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ABSTRACT

Topological metals driven by strong correlations in heavy fermion systems

by

Sarah E. Grefe

Heavy fermion metals are intermetallic systems of certain rare-earth or actinide

elements, whose partially-filled f electrons interact with each other strongly and form

localized magnetic moments. The latter are coupled to weakly correlated conduction

electrons by their spin, a process known as the Kondo coupling. These strongly

correlated systems can be readily tuned nonthermally to produce quantum phase

transitions, and often exotic phases emerge in the vicinity of quantum critical points

(QCPs). An outstanding question is what happens when the strong correlations

interplay with a large spin-orbit coupling.

In parallel, topological metals are a fascinating class of states, in which topologi-

cally protected and dissipationless transport makes them attractive for new electronic

devices. In theoretical models of non-interacting electrons, such phases are favored

by certain types of couplings, as well as by the particular set of symmetries for the

geometric space that electrons move through (i.e. space group of a crystal lattice).

Along with efforts to understand the required conditions for a topological phase,

there has been an extensive search for weakly correlated materials platforms. What

happens to topological metals in strongly correlated settings remains an outstanding

open problem.

In this thesis, the heavy fermion systems are proposed to explore topological metal-



lic phases driven by strong correlations. I theoretically demonstrated the existence

of topological metallic phases by studying several types of Kondo lattice models. Im-

portantly, the large Coulomb energy scale in these systems has several consequences

for how topological metals behave.

In the first part of this thesis, I study the change in anomalous Hall conductivity

(AHC) across a QCP in frustrated Kondo lattices. The frustration in the interactions

between magnetic moments leads to time-reversal symmetry breaking (TRSB) chiral

spin liquid phases, creating a highly singular Berry curvature field that influences

the conduction electrons and their transport through the Kondo coupling. The QCP

divides the Kondo screened phase with a large Fermi surface, from the Kondo destruc-

tion phase with a generically reconstructed Fermi surface. By studying this scenario

on both the square lattice and kagomé lattice, I discovered that if the magnetic unit

cell has an odd number of sites, the Fermi surface undergoes radical reconstruction

in volume, resulting in a sharp jump of the AHC. The implications for the metallic

pyrochlore heavy fermion iridate Pr2Ir2O7 are explored.

The second part of this thesis advances a correlation-driven topological metal,

the Weyl-Kondo semimetal (WKSM). My theoretical work proceeded contemporane-

ously with experiments in a heavy fermion metal Ce3Bi4Pd3. I focused on a three-

dimensional nonsymmorphic and noncentrosymmetric Kondo lattice. I show that

the ground state is topologically trivial in the absence of the Kondo coupling, but

is driven to be a topologically nontrivial Weyl semimetal by the Kondo effect. In

the ensuing WKSM phase, a new “Kondo-pinning” effect fixes the Weyl nodes to the

Fermi energy. Several distinguishing strong correlation effects are also shown for the

WKSM. I then study the topological phases produced when a TRSB Zeeman field is

introduced. The Weyl-Kondo nodes move and annihilate, leading to multiple phases.

I study and discuss the relevance of my theoretical findings to Ce3Bi4Pd3, and propose

experimental signatures which take advantage of the Kondo pinning mechanism.
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1

Chapter 1

Introduction

1.1 Heavy fermion systems

The strongly correlated systems classified as heavy fermion materials have several

salient, unique characteristics due to the hallmark presence of rare earth or actinide

elements. These elements have partially filled f orbitals, with a Coulomb repulsion

between them so large that they form local magnetic moments (acting as a lattice of

magnetic impurities), and have narrow atomic-like energy bands. There are also other

orbitals or elements that provide free carriers (i.e. itinerant or conduction electrons),

with dispersive energy bands.

Despite only these simple constituents, the behavior observed in experiments and

theoretical models can give rise to a variety of exotic strongly correlated phases,

due to two important interactions in heavy fermion metals. First, the local moment

electrons and the itinerant electrons interact through their spin degree of freedom,

called the Kondo coupling. The Kondo effect is produced by the quantum fluctuations

of conduction electrons and f electron levels near the Fermi surface tunneling back

and forth between degenerate spin states. The strength of the Kondo coupling (JK)

increases the probability for the two electron species to form a Kondo singlet state, | ↑↓
〉 = 1

2
(| ↑〉f | ↓〉c−| ↓〉f | ↑〉c). Second, there is an effective magnetic interaction between

localized moments that is mediated by the free electrons, called the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction, where the coupling magnitude is denoted I. In

the vast majority of heavy fermion materials, the RKKY interaction is energetically

favorable toward antiferromagnetism (rather than ferromagnetism).

Although there are clearly several physical mechanisms to consider in heavy fermion
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systems, the relevant physical mechanisms that this thesis considers occur under the

Kondo temperature (TK) in the strongly correlated regime, leaving the the RKKY

and Kondo interactions to explore.

Consider the phases of a generic heavy fermion system near T = 0, as the ratio

δ = JK
I

is tuned (Fig. 1.1). When δ is large, the Kondo effect dominates the mag-

netic ordering. This causes the lattice of local moments to both remain magnetically

disordered, and to pair up with free electrons in Kondo singlets. A characteristic

tunneling rate τ sets the Kondo temperature TK by finding the T for which ~
τ
∼ kBT .

At high temperature or field T � TK , the moment scatters more strongly due to

the unscreened magnetic moment spin inducing spin-flip scattering. Equivalently,

kBTK also sets the energy scale below which a Kondo resonance forms, and the sys-

tem can be described as a Landau Fermi liquid [1, 2, 3, 4]. The f fermions and the

free electrons thus hybridize and form coherent, long-lived quasiparticles near the

Fermi surface, effectively adding the f electrons to the Luttinger count, changing

the enclosed volume of the Fermi surface. The quasiparticles have partially itinerant

character, to act as current carriers, and partially localized behavior, to renormalize

the effective carrier mass to 102 to 103 times the bare electron mass. This is the name-

sake ‘heavy Fermi liquid’ phase, the prototypical phase of heavy fermion materials.

Heavy fermion metals act like a ‘bad metal’, captured mostly with Landau Fermi

liquid theory, with normal metal properties yet drastically renormalized parameters

(details in Sec. 1.1.2).

When δ is small, the antiferromagnetic coupling is stronger than the Kondo cou-

pling, so the itinerant electrons are freed from the localized ones, while the moments

form an ordered antiferromagnetic phase (left side of Fig. 1.1): a magnetic metal.

The non-Fermi liquid phase of conventional heavy fermion metals of Fig. 1.1 will be

discussed in Sec. 1.1.1.

Quantum phase transitions can be accessed in heavy fermion systems if one tunes

parameters that I, JK are dependent on. Since the magnitude of RKKY interactions
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Figure 1.1 : Quantum phase diagram of heavy fermion metals. Labels of phases are
written as (top) heavy fermion phase: (bottom) generic quantum phase diagram.
The vertical axis tunes temperature T and thus the amount of thermal fluctuations.
The horizontal axis tunes a non-thermal control parameter δ, which corresponds to
the ratio of the Kondo to RKKY interactions. The red point labeled δQCP marks a
quantum critical point where the ordered antiferromagnetic phase and the disordered
heavy Landau-Fermi liquid phases meet at T = 0, producing the quantum critical
non-Fermi liquid regime at nonzero temperatures.

versus Kondo coupling can depend on the lattice spacing or the density of magnetic

impurities, one can vary non-thermal control parameters such as pressure, doping,

and magnetic field [5, 3]. A quantum critical point has been implicated in several

heavy fermion metals [5, 3].

1.1.1 Quantum criticality and non-Fermi liquid phases

Quantum critical points are nonanalytic points in the ground state energy of a system

as a function of control parameters, and indicate where the energy of the ground state

approaches a level crossing with an excited state [6]. The non-thermal control param-

eter chosen essentially increases or decreases the amount of quantum fluctuations in

the system, which can induce changes in order. At T = 0, δ passes through a quantum

critical point (QCP) that separates two ground states, where δc = 1 denotes the ratio
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where neither state is dominant. Put another way, the phase transition at δc for some

(T > 0) has been suppressed to T = 0. Generically, the quantum critical state is in a

many-body superposition of ordered and disordered states, that is, the order param-

eter fluctuations span the entire material. The quantum critical state is dominated

by quantum fluctuations between phases that compete, leading to behavior that is

impossible to classify as either phase. One example of a quantum critical phase is

the one-dimensional Luttinger liquid, which shows some Fermi liquid type behavior

with respect to DC conductivity, linear-in-T specific heat, finite spin susceptibility,

etc. However, there are power-law type singularities in the momentum distribution

function and density of states that distinguish it from a Fermi liquid, not to mention

the separation of spin dynamics from charge dynamics [7].

Non-Fermi liquids are defined by what they are not, that is, they have behavior

that fundamentally deviates from both the heavy Landau Fermi liquid phase and

the metallic antiferromagnetic ordered phase. For example, the resistivity of a Fermi

liquid has a predominantly T 2 behavior, but this exponent might be 2 + ε in the

quantum critical region. The non-Fermi liquid phase occupies a fan-shaped region

of the T > 0 phase diagram that originates from the T = 0 QCP, and the quantum

fluctuations driving this phase’s properties arise from the QCP. For heavy fermion

compounds that do not need much tuning for the antiferromagnetic critical point at

T = 0, there are a few common properties, such as a specific heat near the QCP that

diverges as Cv
T
∼ log T0

T
, quasilinear resistivity ρ ∼ T 1+ε, and spin susceptibility that

deviates from the Curie type as χ ∼ 1/(χ0 + cT a) where a < 1 [8]. This behavior

should be contrasted with that of the more conventional heavy Fermi liquid.

1.1.2 Heavy Fermi liquid signatures

A theoretical conjecture [9, 10, 11] predicted that in the strong coupling limit, that the

Kondo coupling is an attractive fixed point, which was later confirmed by numerical

renormalization group [12]. Wilson recognized that this meant a ground state made
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of Kondo singlets (such as the heavy fermion metal phase) matched the universality

class of the Landau Fermi liquid. Landau’s Fermi liquid theory recognized that states

far from the Fermi surface can be projected out, if one took into account the effect

of their interactions. This led to the postulated quasiparticles, which are low-lying

states very close to the Fermi surface which act like an ideal (noninteracting) electron

gas through the effective interactions. This relied on the notion that the states of the

noninteracting theory can be adiabatically connected to that of the interacting one,

provided the interactions do not break symmetry or undergo a phase transition. In

this system, the Kondo screening manifests Kondo resonances, which then hybridize

with conduction electrons, forming the quasiparticle Landau Fermi liquid [13, 14, 1,

3, 2]. Corresponding quasiparticle peaks in the single-electron spectral function have

been observed in heavy fermion materials [1, 2].

The Fermi liquid picture is internally consistent, and provides a conceptual basis

in which to understand heavy fermion systems [15, 7]. Inside the Fermi liquid regime,

the properties of the metal have the same qualitative form as an electron gas, but in

terms of the quasiparticle density of states and Landau parameters [14] ∗.

An illustrative example within the Fermi liquid regime is this simple version of

the Kondo lattice model:

H =
∑
kσ

εkc
†
kσckσ + JK

∑
i

Si · si (1.1)

= H0 +H1, (1.2)

where a local moment spin Si = 1
2

∑
αβ f

†
iασαβfiβ, couples to a conduction electron

spin si = 1
2

∑
αβ c

†
iασαβciβ; the Pauli matrix vector is σ = 1̂σ1 + 2̂σ2 + 3̂σ3. H0

∗This behavior in the Kondo lattice depends mainly on two low-energy scale conditions. (1)

The temperature fluctuations must be small enough for the local moment spins to be adequately

screened, which is to say, kBT < kBTK . (2) Any magnetic ordering affecting the local moments’

ability to form Kondo singlets must be adequately small, so we neglect moment-moment exchange

coupling for now [3].
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alone describes a noninteracting Fermi gas, with εk = k2

2me
, fixed particle number and

elementary particle-hole excitations. The quasiparticle lifetime is defined close to the

Fermi surface as τ ∼ (ε − εF )−2, and clearly becomes infinite at the Fermi surface,

and is thus long-lived.

Several measurable quantities are then renormalized in terms of the quasiparticle

parameters. For instance, the specific heat is

C(T ) = γT =
2π2N(εF )k2

B

3
T → m∗

kFk
2
B

3
T,

essentially linear in temperature, with a finite density of states at the Fermi energy

N(εF ), and an enhancement coefficient γ ∝ m∗. The effective mass is enhanced as

m∗

me

= 1 +
F s

1

3
(1.3)

where F a,s
i are antisymmetric/symmetric phenomenological Laundau parameters. The

ratio of m∗
m

also indicates how strongly interacting the fermions of the system are, and

with quasiparticle masses in heavy fermion metals up to orders of magnitude greater

than the bare masses, they are safely said to be strongly correlated systems [1, 15, 7].

The magnetic susceptibility is similarly enhanced by the effective mass, but is inde-

pendent of temperature:

χ = 2N(εF )µ2
B →

1

1 + F a
0

µ2
BkFm

∗

π2
.

Anomalous Hall effect

The anomalous Hall effect (AHE) is a transverse current that arises in response to a

voltage (electric field) being applied to a system with broken time reversal symme-

try. In the normal Hall effect (NHE), a magnetic field is applied perpendicular to

the electric field, and the Lorentz force produces the transverse current. It is then

not surprising that AHE is observed mainly in ferromagnetic materials, but also in

paramagnetic materials in a magnetic field, and in exotic paramagnetic states that

can create tiny, effective magnetic fields.
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It turns out that Hall effect measurements provide valuable results in low tem-

peratures and high field strengths relevant to heavy fermion materials, which may be

inaccessible to other methods. The Hall coefficient is expressed as RH = −1/(nec),

where e, c are the electron charge and speed of light, and n is the electron density.

Since the density ultimately determines the occupation of electrons per site per spin

(i.e. the filling factor), RH can be used to infer information about the evolution of

the Fermi surface. For instance, in experiments on YbRh2Si2, experimentalists ana-

lyzed the Hall coefficient across a QCP and found a jump in RH that is interpreted

as reconstruction of the Fermi surface [16, 17]. The measured Hall signal contains

contributions from all the symmetry-allowed Hall effects in the material, though in

standard heavy fermion systems, the normal Hall effect (NHE) tends to dominate,

while the AHE is usually very small at low temperatures [18]. However, the AHE can

be separated out and can yield valuable information about the system, depending on

which mechanism is producing the AHE. In heavy fermion systems, the mechanisms

are resonant skew scattering [19, 20], and the intrinsic mechanism [21].

Resonant skew scattering is an extrinsic, disorder-driven process by which the

free electron carriers asymmetrically scatter off virtual bound states of the localized

magnetic moments. Typically, above the coherence temperature T > Tcoh, the local

moments fluctuate strongly, scattering more carriers and producing a larger resistiv-

ity as Tcoh is approached. Under the coherence temperature T < Tcoh, the f electrons

become constituents of coherent band formation, reducing the scattering dramati-

cally [18]. This forms a broad peak centered around the coherence temperature. As

the Fermi liquid is fully formed at lower temperature, the Hall coefficient RH(T ) de-

creases to a background normal Hall coefficient R0 at T = 0. The skew-scattered AHE

has a strong temperature dependence in heavy fermion systems. This is because the

skew-scattering AHE conductivity is first order in the Bloch state transport lifetime

τ , which is in turn influenced by thermal processes at finite temperature [22].

The intrinsic, Berry phase contribution to the AHE is the predominant quantity
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of interest in Ch. 2, because probing this quantity yields information about the sys-

tems’ topological properties [23, 24]. The Berry curvature is an intrinsic property

of the Fermi surface [25], but is usually cast in terms of bulk interband terms that

only depend on the Bloch band structure, and so are more amenable to calculation.

Deferring discussion of the Berry curvature and topology concepts until Sec. 1.2.1, a

finite intrinsic AHE conductivity σAHxy physically manifests from nontrivial topology in

time-reversal symmetry broken systems. In heavy fermion systems, the spontaneous

magnetization in ferromagnetically ordered local moments could drive the AHE, but

antiferromagnetism is far more common. However, much more of the heavy fermion

quantum phase diagram is paramagnetic or disordered. In this case, the magneti-

zation is replaced by an effective magnetic flux localized around plaquettes of the

unit cell. This phenomena occurs in frustrated spin systems, in the presence of non

collinear spin textures or quantum spin liquid states, or can arise from spin orbit in-

teraction or orbital magnetic effects [22]. In Ch. 2, frustrated Kondo lattices in 2D are

shown to produce a finite AHE that can jump dramatically at a Kondo destruction

QCP, or smoothly crossover, depending on the lattice (plaquette geometry).

1.1.3 Models

Periodic Anderson model

The periodic Anderson model (PAM) treats the constituents of the heavy fermion

system as fermionic degrees of freedom (rather than spin degrees of freedom). It

is a theory of how moments form, using two ideas: first, that a strong Coulomb

repulsion could block electron transport (as in Mott insulators) and second, that one

could reinterpret the virtual bound state resonances resulting from the magnetic ion’s

electron interactions as a tunneling process between delocalized and localized species.

The PAM Hamiltonian is

H = Hc +Hcd +Hd, (1.4)
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where the conduction electrons are typically a simple nearest-neighbor hopping

Hc = t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
− µ

∑
i,σ

nciσ, (1.5)

but is not limited to nearest-neighbor hopping terms; similarly, there is the hybridiza-

tion,

Hcd = V
∑
i,σ

(
d†iσciσ + H.c.

)
, (1.6)

and the atomic-like localized energy levels with Coulomb repulsion,

Hd = Ed
∑
i,σ

d†iσdiσ + U
∑
i

ndi↑n
d
i↓, (1.7)

where the operator d represents the physical 4f fermions.

To illustrate the physics and a typical means of solving the model, consider the

strongly correlated mixed-valence regime. Here, coherent quantum charge fluctua-

tions occur between a restricted set of valence configurations, i.e. Ce3+(4f 1)↔Ce4+(4f 0),

or infinite-U Anderson model f 0 + e− ↔ f 1. In both cases, one can view the interme-

diate state as a bosonic exchange, in preparation for the auxiliary boson treatment.

At each site, transform d†jσ = f †jσbj. By introducing the conserved charge Q, the

auxiliary bosons bj keep track of the deviations of the valence electrons from their

maximum charge density, nf + nb = Q. A simplification can be made by mean field

approximation, where the boson is averaged over the unit cell 〈bj〉 → r, and the con-

sequence follows that the Kondo resonance width narrows around the Fermi energy

bjV → Ṽ = rV , r < 1. The charge Q constraint also renormalizes the localized f

electron level by including a Lagrange multiplier term as well: Ef → Ẽf = Ef + `.

The free parameters that keep track of the valence fluctuations and chemical

potential are determined by solving the set of saddle point equations 〈 δH
δr
〉 = 0,

〈 δH
δ`
〉 = 0 in terms of the free parameters, r, `. At the saddle point, the physical f -

electrons neatly split into a one-body Hamiltonian of quasiparticles representing the

coherent part of the wavefunction, and the incoherent part is represented by r2 [1].
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Luckily for the work that is needed in Chapters 3-5, this system of equations can be

solved by numerical methods (See Appendix B6).

Kondo lattice model

Heavy fermion systems with stoichiometrically integral values of f electrons are de-

scribed by the Kondo Lattice model. Many heavy fermion metals have been identified

as Kondo lattices, and often have the most pronounced deviation from normal metal

behavior. The Kondo lattice model connects the microscopic properties of a lattice

dense with local moments, through Kondo singlet formation, screening and scattering

processes, and combines them with the RKKY moment-moment interaction, leading

to a picture of the emergent macroscopic properties of heavy fermion metals.

The three-dimensional Kondo Lattice Hamiltonian is [3]

HKL =
∑
ij

tijc
†
iσcjσ +

∑
ij

IijSi · Sj +
∑
i

JKSi · sc,i, (1.8)

where the first term describes a single conduction band with hopping matrix tij, the

second term describes the RKKY interaction Iij between local moment spins Si,Sj,

and the third term the Kondo coupling JK between a local moment and conduction

electron sc,i.

The Kondo effect refers to the physics that follows from adding two ingredients:

one (or more) magnetic ions, and a band of conduction electrons, due to their spins

interacting. In HKL this is mathematically expressed through the JK term, showing

how the magnetic moment of f electrons at site i, with spin Si, couples to the con-

duction electron spin si of conduction electrons. Kondo singlet structure constrains

the coupling constant JK > 0. The broad consequences of the Kondo effect can be

divided into high and low energy regimes, separated by a characteristic energy scale

called the Kondo temperature TK , which is different depending on whether it is a lat-

tice or single impurity model. At temperatures or magnetic fields T
TK
� 1, H

TK
� 1,

the local moment(s) act as an incoherent inelastic scattering center for conduction
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electrons, and when both T
TK
� 1, H

TK
� 1, the Kondo coupling dominates, entan-

gling the moment and electron in a singlet ground state, whose low energy excitations

are heavy Landau quasiparticles [1, 3, 2]. At low temperatures, the moments are

strong elastic scattering centers, rendered spinless by conduction electron screening.

In lattice systems, the onset of screening and how it relates to low temperature Fermi

liquid or zero-temperature non-Fermi liquid behaviors is a more subtle matter. The

Kondo interaction is named after the physicist Jun Kondo, who originally used this

coupling exchange term in a single impurity model to perturbatively calculate the

scattering rate and resistivity of rare-earth metals (cf. Section 1.1.2) [26, 27].

The moment-moment coupling seen in the Kondo lattice is of the Ruderman-

Kittel-Kasuya-Yosida (RKKY) type, an indirect coupling mediated by hyperfine in-

teractions with intervening conduction electrons, effectively acting as a typical mag-

netic exchange interaction. Two local moment spins Si, Sj at sites i and j, contribute

coupling terms in the Kondo lattice Hamiltonian

HRKKY =
∑
ij

IijSi,Sj

Where Iij is a matrix element proportional to the inter-moment distance, hyperfine

splitting, and effective conduction electron mass [28, 29, 30]. In the Kondo lattice,

the RKKY term tends to order the localized moments, and in most real systems this

exchange is antiferromagnetic, leading to magnetically ordered phases in the overall

phase diagram.

1.1.4 Global phase diagram

The heavy fermion system clearly has varied and rich behavior, even if one ana-

lyzes them with rudimentary models. A key concept of quantum phase transitions

and quantum criticality is that the zero temperature ground states and their QCPs

are the real drivers of the finite temperature behavior. The global phase diagram

was introduced to describe the quantum phases of antiferromagnetic Kondo lattice
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Figure 1.2 : Heavy fermion global phase diagram. [31, 32, 33, 34, 35, 36] The param-
eter G controls the amount of geometric frustration of local moments, while JK mod-
ifies the magnitude of the Kondo coupling. AF labels phases with antiferromagnetic
ordering of local moments, and P labels paramagnetic phases. Subscript L denotes
large Fermi surface phases, and subscript S denotes small Fermi surface phases. The
dashed lines, labelled “I”, “II” and “III”, illustrate three trajectories of quantum phase
transitions. Near the borders of the AF phase boundaries, large magnetic fluctuations
may lead to emergent exotic phases in heavy fermion systems.

systems, and subsequent works analyzed each phase transition type through three tra-

jectories [31, 32, 37, 38]. Each phase is labeled according to local moment magnetic

state (P=paramagnetic, AF=antiferromagnetic), and the size of the Fermi surface

determines the subscript (S=small, L=large). The global phase diagram is shown in

Fig. 1.2. This diagram assumes that T = 0, the RKKY exchange I is overall small

compared to the bare conduction electron bandwidth D; the axes are shown in units

of D.

Along the horizontal axis, JK tunes the strength of the Kondo coupling. Since JK

generically favors Kondo singlets and causes the f fermions to participate in the elec-

tronic properties, this parameter can be thought of as tuning through Fermi surface

reconstruction/destruction transitions. The vertical axis is controlled by the frustra-

tion parameter G, which tunes the amount of instability towards antiferromagnetic
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ordering of the local moments. This instability essentially increases the quantum

fluctuations of the local moments, but can physically manifest in a few forms. For

instance, the RKKY could have competing components, such as antiferromagnetic

interactions between both nearest-neighbor (n.n.) and next nearest-neighbor (n.n.n.)

sites, forming the frustration parameter as G = Innn/Inn, or one can situate the

magnetic moments on a frustrated or low-dimensional lattice. Each of these serves to

destabilize the Néel state, and encourage the system towards restoring spin rotational

symmetry in paramagnetic phases, which can either break or preserve translational

symmetry in spin Peierls or spin liquid phases, respectively.

The dashed lines mark three types of trajectories through phase space that quan-

tum phase transitions might take. This depends on whether the blue (S-L critical

Kondo breakdown, Fermi surface transition) or red (AF to P) phase boundary is

encountered first. In all cases, the endpoint phases are the heavy Fermi liquid PL

phase, and the metallic antiferromagnet AFS, and the line represents the tuning of

some nonthermal parameter δ. The trajectories can be understood in the following

way:

• Trajectory I, critical Kondo destruction:

A direct AFS to PL second order phase transition. This phase transition for

finite temperature is shown in Fig. 1.1, where δc can be labeled as a local QCP.

This QPT has been evidenced in experiments as well. For instance, experimen-

talists measured a Fermi surface jump in the normal Hall effect across the QCP

in YbRh2Si2 [16, 17]; another group observed coincident Kondo breakdown and

AF order destruction in CeRhIn5 based on de Haas-van Alphen measurements

of the Fermi surfaces [39, 34, 35].

• Trajectory II, Kondo destruction in AF order:

Here, the Kondo breakdown energy scale is separated from, and lies inside the

magnetically ordered phase. The QCP between the AFL and PL phases is a

Hertz-Moriya-Millis type QCP [40, 41, 42], since the heavy quasiparticles of
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the PL phase can form spin density wave type order in the AFL phase [31].

Experimentally, this transition type was studied in Ce3Pd20Si6 [33, 43].

• Trajectory III, Kondo destruction outside of order:

The magnetically ordered phase is now separate from the Kondo breakdown

scale, and the Kondo breakdown S−L transition occurs within the paramagnetic

states. From the AFS phase, the PS phase can be a spin liquid or spin Peierls

state, where PS can be a non Fermi liquid. This disordered phase of the moments

persist across the PS to PL transition, eventually becoming a heavy Fermi liquid.

In experiments, the frustrated and distorted kagomé Kondo lattice CePdAl [44,

36] was found to have such a type of QCP.

1.1.5 Spin-orbit coupling

Spin-orbit coupling (SOC) is an interaction between the spin and orbital degrees of

freedom. Usually, SOC is considered a source of energy splitting of an orbital multiplet

into energy level sets (along with crystal field effects), and if a well-separated two-

level set is most energetically favorable, then a pseudospin-1
2
fermion can represent the

resultant state. This treatment is used frequently as a first step to modeling the heavy

transition metals: partially-filled 4d and 5d electron systems, such as the strontium

ruthenates, pyrochlore iridates, and perovskites, which have a Hubbard energy on the

scale of the conduction electron bandwidth, U/D ∼ 1, and a SOC that is as relevant

as the crystal field and kinetic terms [45]. In heavy fermion systems, further or more

direct treatment of the spin orbit coupling has been typically neglected in models,

since it is the large Coulomb interaction (U/D > 1, on the scale of Mott insulators)

that is the largest and most relevant energy scale, aiding in splitting the f multiplet

into the two-state system amenable to models, and leading to magnetism and other

strongly correlated effects.

There have been some recent developments that have brought SOC back into direct

consideration in heavy fermion systems. In the past, the orbital structure was mainly
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acknowledged in works on multiorbital Kondo effects, orbital anisotropy, or orbitally-

selective Kondo effects.With the explosion of new heavy fermion superconductors

that have been discovered in the last couple decades, the SOC has been shown to

play an important role in the noncentrosymmetric (i.e. lacking inversion symmetry)

variety of heavy fermion superconductors (such as CePt3Si)[46, 47], as it lifts spin

degeneracy [48], and enhances the mixing of even and odd parity states, which are

both needed for the superconducting pairing [49].

It is my view that the importance of SOC in heavy fermion systems has been

under-appreciated, because it can alter the symmetry of the system, which we will

see later has important consequences for band structures and topology. A simple ob-

servation supports this statement. In 4f materials, the size of the SOC is lesser than

the Coulomb energy, yet very substantial, somewhere between that of the 4d and 5d

electron systems. Phenomena in those systems driven by SOC should be relevant in

heavy fermion systems as well. The predominant effect that SOC facilitates is band

inversion, that is, a reordering of energy bands, a mixing of quantum numbers into

pseudospin degrees of freedom, and a change in symmetry of the bands that may

allow crossing at a point, instead of opening a gap [50, 51]. Band inversion is a cru-

cial ingredient in realizing many varieties of topological phases, such as nontrivially

configuring parity eigenvalues in and making surface states gapless in topological in-

sulators; or producing the gaplessness in topological semimetals, whether the gapless

manifold is a point, line, loop, or sphere [52, 53, 54, 55]. Earlier works have analyzed

topological Kondo insulator states that effectively treat the f electron’s SOC through

an odd-parity form factor in the Kondo hybridization [56, 57, 58, 59, 60]. The pre-

cise consideration of the SOC in a realistic treatment and context is warranted, to

distinguish whether the form of SOC makes a difference to topological phases. In-

tuitively, any type of band inversion mechanism should fulfill the same role toward

topological phases, since its utility in topological systems is how it affects the Hamil-

tonian symmetry. For heavy fermion systems, it may be that there are a wide variety
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of mechanisms that can play this role, so it is important to study the SOC more

generally [61, 17].

1.2 Topological metals

This thesis work has an overall goal to explore the metallic topological phases driven

by strong correlations in heavy fermion systems. Since metallic Kondo systems yield

an abundance of information from transport and thermodynamic signatures, it is rea-

sonable to think topological metallic states should yield rich insights. The transport

carriers can tell us about the local moments, via their participation in the Fermi sur-

face via the Kondo effect. For topological phases, may provide insight into the Berry

phase effects as well as eventually studying the internal quantum degrees of freedom

that Kondo singlet entanglement can make macroscopic. It also intuitively means

that experiments on topological Kondo metal candidates could be performed in rapid

dialogue with theory, in ways that are perhaps a barrier for other strongly correlated

topological platforms.

The thesis deals with two types of topological metals: time-reversal symmetry

broken (TRSB) metals with a finite Fermi surface in frustrated two dimensional Kondo

lattices, and Weyl semimetal phases in both TRS preserved and TRSB versions of a

Fu-Kane-Mele [62] Anderson lattice model in the strongly correlated (Kondo) regime.

The next half of the introduction gives an overview of the concepts in topology that are

relevant to subsequent chapters, and relates these phenomena back to heavy fermion

systems.

1.2.1 Topology, Berry curvature, and invariants

The physical quantity that lies at the heart of an electronic topological phase’s “topo-

logicalness” is the Berry phase. The Berry phase is the condensed matter manifes-

tation of the geometric phase acquired when a wave system explores the landscape

of its parameter space as a result of a cyclic adiabatic process. In condensed matter
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systems, a particle in state n acquires a Berry phase γn as the Hamiltonian parame-

ters are varied around a closed manifold S without eigenstate transitions away from n

(i.e., adiabaticity is preserved). The Berry phase allows us to calculate related topo-

logical invariants in topological metallic systems, as the nontriviality of the electronic

wavefunction is reflected in transport measurements.

A related quantity is the Berry curvature Ω, which plays a part in the semiclassical

equation of motion of Bloch electrons, ~v = ∇kεk − E ×Ω, with εk the one electron

energy dispersion, and E the applied electric field (it is assumed here no magnetic

field is applied). This is why the Berry curvature is sometimes referred to as a

fictitious magnetic field, because it plays an analogous role in momentum space to

the magnetic field in the Lorentz force equation in real space. The Berry curvature

of a band indexed by n is defined as

Ωn(k) = ∇k ×An(k) (1.9)

= (Ωyz
n (k),Ωzx

n (k),Ωxy
n (k)) , (1.10)

Ωab
n (k) =

∑
n6=n′

Im
〈nk|∂kaHk|n′k〉〈n′k|∂kbHk|nk〉

(En − En′)2
. (1.11)

In the one electron band theory of a time reversal symmetry broken system, the

intrinsic Hall conductivity σab is related to the Chern number Cn, a topological in-

variant, as

σab =
e2

2π~
∑
n

∫
BZ

d3kf(εk)Ωab
n (k) (1.12)

=


e2

2π~ε
abcKc, band n partly occupied

e2

2π~CnG
C
n , band n fully occupied

, (1.13)

where n indexes all bands, f(εk) is the Fermi occupation function, Kc is a non-

quantized number for topological metals with a finite Fermi surface, εabc is the Levi-

Civita tensor, and for completely occupied bands Cn gives the quantized Chern num-

ber on lattice planes indexed by the primitive reciprocal lattice vector GC
n [25]. If
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the highest occupied bands are partially occupied and form Fermi surfaces Sα, this
expression can be expanded via integration by parts to become an integral over the

Fermi surfaces. If for simplicity one assumes there is a single surface, and that bands

below the Fermi level intersecting the Brillouin zone boundary do not contribute, we

have

K =
1

2π

∫
S

Ωµν(s)kF (s)dsµ ∧ dsν , (1.14)

(1.15)

where s = {s1, s2}, s ∈ S is a parameterization on the Fermi surface. In this sense,

the Berry curvature is considered to be a Fermi surface property [25].

On the other hand, in Weyl semimetals, one uses a local integral in the Brillouin

zone as a topological invariant. This is given by the Berry flux Φn through a surface

manifold (S) enclosing a single Weyl node (band touching point) as

Φ(S) =
1

2π

∫
∂S
dS ·Ω(k) (1.16)

=
1

4π

∫
d3k

(2π)3
∇k ·Ω(k), (1.17)

At a Weyl node degeneracy, one can see the denominator of Eq. 1.11 is zero, causing

a singularity in the Berry curvature field in the momentum space [Eq. (1.10)]. In this

way, the Weyl nodes and anti-nodes can be distinguished by the sign of this invariant,

and the Berry flux density is ∇ ·Ω = ±4πδ3(k), so that the Berry flux is

Φ(S) = ± 1

4π

∫
d3k

(2π)3
4πδ3(k) = ±1.

This tells us that the Berry flux is a quantized number that counts the number

and sign of Berry charges (monopoles) in a given system. This is the reason for

the “monopole” terminology: the Berry flux acts like the total charge of the Weyl

point, and their associated Berry curvature (magnetic) field has a monopole or anti-

monopole configuration. When the Weyl (anti-)nodes are pinned to the immediate

vicinity of the Fermi energy, as happens in our Weyl-Kondo semimetal solution, the
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monopoles and associated Berry curvature singularities appear very close to the Fermi

surface. In other words, the Fermi surface comprises tiny Fermi pockets that surround

the Weyl (anti-)nodes, and states on the Fermi surface have a very large Berry cur-

vature.

1.2.2 Frustrated magnetism and chiral spin liquids

This section addresses Ch. 2, which models chiral spin liquids on the Heisenberg

spins of two-dimensional frustrated Kondo lattice models. It is best to know what

each component of such a model means, and how it normally acts on its own before

combining concepts together.

“Frustration” is a quantity or quality of a magnetic system that prevents it from

realizing a magnetically ordered state. Such a broad definition encompasses most

any thing that can destabilize the Néel state and restore spin rotational symmetry.

Usually in highly frustrated systems, more exotic disordered paramagnetic states can

be much more energetically favorable at low temperatures, such as in spin Peierls or

spin liquid phases. Magnetic states that arise from frustration can also suppress the

Néel temperature to TN = 0, which is valuable for understanding quantum critical

properties [63].

There are three mechanisms of frustration that are relevant in this thesis:

1. Reduced dimensionality.

A physical spin has all spatial directions at its disposal, but in dimensions

d ≤ 2 experiences highly anisotropic (and therefore strong) interactions and

fluctuations along the spatially available directions. This form of frustration in

low-dimensional systems was formally proven by Mermin and Wagner, yielding

the following theorem [64, 65]:

Theorem 1.1

In the quantum, isotropic Heisenberg model in d ≤ 2 with short range interac-

tions and for arbitrary spin s, there is no spontaneously broken spin symmetry
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for T > 0.

To illustrate the physical mechanism of the Mermin-Wagner theorem, one can

estimate the fluctuations of the order parameter [66]. By presuming an anti-

ferromagnetically ordered ground state, the sublattice magnetization M can be

written as the sum of static and fluctuating parts:

M = S −∆S = S − 1

N

∑
k

〈a†kak〉 (1.18)

At low T , the sublattice magnetization fluctuations are approximately

∆S ∼
∫
kd−1dk

k
, (1.19)

which clearly diverge for d = 1, indicating that the presumption of order was

incorrect; but most of all that fluctuations are very strong in low dimensions.

This means that low dimensional systems experience frustration through strong

thermal and quantum fluctuations that preserve continuous symmetries [67].

2. Frustrated magnetic interaction.

While introducing the global phase diagram in Sec. 1.1.4, I used the example

of the next-nearest neighbor RKKY interaction Innn being tuned relative to

the nearest neighbor RKKY interaction Inn. This would destabilize nearest-

neighbor Néel correlations for suitable lattices [63]. An example of anisotropy-

induced frustration is the J1 − J2-model on the square lattice, where J1(J2) is

the (next-)nearest neighbor interaction with J1 = 2J2. In Ch. 2, this model

becomes the basis for the RKKY part of a Kondo lattice model. There we take

advantage of the large N limit to characterize the quantum chiral spin liquid

phases [64].

3. Geometric frustration.

In this frustration type, the spins are arranged on a structure that itself desta-

bilizes the Néel state. This generically occurs on lattices with an odd number of
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spins in the magnetic unit cell (non-bipartite lattices), or arrangements where

spins point in a non-collinear configuration; any configuration where there are

spins unable to satisfy the conditions of Néel order [63]. Examples of geomet-

rically frustrated lattices are the triangular lattice, the pyrochlore lattice, and

the kagomé lattice, the last of which is used for the second frustrated Kondo

lattice model in Ch. 2.

Once frustration destroys antiferromagnetism, there are a few phases which can

take its place. Most are some type of valence bond state, that is, there is some

configuration of spin pairs in a rotationally invariant singlet state across the mate-

rial [68, 69, 70, 71, 72]. Another possibility are spin liquid phases, which are more

likely to occur in systems with small spin quantum numbers, since this enables com-

paratively larger quantum fluctuations [63]. It is also possible for valence bond states

to compete with spin liquid phases [73].

However, because we are motivated by discovering links between AHE, frustration,

and quantum criticality, we are interested in frustrated quantum antiferromagnetic

states that spontaneously break time reversal symmetry: chiral spin liquids [74]. A

mean field theory treatment of the Heisenberg model by Refs. [75, 76], the valence

bond operator is written in terms of fermions as

S(x) · S(y) =
1

2
c†α(x)cβ(x)c†β(y)c†α(y)− 1

4
nc(x)nc(y), (1.20)

where the second term contributes an arbitrary energy shift that can be absorbed

into the chemical potential. The Hamiltonian becomes

H =
I

2

∑
x,j

c†α(x)cβ(x)c†β(x + êj)c
†
α(x + êj), (1.21)

where êj are unit vectors along the xj valence bond directions, subject to the con-

straint c†α(x)cβ(x) = 1. Once the problem is recast into a Lagrangian formalism,

a Hubbard-Stratonovich transformation simplifies the spin-spin terms by introduc-

ing complex link variable fields χj[77]. These fields are parametrized similar to a
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Peierls term, as χj(x, t) = ρj(x, t) exp(iAj(x, t)). Next, a saddle point approxima-

tion is used, since the solutions determine the action extremizing configurations of

the ρj(x, t), Aj(x, t) parameters. The valence bond crystal phases break translation

and/or rotation invariance so they are not considered here. Instead, assuming the

bond amplitude is uniform in time and space ρj(x) = ρ, note that the circulation

of the phases is equivalent to the flux around a plaquette, where a plaquette is the

shortest possible closed loop formed from adjacent lattice bonds:
∑

plaq.Aj(x, t) = B.
For time reversal symmetry to be broken, B must a constant value besides 0 and π,

mod 2π [77]. States that satisfy this condition are chiral.

1.2.3 Topological semimetals

We now turn our focus on three dimensional topological semimetals (TSMs). This

phase of matter is characterized by a low-dimensional Fermi surface that encloses

zero Luttinger volume, and some topological invariant that uniquely characterizes it.

In other words, TSMs are a category of non-trivial phases that are gapless in the

bulk spectrum. This TSM category encompasses Dirac, quadratic, Weyl semimetals

(with point nodes), and semimetals with line, loop, and sheet node geometries [52,

78, 55]. Topological materials all possess bulk-boundary correspondence, which is

the guaranteed presence of nontrivial surface states that correspond uniquely to the

nodal geometry (or nontrivial insulator gap), usually involving a surface projection

of a bulk degeneracy [77], and can serve as another diagnostic of the TSM type. The

topological invariants are usually some quantized number (modulo 2π) of an area

integral over highly singular Berry curvature or contour integral over Berry phase

that winds nontrivially (c.f. Section 1.2.1).

Crucially, this zoo of TSMs only manifest in these particular patterns of nodal

geometry - in particular locations of the Brilluoin zone - because of generically pre-

dictable crystal group symmetry properties, and a few other Hamiltonian ingredients.

However, since this thesis is focused on Weyl semimetal phases, that is the example
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we will use. Crystal lattices naturally possess lattice points, inversion centers, ro-

tational axes and mirror planes, where from some point r, the associated symmetry

operation S maps the Hamiltonian H(r) → H ′(r′) and r′ makes use of those special

points/lines/etc. as reference:

H ′(r′) = S−1H(r)S. (1.22)

Consequentially, the eigenenergies will be degenerate at the inversion centers, and

along rotational axes and mirror planes. In particular, nonsymmorphic symmetries

are a reliable starting choice for a crystal lattice system, because they permit low-

dimensional manifolds of energy degeneracy that can always be found on the Brillouin

zone boundary (BZB)†. Nonsymmorphic operations leave lines and loops of degener-

acy, creating a nodal line or loop semimetal (the degeneracy depends on the other

lattice symmetries). The nonsymmorphic space groups are generated when an n-fold

mirror or rotation operation is compounded with a fractional translation vector (i.e.

non-Bravais lattice vectors) that takes n-many translations to traverse the unit cell,

usually along a translation vector in the mirror plane or along the rotation axis [55, 79].

Because the fractional translation vector repeats n-times in the unit cell, this often

encompasses n-fold sites within unit cell, or from the opposite perspective, the unit

cell has been expanded to incorporate n sites, where it is often said, e.g. as for n = 2,

that the unit cell has been “doubled”. In momentum space, every n-fold expansion of

the unit cell corresponds to an n-fold reduction of the Brillouin zone, or "Brillouin

zone folding." Since symmetry begets degeneracy, nonsymmorphic symmetries beget

degeneracy affixed to the Brillouin zone boundary.

As an illustrative example of how a nonsymmorphic symmetry works, consider the

Shastry-Sutherland lattice (SSL) in Fig. 1.3. Like all nonsymmorphic space groups

have multiple (four) sites per unit cell. The SSL has wallpaper group p4g, which has

fourfold rotation symmetry and the intersection of perpendicular glide axes at each

†Of all 230 space groups, 157 are nonsymmorphic.
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Figure 1.3 : (a) The Shastry-Sutherland lattice, with four-site unit cell indicated with
the dotted line. (b) shows the first mirror (σx) operation of this lattice’s nonsym-
morphic glide symmetry G = {σ̂x|t̂1/2x }, followed by (c) a half unit cell translation,
t̂
1/2
x .

site, plus twofold rotations and perpendicular reflection axes at the center of each

square. The example nonsymmorphic glide symmetry to consider is G = {σ̂x|t̂1/2x },
for the glide line shown on the x̂ axis in Fig. 1.3. The mirror σ̂x (Fig. 1.3(b)) reflects

the lattice across the x̂ axis, then a translation by half a Bravais lattice vector, t̂1/2x

aligns the bonds again (Fig. 1.3(c)). In k space, the four site unit cell causes a folding

of the BZ, causing degeneracy at the boundary.

However, the degeneracies created by nonsymmorphic symmetries are robust, so a

nonsymmorphic crystal with SOC is a natural starting point to search for topological

semimetals. If spin, orbital, flavor, and so on are included, a semimetal line can

be multiply degenerate. It just so happens that the degeneracy at these lines are

protected by the lattice translation symmetry, such that SOC cannot open a gap [55,

80]. However, we know SOC facilitates band inversion, which is a first step toward

topological materials. Other mechanisms that can produce band inversion (but which

perhaps do not have the same beneficial translation properties) are lattice strain and

scalar relativistic effects [81, 82, 83]. For a minimal model, the coincidence of a

nonsymmorphic symmetry plus SOC may produce a Dirac semimetal degeneracy at

a BZB, like the one that appears for the diamond lattice at the X point [62, 84].

A Dirac semimetal has two pairs of twofold-degenerate bands, which are fourfold
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degenerate only at the Dirac point, and importantly, the bands disperse linearly in

all directions from the Dirac point. Their multiplicity can be reduced (toward a Weyl

semimetal) by breaking inversion symmetry or time reversal symmetry [55, 85, 86, 87],

with the option of preserving the composite PT -symmetry [88], or breaking both

symmetries [89]. Generally, breaking TRS causes the Dirac hourglass to split into a

pair; breaking ISB causes two pairs to split off. The nodal points remaining are Weyl

nodes, constituting the Weyl semimetal (WSM) topological phase. The associated

topological invariant is the Berry monopole charge, as explained in Sec. 1.2.1 and

shown in Eq. 1.18.

A particularly important property of nonsymmorphic semimetals, is that some

nonsymmorphic space groups can enforce a semimetal phase at a particular band

filling, based on group symmetry arguments [90]. In principle, this means that if

one had a nonsymmorphic system, plus a band inversion mechanism, plus a broken

time-reversal or inversion symmetry, there is guaranteed to be a nodal gapless band

touching somewhere in the spectrum (modulo some filling factor), on a set of BZB

momenta. Until recently, these types of degeneracies have only been used in non-

interacting electron systems. A central ingredient of this thesis is to explore its role

– including its cooperation with correlation effects – in strongly correlated electron

systems.

1.3 Heavy fermion systems as a topological metals platform

There are a few compelling reasons why the heavy fermion systems should be con-

sidered to find topology, and why the topologists should consider looking into the

heavy fermion systems. First, it has recently been estimated that around 27% of the

∼25,000 materials in the ICSD database host non-trivial topological phases [91, 92].

This means that even in Kondo and heavy fermion systems, there ought to be ex-

amples of topological phases, especially nodal semimetals. There is some supporting

evidence for this assertion. The SOC is an energetically relevant scale in heavy fermion
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materials, so its band inversion effects (including topological phases) should be both

easily discovered and considered theoretically in heavy fermion systems.

Second, there are also several compelling questions that can be asked once strong

correlations driven topology is considered. Heavy fermion systems link the volume

enclosed by the Fermi surface to the size of the NHE. Can the Berry curvature singu-

larity on the Fermi surface be the quantity related to the AHE signal in heavy fermion

systems? Since the f electron magnetism derives from the dominant energy scale in

the system, how would the strong correlations possibly alter the band structure in

the vicinity of nodes? Since the Kondo reconstruction transition changes the effec-

tive system filling, how will this affect the nonsymmorphic enforcement of degenerate

quasiparticle states?
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Chapter 2

Anomalous Hall effect and quantum criticality in
geometrically frustrated heavy fermion metals

2.1 Introduction

Heavy-fermion metals are prototypical systems to study quantum criticality [93, 94].

The simplest model to describe these systems is a Kondo lattice, which comprises a

lattice of local moments and a band of conduction electrons. The local moments are

coupled to each other by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions,

and are simultaneously connected to a band of conduction electrons through an an-

tiferromagnetic (AF) Kondo exchange interaction (JK). In recent years, it has been

realized that the effect of geometrical frustration is a potentially fruitful but little

explored frontier. From a theoretical perspective, geometrical frustration enhances

G, the degree of quantum fluctuations in the magnetism of the local-moment compo-

nent, and a JK − G phase diagram at zero temperature has been advanced [32, 38].

Figure (2.1a) illustrates the proposed global phase diagram [32]. From a materials

perspective, there is a growing effort in studying frustrated Kondo-lattice compounds

[95, 96, 97, 98, 99, 17].

The pyrochlore heavy-fermion system Pr2Ir2O7 is one such example. Both the

measured magnetic susceptibility and specific heat [99] suggest the presence of Kondo

coupling between the Ir d-electrons and the local f -moments of Pr. No magnetic order

is found down to very low temperatures, suggesting that the f -moments of Pr develop

a quantum spin liquid (QSL) ground state [99]. In addition, experiments found a

sizeable zero-field anomalous Hall effect (AHE) for magnetic field applied along the

[111] direction [100, 101], revealing a spontaneous time-reversal-symmetry-breaking
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(TRSB) state.

This system is of considerable theoretical interest [102, 103, 104, 105, 106, 107,

108]. With a few exceptions [109], the role of the Kondo effect has not been discussed

in this context, and neither has its relationship with the observed quantum criticality.

Yet, the recent observation of a large entropy and a divergent Grüneissen ratio [110]

clearly point to the importance of the Kondo coupling and the role of a proximate

heavy-fermion quantum critical point (QCP). In the case of AF heavy-fermions sys-

tems, the normal Hall effect has been successfully used to probe the evolution of the

Fermi surface across the QCP and thereby the nature of quantum criticality [17].

Given that the AHE is also intrinsically a Fermi surface property (other than contri-

butions from fully occupied bands) [25], we are motivated to address whether it can

serve as a diagnostic tool about the QCP in the present setting. In addition to elu-

cidating the AHE, studying this issue promises to bring about the much-needed new

understanding of quantum phases and their transitions in geometrically-frustrated

heavy-fermion metals [17]. Given the complexity of the three-dimensional pyrochlore

lattice, we will gain insights from related but simpler models.

In this Chapter, we study both the frustrated J1− J2 quantum Heisenberg model

on a square lattice as well as the J1 only model on the Kagomé lattice with a Kondo

coupling to conduction electrons. For the square lattice, we consider the regime of

strong frustration where a chiral spin liquid (CSL) phase [74] becomes energetically

competitive in the large-N limit. The Kagomé lattice, representing a layer perpen-

dicular to the [111] direction of the pyrochlore lattice, is a two-dimensional network

of corner-sharing triangles [Fig. (2.1d)]with a strong geometrical frustration. A CSL

phase is found in a spin-1
2
model on the Kagomé lattice [111, 112]. Using the large-

N limit [113], we will also study the CSL physics on this lattice. We develop the

method to calculate the AHE in both a Kondo-destroyed (PS) and a Kondo-screened

(PL) paramagnetic phase. We show that each phase may have a sizable AHE. More-

over, across a QCP, the AHE jumps when the Fermi surface suddenly reconstructs.
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2.1.1 Recent experiments on Pr2Ir2O7

There are several exciting recent experimental developments on Pr2Ir2O7 and its

close chemical cousins. In Ref. [114], authors mapped out the predicted quadratic

band touching using angle-resolved photoemission spectroscopy (ARPES). This is

supported by first-principles calculations, which together is evidence that Pr2Ir2O7 is

in a Luttinger semimetal phase, where the long-range Coulomb screening at the node

likely plays a role in observed non-Fermi liquid behavior, predicted in Refs. [105, 106].

The point node is a fourfold degenerate of Γ8 non-Kramers doublets protected by time-

reversal symmetry and the fourfold-rotational symmetry within the Oh point group

at Γ. The authors also remark that the quadratic node is more or less exactly at the

Fermi energy, but no explanation is offered. In Ref. [115], authors used electron doping

via subsitution of Pr to Nd and hole doping to tune the one-electron bandwidth and

band filling, yet found that in the paramagnetic phase, the quadratic band touching

is robust in the paramagnetic pyrochlore iridates.

However, in Chapters ??, a time-reversal symmetric Weyl-Kondo semimetal model

is put forth where the Weyl-Kondo nodes can be “Kondo pinned” to the Fermi energy

via nonsymmorphic symmetry and strong correlations, albeit the nodes are at the zone

boundary [116, 117]. Coincidentally the Weyl-Kondo semimetal is implemented on the

diamond lattice, which has the same space group (no.227, Fd3̄m) as the pyrochlore

lattice. Future work should determine whether the Kondo-pinning concept could be

extended to other symmetries or the zone center.

Additionally, several other important recent contributions have shed light on var-

ious aspects of Pr2Ir2O7. From characterizing the low-frequency electrodynamic re-

sponse of Pr2Ir2O7 thin films with THz spectroscopy, the authors of Ref. [118] find

that the finite temperature dc resistivity minimum can be attributed to competition

between plasma frequency and scattering rates. In Ref. [119], doping the system

close to the metal-insulator transition (Nd0.5Pr0.5Ir2O7) demonstrated that for an ap-

plied magnetic field H‖ [001], the magnetotransport showed a Hall signature of the
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semimetal phase as the magnetic moments transitioned from the magnetically ordered

insulating all-in-all-out state to 2-in-2-out state, and later Hall experiments gathered

more evidence of a Weyl semimetal phase [120].

Finally, a very recent study tuned Y1−xPrxIr2O7 magnetically via substitution

of nonmagnetic yttruim to magnetic praseodymium; this tunes the f − d interaction

dictating the Kondo effect, which screens the local Pr3+ moments from ordering except

for x ≥ 0.8 [121].

2.2 Frustrated Kondo-lattice models

We study the following Hamiltonian:

H = Hf +Hd,0 +HK . (2.1)

Here Hf describes a Heisenberg model. For the square lattice case, Hf includes

both J1 and J2 couplings between the nearest neighbors (nn, 〈〉) and next-nearest

neighbors (nnn,〈〈〉〉). We focus on the maximally frustrated case of J2/J1 = 1/2.

For the Kagomé case, the lattice is geometrically frustrated and it suffices for Hf to

only contain the nn term. For both models with Hf alone, CSL states appear in the

large-N limit [74, 75].

The local moments are coupled to a band of conduction electrons, described by

Hd,0 = −∑ij,α(tijd
†
iαdjα + h.c.), through an AF Kondo interaction JK , specified

by HK = JK
∑

i si · Si. Here, si =
∑

α,β
1
2
d†iασαβdiβ is the spin of the conduction

electrons, with σ describing the Pauli matrices. We take t〈ij〉 = t = 1 as the energy

unit.

We use the Schwinger fermion representation for the f -moments Si =
∑

α,β
1
2
f †iασαβfiβ,

with the constraint
∑

α f
†
iαfiα = 1, so that Hf =

∑
α,β,ij

Jij
2
f †iαfiβf

†
jβfjα −

Jij
4
niαnjβ.

In a large-N approach [75], the spin index α = 1, 2, . . . , N , and the constraint is

enforced by a Lagrangian multiplier λi. Both the Heisenberg term and the Kondo

term are decoupled by a Hubbard-Stratonovich (HS) transformation. The large-N
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Figure 2.1 : (a) The global phase diagram of Kondo lattice systems [32]; (b) In highly
frustrated regime (large, fixed G), JK tunes through a Kondo-destruction QCP (at
JK,c) from a Kondo-destroyed chiral spin liquid (PS,chiral) to a Kondo-screened phase
(PL,chiral). The χ fields of the square lattice are shown in the π-flux state (without
the diagonal bonds) and the CSL state (c), and in the CSL state on the Kagomé
lattice (d): the arrows denote the sign of gauge field Aij, and φ is the flux through a
triangle.

limit leads to

Heff = HQSL +Hd,0 +HK,eff + Ec, (2.2)

with

HQSL = −
∑
ij,α

Jij
2

(χjif
†
iαfjα + h.c.)−

∑
i,α

λi(f
†
iαfiα − 1/2),

HK,eff = −
∑
i,α

JK
2

(πid
†
iαfiα + h.c.),
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and

Ec =
∑
ij

NJij|χij|2/2 +
∑
i

NJK |πi|2/4.

The HS fields are defined as χij =
∑

α 〈f †iαfjα〉 and πi =
∑

α 〈f †iαdiα〉. Both can be

decomposed into amplitudes and phases: χij = ρije
iAij , πi = ρK,ie

iAK,i . The Kondo

parameter πi can be taken to be real, with its phase absorbed into the field λi, i.e.

πi → ρK,i.

By minimizing the total energy of Heff in Eq. (2.2), we obtain the phase dia-

grams containing the chiral states, in which JK tunes the system from the PS to PL

phases (see Appendix 7). Across a second-order Kondo-destroyed PS,chiral to PL,chiral

quantum phase transition, Fig. (2.1b), we consider a power-law form for the Kondo

hybridization amplitude:

ρK(JK) = ρr

(JK − JK,c
JK

)1/2

, (2.3)

for JK > JK,c and ρK = 0, for JK < JK,c. We take JK,c as the value where the PL,chiral

state becomes energetically competitive and ρr to be the saturation value of ρK ; both

values are adopted from the self-consistent calculation for a given set of (nd, J1) (see

Appx. 7).

2.3 Mechanism of the Anomalous Hall effect

2.3.1 The Kondo destroyed PS phase

In the Kondo-destroyed PS phase, the static hybridization amplitude vanishes, 〈ρK,i〉 =

0. However, we show that there are TRSB terms in the effective interactions among

the conduction electrons, which are mediated by the spinons via Kondo couplings.

Such terms yield a zero-field AHE.

We will single out the TRSB terms. The TRSB order parameter of the CSL is

the spin chirality,

Êijk = Si · (Sj × Sk) , (2.4)
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where the indices {i, j, k} mark the three sites of an elementary triangle of the lattice.

In the CSL state, Eijk = 〈Êijk〉 = 2i(Pijk − Pikj), where Pijk = χijχjkχki. On

symmetry grounds, we expect Eijk to be coupled to the composite chiral operator of

the conduction electrons, si · (sj × sk). With this guidance, we obtain the coupling

from integrating out the f -fermions and expanding in powers of JK ; this can be

represented by triangular diagrams (Appendix 7), similar to what is used in deriving

a chiral current. We find

Hchiral =
∑ J3

K

3!
(si · Si)(sj · Sj)(sk · Sk)︸ ︷︷ ︸

4-loop contraction

=
J3
K

2× 3!
Eijksi · (sj × sk) .

(2.5)

In the Kagomé case, the hexagons can also possess non-trivial fluxes. We can,

however, restrict to the lowest order in JK in the effective TRSB coupling for the

conduction electrons, which corresponds to considering only the fluxes of the triangles.

The chiral interactions appearing in Hchiral have a six-fermion form. We can de-

couple it by introducing a novel HS transformation that involves triangular diagrams,

as described in Appendix 7. We end up with an effective bilinear theory:

Hd = Hd,0 +Hd,1 (2.6)

with

Hd,1 =
∑

ij(gφ
∗
jφid

†
idj + φ∗iG

−1
φ,ijφj + h.c.) . (2.7)

Hence, the φ-fields are constrained by the condition that, if they are integrated out,

we obtain the same chiral interaction terms at O(g3) by computing the same triangle

diagrams. We then replace φ∗jφi by its expectation value Gφ,ij and arrive at

Hd,1 →
∑
ij

(gGφ,ijd
†
idj + h.c.). (2.8)

It turns out that Gφ,ij = e−iAij , and g can be identified as g = JK(|Eijk|/2)1/3.

Because the bosonic Gaussian integral has a minus sign relative to its fermionic coun-

terpart, Gφ,ij carries the opposite flux pattern in order to produce the same Hchiral
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when we integrate out the φ-fields. Physically, the flux (or chirality) pattern has the

opposite sign to that of the CSL state, so that the antiferromagnetic Kondo cou-

pling will lower the ground state energy. This effective Hamiltonian is adequate for

qualitatively describing the AHE physics of our original Hamiltonian. Other non-

chiral effective interactions would only renormalize the Fermi liquid parameters of

the d-electrons for the PS phase. We can then use the Streda formula [122, 22] to

compute the AHE coefficient σxy: The involved quantities are the current operator

of the conduction electrons va(k) = ∂aHd(k), the Berry curvature Fxyn (k), and the

Fermi function f(εn(k)) (see Appendix 7).

2.3.2 The Kondo screened PL phase

In the PL phase, the Kondo order parameter ρK,i acquires a non-zero expectation

value ρK = 〈ρK,i〉. There should still be an incoherent piece of the slave boson fields:

ρK,i = ρK + π′i. Moreover, we focus on the case where the chiral order survives in

the PL phase. By considering the same triangular diagrams now mediated by the

incoherent part π′i, the fluctuations of the Kondo order parameter still mediate chiral

interactions similarly as in the PS phase, but with a reduced weight. However, there is

no spectral sum rule for the π′is to readily obtain this reduced weight. In Appendix 7,

we use a slave rotor approach for the periodic Anderson model to determine this

factor. The effective Hamiltonian of the d-electrons becomes

Hd = Hd,0 + [1− (4JK/U)ρ2
K ]Hd,1 , (2.9)

where U is the onsite Hubbard repulsion. We fix U = 2W , i.e. twice the d-electron’s

bandwidth throughout the calculations. Keeping only the ρK part of HK leads to the

following effective Hamiltonian:

HPL = Ψ†

 HCSL −JKρKI
−JKρKI Hd

Ψ , (2.10)

where I is an identity matrix, and Ψ† = (f †, d†). We have dropped the spin index, as

there are no longer the spin-flip terms. The Hamiltonian HPL is smoothly connected
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with Hd at the QCP. We then compute σxy from the Streda formula Eq. A-22, noting

that the current operators remains the same, i.e. va(k) = ∂aHd(k).

2.4 Anomalous Hall effect and its evolution across the Kondo-

destruction quantum critical point

For the square lattice, we focus on the π-flux and the CSL states. For the π-flux phase,

HQSL = Hπ−flux is given by Ari,ri+x̂ = π/2, Ari,ri+ŷ = −(−1)xiπ/2, ρri,ri+x̂+ŷ =

0, where ri = (xi, yi), x̂ (ŷ) is the unit vector along the x(y)-axis. For the CSL

Hamiltonian, HQSL = HCSL is derived from Hπ−flux with ρri,ri+x̂+ŷ 6= 0, Ari,ri+x̂+ŷ =

Ari+ŷ,ri+x̂ = (−1)xiπ/2, as illustrated in Fig. (2.1c).

In the Kagomé lattice, any state with triangle flux φ 6= 0, π breaks TRS. Here, we

choose φ = −π
2
such that the hexagon flux of −2φ = π preserves TRS. The (−π

2
, π)

spinon flux state has three well-separated bands; the middle flat band is exactly at the

Fermi energy, and the Chern numbers are Clower = −1, Cmiddle = 0, Cupper = +1 [22].

The phase structure of the corresponding χij fields is plotted in Fig. (2.1d).

The zero-field anomalous Hall conductivity σxy of the J1−J2−JK model is shown

in Fig. (2.2(a)) for a representative parameters nd = 0.5, J1 = t and that of the

Kagomé lattice model in Fig (2.2(b)) for J = t, nd = 3/8. Across the QCP, σxy is

found continuous in the former, but jumps in the latter.

In order to understand the different behaviors, we show the Fermi surfaces (dashed

lines) and the difference of band-summed Berry curvature ∆Ω(k) (color map) between

the PS phase and the PL phase right across the QCP in Fig. (2.3(a)) for the square

lattice and (2.3(b)) for the Kagomé lattice (the actual Ω(k) is shown in Appendix 7).

Here ∆Ω(k) = ΩPS(k)− ΩPL(k) and Ω(k) =
∑

nFxyn (k)f(εn(k)). We find the Fermi

surfaces remain continuous for the square lattice model. Both Fermi surfaces of the

PS and PL phases are the black dashed line. However, for the Kagomé case, the Fermi

surfaces show a jump. The Fermi surface of the PS phase is the black dashed circle

in the middle of the BZ which overlaps with the red, singular part of ∆Ω(k). Those
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Figure 2.2 : Zero field anomalous Hall conductance (σxy), normalized by the quantum
conductance σ0 = e2/h, for J1 = t = 1, J2/J1 = 1/2, nd = 0.5 on a square lattice (a)
and for J = t, nd = 3/8 on a Kagomé lattice (b).

of the PL phase are the blue dashed-line pockets at the edge of the BZ. These results

reflect the number of sites per unit cell as well as the gapped/gapless nature of the

spinon spectrum. However, ∆Ω(k) is singular and concentrates near Fermi surfaces

in both cases. This is because the onset of Kondo hybridization, which acts as a

topological mass term in the large-N theory, generally reconstructs the wavefunctions

in a singular fashion regardless of whether the Fermi surfaces jump or not.

To reconcile the notions of the singular wavefunction (or Berry curvature) with the

continuous AHE, we note that σxy is intrinsically a Fermi surface property [25] (apart

from the contributions of fully occupied bands). We can analytically show the follow-

ing by computing the diagonal Berry’s connection in the ρK → 0 limit (see Appx. 7).

When the Fermi surface is continuous, σxy must be continuous; here, the projected

wavefunctions of the d-electron are continuous, and so are the Berry connections.

By contrast, when the Fermi surface jumps, the projected wavefunctions completely

reconstruct due to the existence of two non-commuting topological “masses": the

Kondo screening and a non-zero jump of the spinon Lagrangian multiplier λ.
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(a) (b)

Figure 2.3 : Fermi surfaces (dashed curves) and the difference in the band-summed
Berry curvature distribution ∆Ω(k) between the PS phase and the PL phase (color
map) of the square lattice model (a) and the Kagomé lattice model (b).

2.5 Discussion

Energetic considerations show that the Kondo coupling favors gapless states (see

Appendix. 7). For the pyrochlore lattice, the CSL state in the large-N limit is gap-

less [123], and is thus expected to have a similar sequence of quantum phase transitions

involving the chiral state. The gapless nature raises the prospect of a sudden recon-

struction of the Fermi surface across a Kondo-destruction QCP in the pyrochlore case

and, by extension, a jump in the zero-field AHE, especially for a magnetic field along

the [111] direction.

We expect the jump of the zero field AHE, σxy, to be robust against weak disorder.

The AHE effect considered here is intrinsic, i.e. determined by the quasi-particle band

structure. Scattering from weak non-magnetic impurities only yields a small (linear

in disorder) correction [124]. Moreover, the Fermi-surface jump across a Kondo-

destruction QCP has been evidenced to be robust against weak disorder [94, 17].
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Figure 2.4 : Lattice plane of g-SmS.

Thus, our results can be tested in Pr2Ir2O7, once a control parameter is identified to

tune across the implicated zero-field QCP [110].

We note that the anomalous Hall conductance from the mechanism advanced here

is quite large. Experiments in Pr2Ir2O7 [101] find a large sheet σxy reaching about

0.7% of σ0 ≡ e2/h, a value which readily arise in our mechanism (Fig. 2.2(a)).

We have emphasized the role of the Kondo effect and its critical destruction.

Future work should incorporate ab initio features, not only on the directional de-

pendence in the pyrochlore lattice but also the effect of the ab initio electronic band

structure and the non-Kramers nature of the ground-state crystal-field level of the

Pr ions [125, 109]. However, we have derived our conclusions in geometrically frus-

trated Kondo systems and demonstrated the robustness of our results by connecting

them with the evolution of the Fermi surfaces. Thus, we expect our results to remain

qualitatively valid in the more realistic settings. For Pr2Ir2O7, this is so given the

substantial evidence for the role of the Kondo coupling such as the large entropy

observed in the pertinent low-temperature regime [110]. It may also be instructive to

explore related effects in other f -electron systems with geometrical frustration, such

as UCu5 under ambient conditions[126] and when suitably tuned through a QCP.

We close by proposing an engineered Kondo-insulator interface as a model mate-

rial for the frustrated Kondo lattice Hamiltonian. The motivation for the proposed
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setting comes from recent advances in the molecular beam epitaxy (MBE) of Kondo

systems [127, 128]. As a promising candidate material we suggest the golden phase

of SmS (g-SmS). In bulk samples this phase is stable under pressures between about

0.65GPa [129] and 2GPa [130]. As MBE thin-film the phase might be stabilized by

lattice mismatch with an appropriate substrate. g-SmS crystallizes in a face-centered-

cubic (fcc) structure of rock-salt (NaCl) type. A lattice plane is shown in Fig. (2.4).

g-SmS shows characteristics of a Kondo insulating state in transport [131, 130], ther-

modynamics [132], and point contact spectroscopy [131]. From thermal expansion

and heat capacity measurements the energy gap was estimated to be 90K on the

low-pressure side of the g-SmS phase [132]. At temperatures low compared to this

scale, the proposed lattice plane could then serve as a setting to realize the frustrated

J1 − J2 Kondo lattice and study the anomalous Hall effect.
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Chapter 3

Weyl-Kondo semimetals in heavy fermion systems

3.1 Introduction

Strongly correlated electrons represent a vibrant field that continues to expand its

horizon. In heavy fermion systems, strong correlations make their ground states

highly tunable and give rise to a rich phase diagram that features antiferromagnetic

order, Kondo-screened and other paramagnetic phases, and beyond-Landau quantum

phase transitions [93, 5]. In the simplest cases, these systems can be considered in

terms of the local moments originating from the f -electrons that Kondo couple to the

spins of the conduction electrons. The interaction generates the Kondo spin-singlet

ground state; the ensuing entanglement with the conduction electrons converts the

local moments into quasiparticles that can hybridize with the conduction electrons.

This leads to a metal with a large, strongly renormalized effective carrier mass, which

is the hallmark of the heavy fermion system classification. The resulting state could

be a heavy fermion metal or a Kondo insulator depending on whether the chemical

potential lies within or falls between the hybridized bands [133, 17, 57]. Electronically

intermediate between the two cases are heavy fermion semimetals [134, 135, 136,

137, 138, 139, 140, 141]. Several of these have a broken inversion symmetry, including

CeRu4Sn6 [134, 135] and Ce3Bi4Pd3 [137].

Semimetal systems are being theoretically studied in the noninteracting limit with

spin-orbit coupling, which plays an essential role in obtaining topological phases of

electronic matter [142, 143, 144, 145]. The Weyl semimetal in three dimensions (3D)

was recently evidenced experimentally [146, 147, 148]. It possesses bulk excitations

in the form of chiral fermions, with massless relativistic dispersions near pairs of
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nodal points in the momentum space, as well as surface states in the form of Fermi

arcs [86, 149, 150, 151]. Because both the bulk and surface states are gapless, one

can expect that the Weyl semimetals are particularly susceptible to the influence

of electron correlations. Moreover, strong correlations in non-perturbative regimes

typically mix different degrees of freedom in generating low-energy physics; thus, in

any strongly correlated Weyl semimetal, the low-energy electronic excitations are ex-

pected to involve degrees of freedoms such as spin moments, which may be harnessed

for such purposes as information storage and retrieval.

In this chapter, we advance the discovery of a Weyl-Kondo semimetal state in a

concrete microscopic model on a 3D noncentrosymmetric lattice. The focus of this

chapter is to present the qualitative features of the Weyl-Kondo semimetal solution.

Our work also illustrates a new approach towards constructing electronic topological

states driven by strong correlations. Because this mechanism may have general rele-

vance beyond the present context, we reserve a detailed exposition of the mechanism

in the next chapter. This model contains the strongly correlated 4f electrons and

a band of conduction spd electrons, respectively. It is realistic in that it captures

the inversion-symmetry breaking and spin-orbital coupling in a tunable way. In the

regime where the electron-electron repulsion is much larger than the width of the

conduction-electron band, the interaction-induced renormalization factor can be very

large. In addition, because the inversion-symmetry breaking term, spin-orbit cou-

pling and other electronic couplings are renormalized in very different ways, it is a

priori unclear whether any Weyl state can be realized in a robust way. Our work

advances an affirmative answer in this well-defined microscopic model. Moreover, we

demonstrate the key signatures of the Weyl-Kondo semimetal phase, which turn out

to be realized in several new heavy fermion compounds.
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(a) (b) (c)

Figure 3.1 : The 3D noncentrosymmetric lattice and associated Brillouin
zone. (a), Diamond lattice with hopping t and onsite energy ±m differentiating
A, B sublattices. The solid lines connect nearest neighbors; (b), Interlocking tetra-
hedral sublattice cells illustrating how the distinction between the A and B sublattices
(Zincblende structure) invalidates the inversion center lying on the point marked “X”;
(c), The Brillouin zone (BZ) of the diamond lattice, with Weyl nodes shown in
blue/red, and high symmetry contour used for Fig. 3.2 in green.

3.2 The periodic Anderson model in three dimensions

The Hamiltonian for the periodic Anderson model to be studied is

H = Hd +Hcd +Hc. (3.1)

For a proof-of-concept demonstration, we consider a cubic system in which the break-

ing of inversion symmetry can be readily incorporated. This is a diamond lat-

tice, which comprises two interpenetrating face-centered cubic lattices A and B

(Fig. 3.1(a)). We have chosen this lattice because it is nonsymmorphic and, in the

case of non-interacting electrons, band touching is enforced by its space group sym-

metry. The model contains d and c electrons, corresponding to the physical 4f and

spd electrons, respectively. The first term, Hd, describes the d electrons with an

energy level Ed and a Coulomb repulsion U . The strongly correlated d-electrons are

specified by

Hd = Ed
∑
i,σ

d†iσdiσ + U
∑
i

ndi↑n
d
i↓. (3.2)
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The coupling between the two species of electrons is described by a bare hybridiza-

tion of strength V . The hybridization term is as follows:

Hcd = V
∑
i,σ

(
d†iσciσ + H.c.

)
. (3.3)

In the above two equations, the site labeling i means i = (r, a), where r runs over

the Bravais lattice of unit cells and a runs over the two sites, a = A, B, in the unit

cell.

The conduction-electron HamiltonianHc realizes a modified Fu-Kane-Mele model [62].

Each unit cell has four species of conduction electrons, denoted by sublattices A and

B and physical spins ↑ and ↓: ΨT
k =

(
ck↑,A ck↑,B ck↓,A ck↓,B

)
. Its Hamiltonian is

Hc = t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
− µ

∑
i,σ

nciσ

+ iλ
∑
〈〈ij〉〉

[
c†iσ (σ · eij) cjσ − H.c.

]
+m

∑
i,σ

(−1)ic†iσciσ. (3.4)

There is a nearest-neighbor hopping t (chosen as our energy unit), and a Dresselhaus-

type spin-orbit coupling of strength λ. The broken inversion symmetry, Fig. 3.1(b), is

captured by an onsite potential m that staggers between the A and B sublattices [87,

145]. The band basis is arrived at by applying a canonical transformation on Hc

written in the sublattice and spin basis. It corresponds to a pseudospin basis [87],

defined by the eigenstates | ±D〉.
The conduction electron Hamiltonian can be expressed as Hc =

∑
k Ψ†k hk Ψk,

and

hk = σ0 (u1(k)τx + u2(k)τy +mτz) + λ (D(k) · σ) τz. (3.5)

Here, σ = (σx, σy, σz) and τ = (τx, τy, τz) are the Pauli matrices acting on the spin

and sublattice spaces, respectively, and σ0 is the identity matrix. In the first term,
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u1(k) and u2(k) are determined by the conduction electron hopping, t〈ij〉 = t between

nearest-neighbor sites (〈ij〉). The second term specifies a Dresselhaus-type spin-orbit

coupling between the second-nearest-neighbor sites (〈〈ij〉〉), which is of strength λ

and involves vector D(k) =
(
Dx(k), Dy(k), Dz(k)

)
. Specifically,

u1(k) = t

(
1 +

3∑
n=1

cos(k · an)

)
, (3.6)

u2(k) = t

3∑
n=1

sin(k · an), (3.7)

Dx(k) = sin(k · a2)− sin(k · a3)− sin(k · (a2 − a1))

+ sin(k · (a3 − a1)), (3.8)

and Dx, Dy are obtained by permuting the fcc primitive lattice vectors an. The

canonical (unitary) transformation, Ψ̆k = S†σΨk, leads to

Hc =
∑
k

Ψ̆†k

hk+ 0

0 hk−

 Ψ̆k, (3.9)

hk± = u1(k)τx + u2(k)τy + (m± λD(k))τz. (3.10)

We have used a pseudospin basis [87], defined by the eigenstates |±D〉 with eigenvalues

D · σ
D
| ±D〉 = ±| ±D〉 (3.11)

where D(k) is written out

D(k) ≡ |D(k)| =
√
Dx(k)2 +Dy(k)2 +Dz(k)2. (3.12)

The eigenenergies of the | ±D〉 sectors are simply obtained to be

ετ±D = τ
√
u1(k)2 + u2(k)2 + (m± λD(k))2 (3.13)

where τ = (+,−). We use this transformation on the full Anderson model in the

strong coupling limit, at the saddle point level where the Lagrange multiplier `i,

which enforces the local constraint b†ibi +
∑

σ f
†
iσfiσ = 1, takes a uniform value, `.
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This corresponds to Ξ̆k = S†σΞk. Anticipating the separability of the | ± D〉 sectors
by specifying Ψ̆T

k =
(
ψ̆Tk+, ψ̆

T
k−

)
, Ξ̆T

k =
(
ξ̆Tk+, ξ̆

T
k−

)
, where ψ̆Tk± =

(
ψ̆k±,A, ψ̆k±,B

)
and

ξ̆Tk± =
(
ξ̆k±,A, ξ̆k±,B

)
, we obtain the strong coupling Hamiltonian

Hs =
∑
k,a=±

(
ψ̆†ka ξ̆†ka

)hka − µ12 rV 12

rV 12 (Ed + `)12

ψ̆ka

ξ̆ka

 , (3.14)

which separates as Hs = Hs
+ +Hs

−. We obtain the full spectra of the eight hybridized

bands,

E (τ,α)
±D (k) =

1

2

[
Es + ε̃τ±D + α

√(
Es − ε̃τ±D

)2
+ 4V 2

s

]
, (3.15)

where α = (+,−) indexes the upper/lower quartet of bands, ε̃τ±D = ετ±D − µ, and

(Es, Vs) = (Ed+`, rV ). In Appendices A6-ch:app-prb, we prove that the |+D〉 sector
is always gapped, whereas the |−D〉 sector allows Weyl nodes when 0 < m

4|λ| < 1, and

determine µ = −V 2
s /Es fixes the Fermi energy at the Weyl nodes at the 1/4-filling.

To determine r, `, Hs must be solved self-consistently from the saddle-point equa-

tions

1

2Nu

∑
k,a=±

〈
ξ̆†kaξ̆ka

〉
+ r2 = 1,

V

4Nu

∑
k,a=±

[〈
ψ̆†kaξ̆ka

〉
+ H.c.

]
+ r` = 0, (3.16)

where Nu is the number of the unit cell. The equations are solved on a 64× 64× 64

cell of the diamond lattice, with error ε ≤ O(10−5).

We consider the regime with the onsite interaction U being large compared to the

bare c-electron bandwidth (U/t → ∞). We approach the prohibition of d fermion

double occupancy by an auxiliary-particle method [152]: d†iσ = f †iσbi. Here, the f †iσ
(bi) are fermionic (bosonic) operators, which satisfy a constraint that is enforced

by a Lagrange multiplier `. This approach leads to a set of saddle-point equations,

where bi condenses to a value r, which yields an effective hybridization between the f -

quasiparticles and the conduction c-electrons. The details of the method are described
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in the Materials and Methods section. To be definite, we consider the case that the

d-electron level lies below the conduction-electron band. We analyze the problem at

a quarter filling, corresponding to one electron per site.

The corresponding quasiparticle band structure is shown in Fig. 3.2. Nodal points

exist at the Fermi energy, in the bands for which the pseudospin (defined earlier) has

an eigenvalue −D. They occur at the wave vectors kW , determined in terms of the

hybridized bands,

E (+,+)
−D (kW ) = E (−,+)

−D (kW ),

E (+,−)
−D (kW ) = E (−,−)

−D (kW ), (3.17)

for the upper and lower branches, respectively. The Weyl nodes appear along the Z

lines (lines connecting the X and W points) in the three planes of the BZ as illustrated

in Fig. 3.1(c). The locations of the Weyl points being on the Z lines are specific to the

zinc blende lattice. For other types of lattices, the Weyl nodes may occur away from

the high symmetry parts of the Brillouin zone. We stress a key feature of the nodal

excitations, namely they develop out of the Kondo effect: the bands near the Fermi

energy have a width much reduced from the noninteracting value; the reduction factor

corresponds to r2 (the ratio of the Kondo energy to the bare width of the conduction

electron band), which is about 0.067 in the case shown in Fig. 3.2. We remark that

in the absence of hybridization between the f - and conduction electrons, the ground

state would be an insulator instead of a semimetal: the f -electrons would be half-filled

and form a Mott insulator, while the conduction electrons would be empty, forming

a band insulator.

To demonstrate the monopole flux structure of the Weyl nodes, we calculate the

Berry curvature in the strong coupling regime. We show the results at the kz = 2π

boundary of the 3D BZ, in the grey plane of Fig. 3.1(c) whose dispersion is shown

in Fig. 3.3(b). In Fig. 3.3(b), the arrows represent the field’s unit-length 2D projection

onto the kxky-plane, Ω̂(kx, ky, 2π) = |~Ω(kx, ky, 2π)|−1
(

Ωyz(kx, ky, 2π), Ωzx(kx, ky, 2π)
)
.
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Figure 3.2 : Energy dispersion of the bulk electronic states. Shown here is the
energy vs. wavevector k along a high symmetry path in the BZ, defined in Fig. 3.1(c).
The bottom four bands near EF show a strong reduction in the bandwidth., The bare
parameters are (t, λ,m,Ed, V ) = (1, 0.5, 1,−6, 6.6). In the self-consistent solution,
r ' 0.259 and ` ' 6.334.

The Weyl node locations (blue/red circles) are clearly indicated by the arrows flowing

in or out, representing negative or positive monopole “charge.”

We next analyze the surface states. Focusing on the (001) surface, we find the

following energy dispersion for the surface states:

E(kx, ky) = −2 sin

(
kx
4

)
sin

(
ky
4

)
+
V 2
s + (Es)

2

2Es

−
√(

2 sin

(
kx
4

)
sin

(
ky
4

)
− V 2

s − (Es)2

2Es

)2

+ V 2
s , (3.18)

where we define the parameters (Vs, Es, µs) = (rV,Ed + `,−(rV )2/(Ed + `)). (For

the derivation, see Supplementary Information.) In Figs. 3.4(a)-3.4(b), we show the

energy dispersion along a high symmetry path in the k-space. The solid lines represent

the surface states, and the dashed lines show where they merge with the bulk states

and can no longer be sharply distinguished. The surface electron spectrum has a

width that is similarly narrow as the bulk electron band (compare Fig. 3.4(b) with

Fig. 3.3(a)), implying that the surface states also come from the Kondo effect. The

surface Fermi arcs (where E(kx, ky) = 0) connect the Weyl nodes along kx = 0 and

ky = 0, separating the positive and negative energy surface patches, marked by the

solid black lines in Fig. 3.4(a).

As is typical for strongly correlated systems, the most dominant interactions in
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Figure 3.3 : Characterization of the Weyl nodes. The plots are in the (kx, ky)-
plane of the four Weyl nodes at kz = 2π (gray plane in Fig. 3.1(c)). (a), Energy
dispersion, showing the band degeneracies at the Weyl node points and a strong
reduction of the bandwidth; (b), The distribution of the Berry curvature field. The
bare parameters are the same as in Fig. 3.2.

heavy fermion systems are onsite, making it important to study them in lattice mod-

els (as opposed to the continuum limit). Our explicit calculations have been possible

using a well-defined model on a diamond lattice that permits inversion-symmetry

breaking. Nonetheless, we expect our conclusion to qualitatively apply to other non-

centrosymmetric 3D systems. Finally, the WKSM is expected to survive the effect of

a time-reversal symmetry breaking term, such as a magnetic field; this is illustrated

in the Supplementary Information.

3.3 Discussion

We now turn to the implications of our results for heavy fermion semimetals. The

entropy from the bulk Weyl nodes will be dictated by the velocity v∗, and the cor-

responding specific heat per unit volume has the following form (see Supplementary
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Information):

cv ∼ (kBT/~v∗)3kB (3.19)

The utility of thermodynamical quantities as a key signature reflects an important

distinction of the WKSM from weakly correlated Weyl semimetals. The Kondo tem-

perature of heavy fermion systems is usually considerably smaller than the Debye

temperature. This is to be contrasted with the weakly correlated systems, in which

the bandwidth of the conduction electrons is typically much larger than the Debye

temperature. Therefore, in a WKSM, the nodal contributions to the entropy would

dominate over the phonon component. The corresponding form of entropy also im-

plies that the nodal excitations will have large contributions to the thermopower.

Eq. (3.19) can be readily tested, given that an important feature of the overall

heavy fermion materials class is the existence of a considerable number of semimetal

compounds [17]. A noncentrosymmetric heavy-fermion system Ce3Bi4Pd3 has re-

cently been discovered to display semimetal behavior based on transport measure-

ments, and its specific heat is well described in terms of Eq. (3.19) [Ref. [137]]. A

fit in terms of our theoretical expression Eq. (S29) (Supplementary Information) re-

veals an effective velocity, v∗, that is three orders of magnitude smaller than that

expected for weakly correlated systems, reflecting the reduction in the energy scale –

the Kondo temperature for Ce3Bi4Pd3 – from the bandwidth of the latter by a similar

order of magnitude [137]. This analysis provides strong evidence that Ce3Bi4Pd3 is a

candidate WKSM system with strongly-correlated Weyl nodes, and provides the moti-

vation for further studies on such quantities as magnetotransport and high-resolution

angle-resolved photoemission spectroscopy (ARPES) in this system. More recently,

Eq. (3.19) has been used to fit the specific heat of another heavy fermion system,

YbPtBi, suggesting it be another candidate WKSM system [153].

Our theoretical results provide guidance in the search for Weyl semimetals in other

heavy fermion systems. For instance, in the 4f -based system CeSb, Weyl physics has

been suggested based on magnetotransport measurements [154, 155]. Even though
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any nodes in this system are likely to be away from the Fermi energy, the fact that

its energy scales are low makes it likely that they can readily be tuned towards the

Fermi energy by pressure or chemical doping, and we propose specific heat mea-

surements and our (3.19) as a means of ascertaining the role of the 4f -electrons in

this system. In addition, the noncentrosymmetric CeRu4Sn6 also displays semimetal

properties [134] and has been discussed as a potential topological system [135]. Its

electronic structure has been studied by ab initio calculations combined with dynam-

ical mean field theory (DMFT) [134, 156] or the Gutzwiller projection method [157].

While the two types of calculations disagree on the low-energy dispersion and the

latter study does not appear to capture the strong renormalizations expected in a

Kondo system, the existence of linearly-dispersing nodes and their Weyl nature have

been suggested in the latter study. The low-temperature specific heat in single crys-

talline CeRu4Sn6 [158] implies the importance of the 4f -electrons to the low-energy

physics but does not appear to have the form of (3.19). Our theoretical results sug-

gest that further thermodynamic and thermoelectrical studies will be instructive in

ascertaining the potential WKSM nature of CeRu4Sn6.

3.4 Conclusions

We close with several observations. First, we have focused on a model defined on

an nonsymmorphic diamond lattice, which is representative of the cases in which the

crystallographic space group symmetry and filling enforce a semimetal state for non-

interacting electrons [84, 86]. Our study here demonstrates that for Kondo systems

defined on such a lattice and in the presence of inversion-symmetry breaking, the

Weyl-Kondo semimetal phase arises in a robust way. On the other hand, for non-

interacting systems in 3D a Dirac semimetal can also arise at the phase transition

between a topological and a normal insulator. It will therefore be instructive to search

for Weyl-Kondo semimetal phase at 3D strongly-corrlelated f -electron systems, at the

topological phase transitions in Kondo systems, which we leave for future studies.
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Figure 3.4 : Energy dispersion of the surface electronic states. The spectrum
shows the (anti-)Weyl nodes marked with blue (red). The solid black lines connecting
the nodes represent Fermi arcs and black dashed lines represent the BZ around the X
point. (a), High-symmetry k-space contour taken on the BZ boundary at kz = 2π;
(b), Energy dispersion of the surface state along the path specified in (a); the grey
dotted line denotes the decay of the surface states into the bulk states. The parameters
are the same as in Fig. 3.2.

Second, our work provides a proof of principle demonstration for the emergence

of Weyl Kondo semimetal state in a Kondo lattice with inversion symmetry breaking.

This makes it likely that Kondo lattices in 3D with other crystallographic symmetries

but with the breaking of inversion symmetry will host a WKSM phase. The candidate

WKSM material Ce3Bi4Pd3 has a nonsymmorphic space group (220), and its Kondo-

driven Weyl nodes may very well be enforced by its crystallographic symmetry and

electron filling. Our findings here motivates further studies that incorporates the

realistic electronic structure of Ce3Bi4Pd3.

Third, in the WKSM state advanced here, the electron correlations produce a

zeroth-order effect given that the localized moments of the 4f -electrons underlie the

Weyl excitations. Correspondingly, the renormalization factors are extremely large,

typically on the order of 102−103. This distinguishes the WKSM from other types of

interacting Weyl semimetals discussed previously. The large renormalization factor
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is responsible for the possibility of using thermodynamics to probe the Weyl nodes.

Our work also sets the stage for calculations of additional signature properties for the

Weyl physics, such as the optical conductivity and related dynamical quantities.

Finally, the emergence of a WKSM makes it natural for quantum phase transitions

in heavy fermion systems from such a topological semimetal to magnetically ordered

and other correlated paramagnetic states. Moreover, the existence of Weyl nodes also

enhances the effect of long-range Coulomb interactions. While the density fluctuations

of the f -electrons are strongly suppressed in the local-moment regime, it still will be

instructive to explore additional nearby phases such as charge-density-wave order

[159]; other type of long-range interactions could produce topologically-nontrivial

Mott insulators [160]. As such, the study of WKSM and related semimetals promises

to shed new light on the global phase diagram of quantum critical heavy fermion

systems [17] and other strongly correlated materials [161].

In summary, we have demonstrated an emergent Weyl-Kondo semimetal phase in a

model of heavy fermion systems with broken inversion symmetry, and have determined

the surface electronic spectra which reveal Fermi arcs. The nodal excitations of the

WKSM phase develop out of the Kondo effect. This leads to unique experimental

signatures for such a phase, which are realized in noncentrosymmetric heavy fermion

systems. Our results are expected to guide the experimental search for f -electron-

based Weyl semimetals. In general, they open the door for studying topological

semimetals in the overall context of quantum phases and their transitions in strongly

correlated electron systems and, conversely, broaden the reach of strongly correlated

gapless and quantum critical states of matter.
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Chapter 4

Weyl-Kondo semimetals in nonsymmorphic systems

4.1 Introduction

In the previous chapter, I described the emergence of a Weyl-Kondo semimetal

(WKSM) phase in a Kondo lattice model; such a phase was contemporaneously ad-

vanced in experimental studies [137, 162]. My theoretical work considered a Kondo

lattice model, which is time-reversal invariant but inversion-symmetry breaking. The

defining characteristics of the Weyl-Kondo semimetal include linearly-dispersing Weyl

nodal excitations with highly reduced velocity and Weyl nodes being pinned to the

Fermi energy.

As alluded to in the previous chapter, we show in some detail the role of non-

symmorphic space group symmetry cooperates with the strong correlation effects

in producing these properties. In this chapter, I will expound on this mechanism

and suggests that it represents a general framework to search for other types of

correlation-driven topological states. As already introduced, we consider a periodic

Anderson/Kondo model on a diamond lattice, with inversion symmetry broken by

a staggered potential, at quarter filling [117]. Focusing on the limit of large on-site

Coulomb repulsion, the model is equivalent to a Kondo lattice. As I will describe

in detail, in the absence of Kondo coupling, the nonsymmorphic space group sym-

metry generates Weyl nodes that are located far away from the Fermi energy, and

the ground state is topologically trivial. Because of the Kondo effect, strongly renor-

malized quasiparticles are produced near the Fermi energy. When this happens, the

space-group symmetry in turn ensures that the Weyl nodes develop precisely at the

Fermi energy; this makes the Weyl nodal excitations to be long-lived and, hence,
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well-defined, even in the present strongly interacting setting. In addition, the renor-

malized nodal velocity is smaller than the usual non-interacting value by the ratio

of the Kondo temperature to the bare conduction-electron bandwidth, which can be

as large as three orders of magnitude. We will also analyze further the effect of a

tilting potential [162] to the Weyl-Kondo solution itself and the Berry curvature dis-

tribution. All these properties are important in giving rise to new signatures of the

Weyl-Kondo semimetal not only for thermodynamic [117, 137] properties discussed

in the previous chapter, but also for transport properties [162]. In addition, we will

discuss how these results enrich the global phase diagram of heavy fermion metals.

This enrichment captures the role of spin-orbit coupling in the interplay between

competing phases, all of which develop out of the underlying spin degrees of freedom

of the 4f electrons.

To set the stage for our analysis about how the space-group symmetry interplays

with strong correlations, we start by briefly outlining the role of space-group symmetry

in the noninteracting case.

4.1.1 Role of nonsymmorphic space group symmetry and protection of

topological semimetal phases

We focus our discussion on three dimensional (3D) crystals. In topological semimet-

als, the bulk already has a gapless excitation spectrum. This is to be contrasted with

topological insulators, in which the bulk excitations are fully gapped and only the

surface states are gapless. Both of these topological phases must have band inversion,

a reordering of conduction and valence bands which allows the topological insulator

surface states to connect the conduction and valence bands. In three dimensions, a

quadratic Hamiltonian can be classified into a topological equivalence class depending

on its nonspatial symmetries: time-reversal symmetry (TRS), particle-hole symme-

try, and chiral symmetry. This is commonly known as the tenfold way, which can

be applied to topological insulators and topological semimetals, and can accommo-
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date spatial symmetries as well [51]. More specifically to Weyl semimetals, these

are characterized by energy levels that meet in pairs of twofold degenerate points

in momentum space as a result of tuning Hamiltonian parameters. Without other

symmetries in the system, this requires tuning three parameters to achieve degener-

acy, but space group symmetries may protect the degeneracies [86]. In the efforts

to identify topological materials, several studies have applied symmetry classification

criteria to space groups [163, 78, 164] and more specifically to particular lattice real-

izations, [92, 91] as well as considered the fillings at which nonsymmorphic symmetries

will enforce gapless phases [90].

To obtain such degeneracy, a mechanism of band inversion is a necessary but

insufficient ingredient. Band inversion can occur by lattice strain, scalar relativistic

effects, or spin-orbit coupling (SOC) [81, 82, 83]. Given the crucial role of the SOC,

the search for topological materials tends to focus on systems that are based on heavy

elements with large SOC. Conveniently, the lanthanides and actinides where the f -

orbital elements as well as the often-involved heavy elements (e.g., Bi) associated with

heavy fermion materials provides substantial SOC.

We are interested in topological semimetals in 3D crystals with SOC and addi-

tional space-group symmetries that can protect nodal band crossings. It turns out

that many nonsymmorphic space groups can support four-dimensional irreducible

representations on the zone boundaries, which produce robust symmetry protected

Dirac semimetal phases, provided they do not lie along threefold or sixfold rotation

axes [86, 84]. A nonsymmorphic symmetry is a space group operation {O|t} which

combines a spatial point-group operation (or nonspatial operation) O with a partial

(non-primitive) lattice translation vector t. Spatial symmetries are group operations

that rotate and reflect different lattice sites onto one another, such as an n-fold ro-

tation about the ith axis Cni, or a reflection about the ab plane with normal vector

ĉ, mc. Respectively, the corresponding nonsymmorphic transformations are called

screw operations ({Cni|t} = rotation + fractional t) and glide operations ({mc|t} =
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reflection + fractional t). Since multiple fractional translations are needed to tra-

verse the unit cell, it is enlarged in real space, which causes the Brillouin zone (BZ)

to fold. This creates a new Brillouin zone boundary (BZB) where any bands that

intersect it are sharply reflected back into the BZ, causing a degeneracy at the BZB.

For these reasons, nonsymmorphic space groups with SOC generically produce Dirac

nodal band touching points or lines of degeneracy. The glide symmetry is familiar

to the strongly correlated electron community of iron pnictides; there, the symmetry

implies that the eigenstates come in (glide even and odd) pairs and, as a result, gives

rise to an extra degeneracy at the boundary of the BZ associated with the physical

two-iron unit cell [165].

With the nonsymmorphic symmetry-enforced Dirac semimetal as a starting point,

a Weyl semimetal phase can arise from breaking TRS or inversion symmetry (IS) [86].

Without the protection of space-group symmetry, one would have to resort to IS

breaking (ISB) systems tuned to within a band inversion transition between a trivial

band insulator and a topological insulator [78, 166]. Bands that invert are allowed

to cross because (1) the bands have different irreducible representations, such as the

odd-even parity in s-f coupling; (2) bands of the same irreducible representation may

have wavefunctions that differ by a Berry phase [51, 167]. Otherwise, the noncrossing

theorem requires that the bands hybridize to open a topologically trivial gap at a

generic point in the BZ. Thus a robust procedure is to search for space groups that

anchor IS breaking or are also noncentrosymmetric, and can realize an even filling

factor that is both gapless and has zero enclosed Fermi surface volume.

4.1.2 Topological states driven by strong correlations

Given all these considerations, a topological state driven by the Kondo effect arises

if one first realizes a topologically trivial ground state without the Kondo effect, and

when the Kondo effect is turned on, produces a topologically non-trivial phase. Our

model has a solution that corresponds to such a Kondo-driven phase. We will show
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that the result is robust to changes in parameters. This is because our Hamiltonian

has the required crystal and local symmetries, and fulfills group-theoretical filling con-

straints that achieve topological semimetal phases in response to the Kondo effect.

Therefore, our model illustrates that strong correlations help hone in on nontrivial

topological phases in the vast multidimensional parameter space of the strong corre-

lation global phase diagram in the presence of a large SOC. In this sense, a design

principle follows from our work (as well as from experiments [137, 162]), namely to

search for topological semimetals driven by strong correlations by focusing on strongly

correlated semimetals with a nonsymmorphic space group and broken inversion sym-

metry.

4.2 Model and solution method

The model Hamiltonian is Eqs. 3.1-3.4, and we use the treatment of Section. 3.2 to

render it analytically tractable, then solve the saddle point equations that correspond

to the Kondo limit. Here the auxiliary boson procedure is described in more depth.

We focus on the case of quarter filling, which corresponds to total electron count

of 1 per site. Explicitly we impose the condition

nd + nc = 1, (4.1)

where,

nd =
1

Nsite

∑
i,σ

d†iσdiσ, (4.2)

nc =
1

Nsite

∑
i,σ

c†iσciσ, (4.3)

with Nsite counting the total number of sites in the lattice.

The interaction U term is an obstruction to obtaining the eigenstates. However,

in the strong coupling limit of U → ∞, one can use the auxiliary boson method [1]

to treat the Coulomb term by considering it’s large limit consequence, which is to
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only allow density configurations of single particle-per-site occupation and empty

occupancy. Thus the localized species acquires a boson as d†iσ = bif
†
iσ, which is, at

the saddle-point level, averaged over the unit cell as bi → 〈bi〉 = r, where 0 < r < 1.

This necessitates including a Lagrange multiplier ` which parameterizes a constraint

equation term introduced into the large U Hamiltonian as Hs = H +H`,

H` = `

(∑
i,σ

f †iσfiσ + r2 − 1

)
, (4.4)

and renormalizing the hybridization as V → Ṽ = rV . Put together, this gives the

strong coupling Hamiltonian Hs.

The parameters x = (µ, r, `) are obtained by solving the set of saddle point equa-

tions δHs
δxi

= 0 self consistently. The parameter ` renormalizes the localized electron’s

energy level to Ed → Ẽd = Ed+`, which in practice is close to EF (we define EF = 0).

We eliminated the need to numerically solve for µ by finding the analytical solu-

tions to nodal points in the Brillouin zone (see Appendix C1). The key step to solving

for the eigenenergies is to find a suitable basis that renders the Hamiltonian separa-

ble. In Ref. [117], we performed the canonical (unitary) transformation on Eq. (3.4),

which renders the conduction electron part block diagonal in the | ± D〉 basis.
Based on previous studies, [87, 117] we know that the Weyl nodes only emerge

in the | −D〉 sector corresponding to hk−. Since the bands have a definite ordering

in terms of energy (see Appendix C1), we find the nodal band touchings occur only

between particular bands (see Sec. 4.3.2).

With the number of particles per-site-per-spin (or simply fractional filling) of all

fermions being nc + nd = 1 and since the localized electrons’ filling was fixed at

nf = 1 − r2, this implies that the conduction electron density is nc = r2 and thus

small.
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Figure 4.1 : Eigenenergy of the surface states of the [001] plane, with parameters
(Ed, `, r, V ) = (−7, 7.28, 0.22, 7.5). Blue and red points show the position of the Weyl
and anti-Weyl nodes of the Brillouin zone boundary, and thick black lines show the
Fermi arcs connecting nodes to their opposite chirality partner on the four neighboring
Brillouin zone boundaries.

4.3 Weyl-Kondo semimetal

In Chapter. 3, we established that our model captures a Weyl Kondo semimetal

featuring Kondo renormalization-narrowed bulk and surface bandwidths, exhibiting

bulk Weyl nodes and surface states with Fermi arcs. An example of the surface states

and their band narrowing can be seen in Fig. 4.1, in which the bandwidth of the pure

surface states is renormalized by the Kondo effect.

The configuration of Weyl monopoles is tuned along the Brillouin zone boundaries

with a quarter of the bands filled (two of eight total), which is consistent with our

choice of nonsymmorphic lattice and Hamiltonian [168, 78, 84]. The Weyl-Kondo

quasiparticles form exactly at the Fermi energy, for reasons at two levels of sophisti-

cation

(i) the Weyl nodes appear within the Kondo resonances, which lie near the Fermi

energy within a small energy window set by the Kondo temperature and
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Figure 4.2 : Model in the absence of the Kondo effect, V = 0. Dispersion along a
high symmetry path in the fcc Brillouin zone. The localized electrons’ energy level
is at the Fermi energy EF . (a) Fourfold-degenerate line nodes along X −W when
SOC λ = 0 and inversion symmetry is preserved m = 0. (b) Dirac node develops
at X from (a) when SOC is present, λ > 0. (c) Weyl nodes emerge from (b) when
inversion symmetry is broken and 0 < m

4λ
< 1. D ∼ 8t denotes the unrenormalized

conduction electron bandwidth.

(ii) the space group symmetry combined with the commensurate filling puts the

nodes even closer to the Fermi energy - for the exact commensurate filling, the

nodes are precisely at the Fermi energy.

In other words, the combination of the Kondo effect and space group symmetry

pin the Weyl nodes to the Fermi energy.

Here, we analyze the mechanism that underlies this salient feature of the Weyl-

Kondo semimetal phase.

4.3.1 Realization of the Weyl-Kondo semimetal through symmetry

In Sec. 4.1.1, we presented some considerations for seeking Weyl semimetals in 3D

crystal lattices. We now turn to the specific case of the diamond lattice.

The diamond lattice has space group no. 227 (Fd3̄m), which is centrosymmetric,

nonsymmorphic, and bipartite, consisting of two fcc lattices displaced by t = a{1
4

1
4

1
4
}

(a is the cubic lattice constant). First, consider the Hamiltonian without Kondo

coupling (V = 0) implemented on the diamond lattice, which involve four bands

associated with two sublattices and two spin states, with localized Ed levels completely
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decoupled from them. We consider the symmetry change as particular terms are

successively added. In Fig. 4.2, the cases without Kondo coupling are shown, where

the flat, trivial f bands are well separated in energy below the dispersive c bands.

For the quarter-filling case we consider, the localized d electrons are at half filling,

forming a Mott insulator, and the conduction c-electron bands are left completely

empty, implying a topologically trivial insulator phase. If only the nearest-neighbor

hopping and chemical potential terms [first two lines of Eq. (3.4)] are included, one

has line nodes along X −W as shown in the upper set of bands in Fig. 4.2(a). These

fourfold degenerate line nodes crisscross the square BZB, due to a combination of the

nonsymmorphic symmetry, two of the mirror planes, and the C4 and C2 rotations.

Next, we include the SOC (which preserves TRS and IS), which is shown in

Fig. 4.2(b). The fourfold degeneracy at W is split, while a linearly dispersing de-

generate Dirac point remains at X. The Dresselhaus SOC term which allows the

pseudospin | ± D〉 decomposition also allows the band inversion by introducing a

linear-in-k coupling term based on the pseudospin eigenvalue D(k), which is linear

near the X point,

D [kX = (k0, 0, 2π)] = 4

√
sin2

(
k0

2

)
∼ 2|k0| (4.5)

for some k0 ∼ 0, and similarly for the other X points. The bands are twofold de-

generate everywhere in the BZ except at the Dirac points, and in Fig. 4.2 this is

indicated with solid red lines for the | − D〉 sector, and dashed blue lines for the

| + D〉 sector. Since the SOC preserves TRS, the Kramers degeneracy at the time-

reversal invariant momentum X is preserved, while the SOC splits them at W since

it is not a time-reversal invariant momentum point. The space group analysis of how

the nonsymmorphic symmetry of the diamond lattice produces such Dirac nodes at

the X points have been established previously in a noninteracting model without

a localized species; on the BZB, a projective representation with point group D4h

has a four-dimensional irreducible representation, which realizes a Dirac semimetal
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generically [84].

We now include the ISB term parametrized by m, shown in Fig. 4.2(c). The

| ±D〉 degeneracy is split along the BZB, and doubly degenerate Weyl nodes of the

|−D〉 sector emerge along all X−W lines. This degeneracy produced by the internal

sublattice degree of freedom is lifted, but since TRS is preserved, the Kramer’s pairs

remain with their TRS partners at X. This allows one to tune k between the X and

W points to find a Weyl node degeneracy.

Put a different way, one can track the X −W degeneracies as a function of the IS

breaking. The Weyl semimetal phase region is 0 < m < 4λ, with the Dirac node at

X (m = 0) splitting and spawning the Weyl nodes as m is increased. The four nodes

move outward toward each of the four W , and undergo a quadratic band touching

at the critical value m = 4λ, before annihilating with the nodes of opposite chirality

from the four neighboring BZs, which opens a trivial gap when m > 4λ [166, 87].

It is also pertinent to consider the space group symmetry when identifying which

pairs of bands can form band touching points, that is, to find what filling factor realizes

a topological semimetal for a given space group. The filling factor ν counts the number

of electrons per primitive unit cell; in our model [Eq. (D-1)], there are two types of

fermions, two spins per fermion, and two sites per unit cell, so the total allowed

filling factor is ν = 8. At ν = 2 corresponding to quarter-filling, the nonsymmorphic

symmetry enforces that both the Fermi surface must be finite, and yet the Luttinger

volume must vanish [90]. The only way to satisfy these conditions is to produce a

zero dimensional nodal point Fermi surface, so nonsymmorphic space groups are a

natural place to search for topological systems. When the space group symmetry is

changed via ISB, this restores the ability of the system to connect adiabatically to a

band insulator phase, when m > 4λ.
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Figure 4.3 : Kondo effect-driven Weyl nodes. Dispersion along a high symmetry path
in the fcc Brillouin zone. Weyl-Kondo semimetal with V = 7.5 and nodes pinned
at EF . This develops from Fig. 4.2(c) when the strong coupling is renormalized
Ṽ → rV > 0. The bandwidth of the upper quartet of bands is approximately that
of the conduction electron bandwidth ∼ D, whereas the strongly-renormalized lower
quartet of heavy bands corresponds to the kBTK energy scale. The parameters are
(Ed, `, r, V, λ,m) ' (−7, 7.279, 0.220, 7.5, 0.5, 1).

4.3.2 Kondo-driven node formation and pinning

We now wish to consider our model when the hybridization is nonzero, so that the

conduction c and strongly correlated f electrons are coupled with each other. The

choice of chemical potential and energy level Ed = EF before turning on hybridization

is arbitrary, and was made to adiabatically connect the trivial insulator phase shown

in Fig. 4.2 to the Kondo regime.

In the course of solving the saddle-point equations self-consistently, the starting

value for Ed is far below EF , and µ is determined analytically from the eigenergies as

µ = − (rV )2

Ed+`
(see Appendix C1). A properly “strong” coupling solution usually means

that r is small but nonzero, which arises for a range of V larger than some critical

value. The small bosonic field measures a small but nonzero hole fluctuation r2 away

from nd = nf = 1, which is only coupled to V . A valid self-consistency solution

always finds an r, ` that fixes the densities to the values specified. The solutions at

this filling fix the Fermi energy such that of 8 total bands, 2 Kondo-driven bands are
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filled, which corresponds to the ν = 2n filling enforcement condition.

A solution of this type was shown in Ref. [117]. To demonstrate its robustness, we

solve the case with a different set of parameters. The result is plotted in Fig. 4.3, which

shows the conduction electron bands with bandwidth D unoccupied, well-separated

by a gap of ∼6t from the renormalized narrow f -bands with heavy Weyl-Kondo

quasiparticle excitations around nodes fixed precisely at EF . This demonstrates that

the nodal states develop out of Kondo effect. The Kondo effect correlations produce

this topological phase transition from trivial band insulator to WKSM, and pin the

nodes to the Fermi energy as a fundamental property.

The role of the localized species near the Fermi energy can also be demonstrated

by calculating the projected density of states. This is provided in Fig. 4.4, which

corresponds to the hybridized parameters generating Fig. 4.3. The contributions of

the c and f fermions are represented in shades of blue and red, respectively. The main

panel of Fig. 4.4 shows that at the Fermi energy, the proportion of localized f fermions

is large compared to that of the conduction c electrons, using an energy interval of

dE = t/10. The inset of Fig. 4.4 shows a zoomed-in view of the projected density

of states with a smaller energy interval of dE = 0.005t to accommodate the reduced

bandwidth. In the energies closest to EF , the f fermions prominently characterize

the states compared to the c’s. The hybridization has allowed a tiny amount of c-

electrons to mix (see inset) through the hole fluctuations of the r-bosonic condensate

via nc = r2. This demonstrates that the localized f electrons are directly responsible

for producing the Weyl-Kondo semimetal.

We close this subsection with two remarks. First, other quantities can also be

calculated. For example, the surface states that correspond to the same parameter

choice has already been shown in Fig. 4.1.

Second, going beyond the saddle-point level, the renormalized quasiparticles will

acquire a finite lifetime due to the residual interactions. However, because the Kondo-

driven Weyl nodes are pinned at the Fermi energy, the strongly renormalized nodal
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Figure 4.4 : Projected density of states, showing full energy range corresponding to
Fig. 4.3. Inset: zoomed-in to localized set of bands near the nodes at EF . Shades of
red indicate contributions from f -fermions, and shades of blue indicate contributions
from c-electrons. The parameters are (Ed, `, r, V, λ,m) ' (−7, 7.279, 0.220, 7.5, 0.5, 1).

excitations will be long-lived, with the lifetime reaching infinity when the node is

approached. This makes the Kondo-driven Weyl nodal excitations well defined even

though it is a strongly interacting many-body system.

4.4 Tilted Weyl-Kondo semimetal

In the process of understanding a large spontaneous Hall effect observed in Ce3Bi4Pd3, [162]

a tilted variation of the Weyl-Kondo solution was introduced there. Here, we further

investigate this effect. This allows us to analyze the details of the Berry curvature

distribution near a small Fermi pocket centered around the Weyl nodes, and how this

distribution can be made extremely asymmetric with respect to a Weyl or an anti-
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Figure 4.5 : High-symmetry dispersion of the tilted WKSM model. (a) high symmetry
contour in green along the k = (kx, ky, 2π) Brillouin zone boundary plane, through
(anti)nodes marked in (red)blue. The square marks the small region of the Brillouin
zone over which the Berry-curvature distribution is shown in Fig. 4.6(a). (b) Bulk
dispersion along the contour of the tilted model with C = 0.8, other parameters are
found self-consistently to be (Ed, `, r, V, λ,m) ' (−7, 7.282, 0.222, 7.5, 0.5, 1). (c) Bulk
dispersion with C = 0, and the same parameters Fig. 4.3.

Weyl node by the tilting potential. Our results further support the analysis presented

in Ref. [162].

4.4.1 Tilted Weyl dispersion and Berry curvature distribution

The tilting term in our diamond-lattice model [162] of the WKSM can locally adjust

the anisotropy of the linear part of the dispersion. We specify it as

Ht = C
∑
k,σ

[
1− 1

2
D(k)

]
nckσ, (4.6)

which preserves the lattice symmetry and is added to the conduction electron Hamil-

tonian Eq. (3.4). Here, C sets the tilting potential, and we continue to consider the

specific parameters of m = 1 and λ = 1/2. We have solved the saddle-point equations

in the presence of the tilting term.

The resulting dispersion is contrasted to that of the un-tilted model, as shown in

Fig. 4.5. The Weyl nodes remain pinned at the Fermi energy in the tilted case. This

further illustrates the robustness of the mechanism discussed in the previous section

for the formation and pinning of the Kondo-driven Weyl nodes.
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To see the reason that the C term tilts the dispersion near the nodes, note that

near the Weyl node, Eq. (??) is a 2 × 2 Hamiltonian matrix and can be linearized

to obtain a k · τ form. The Hamiltonian Ht is proportional to the matrix τ0 ⊗ σ0,

which commutes with the canonical transformation, and after the transformation it

contributes a term C[1 − 1
2
D(k)]τ0 to hk−. Linearizing the full hk− near the nodes

gives a linear dispersion which adds velocity components that depend on the tilting

direction t̂ as vt = Ct̂. Now the effective Hamiltonian is

Heff = vt · kτ0 + vk · τ . (4.7)

Using the velocity ratio, the effective Hamiltonian has the regimes |C
v
| < 1 (type I),

and |C
v
| > 1 (type II) [169]. The type-I behavior makes the dispersion anisotropic, and

causes the Fermi surface to change shape within the BZ. A type-II Weyl semimetal

arises when the tilt has become extreme enough to cause a Lifshitz transition of the

Fermi surface.

In Fig. 4.5 we illustrate the tilting of the linear bands around the node when C 6= 0;

we plot the eigenenergies along the green high-symmetry k-contour in Fig. 4.5(a) that

intersects with the Weyl nodes. Fig. 4.5(b) shows the dispersion of a strong coupling

limit solution when C = 0.8, where there are anisotropic slow and fast bands along

X − W±. There also appears to be two Lifshitz transitions ready to happen: the

type-I to type-II tilting transition, and the Fermi pocket lowering itself to the Fermi

energy around U and U ′. This is in contrast to the non-tilted C = 0 dispersion shown

in Fig. 4.5(c), where the linear part of the dispersion appears isotropic along X−W±
for energies sufficiently close to EF .

We show in Fig. 4.6 the Berry curvature distribution for a tiny portion of the BZ

that surrounds one of the Weyl nodes of Fig. 4.5(a) (denoted by the small square

surrounding the right red node of Fig. 4.5(a)).

An intriguing question is how to tune the singular nature of the Berry curvature.

Tilting the Weyl cone dispersion is one means of doing so. An example of the tilt

behavior of the model is seen in Fig. 4.6. The color scale indicates the magnitude
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of the Ωyz component of the Berry curvature, which is highly concentrated around

the node and discontinuous at the node, located in the center of each plot. The solid

and dashed contours show the Fermi surface produced with C = 0 and C = 0.9,

respectively, from a slightly metallic filling nd + nc = 1 + 10−5. For both cases, but

especially for the tilted case, the Berry curvature is very large on the Fermi surface,

reflecting the proximity of the Fermi surface to a Weyl monopole.

In Fig. 4.6(a), the area in the momentum space shown corresponds to the small

square surrounding the right red node of Fig. 4.5(a). This conveys how tiny the Fermi

surfaces are compared to the extent of the BZ. In Fig. 4.6(b), we zoom in further from

Fig. 4.6(a) to the vicinity of the node. Here, it is apparent that the C = 0.9 tilted

Fermi surface (dashed line) still encloses the node, but it is much closer to the node

as compared to the C = 0 Fermi surface (solid line). The tilting term is seen to make

the Fermi pocket and the associated Berry curvature be distributed around the Weyl

node in a highly asymmetrical way, in which highly singular Berry curvature fields

strongly influence the heavy Weyl quasiparticles pinned at the Fermi surface.

In particular, Figs. 4.6(a) and 4.6(b) illustrate that the asymmetry induced by the

tilting term has made one side of the Fermi pocket to be much closer to the node than

the other. This makes an external electric field to be readily able to drive the system

to a highly out-of-equilibrium response in the Berry-curvature-induced transverse

conductance, a theoretical framework that was advanced for the spontaneous Hall

effect in Ref. [162]. As such, our result concretely demonstrates the ready realization

of the giant spontaneous Hall effect put forward there.

4.5 Signatures of correlated topological semimetals

Some of the conventional signatures of Weyl semimetals are quantum oscillation ex-

periments, negative longitudinal magnetoresistance indicative of the chiral anomaly,

and angle-resolved photoemission spectroscopy (ARPES) imaging of both the bulk

and surface states, which probes the linear nodal dispersion in the bulk and veri-
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Figure 4.6 : Berry curvature strength captured by Fermi surfaces. The Berry curva-
ture component Ωyz [Eq. (1.11)] of the WKSM phase in the [001] plane of the Weyl
node located at the center of the plot, k = (π

3
, 0, 2π) (black dot), which corresponds

to the right red point of Fig. 4.5(a), and Fermi surfaces from a slightly metallic
filling nd + nc = 1 + 10−5, sharing the parameters (Ed, V, λ,m) ' (−7, 7.5, 0.5, 1).
(a) The solid contour is the intersection of the three dimensional Fermi surface of
the model with the BZ-boundary plane (i.e., for kz = 2π) without tilting, and
self-consistently determined parameters (C, µ, r, `) ' (0,−9.748, 0.220, 7.279). The
dashed contour is the counterpart for the Fermi surface of the tilted model, with pa-
rameters (C, µ, r, `) ' (0.9,−9.811, 0.222, 7.281). (b) Same as (a), but with an even
smaller plot range in k-space. The full range of the Berry curvature is truncated, and
the deep blue and red regions near the node represent values that extend beyond the
legend. Note that, in the three dimensional BZ, the Fermi pockets in the two cases
have the same volume.

fies topology due to the bulk-boundary-correspondence. These experiments elegantly

illustrate the signatures of weakly correlated Weyl semimetal material candidates.

As has been pointed out recently, [162] the strongly correlated Weyl-Kondo semimetal

phase offers several obstacles to characterization by conventional experimental probes.

For example, imaging the surface states would have to use an ARPES setup that could

resolve features within a bandwidth of approximately D∗ ∼ kBTK , with for example,

in Ce3Bi4Pd3, TK ≈ 13K, which would require an ultrahigh resolution much below

D∗ ∼ 1meV. On the other hand, the WKSM displays unique physics that offers more

suitable probes. The WKSM phase exhibits node pinning that is contingent on the

development of the Kondo effect, a slow effective Weyl fermion velocity, and, cor-
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respondingly, a narrowed bandwidth. The Kondo-driven node pinning implies that

a large Berry curvature singularity at the Fermi energy develops at T < TK . This

provides a means of using the Berry-curvature-induced anomalous velocity to probe

the topological characteristics of the Kondo-driven Weyl nodes in the WKSM (that

is time-reversal invariant in equilibrium), at zero magnetic field and in a nonlinear

response to an applied electric field, as has recently been demonstrated in Ref. [162].

4.6 Conclusions and Outlook

We have expanded on several theoretical aspects of the Weyl-Kondo semimetal state

in a noncentrosymmetric Kondo/Anderson lattice model with both strong correlations

and large spin-orbit coupling. This state was advanced concurrently in theoretical

[117] and experimental [137, 162] studies. It preserves the time-reversal invariance.

The Weyl nodes are driven by the Kondo effect and, thus, must appear within the

narrow energy range near the Fermi energy for the Kondo resonance; at the same

time, their existence can be traced to the degeneracy of electronic states enforced by

nonsymmorphic space-group symmetry. These two features combine to pin the Weyl

nodes to the immediate vicinity of the Fermi energy. Moreover, the Kondo-driven

nature makes the linearly-dispersing Weyl nodal excitations to have an energy scale

kBTK , which is smaller than the bare conduction-electron bandwidth D by orders of

magnitude (c.f. Fig. 4.3). Correspondingly, the velocity v∗ is reduced from typical

values of noninteracting electrons by several orders of magnitude. An immediate

consequence of such a reduced velocity is that the specific heat cV = ΓT 3, with

the T -cubic prefactor Γ enhanced from the typical non-interacting value by a huge

factor of (v/v∗)3. The pinning of the Weyl nodes to the immediate vicinity of the

Fermi energy also implies that the Berry curvature singularities of the Weyl nodes

appear near the Fermi energy. This gives rise to a large anomalous velocity for the

states on a small Fermi surface pocket surrounding the Weyl nodes. As such, this

pinning of the Berry curvature singularities near the Fermi energy presents a means of
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probing topological characteristics of Weyl nodal excitations through a spontaneous

Hall effect, which is a nonlinear response to an applied electric field, even though the

system under equilibrium preserves time-reversal symmetry.

The experimental developments have taken place in the Kondo-driven semimetal

Ce3Bi4Pd3, a cubic system for which the space group is nonsymmorphic (no. 220),

the inversion symmetry is broken, but the time-reversal symmetry is preserved [162].

This new heavy fermion semimetal shows a T 3 specific heat with a huge prefactor Γ,

so much so that it surpasses the phonon contribution, [137] and a giant spontaneous

(zero magnetic field) Hall effect and an accompanying even-in-magnetic-field compo-

nent. [162] The results provide direct evidence for ultraslow Weyl nodal excitations

and its topological nature.

We close with a look into future directions. First, the developments along this

direction point to the search for further Weyl-Kondo semimetals in heavy fermion

systems with nonsymmorphic space groups, as already exemplified by the case of

Ce3Bi4Pd3. [137, 162, 170] Because the majority of the 230 space groups in three di-

mensions are nonsymmorphic, this suggests the prevalence of Weyl-Kondo semimetal

phases in such systems. Of potential interest in this context include nonsymmorphic

heavy fermion semimetals with broken inversion symmetry such as CeRu4Sn6 [158,

134, 135, 156, 157] and CeNiSn, [171, 139, 172] and those that are inversion symmetric

but with time-reversal symmetry broken by an external magnetic field or magnetic

ordering, such as YbBiPt [173, 174, 96, 153] and CeSbTe. [175, 176, 177]

Second, the considerations of symmetry open up different ways to think of access-

ing nearby topological phases, by reducing or restoring point-group or space-group

symmetries. One path that has been explored is anisotropically tuning the hopping

amplitudes tij of the lattice bonds [62, 166]. Such a symmetry-reducing tuning could

be approximated through uniaxial stress, which, in Kondo systems, also tunes the

strength of the Kondo effect. Another avenue is to explore nonspatial symmetries,

such as time-reversal symmetry breaking [170]. In a one fermion flavor model [178],
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we have established that a tunable TRSB term can coexist with the Weyl semimetal

phase described in Sec. 4.3.1, but that when the TRSB term is larger than the ISB

term, a topologically distinct Weyl semimetal phase can emerge with nodes in the Bril-

louin zone interior. It is an exciting next step to incorporate TRSB to the full Kondo-

driven model. Finally, doping studies represent a promising way of tuning [137, 179].

Third, the theoretical and experimental results on the Weyl-Kondo semimetal

sets the stage to address how the overall quantum phase diagram of heavy fermion

metals, Fig. 1.1(b), is enriched by topologically nontrivial metallic phases driven by

the combined effects of strong correlations and spin-orbit coupling. A recurring theme

of heavy fermion metals is that novel phases develop in the quantum critical regime,

at the border of electronic orders. This reflects the accumulation of entropy in the

quantum critical regime [180, 181, 182, 44], as a result of which the electronic matter

is soft and prone to developing novel phases. A canonical example of such emergent

phases is unconventional superconductivity [183, 32], but it could also be nematic

or other forms of secondary electronic orders [184]. An intriguing possibility is that,

when the spin-orbit coupling and correlations are both strong, topologically nontrivial

metallic states appear as emergent phases at the border of electronic order, albeit on

the nonordered [ i.e., disordered; cf. Fig. 1.1(a)] side.

Finally, the approach taken here represents a general means of treating the space-

group symmetry enforcement of topological semimetals in strongly correlated set-

tings. In the theoretical model, the Weyl nodes of the bare conduction electrons

enforced by the space group symmetry are located far away from the Fermi energy.

When the Kondo effect takes place, the Weyl nodes are transmitted to those of the

Kondo-driven quasiparticles. The combination of strong correlations and space-group

symmetry enforcement pins the Kondo-driven Weyl nodes to the immediate vicinity

of the Fermi energy. This makes the strongly correlated Weyl-nodal excitations to

be well-defined, even for a underlying many-body system that is strongly interacting.

Equally important, it allows the theory to connect with the striking experiments in



73

Ce3Bi4Pd3 [137, 162, 170]. This type of interplay between the space-group symme-

try constraint and strong correlations is likely to be important in other settings of

strongly correlated topological matter as well.
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Chapter 5

Weyl-Kondo semimetal’s nodal evolution under a
magnetic field

5.1 Introduction

The heavy fermion systems have long been explored using the magnetic field as a

probe, since it is a nonthermal tuning parameter that can help access quantum critical

points and perturb the f electron local moments, which can provoke phase transitions.

A magnetic field can reveal a jump in the normal Hall effect that originates from an

abrupt change in the Fermi surface volume at a local quantum critical point [16, 31, 18,

17]. In Chapter 2, the anomalous Hall effect was monitored in Kondo lattice systems

across a Kondo destruction QCP within paramagnetic phases that are time-reversal

symmetry broken (TRSB) via chiral spin liquid phases. Similarly, the presence of a

magnetic field breaks time reversal symmetry, as would an antiferromagnetic ordering

of the localized moments.

With the contemporaneous discovery of evidence for a Weyl-Kondo semimetal

phase in both theoretical models [116, 117] and experiments on the proposed WKSM

Ce3Bi4Pd3 [137, 162], there is still much to elucidate on the nature of strong cor-

relations driven topology. More recently, a magnetic field study was carried out on

Ce3Bi4Pd3 [170]. By analyzing the Hall effect, resistivity, and torque magnetome-

try, it was suggested that the magnetic field tuned from a zero-field WKSM toward

a nodal annihilation topological phase transition into a Kondo insulator type phase,

and then through a second (perhaps quantum critical) point into a partially polarized

metallic heavy Fermi-liquid.

Similarly, the work in Appendix C2 (Ref. [185]) has studied the phase diagram
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of a single electron species model of an inversion symmetry broken WSM with a

TRSB Zeeman term. There, it was found that the original WSM phase survived

at a finite TRSB field until the Zeeman field strength surpassed the ISB staggered

potential. Then, as the Zeeman term is increased, a series of distinct topological

Lifshitz transitions of nodal annihilation and creation open up two new distinct WSM

phases, before becoming a band insulator.

In this work, we use the same key elements: the lattice and its associated nonsym-

morphic space group properties, and the symmetries of the Hamiltonian are largely

similar. However, we now incorporate these into the two fermion species Anderson

lattice model, and focus on the largest Zeeman coupling, which is to the magnetic

moments, and find self-consistent solutions in the strong coupling (Kondo) limit. As

a function of the Zeeman field, we find a progression of topological phase transitions

that occur in the same symmetry determined sequence, albeit driven almost entirely

by the f electrons and at a renormalized energy scale of the Zeeman field.

5.2 Model and methods

To investigate the magnetic field dependent properties of the WKSM, we begin with

a diamond lattice, and use the Anderson lattice model [116, 117],

H = Hc +Hcd +Hd. (5.1)

The conduction electrons of the system are based on the Fu-Kane-Mele model with

broken inversion symmetry [62, 87, 166],

Hc = t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
− µ

∑
i,σ

nciσ

+ iλ
∑
〈〈ij〉〉

[
c†iσ (σ · eij) cjσ − H.c.

]
+m

∑
i,σ

(−1)ic†iσciσ. (5.2)

The hopping term is over nearest-neighbor bonds 〈i, j〉 with chemical potential µ, a

Dresselhaus-type spin orbit coupling parameterized λ, and staggered onsite potential
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m. These electrons are coupled to the d fermion species (representing the physical 4f

moments) through the hybridization term

Hcd = V
∑
i,σ

(
d†iσciσ + H.c.

)
. (5.3)

Last, the localized species is represented by

Hd = Ed
∑
i,σ

d†iσdiσ + U
∑
i

ndi↑n
d
i↓

+Mz

∑
i

ẑ ·
(
d†iσσdiσ

)
, (5.4)

where the first line has the two typical Anderson lattice model terms, the highly

localized energy level ∗ Ed, and the Coulomb repulsion U between the d fermions

discourages double occupation on a site i.

Since the TRS WKSM state appears in the Kondo limit, the interplay of the

bosonic condensate and filling enforcement enabled local moments to access all Hamil-

tonian symmetries that produce Weyl nodes. The same ought to be true in the TRSB

case, so including a TRSB Zeeman term should be adequate. In a heavy fermion sys-

tem subjected to a magnetic field, the main effect is the response of the local moments.

To model this we have included the Zeeman interaction in the second line of Eq. 5.4,

aligned in the ẑ direction.

We are interested in the Kondo limit at very strong correlations, so the slave boson

method is implemented as in Section 4.2. The Coulomb repulsion is taken to infinity,

which amounts to a constraint of no double occupancy of the d-electrons. We solve

the problem at the saddle point level, where the constraint gives rise to a term in the

Hamiltonian that takes the place of the Coulomb term:

H` = `
∑
i,σ

(f †iσfiσ + r2 − 1). (5.5)

This introduces a parameter ` that renormalizes the f fermion energy level. The

parameters µ, ` and r are determined by solving the system of saddle point equations.

∗Ed is assumed to lie far lower in energy than the conduction electron band edge [1, 60]
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The solutions are obtained numerically through the Newton-Raphson and bisec-

tion methods. There are two main obstacles to the successful calculation of the

solution. First, an initial guess of parameters are needed that is sufficiently close

to the solution; this is more of an art than science. Second, in systems with nodal

Fermi surfaces, the solutions might never converge or do so slowly. This is because

the saddle point equations involve discretized integrals over the occupied bands of the

BZ, one of which is the total density:

nd =
1

Nsite

∑
i,σ

d†iσdiσ, (5.6)

nc =
1

Nsite

∑
i,σ

c†iσciσ, (5.7)

with Nsite counting the total number of sites in the lattice.

In correcting the calculated density to match the filling factors nf , nc requested,

the parameters µ, ` are changed by the solution algorithm. However, it is easy for

the discretization to miss node locations, leading to slow or impossible convergence

to a solution. In my approach, these two problems are tackled by initially doping the

system by a tiny amount to get close to a solution, then reverse the doping to get the

final solution. For instance, we are interested in a total quarter filling nd + nc = 1,

which is 1 fermion per site; in the strong coupling limit we have nf +r2 = 1, implying

that nc ∼ r2. Doping the requested total density to 1 + 10−4 fermions per site,

which gives a small, isolated Fermi surface surrounding each node. Once a doped

solution is found, the solution is fed back into the self consistent calculations, and the

quarter-filling solution can be quickly and accurately reached.

5.3 Results

For weakly correlated Weyl semimetals in the presence of a magnetic field, the elec-

trons’ dominant response to the magnetic field is the orbital effect which leads to the

formation of Landau levels. However, in the Kondo limit, the orbital effect is much
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Figure 5.1 : (a) Phase diagram of the WKSM model as a function of the Zeeman field
Mz normalized by the zero-field Kondo temperature T 0

K . (b) The path of selected
nodes through the fcc Brillouin zone, with the arrow colors corresponding to the
phases and critical points in (a).

weaker than the Zeeman effect. In Fig. 5.1, the top line diagram shows the progres-

sion of phases in the system as the TRSB Zeeman parameter Mz is increased. It is

tuned relative to the Kondo temperature T 0
K , which is estimated from the bandwidth

of the heavy Weyl bands for Mz = 0, as labeled in Fig. 5.2. The constant parame-

ters throughout this study are {Ed, V, λ,m, t} = {−7, 9.29, 0.5, 1, 1}, and alone these

input parameters determine the µ, r, ` solution. Fig. 5.2 shows the TRS-respecting

WKSM phase at the Mz = 0 part of the phase diagram, with nodal points occurring

along the X-W lines of the BZB [116, 117]. The BZ is shown in Fig. 5.1, where the

red and blue dots mark the position of one set of Weyl node pairs, of Berry curvature

monopoles and antimonopoles, possessing topological charge ±1.

When the Zeeman field is turned on, remarkably, the Weyl nodes are not gapped

out, nor do they leave the BZB, nor do they move away from the Fermi energy. In-

stead, the nodes move along the yellow arrows in Fig. 5.1, corresponding to the yellow
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Figure 5.2 : X-W WKSM eigenenergy dispersion of the model at Mz = 0 (time-
reversal symmetry is preserved). (a) One dimensional high symmetry path through
the BZ. (b) On the kz = 2π plane.

Figure 5.3 : Γ-X WKSM eigenenergy dispersion of the model at Mz = 0.173. (a)
One dimensional high symmetry path through the BZ. (b) On the kz = 0 plane. (c)
Dispersion near the node along the three cartesian directions.

X-W regime above it. It is also worth noting that the bands are now inversion-

split and Zeeman-split, and are generally nondegenerate, except at nodes. When

Mz/T
0
K = 0.128 (the yellow circle), the nodes meet at the X point, where the disper-

sion forms a non-Kramer’s type quadratic band touching, hence the regime boundary

is named X-QBT.

Next, new nodes are formed just inside the BZB along each of the six Γ-X lines; one

is shown in Fig. 5.1 along the blue arrow (white circle). An example of the eigenenergy

dispersion in one and three dimensions is shown in Fig. 5.3, which are typical of
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Figure 5.4 : Γ-X − Γ-L WKSM Eigenenergy dispersion of our model at Mz = 0.45
(as in Fig. ??). (a) One dimensional high symmetry path through the BZ. (b) On
the [011] plane, with origin at Γ.

the new Γ-X WKSM phase. Note that the node location of the empty conduction

electron bands (left of Fig. 5.3) remain along the X −W WKSM phase, and only

displays Zeeman splitting, which is small compared to its bandwidth. Interestingly,

the two pairs of nodes per BZB of theX-W phase has undergone a topological Lifshitz

transition and become only three pairs of nodes. This is because the Γ-X node pairs

that emerge from the QBT at X are in fact double-Weyl fermions which have two

directions of quadratic dispersion and one direction with linear dispersion [186, 187,

188, 189, 190, 191, 192, 193, 194, 195]. For example, in the vicinity of the +kx Γ-X

node, along the ky directions the dispersion is linear, and quadratic in the kx and kz

directions, shown in Fig. 5.3. However, since the quadratic kx dispersion comes from

the X-QBT, the nodes are formed on each side of the kx = 2π BZB as the upper

and lower bands move past each other in energy; the quadratic kz dispersion retains

a QBT. Double Weyl fermions are associated with monopole charge ±2, and can be

formed if two same-sign monopoles are combined [191, 193]. Such a scenario could

explain how the number of Weyl node pairs is halved from the X-W WKSM phase to

the Γ-X WKSM phase, if the same sign monopoles merged. This X-QBT transition

thus shows the formation of double Weyl fermions as a function of tuning the Zeeman

field.
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Figure 5.5 : Berry curvature projected onto the [011] plane of our model in the Γ-
X−Γ-L Weyl-Kondo semimetal phase at Mz = 0.45. The Brillouin zone boundary is
shown in green, and orange arrows indicate the node pairs’ path toward simultaneous
annihilation at the Γ point.

When Mz/T
0
K = 0.290 (the blue circles in Fig. 5.1), the Γ-X nodes are at the

halfway points through their trajectory towards Γ. Here another topological phase

transition boundary occurs when an anisotropic band touching (ABT) occurs at the

L points of the BZB, labeled the L-ABT critical point. Along the [111] directions, at

quarter filling, there are two QBTs, but along other directions looks linear. As Mz

is further increased, four pairs of (single) Weyl nodes appear from the L points on

the interior of the BZ (see Fig. 5.4), and their presence does not disrupt the existing

Γ-X nodes. The new sets of nodes move along the Γ-L (or [111]) direction towards Γ,

along with the Γ-X nodes; this variant is named the Γ-X − Γ-L WKSM. This phase

corresponds to the orange phase and arrows in Fig. 5.1.
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The normalized Berry curvature field of the Γ-X−Γ-LWKSM is shown in Fig. 5.5,

projected onto the [011] plane to show both the Γ-X and Γ-L nodes. The Γ-L nodes

(blue and red points) have conventional monopole fields, while the Γ-X nodes have an

unconventional Berry curvature field structure, which does not resemble the double-

Weyl point fields of continuum models [189, 191, 192], nor what happens for crystal

structures like HgCr2Se4 and SrSi2 [187, 188, 190], or on (mostly) simple Cn point

groups [186, 187, 188, 190, 194].

The Berry curvature field configuration in Fig. 5.5 can be somewhat compared to

studies on the HgTe-class materials, such as the Luttinger semimetal α-Sn, which has

a diamond lattice structure [195], but is weakly correlated. Ref. [195] used an effective

k · p to study the creation of double-Weyl nodes in unstrained α-Sn, which are gener-

ated from the Luttinger semimetal phase under a magnetic field or off-resonant circu-

larly polarized light; however the Weyl nodes generated often sit at differing energies

(the WKSM does not have this issue, see Discussion Sec. 5.4). The WKSM model

includes an inversion symmetry breaking term parameterized by m which changes

the diamond lattice space group from no. 227(Fd3̄m) to the no. 216(F 4̄3m) group,

corresponding to zinc blende. However, Ref. [195] finds that including a linear in-

version symmetry breaking term (which similarly reduces their diamond structure to

zinc blende), and this perturbation splits the double-Weyl fermions into single-Weyl

fermions. The WKSM model is able to realize double-Weyl fermions in the presence

of TRSB and ISB.

It is a general property of (double) Weyl nodes that they are protected by and

related to opposite chirality partners by point group symmetry operations [186, 187].

One difference between the models is that the α-Sn system has its nodes positioned

close to the zone center Γ, which has a point group representation equivalent to the

space group representation, which is Td in zinc blende [187]. The WKSM model’s sin-

gle and double Weyl nodes lie along the namesake Γ-X and Γ-L high symmetry lines,

which are associated with point groups C4v and C3v, respectively [79]. These lines
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Figure 5.6 : (a) and (b): Γ-QBT Kondo semimetal eigenenergy dispersion of the
model at Mz = 0.642; (c) and (d): Kondo insulator dispersion at Mz = 1. (a) and
(c): One dimensional high symmetry path through the BZ. (b) and (d): On the kx-ky
plane, with origin at Γ.

have lower symmetry than the zone center, and are the kind of quasi-two dimensional

point groups that were explored in the double-Weyl literature [186, 187, 188, 190, 194],

where it is also noted that the Γ-L line can generally not support double Weyl

nodes [186, 187].

Finally, the orange arrows of Fig. 5.5 show the remaining trajectory of the nodes

towards the Γ point as Mz is increased further. The Γ point labeled by the orange

circle is placed in the phase diagram and BZ nodal trajectory as well in Fig. 5.1.

However, the nodes do not immediately annihilate at the zone center, instead mo-

mentarily becoming a quadratic band touching critical point (labeled Γ-QBT), which

is shown in Fig. 5.6(a)-(b). The Γ-QBT point is unusually non-Kramers due to the

broken TRS, composed of singly degenerate bands. Beyond this value of Mz, the
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Figure 5.7 : The order parameters obtained by self-consistently solving the saddle
point equations plotted as a function of Mz. (a) Chemical potential µ, (b) scalar
bosonic condensate r, and (c) Lagrange multiplier `.

Γ-QBT gaps out, leading to a Kondo insulator.

The Γ-QBT transition is not just a topological transition, but an actual transition

in the WKSM model. This is evidenced by plotting the values of the self-consistently

obtained parameters µ, r, ` as a function of Mz, as shown in Fig. 5.7. Though µ

shows only a small kink at the Γ-QBT Zeeman value of Mz = 0.642, the kinks in r

and ` are much more pronounced †. The parameters seem to reverse slope after the

kink, which likely results from the change in density of states at the Fermi energy.

In general, the Kondo effect is highly sensitive to differently configurations of density

of states, so it is responsible for the differences between the gapless versus gapped

states, which manifests in the numerical solutions.

5.4 Discussion

The WKSM under a Zeeman field predominantly affecting the f -fermions produces

three topologically distinct Weyl Kondo semimetal phases and an unusual avenue

to a Kondo insulator. Two of the WKSM phases, spanning a large part of the Mz

phase diagram, include double Weyl fermions, which have quadratic dispersions in

†The jaggedness of ` around Mz ∈ (0.35, 0.46) is an artefact of a lower sampling rate, and does

not correspond to a phase transition
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two directions, and is linear in one direction. Because of the higher order dispersion,

double WKSM nodes have an enhanced density of states at the Fermi energy. It has

been suggested in weak interaction contexts that this makes double Weyl fermions

more sensitive to the effects of interaction and disorder, which could lead to the

emergence of a non-Fermi liquid state [187]. The anisotropic dispersion can also

produce anomalous screening charge distributions around charged impurities [187];

it will be instructive to investigate the counterpart effects in our strongly correlated

models for heavy fermion systems. It has also been shown that the anomalous Hall

effect is twofold enhanced when double Weyl nodes are present [191]. Furthermore,

since the number of surface state Fermi arcs are determined by the value of the

topological invariant, we expect the double Weyl nodes to double the number of

Fermi arc surface states between a ±2 double Weyl pair [191].

The WKSM to Kondo insulator transition comes with a kink in the self-consistency

solutions, verifying that the Kondo effect acts differently with different density of

states around the Fermi level. Furthermore, the nodes are Kondo pinned to the Fermi

energy, through the mechanisms explained in Chapters 3–4. The Zeeman field only

reduces the symmetry of the spin degrees of freedom, and leaves the lattice space and

point group symmetries unchanged, so they can enforce the nonsymmorphic-Kondo

filling constraint.

Our model is not generically analytically tractable, but it shares symmetry and

nodal path geometry with those of a previous conduction electron only model [185],

albeit with a much larger scale of Mz. Therefore the phase diagram is expected to

be similar to the uncorrelated model if ISB m is also tuned. The conduction electron

only model has a metallic pocket that is accessible at values of m > 1. We predict

a stronger value of inversion symmetry breaking in the full Anderson model may

then allow a KI-to-metallic or WKSM-to-metallic transition. This model and the

WKSM-to-metallic transition is relevant to the magnetic field experiments done on

the nonmagnetic Ce3Bi4Pd3 [170]. The experiments in that work also found a heavy
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Fermi-liquid metallic phase at high field values. That transition is more traditional

to the Kondo-insulator physics, and is not the focus of the present work. It is worth

noting that, what is nontrivial in our finding is that the topological transitions take

place at a Zeeman field scale that is smaller than the Kondo scale, where the Kondo

effect itself is suppressed by the Zeeman coupling. In that sense, our result captures

the most surprising aspect of the experimental findings.

At very large values of Mz & T 0
K , the WKSM model no longer supports nonzero

r values, meaning the system has undergone a Kondo destruction phase transition.

When that happens, a metallic phase ensues. However, this model reproduces the

WKSM to KI transition as a function ofMz in Ce3Bi4Pd3. It is not clear whether one

should expect double Weyl points in Ce3Bi4Pd3, but it appears as a generic effect of

magnetic field. Future work will explore how to experimentally determine the nodal

orders in Ce3Bi4Pd3, and, relatedly, to carry out studies in more realistic models for

this system.
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Chapter 6

Connection to related theoretical work, implications,
and discussion

We have stressed that the Weyl-Kondo semimetal solution is robust because of the

cooperation of the Kondo effect with the space-group symmetry. We have identified

the WKSM as a distinct state of matter: in the bulk, it features strongly renormalized

Weyl nodes instead of being fully gapped; on the surface, and it hosts Fermi arcs from

a band with a width of the Kondo energy. The focus of the WKSM has been on three

dimensional models, but in principle a two-dimensional nonsymmorphic lattice could

also harness the Kondo pinning mechanism. In this chapter, the WKSM model as

it is presented here is compared with models of topological Kondo insulators, and

models that can realize topological semimetals as well.

The context of heavy fermion systems links the WKSM phase advanced here

with the topological Kondo insulators (TKI) [57] and the physics of their surface

states [196]. It will be instructive to explore Kondo-driven bulk nodal excitations

near the Fermi energy in a variety of related models that use the heavy fermion

system as a platform for finding topology [61, 140, 141, 197, 198, 199, 59]. Recently,

there was a realization of a heavy fermion type Weyl semimetal in a modified TKI

model, with an added parity symmetry breaking term incorporated into the odd-

form-factor hybridization [200]. The heavy Weyl semimetal develops from the TKI

model at half-filling when the hybridization is nonzero, and its surface states show

a Kondo destruction transition. The most widely used TKI model is a half-filled

Kondo lattice model on a cubic lattice (usually the intersite RKKY term is neglected

for simplicity), with conventional conduction electron dispersion and a localized bare
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f electron level [57, 56, 201, 198]. The TKI models realize a gapped Kondo insulator

with nontrivial surface Dirac nodes. There is also some disagreement as to if the main

proposed TKI material candidate (intermediate valence compound SmB6) is in fact

nontrivial, as several works have attempted to settle - for example, Refs. [202, 203].

Additionally, while we have emphasized the space group symmetry to produce

WKSM in three dimensions, it is also instructive to consider the role of space group

symmetry in two dimensions.

One study looked at a Kondo lattice model on the honeycomb lattice which realizes

a Dirac-Kondo semimetal (DKSM) to TKI phase transition at the inclusion of the

spin-orbit coupling in the conduction electrons [140]. The correlated DKSM phase

could be found in heavy fermion systems in a dilute carrier limit, where the conduction

electron band is nearly empty.

As another example, a Shastry-Sutherland Kondo lattice model revealed a par-

tially screened Kondo semimetal phase that breaks a symmetry [204], and its phase

diagram was later reconsidered in light of the constraints imposed by nonsymmorphic

glide symmetry [141]. Refs. [204, 141] proposed an even-filling Kondo lattice model

Luttinger invariant on top of the (often zero) Fermi volume, which if nonzero, hints

that the system may compensate with gapless dispersion or fractionalization, and

that any finite Fermi surface can only be removed by breaking this glide symmetry

(i.e. changing the Luttinger invariant to zero). Though the idea of the Fermi volume

as a topologically protected object is older [205], this idea of topological ‘Luttinger

invariants’ that can help classify the type of semimetal for nonsymmorphic systems

was later generalized [206].

The second remarkable feature of the WKSM is the Kondo pinning mechanism,

which constrains the Weyl nodes to the Fermi energy. It has been established that

the Kondo pinning mechanism relies on the filling enforcement granted by both the

nonsymmorphic symmetry and strong correlations. Since the Kondo-screened phase

includes the f electron species in its Luttinger count towards the Fermi volume, it
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imposes additional constraints in the Kondo limit; and that nonsymmorphic space

group symmetry constrains the filling where gapless semimetals occur. The diamond

lattice space group has been shown to be a band insulator for fillings of ν = 4n where

n is a positive integer; this means that the diamond lattice is only a band insulator

if it is completely empty or full [90]. The quarter-filling chosen for the WKSM is

ν = 2n with n = 1, which would be an even-filled commensurate band insulator if

it was symmorphic, however the multiple nonsymmorphic symmetries require extra

band crossings and is highly degenerate. Since ν = 2n is not a band insulator filling,

the phase must be gapless with a Fermi surface present, but because any even filling

encloses zero Luttinger volume, the Fermi surface can be a point, so the circumstances

favor the formation of a nodal semimetal phase. Our work here has provided how such

insights, gained from studies of non-interacting electron topology, can cooperate with

strong correlations to produce novel correlation-driven electronic topological states.

Local moments are also the key to exploring the magnetic parts of the heavy

fermion global phase diagram, as well as taking magnetic fluctuations into account.

In quantum phase transitions, the local moment fluctuations near a magnetic phase

boundary drive emergent phases to develop. Physically, this is the origin of our view

that the f electrons of the system drive topology; in the presence of spin orbit cou-

pling, these fluctuations can also cause topological phases to emerge. There have

been few examples of a magnetically ordered phase that is also a topological elec-

tronic state, though theoretical studies have been more abundant. For example, in a

study of magnetic Weyl Kondo semimetals, heterostructures of SmB6 and AB6 (A is

a magnetic rare earth elements) were found to favor Dirac or Weyl semimetal states

depending on whether the A moments ordered antiferromagnetically or ferromagnet-

ically, respectively [197].

This thesis has made the contribution of exploring the paramagnetic, highly frus-

trated region of the global phase diagram, and the paramagnetic heavy fermi liquid

approaching the border of a magnetic phase in the global phase diagram including



90

spin orbit interaction. A new appreciation for the significance of spin orbit coupling

and its realistic modeling has been promoted here, and its contribution to topology

cannot be understated due to the need for band inversion. There is also a recognition

that because a strong Kondo screening can indirectly change the Luttinger count, and

consequently the local moments control the topological properties connected to the

Fermi surface through the Kondo effect. This is an encouraging sign that topology

and heavy fermion properties interplay in surprising ways, and that there is much

more to explore within their intersection.
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Chapter 7

Summary

This thesis has considered heavy fermion systems, which comprises a system with

delocalized electrons interacting with magnetic localized fermions, and possesses com-

peting paramagnetic heavy Fermi liquid and antiferromagnetic metallic ground states.

The quantum phase transitions between these phases are determined by the degree

of magnetic frustration and the small-large Kondo Fermi surface energy scale, orga-

nized in the global phase diagram. However, the spin orbit coupling in real heavy

fermion systems is substantial enough to warrant inclusion in models, and naturally

offers a way to connect Kondo physics to topological phases. Topological metals and

semimetals are natural states to investigate in the heavy fermion systems, since the

finite Fermi surface is amenable to transport and thermodynamic measurements, and

are highly tunable in general. This makes heavy fermion systems an ideal platform

to study the intersection of topology and quantum phase transitions.

Inspired by the many fascinating studies of the pyrochlore iridate Pr2Ir2O7, we

study a pair of two-dimensional Kondo lattice models hosting f fermions in a TRSB

chiral spin liquid state, and calculate the anomalous Hall response as a function of

Kondo coupling. In the paramagnetic region of the global phase diagram, the small-

to-large Fermi surface transition marks when the local moments must be included

in the Luttinger count due to Kondo screening. The Luttinger count includes only

conduction electrons in the small Fermi surface phase, and the large Fermi surface

phase counts them and the localized moment spins per unit cell; however the Luttinger

count is modulo even numbers of electrons. The anomalous Hall signal originates

from the Berry curvature on the Fermi surface, and it is used to probe and compare
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a pair of two-dimensional lattices. For the 2 spin per unit cell square J1 − J2 lattice

in a nontrivial flux state, the AHE evolved smoothly across the small-large Fermi

surface transition since the Luttinger count changed by an even number of spins;

interestingly, the Fermi surface itself is invariant across the transition. In contrast,

the model implemented on the three spin per unit cell kagomé lattice produces a large

jump in the AHE across the small-large Fermi surface transition, accompanied by a

reconstruction of the Fermi surface topology and Fermi volume.

Contemporaneously with the new materials realizations of Weyl semimetals and

the Weyl-Kondo semimetal candidate Ce3Bi4Pd3, a periodic Anderson model with

spin orbit coupling and broken inversion symmetry that theoretically realizes the

WKSM phase in the Kondo limit. The WKSM phase is characterized by Kondo

pinning, renormalized narrow linearly dispersing bands with a slow Weyl fermion

velocity which enhances the specific heat, and the specific heat having an orders

of magnitude enhanced T 3 specific heat prefactor which onsets below the Kondo

temperature.

What underlies the WKSM solution is the cooperation between strong correla-

tions and space-group symmetry constraint, which we have developed in considerable

depth. The symmetry mechanisms for node formation are explained, beginning with

a ‘natural’ nodal line semimetal phase of conduction electrons, as a consequence of the

nonsymmorphic space group operations creating degeneracy at the zone boundary.

Adding band inversion by including spin orbit coupling produces a Dirac semimetal

state with pseudospin degrees of freedom; this becomes a Weyl semimetal when sub-

lattice exchange symmetry is violated by broken inversion symmetry, with the Dirac

cone splitting into two pairs of nodes each. Before turning on hybridization, the f

fermions of the model are in a trivial insulator phase, and the conduction electrons

bands are empty. In the strong coupling Kondo limit, the hybridization allows the f

fermion to form mobile quasiparticles, which take on a narrow, renormalized version

of the nodal dispersion allowed by symmetry: nodal Kondo line semimetal, Dirac
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Kondo semimetal and Weyl-Kondo semimetal phases are accessible.

The Kondo pinning mechanism is shown to result from a combination of factors:

• The nonsymmorphic symmetry causes certain commensurate energy band fill-

ings to be gapless, rather than a trivial band insulator, and protects the degen-

eracies it creates against SOC and other perturbations;

• The solution in the Kondo limit is constrained such that the number of f

fermions in the unit cell is one per site;

• At quarter filling, the filling constraint and the nonsymmorphic symmetry en-

forced gapless filling occur between the same bands.

A tilting modification to the WKSM that preserves lattice symmetry is also

presented, which can shift the balance of net Berry curvature near a Weyl node

singularity. The tilting is suggested to enhance the spontaneous Hall signal from

Weyl semimetals, suggesting that the large spontaneous Hall effect measured in

Ce3Bi4Pd3 may have similarly tilted Weyl-Kondo nodes.

An important advantage provided by strong correlations is the high tunability,

and we have illustrated this point by considering the effect of a Zeeman field to the

WKSM solution. A Zeeman field is implemented on the localized f fermions in the

WKSM model, and a phase diagram is mapped out, where three distinct WKSM

phases are accessible before a gap is opened. The original WKSM phase is chosen as

a starting point, but when the Zeeman field is turned on and time reversal symmetry

is broken, the nodes begin to move back together until they meet in a quadratic band

touching on the Brillouin zone boundary. As the Zeeman field is increased beyond a

critical value, double-Weyl fermions emerge from the touching point to the interior

of the Brillouin zone, and with higher magnetic field, four more node pairs emerge

in the Brillouin zone. All nodes then converge into a non-Kramers quadratic band

touching point at the Brillouin zone center, before opening a gap in a phase transition
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to a Kondo insulator. These results are consistent with magnetic field studies on

Ce3Bi4Pd3 which found a WKSM to Kondo insulator phase transition [170].

The study presented in this thesis opens up new frontiers in the exploration of

the interplay between strong correlations and electronic topology. For example, the

inclusion of magnetism into topological quantum materials has long been a goal,

and the works shown here have taken strides to investigate the nonmagnetic and

paramagnetic aspects of heavy fermion topology. This leaves the magnetic phases

and their phase transitions to explore in the topological global phase diagram.
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Appendix A: anomalous Hall effect and quantum
criticality in geometrically frustrated heavy fermion

metals

A1 Chiral interaction from perturbative expansion

To obtain Eq. 2.5 of Chapter 2, we integrate out the f -spinons from Eqs. 2.1-2.2

of Chapter 2 in the Kondo destroyed phase using the standard Feynman diagram

procedure. Guided by the symmetry analysis, we only need to consider the third-

order term 1/3!(si ·Si)(sj ·Sj)(sk ·Sk). The effective chiral electronic interaction Hcc

is obtained by contracting the spinons in triangle-loop diagrams as shown Fig. (A1).

Since the CSL is gapped, it is sufficient to restrict to the most local three-site loops,

i.e. the triangle within a unit cell, at equal time only. Then we can obtain Hchiral as

Pijk
〈f†i fj〉

〈f†j fk〉

〈f†kfi〉

Figure A1 : Feynman diagrams of the triangle-loop contractions. The solid lines are
the propagators for the conduction electrons.
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follows:

(si · Si)(sj · Sj)(sk · Sk) =
∑
a,b,c

sai s
b
js
c
k

× 1

8
(f †iαiσ

a
αiβi

fiβif
†
jαj
σbαjβjfjβjf

†
kαk
σcαkβkfkβk)

4−→
∑
a,b,c

sai s
b
js
c
k(〈f †iαifjβj〉〈f

†
jαj
fkβk〉〈f †kαkfiβi〉

+ 〈f †iαifkβk〉〈f
†
kαk
fjβj〉〈f †jαjfiβi〉)σaαiβiσbαjβjσcαkβk

= Eijksi · (sj × sk)/2,

(A-1)

where 4−→ denotes triangular-loop contraction. The constraction is approximated by

equal-time correlators, so 〈f †iαifjβj〉 = δαi,βjχij. Discarding the density-density inter-

actions, the second line of Eq. (A-1) can be written as

Hchiral ∼
∑

αl,αj ,αk

(Pljkd
†
lαk
dlαld

†
jαl
djαjd

†
kαj
dkαk

+ Plkjd
†
lαj
dlαld

†
kαl
dkαkd

†
jαk
djαj).

(A-2)

Hchiral of the Kondo Screened Phase

In order to obtain the spectral weight of the incoherent terms in the Kondo screened

phase, we use the slave rotor theory[207] to tackle the f -fermion Hubbard model.

As we shall briefly discuss below, the Kondo transition is the Mott transition for

f -fermions in periodic Anderson model (PAM)[208], and is realized when the rotor

fields are condensed. The condensation density describes the coherent charge degrees

of freedom that would contribute to transport.

The PAM Hamiltonian is

HPAM = H
(f ′)
Hubbard +H

(d)
0 + V

∑
i,σ

(f ′†i,σdi,σ + f ′i,σd
†
i,σ), (A-3)

where

H
(f ′)
Hubbard = −

∑
ij,σ

tijf
′†
i,σf

′
j,σ + U

∑
i,σ,σ′

n
(f ′)
i,σ n

(f ′)
i,σ′ (A-4)
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is the usual half-filled Hubbard model, and

H
(d)
0 = −

∑
ij,σ

tijd
†
i,σdj,σ (A-5)

describes the free d-band electrons.

First, we use the slave rotor formalism to treat the Hubbard model part by letting

f ′i → fie
−iθi

H(f ′) → U

2

∑
i,σ

L̂2
i,σ −

∑
ij,σ

(tijf
†
i,σfj,σe

i(θi−θj) + h.c.). (A-6)

The corresponding Lagrangian is

SH =

∫
dτ
∑
i,σ

f †i,σ∂τfi,σ +
(∂τθ)

2

2U
+

∑
〈ij〉,σ

(t〈ij〉f
†
i,σfj,σe

i(θi−θj) + h.c.),
(A-7)

here the kinetic energy of the rotors U
2

∑
i,σ L̂

2
i,σ is replaced by its conjugate variables

L̂i,σ = (∂τθ + ih)/U .

Let eiθi = Xi, so that Xis subject to the constraint |Xi|2 = 1 on average (using

Lagrangian multiplier). Using ∂τθi = 1
i
X∗i ∂τXi, we have

SH = S0
X + S0

f +
∑
〈ij〉,σ

(t〈ij〉f
†
i,σfj,σXiX

∗
j + h.c.). (A-8)

with S0
f =

∫
dτ
∑

i,σ f
†
i,σ∂τfi,σ, and S0

X =
∑

i(
|∂τXi|2

2U
+ λi(|Xi|2 − 1)). The exchange

term is also expressed in terms of slave rotors

Hexc = V
∑
i,σ

(f †i,σdi,σXi + h.c.). (A-9)

In the large-U -small-V limit, the system is in PS phase. We can integrate out

the rotor fields, and recover both the Heisenberg-J interaction, as well as the Kondo

coupling

HK = JK
∑
i

Sf (i) · sd(i), (A-10)
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where JK = 4V 2/U .

Within the slave rotor approach, the onset of Kondo screening is described by the

condensation of the X-field: Xi → X0
i +X ′i. The exchange term becomes

Hexc =
∑
i,σ

(V X0
i f
†
i,σdi,σ + V X ′if

†
i,σdi,σ + h.c.). (A-11)

The first term is the hybridazation term, which is equivalent to that of the Kondo

model. We can identify that ρK = V X0
i /JK = U

4V
X0
i . The second term now provides

the incoherent fluctuations, which, as we argue in Chapter 2, can mediate the same

chiral interactions for the d-electrons through the triangular diagrams. But in this

approach, the X-field satisfies a spectral sum rule:
∫
dνd2k/(2π)3GX(ν; k) = 1, from

which we can obtain that in the Kondo screened phase

Hchiral =

(
1− 4JK

U
ρ2
K

)3
J3
K

2
Eijksi · (sj × sk). (A-12)

Note that the prefactor 4JK/U is changing as we tune JK . In our calculation, we fix

U = 16t, i.e. twice as the d-electron’s bandwidth.

Hubbard-Stratonovich transformation of Hchiral

To decouple the six-fermion chiral interaction, in general we need to introduce two

sets of Hubbard-Stratonovich (HS) fields, namely, γs, κs, which can be interpreted as

a single bond / two consecutive bonds fields:

γij = 〈∑α d
†
i,αdj,α〉, (A-13)

κij,k = 〈∑α,β d
†
i,αdk,αd

†
k,βdj,β〉, (A-14)

which are in principle independent. The bond indices here are directional, i.e. γji =

γ∗ij, κji,k = κ∗ij,k. In general, we have 6 complex γ’s and 12 complex κ’s.

The HS transformation is as follows

LHS =
∑
x

(d†x(i∂t + µ)dx − Ψ̃∗MΨ + J†Ψ + Ψ̃∗J −Hkin), (A-15)
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where Ψ̃∗ = {κ∗xixj ,k, . . . κ∗xixj ,k̄, . . . , γ
∗
xixj

, . . . , γ∗xjxi , . . . } is a 24-component vector.

The indices i− j run over all the links inside a unit cell given by x, and {k, k̄} denote
the other two sites for a given bond 〈ij〉 within the unit cell.

J† = {γ̂†ij, γ̂ji†, . . . , κ†ij,k, κ̂†ij,k̄, . . . }. (A-16)

where we use γ̂†ij =
∑

α d
†
xj ,α

dxi,α, κ̂
†
ij,k =

∑
α,β d

†
j,αdk,αd

†
k,βdi,β.

To determineM, suppose that we now integrate out all the HS fields, we should

recover the effective interactions as

Heff−int = J†M−1J = Hcc + . . . , (A-17)

in which the . . . indicates other effective interactions. To have a stable HS transfor-

mation, we need to further include the 4-fermion effective interactions at H(2)
eff−int ∼

O(J2
K) generated from J2

K(si ·Si)(sj ·Sj) as well as the 8-fermion process atH(4)
eff−int ∼

O(J4
K). Since the f -fermions are gapped, we can keep only the short-range terms, i.e.

within a unit cell, so that all the terms can be decoupled by the γ̂ijs and κ̂ijs in the

large-N limit. Then M−1 can be written in a block form M−1 = ⊕(M−1
(ij)), where

(M−1
(ij)) is a 4× 4 matrix for a given bond (ij) within the unit cell.

Here we estimate the matrix elements of (M−1
(ij)) within the approximations that

are used for computing Hchiral, i.e. equal-time contraction is used and only those

within a unit cell are included:

(M−1)γ̂†γ̂,(ij) = J2
Ksgn[(ij)]χijχji/2! = ρ2

ij, (A-18)

(M−1)κ̂γ̂,(ij)k = J3
KPijk/(2× 3!), (A-19)

(M−1)κ̂†κ̂,(ij),kk′ = δk,k′J
4
Kρ

4
ij/4!. (A-20)

sgn[〈ij〉] is a relative sign coming from the fact that γ̂ij†γ̂ij ∼ −γ̂ji†γ̂ji. We see that

det[M−1] is indeed positive, and hence this is a stable HS transformation. M is then

obtained by inversingM−1.

Therefore, we have a formal HS decoupling of Hchiral. Further replacing the HS-

fields by their expectation values in Eq. (A-15), we obtain both fermion bilinears
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and four-fermion terms. To lower the total energy, we need to have γijκ∗ij,k ∼ −Pijk.
Upon satisfying this constraint, we have an additional gauge degree of freedom to

choose either γd,ij or κ∗ij,k to be imaginary, i.e. explicitly breaking TRS, even though

the underlying physical state is the same. For convenience, we can choose κ∗ij,ks which

couple to d-fermion bilinears (γ̂ijs) to be TRSB. By keeping only the TRSB terms in

Eq. (A-15), we justify our choice of Eq. 2.8 in Chapter 2 as

Hd,1 =
∑
〈ij〉,k

(κ∗ij,kγ̂ij + h.c.). (A-21)

A2 Berry curvature, Berry connection, Streda formula and

Kubo formula

The AHE coefficient, σxy, presented in Chapter 2 are computed using the Streda

formula:

σxy =

∫
dk

(2π)2

∑
n

Fxyn (k)f(εn(k))

=
∑
n6=n′

∫
dk

(2π)2
[f(εn(k))− f(εn′(k))]

× Im
〈n,k|vx(k)|n′,k〉〈n′,k|vy(k)|n,k〉

[εn(k)− εn′(k)]2
.

(A-22)

Here, va(k) = ∂aHd(k) is the current operator of the conduction electrons, Fxyn (k)

the Berry curvature, and f(εn(k)) the Fermi function. Both ~ and e have been taken

to be 1.

To discuss the role of the Berry curvature, we start from the more standard Kubo

formula. The current operators are

Jq =
1√
N

∑
k

c†k+q/2

∂Hk

∂k
ck−q/2. (A-23)

In frequency-momentum space, the conductivity is computed via the current-current
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correlation function

πab(iν) =
∑
ω

∫
d2k

(2π)2
Tr
[∂H
∂ka

×G(ω − ν,k− q/2)
∂H

∂kb
G(ω,k + q/2)

]
,

(A-24)

where the sum over ω is Matsubara sum.

σab = lim
ω→0

[
− Im[πab(iν)/ν

∣∣
iν→ω+i0+

]
]
. (A-25)

For convenience, it is better to write both G and H in terms of the bloch bands

projection operators Pn(k) = |n,k〉〈n,k| (which is possible for fermion bilinear theory)

with 〉n,k being the eigenvectors of nth band at momentum k:

H(k) =
∑

n εn(k)Pn(k), (A-26)

G(ω,k) =
∑

n
Pn(k)

iω−εn(k)
. (A-27)

After inserting the expression into Eq. (A-24), we find only the following term con-

tributes

πab(iν) =
∑
ω

∫
d2k

(2π)2

∑
n0,...,n3

Tr
[
∂kaPn0

× Pn1∂kbPn2Pn3

εn0εn2

(i(ω − ν)− εn1)(iω − εn3)

]
=

∫
d2k

(2π)2

∑
n0,...,n3

Tr
[
∂kaPn0

× Pn1∂kbPn2Pn3

εn0εn2(f(εn3)− f(εn1))

iν + εn3 − εn1

]
.

(A-28)

Here f(ε) is the Fermi distribution function, and arises from the Matsubara sum.

Sum of ni runs over band indices. After performing the Tr operation, we end up with

the following result

πab(iν) =

∫
d2k

(2π)2

∑
n,n′

[
− Aann′Abn′n

f(εn)− f(εn′)

iν + εn − εn′
εnεn′

+ Aann′A
b∗
n′n

f(εn)− f(εn′)

iν + εn − εn′
ε2n′ + Aa∗nn′A

b
n′n

f(εn)− f(εn′)

iν + εn − εn′
ε2n

− Aa∗nn′Ab∗n′n
f(εn)− f(εn′)

iν + εn − εn′
εnεn′

]
,

(A-29)
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where Aan,n′ = −i〈n|∂kan′〉, Aa∗n,n′ = −i〈∂kan|n′〉 is the matrix element of ∂ka . Note only

the diagonal elements are the Berry connection. Then we do analytic continuation

iν → ω + iη, and take the imaginary part of πab(ω)/ω. In the end, we let ω → 0.

When we take imaginary part of πab(ω)/ω, we have two different contributions:

π
(1)
ab =

∫
d2k

(2π)2

∑
n,n′

(
Im[−Aann′Abn′n]

× Re[
f(εn)− f(εn′)

ω + εn − εn′ + iη
εnεn′ ] + . . .

)
,

(A-30)

π
(2)
ab =

∫
d2k

(2π)2

∑
n,n′

(
Re[−Aann′Abn′n]

× Im[
f(εn)− f(εn′)

ω + εn − εn′ + iη
εnεn′ ] + . . .

)
,

(A-31)

where . . . denotes the rest three terms. Note that Aann′ = −Aa∗nn′ , (Aann′)
∗ = Aa∗n′n, we

find

π
(1)
ab =

∫
d2k

(2π)2

∑
n,n′

(
Im[−Aann′Abn′n](f(εn)− f(εn′))

× Re[
(εn − εn′)2

ω + εn − εn′ + iη
+

(εn − εn′)2

ω − εn + εn′ + iη
]

=

∫
d2k

(2π)2

∑
n,n′

(
Im[−Aann′Abn′n](f(εn)− f(εn′))

× 2ω(εn − εn′)2

ω2 − (εn − εn′)2
.

(A-32)

Therefore, after taking the limit π(1)
ab /ω|ω→0, we obtain

σ
(1)
ab =

∫
d2k

(2π)2

∑
n 6=n′

Im[Aann′A
b
n′n](f(εn)− f(εn′)), (A-33)

which we can use the relation 〈n|∂kaH(k)|n′〉 = (εn−εn′)Aann′+δn,n′∂kaεn to transform

into the Streda formula. For π(2)
ab /ω|ω→0,

Im[
f(εn)− f(εn′)

ω + εn − εn′ + iη
] = δn,n′δ(ω)

f(εn)− f(εn + ω)

ω
|ω→0. (A-34)

Note that for n 6= n′, the factor is immediately zero when we take η → 0. Only n = n′

terms survive, and π(2)
ab /ω|ω→0 ∼ δ(ω)∂f(ε)/∂ε. For a 6= b, Re[AannAbnn] is symmetric
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upon exchanging a↔ b. On the other hand, we know πab = −πba. Therefore, π(2)
ab = 0

for a 6= b. When a = b, we recover the usual Kubo formula result of dc conductivity

σxx ∼ δ(ω).

To show that σAHxy is a Fermi surface property[25], we can rewrite Eq. (A-33)

through an integration by part, and make use the fact [209] that
∑

n′ Im[Aann′A
b
n′n] =

∇a
kA

b
nn −∇b

kA
a
nn:

σ
(1)
ab =

∫
d2k

2π2

∑
n

f(εn)(∇a
kA

b
nn −∇b

kA
a
nn)

=

∫
d2k

2π2

∑
n

(Abnn∇a
kf(εn)− Aann∇b

kf(εn))

=
∑
n

1

2π2

∮
Aan(kF )dkFa.

(A-35)

A3 Berry curvature distribution

The Berry curvature distributions are shown in Fig. (A2) for PS phase (2(a)) and PL

phase (2(b))) the square lattice model, PS phase (2(c)) and PL phase (2(d)) of the

kagomé lattice model. For (2(a)) and (2(b)), despite the visual resemblance, their

difference is still significant as shown in Fig. 2.3(a).

A4 Reconstruction of Fermi Surfaces

We note that in the Kondo-destroying PS phase, only conduction electrons participate

in forming the Fermi surface. By contrast, in the Kondo-screened PL phase, both

the conduction electrons and local f -moments are involved in forming the Fermi

surface [205]. In the case of the J1 − J2 model, the spinon excitations of the CSL

phase are gapped. By contrast, in the Kagomé case, they are gapless.

To illustrate the point, we show the projected density of states (DOS) in Fig. (A3).

The parent spinon TRSB flux state is gapped at zero energy (referred to as “EF")

for the J1−J2 case, but is gapless at EF for the Kagomé case. The DOS structure of

the spinons survives the PL phase (bottom row), but are constrained to straddle EF .
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(a) (b)

(c) (d)

Figure A2 : (Color online) The Berry curvature distributions for the square lattice
model PS phase (2(a)), PL phase (2(b)), the Kagomé lattice model PS phase (2(c))
and PL phase (2(d)). The Fermi surfaces are also shown as black dashed lines.
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Figure A3 : Density of states projected to the sites of a unit cell, for (a) J1 − J2

spinons in CSL state, (c) kagomé spinons in (π
2
,−π) state, (e) Kondo screened phase

of J1 − J2 model, (g) Kondo screened phase of Kagomé model; (b),(d),(f),(h) show
the relevant legends for color corresponding to the original eigenfunction elements.

The Fermi surface is only affected in the Kagomé lattice.

This can be seen by directly plotting the Fermi surfaces. Fig. (A4) shows both the

Kondo-destroyed and the Kondo-screened phases, for both the square lattice and the

Kagomé lattice. It is clearly seen that, for the J1 − J2 model on the square lattice,

the Fermi surface smoothly evolves through the QCP. By contrast, for the Kagomé

lattice, the Fermi surface experiences a sudden jump across the QCP. We also note

that the jump is very substantial. This is because, in the Kagomé CSL state, the

middle spinon band happens to be a flat band.
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Figure A4 : The Fermi surfaces of the square lattice model in the PS phase (4(a))
and in the PL (4(b)) phase, and of the Kagomé lattice model in the PS phase (4(c))
and in the PL phase (4(d)).
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A5 Analysis of the wavefunction reconstruction across the

QCP

To further our understanding about the nonanalyticities across the QCP, we rewrite

the Hamiltonian across the QCP in terms of the d-band and f -band eigenstates, which

we denote as |φdk〉 and |φfk〉 respectively:

H =

∑
k

(εdk − µ+ λ′)|φdk〉〈φdk| δ|φdk〉〈φfk|
δ|φfk〉〈φdk| (εfk − µ− λ′)|φfk〉〈φfk|

 .
(A-36)

Here, δ is the hybridization strength. In addition, λ′ is the Lagrangian multiplier,

which is shifted from λ by a constant that can be absorbed into µ, to obtain the

above symmetric form for later convenience. The hybridization, thus the wavefunction

reconstruction, is the strongest at the k points where the conduction bands and spinon

bands intersect, i.e. εfk0
− µ = εdk0

− µ = 0.

For the Kagomé case, Consider the case that the Fermi surface jumps. We expect

λ′ to track δ as the QCP is approached. Nonetheless, we can still start out with the

points where εfk0
−µ = εdk0

−µ = 0. In this case, we can write the λ′ term as λ′σ0⊗τz,
where τz is the Pauli matrix for the orbital space. This term does not commute with

the hybridization term, which is off-diagonal in the τ space. (Note that both the

diagonal and off-diagonal blocks above are diagonal matrices in the sublattice space,

and therefore commute with each other in that space.) Therefore, the presence of

any λ′ prevents us from block-diagonalizing the Hamiltonian even for infinitesimal δ.

The new eigenstates are therefore reconstructed completely.

A6 Phase diagram in the saddle-point analysis

To illustrate our procedure, we consider the phase diagram arising from the saddle-

point analysis in the case of J1 − J2 square lattice. We minimize the total energy

of Eq. (??) with respect to the amplitudes of the link fields ρij and ρK,i. The phase
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Figure A5 : (Color online) The phase diagram of J1− J2− JK model with J2 = J1/2
and nd = 0.5 (A5).

diagram of the square lattice model is shown in Fig. (A5), where the red (solid) and

blue (dashed) lines respectively mark a first-order phase transition and a crossover.

It shows that both the flux-state and the chiral-state solutions can be stabilized, i.e.

having lower energies than the unhybridized phase, for JK larger than some critical

JK,c. The flux phase solution has the lowest energy when stabilized, signaling that

the Kondo coupling favors the gapless states.

For the pyrochlore lattice, the CSL state is gapless [123], and our result here

strongly suggests that a similar chiral state could be the ground state on the py-

rochlore lattice when the Kondo coupling is introduced.
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Appendix B: Weyl-Kondo semimetal in heavy
fermion systems

B1 Analysis of the bulk spectrum

In the strong coupling regime that is relevant to heavy fermion systems, we can

approach the prohibition of dσ fermion double occupancy by an auxiliary boson

method [152]. Representing d†iσ = f †iσbi, the f
†
iσ (bi) are fermonic (bosonic) operators

satisfying the constraint b†ibi +
∑

σ f
†
iσfiσ = 1. At the saddle point level, we replace

b†i , bi → r, and introduce a Lagrange multiplier ` to enforce the local constraint.

Defining ΞT
k ≡

(
dk↑,A dk↑,B dk↓,A dk↓,B

)
and ΨT

k ≡
(
ck↑,A ck↑,B ck↓,A ck↓,B

)
,

we can transform Hamiltonian Hc, Hcd, and Hd into the pseudospin basis using

Ξ̆k = S†σΞk and Ψ̆k = S†σΨk, with S†σ = Uστ0 being a unitary matrix which con-

sists of the | ± D〉 eigenvectors. The effective hybridization becomes rV is nonzero

only for V > Vc, whenever the conduction-electron density of states has a pseudogap

form near the Fermi energy [61]. The hybridization part can be re-expressed as

Hcd =
∑
k

[
Ψ̆†k · rV 14 · Ξ̆k + H.c.

]
. (B-1)

Introducing Ψ̆T
k =

(
ψ̆Tk+ ψ̆Tk−

)
, Ξ̆T

k =
(
ξ̆Tk+ ξ̆Tk−

)
, where ψ̆Tk± =

(
ψ̆k±,A ψ̆k±,B

)
and

ξ̆Tk± =
(
ξ̆k±,A ξ̆k±,B

)
, we find that the strong-coupling Hamiltonian can straightfor-

wardly be written in the | ±D〉 basis as Hs =
∑

a=±Hs
a,

Hs
a =

∑
k,a=±

(
ψ̆†ka ξ̆†ka

)hka − µ12 Vs12

Vs12 Es12

ψ̆ka

ξ̆ka

 , (B-2)

where Vs ≡ rV and Es ≡ Ed + `. Straightforward diagonalization of the strong-

coupling Hamiltonian yields a set of four quasiparticle bands for each spin sector
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as

E (τ,α)
±D (k) =

1

2

[
Es + ε̃τ±D + α

√(
Es − ε̃τ±D

)2
+ 4V 2

s

]
, (B-3)

ε̃τ±D = ετ±D − µ, (B-4)

ετ±D = τ
√
u1(k)2 + u2(k)2 + (m± λD(k))2, (B-5)

where τ = (+,−), and α = (+,−) indexes the upper/lower quartet of bands, respec-

tively.

To gain a deeper understanding of the gap structure of the hybridized bands, it is

more convenient to first diagonalize the conduction electron part of the Hamiltonian,

which is possible since the off-diagonal blocks and the bottom right block are all

proportional to 2×2 identity matrices. Diagonalizing the conduction electron part of

the Hamiltonian, we can rewrite the strong coupling Hamiltonian in a diagonal form,

hDk± =

ε+
±D 0

0 ε−±D

 , (B-6)

and in the new basis, the Hamiltonian becomes

Hs
± =

∑
k

(
(ψDk±)† (ξDk±)†

)hDka − µ12 Vs12

Vs12 Es12

ψDk±
ξDk±

 . (B-7)

We can then directly see that the matrix elements associated with the 1st and 3rd

fields are decoupled from the 2nd and 4th fields, which means we can simplify the 4×4

matrix in either |±D〉 sector, to be two 2×2 matrices, which allows us to examine the

eigenenergy bands analytically. Below, we discuss the cases in different |±D〉 sectors
separately. Our main conclusion below is that the Weyl-Kondo semimetal phase can

only occur at the | − D〉 sector in the hybridized band regime, and the hybridized

bands in |+D〉 sector always remain gapped.
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B1.1 |+D〉 sector:

For further analysis in the band gaps, we assume that Es lies well below the conduction

electron bands ετ±D. In addition, for the condition for 1/4-filling, Es is required to

be positive Es > 0. Focusing on the two 2× 2 matrices of the | + D〉 sector, we can

separate the Hamiltonian into Hs
+ =

∑
α,τ H

s,τ
+,α, the energies obtained are

E (+,α)
+D =

1

2

[
Es + ε̃+

+D + α

√(
Es − ε̃+

+D

)2
+ 4V 2

s

]
, (B-8)

E (−,α)
+D =

1

2

[
Es + ε̃−+D + α

√(
Es − ε̃−+D

)2
+ 4V 2

s

]
. (B-9)

Since ε+
+D > ε−+D, we can see E (+,+)

+D > E (−,−)
+D and these two bands always remain

gapped. Similarly, within each pair of branches E (τ,+)
+D > E (τ,−)

+D , and they should be

always gapped. The only possibility that the gap closes occurs between E (+,−)
+D and

E (−,+)
+D . If there is a crossing between them at some momenta k = k0, the two bands

should be degenerate E (+,−)
+D (k0) = E (−,+)

+D (k0), which leads to

ε+
+D(k0)− ε−+D(k0) =

√(
Es − ε̃+

+D(k0)
)2

+ 4V 2
s +

√(
Es − ε̃−+D(k0)

)2
+ 4V 2

s

≥ ε+
+D(k0) + ε−+D(k0)− 2Es

⇒ ε−+D(k0) ≤ Es, (B-10)

where we use the assumption that Es < ετ±D in the second line. This in turn leads to

a contradiction to our initial condition that the d fermion Fermi energy is well below

the four conduction electron bands, Es < ετ±D. Therefore, we conclude that there

cannot be any crossing between E (+,−)
+D and E (−,+)

+D . The hybridized bands in the |+D〉
sector always remain gapped at any momenta and Weyl nodes cannot reside there.

Now let’s examine the | −D〉 sector.
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B1.2 | −D〉 sector:

In the |−D〉 sector, we can also decompose the 4×4 Hamiltonian matrix to two 2×2

matrices, Hs
+ =

∑
α,τ H

s,τ
+,α, which gives the eigenvalues as

E (+,α)
−D =

1

2

[
Es + ε̃+

−D + α

√(
Es − ε̃+

−D
)2

+ 4V 2
s

]
, (B-11)

E (−,α)
−D =

1

2

[
Es + ε̃−−D + α

√(
Es − ε̃−−D

)2
+ 4V 2

s

]
. (B-12)

The bands’ dispersions associated with the conduction electrons show Weyl nodes at

certain momenta, i.e. k = kW , where ε+
−D(kW ) = ε−−D(kW ) = 0. There are actually

12 inequivalent kW along the X −W lines on the 3D BZ boundary, determined by

the condition m
4|λ| = sin(k0

2
), where kW is a cyclic permutation of the elements in a

vector (k0, 0,±2π). At k = kW , in the hybridized bands we then have

E (+,+)
−D (kW ) = E (−,+)

−D (kW ), (B-13)

E (+,−)
−D (kW ) = E (−,−)

−D (kW ). (B-14)

We can see that in the hybridized bands, there are actually two pairs of degenerate

bands sitting at the momenta kW . Near kW , the band dispersions can be linearized.

Due to the constraints in the strong-coupling regime, Hs
a must be solved self-

consistently with the saddle-point equations,

1
2Nu

∑
k,a=±

〈
ξ̆†kaξ̆ka

〉
+ r2 = 1, V

4Nu

∑
k,a=±

[〈
ψ̆†kaξ̆ka

〉
+ H.c.

]
+ r` = 0,

(B-15)

where Nu is the number of the unit cell. Here we can tune the chemical potential to

be µ = −V 2
s /Es, with Es > 0. This fixes the lower Weyl node to the Fermi energy,

at 1/4-filling, as shown in Fig. 3.2 in Chapter 3. For the illustration in Chapter 3, we

use the same bare coupling parameters to be (t, λ, Ed, V ) = (1, 0.5, 1,−6, 6.6), and

solved self-consistently for r ' 0.259 and ` ' 6.334, with error ε ≤ O(10−5) on a

64× 64× 64 unit cell diamond lattice.
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B2 Berry curvature

The Berry curvature field ~Ω(k) is akin to a ficticious magnetic field in momentum

space; analogously, the Weyl nodes manifest as monopole sources and sinks of Berry

curvature [210, 145]. The field is a way of representing the tensor components since it

is a 3× 3 antisymmetric tensor in three dimensions, ~Ω(k) = (Ωyz(k),Ωzx(k),Ωxy(k)).

The components are given by the gauge invariant equation [210, 145],

Ωab(k) =
∑
n6=n′
Im〈nk|∂c,kaHs

k|n′k〉〈n′k|∂c,kbHs
k|nk〉

(En − En′)2
, (B-16)

whereHs
k is the 8×8 Bloch matrix in the strong coupling regime in physical spin space,

∂c,ka is the derivative with respect to only the conduction electrons corresponding to

the velocity of the charge carriers. En = E (τ,α)
ν and |nk〉 are the Bloch eigenenergies

and eigenstates of Hs
k, with index n specifying one of the eight bands, n = (τ, α, ν) =

(±,±,±D).

In Chapter 3, the Berry curvature of the heavy Weyl fermions in the strong cou-

pling regime were shown; specifically we plot the field’s unit length 2D projection

onto the kx-ky plane,

Ω̂(kx, ky, 2π) =
1

|~Ω(kx, ky, 2π)|

(
Ωyz(kx, ky, 2π), Ωzx(kx, ky, 2π)

)
. (B-17)

B3 Surface states

Following the approach in Ref. [87], we also seek surface states in the | − D〉 sector
near the Weyl nodes. The nodes are on the square faces of the fcc Brillouin zone

boundary, along the lines connecting high symmetry points X and W . We find that

the Hamiltonian matrix of Hs
−, Eq. (B-2) can be expressed

h−(k) = (κ0 + κz)⊗ 1
2

[u1(k)τx + u2(k)τy + (m− λD(k))τz)]

+
[
(Es − µ)κ0 − (Es + µ)κz + Vsκ

x
]
⊗ τ0 (B-18)

where κi are Pauli matrices acting on the
(
ψ̆k−, ξ̆k−

)
basis. We linearize the Hamil-

tonian matrix near q =
(
kx, ky, 2π

)
in q̃z = kz − 2π around q̃z = 0. Defining



114

u′1/2 ≡ ∂kzu1/2(k)|kz=2π, u′ ≡
√

(u′1)2 + (u′2)2, and u ≡
√
u2

1 + u2
2, we obtain

h−(q) = (κ0 + κz)⊗ 1
2
[q̃zu

′(q)τx − u(q)sgn(kxky)τy + (m− λD(q))τz]

+
[
(Es − µ)κ0 − (Es + µ)κz + Vsκ

x
]
⊗ τ0. (B-19)

Making the real-space replacement q̃z → −i∂z, we can enforce the boundary condition

by assigning the value of the staggered mass to be m = m+ > 4|λ| outside for z > 0

(trivially insulating vacuum), and m = m− < 4|λ| for z < 0, such that the bulk is in

a stable Weyl semimetal phase.

Generalizing the wavefunction suggested in Ref. [87], we find the surface eigen-

states in the plane of the four Weyl nodes around the X point to be

ψs(kx, ky, z) = Ase
∓ z
ξ± |κ〉 ⊗ |τy = +1〉 ⊗ | −D〉, (B-20)

with

|κ〉 = Bs

 1

−
√

1−
(
βsk
Vs

)2

− βsk
Vs

 , (B-21)

βsk ≡ −1

2
[u(q)sgn(kxky) + Es + µ] , (B-22)

where As, Bs are normalization constants. We identify ξ± = ±u′(q)/(m± − λD(q))

as the penetration depth of the surface wavefunctions. Inside the boundary, the

divergence of ξ− when D(q) = m− indicates that the surface states merge with the

bulk states, becoming indistinguishable [87].

B4 Conduction electrons: Inversion-symmetry breaking and

time-reversal-symmetry breaking

Here we consider Hc in the presence of a static magnetic field, as an illustration of

the effect of a time-reversal symmetry breaking on the Weyl state. Consider the
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conduction electron Hamiltonian,

Hc =
∑
〈ij〉,σ

(
tijc
†
iσcjσ + H.c.

)
+ iλ

∑
〈〈ij〉〉

[
c†iσ (σ · eij) cjσ − H.c.

]
(B-23)

+m
∑
i,σ

(−1)ic†iσciσ +
∑
j

M ·
(
c†jσσcjσ

)
(B-24)

where eij =
ei×ej
|ei×ej | are determined by the two bond vectors connecting second-nearest-

neighbors, and σ = (σx, σy, σz) are the Pauli matrices acting on spin space, and the

last term is the time reversal symmetry breaking (TRB) term, with M being the

local moment and c†jσσcjσ being the conduction electron spin.

The non-centrosymmetric diamond lattice (the “zincblende” lattice) is presented

in Fig. 1(a). Although the diamond and zincblende lattices are structurally the same,

the different on-site potential m reduces the Oh cubic point group symmetry of the

diamond lattice to tetragonal Td symmetry in the zincblende. The simplest way to

visualize the inversion symmetry-breaking introduced by the m term is to compare

the interlocked sublattice unit cells under the inversion operationas in Fig. 1(b). If

one reflects the position of any site across the indicated dotted inversion “plane” (the

(1,1,1)-direction being normal to it), the upper four sites neatly exchange positions

with the lower four. Conversely, if the on-site potential differentiates the sublat-

tices via m, an inversion operation exchanges the distinct sublattice sites, as seen in

Fig. 1(c), so inversion symmetry is broken.

Here we show an example of a Weyl semimetal phase in the broken time reversal

symmetry (M 6= 0), in the case of the diamond lattice (m = 0). For simplicity, below

we choose M = Mz ẑ and the second term becomes a Zeeman-like term. Following

the same procedure as before, we introduce the basis in momentum space ΨT
k =(

ck↑,A ck↑,B ck↓,A ck↓,B

)
. The Hamiltonian of the conduction electron becomes

HTRB
c,M = Ψ†k · hTRBc ·Ψk, with

hTRBc = σ0 [u1(k)τx + u2(k)τy] +Mzσzτ0 + λ [D(k) · σ] τz, (B-25)

where u1/2 and vector D are defined in Chapter 3. A 3D Dirac semimetal is realized
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(a) (b) (c)

Figure B1 : (a) Zincblende lattice: diamond lattice with ±m differentiating A, B
sublattice; (b) diamond lattice unit cell, and (c) zincblende unit cell. Translating an
A atom across the inversion point marked “X” exchanges it with the B site, breaking
inversion symmetry in (a) and (c), but preserving it in (b) since the two sites are
equivalent.

with Dirac points located at X points in the absence of the TRB term, as ilustrated

in Fig. 2(a).

Upon increasing the TRB term, first we observe that Weyl nodes appear along

X − Γ lines and along X − W lines on the 3D BZ boundary parallel to k̂z-axis,

and increasing to Mz = 3 moves both Weyl nodes toward the Γ point, illustrated in

Fig. S2(b).

Next, we analyze the critical value of Mz signaling the phase transition that sepa-

rates the aforementioned TRB-Weyl semimetals from the topologically trivial insula-

tor phase. Focusing on one of the X −Γ lines that we suspect to harbor Weyl nodes,

we assume its position is at kW = kX − δk, where kX is the X-point momentum,

and δk = (δkx, 0, 0) with |δkx| > 0. We can then straightforwardly find that all the

components of D(k) along that line vanish. The Hamiltonian matrix along the line

can be simplified to be

hTRBc |XΓ = 2tσ0

[(
1− cos

(
δkx
2

))
τx + sin

(
δkx
2

)
τy

]
+Mzσzτ0,
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(a) (b)

Figure B2 : Band structure along the high symmetry points of the fcc Brillouin zone
in the presence of time-reversal symmetry breaking (preserving inversion symmetry),
originated from a local moment field Mz coupled to the conduction electron spin,
using λ = 1

2
. (a) Mz = 0: Dirac semimetal; (b) Mz = 3: Weyl nodes along different

lines are all moved toward Γ point.

which leads to the eigenvalues

ETRB,σ
c = σMz ± 2

√
2

[
1− cos

(
δkx
2

)]
, (B-26)

where σ = ± for spin=↑, ↓. For Mz > 0, we can see that gaplessness can only occur

when Mz = 2
√

2
[
1− cos δkx

2

]
, which leads to the condition

cos

(
δkx
2

)
= 1− M2

z

8
. (B-27)

Therefore, we can see that the condition can be satisfied for 0 < Mz ≤ M c
z = 4,

after which the absolute value of the right hand side becomes greater than 1 and the

condition can no longer be held. The critical value of M c
z = 4 is fully consistent with

the numerical analysis illustrated in Fig. B2.

B5 Specific heat from a Weyl node

The specific heat is calculated as

cv =

(
∂u

∂T

)
V

=
∂

∂T

∫
BZ

d3k

(2π)3
εkf(εk), (B-28)



118

where εk is the energy dispersion, u is the energy density, and the integral is over the

first Brillouin zone. Here the occupation distribution function f(εk) is the Fermi func-

tion. We focus on the linear dispersion regime where we can approximate εk = ~v∗k.

We will take the renormalized Fermi velocity v∗ for its asymptotic low-temperature

value. Analyzing the temperature dependence of the condensate amplitude in our

saddle-point analysis will only cause subleading corrections to the temperature de-

pendence of the specific heat.

The result for the specific heat per unit volume is

cv =
7π2

30
kB

(
kBT

~v∗

)3

. (B-29)

This shows that the T 3 contribution to the specific heat becomes large when v∗ is

small, as in the case of heavy fermion systems.

B6 Fermi liquid theory approach for the specific heat of a

Weyl fermion

Adopting the formula at section 19 in chapter 4 in Ref. [211], we can express the

specific heat per volume from a Weyl fermion as

cv =

∫
d3k

(2π)2

1

2πiT

∫ ∞
−∞

ε

[
−∂f(ε)

∂ε

]
[lnGR(k, ε)− lnGA(k, ε)] dε, (B-30)

where T is the temperature, kB is the Boltzmann constant, f(ε) is the Fermi distri-

bution function, GR(k, ε) = Z/(ε− ξk + i0+), is the retarded Green function of Fermi

liquid quasi-particles, where Z is the quasi-particle weight, and ξk = ~v∗|k| ≡ ~v∗k

for ξk > 0 (ξk = −~v∗k for ξk < 0), i.e., a Weyl fermion dispersion, the advanced

Green function is GA = G∗R, and we set the chemical potential µ = 0 sitting exactly

at the nodal point. Adopting the Sommerfeld expansion as∫ ∞
−∞

dεu(ε)

[
∂f(ε)

∂ε

]
' −u(0)− π2

6
(kBT )2

(
∂2f(ε)

∂ε2

)
ε=0

− 7π4

360
(kBT )4

(
∂4f(ε)

∂ε4

)
ε=0

+ · · · .(B-31)

Taking derivatives and setting ε = 0, we obtain

cv =

∫
d3k

(2π)3
kB

[
π

3
kBT Im

(
G−1
R ∂εGR

)
ε=0

+
7π4

90
(kBT )3Im

(
G−1
R ∂3

εGR + 2G−3
R (∂εGR)3 − 3G−2

R ∂εGR∂
2
εGR

)
ε=0

]
,(B-32)
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where Im (A) means the imaginary part of A. For a Weyl fermion, we find that

Im
[
G−1
R ∂εGR

]
= πδ(ε− ξk), where δ(x) is the Dirac delta function and the identity

1

x+ i0+
= Pv

(
1

x

)
− iπδ(x) (B-33)

is explicitly used, where Pv means principle value. For the leading linear-T term, the

integral involves ∫
4πk2dk

(2π)3
δ(ξk) = 0, (B-34)

and therefore the leading linear-T term vanishes. For the second term above, we find

that

G−1
R ∂3

εGR + 2G−3
R (∂εGR)3 − 3G−2

R ∂εGR∂
2
εGR = −2

[
Pv
(

1

ε− ξk

)
− iπδ(ε− ξk)

]3

= −2

[
Pv
(

1

ε− ξk

)3

+ 3Pv
(

1

ε− ξk

)2

(−iπ)δ(ε− ξk) + 3Pv
(

1

ε− ξk

)
(−iπ)2δ2(ε− ξk) + (−iπδ(ε− ξk))3

]
.(B-35)

Focusing on the imaginary terms, we find that only the second term in (B-35) con-

tributes to the results. The last term vanishes because the integral of cubic delta

function is zero. Therefore, we find that

Im
(
G−1
R ∂3

εGR + 2G−3
R (∂εGR)3 − 3G−2

R ∂εGR∂
2
εGR

)
ε=0

= 6πPv
(

1

ξk

)2

δ(ξk). (B-36)

Combining everything, we can obtain the specific heat per volume as

cv '
7π4

15
kB(kBT )3

∫
d3k

(2π)3
Pv
(

1

ξk

)2

δ(ξk) (B-37)

=
7π4

90
kB(kBT )3 1

2

∫ ∞
−∞

4πk2dk

(2π)3

2

(~v∗k)2
δ(~v∗k) (B-38)

=
7π2

30
kB

(
kBT

~v∗

)3

. (B-39)

Note that the principle value evaluation is not necessary since the k2 in the denomina-

tor cancel the k2 from the numerator. The factor 1/2 in front of the integral in (B-38)

is due to the extension of integral range from −∞ to +∞ together with even func-

tion. The factor of 2 in the numerator of 2/(~v∗k)2 inside the integral in (B-38) is
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originated from the fact that for each momentum k, there are two contribution from

ξk = ±~v∗k in the present Weyl fermion band distribution. We can see that the Lan-

dau Femi liquid approach also demonstrate that the leading renormalization effects

of the specific heat come as the (1/v∗)3.
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Appendix C: Weyl-Kondo semimetal in
nonsymmorphic systems

C1 Existence of the Weyl-Kondo semimetal nodes

Here we show that in our model, the eigenenergies have Weyl nodes at the Fermi

energy. First, the method for obtaining the eigenenergies was detailed in Ref. [117],

and the eigenenergies are

E (τ,α)
±D (k) =

1

2

[
Es + ε̃τ±D + α

√(
Es − ε̃τ±D

)2
+ 4V 2

s

]
, (C-1)

ε̃τ±D = ετ±D − µ, (C-2)

ετ±D = τ
√
u2

1(k) + u2
2(k) + (m± λD(k))2, (C-3)

u1(k) = t

(
1 +

3∑
n=1

cos(k · an)

)
, (C-4)

u2(k) = t
3∑

n=1

sin(k · an), (C-5)

D(k) = 2

{
sin2

(
kx
2

) [
cos
(
ky
2

)
− cos

(
kz
2

)]2

+ sin2
(
ky
2

) [
cos
(
kx
2

)
− cos

(
kz
2

)]2
+ sin2

(
kz
2

) [
cos
(
kx
2

)
− cos

(
ky
2

)]2
}1/2

, (C-6)

where the index which labels τ = ±1, α = ±1, ±D = ±D(k) distinguishes the

eight bands of the system, and the an are the primitive lattice vectors of the diamond

lattice. The Hamiltonian is only separable in terms of the |±D〉 pseudospin basis, and

α distinguishes between the upper and lower quartet of bands; within each quartet,
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τ distinguishes the upper two from the lower two bands, and one can write

ε̃τ±D = τε±D − µ,

ε±D =
√
u2

1(k) + u2
2(k) + (m± λD(k))2. (C-7)

Without loss of generality, we take the parameters t, r, V ≥ 0. There are line or Dirac

nodal touchings in the case of m = 0, depending on whether λ = 0 or nonzero. Here,

we are only interested in Weyl node touchings, and thus we consider only the case

with both λ,m being nonzero; for definiteness, we focus on λ,m > 0.

The periodic Anderson model also has a few additional specifications. In the

Kondo regime, we have

Es = Ed + `,

Vs = rV, (C-8)

and V > Vc for some critical value, beyond which the r-bosonic field is small but

nonzero. It is taken that the bare localized fermions representing the 4f electrons

should have an energy level Ed that has a bare value well below the conduction-

electron bands, Ed � ετ±D. We chose to define EF = 0 and Ed < 0; we will determine

the signs of µ, ` near the end, and in Appendix C2.

With these pieces in place, it is simple to observe the following. Since all pa-

rameters and eigenenergies are real, and each term in the summation within each

square root is squared (nonnegative), the square root quantities are also nonnegative

[Eqs. (C-1),(C-6),(C-7), and Eq. (3.12)]. In turn, Eq. (C-7) implies that

ε+D ≥ ε−D ≥ 0, (C-9)

given that m,λ,D(k) > 0, since the differentiating term involving D(k) yields

|m+ λD(k))| ≥ m ≥ |m− λD(k)| ≥ 0. (C-10)

It then follows from Eq. (C-7) that

−ε+D ≤ −ε−D ≤ 0 ≤ +ε−D ≤ +ε+D. (C-11)
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In the diamond lattice space group, a nontrivial filling enforced semimetal [90]

occurs at filling factor ν = 2n, n 6= 2. For a quarter of the bands to be full, ν =

2(nc + nd) = 2 of the eight bands must be full, so the gapless band touching point

should occur between the third (hole) E3(k) band, and the second (filled) E2(k) band.

We label the bands according to ascending order in energy. Then, the condition that

determines when Weyl nodes kW are present at quarter filling is

lim
k→kW

∆32(k) = lim
k→kW

[E3(k)− E2(k)] = 0. (C-12)

It is clear from the form of Eqs. (C-1) and (C-7) that only the ε±D terms are

k-dependent, so they shall determine where nodes may appear in momentum space.

Because of this model’s underlying nonsymmorphic symmetry, we know that the

nodes should appear on the BZB, and that they generically avoid three- and sixfold

symmetry axes when TRS is preserved, [84] so we search on the [001] face of the BZ

(the other faces are related by symmetry). We seek solutions to ε±D = 0 [Eq. (C-

7)]. Considering just the expression
√
u2

1(k) + u2
2(k) = 0, this has line degeneracy

solutions along the X −W lines. Therefore, the solutions to ε±D = 0 will be realized

for nonzerom,λ when
√

(m± λD(k))2 = 0 also, since the |m±D(k)| term determines

the gap in the ε±D expressions. Along an X −W line such as kXW = (kx, 0, 2π), we

already know from Eq. (C-10) that |m + λD(k)| is bounded below by m, which we

insist is nonzero. Thus we can eliminate the |+D〉 sector from consideration for the

solution, and ask whether the | −D〉 sector has a solution. Along kXW ,

ε−D(kXW ) =
√

(m− λD(kXW ))2 (C-13)

=

∣∣∣∣m− 4λ

∣∣∣∣sin(kx2
)∣∣∣∣∣∣∣∣ = 0, (C-14)

↔
∣∣∣∣sin(kx2

)∣∣∣∣ =
m

4λ
, (C-15)

so the Weyl nodes occur at

kW = (k0, 0, 2π), (C-16)

k0 = 2 arcsin
(m

4λ

)
, mod π, (C-17)
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where the modulo π node is the opposite chirality partner in the neighboring BZ;

within the first BZ, there are six inequivalent pairs total. Therefore we conclude that

Weyl-Kondo nodes develop only for bands in the | −D〉 sector.
Now it is pertinent to apply these results to the full eigenenergy expression of

Eq. (C-1). Since the sign of α picks out whether the band is in the upper four or

lower four, we consider α = −1 to analyze quarter filling. Having shown that a Weyl

node is permitted for the | −D〉 sector, τ must be opposite in sign for each band.

Therefore, the Weyl nodes should exist between the bands E (−,−)
−D and E (+,−)

−D . To

gain some more insight, we solve E (−,−)
−D (kW ) = 0, and express µ in terms of other

parameters. From Eq. (C-1), we get

Es − µ−
√

(Es + µ)2 + 4V 2
s = 0,

which implies

−Esµ = V 2
s .

Therefore,

µ = − (rV )2

Ed + `
, (C-18)

so we find that the sign of µ depends on the sign of (Ed + `).

In our numerical calculations for the Kondo regime at quarter filling, the solutions

always follow (Ed + `) > 0; for a given Ed < 0, we find ` > 0 and |Ed| < `. For

example, in our parameter choice for Figs. 4.3-4.4, we had Ed = −7, ` = 7.279, and

such results are consistent for other values of Ed, V : (Ed+ `) > 0. Thus µ is negative.

We reiterate that µ can be determined analytically if the filling is integer.

C2 Methods of solving the saddle point equations

Here we comment on the self-consistency procedure used to obtain the parameters

µ, r, ` in Ref. [117] and this work. Since the WKSM system was separable into
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pseudospin sectors, the Bloch Hamiltonian matrix was decomposed from one 8 × 8

to two 4× 4 matrices. A matrix size of 4× 4 yields a characteristic equation with an

eigenvalue polynomial degree of four, which is the upper limit to an exactly solvable

eigenvalue problem. When the calculation is exactly at quarter filling, the chemical

potential does not have to be numerically determined, as shown in Appendix C1.

However, for the calculations with a finite Fermi surface (e.g., Fig. 4.6), we can

determine the chemical potential µ numerically.

The remaining two saddle point equations are solved using the Newton-Raphson

method. [212] This method can solve nonlinear systems of equations, given an initial

guess that is close enough to the eventual solution. Whenever r, ` are changed, µ

is updated. If the filling is specified precisely at the nodes (integer), µ is defined in

Eq. (C-18). If the filling is noninteger, i.e. metallic, it may be solved for by using the

bisection method on the density n(µ) of particles per site per spin.
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Appendix D: Weyl semimetal’s nodal evolution
under a magnetic field

D1 Weyl Semimetal model without inversion or time reversal

symmetries

D1.1 Introduction

The usual focus in the study of topological states of electronic matter has been on

insulating states, a tradition that dates back to the heyday of quantum Hall sys-

tems and continued into the era of topological insulators. Topological metals have

only been studied recently [213]. An outstanding question is how topological met-

als can arise as a result of strong correlations. Of particular interest in this context

are heavy-fermion semimetals [17], in which the electron correlations are strong and

spin-orbit coupling may be large. Recently, concurrent theoretical and experimental

studies have advanced the notion of a Weyl-Kondo semimetal. In Ref. [117, 116],

a theoretical analysis was carried out for a strongly correlated model in which the

inversion symmetry (IS) is broken while the time-reversal symmetry (TRS) is pre-

served. Meanwhile, Refs. [137, 162, 170] have experimentally discovered this phase in

the non-magnetic non-centrosymmetric heavy fermion system Ce3Bi4Pd3.

In this paper, we briefly summarize these developments in Sec. D1.2, and describe

what is expected theoretically when the TRS is also broken in Sec. D1.3. Our results

suggest that, upon the tuning of parameters that break both the TRS and IS, Weyl

semimetal (WSM) nodes are moved about and annihilated through critical phase

boundaries with distinct quadratic-band touchings. In Sec. D1.5, we discuss these

results and point to further studies for the future.
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D1.2 Weyl-Kondo semimetal with time-reversal invariance

Figure D1 : The unit cell of the diamond lattice showing the two fcc sublattices A, B
and the fermion hopping amplitude t along the nearest-neighbor bonds.

In Ref [117, 116], we proposed a periodic Anderson model on the diamond lattice

(Fig. D1) of the form

HPAM = Hc +Hd +Hcd, (D-1)

Hc = t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
− µ

∑
i,σ

nciσ + iλ
∑
〈〈ij〉〉

[
c†iσ (σ · eij) cjσ − H.c.

]
+m

∑
j,σ

(−1)jc†jσcjσ,

(D-2)

Hd = Ed
∑
i,σ

ndiσ + U
∑
i

ndi↑n
d
i↓, (D-3)

Hcd = V
∑
i,σ

(c†iσdiσ + H.c.). (D-4)

It has the usual components of an Anderson lattice model. The d-operators describe

the physical 4f -electrons; their highly localized wavefunctions can be well treated

in an atomic limit, with an energy level Ed and a mutual Coulomb interaction that

assigns an energy penalty U to double occupation in Eq. D-3. The c-operators repre-

sent the spd-conduction electrons in the system, albeit with spin-orbit coupling (λ)

and a sublattice-dependent term m which breaks IS. Finally there is uniform on-site

hybridization between the localized and free conduction electrons of Eq. D-4, which

is in the Kondo limit for large U , with a Kondo coupling JK ∼ V 2/|Ed|.
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We studied the model with nd+nc = 1 per site, corresponding to a quarter filling.

To analyze the model in the strong-coupling limit (U/t → ∞), we implemented an

auxiliary boson representation to effectively treat the Coulomb repulsion as fixing the

localized electrons’ density. When the Kondo coupling vanishes (via the hybridization

V → 0), an electron occupies the d-level, forming a Mott insulator, and the conduction

electron bands are empty, leading to a topologically trivial state. In the Kondo-

screened state (for V above a threshold value Vc), however, strongly renormalized

Weyl nodes emerge and are pinned at the Fermi energy. This shows that the localized

electron species play a central role in the formation of the Weyl nodes, which have

a narrow bandwidth on the order of the Kondo temperature (TK), a nodal velocity

(v∗) that is reduced from a normal metal value (v) by several orders of magnitude,

and the strong coupling from the localized electrons renormalizes the bands to fulfill

the density constraint.

These characteristics are manifested in heavy fermion semimetals through several

thermodynamic and transport signatures. The specific heat behaves as cv = ΓT 3

with Γ ∝ (v/v∗)3 at an onset temperature of TK (well-below the Debye tempera-

ture for phonons). This result is robust to residual interactions (Ref. [117], sup-

porting information). This behavior was observed in specific heat measurements on

Ce3Bi4Pd3 [137]. In Ref. [162], Ce3Bi4Pd3 was found to have a giant spontaneous

Hall effect in the nonmagnetic phase without application of a magnetic field (TRS

is preserved in the absence of a driving electric field), and a Hall resistivity that is

even with respect to the magnetic field. Thus there has been substantial progess

in studying heavy fermion semimetals which preserve TRS in non-centrosymmetric

systems. Related observations have been reported in YbPtBi [153].

The IS-broken Weyl semimetal phases are generally well studied and understood

as arising from a combination of crystalline and non-spatial symmetries, and has thus

far been a major focus on studies of topological materials. We now shift our attention

to topological semimetal phases that are not protected by TRS.
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D1.3 The effect of breaking both time-reversal and inversion symmetries

Recent experimental studies [170] have used a magnetic field to tune and eventually

annihilate the Weyl nodes of Ce3Bi4Pd3. We are interested in understanding the

behavior of this material, especially how the TRS breaking term controls its Weyl

nodes. Since this issue is completely open, we will start by focusing on the symmetry

aspects of the problem, namely how the Weyl nodes evolve from the Brillouin zone

(BZ) boundary to its interior and their eventual annihilation, as the degrees of IS

and TRS breaking are tuned. As a first step in the understanding, we will focus on

the single fermion flavor model. Because the space-group symmetry is expected to

play an important role in this evolution, we expect that the qualitative aspect of our

results on the control of the Weyl nodes by the IS and TRS breaking potentials will

be relevant to the full Kondo lattice model.

Thus, we consider the model Hc in the presence of a Zeeman coupling. The

effect of breaking TRS but preserving the IS was reported in Ref. [117] (supporting

information). There it was found that a Weyl semimetal phase evolves in two stages,

with nodes occurring in the BZ interior instead of the BZ boundary.

Here, we study a variation on the conduction electron-only model by including

terms that break both IS and TRS. We tune the symmetry-breaking terms to map

out a phase diagram and find three distinct WSM phases, separated by critical phase

boundary lines of distinct quadratic-band touching phases.

We considerHc defined earlier on the diamond lattice in Fig. D1, with the addition

of a Zeeman coupling:

H = Hc +Mz

∑
i

ẑ ·
(
c†iσσciσ

)
. (D-5)

As already specified in Eq. D-2, the onsite potential +m(−m) on the A(B) sublattice

breaks IS on the diamond lattice and reduces the space group from #227 (Fd3̄m) to

#216 (F 4̄3m, zincblende). The Zeeman term tuned by Mz breaks TRS. In this work,

we fix λ = 1/2 to facilitate band inversion as a necessary (but insufficient) condition



130

towards a topological semimetal state.

The eigenenergies are obtained by diagonalizing the Bloch Hamiltonian. Although

the full dispersion is analytically tractable, it is simpler to look at the eigenenergies

when Mz = 0, m 6= 0 and vice versa. These are:

εαβ(Mz = 0) = α
√
u2

1 + u2
2 + (m+ βλDk)2, (D-6)

εαβ(m = 0) = α

√
u2

1 + u2
2 + λ2D2

k +M2
z + 2βMz

√
u2

1 + u2
2 + λ2D2

z , (D-7)

where α, β = ±1 index the four resulting bands, andDk =
√

D(k) ·D(k) =
√
D2
x +D2

y +D2
z .

The notations are described in detail in Ref [117]. We immediately see that m com-

petes with the spin orbit coupling term, whereasMz competes with the z−component

of the spin orbit interaction and the u1, u2 terms that come from the hopping terms

proportional to t.

D1.4 Phase diagram: TRS- and IS-breaking coexistence and competition

We now describe the phases we encounter as we tuneMz,m ≥ 0, as shown in Fig. D2.

Note that these phases are symmetric with respect to the signs of Mz and m.

When TRS and IS are preserved (Mz = m = 0), this model realizes a Dirac

semimetal, labeled at the origin of the phase diagram. In this phase, fourfold de-

generate Dirac nodes are protected by nonsymmorphic symmetries at the X-points

kX = 2πr̂, which are time-reversal invariant momenta (TRIM). The Dirac point

represents a critical point of the Fu-Kane-Mele model’s phase diagram of topolog-

ical insulators [62], which has been extended to WSM phases through IS breaking

terms [166, 87].

Generically, the addition of TRS or IS breaking terms will split Dirac nodal points

into one or more pairs of Weyl nodes, which is precisely what happens in our model.

The next subsections explain the WSM phases and the boundaries between them in

terms of which high symmetry lines contain Weyl nodes or quadratic band touching

points. In Fig. D3(a) we show the fcc BZ with its high symmetry points and node
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Figure D2 : Phase diagram for the WSM phases that our model captures with break-
ing both time-reversal and inversion symmetries. DSM=Dirac semimetal, BI=Band
insulator, X/Γ-QBT = quadratic band touching at X or Γ, L/W -ABT=anisotropic
band touching at L/W , and U -pocket denotes an approximate region where a Fermi
pocket at U emerges and coexists with the labeled phases. The regions with labels of
high symmetry lines are Weyl semimetals with the nodes found along those lines.

locations labeled for an example phase, as well as the [011] plane along which we plot

the dispersion of the Γ−X + Γ− L Weyl semimetal (Sec. D1.4) in Fig. D3(b).

X −W Weyl semimetal

The Mz = m > 0 phase boundary (Fig. D2 solid line) marks a massful semimetal

with a fourfold-degenerate quadratic band touching point at X, labeled X − QBT .
When Mz < m and m is small, the quadratic bands split into two pairs of Weyl

nodes, and move along the X −W lines, coexisting with the Zeeman field as long as
√
m2 − 4 < Mz < m. As m increases, the Weyl nodes move towards the W points,

until the W −ABT boundary (dashed-dotted line of bottom bound Mz =
√
m2 − 4).

Along this boundary, an anisotropic band touching occurs atW , with linear dispersion

in the W − U direction and quadratic along X −W , marking a critical line between
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Figure D3 : (a) Locations in the Brillouin zone where Weyl nodes appear for Mz =
3, m = 1. High symmetry points are labeled, and Weyl node colors are red for Γ−X,
black for Γ− L. The [011] plane that intersects Γ−X and Γ− L nodes is shown in
green. (b) Eigenenergy dispersion projected onto the [011] plane shown in green in
(a) that intersects with the Γ−X and Γ− L nodes.

semimetal and trivial [87] band insulator (BI).

Γ−X Weyl semimetal

When Mz > m 6= 0, the X −QBT bands split into Weyl nodes along Γ−X. Here a

WSM phase distinct from the X −W WSM phase emerges, with the restriction that

m < Mz <
√
m2 + 4. Because there are six Γ−X lines, this produces three pairs of

nodal points in the BZ.

The upper boundMz =
√
m2 + 4 marks the L−ABT phase boundary marking an

anisotropic band touching at the L point, dotted line in Fig. D2). Here, a quadratic

touching along the Γ− L line meets a linear dispersion along L− U .

Γ−X + Γ− L Weyl semimetal

As one moves in parameter space above the L − ABT line, new Weyl points evolve

from the critical touching at L, where linearly dispersing nodes travel along the Γ−L
line. These new nodes coexist with the Γ − X nodes, and their semimetal phase
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persists as long as Mz is between
√
m2 + 4 < Mz <

√
m2 + 16. The eigenenergies of

this phase are plotted in Fig. D3(b), in the [011] plane, where one can see both sets

of nodes along Γ−X and Γ− L.
The Γ − QBT phase boundary (Mz =

√
m2 + 16) is marked by a dotted line in

Fig. D2. Along this boundary, the nodes from Γ−X lines and Γ−L lines all meet at Γ

and become a single, twofold degenerate quadratic band touching, labeled Γ−QBT .
As the Zeeman field is increased, a band gap opens, and the system becomes an

insulator.

U−Fermi surface coexistence metallic phase

Finally, a last phase diagram feature warrants analysis, namely the “U -pocket” region

approximately represented in blue. When both the Zeeman splitting and the sublat-

tice symmetry breaking are larger and close enough to each other, a Fermi pocket

gradually emerges as a Fermi surface at U asMz ∼ m increases. This metallic pocket

does not eliminate most nodal point features or phase boundaries, except for those

close to the L− ABT boundary for large values of Mz ∼ 4.

D1.5 Discussion and Summary

Our main result is the phase diagram shown in Fig. D2 as a function of the Zeeman

couplingMz and the IS-breaking potential m. Within our model, the Weyl semimetal

phases survive the combined breaking of TRS and IS, and when the Zeeman term

and the sublattice potential are larger and similar in size, a Lifshitz transition occurs

where a hole pocket emerges at the U point of the Brillouin zone.

The most important phase boundary is the X −QBT line for balanced Mz = m,

because it evolves from the critical point of the Fu-Kane-Mele model which serves as

the multi-dimensional intersection of several nonlocal and space group symmetries.

For this reason, it represents a nexus of many phases. In our work’s two-dimensional

slice of the phase diagram, the X−QBT boundary marks a change from nonsymmor-
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phic symmetry-driven nodal degeneracy, enforced to exist on the BZ boundary (e.g.

the X − W WSM), to where the TRS-breaking terms dominate and nodal phases

evolve along high symmetry lines within the interior of the BZ.

The phase boundaries are critical lines where the Weyl nodes become quadratic

band touching at a high-symmetry point, just before the nodes annihilate or follow a

different high symmetry line, depending on the neighboring phase.

In a full treatment of the Anderson lattice model, the f -electrons should be more

responsive to the Zeeman field than the conduction electrons. In turn, this is expected

to directly connect with the recent experiments [170] on the tuning of the Kondo-

driven Weyl nodes by a magnetic field.
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