


 
 

ABSTRACT 

Imaging Plasmons with Compressive Hyperspectral Microscopy 

by 

Liyang Lu 

With the ability of revealing the interactions between objects and 

electromagnetic waves, hyperspectral imaging in optical microscopy is of great 

importance in the study of various micro/nano-scale physical and chemical 

phenomena. The conventional methods, however, require various scanning 

processes to acquire a complete set of hyperspectral data because of its 3-

dimensional structure. As such the quality and efficiency of the data acquisition 

using these conventional scanning techniques is greatly limited by the detector 

sensitivity and low signal light intensity from the sample. To overcome such 

limitations, we applied compressive sensing theory to the hyperspectral imaging. 

The compressive imaging enhances the measurement signal-to-noise ratio by 

encoding and combining the spatial information of the sample to the detector, and a 

recovery algorithm is used to decode the detector outputs and reconstruct the 

image. A microscopy system based on this compressive hyperspectral imaging 

scheme was designed and implemented. Further analysis and discussion on the 

diffraction and interference phenomenon and a solution to the spectral distortion in 

this compressive sensing microscopy system are also presented. Experimental 

results of compressive dark-field scattering from gold nanobelts are presented, 



 
 

followed with an analysis on signal-to-noise ratio and a comparison with 

conventional scanning methods in measuring the plasmon resonances. 
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Chapter 1 

Introduction 

1.1. Hyperspectral Microscopy 

Hyperspectral imaging in optical microscopy is of great importance in the 

study of various micro/nano-scale physical and chemical phenomena. By 

investigating the response of a specimen to electromagnetic waves as a function of 

both spatial position and wavelength, hyperspectral microscopy enables people to 

achieve abundant information from the 3D spatial-spectral structure of the 

specimen. It has been proved to be a powerful and effective technique in analyzing 

plasmonic scattering spectra of metal nanostructures [1-3], the emission spectra of 

fluorescent molecules in biomedical samples [4, 5], and in other applications[6, 7]. 

However, the practical use of hyperspectral imaging is yet limited in several 

aspects. As a digital imaging technique, conventional hyperspectral microscopy is 

also in the regime of the Shannon-Nyquist sampling theorem. The bandwidth of the 
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information that can be captured by the sensor, be stored, and be represented by 

digital data is determined by the number of sampling points. Because of the fact that 

hyperspectral data has 3-dimensions, 2 spatial dimensions and one additional 

dimension in spectral domain, in order to achieve a detailed spatial-spectral 

structure of the object, both the spatial resolution and the spectral resolution are 

required to be sufficiently high. This additional spectral dimension increases the 

amount of sampling points that need to be independently measured by several 

orders of magnitudes.  

In addition, there is no off-the-shelf “hyperspectral sensor” to directly 

capture the 3D hyperspectral data. In conventional methods, a one-dimensional or 

two-dimensional detector array needs to scan either in the spatial dimensions [8, 9], 

or in the spectral dimension [10] to get the 3D data, as shown in Figure 1.1. This 

makes the whole data acquisition process time consuming and pushes the limit in 

terms of detector sensitivity. 

 

Figure 1.1 Cartoons of a hyperspectral data cube (left) and three conventional 

data acquisition methods (right) [11] 



 3 

With the conventional scanning methods, each element of the detector array 

can only receive the signal photons from one pixel of the image and within one 

spectral band. The signal to noise ratio reduces significantly with an increase of the 

image resolution, so a much longer integration time or a high sensitivity detector 

array, such as EMCCD [12, 13] and sCMOS [13], is required to compensate for the 

reduction of signal photons. 

Recently, multiple novel hyperspectral and multispectral imaging schemes 

have been proposed to achieve greatly improved data acquisition efficiency, 

including filter stack spectral decomposition (FSSD) [14], coded aperture snapshot 

spectral imaging (CASSI) [15], image mapping spectroscopy (IMS) [16], and Image 

Slicing Spectrometer (ISS) [17]. Yet these methods introduced additional 

restrictions on wavelength range, spectral variety, spatial resolution, and spectral 

resolution [11]. The filter stack used in FSSD can only provide a limited number 

(less than 10) of spectral bands due to filter losses. In CASSI, the recovery of the 

hyperspectral data from spatially coded and spectrally dispersed images trades off 

among spatial resolution, spectral resolution, and accuracy of the estimation. 

IMS/ISS requires the use of a custom image mapping array and a precision lens 

array, as well as a detector array with a large amount of pixels to capture the whole 

spatial-spectral data at the same time. In addition, when imaging beyond the visible 

spectrum, these methods will be expensive as they all require 2-D arrays of 

detectors other than silicon. 
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1.2. Surface Plasmon Resonance Scattering Spectrum 

Surface plasmon resonance (SPR) is a phenomenon that strong collective 

oscillations of the electrons occur when nanoparticles are stimulated by incident 

light at or near the nature frequency of the surface electron oscillation. Gold and 

silver nanostructures with subwavelength dimensions have been widely studied for 

their ability to form localized SPR when exited by light at visible and infrared 

frequencies. Because of their tunability, sharp resonance, strong field localization 

and enhancement, these noble metal plasmonic nanoparticles have found novel 

applications in a wide variety of fields such as medical science, solar energy harvest, 

nanophotonics, and etc. [18-20]. After new metal nanostructures are synthesized or 

fabricated, an essential step is to characterize their true plasmonic resonance 

frequencies. As the SPR wavelength is closely related to the shape and dimensions of 

a nanoparticle, it is also necessary to study the structure-spectrum correspondence 

by investigating the plasmon resonance of each individual nanoparticle.  

When the nanoparticles are exited with a wide band illumination, the light 

around the plasmon resonance wavelength is absorbed to excite the collective 

electron oscillations on the nanoparticles. These strong electron charge oscillations 

or plasmon resonances not only lead to a near-field enhancement, but also interact 

with the incident EM wave and cause an enhanced far-field scattering, of which the 

spectra are directly related to the SPR frequencies. A scattering microscope can 

avoid the transmitted and reflected light from the nanoparticles and only collect the 

scattered light caused by the plasmon resonances, enabling us to characterize the 
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SPR properties of the nanoparticles. The scattering hyperspectral microscopy is an 

especially useful technique for the characterization of individual plasmonic 

nanoparticles as it is able to acquire a comprehensive set of 3D spatial-spectral data 

of the sample within the field of view. 

1.3. Scope 

In this thesis, we present a new hyperspectral microscopy system based on 

the theory of compressive sensing that tackles the efficiency problem of 

hyperspectral imaging and enhances the signal-to-noise ratio by randomly encoding 

the image and multiplexing the spectral detection. 

In Chapter 2, we will review the theory of compressive sensing, and will 

introduce the single-pixel camera, a unique hardware implementation of 

compressive imaging system with a single-element detector. 

In Chapter 3, the proposed compressive hyperspectral microscopy system 

will be described in detail. The DMD diffraction, which largely affects the measured 

spectra, and our solution to the problem will be discussed. 

In Chapter 4, the experimental results with surface plasmon nanostructures 

will be presented. The noises in the system will be analyzed. We will also compare 

our results with raster-scanning methods at various resolutions to show the 

advantage of the compressive imaging scheme. 
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Chapter 2 

Compressive Imaging Theory 

Compressive sensing (CS), also known as compressive sampling or 

compressed sensing, is a potential method to tackle the limit of the Nyquist 

sampling frequency. Compared to the conventional sampling methods, it provides 

greatly improved efficiency in the acquisition of high-dimensional data. The work of 

Emmanuel Candes, Justin Romberg, Terence Tao, and independently David Donoho 

has proved that if high-dimensional signals have sparse or compressible 

representations, they could be reconstructed from a set of measurements fewer 

than being required by the Shannon-Nyquist theorem [21-24]. 

2.1. Sampling and Imaging 

In order to convert the real world signal into a digital form for efficient 

storage, transmission, and analysis without losing important information conveyed, 
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a correct sampling of the signal is the first and one of the most crucial steps in the 

signal processing.  

Applying conventional sampling method on a signal (t)s  can be simply 

represented as: 

 (kT)ks s ,  

where k is an integer, and T is a constant sampling interval. Only the values at the 

moments kT of the original signal are recorded while the rest are lost. According to 

the Shannon-Nyquist sampling theorem, for a band-limited signal, the sampling rate 

1/T needs to be at least twice of the signal bandwidth in order to avoid any loss of 

the information in the original continuous signal after the sampling. 

The amount of data generated by sampling complicated and/or high-

dimensional signals, e.g. images and videos, can be extraordinarily large. The 

resources, e.g. sensors and time, needed for the acquisition of the data also increase 

quickly with its size. The conventional Nyquist sampling method cannot address the 

dilemma caused by the limited resources we have and the highly detailed physical 

world we want to capture. 
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2.2. Compressive Sensing 

2.2.1. CS Measurement 

Sparsity in and compressibility of various signals has been exploited in 

different ways during the long history of the development of digital signal 

processing. By using proper designs of sparse representation dictionaries of the 

signals, such as Fourier transform, discrete cosine transform (DCT), and wavelet 

transform, the efficient storage and transmission of large images, sound tracks, and 

videos were made possible. In conventional sampling schemes, original data are 

completely measured and then compressed into formats such as JPEG, MP3 and 

MPEG. 

Compressive sensing, however, performs the signal compression within the 

procedure of measurement. Using CS, a compressible original signal can be 

approximated very accurately with far fewer measurements than what are indicated 

by its bandwidth [23, 25]. For a length-N k-sparse signal, instead of directly 

measuring the values of all N samples, compressive sensing takes M (k<M≤N) 

measurements through a special process that can be mathematically modeled by 

 y =Φx   1.1 

where Φ  is an M×N measurement matrix, x  is the length-N unknown signal vector 

being measured, and y  is a length-M vector containing M measured values. If the 

original signal vector is not sparse under the standard basis but can be sparsely 
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represented under some other transform basis, the measurement process can be 

expressed by 

 y =Φx =ΦΨs .  1.2 

where Ψ  is an N×N transform matrix, and s  is a length-N sparse vector. Figure 2.1 

illustrates this measurement process. 

 

Figure 2.1 CS measurement of a sparse signal under the representation basis 

 , cited from [22] 

An important topic in CS theory is to design a proper incomplete (M<N) 

measurement matrix Φ  so that most information in the k-sparse signal can be 

preserved and reconstructed. The restricted isometry property (RIP) and the 

condition of incoherence between rows of measurement matrix Φ  and sparse 

representation basis Ψ  are proposed as sufficient conditions for a stable solution 

for k-sparse signals [23, 25, 26]. Although a direct construction of a measurement 

matrix to satisfy RIP and incoherence is NP-hard, recent research has shown that 

both conditions can be achieved with high probability by a random matrix [27, 28], 

which also shows properties of democracy [29] and universality[30]. 
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2.2.2. CS Reconstruction 

Reconstruction of the length-N signal from M measurements is an ill-posed 

inverse problem as M<N. Among all the infinitely many solutions for it, finding the 

one that satisfy the prior structural information such as sparsity, denoted by 

equation 1.3, is numerically unstable and NP-complete [22]. 

 
0

ˆ arg min , s.t. s s ΦΨs = y   1.3 

An 1l -norm optimization alternative, as shown in equation 1.4, provides a 

surprisingly good approximation to the sparse solutions, and can be reduced to a 

linear program with computational complexity of about 3( )O N  [23, 25]. The 

equivalence of 1l  minimization and 0l  minimization on signal recovery under some 

conditions has been theoretically proved by Candes, Tomberg, Tao, and Donoho [23, 

25, 27]. It is also known as Basis Pursuit, and is widely used in solving the CS 

reconstruction problems. 

 
1

ˆ arg min , s.t. s s ΦΨs = y   1.4 

In the field of CS image reconstruction, total variation (TV) regularization is 

another well-known method for its ability to recover the edges or boundaries more 

accurately than 1l  method. TV minimization suggests that the gradient of the 2D 

image signal is sparse, so it can be considered as a generalized 1l  minimization 

problem on the image gradient map. It can be expressed as 
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 ˆ arg min , s.t. i

i

D x x Φx = y   1.5 

where 
iD x  is the discrete gradient magnitude at pixel i  of the image x . 

Multiple TV minimization solvers have been proposed, including SOCP [31], 

TwIST [32], NESTA [33], and TVAL3 [34]. In this thesis, we use TVAL3 as our CS 

image reconstruction solver. 

2.3. Single-Pixel Camera 

As a demonstration of the application of compressive sensing theory in the 

field of imaging, the single-pixel camera (SPC) was proposed and successfully 

implemented recently by Baraniuk, Kelly, et al. [35]. It tackles the inefficiencies and 

bandwidth limits in conventional digital imaging systems by combining the image 

compression into the imaging processes. 

In a conventional imaging system, a photodetector array is used to sample 

the optical information and to convert it into an array of numbers proportional to 

the light intensities the detectors receive. To get an image with N pixels, a detector 

array with at least N elements is needed. The spatial sampling rate or the resolution 

of the captured image is limited by the amount of the sensing elements in the system. 

Then the image would be compressed into a format such as JPEG for efficient 

storage and transmission. This “compression after imaging” approach causes a 

waste of the imaging resources.  
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In addition, the detection of the light beyond the visible spectrum, e.g. short 

wave infrared (SWIR) and mid-wave infrared (MWIR), requires special non-silicon-

based sensing devices. A high-resolution array of these detectors can be very 

expensive. An alternative scheme of imaging is therefore needed for these special 

applications.  

 

Figure 2.2 Schematic diagram of the single-pixel camera [36] 

The design of the single-pixel camera is aimed to solve these shortages of the 

conventional imaging scheme. It consists of a digital micro-mirror device (DMD), a 

photodiode, and multiple basic optical components, as shown in Figure 2.2. The 

DMD performs as a spatial light modulator that encodes the image of the scene 

projected on it with the pseudorandom patterns defined by the rows of the designed 

modulation matrix Φ . The light of the modulated image is then converged by lenses 

to the photodiode. The photodiode output is recorded for each of M modulation 

patterns, and all M outputs compose the length-M measurement vector y  in 

equation 1.1. From these M measurements and their corresponding patterns, the 
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original image with N(>M) pixels can finally be recovered using proper 

reconstruction algorithms described in the previous section. 
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Chapter 3 

Compressive Hyperspectral Microscopy 

In this chapter, we present a hyperspectral microscopy scheme based on 

compressive sensing, and demonstrate the experimental results by studying surface 

plasmon resonance scattering spectra of metal nanostructures. Using this system, 

the total amount of measurements can be greatly reduced without losing detail in 

the 3D hyperspectral data cube thanks to the nature of compressive sensing. An 

enhancement in sensitivity is also achieved as the spectrometer in our system is 

always receiving about 50% of the total light from the sample in every measurement, 

regardless of the actual pixel size or the target image resolution. The combination of 

hyperspectral microscopy with the features of compressive imaging, such as fast, 

high dynamic range, and enhanced signal-to-noise ratio (SNR), gives us a powerful 

and low-cost spectral analytical system in the field of nanotechnology. This 

approach is also more easily extended to wavelength beyond the visible spectrum 

than other alternatives. 
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3.1. Compressive Hyperspectral Microscopy System Design 

The technique of CS features its ability of reconstructing a signal from fewer 

measurements than what are indicated by its bandwidth. In order to acquire the 

hyperspectral data using CS, we encode the image by projecting it onto a series of 

spatial measurement vectors. It is realized by using a DMD as a spatial light 

modulator (SLM) to modulate the intensities of the image pixels with the specially 

designed binary patterns on it, and lenses are used to focus and couple the 

modulated light into an optic fiber, which guides the encoded light signal into a 

spectrometer for the spectrum extraction. 

The schematic layout of the designed system is illustrated in Figure 3.1 (a). 

The whole setup can be considered to be composed of two major parts, of which one 

is an optical magnification part, and the other is an image modulation and spectrum 

measurement part. These two parts will be introduced in detail in the following 

sections. As the optical magnification and the image modulation are two 

independent steps, the same model can be easily applied to different types of optical 

microscopes by only changing the optical magnification part or adapting the image 

modulation and measurement part to commercial optical microscopes. In our 

experiments, in order to image the SPR scattering from metal nanostructures, the 

optical magnification part is set up as a scattering microscopy system. In addition to 

these two major parts, a CMOS camera is used to monitor the position of the sample 

and the focusing condition of the image on the DMD. 
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Figure 3.1 (a) Schematic layout of the compressive hyperspectral microscopy 

system. (b) Detailed structure of two micromirrors at different states. (c) 

Configuration of the nanoparticle sample. 

3.1.1. Scattering Microscopy of Plasmonic Nanostructures 

The optical magnification part of our setup is essentially a scattering 

microscopy system. It consists of a 3-axis stage for sample positioning, a 100X finite 

conjugate oil immersive objective lens (LABOMED LP-Series DIN 100X/ NA 1.25/ 

WD 0.17 semi-plan achromatic lens), a halogen lamp, and a polarizer, as shown in 

Figure 3.1. 

The samples for microscopic imaging were prepared by depositing the 

plasmonic metal nanoparticles on glass substrates. The halogen lamp illuminates 

the sample through the objective lens with the help of a 45˚ non-polarizing beam-

splitter (BS). The Kohler illumination design is used to achieve an evenly distributed 

illumination on the sample. By applying index-matching immersion oil between the 
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sample and the lens, as illustrated in Figure 3.1 (c), the reflection from the interfaces 

is mostly reduced, and at the same time, a high numerical aperture (NA=1.25) can 

be achieved to capture a larger portion of the scattered light. For the samples of 

metal nanostructures that are on the dimensions much less than the wavelength, the 

majority of the signal going through the objective and received by the detector is the 

scattered light from the nanostructures. Consequently, the recovered images will be 

similar to the dark-field scattering images. A polarizer is utilized and adjusted 

according to the orientation of the nanostructure of interest for the observation of 

specific linearly polarized light from the sample. 

3.1.2. Spatial Light Modulation and Spectrum Measurement 

To realize the image modulation, a Texas Instrument (TI) DMD chip is 

incorporated at the image plane of the sample. The functional part of the DMD is a 

768×1024 array of electrostatically controlled micro-mirrors of size 13.68×13.68 

μm each. Every micro-mirror can be independently actuated by an individual SRAM 

cell, and rotate about a hinge to be at one of two states, +12˚ (tilting left) and -12˚ 

(tilting right) with respect to the DMD surface, as shown in Figure 3.1 (b). The DMD 

is in the plane orthogonal to the optical axis of the magnification part, and is rotated 

45˚ so the hinges are all in vertical direction. As a result, all the micro-mirrors 

oriented at +12˚ reflect the parts of image on them at an angle around +24˚ (twice 

the tilting angle), toward the light collecting lens and the OceanOptics QE65000 

spectrometer on the left for the spectrum measurement. Because the acceptance 

angle of the fiber is limited by its numerical aperture, the focal length of the light 
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collecting lens is designed to make sure the light from the whole field of view of the 

microscope can be coupled into the fiber at the focal point. In our setup, the focal 

length of the light collecting lens is chosen to be 50 mm for the visible-NIR fiber with 

a core diameter of 0.6 mm and a numerical aperture of 0.22. The micro-mirrors 

oriented at -12˚, on the other hand, project the light on them toward the monitoring 

CMOS camera at -24˚. These two cases are indicated in Figure 3.1 with blue and red 

rays respectively. Because the detector (or spectrometer) only receives the light 

from the micro-mirrors tilting left (+12˚) in each measurement, we indicate left-

tilting micro-mirrors with white color. And the rest of the micro-mirrors are in 

black. 

The spectrometer integration measurements are synchronized with the 

changes of the patterns on the DMD using a trigger signal from the DMD control 

interface. In this way, we can correctly match every spectrometer output with the 

corresponding DMD pattern.  

3.2. Hyperspectral Data Measurement and Reconstruction 

3.2.1. Compressive Sensing of the Hyperspectral Data 

Using the hardware system described in Section 3.1, the customized DMD 

control program, and the spectra data collection software SpectraSuite, we can 

perform the compressive sensing on the hyperspectral data of the microscopic 

samples. During the measurement process, the DMD displays a series of binary 

patterns by flipping the micro-mirrors, and the spectrometer records one spectrum 
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for each DMD pattern. In each spectrum measurement, the signal received by the 

spectrometer is the inner product of the image intensity distribution and the binary 

DMD pattern. 

The hyperspectral compressive measurement process can be modeled as  

 Y = ΦX ,  2.1 

which is similar to equation 1.1. Φ  is the M×N measurement matrix, with each row a 

measurement vector φm  that defines one modulation pattern on the DMD. Here, X  

is the N×K unknown hyperspectral data matrix being measured. Each column of X  

is a vectorized N-pixel image at a single band, and the whole matrix contains K 

different spectral bands. Y  is an M×K matrix containing the measurement results. 

The rows of matrix Y  are the spectra recorded by the spectrometer for M different 

measurements. 

The binary DMD patterns are defined by the rows of the measurement matrix 

Φ . To capture an N-pixel image, we use M rows from a pseudo-randomly permuted 

N×N Walsh-Hadamard matrix as the measurement vectors. The pseudo-random 

binary patterns have been proven to be highly incoherent with the sparse bases of 

most natural images, making them suitable for the CS applications. As an example, 

Figure 3.2 displays a 1024-pixel (32×32) binary DMD pattern formed by one row of 

the pseudo-randomly permuted 1024×1024 Walsh-Hadamard matrix. The pattern 

is rotated 45˚ in accordance with the actual pose of the DMD chip. 
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Figure 3.2 A 1024-pixel (32×32) binary pattern formed by one row of the 

pseudo-randomly permuted 1024×1024 Walsh-Hadamard matrix 

In our experiments, we imaged the samples at the resolutions of 4096-pixel 

(64×64) and 16384-pixel (128×128), by grouping every 12×12 or 6×6 micro-mirror 

array on the DMD together as a “one-pixel” patch. 

3.2.2. Hyperspectral Data Reconstruction 

The reconstruction process recovers the unknown hyperspectral data matrix 

X  from the measurement outputs in Y . The algorithm used for the reconstruction 

is TVAL3, and we slightly modified it to adapt to the hyperspectral data application. 

It solves the compressive sensing problem with total variation regularization in the 

spatial dimensions: 

 ˆ arg min [:, ] , s.t. i

k i

D k X X ΦX= Y ,  2.2 

where [:, ]iD kX  is the discrete spatial gradient vector of the image at the spectral 

band k and pixel i.  
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3.3. DMD Diffraction and Interference 

In our high-magnification microscope setup, DMD diffraction and 

interference are significant enough to distort the spectra measured by the fiber-

coupled spectrometer even with incoherent, visible wavelengths of light. Therefore 

we engineered the patterns on the DMD to solve the problem. 

Due to the large optical magnification of the microscopy system and the 

diffraction-limited resolution of the objective lens, a spatially coherent spot with a 

diffraction-limited diameter  
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  2.3 

is formed on the DMD for every point on the sample. aD  is the objective aperture 

size. iS  is the image distance from the aperture. M here stands for the magnification, 

and 0n  is the refractive index of the immersion medium between the sample and the 

objective. For our microscopic setup with the 100X oil-immersion objective lens, sd  

is estimated to be 48.55 µm, which is much larger than the dimension of one micro-

mirror. Figure 3.3 shows the simulated magnitude and phase of such a diffraction-

limited spot at 530-nm wavelength after being reflected by a small array of micro-

mirrors. When it is focused at the end of the fiber, interference will occur because 

the micro-mirrors tilting at +12˚ cause a periodic phase change on the spot. 

Consequently, only the wavelengths that are interfering constructively at the fiber 

end can be coupled into the spectrometer. As shown in Figure 3.4, the early results 
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of two different samples illuminated by white LED show similar spectra with 4 

discrete peaks between 400-nm and 700-nm wavelengths. These peak wavelengths 

have equally spaced wave numbers, and can be proved to be where the constructive 

interferences occur. 

 

Figure 3.3 The simulated magnitude (left) and phase (right) of a diffraction-

limited spot at 530-nm wavelength on the image plane after being reflected by 

the +12˚-tilted micro-mirrors.  
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Figure 3.4 The spectra of (a) a copper reference grid, and (b) a sample of silver 

nanowires that are affected by the interference 
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We also performed simulations using Fourier optics analysis. Given the fact 

that the coherent light spot reflected by the DMD and the focused spot at the end of 

the fiber are Fourier transform pairs, we simulated the formation of the focused 

spots at the fiber end at various wavelengths for the unmodified DMD patterns, and 

the results are shown in Figure 3.5 (a)-(d). In each figure, the red circle indicates the 

region of the fiber end, where the optical signal can be coupled into the fiber and the 

spectrometer for the spectrum measurement. The light outside this region cannot 

be captured. The simulated results show that at some wavelengths, e.g. 530 nm in 

Figure 3.5(a) and 590 nm in Figure 3.5(c), the focused light spots on the Fourier 

plane of the image are totally outside of the region of the fiber end. For these 

wavelengths, the information is lost in the measured spectra. Figure 3.5 (d) displays 

the combined spot of 10 discrete wavelengths between 400 nm and 700 nm. As 

different wavelengths form the spots at different positions, only some of them can 

be coupled into the fiber, while the others are lost. 
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(a) (b) (c) (d)

(e) (f) (g) (h)  

Figure 3.5 The simulated focused spots formed on the Fourier plane of the 

image at (a) 530-nm, (b) 560-nm, and (c) 590-nm wavelengths, using 

unmodified DMD patterns; (d) the focused spot formed by a combination of 10 

discrete wavelengths between 400 nm and 700 nm, using unmodified DMD 

patterns; the focused spots at (e) 530-nm, (f) 560-nm, and (g) 590-nm 

wavelengths, formed by modified DMD patterns; and (h) the focused spot 

formed by a combination of 10 discrete wavelengths between 400 nm and 700 

nm, using modified DMD patterns. The red circles indicate the the region of 

the fiber end. 

In order to avoid the distortion of the spectrum caused by the interference, 

the original DMD patterns are modified with an additional striped modulation 

pattern, as shown in Figure 3.6. Each column of the white stripe in Figure 3.6 (right) 

is one column of micro-mirrors reflecting light to the spectrometer. The distance 

between adjacent white stripes is made larger than the diffraction-limited spot 

diameter 48.55 μmsd  , so that each coherent light spot on the image plane is 

reflected by only one column of the micro-mirrors at a time. Because the micro-
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mirrors in the same column are exactly in the same plane when tilting at +12˚, no 

destructive interference will occur at the end of the coupling fiber for any 

wavelengths. The simulation results of the focused spots using the modified DMD 

pattern in Figure 3.5 (e)-(h) also verify the conclusion. All the spots at different 

wavelengths cover the region of the fiber end and can be measured by the 

spectrometer. 

 

Figure 3.6 A modified 1024-pixel (32×32) binary pattern with an additional 

striped modulation pattern 

Using the modified patterns, correct spectra can be achieved for the same 

LED-illuminated samples used in Figure 3.4, as plotted in Figure 3.7. 



 26 

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

N
o

rm
a

li
z
e

d
 I
n

te
n

s
it
y

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

N
o

rm
a

li
z
e

d
 I
n

te
n

s
it
y

(a) (b)  

Figure 3.7 The spectra of (a) a copper reference grid, and (b) a sample of silver 

nanowires measured with modified DMD patterns. 
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Chapter 4 

Experimental Results 

In this chapter, we demonstrate the results of applying our compressive 

hyperspectral microscopy system on various objects including a standard resolution 

target and multiple surface plasmonic nanostructure samples. The performance of 

the actual system is analyzed, and the effects of noises on the reconstructed 

hyperspectral data are discussed. The compressively measured and recovered 

results are also compared with raster-scanning results in both spatial and spectral 

domain. 

4.1. 1951 USAF Standard Microscope Resolution Target 

The imaging system and the reconstruction algorithm were tested with a 

1951 USAF standard microscope resolution target. The test target is a glass slide 

with patterned chromium coating on it. The elements in group 7 of the test target 
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was imaged at 16384-pixel (128×128) resolution (N=16384). A set of full 

measurements was applied by projecting the magnified image onto 16384 DMD 

modulation patterns and collecting the spectrum of the focused light from each 

modulated image. Figure 4.1 (a) plots a sequence of the measurement outputs at 

637.44-nm wavelength. The pseudo-random binary patterns reflect 50% of the total 

pixels to the spectrometer, so the values in the measured sequence are fluctuating 

around the average. The images have been reconstructed at various sampling ratios 

M/N, where M is the amount of measurements actually used for the recovery of the 

image, and N is the total number of image pixels. Compression ratio N/M is the 

inverse of the sampling ratio. The curve of peak signal-to-noise ratios (PSNRs) of the 

recovered images versus sampling ratios is shown in Figure 4.1 (b). For a 637.44-

nm single-band image slice in the hyperspectral data cube, the reconstruction with 

only 5% of all measurements achieves a PSNR of about 18 dB, and 25% 

measurements produce a reconstruction image with a 30-dB PSNR. The insets in 

Figure 4.1 (b) show the 128×128 images reconstructed at 10%, 25%, and 50% 

sampling ratios. 
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Figure 4.1 A 1951 USAF resolution target is imaged at 16384-pixel (128×128) 

resolution with the compressive hyperspectral microscopy system. The image 

slice at 637.44-nm wavelength is reconstructed at different sampling ratios. 

(a) A full set of compressive measurement results at 637.44-nm wavelength 

with a bandwidth of 1.52 nm. (b) The peak signal-to-noise ratio (PSNR) of the 

recovered images as a function of the sampling ratio (M/N). The insets show 

the images recovered from 10%, 25%, and 50% of the total measurements. 

4.2. Hyperspectral Imaging of Nanostructure Surface Plasmon 

Scattering 

To study the potential of the compressive hyperspectral imaging in the 

spectroscopic research on plasmonic nanostructures, we tested the system with the 

samples of gold nanobelts. The gold nanobelts have sub-100-nm rectangular cross 
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sections, and exhibit a strong transverse plasmon resonance peak at visible 

wavelengths [37]. The resonance peak of an individual gold nanobelt tunes with its 

cross-section aspect ratio, which is defined as the nanobelt width divided by the 

height. This plasmon resonance tuning can also be observed on one single gold 

nanobelt with a changing aspect ratio along its length. With the CS hyperspectral 

microscopy, such phenomenon can be efficiently observed. 

The samples used in the experiments were prepared by depositing the gold 

nanobelts on glass substrates. Every nanobelt sample was imaged twice at 16384-

pixel (128×128) resolution, with the polarizer positioned perpendicular and parallel 

to the nanobelt respectively. The integration time of the spectrometer for each 

measurement was set as 100 ms. And a total number of 4800 spectra were 

measured using 4800 DMD modulation patterns for one compressive hyperspectral 

imaging. Using all or part of 4800 measurements, we can demonstrate the 

reconstructions with sampling ratios below 29.3%, or equivalently compression 

ratios above 3.41. The imaged wavelength range spanned from 450 nm to 900 nm, 

and was divided into 300 bands, with an average bandwidth of 1.51 nm for each 

band. 

Figure 4.2 (a)-(d) show the experimental results of 4 gold nanobelt samples. 

On top left of each figure is the color CMOS camera image of the nanobelt of interest. 

The scattered light from all four of them has notable color variation along their 

lengths. The hyperspectral data of these samples are reconstructed at 25% sampling 

ratio. The spectra of 10 points along each nanobelt are extracted from the 
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reconstructed hyperspectral data, and are plotted in each subfigure in Figure 4.2. As 

indicated by the arrows in the CMOS camera images, the blue spectra are polarized 

transverse to the gold nanobelts, while the red spectra are polarized parallel to 

them. The strong transversely polarized plasmon resonances show blue or red shifts 

in accordance with the color changes in the camera images. The parallel polarized 

spectra do not show plasmon resonance modes within the visible or near infrared 

bands. 6 artificially-colored single band image slices between 550-nm and 700-nm 

wavelengths are also synthesized from the reconstructed data for each sample, and 

are illustrated in Figure 4.2. From these single-band images, we can also notice the 

intensity distribution variations between different wavelengths. 
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Figure 4.2 Examples of the reconstructed hyperspectral data of the gold 

nanobelt plasmon scattering at 25% sampling ratio. On top left of each 

subfigure is the cropped CMOS camera image showing the nanobelt of interest. 

The reconstructed spectra of 10 points along the nanobelt are plotted on top 
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right. And on the bottom of each subfigure are six synthesized single-band 

image slices from the reconstructed hyperspectral data cube. 

4.3. Noise Analysis 

The effect of noises in the system on the final reconstructed images was also 

studied analytically and experimentally. There are three major sources of noise that 

are introduced during the integration and read out of a spectrum from the QE65000 

spectrometer, including the dark current noise, the photon noise, and the read noise. 

Because these noises and the image reconstruction can be considered independent 

between different bands, for simplicity, we just analyze the measurements at a 

single wavelength band.  

The dark current noise is caused by the thermally generated electrons in the 

spectrometer sensors, producing a non-zero output on every band even when the 

spectrometer receives no input photons. It follows the Poisson distributions, and 

can significantly affect the measurements when the signal photon flux is at a similar 

level of the noise. In the analysis model, the dark current noise can be approximated 

with an additive Gaussian noise term de  and an additional constant mean value d . 

The constant mean value can be subtracted by a black frame. The standard deviation 

of the dark current noise is d d  .  

The photon noise is the result of the random processes of signal photon 

detections that follow a Poisson relationship to the signal. It can also be 

approximated in the model with an additive Gaussian noise pe  with a standard 
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deviation 
p  proportional to the square-root of the signal. In the CS measurements, 

the signal level is around half of the scene light. 

The read noise is a combination of noises that are independent to the signal 

level, including the on-chip noises and off-chip noises such as amplifier noise. It’s a 

Gaussian distributed error term re  with a constant standard deviation r . 

The overall model of the measurements with noises would be: 

 
d p r

y =Φx+e +e +e   3.1 

where d
e , 

pe , and r
e  are M×1 vectors with elements independently following the 

Gaussian distributions of de , 
pe , and re , respectively. The effect of these 

measurement noise vectors on the final reconstructed image is complicated as it 

depends on the measurement patterns, the stability of the optimization algorithm, 

and the compression ratio. However, we can get a rough approximation by 

considering the case of a full measurement when M=N. Then the reconstruction is a 

complete inverse problem that can by simply expressed by  

 ˆ -1 -1

d p rx =Φ y = x+Φ (e +e +e ) .  3.2 

When Φ  is a permuted 0-1 Walsh-Hadamard matrix, as in our setup, the 

reconstruction error vector -1

d p rΦ (e +e +e )  yields a pixel-wise random error with a 

standard deviation  



 35 

 2 2 24
( )d p r

N
        3.3 

where N is the number of image pixels.  

In the experiments, with the illumination intensity kept at a constant level, 

we controlled the amount of signal photons collected by the detector by changing 

the integration time of the spectrometer. Reducing the integration time can largely 

increase the speed of the measurements, but it also affects the accuracy of 

reconstructions due to the decrease in the signal-to-noise ratio.  

After going through the CS measurement and reconstruction, the 

independent noise distributions between the spectral bands cause a random 

fluctuation on the reconstructed spectrum of each pixel. So although a ground truth 

hyperspectral data set is hard to be achieved in the experiment, we can compare the 

noise levels by observing the levels of the fluctuation in the spectra. 

Figure 4.3 illustrates the reconstructed spectra of a point on the gold 

nanobelt from the measurements with different integration time. The sample was 

imaged at 16384-pixel (128×128) resolution with a sampling ratio of 25%. The 

recovered spectra shown in Figure 4.3 (b) are normalized together to the maximum 

value in the spectrum with 100-ms integration time. All spectra start around 0.01, 

below which the photon signals are submerged by the dark current noise and read 

noise. With the increase of the integration time, the photon noise increases at the 

same rate of the square-root of the signal, and gradually exceeds the other noises. In 

Figure 4.3 (c), the spectra are normalized individually to their own peak values. An 
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intuitive comparison of the signal-to-noise ratio between different integration times 

can be performed by looking at the amplitude of the random fluctuations in the 

spectra. The spectra show a same plasmon resonance peak at 650 nm. However, the 

reconstruction from the measurements with only 10-ms integration time suffers 

more distortions because of the lower signal-to-noise ratio.  
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Figure 4.3 The reconstructed spectra from the measurements with different 

integration time. (a) CMOS camera image of the gold nanobelt. The red circle 

highlights the point where the spectra are plotted. (b) The reconstructed 

spectra of the high-lighted point with 100-ms, 50-ms, 25-ms, and 10-ms 

integration time. (c) The reconstructed spectra normalized to their own 

maximum values. 

4.4. Comparison between Compressive Imaging and Raster 

Scanning 

Raster-scanning based measurements with noises can be represented as 

 ˆ
d,raster p,raster r,raster

x = x +e +e +e   3.4 
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where 
d,rastere , 

p,rastere , and 
r,rastere  are the error vectors caused by dark current, 

photon, and read noises in the pixel-by-pixel measurements. Under the same 

illumination level and measurement condition, the standard deviations of the dark 

current noise and the read noise are the same as in the CS measurements, so 

,d raster d   and 
,r raster r  . Without the pixel-multiplexing, the average photon 

noise is affected directly by the square-root of the pixel intensity, so 

, 2p raster pN  . As a result, the overall noise on each pixel in the raster scanning 

method is  

 2 2 2 2 2 2

, , ,raster

2
raster d raster p raster r d p r

N
            .  3.5 

As revealed in the comparison between Equations 3.3 and 3.5, by multiplexing half 

of all the pixels in each measurement in the CS method, the dark current noise and 

the read noise in the image pixels are suppressed by a factor of 2N . At 128×128-

pixel resolution, these two types of noise can be reduced by 36 dB with the CS 

method. The pixel-multiplexing, however, increases the photon noise by a constant 

factor of 2 , or 3 dB. Consequently, the CS method is especially useful in low-light, 

high-resolution imaging applications, including the hyperspectral microscopy. 

To compare our experiment system with conventional scanning methods of 

hyperspectral imaging, we used the system to simulate a raster-scanning imaging 

process by changing the pseudo-random patterns to raster-scanning patterns. In 

each raster-scanning measurement, only the micro-mirrors inside a one-pixel patch 
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were activated to reflect light to the spectrometer, and the spectrometer output was 

directly stored as the spectrum of that pixel. The raster-scanning measurements 

were taken at 256-pixel (16×16), 1024-pixel (32×32), and 4096-pixel (64×64) 

resolutions. The CS measurements were taken at 4096-pixel (64×64) and 16384-

pixel (128×128), with the sampling ratios of 50% and 25% respectively. All the 

spectra were measured with both 25-ms and 100-ms integration time under the 

same illumination condition.  

The comparison of the results is shown in Figure 4.4. Using the raster-

scanning method, the SNR drops drastically with the increase of the image 

resolution, because the average light intensity received by the spectrometer in each 

measurement is proportional to the pixel size. As seen in the second column of the 

images in Figure 4.4, the raster-scanning image with the resolution of 16×16 and 

25-ms integration time roughly shows the illuminated region. Because of the low 

resolution, no detailed shapes of the nanostructures can be observed. The 32×32 

raster-scanning image shows some more detailed structures, but the increase of the 

relative noise level greatly affects the image quality. And the 64×64 raster-scanning 

image becomes so noisy that most of the nanostructures cannot be distinguished. 

Increasing the integration time to 100 ms or more could improve the image quality, 

but also prolongs the measurement process. And the dependence of SNR on the 

pixel size in the raster-scanning method still prevents the acquisition of higher-

resolution images.  
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In contrast, when the image is modulated by the permuted Walsh-Hadamard 

patterns of different resolutions in the CS method, the spectrometer always receives 

about 50% of the total light intensity from the whole field of view. As a result, the 

SNR of the measurements is much higher than that in the raster-scanning method, 

and does not decrease with the increase of the target image resolution. As shown in 

the 64×64 and 128×128 resolution 550-nm single band images acquired with CS 

method in Figure 4.4, the enhancement in the measurement SNR is also reflected in 

the quality of the final reconstructed images in the hyperspectral data cube. 
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Figure 4.4 The single band images of the gold nanobelt sample at 550-nm 

wavelength acquired with CS and raster-scanning hyperspectral imaging 

methods. 

Figure 4.5 plots the spectra of a bright point on one nanobelt, acquired with 

two different methods at same resolution of 64×64 and with same integration of 25 

ms. It illustrates a ~15-dB SNR improvement in the compressive imaging scheme in 

the spectral dimension of the hyperspectral data. It’s the result of a combination of 

dark current and read noises reduction and the 3 dB photon noise increase.  
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Figure 4.5 The spectra on pixel (18, 30) of the hyperspectral data cube 

acquired with CS and raster-scanning methods at the 64×64 resolution. The 

spectrometer integration time is 25 ms. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we illustrate our design of a hyperspectral microscopy system 

based on the compressive sensing theory, and explore the diffractive effect of the 

DMD in an optics system with a diffraction-limited spot size much larger than the 

size of one micro-mirror. The DMD patterns are modified to solve the spectra 

distortion caused by the DMD diffraction and interference. Experimental results 

show the correct reconstructions of polarized SPR scattering spectra of gold 

nanobelts with different cross-section aspect ratio. The reconstructed hyperspectral 

data achieves a resolution of 128×128 pixels in spatial domain and 300 bands in 

spectral domain, covering the wavelength range from 450 nm to 900 nm with a 

1.51-nm width for each band. 

In addition to the pseudo-randomly permuted Walsh-Hadamard 

measurement matrix we applied in our experiments, there are some novel 

measurement matrices that introduce multiple benefits to the compressive 
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reconstructions. For example, the sum-to-one (STO) transform provides a multi-

scale reconstruction strategy. It allows the images to be reconstructed at a lower 

resolution with no compression or at a higher resolution compressively, with the 

same set of measurements. The flexibility of this framework allows us to reduce the 

motion blur in the high-resolution reconstructions of moving objects by using the 

high-framerate low resolution reconstructions as previews. With this method 

utilized, we may be able to capture 4-D hyperspectral video data on our system. 

Recently, the study on using the circulant matrix in compressive imaging 

enables an alternative design of the CS imaging system that does not need the use of 

a DMD. By replacing the DMD with a scanning mask in our system, the interference 

phenomenon cause by the tilted-mirror arrays on DMD will automatically 

disappear, and the efficiency of light collecting and coupling into the fiber will also 

increase without using the modified patterns. 
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