! ⇡0µ+µ�, ⌘0 ! �µ+µ�

• Heavy flavor decays: cc̄ ! µ+µ�, bb̄ ! µ+µ�

• The Drell Yan process.

In this section and the next the details of the hadronic cocktail simulation for the light

hadron contributions, J/ , and  (2S) will be discussed. In the following section the contribu-

tions from the correlated heavy flavor decays and the Drell-Yan process will be discussed. A

dedicated Monte Carlo code was written to simulate the two-body and three-body hadron de-

cays. The pythia event generator is used to simulate the heavy flavor decays and Drell-Yan

processes.

The kinematic distributions for each parent particle is needed by the hadronic cocktail

simulation code to simulate each decay into final products. The simulation code for the

hadronic cocktail expresses the kinematics in terms of the pT , ⌘ and �. Measurement of

each particles’ transverse momentum spectra are fit simultaneously to a Tsallis Blast-Wave

parameterization [147–149]. The Tsallis Blast-Wave parameterization is given by:

dN

mT dmT
/mT

Z +Y

�Y

cosh(y)dy

Z +⇡

�⇡
d�

Z R

0

rdr

✓
1 +

q � 1

T
(mT cosh(y)cosh(⇢) � pT sinh(⇢)cos(�))

◆�1/(q�1)
(5.46)

where ⇢ = tanh�1(�s(r/R)n) is the flow profile which grows with the n-th power from

the center of the collision to �s at the hard-sphere radius of R along the transverse radial
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Figure 5.22 : The measured transverse momentum spectra of a large number of mesons in
p + p collisions at

p
s = 200 GeV. The solid lines are Tsallis Blast-Wave fits to each particle

species [147].

direction r. The measured values and their Tsallis Blast-Wave fit can be seen in Fig. 5.22.

The simultaneously fit Tsallis Blast-Wave does a good job of describing the spectra of light

hadrons and can even be used to predict the spectra of unmeasured particle species based on

their mass.

The rapidity distribution of the parent particles is also needed in order to simulate the

decay into final state leptons. While a flat distribution could be used, a more accurate

description is given by the CERES parameterization [150]:

dN/dy = cosh�2

 
3y

4�Landau(1 � y2

2
p

s/m)

!
(5.47)

�Landau =
q

log(
p

s/(2mN)) (5.48)



122

Table 5.5 : The decay channels supported by the hadronic cocktail simulation code. For
each decay channel, Table 5.5 shows the mass, �0, dN/dy or d�/dy, branching ratio (BR),
and ⇤�2 values are shown where applicable. Taken from Ref. [147,151–158]

Meson M (GeV/c2) �0 (GeV/c2) dN/dy Channel BR ⇤�2 (GeV�2)

⌘ 0.547 1.31⇥10�6 1.70⇥10�1 �µ+µ� 3.1⇥10�4 1.95
⌘ µ+µ� 5.8⇥10�6 —
! 0.782 8.49⇥10�3 1.33⇥10�1 ⇡0µ+µ� 1.3⇥10�4 2.24
! µ+µ� 9.0⇥10�5 —
⌘0 0.957 4.07⇥10�2 �µ+µ� 1.08⇥10�4 1.8396
⇢0 0.775 1.491⇥10�1 2.22⇥10�1 µ+µ� 4.55⇥10�5 —
� 1.019 4.26e⇥10�3 1.73⇥10�2 �µ+µ� 1.4⇥10�5 3.8
� µ+µ� 2.87⇥10�4 —

J/ 3.096 9.29⇥10�5 2.44⇥10�5 µ+µ� 5.96⇥10�2 —
 (2S) 3.68 3.04⇥10�4 3.38⇥10�6 µ+µ� 8.0⇥10�3 —

where
p

s is the center of mass energy per nucleon, m is the particle species mass, and

mN is the nucleon mass. The azimuthal distribution of each particle is assumed to be flat in

0 < � < 2⇡. Table 5.5 shows all of the decay channels that are simulated by the hadronic

decay simulation code. For each decay channel, Table 5.5 shows the mass, �0, dN/dy or

d�/dy, branching ratio, and ⇤�2 values which are used to simulate the decays.

5.6.2 Decays of Vector Mesons and Pseudo Scalar Mesons

For the decay of narrow resonances decaying through a two-body decay channel, the non-

relativistic Breit-Wigner line shape can be used. The non-relativistic S-wave Breit-Wigner

has the form:
dN

dMµµ
=

2�0

(Mµµ � M0)2 + �2
0/4

(5.49)

where M0 is the mass of the resonance and �0 is its width. This line shape is normalized

and used by the hadronic cocktail code as the probability density function for the mass of

the parent particle upon decay. All of the two-body decay channels use the non-relativistic

Breit-Wigner line shape except the ⇢-meson. Since the ⇢-meson width is comparable to its

mass (M⇢ = 0.775 GeV/c2, �0 = 0.149 GeV/c2) the non-relativistic Breit-Wigner is not a

good description of its line shape. Instead the relativistic S-wave Breit-Wigner can be used
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Figure 5.23 : The Feynman diagrams for various dilepton production mechanisms (shown
for e+e�): the direct decay of a vector meson (⇢,!,�) through a virtual photon (a); the
Dalitz decay of a vector (V), pseudo-scalar (P), or scalar (S) meson into a neutral particle
and an e+e� pair (b); the four-body decay of a pseudo-scalar or vector meson into e+e� and
two pseudo-scalar mesons (⇡ or ⌘) through an intermediate state containing a virtual photon
or vector meson (c); the decay of a nucleon or � resonance into a nucleon and a vector meson
which further decays into an e+e� pair. [74]

as the line shape for decays. The relativistic S-wave Breit-Wigner has the form:

dN

dMµµdpT
/ MµµM⇢�µµ

(M2
⇢ � M2

µµ)2 + M2
⇢ (�⇡⇡ + �µµ�2)2

⇥ PS(pT ) (5.50)
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(5.51)
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◆1/2

(5.52)

PS(pT ) =
Mµµq

M2
µµ + p2T

e�
p

M
2
µµ+p

2
T

T (5.53)

where M⇢ is 0.775 GeV/c2, M⇡ is the mass of the ⇡±, �0 is 0.149 GeV/c2, �2 is the

branching ratio of ⇢0 ! µ+ + µ�, PS(pT ) is the Boltzmann phase space factor, and T is 160

MeV. The relativistic Breit-Wigner form depends on the particle’s momentum through the
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phase space factor (PS). The hadronic cocktail code evaluates the phase space factor at the

mean-pT of the ⇢ instead of computing the phase-space for all values of pT . Since the pT range

of the ⇢ in this analysis is limited by the MTD acceptance, the a↵ect of this approximation

is negligible.

The Kroll-Wada line shape is used for the Dalitz decays of the ⌘,!, and the ⌘0 [159,160].

The Kroll-Wada form consists of three distinct components: the QED factor, the phase space

factor, and the transition form factor. The QED factor is given by:

QED =

s

1 �
4M2

µ

M2
µµ

✓
1 +

2M2
µ

M2
µµ

◆
1

Mµµ
(5.54)

which is only a function of the mass of the lepton in question, the µ in this case. The Phase

Space term for a Dalitz decay with a massive neutral daughter is:

PS =

"✓
1 +

M2
µµ

M2
h � M2

n

◆2

�
4M2

hM2
µµ

(M2
h � M2

n)

#3/2
(5.55)

where Mh is the mass of the parent hadron undergoing decay, and Mn is the mass of the

neutral decay product e.g. Mn = M⇡0 in the case of the ! ! ⇡0 + µ+ + µ� Dalitz decay.

If the neutral daughter particle is massless, e.g. in the case of ⌘ ! � + µ+ + µ�, the phase

space term above simplifies to:

PS =

✓
1 �

M2
µµ

M2
h

◆3

(5.56)

The transition form factor is :

|F (M2
µµ)|2 =

1

(1 � M2
µµ⇤

�2)2 + �2
0⇤

�2
(5.57)

where �0 and ⇤�2 are found in Table 5.4. For more information on the measurements of the

transition form factors please see Ref. [160–163].

The full Kroll-Wada form is given by the combination of these three components:

dN/dMll /
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(5.58)
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5.6.3 Contributions from cc̄, bb̄, and Drell-Yan

pythia->SetMSEL(4);

pythia->SetPARP(91,1.0); //<kT>

pythia->SetPARP(67,1.0); //mstp*4

Listing 3: The parameters used to instantiate pythia for simulation of the correlated
cc̄ ! µ+ + µ� decays. The trigger MSEL = 1 was also used to check the line shape and
magnitude of the cc̄ contribution.

The intermediate mass region between the � and J/ mesons is dominated by the semilep-

tonic decay of open heavy flavor. The semileptonic decay of cc̄ and bb̄ pairs, correlated through

flavor conservation, result in correlated final state leptons that appear as signal in the dilep-

ton invariant mass spectra. Additional contributions of correlated lepton pairs arise from

the Drell-Yan process. The pythia version 6.416 event generator is used to compute the

contributions from correlated open heavy flavor decays and Drell-Yan at leading order (LO).

The default Parton Distribution Functions (PDFs) used in the version 6.416 of pythia are

the updated CTEQ5L PDFs.

pythia->SetMSEL(5);

pythia->SetPARP(91,1.0); //<kT>

pythia->SetPARP(67,1.0); //mstp*4

Listing 4: The parameters used to instantiate pythia for simulation of the correlated
bb̄ ! µ+ + µ� decays.

The cc̄, bb̄, and Drell-Yan processes are each simulated separately using di↵erent pythia

settings. The settings and parameter tunes used for the simulation of cc̄, bb̄, and Drell-Yan are

found in Listings 3, 4, and 5 respectively. For cc̄ and bb̄ events were selected that had exactly

2 strings in the event resulting from the desired heavy flavor quark. Events which decayed

semileptonicly into µ+µ� pairs were counted with weights according to the decay chain

responsible. Drell-Yan events were accepted from those in which a qq̄ ! �⇤/Z0 ! µ+ + µ�

decay was present. The tune parameters for the Drell-Yan processes are chosen to match
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measurements as described in Ref. [84]. The cross-sections used to scale the Drell-Yan, bb̄,

and cc̄ are shown in Table 5.10.

The contribution to the µ+µ� invariant mass spectra from cc̄, bb̄, and Drell-Yan below

Mµµ ⇠ 2.2 GeV/c2 is limited to only pairs with large pµµ
T due to the minimum transverse

momentum cut-o↵ of the MTD. This makes the contributions in the lower and intermediate

mass regions very sensitive to the pT shape used to describe the inclusive cross-section as a

function of pT . To put it in context, the total �cc̄ is already given a 20% uncertainty, so the

uncertainty at higher pµµ
T must grow from there. The same is true of the bb̄ and Drell-Yan

contributions, though some constraints used to guide the assignment of uncertainties are

taken from Ref. [70, 84,106,107].

pythia->SetMSEL(11);

pythia->SetMSTP(43,1); // qqbar --> gamma* -->l+l-

pythia->SetCKIN(1,1.); // M parameter

pythia->SetMSTP(33,1); // common kt factor

pythia->SetMSTP(32,4); // Q^2 scale

pythia->SetMSTP(51,7); // switch to the CTEQ5L PDFs

pythia->SetPARP(31,1.8); // D->1.5

pythia->SetPARP(91,1.5); //<kt>

//switch off all decays

for(Int_t i=162; i<=189; i++) pythia->SetMDME(i,1,0);

// turn back on mu decays

pythia->SetMDME(171,1,1);

pythia->SetMDME(184,1,1);

Listing 5: The parameters used to instantiate pythia for simulation of the Drell-Yan
process, qq̄ ! �⇤/Z0 ! µ+ + µ� decays.
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5.6.4 Hadronic Cocktail for the MTD Acceptance

The kinematic acceptance of the MTD is taken into account when simulating the contribu-

tions for the hadronic cocktail. The kinematic cuts imposed by the MTD are:

• Pair rapidity: |yµµ| <0.5

• Daughter pseudo-rapidity: |⌘µ| <0.5

• Daughter pT : pµ
T >1.1 GeV/c

The a↵ect of these three acceptance cuts can be seen on the sum of all hadronic cocktail

components in Fig. 5.24. This figure clearly shows the harsh impact that the kinematic

cuts imposed by the MTD have on the low mass region. The pµ
T >1.1 GeV/c requirement

e↵ectively rejects low mass hadrons with a pT less than ⇠ 2.2 GeV/c. The higher mass mesons

like the J/ are not as a↵ected by this requirement, since their masses are su�cient to provide

the momentum kick to the daughters needed to reach pµ
T >1.1 GeV/c. Taking these kinematic

requirements into account when generating the cocktail means that comparison with the data

will depend mostly on e�ciency corrections and not on gross acceptance corrections. The

next section will discuss the method of determining the e�ciency corrections to be applied to

data. The hadronic cocktail enters this calculation, since the e�ciency factors as a function

of pµµ
T and Mµµ depend on the kinematics of the underlying daughter particles.

In order to allow a one-to-one comparison with the measured µ+µ� invariant mass spectra,

the cocktail needs to be smeared with a mass resolution comparable to that provided by

STAR. The mass smearing is taken into account via momentum smearing of the daughter

particles. The momentum resolution for tracks reconstructed in the TPC is relatively good

(⇠ 1%) for µ tracks with a momentum of ⇠ 1 GeV/c. The momentum resolution worsens

almost linearly as a function of pT reaching values of ⇠ 10% at values of pT > 7 GeV/c. Since

muons at these energies do not experience significant energy loss through Bremsstrahlung

radiation, a Gaussian shape is used to smear the momentum. The quality of the momentum

smearing can be judged through the correspondence between the J/ in the cocktail and

data. Since the J/ width is so narrow (�0 ⇡ 9.29 ⇥ 10�5 GeV/c2) its e↵ective width is

entirely dominated by the mass resolution and therefore momentum smearing of a↵ect of the

track reconstruction.
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Figure 5.24 : The total hadronic cocktail for p + p collisions at
p

s = 200 GeV for a
progression of kinematic cuts. Requiring only that |yµµ < | 0.5 results in the solid red curve.
The addition of the |⌘µ| < 0.5 cut on each daughter µ is shown in the solid blue curve.
Finally, the addition of the pµ

T > 1.1 GeV/c cut is shown in the solid black curve.

After simulating each decay the full hadronic cocktail results from the properly scaled

combination of all contributions. The dN/dy or � values are used to scale each contribution

and the final result is reported in terms of the yield / event. The hadronic cocktail for p + p

collisions at
p

s = 200 GeV Fig. 5.25. The cocktail for p+Au collisions at
p

sNN = 200

GeV is identical to the p + p cocktail except that the yield of each contribution is also scaled

by the average number of binary collisions per event hNp+Au
col i. The full hadronic cocktail

for p+Au collisions at
p

sNN = 200 GeV is obtained by scaling the hadronic cocktail from

p + p collisions by hNcolli = 4.7. The full cocktail for p+Au collisions is shown in Fig. 6.2 in

Chapter 6.
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Figure 5.25 : The hadronic cocktail for p+ p collisions at
p

s = 200 GeV. Each component
is drawn separately. The sum of all contributions is drawn in the black solid curve. The
hadronic cocktail for p+Au collisions is identical, except that the entire cocktail is scaled by
the number of binary collisions, Ncol.
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5.7 E�ciency and Acceptance Corrections

5.7.1 Trigger Correction

The dimuon trigger records only those events which satisfy the trigger conditions. In order to

compare with the hadronic cocktail, and express cross-sections in absolute terms, a conversion

factor is needed to determine the total number of collisions (total luminosity) sampled by

the trigger. This can be accomplished by relating the number of dimuon triggered events

to the equivalent number of minimum bias (MB) events. Accomplishing this requires an

understanding of the data recording process, the live-time of the detectors and the di↵erence

in e�ciencies between the dimuon trigger and the MB triggers. Taking all of these factors

into account results in an expression for the number of equivalent minimum bias events given

by:

N equivalent
MB =

X

run

NMB,run · PSMB,run

PSdimuon,run
· LiveTimedimuon,run

LiveTimeMB,run
·
Nanalyzed

dimuon,run

N recorded
dimuon,run

· "good (5.59)

where:

• The sum is over all runs (data collection periods) collected and analyzed.

• NMB,run is the number of MB events in each run after applying the vertex and ranking

cuts. It is calculated as the number of recorded MB events multiplied by the vertex

cut e�ciency measured in data from the same run.

• PSMB,run is the pre-scale of the minimum bias trigger for the given run. The pre-scale

factor is used to alleviate bandwidth issues. Since the data acquisition system cannot

read-out every event, a certain number of events that pass the trigger condition must

be dropped in order to reduce the bandwidth load. In recent years, the STAR data

acquisition system has been able to run at a rate of ⇠ 2.3 kHz.

• PSdimuon,run is the pre-scale of the dimuon trigger for the given run.

• LiveTimedimuon,run is the live time for the dimuon trigger for a given run. The live-time

refers to the fraction of time that the detectors were able to read out data and form

events. Due to bandwidth limitations, the data acquisition system is not able to read
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out every event. For this reason, if two events passing the dimuon trigger condition

come too close together in time, the later event may be dropped due to the dead-time

induced by reading out the first event.

• LiveTimeMB,run is the live time for the minimum bias trigger for a given run.

• Nanalyzed
dimuon,run is the number of dimuon triggered events that are analyzed (pass event cuts)

for a given run.

• N recorded
dimuon,run is the number of dimuon triggered events that are recorded for a given run.

• "good is the fraction of good events measured by fitting the |zTPC - zVPD| distribution

(more details below).

The N equivalent
MB based on this relation are listed in Table 5.6. The result in the last row

corresponds to the selection criteria used in these analyses. This number of minimum bias

events is used in the comparison between the measured µ+µ� invariant mass spectra and the

hadronic cocktail. It is also used to calculate the BR⇥dN/dy of the � ! µ+ + µ�. Most of

the variables listed in Eq. 5.59 are obtained from the meta-data recorded during the data

collection process. For instance, the pre-scale and live-time of detectors is recorded during

the data acquisition process. The number of recorded and analyzed events are trivial to

calculate from the data.

The determination of "good is a little more involved however. The collider system is not

perfect so various types of background collisions can occur due to beam imperfections that

cause collisions with the beam-pipe or other material. If the trigger systems were perfect then

background collisions would always be rejected. However, in practice each trigger condition

has a di↵erent susceptibility to background. Specifically, the minimum bias trigger condition

is found to be more susceptible to background events than the dimuon trigger condition. This

di↵erence needs to be taken into account when determining the correspondence between the

number of dimuon triggered events and minimum bias events. This factor was estimated

using zTPC - zVPD, i.e. the di↵erence between the vertex as measured by the TPC (from

reconstructed tracks) and the vertex position detectors (based on timing of hits). Background

events may produce a large number of tracks but are more likely be out-of-time resulting in

a shifted vertex as reported by the vertex position detectors. On average, the dimuon trigger
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Table 5.6 : The number of equivalent minimum bias events (N equivalent
MB ) calculated for vari-

ous di↵erent event selection cuts and e�ciency factors. The result in the last row corresponds
to the selection criteria used in these analyses.

Cuts N equivalent
Minimum Bias

p + p

zTPC - zVPD < 6 cm and zTPC < 100 cm 4.375e11
zTPC - zVPD < 6 cm and zTPC < 100 cm and ranking � 0 3.56e11
zTPC - zVPD < 6 cm and zTPC < 100 cm and ranking � 0
and "good

3.382e11

p+Au

zTPC - zVPD < 6 cm and zTPC < 100 cm and ranking � 0
and "good

1.401e11

was found to provide ⇠95% good event selection based on this method. As a cross-check the

J/ yield per event was compared in MB events and dimuons triggered events to gauge the

e�ciency for selecting good events.

5.7.2 Tracking and MTD E�ciency

In order to compare the µ+µ� invariant mass measurement with the simulated hadronic cock-

tail the measurement must be corrected for ine�ciency. The general strategy is to compute

the single µ± e�ciencies by embedding simulated tracks into real data events. Each detec-

tors’ response is simulated for the embedded tracks and added to the information read-out for

real data. After combining the real data and simulated data, the full event is reconstructed

using the normal track reconstruction and event building software. The e�ciencies can then

be computed as a function of kinematic variables by comparing the number of correctly re-

constructed tracks to the number originally embedded. After the single particle e�ciencies

have been measured, the pair e�ciencies can be determined by a folding procedure using the

single particle e�ciencies. First, the individual components that make up the total e�ciency

will be discussed. Then the folding procedure will be presented along with the final e�ciency

corrections.

The e�ciency for reconstructing tracks from a signal pair with the TPC and having them

matched to MTD hits can be separated into multiple contributions:

"total = AccMTD · "TPC · "MTD Matching · "MTD Electronics · "Trig · "Trigger Unit · "PID (5.60)
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where AccMTD is the kinematic acceptance factor for the MTD, "TPC is the TPC track

reconstruction e�ciency, "MTD Matching is the MTD matching e�ciency, "MTD Electronics is the

MTD electronics’ response e�ciency, "Trig is the e�ciency of the trigger timing-window cut,

"Trigger Unit is the e�ciency of the MTD’s trigger unit system, and "PID is the e�ciency of the

muon identification. All of these e�ciencies (unless otherwise noted) must be computed as

a function of the track’s pT , ⌘, and � in order to incorporate the complex geometry of the

MTD. Each of these e�ciencies are discussed in detail below.

As mentioned in Sec. 5.6, the gross acceptance of the TPC and MTD are already factored

out when generating the hadronic cocktail. Therefore, they do not need to be corrected for

a comparison between the µ+µ� invariant mass spectra and the hadronic cocktail. The

acceptance corrections are needed for the measurement of the BR⇥dN/dy of the � meson

however. Since the TPC covers ⇠ 2⇡ in azimuth, |⌘| < 1, and pT > 0.2 GeV/c the acceptance

is determined by the kinematic acceptance of the MTD. The acceptance for the � with |y�| <

0.5 is measured using the simulation code developed for the hadronic cocktail. First, �mesons

are generated according to a flat azimuthal distribution, a CERES rapidity distribution and

the Tsallis Blast-Wave pT distribution. These � mesons are then decayed into µ+µ� pairs.

The kinematic requirements of the MTD are then applied to the daughter tracks. The

acceptance factor can can be expressed as:

Acc� =
|y�| < 0.5 & |⌘µ

1,2| < 0.5 & pµ
T1,2 > 1.1 GeV/c

|y�| < 0.5
(5.61)

The acceptance factor for the � can be seen as a function of its pT in Fig. 5.27a. The

acceptance factor for the J/ can be seen as a function of its pT in Fig. 5.27b. The additional

acceptance due to the MTD’s limited coverage in the azimuthal direction is combined with

its e�ciency corrections.

The TPC track reconstruction e�ciency is a function of several factors. Naturally, it

depends on the track quality, with higher quality tracks (e.g. requiring them to have more

hit points) resulting in lower e�ciency. The track reconstruction e�ciency also depends on

multiplicity ranging from better than ⇠90% in low multiplicity p + p events to ⇠70% in

central Au+Au collisions. While the dimuon triggered events are slightly biased to higher

multiplicities than minimum bias events, for tracking purposes the multiplicities are still
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extremely low. The TPC track reconstruction e�ciency is measured in embedding with:

"TPC =
NTPC

NMC
(5.62)

where NMC is the number of simulated tracks embedded and NTPC is the number of simu-

lated tracks properly reconstructed from TPC information. As already mentioned, the total

e�ciency of the MTD includes several components. The MTD matching algorithm is respon-

sible for matching tracks reconstructed in the TPC with hits in the MTD. The e�ciency of

the MTD matching ("MTD matching) is given by:

"MTD Matching =
NMTD Matched

NTPC
(5.63)

where NMTD matched are the number of simulated tracks that are reconstructed in the TPC

and matched to the correct hit in the MTD. In this case it is implied, in order to not double

count factors, that NTPC is the number of TPC reconstructed tracks that also fall within

the gross acceptance of the MTD. In the simulation software, the active regions of the MTD

have a 100% e�ciency for producing a hit. However, the real hardware has finite sensitivity

and electronic thresholds. For this reason, the response e�ciency of the MTD is extracted

from cosmic ray data. The e�ciency of the MTD electronics can be isolated by using cosmic

ray measurements and embedded tracks as:

"MTD electronics =
"MTD Matching

cosmics

"MTD Matching
simulation

(5.64)

where "MTD Matching
cosmics is the MTD matching e�ciency defined above extracted from cosmic ray

data and "MTD Matching
simulation is the MTD matching e�ciency from simulation where the electronics

e�ciency is 100%. The dimuon trigger uses a cut on the time of hits to reject background

and punch through from slow hadrons at the level of triggering. However, some MTD hits

from real muons may not have times that fall into the pre-defined window. These muons will

be rejected by the trigger and result in an ine�ciency. This a↵ect can be measured using the

J/ via:

"Trig =
NJ/ 

triggered

NJ/ 
matched

(5.65)
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Figure 5.26 : The pair e�ciency as a function of Mµµ for two scenarios: 1) A �⇤ decay with
flat mass and pT and 2) using the Mµµ and pµµ

T distributions from the total hadronic cocktail.
Note, this includes only the e�ciency and acceptance a↵ects for tracks that fall within the
gross kinematic acceptance of the MTD (i.e. |⌘| < 0.5 and pT > 1.1 GeV/c).

where NJ/ 
triggered is the number of J/ that are reconstructed from muons passing the trigger

conditions and NJ/ 
matched are the number of J/ reconstructed from all MTD matched muon

candidates regardless of whether they passed the trigger condition or not. The e�ciency of

the trigger condition is found to be very high, "Trig ⇡99% and is taken to be flat since it has

very little dependence on the muon’s kinematics.

The above e�ciencies are computed for individual muons and folded together to determine

the pair e�ciency as a function of Mµµ and pµµ
T . This procedure consists of simulating a

virtual photon decay to µ+µ�. The pair e�ciency is considered to be the simple product of

the single track e�ciencies, i.e:

"pair = "A(pT , ⌘,�) ⇥ "B(pT , ⌘,�) (5.66)

where "A and "B are the e�ciencies of the two daughter tracks. Since the pair e�ciency is

generated from a virtual photon with a flat pµµ
T distribution the final e�ciency as a function

of only Mµµ is generated by taking the weighted average over the pair pT . The pT spectra

from the hadronic cocktail is used for the pµµ
T weighting. The pair e�ciency as a function of

Mµµ are shown in Fig. 5.26 for two di↵erent scenarios: 1) A �⇤ decay with flat mass and pT
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Figure 5.27 : The total e�ciency ⇥ acceptance for the � (a) and the J/ (b). Each
component is shown in addition to the total. The total e�ciency ⇥ acceptance is shown in
small bins and in the larger bins used to extract signal.

and 2) using the Mµµ and pµµ
T distributions from the total hadronic cocktail.

Not all of the pair e�ciency factors can be adequately separated into single muon e�ciency

factors. The MTD trigger unit system is one such case. In order for an event to pass the

dimuon trigger and be recorded it must fire two separate trigger units. The requirement that

the event fire two separate trigger units imposes an implicit bias on the separation (opening

angle) of a pair. For example, a high mass pair (Mµµ > 3 GeV/c) with low transverse

momentum will produce a µ+µ� pair that is nearly back-to-back in the laboratory frame.

The daughter tracks from this type of pair will necessarily fall into two separate trigger units

and pass the dimuon trigger. However, a low-mass pair with only just enough momentum to

produce daughters with pT >1.1 GeV/c will produce pairs with a very small opening angle.

While the trajectories of the daughter particles will separate somewhat before reaching the

MTD, they are much more likely to fall within a single trigger unit and therefore be rejected

by the dimuon trigger.

The trigger unit e�ciency was computed using the mixed event framework and checked

with a sample of simulated J/ . Using mixed-event pairs for this calculation is ideal since

the mixed-event pairs can fall into any possible combination of trigger units. The trigger unit

e�ciency ("Trigger Unit) is determined by computing the ratio of pairs with daughters that hit
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two di↵erent trigger units compared to all pairs. That is:

"Trigger Unit =
Nmixed�event

pass

Nmixed�event
(5.67)

where Nmixed�event
pass is the number of mixed-event pairs with daughters that fall into two

di↵erent trigger units (passing the trigger unit requirement) and Nmixed�event is all mixed-

event pairs including those with daughters that hit the same trigger unit. This e�ciency

is computed as a function of the pair opening angle and the pair pT to fully incorporate

the behavior of this e↵ect. The cross-check computation of "Trigger Unit using the sample of

simulated J/ showed an agreement with the mixed-event method at the sub 1% level.

The muon identification is also computed at the pair level since the value of rpair is used

to select pairs instead of the individual DNN responses for each track. The e�ciency for a

signal pair is trivial to calculate with the pair templates produced in Sec. 5.5.1. With the

signal pair template already computed the PID e�ciency is simply:

"PID(x) =

R
x T pair

signal(rpair)drpairR
T pair

signal(rpair)drpair
(5.68)

which gives the signal pair identification e�ciency for a cut of rpair > x. See Fig. 5.29 for an

example showing the signal pair e�ciency, purity, S/B, and significance of pairs in the J/ 

mass window.
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Figure 5.28 : The PID e�ciency for µ+µ� pairs in p + p (a) and p+Au collisions atp
sNN = 200 GeV selected with rpair > 1.36 and rpair > 1.34 for p+p and p+Au respectively.



139

pairPid > x
0.8 0.9 1 1.1 1.2 1.3 1.40

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

)23.00 < M < 3.05 (GeV/csignal purity signal efficiency
 0.1×S / B  0.01×S / sqrt( S + B ) 

 0.01×Max( S / sqrt( S + B ) ) 

Figure 5.29 : The signal e�ciency and purity determined as a function of rpair. The S/B
and significance are also shown with the cut value for maximum significance highlighted.
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5.8 Systematic Uncertainties

5.8.1 Uncertainties on the µ+µ� Invariant Mass Spectra

The measurement of the µ+µ� invariant mass spectra, as described in this chapter, is a com-

plex process including many steps. Each of the assumptions in the procedure may contribute

to a bias in the final result. Some parts of the procedure depend on simulations which may

not perfectly correspond to the real process they simulate. In this section, a systematic study

of the various assumptions and uncertainties inherent in the µ+µ� measurement procedure

is presented. The goal is to determine the likely range of values which could result if the

assumptions and uncertainties in the procedure are changed in reasonable ways. The various

sources of systematic uncertainty will be combined and reported in the final result separately

from the statistical uncertainties. This practice is common in our field since it helps deter-

mine if more data or a better approach (better techniques, improved equipment, di↵erent

experimental procedure etc.) are needed to produce a higher quality measurement.

Table 5.7 lists the sources of uncertainty that were considered and evaluated in this

study. Most of the uncertainties that have been considered are similar between the p+ p and

p+Au data sets. Therefore, the uncertainties and the technique for evaluating them will be

discussed for the p+p and p+Au datasets together, only making special note whenever there

is a significant di↵erence between the two cases.

The first set of uncertainties relate to the e�ciency and acceptance correction procedure.

The single particle e�ciency tables were produced using an embedding technique in which

simulated tracks are reconstructed alongside real tracks. Often the simulated track distri-

butions (like nHitsFit, DCA, etc.) are not in perfect agreement with the distributions from

real tracks. Often, but not always, the simulated tracks are higher quality than real tracks.

For instance, the DCA distribution tends to be too narrow, not too wide and the nHitsFit

distribution tends to be shifted towards slightly more hits than in data. These di↵erences

are taken into accounted with a conservative 5% uncertainty on the single muon tracking ef-

ficiency correction. Likewise, the MTD matching e�ciency and the MTD response e�ciency

are assigned a 5% uncertainty. The single muon trigger e�ciency, computed from the data

using J/ muons is assigned a 1% uncertainty. These single muon e�ciency uncertainties

contribute very little deviation to the final measured yield.

The e�ciency a↵ects that are more significant relate to the pair e�ciency folding pro-
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Table 5.7 : Sources of systematic uncertainty on the measurement of the µ+µ� invariant
mass spectra in p + p and p+Au collisions at

p
sNN = 200 GeV.

Relative Uncertainty on Yield

Category
Source

Uncertainty p + p p + Au

Single µ
Tracking E�ciency

5% 1-2% 1-2%

Single µ
MTD Matching E�ciency

5% 1-2% 1-2%

Single µ
MTD Response E�ciency

5% 1-2% 1-2%

Single µ
MTD Trigger E�ciency

2% <1% <1%

MTD Trigger Unit E�ciency 50% 40%
(Mµµ < 0.5)

45%
(Mµµ < 0.5)

Pair E�ciency Folding Hadronic Cock-
tail vs. �⇤

5-18% 5-20%

Pair PID E�ciency 10% 10% 15%
Total E�ciency⇥Acceptance 5-20% 5-25% 15%
Normalization (N equivalent

MB ) 5% (p + p), 10%
(p+Au)

5% 10%

rpair Mass Binning [0.1, 0.05, 0.2]
(GeV/c2)

<1% <1%

rpair Fit Range rpair>
[0.0, 0.1, 0.2]

6% 6%

rpair Fit Uncertainty 1.5-3% 3% 3%

DNN Template Uncertainty
in LSR method

±20% (p + p),
±30% (p+Au)

5-40% 5-45%

Event Mixing pµµ
T binning [0.05, 0.1, 0.2,

0.5]
<1% <1%

Event Mixing
opening angle binning

[0.05, 0.1, 0.2,
0.5]

10%
(20�50%,
Mµµ < 0.5)

10%
(20�50%,
Mµµ < 0.5)

Event Mixing Bu↵er Size [all, 9, 36, 81] 1% 1%
Hadron Contamination 1 - purity ⇡ 30% 30% 40%



142

cedure, the PID e�ciency, and the MTD trigger unit e�ciency. The pair e�ciencies are

computed by folding together the single track e�ciencies. The pair e�ciency expressed only

as a function of Mµµ in this analysis is heavily a↵ected by the pT distribution of the pair’s

daughter particles. The dependence on this e↵ect is investigated by comparing the hadronic

cocktail result with the result from virtual photon decay with a flat pµµ
T distribution. An

⇡4% di↵erence between these two is observed in the intermediate mass region with less than

2% di↵erence in other regions of phase space. This in turn results in a 10�15% di↵erence in

the yield.

The PID e�ciency is computed from the signal template shapes. If the simulation has

any systematic bias compared to the data, it will be propagated into the PID e�ciency by

virtue of a biased template shape. The uncertainty on the template was determined using a

tag-and-probe technique with the J/ muons. The PID e�ciency was specifically tested by

measuring the change in J/ yield as the DNN-based PID cut on one daughter was tightened.

In this way the uncertainty on the PID e�ciency computed from the templates (averaged

over track pT ) was found to be ⇠10%. Since this e�ciency is applied directly at the pair

level it has a direct impact on the measured yield. Since the � TOF distributions were

extracted from p + p data and reused in the p+Au data, the p+Au uncertainty is assigned

a slightly larger value. A mixed event technique was used to compute the MTD trigger unit

e�ciency. The trigger unit correction has the largest a↵ects for pairs with a mass just above

threshold (Mµµ < 0.5 GeV/c2). Higher mass pairs that are extremely boosted (e.g. J/ with

pT > 10 GeV/c) are also a↵ected, since their daughter particles are emitted with a small

opening angle in the lab frame. A total uncertainty of 5�20% results from all e�ciency and

acceptance a↵ects combined with the largest uncertainties found in the intermediate mass

region.

The final mass spectra is reported as the dimuon yield per event. The total number

of min-bias events, N equivalent
MB , is used for the normalization. The uncertainty in this value

results almost entirely from the variation in performance of the VPD in the two trigger

conditions. In the p+Au dataset the uncertainty is larger partly due to a broader VPD vz

distribution. An additional uncertainty results from the bias towards higher multiplicities

in dimuon triggered events compared to minimum bias triggered events. All of the e↵ects

combined contribute the 10% uncertainty on the normalization in p+Au.
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Figure 5.30 : The invariant mass distribution of the correlated pairs from hadron contam-
ination. The “signal” is extracted from the background only region rpair < 0.9. Notice, for
instance, the lack of any sign of a J/ peak and the clear K0

S ! ⇡+⇡� and � ! K+K�

peaks - suggesting that the excess µ+µ� pairs are a result of correlated background.

Several sources of uncertainty related to the like-sign ratio background estimation tech-

nique are also considered. The e↵ect of changing the mass binning and the rpair fit range

incurs a negligible impact on the final yield. Additionally, the uncertainty from the fit, com-

puted with the MINOS algorithm is also negligible. However, a variation in the template

shapes contributes to a modified correction factor R(mass; signal) and can lead to a sig-

nificant variation in the yield. Since this uncertainty a↵ects the background before being

subtracted, it contributes the largest single systematic uncertainty of all sources. This un-

certainty takes into account the possible disagreement between the data and the simulation

used to train the DNN. Since a change in the DNN template shape induces a change in the

R factor, this uncertainty also represents the maximum possible a↵ect on the yield due to an

uncertainty on the background correction factor.

The correlation weighted event mixing technique provides a statistically stable equivalent

of the foreground like-sign distribution. In order to test the final yield’s sensitivity to this

procedure, several parameters in the event-mixing were varied. The size of the bu↵er used

for track mixing was varied to test the a↵ect of the bu↵er capacity. Since the total number

of tracks is not too large, the nominal setting uses an unlimited bu↵er size. The final yield

is found to be insensitive to the change in the track bu↵er size. None of the variations to the

nominal event mixing technique incurred a large change in the yield except for the binning
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Figure 5.31 : The Systematic uncertainties for the µ+µ� invariant mass spectra in p + p
collisions at

p
s = 200 GeV.

of the opening angle used for the correlation weighting. With bins that are too fine, the

mixed-event distribution becomes susceptible to the statistical fluctuations in the original

same-event like-sign distribution. If the bins are too large some small angle features are

washed out. These e↵ects result in ⇠10% uncertainty in the yield but only for low mass pairs

which decay with small opening angles (in the lab frame).

Finally, the e↵ect of hadron contamination on the yield is considered. The shape of the

hadron contamination uncertainty is obtained from the invariant mass spectra of background

pairs (rpair < 0.9). Fig. 5.30 shows that the correlated pairs from hadron contamination

are mostly localized to Mµµ < 1.5 GeV/c2. The magnitude of the shape is normalized by

the average impurity (1 - purity). The most significant sources of systematic uncertainty

are shown in Fig. 5.31 as a function of Mµµ for the p + p dataset. The total systematic

uncertainty in each mass bin is calculated by summing the components in quadrature.

5.8.2 Uncertainty on the � ! µ+ + µ� Yield

The � yield is extracted via a maximum likelihood fit of the raw µ+µ� invariant mass dis-

tribution. The final yield is sensitive to several elements in the yield extraction procedure.
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Table 5.8 : Sources of systematic uncertainty for the � yield extraction.

Category Source
Relative

Uncertainty on Yield

E�ciency Total 17%
Tracking E�ciency 2%
MTD Matching E�ciency 2%
MTD Response E�ciency 2%
PID E�ciency 10%
Pair E�ciency 2.5%
MTD Trigger E�ciency 1%
MTD Trigger Unit E�ciency 1%

Normalization N equivalent
MB 5%

Background
Shape

pol4, pol5, pol6 20�40%

Mass Fit Range narrow, wide 5�50%
Fit Uncertainty Fit Uncertainty <2%

Table 5.8 lists the relevant uncertainties with respect to the � yield extraction procedure.

The uncertainties are broken in several di↵erent categories. The first category relates to the

e�ciency corrections. The e�ciency corrections are determined as described in Sec. 5.7. The

single particle e�ciency tables calculated from embedding may not perfectly reproduce the

e�ciency e↵ects present in the data. For this reason, a conservative 5% relative uncertainty

is assigned to all of the individual e�ciencies. The total e�ciency uncertainty in Table 5.8

represents the relative uncertainty on the yield.

There is a 5% global normalization uncertainty resulting from the uncertainty in the

determination of N equivalent
MB which gets propagated directly to the final yield. The remaining

categories relate to the maximum likelihood procedure for extracting the yield. The nominal

fit uses a Gaussian shape for the signal peak and a 4th order polynomial for the background

shape. The uncertainty is determined by also fitting with a 5th and 6th order polynomial for

the background shape. The mass fit range was varied from the nominal 0.85 < Mµµ < 1.5

GeV/c2, to a narrow range of 0.95 < Mµµ < 1.4 GeV/c2, and a wide range of 0.8 < Mµµ < 1.8

GeV/c2. Finally, the uncertainty from the fit computed asymmetrically by the MINOS

algorithm is also included.

The relative uncertainty contribution from each source is shown in Fig. 5.32 for each pT

bin. Since the � is near the ⇢ and ! peaks, there is not a large range available for constraining
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Figure 5.32 : The relative uncertainty on the � yield as a function of pT after all corrections
due to several di↵erent sources of systematic uncertainty.

the background. The sensitivity to the fit range results in the large uncertainty due to small

variations in the allowed fit range. The total systematic uncertainty is determined for each

pT bin by summing the positive contribution from each source in quadrature. The total

e�ciency is then divided by
p

3 to approximate a ±1� uncertainty, assuming a Gaussian

distribution for the uncertainty.

5.8.3 Uncertainties on the Hadronic Cocktail

Each hadron decay channel in the hadronic cocktail is scaled by its dN/dy in order to predict

the dimuon yield for each parent particle. The dN/dy values, whether measured or extrapo-

lated via the Tsallis Blast-wave fit, have an uncertainty which should be propagated to the

final dimuon yield. Table 5.9 shows the nominal dN/dy and relative uncertainty for each

particle. The branching ratios are taken from Ref. [23] and considered to be exact. The

Pythia event generator is used to determine the kinematics and invariant mass distribution

of correlated dimuons from open heavy flavor decays.
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Table 5.9 : The nominal value of dN/dy along with its relative uncertainty is shown for
each particle. [147]

Meson dN/dy Relative Uncertainty

⌘ 1.70⇥10�1 23%
! 1.33⇥10�1 21%
⌘0 4.07⇥10�2 29%
⇢0 2.22⇥10�1 15%
� 1.73⇥10�2 20%
J/ 2.44⇥10�5 20%
 (2S) 3.38⇥10�6 20%

Table 5.10 : The nominal value of � along with its relative uncertainty is shown for cc̄, bb̄,
and Drell-Yan. [147]

Channel � Relative Uncertainty

cc̄ 0.92 mb 30%
bb̄ 3.2 µb 91%
Drell-Yan 42 nb 15%

The �cc̄, �bb̄, and �DY values in Pythia are not used. Instead, the full phase space cross-

sections constrained by recent measurements are used along with their uncertainties [85,107].

The nominal values of � are shown with their relative uncertainties in Table 5.10. The

assigned uncertainty on �bb̄ is large because the central value of measurements at RHIC are

+3� away from the NLO calculation [70]. In each mass bin the uncertainties from each

contributing source are summed in quadrature to determine the total cocktail uncertainty.

Fig. 5.33 shows the hadronic cocktail with uncertainties for p+p collisions at
p

s = 200 GeV.
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Chapter 6

Results and Discussion

6.1 Results

6.1.1 First Invariant Mµµ Distribution with STAR

The main purpose of the work in this thesis was to measure the µ+µ� invariant mass spec-

tra for the first time with STAR. The challenge of significant background from hadronic

punch-through required that the muon identification techniques be optimal. In order to ac-

complish this, multivariate algorithms were explored for combining the muon identification

information from the MTD into an optimal discriminator. Of all the multivariate algo-

rithms investigated, DNNs were found to perform the best in Monte Carlo studies. Using the

� meson as a self-analyzing data sample, the DNN-based PID was shown to simultaneously

provide better e�ciency, signal-to-background ratio, and significance compared to traditional

PID techniques.

In addition to providing improved muon identification, the DNN-base PID technique also

proved to be crucial for separating signal pairs from background pairs. Unlike NA60’s data

sets, the data used in these studies did not include a high precision vertex tracker capable of

rejecting secondary muons. Instead, a new background estimation technique was developed

for in situ determination of the correlated backgrounds present in the foreground µ+µ�

distribution. With these techniques the µ+µ� invariant mass spectra was measured in p + p

and p+Au collisions at
p

sNN = 200 GeV for the first time with STAR. The fully corrected

µ+µ� invariant mass spectra are shown in Fig. 6.1 and Fig. 6.2 for the p + p and p+Au

data, respectively. The ratio of data to hadronic cocktail is shown in the lower panel of each

figure. There is good agreement across the entire invariant mass range within the substantial

uncertainties. The agreement with the cocktail demonstrates that the techniques for removing

the hadron contamination are largely successful, with the possible exception of the lowest

mass region. At masses just above threshold mass, the combination of poor e�ciency and
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significant, focused hadron contamination from K0
S ! ⇡+ + ⇡� and � ! K+ + K� makes it

di�cult to resolve any dimuon signal.

In the intermediate mass region, low pµµ
T pairs from open heavy flavor decays and Drell-

Yan are rejected by the pT > 1.1 GeV/c requirement enforced by the MTD kinematic accep-

tance. Due to the mass di↵erence between the c-quark and the b-quark, the cc̄ spectra is more

heavily a↵ected at Mµµ < 2 GeV/c2 which leaves semi-leptonic bb̄ decays as the dominant

source in this region. The bb̄ cross section is poorly constrained since recent measurements are

not in especially good agreement with the next-to-leading order (NLO) calculations. With

the statistics available in the current datasets no further constraint can be made on the bb̄

cross section. However, a higher statistics dataset with the MTD was collected in 2017 from

p + p collisions at
p

s =510 GeV that may allow such a study.
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Figure 6.1 : Top: The µ+µ� invariant mass spectra in p + p collisions at
p

s = 200 GeV.
The statistical uncertainties are shown in vertical bars and the systematic uncertainties are
shown in shaded boxes. Bottom: The ratio of data to hadronic cocktail.
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Figure 6.2 : Top: The µ+µ� invariant mass spectra in p+Au collisions at
p

sNN = 200
GeV. The statistical uncertainties are shown in vertical bars and the systematic uncertainties
are shown in shaded boxes. Bottom: The ratio of data to cocktail.
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6.1.2 First Measurement of the � Spectra via Dimuons with STAR

Another primary result of this work is the first measurement of the � meson spectra through

the � ! µ+ + µ� decay channel with STAR. The measured branching ratio times invariant

yield measured in p + p collisions at
p

s = 200 GeV is shown in Fig. 6.3. The lower panel

of Fig. 6.3 shows the ratio of the measured yield to the the Tsallis Blast-wave shape scaled

by the dN/dy from Ref. [147]. Good agreement is observed within the sizable statistical and

systematic uncertainties. The mass of the � measured in each momentum bin is also shown

in Fig. 6.4. No attempt is made to correct for energy loss a↵ects which will result in a

decrease of the measured mass.
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Figure 6.3 : Top: The branching ratio times the invariant yield of the � meson measured
through the � ! µ++µ� decay channel. Bottom: The ratio of data to the Tsallis Blast-Wave
scaled by the nominal dN/dy value. The uncertainty on dN/dy is shown in gray.
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(a) (b) (c)

Figure 6.5 : The J/ signal measured through the µ+µ� channel in p + p, p+Au, and
Au+Au collisions at

p
sNN = 200 GeV [164].

6.2 Summary and Discussion

The installation of the Muon Telescope Detector has opened new opportunities to study

dimuon production at STAR. The purpose of the MTD was to allow for the identification

and measurement of muons at STAR. Muon identification is specifically useful for quarkonia

measurements and measurements of the dimuon invariant mass spectra. Since the installation

of the MTD was completed p + p, p+Au, and Au+Au data sets have been collected at
p

sNN = 200 GeV. These data sets have allowed STAR to augment its dielectron program

with additional studies of dilepton production through the µ+µ� channel. Figure 6.5 shows

the inclusive J/ signals measured in each collision system using the MTD. A comparison

of the inclusive J/ cross section in p + p collisions at
p

s = 200 GeV measured through the

dielectron and dimuons channels is shown in Fig. 6.6. Good agreement is found between the

new dimuon measurements and the previous dielectron measurements [164].

In the context of high energy heavy-ion physics, low multiplicity p + p collisions can be

considered a baseline void of any cold or hot nuclear matter e↵ects. Cold nuclear matter

e↵ects due, for instance, to the modification of parton distributions within the nucleus can

be investigated by comparing p+Au yields to p + p yields. In the absence of nuclear matter

e↵ects the p+Au and Au+Au yields are expected to be the result of an incoherent collection

of p + p collisions. Nuclear matter e↵ects can be quantified through the nuclear modification
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factor which is in the ratio RpAu (RAA for Au+Au), where RpAu is defined as:

RpAu =
�inel

hNcolli
dN

pAu/dydpT

d2�pp/dydpT
(6.1)

where �inel is the cross-section for inelastic collisions, hNcolli is the mean number of binary

collisions in p+Au collisions, dN
pAu/dydpT is the yield in p+Au collisions, and d2�pp/dydpT

is the cross section measured in p + p collisions. RAA results when the yield from Au+Au

collisions is used instead. Figure 6.7 shows the RpAu for J/ as a function of pJ/ 
T measured

through the dimuon channel. It is shown with RdAu measurements from PHENIX along with

several di↵erent model calculations [165–167, 169]. The RpAu result is consistent with the

RdAu at the 1.4� level, suggesting that cold nuclear matter e↵ects are similar between the

two systems.

Hot nuclear matter e↵ects, due to the creation of a hot and dense medium can be quan-

tified with the RAA of J/ . Figure 6.8 shows the RAA as a function of pJ/ 
T for 40�80 %

central Au+Au collisions. Figure 6.9 shows the centrality dependence of the J/ RAA for

measurements at STAR and LHC energies. The strong suppression observed at high pT in

Fig. 6.8 is evidence of significant J/ disassociation. The J/ RAA as a function of pT is

compared with the TAMU and Tsinghua transport models. [67,170–172]. While both models
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describe the data reasonably well, the TAMU model is slightly favored by data. Figure 6.9

shows that the models describe the centrality dependence of the J/ RAA reasonably well at

RHIC energies but slightly over estimate the suppression at LHC energies.

The inclusive J/ yield and RAA measured in Au+Au collisions in being prepared for

publication as the first physics results from the MTD. Another paper dedicated to the mea-

surement of the µ+µ� invariant mass spectra is in preparation as well. While the MTD has

successfully provided muon identification needed for quarkonia measurements in Au+Au col-

lisions, measurement of the µ+µ� and e�µ spectra has not been possible due to prohibitively

low muon purity.

One of the goals of this project was to measure the dimuon invariant mass spectra in

Au+Au collisions at
p

sNN = 200 GeV. However, the purity was found to be prohibitively

low in the Au+Au datasets. The techniques used for measuring the purity in p+p and p+Au

collisions was employed for the Au+Au dataset. Despite re-using the DNN model trained for

p + p data, the DNN described the Au+Au data surprisingly well for tracks with pT > 1.5

GeV/c. Plots summarizing the purity in 40 � 80% central and 20 � 40% central Au+Au

collisions are shown in Fig. 6.10 and Fig. 6.11 respectively. The purity fits for tracks with

pT > 1.5 GeV/c are shown in Fig. B.3 � B.11 for p + p, 40 � 80% Au+Au, and 20 � 40%

Au+Au collisions. The �2/ndf in Au+Au data is worse, largely because the statistics in the

data are significantly better than the DNN templates. The uncertainty in the DNN templates
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(due to poor statistics) was not included when calculating the �2/ndf .
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Figure 6.10 : The single muon purity in 40 � 80% central Au+Au collisions for various
selection criteria.

While the purity values in 40� 80% central Au+Au collisions are not substantially worse

than in p + p, the low purity is coupled with a smaller number of events which makes the

analysis in peripheral Au+Au collisions impractical. The average purity in the 40 � 80%

central Au+Au sample is ⇠ 60% at an DNN cut giving an average signal e�ciency of ⇠

10%. The purity levels in 20 � 40% central Au+Au collisions look surprisingly high at first

glance. However, it should be noted that these purity numbers include secondary muons

from pion and kaon decays (since they are inseparable). The purity values for inclusive muon

candidates (without any DNN cut) are approximately consistent with the values expected

for only secondary muon sources - i.e. consistent with zero signal muons. The values listed

in Table 5.2 for the fractions of pions and kaons that will decay, on average, within the

MTD, are used to come to this conclusion. Since the J/ has been extracted from the

Au+Au data set, there must still be a small number of signal muons present. Though even
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for the J/ the integrated (over pT and centrality) signal to background ratio is ⇠ 1/27 -

less than the significance of the J/ from the dielectron channel, which was ⇠ 1/2. Guided

by the production predicted by the hadronic cocktail, this would suggest that the signal

to background ratio in the low and intermediate mass range is ⇠ 1/300 � 1/3, 000. This

means that the background would need to be measured at better than 1/30, 000 to achieve

a 10% uncertainty. Unfortunately, the like-sign ratio method is not capable of reaching that

precision simply due to the e↵ect of statistical fluctuations on the fitting. For this reason,

analysis of the low and intermediate dimuon invariant mass spectra in Au+Au is not possible.
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Chapter 7

Future e+e� Measurements with STAR

The original motivation for this work was to measure the thermally produced dimuons in

semi-central and central Au+Au collisions. Towards this end, the measurements in p + p

collisions were used to develop the necessary techniques and methods. Since the hadronic

cocktail represents all significant sources of dimuon production in p + p collisions, it also

provided an ideal dataset to demonstrate the precision of the developed techniques. Since

low muon purity prevented any measurement of the thermally produced dimuons in Au+Au

collisions, the final chapter of this thesis briefly discusses the viability of such a measurement

in the recently collected STAR datasets and proposed near future datasets. In 2017 and

2018, STAR collected three datasets that are ideal for measuring the dilepton continuum

through the e+e� channel in high energy heavy ion collisions. Additionally, the second phase

of the RHIC Beam Energy Scan will commence in 2019 which will provide several additional

datasets from Au+Au collisions at
p

sNN ranging from 7.7 to 19.6 GeV. The measurements

in the recent high energy dataset (
p

sNN = 200 GeV) will be discussed first followed by a

discussion of the proposed measurements in the lower energy datasets.

During 2018 data was collected from 96
44Ru+96

44Ru and 96
40Zr+96

40Zr collisions at
p

sNN = 200

GeV. Ruthenium and Zirconium were chosen because they are isobars, i.e. they have the

same mass number A, but di↵erent number of protons Z. The primary motivation for this

choice was to study e↵ects that are sensitive to Z, such as magnetic field induced e↵ects

and the production of very low momenta dilepton pairs [174, 175]. While neither of these

motivations directly relate to the measurement of thermally produced dileptons, the isobar

data still provides an ideal dataset for such measurements.

Over 6 billion minimum-bias events were collected from isobar collisions during the 2017

data collection period. Figure 7.1 shows the cumulative number of triggered events collected

versus day. Approximately 3.2 billion events were collected for each of 96
44Ru+96

44Ru and

96
40Zr+96

40Zr collisions. The purpose of choosing isobars, and not just any two nuclei with
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Figure 7.1 : The cumulative number of events collected versus time through the run.

di↵erent Z, was to remove any variation between the two systems resulting from system

size, number of binary collisions, nuclei shape, etc. Measurements of charged particle yields,

specifically the ⇡± yields, will be necessary to verify that the gross particle production is

similar in the two isobar systems. If the gross particle production is in fact consistent

between the two systems, then they can be combined for a measurement of the dielectron

invariant mass spectra. Of the 6 billion triggered events a large fraction are expected to

pass the quality cuts used for event selection. Even if the two dataset are not combined, the

individual datasets including ⇠3 billion events each will still be significantly larger datasets

than ever previously collected at STAR for dielectron analyses. The only comparable sized

data sets available with STAR are the combined 2014 and 2016 sample of Au+Au collisions

at
p

sNN = 200 GeV. However, since the HFT detector was installed from 2014�2016, the

added material budget increases the probability for the formation of conversion electrons.

However, the HFT and its support material were removed before the 2017 runs, returning

STAR to an ideal state for dielectron analyses.

The expected contributions to e+e� production from hadronic decays and open heavy

flavor decays for isobaric collisions at
p

sNN = 200 GeV can be seen in Fig. 7.2. At
p

sNN = 200 GeV, semi-leptonic cc̄ decays account for the vast majority of e+e� pairs pro-

duced with intermediate masses (between the � and J/ ). Precisely accounting for the

dilepton pairs resulting from open heavy flavor decays is the most challenging aspect in iso-
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lating the thermally produced dileptons at RHIC energies. As discussed in Chapter 2, the

invariant mass spectra of dileptons from cc̄ decays may be modified by the presence of a dense

medium. Specifically, multiple scattering in a dense medium could weaken the correlation

between the charmed mesons which later decay into e+e� pairs. A modification in the angu-

lar correlation between the parent mesons directly results in a modification of the invariant

mass density of produced e+e� pairs. As and example of this, Fig. 7.3 shows a comparison

of the e+e� dN/dM distribution from cc̄ as simulated in Pythia and for fully decorrelated

(random correlations) e+e� pairs. The cc̄ invariant mass distribution from random correla-

tions is much softer (i.e. falls more steeply) and was less favored by the PHENIX data than

the default result from Pythia.

Another di�culty arises since STAR does not have a precision secondary vertex tracker.

The NA60 experiment was able to isolate a prompt thermal radiation component after re-

jecting cc̄ and Drell-Yan as possible production mechanisms. It was only through fits of

the vertex o↵set that they were able to demonstrate that the observed excess was due to a

prompt source and therefore incompatible with an enhanced cc̄ yield. They further note that

the prompt excess is not compatible with Drell-Yan because the pT spectra is too soft. In

fact, the pT spectra was compatible with the pT spectra for cc̄ within uncertainties. For this

reason, the pT spectra likely cannot provide distinguishing power between a thermal excess

compared to cc̄ and Drell-Yan. For the STAR isobar dataset this means that even with a

high statistics dataset, isolating and measuring the thermal dielectrons spectra may not be

feasible due to the lack of a precision secondary vertex tracker.

In 2017, STAR collected about 1.5 billion minimum bias events from Au+Au collisions

at
p

sNN = 54 GeV. In 2018, STAR collected about 1.3 billion minimum bias events from

Au+Au collisions at
p

sNN = 27 GeV. Starting in 2019, several more datasets from Au+Au

collisions at
p

sNN = 19.6 GeV and below will be taken as part of the RHIC Beam Energy

Scan Phase II. These datasets are invaluable for conducting a systematic study of thermal

dilepton production and ⇢ meson in-medium broadening as a function of
p

sNN , system size,

system life time, and µB. Figure 7.5a shows the cc̄ cross section at these lower collision

energies. Measuring dileptons resulting from thermal production becomes significantly more

viable at lower energies since the cc̄ cross section falls rapidly with decreasing
p

sNN . How-

ever, the di�culty of distinguishing the thermal dileptons from the cc̄ decay pairs without a
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Figure 7.4 : The NA60 experiment combined a vertex o↵set fit (a) with an analysis of the
pair pT to determine that the excess yield was not from Drell-Yan or cc̄ but instead from a
prompt thermal source.

precision secondary vertex tracker will still remain.

The datasets included in the Beam Energy Scan phase II will also allow further investiga-

tion of the underlying mechanisms responsible for the observed in-medium broadening of the

⇢ meson. In BES I poor statistics prevent the e+e� mass spectra from being measured below
p

sNN = 19.6 GeV. For each of the energies measured in the range from
p

sNN = 19.6 GeV

to 62.4 GeV, the system’s total baryon density and freeze out temperature remained roughly

constant [176]. Therefore, the observed excess dielectron yield over the hadronic cocktail

contributions resulting from thermal production and ⇢ meson decays, primarily probed the

changing lifetime of the system. However, at energies below
p

sNN = 19.6 GeV, the total

baryon density begins to increase and the temperature of the system begins to decrease with

decreasing
p

sNN . Therefore, measurements of of the excess dielectron yield will provide

stronger distinguishing power between models that respond di↵erently to these e↵ects. Fig-

ure 7.5b shows the excess yield measure in Au+Au collisions at
p

sNN = 19.6 GeV along

with two model calculations [177]. It also shows predicted improvements in the size of the

uncertainties with the additional statistics and upgraded detectors that will be available for

BES II. The reduction in uncertainties may provide the distinguishing power needed to dis-

tinguish between the two models shown in Fig. 7.5b. Distinguishing between these models
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8.2 ± 0.5 µb at 19.6 GeV. Then the charm cross section is extrapolated to
that of Au+Au 0-80% at 19.6 GeV by scaling the number of binary.
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Figure 37: FONLL upper limit fit to all previous measurement of charm
cross section.

Since we have all the mother particles’ yields. Each component is scaled
by the yield to consist the expected di-electron production in Au+Au at
19.6 GeV. To estimate the reconstructed e�ciency of di-electron, the input
mother particles are set to decay in the STAR detectors and the daughter
electrons are sampled by the single electron e�ciency. The pair e�ciency
is determined by the ratio between the di-electron spectra before and after
e�ciency sampling in pT and mass bins.

Fig. 38 left panel shows the di-electron mass spectra with and without
e�ciency sampling, and right panel shows the di-electron reconstruction ef-
ficiency as a function of mass and pT .

(a) (b)

Figure 7.5 : The cc̄ cross section versus collision energy (
p

s) measured by several experi-
ments and compared with the next-to-leading order (NLO) calculations (a). The measured
excess e+e� spectra near the ⇢ meson mass in Au+Au collisions at

p
sNN = 19.6 GeV from

BES 1 compared with various theoretical curves (b). In addition, the expected reduction in
uncertainty for BES II is shown for two scenarios, 1) for improved statistics with the current
TPC hardware, and 2) for improved statistics with the inner TPC upgrade.

may help to determine whether the broadening of the ⇢ spectral function is a result of chiral

symmetry restoration or another mechanism. Between the isobar dataset at
p

sNN = 200

GeV and the various new and upcoming datasets in Au+Au collisions at
p

sNN = 54 GeV

and below, STAR has a multitude of exciting opportunities to study fundamental aspects of

QCD and the QGP through dilepton production.
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Appendix A

Training Neural Networks

Artificial neural networks (ANN) have made a resurgence in recent years and become one

of the most used models for statistical learning applications. In this section I briefly review

the concept of ANNs and the back propagation training technique. First, consider the basic

building block of the ANNs used in this thesis: the perceptron. The simplest perceptron,

shown in Fig. A.1, receives N inputs and outputs a single value, either 0 or 1. The sigmoid

perceptron is more flexible, capable of outputting a continuous value between 0�1. See Fig.

A.2 for an example of the sigmoid perceptron.
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Figure A.1 : A simple perceptron with a binary output value.

The perceptron is a simple building block from which complex networks can be built. In

principle, the more perceptrons in an ANN, the more power it has to learn new behaviors.

Figure A.3 shows an example network with 3 input variables and two hidden layers between

the inputs and the output layer.

During the training phase labeled tuples of data are used to minimize a loss with respect
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Figure A.2 : A sigmoid perceptron is capable of outputting a continuous variable.

to the ANN’s output value. Labeled data simply means that the tuple includes a one-to-

one map between input variables and the true output value. These tuples have the form

(x1, x2, . . . , xN�1, xN , a) where a is the correct output given the inputs x1, x2, . . . , xN�1, xN .

Training the neural network consists of minimizing the loss function given a set of labeled

tuples. For this work we used the quadratic loss function:

C(w, b) =
1

2n

X

samples

||y(x1, x2, . . . , xN�1, xN) � a||2 (A.1)

where w and b are the weights and bias of a given node and y(x) is the output of the

network. If the network output is correct for all inputs then the loss would be 0. Evaluating

the loss function for a given set of nodes with weights and biases on a sample is trivial,

but determining the optimal weights and biases is not. However, with the advent of back

propagation this problem was definitely solved.

Before describing the back propagation technique it is helpful to define a few terms.

The notation used here is based on that used in Ref. [178], a very helpful resource for a

thorough discussion of back propagation and its derivation. For an ANN with multiple

inputs and multiple layers, the number of weights grows very quickly (combinatorially for

dense networks). It is convenient to define wl
jk as the weight between the jth neuron in layer
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Figure A.3 : A simple ANN built from multiple perceptrons. Each perceptron has only
one output. Multiple exiting lines signify that the output is given as input to many di↵erent
neurons in the next layer.

l � 1 to the kth neuron in layer l. Each node has a corresponding bias bl
j, for the jth node in

the lth layer. In practice though, it is common to limit the number of nodes with a bias to

only one per layer, since one bias neuron is su�cient to achieve any result. Finally, al
j is the

activation of neuron j by layer l where:

al
j = �

 
X

k

wl
jka

l�1
k + bl

j

!
(A.2)

or more compactly with implicit sums:

al = �(wlal�1 + bl) (A.3)

From this relation, it is clear that the activation of each neuron in layer l depends on

all neurons in the previous layer. In order to make the following less verbose we let zl =

wlal�1 + bl. The goal when training the neural network is to compute the partial derivatives

of the cost function with respect to the weights and biases, so that we can determine how

to update them based on each sample. Back propagation provides a technique for relating

�l
j = �C/�zl

j to the quantities that are needed, i.e. �C/�wl
jk and �C/�bl

j. Back propagation

is then defined by four primary equations. The first equation relates the error in the output

layer to its inputs:

�L
j =

�C

�aL
j

��(zL
j )

�zL
j

(A.4)
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This relation is fairly straight forward and easily computed. It simply relates the error

in the last layer (output layer L) to the activation of the previous layer and its change with

respect to its inputs.

The second equation relates the error in layer l to the error in layer l + 1 as follows:

�l = (wl+1)T �l+1 � ��(zl)

�zl
(A.5)

This equation relates the errors in nearby layers by applying the transpose of the weights

in the l + 1 layer. This is essentially propagating the error backwards through the network,

hence the need for the transpose of the weights. The third equation relates the change in the

cost function to the bias values:
�C

�bl
j

= �l
j (A.6)

That is simply that the rate of change of the cost function due to a change in bias values is

simply related to the nodes inputs zl
j.

Finally, the fourth back propagation equation relates the change in the cost function to

the weights :
�C

�wl
jk

= al�1
k �l

j (A.7)

This equation defines how to compute the partial derivatives of the cost function with

respect to the weights. This partial derivative is a product of the activation function and

the cost functions rate of change with respect to the activation function inputs. The four

equation define the whole of back propagation. In the end, these are simply the application

of the chain rule in an organized way. A pseudo code implementation is given in Listing 6.
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# evaluate neural network for input data x

a = model.evaluate( x )

# compute the z(l) = w(l) * a(l-1) + b(l)

for l in layers:

for k in layer_sizes[l-1]:

for j in layer_sizes[l]:

z[l] = w[l][j][k] * a[l] + b[l]

a[l] = sigmoid( z[l] )

# compute the errors of the output layer

delta[:-1] = cost_function_derivative_az( a[:-1], z[:-1] )

# propagate the errors back through the network

for l in range( n_layers - 2, 1 ) :

for k in layer_sizes[l-1]:

for j in layer_sizes[l]:

delta[l] = transpose( w[l+1][k][j] )

delta[l+1][k][j] sigmoid_derivative( z[l] )

# update the weights

for l in layers :

w[l] = w[l] - cost_function_derivative_a( transpose(a[l-1]) )

b[l] = b[l] - cost_function_derivative_z( delta[l] )

Listing 6: A python-like pseudo code implementation of the back propagation algorithm.
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Appendix B

Muon Purity in Au+Au Collisions at
p

sNN = 200 GeV

One of the goals of this project was to measure the dimuon invariant mass spectra in Au+Au

collisions at
p

sNN = 200 GeV. However, the purity was found to be prohibitively low in the

Au+Au datasets. The techniques used for measuring the purity in p+ p and p+Au collisions

was employed for the Au+Au dataset. Despite re-using the DNN model trained for p + p

data, the DNN described the Au+Au data surprisingly well for tracks with pT > 1.5 GeV/c.

Plots summarizing the purity in 40 � 80% central and 20 � 40% central Au+Au collisions

are shown in Fig. 6.10 and Fig. 6.11 respectively. The purity fits for tracks with pT > 1.5

GeV/c are shown in Fig. B.3 � B.11 for p + p, 40 � 80% Au+Au, and 20 � 40% Au+Au

collisions. The �2/ndf in Au+Au data is worse, largely because the statistics in the data are

significantly better than the DNN templates. The uncertainty in the DNN templates (due

to poor statistics) was not included when calculating the �2/ndf .

While the purity values in 40� 80% central Au+Au collisions are not substantially worse

than in p+p, the low purity is coupled with a smaller number of events, makes the analysis in

peripheral Au+Au collisions impractical. The average purity in the 40�80% central Au+Au

sample is ⇠ 60% at an DNN cut giving an average signal e�ciency of ⇠ 10%. The purity

levels in 20 � 40% central Au+Au collisions look surprisingly high at first glance. However,

it should be noted that these purity numbers include secondary muons from pion and kaon

decays (since they are inseparable). The purity values for inclusive muon candidates (without

any DNN cut) are approximately consistent with the values expected for only secondary muon

sources - i.e. consistent with zero signal muons. The values listed in Table 5.2 for the fractions

of pions and kaons that will decay, on average, within the MTD, are used to come to this

conclusion. Since the J/ has been extracted from the Au+Au data set, there must still

be a small number of signal muons present. Though even for the J/ the integrated (over

pT and centrality) signal to background ratio is ⇠ 1/27 - less than the significance of the

J/ from the dielectron channel, which was ⇠ 1/2. Guided by the production predicted by
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Figure B.1 : The J/ yield in 0 � 80% Au+Au collisions measured through the dimuon
channel. The S/B ratio is ⇠ 1/27.

the hadronic cocktail, this would suggest that the signal to background ratio in the low and

intermediate mass range is ⇠ 1/300 � 1/3, 000. This means that the background would need

to be measured at better than 1/30, 000 to achieve a 10% uncertainty. Unfortunately, the

like-sign ratio method is not capable of reaching that precision simply due to the a↵ect of

statistical fluctuations on the fitting. For this reason, analysis of the low and intermediate

dimuon invariant mass spectra in Au+Au is not possible.
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Figure B.2 : The e+e� invariant mass spectra in 0� 80 Au+Au collisions. The lower panel
shows the S/B ratio. In the J/ region the S/B reaches ⇠ 1/2 � 1 [88].



175

mlp 
0 0.2 0.4 0.6 0.8 1

-1
dN

/d
m

lp
 

4−10

3−10

2−10

1−10

1
 < 1.55 (GeV/c)

T
1.50 < p

 / ndf = 244.46 / 106 = 2.312χ
 0.006± = 0.334 µYield 
 0.017± = 0.532 πYield 
 0.014±Yield K = 0.086 
 0.004±Yield P = 0.037 

=200 GeVsRun15 p+p @ 

µ π K p

(a)

mlp 
0 0.2 0.4 0.6 0.8 1

-1
dN

/d
m

lp
 

4−10

3−10

2−10

1−10

1
 < 1.55 (GeV/c)

T
1.50 < p

 / ndf = 737.60 / 106 = 6.962χ
 0.003± = 0.242 µYield 
 0.009± = 0.743 πYield 
 0.007±Yield K = 0.002 
 0.002±Yield P = 0.003 

=200 GeVsRun15 p+p @ 

µ π K p

(b)

mlp 
0 0.2 0.4 0.6 0.8 1

-1
dN

/d
m

lp
 

4−10

3−10

2−10

1−10

1
 < 1.55 (GeV/c)

T
1.50 < p

 / ndf = 26531.70 / 106 = 250.302χ
 0.000± = 0.093 µYield 
 0.002± = 0.546 πYield 
 0.001±Yield K = 0.213 
 0.001±Yield P = 0.132 

=200 GeVsRun15 p+p @ 

µ π K p

(c)

 mlp
0 0.2 0.4 0.6 0.8 1

 fi
t /

 d
at

a

0

0.2
0.4
0.6
0.8

1
1.2
1.4

1.6

1.8
2

 / ndf 2χ  110.1 / 109
p0        0.0092± 0.9746 

(d)

 mlp
0 0.2 0.4 0.6 0.8 1

 fi
t /

 d
at

a

0

0.2
0.4
0.6
0.8

1
1.2
1.4

1.6

1.8
2

 / ndf 2χ  488.3 / 109
p0        0.0044± 0.9794 

(e)

 mlp
0 0.2 0.4 0.6 0.8 1

 fi
t /

 d
at

a

0

0.2
0.4
0.6
0.8

1
1.2
1.4

1.6

1.8
2

 / ndf 2χ  2.929e+04 / 109
p0        0.0009± 0.9546 

(f)

Figure B.3 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.4 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.5 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.6 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.7 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.8 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.9 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.10 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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Figure B.11 : The purity fits are shown for p + p, 40 � 80% central Au+Au, and 20 � 40%
central Au+Au in (a), (b), and (c) respectively. The ratio of data over template fit is shown in
(d), (e), and (f) for p+p, 40�80% central Au+Au, and 20�40% central Au+Au respectively.
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