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ABSTRACT 

Investigation of Triterpene Biosynthesis in Arabidopsis thaliana 

By 

Mariya D. Kolesnikova 

This thesis describes functional characterization of three oxidosqualene cyclase 

genes (Atlg78955, At3g45130, and At4gl5340) from the model plant Arabidopsis 

thaliana that encode enzymes with novel catalytic functions. Oxidosqualene cyclases are 

a family of membrane proteins that convert the acyclic substrate oxidosqualene into 

polycyclic products with many chiral centers. The complex mechanistic pathways and 

relevant catalytic motifs can be elucidated through judicious applications of mutagenesis, 

heterologous expression in combination with a genome mining approach, and protein 

modeling. Functional characterization of oxidosqualene cyclases allows improved 

understanding on how these proteins guide catalytic reactions and how protein-substrate 

interactions affect the reaction outcome, as well as identification of triterpenes with novel 

structures and stereochemistry. 

This work describes characterization of Arabidopsis oxidosqualene cyclases, 

including the first plant lanosterol synthase (LSS1), an enzyme with novel catalytic 

motifs different from those previously observed in animal, fungal, and trypanosomal 

lanosterol synthases, establishing that plant lanosterol synthases comprise a catalytically 

distinct class of lanosterol synthases. Phylogenetic analysis reveals that lanosterol 

synthases are broadly distributed in eudicots but evolved independently from those in 

animals and fungi. Discovery of plant lanosterol synthase also suggests lanosterol as 



i i i 

precursor for plant 4,4-dimethyl-A sterols. Additional mutagenesis experiments on 

Arabidopsis lanosterol synthase (Asn477His and Val481Ile) allowed for introduction of 

cycloartenol activity in a lanosterol synthase background, providing the best example of 

engineered biosynthesis of cyclopropyl structures known to date. 

This thesis also describes the first enzyme (camelliol C synthase, CAMS1) that 

efficiently blocks B-ring formation to make a monocyclic triterpene camelliol C. 

Phylogenetic analysis reveals that this cyclase has evolved from enzymes that generate 

pentacycles, and sequence comparison between oxidosqualene cyclases with different 

catalytic functions allowed for identification of key residues that increases steric bulk in 

the active site to promote monocycle formation. 

Finally, this thesis describes an enzyme arabidiol synthase (PEN1) that produces 

the tricyclic triterpene diol arabidiol. Analysis of the arabidiol structure and 

characterization of numerous minor products of arabidiol synthase, including several 

novel compounds, resulted in formulation of a general rule for water addition in 

triterpene biosynthesis and an explanation for the domination of deprotonation over water 

addition in triterpene biosynthesis. 
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CHAPTER 1 

Introduction and Background 

1.1 Triterpene Biosynthesis 

Triterpenes and their derivatives, triterpenoids, comprise a large family of natural 

products derived from the C30 acyclic molecule 2,3-oxidosqualene or, more rarely, 

squalene.1 Triterpene synthases are a family of membrane proteins that mediate 

cyclization, rearrangement, and neutralization reactions to convert the acyclic substrate 

into triterpene products that can be polycyclic and contain many chiral centers. Triterpene 

synthases can be categorized as oxidosqualene cyclases (OSCs) and squalene-hopene 

cyclases (SHCs), depending on the nature of their native substrate. These enzymes 

perform cyclization reactions in a similar manner, differing in the initial protonation step. 

The substrate enters the enzyme active site, which guides initial pre-folding of the 

substrate to either chair-chair-chair or chair-boat-chair conformation. OSCs then 

protonate the epoxide, and SHCs protonate the 2,3-double bond to form a carbocation 

intermediate. The intermediate further undergoes a series of annulations, carbocation 

rearrangements (including possible ring expansions), 1,2-hydride and methyl shifts, 

deprotonation, or an alternative termination of the cyclization reaction with water 

addition. The product exits the active site (Scheme l.l).2'3 

The enzyme-guided reactions promote the biosynthesis of over 100 diverse 

structures with different numbers and sizes of rings, functionalities, and 

stereochemistries.1 The most abundant triterpenes found in nature are tetra- and 

pentacyclic protosteryl derivatives, including lanosterol4'5 and cycloartenol6'7 that are 

involved in the biosynthesis of sterols and steroids. Plants also produce numerous tetra-



,8,9 ,10 and pentacyclic non-sterol triterpenes including p-amyrin ' and lupeol that are further 

utilized to give secondary metabolites: triterpenoids and triterpene saponins.11'12 The 

pentacycle P-amyrin or its derivative P-amyrin saponins (modified triterpeneoids with an 

added sugar moiety) are often present in specific tissues13 or as components of plant 

waxes,1415 which are important barriers that protect stems and other tissues from various 

environmental challenges such as infections. Some saponins have demonstrated potent 

antifungal activity.16'17 Lupeol was also frequently found in plant waxes17 and root 

nodules18 and both lupeol and its metabolites are actively studied for potential anti-cancer 

activity.19 Triterpenes with three rings or less have been found more rarely.1 

I XU H 

>^=^g~- Ho^y.bV — ~> Ikhik 

Scheme 1.1. Mechanism of enzymatic oxidosqualene cyclization. 

1.2 Triterpene Discovery through Surveys of Natural Sources 

The traditional approach to natural product discovery involves extraction and 

characterization of a product from a natural source, and was efficiently used to identify 
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hundreds of thousands of compounds. Many natural products, including valuable 

pharmaceuticals like artemisinin isolated from sweet wormwood (Artemesia annua L), 

paclitaxel (known as Taxol®) isolated from the pacific yew tree (Taxus brevifolia), and 

penicillin isolated from mold {Penicillium notatum) were found and extracted from 

natural sources. One possible limitation of this method is the compound must be present 

in sufficient amounts for detection and characterization. Classical approaches mandated 

that it have chemical and chromatographic properties that would allow facile detection in 

a crude mixture, but more modern approaches rely on activity screens. Advances in 

analytical methods and increasing sensitivity of existing techniques have improved the 

quality of the analysis of natural products and allowed for the detection of novel 

compounds present at much lower amounts than previously seen. 

Application of this approach to Arabidopsis thaliana, * ' ' , ' allowed for the 

discovery of five triterpenes, including cycloartenol and three non-sterol lupeol, 

taraxasterol, P-amyrin, and a-amyrin. 

1.3 Genome Mining to Uncover Triterpene Products 

In recent years the genome mining approach has shown itself as a very valuable 

tool for discovery of new natural products from a number of sources, even those that 

were previously considered exhausted.25 This strategy involves application of information 

obtained from genomes and available bioinformatics tools, such as genome databases and 

Basic Local Alignment Search Tool (BLAST) available through the National Center for 

Biotechnology Information (NCBI) website,26 with application of molecular biological 

techniques and chemical methods. This approach becomes extremely important when a 



4 

targeted natural product is not easily accessible from its natural source due to limited 

production or production specific to certain conditions or tissue. For example, the maize 

sesquiterpene synthase TPS10 is expressed in response to herbivore attack.27 Genome 

mining is also useful when a compound is immediately modified after production and 

cannot be easily detected as the unmodified intermediate. 

Progress in sequencing technologies and bioinformatics tools provides increasing 

amounts of genomic information. The genome of A. thaliana was completely sequenced 

in 2000, and genomes of many other organisms, for example, rice {Oryza sativa) and 

black cottonwood {Populus trichocarpa) have been completed recently.28 Thirteen 

oxidosqualene cyclases have been identified in the Arabidopsis genome, and over ten are 

predicted from each Oryza sativa. This data suggests the tremendous potential for the 

discovery of triterpenes and triterpenoids in plants by utilizing the genome mining 

approach. 

Once obtained using bioinformatics tools, genes of interest can be then studied in 

known microbial expression systems such as E. coli or yeast. Further application of 

metabolic engineering approaches can significantly improve production of targeted 

compounds and avoid contamination with undesirable host products. Expression in 

heterologous hosts allows for scaling up production of the enzymes and therefore 

increasing the amounts of compounds produced without sacrificing large amounts of 

natural sources. This also provides better access to minor compounds present at 

significantly lower amounts than the major product. 
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1.4 Oxidosqualene Cyclases (OSCs) 

Oxidosqualene cyclases have been found in mammals, plants, fungi, protists, and 

bacteria, and have been actively studied in past years.21'29 Analysis and characterization 

of both oxidosqualene cyclases and their products are valuable not only for studying 

triterpene biosynthesis, but they also help to understand how proteins guide catalytic 

reactions and how protein-substrate interactions affect the reaction outcome. 

Characterization of oxidosqualene cyclases often involves analysis of triterpene 

products by expression in heterologous host, analysis of the OSC protein sequence with 

application of available bioinformatics tools and correlation of enzymatic features with 

the observed reaction outcome. More rigorous studies of OSCs, for example by 

application of crystallographic methods, are not easily accessible, because oxidosqualene 

cyclases are membrane-bound proteins and are a challenge for crystallographers. Crystal 

structure data is currently available for only a single OSC protein, human lanosterol 

synthase.3 

However, because of the high similarity and conservation of essential structural 

domains among OSCs, we can make some assumptions about structures and active site 

constitutions of related cyclases based on the lanosterol synthase crystal structure, 

sequence identity between oxidosqualene cyclases and application of molecular 

modeling. As an alternative approach, we can correlate sequences with catalytic functions 

if enough cyclases with certain catalytic motifs and their active-site mutants have been 

well characterized. We further can apply this information to prediction of catalytic 

functions of uncharacterized enzymes. 



1.5 Protosteryl-Type Oxidosqualene Cyclases in Plants, Animals, and Fungi 

1.5.1 Sterol Biosynthesis in Animals, Fungi, and Plants. 

Oxidosqualene cyclases that pre-fold oxidosqualene into a chair-boat-chair 

conformation are known as protosteryl-type cyclases. They are often involved in the 

biosynthesis of primary metabolites, triterpenes utilized as precursors in the biosynthesis 

of the essential membrane components, sterols. Animals and fungi biosynthesize sterols 

through the same precursor, lanosterol (Scheme 1.2).30 In mammals, lanosterol is 

converted to cholesterol and steroidal hormones. Fungi utilize lanosterol to make the 

fungal sterol ergosterol. 

FUNGI 

ANIMALS 

cycloartenol PLANTS 

sitosterol 

Scheme 1.2. Biosynthesis of sterols in plants, animals, and fungi. 
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In contrast, plants make sterols via cycloartenol (Scheme 1.2), which has an extra 

cyclopropyl ring that must be opened by an additional enzyme (cycloeucalenol-

obtusifoliol isomerase)31 on the way to the plant sterols sitosterol and stigmasterol. 

Why plants maintain this less efficient pathway has been debated for decades. The 

use of cycloartenol in plants but lanosterol in the non-photosynthetic fungal and animal 

kingdoms initially suggested a connection between these structures and 

photosynthesis32'33 until diverse non-photosynthetic and dark-grown photosynthetic 

organisms were shown to retain the cycloartenol pathway.34'35'36'37'38 The prevailing 

hypothesis for the last several decades has been that the plant cycloartenol route is 

vestigial. Bloch proposed that cycloartenol would have been favored in ancient organisms 

that incorporated unmodified triterpene alcohols into membranes because cycloartenol 

condenses membrane lipids more effectively than lanosterol.39'40 Enzymes that catalyze 

demethylation, side chain modification, and B-ring rearrangement (including cyclopropyl 

ring opening) then evolved to generate tetracyclic sterols with optimized membrane 

properties. Some organisms (including opisthokonts and kinetoplastids)90 later 

streamlined the process by evolving lanosterol synthase and losing the cyclopropyl 

isomerase, but others (including plants) did not find this more efficient route. 

Although the sterol biosynthetic pathway through lanosterol has not been 

discovered in plants, some observations hint that lanosterol plays some role in plants. 

Lanosterol is metabolized by some plants41'42'43'44 and is biosynthesized by Euphorbia 

lathrys latex.45 Additionally, the lanostane skeletons of several 4,4-dimethyl A8 sterol 

saponins46'47'48 have been discovered in a number of plants. Because plants encode 

cycloeucalenol isomerase to open the cyclopropyl ring to the A8 olefin present in 
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lanosterol, most lanosterol metabolites could be biosynthesized readily from cycloartenol, 

with the notable exception of 4,4-dimethyl A8 sterols. Because the 4p-methyl group 

blocks access to the cyclopropyl ring, 4,4-dimethyl cyclopropyl sterols are poor 

substrates for plant cycloeucalenol isomerase.31 Therefore 4,4-dimethyl A8 sterols such as 

peruvianosides,46 scillasaponins,47 lucilianosides48 are more readily accessible from 

lanosterol. 

1.5.2 Catalytic Differences in Cycloartenol and Lanosterol Biosynthesis 

Enzymes involved in the biosynthesis of sterol precursors lanosterol (lanosterol 

synthases) and cycloartenol (cycloartenol synthases) have been studied more extensively 

then any other oxidosqualene cyclases. Comparison of amino acid sequences of the 

characterized enzymes has allowed for identification of conservative motifs and amino 

acid residues characteristic to cycloartenol synthases and lanosterol synthases (Figure 

1.1). 

Trypanosoma brucei ERG7 
Trypanosoma cruzi ERG7 
Saccharomyces cerevisiae ERG7 
Saccharomyces prombe ERG7 
Mus musculus LSS 
Rattus norvegicus LSS 
Homo sapiens LSS 
Avena sativa CAS1 
Costus speciosus CAS1 
Oryza sativa CAS1 
Zea mays CAS1 
Hordeum vuldare CAS1 
Panax ginseng CAS1 
Pisum sativum CAS1 
Glycyrrhiza glabra CAS1 
Betula platyphylla CAS1 
Arabidopsis thaliana CAS1 

R|S 
RVC 

™ L|R 
KMQ 
KMQ 

335 

GYNG 

GyNG 

GyNG 

GyNG 

GUNG 
HT J i 

li BK'lai 
SQLWDT 

vpisc 
IQWWIT 

• Pin 
SQMWDT 

: illlwii 
KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

KMQGYNGSQLWDT 

557 
548 
392 
387 
390 
390 
389 
419 
418 
419 
416 
419 
418 
418 
418 
418 
418 

STADHGWPISDCTAEGL 
STADHGWPISDCT@EGL 
STADHGWPISDCTAEGL 
STADHGWPISDCTAEGL 
STflDHGWPISDCTAEGL 
STADHGWPISDCTAEGE 
STADHGWPISDCTAEGL 
STADHGWPISDCTAEGL 
STADHGWPISDCTAEGL 
STADHGWPISDCTAEGL 

627 
618 
462 
457 
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490 
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489 

lanosterol 
synthases 

cycloartenol 
synthases 

Figure 1.1. Sequence comparison of lanosterol synthases and cycloartenol synthases. 
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For example, all cycloartenol synthases demonstrate conservation of several 

amino acid residues, including His477 and Ile481 (AtCASl numbering). Lanosterol 

synthases have a conserved valine instead of Ile481, but vary at position 477 with either 

Gln477, as in fungal and trypanosomal lanosterol synthases, or Cys477 in mammals. 

Formation of both lanosterol and cycloartenol initially goes through the same 

steps, starting from chair-boat-chair pre-folding of oxidosqualene with subsequent 

formation of the protosteryl cation and formation of the C-8 cation (Scheme 1.3). 

Deprotonation from the C-9 position of the C-8 cation then gives lanosterol, while 

hydride migration from C-9 to C-8 and further deprotonation from C-19 yields 

cycloartenol. 

oxidosqualene protosteryl cation 

cycloartenol C-9 cation C-8 cation lanosterol 

Scheme 1.3. Oxidosqualene cyclization by lanosterol and cycloartenol synthase. 

Because mechanisms of lanosterol and cycloartenol formation have similarities in 

the beginning and differ at the protonation step, a large number of mutagenesis studies 

and direct evolution experiments have been done to illuminate mechanisms, essential 

catalytic motifs, and particular amino acid residues affecting the reaction outcome. A 
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combination of knowledge from bioinformatics approaches with mutagenesis and site-

directed mutagenesis allowed for identification of the essential amino acid residues 

dramatically affecting catalytic properties of lanosterol and cycloartenol synthases. 

A summary of mutagenesis experiments performed on two extensively studied 

enzymes, Arabidopsis cycloartenol synthase (AtCASl)49 and lanosterol synthase 

(ScERG7)50'51 from 5. cerevisiae, is provided in Table 1.1. This table presents data only 

for those experiments that have been done with careful analysis of the product profile. 

However there are a number of studies for which detailed information was not provided, 

but changes in product profile or enzyme activity were observed.52'53'54'55'56'57'58 

Current understanding of cycloartenol formation involves participation of the 

following active site residues: His257, Tyr410, His477, Ile481, and Tyr532 {Arabidopsis 

CAS1 numbering). Cycloartenol synthase protonates oxidosqualene, cyclizes the 

resultant carbocation to the protosteryl cation, and then facilitates rearrangement to the C-

8 cation.1 Cyclopropyl ring formation and deprotonation from C-19 are then promoted by 

His257, Tyr410, His477, Ile481, and Tyr532 (for illustration of the essential catalytic 

positions see Figure 1.259 and Table 1.2). The His257 and Tyr410 form a hydrogen-

bonded pair, which His477 positions via a hydrogen bond to accept the proton from C-

19.60 The Ile481 residue promotes cycloartenol biosynthesis though steric bulk that 

positions the intermediate cation relative to His257 and Tyr410. Tyr532 is a part of the 

hydrogen-bonding network that is believed to facilitate deprotonation. 
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Table 1.1. Percentage product composition of A. thaliana cycloartenol synthase 

(AtCASl) mutants and S. cerevisiae lanosterol synthase (ScERG7) mutants. 

Mutations in 
AtCASl 

none 
1481L 
148IV 
1481A 
1481G 
Y410T 
Y410T 
148IV 
Y410C 
Y532H 
H477N 
H477G 
Y410T 
H477N 
148IV 
Y410T 
H477G 
148IV 
H477N 
148IV 
H477G 
148IV 

Mutations 
in ScERG7 

None 
V454I 
V454L 
V454A 
V454G 
T384Y 
T384Y 
V454I 
T384Y 
V454L 
Y510P 
Y510H 

1 

99 
83 
54 
12 
17 

2 

1 
25 
54 
23 
65 
78 

75 
45 
88 
22 
78 

78 

99 

94 

100 
100 
100 
95 
83 
79 
13 

20 

95 
42 

3 

1 
16 
21 
15 
4 
2 

<1 

31 
12 
73 

1 

6 

11 
64 

60 

9 

4 

33 
22 

24 

5 
22 

22 

5 

13 
44 

1 
24 

5 
17 

45 

6 

6 
12 

7 

10 
23 

20 

8 

5 
4 

Ref. 

49 

61 

62 

61 

61 

56 

56 

52 

52 

63 

63 

60 

60 

64 

64 

50,51 

65 

65 

65 

65 

66 

66 

66 

61 

61 

1 Cycloartenol 5 Achilleol A 
2 Lanosterol 6 Camelliol C 
3 Parkeol 7 Lanost-24-ene-3/?,9a-diol 
4 90-lanosta-7,24-dien-3j3-ol 8 Isomalabaricatrienol 
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Mutations of the residues described above would change orientations of the 

hydrogen-bonding network within the active site and could easily shift the deprotonation 

base towards alternative deprotonation positions, including C-9 to give lanosterol, C-ll 

to give parkeol, or others. For example, the His477Asn mutation63 promotes the 

biosynthesis of lanosterol (88%) and parkeol (12%) by relocating the polar His257 and 

Tyr410 residues close to C-9 and C-ll. An Ile481Val mutation facilitates lanosterol 

production (25% lanosterol, 21% parkeol, and 54% cycloartenol) by enlarging the active 

site and reducing steric control.17 These mutations cooperate to promote lanosterol 

biosynthesis; an AtCASl His477Asn Ile481Val double mutant biosynthesizes lanosterol 

accurately.64 Disturbance of the considered residues easily causes changes in the 

cycloartenol synthase product profile, often completely abolishing biosynthesis of 

cycloartenol. 

i ^ 3 His 232 %Cys449 

/V TV 
Val453 .^S V l ••• ^ 

^•JpCS5^Ti\ 

Figure 1.2. Selected active-site residues of human lanosterol synthase. Red dots 

correspond to ordered water molecules. 
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Table 1.2. Comparison of the corresponding active site residues between human 

lanosterol synthase (HsLSS), Arabidopsis cycloartenol synthase (AtCASl), and yeast 

lanosterol synthase (ScERG7). 

HsLSS 
His232 
Thr381 
Cys449 
Val453 
Asp455 
Tyr503 

AtCASl 
His257 
Tyr410 
His477 
Ile481 

Asp483 
Tyr532 

ScERG7 
His234 
Thr384 
Gln450 
Val454 
Asp456 
Tyr510 

Lanosterol biosynthesis is affected by active side residues His234, Thr384, 

Val454, and Tyr510 (S. cerevisiae lanosterol synthase numbering), which correspond to 

Arabidopsis cycloartenol synthase residues His257, Tyr410, Ile481, and Tyr532. In 

lanosterol synthases it is believed that deprotonation from the C-9 proton is promoted by 

relocating the deprotonating base by a hydrogen bond between Tyr510 and His234, with 

initial deprotonation to Tyr510 with further transport of the proton to His234.3 Changes 

in steric bulk at Val454 influences the hydrogen bond orientation and is shown to affect 

cyclization but not deprotonation.65 Thr384 decreases steric bulk compared to the strictly 

conserved Tyr410 in cycloartenol synthases. The Thr384Tyr mutation in lanosterol 

synthase broadens the product profile, suggesting Thr384 is essential for catalysis.66 

Notably, in all lanosterol synthase mutagenesis experiments that gave oxidosqualene 

cyclization products, lanosterol biosynthesis was never abolished completely. 

1.6. Dammarenyl-type Oxidosqualene Cyclases in Plants 

Another type of oxidosqualene cyclases is the dammarenyl-type cyclases. 

Dammarenyl-type oxidosqualene cyclases pre-fold oxidosqualene in the pre-chair-chair-
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chair conformation (Scheme 1.4), compared to the pre-chair-boat-chair conformation in 

protosteryl-type cyclases. These cyclases are involved in the biosynthesis of secondary 

metabolites in plants. Plants are sessile organisms that require protection and 

communication methods different from those available to animals. Thus, plants make 

large diversity of secondary metabolites, including triterpenes and their derivatives, that 

can be successfully used for chemical protection. Cucurbitadienol synthase from 

Cucurbita pepo is the only reported example of a protosteryl-type oxidosqualene cyclase 

involved in secondary metabolism.68 Only a few other cyclases, including marneral 

synthase69 and thalianol synthase,70 biosynthesize B-ring chair triterpenes involved in 

secondary metabolism but that do not access the tetracyclic dammarenyl cation and 

consequently cannot be classified as dammarenyl-type cyclases. Phylogenetic analysis 

and amino acid sequence comparison shows that thalianol synthase and marneral 

synthase arose from dammarenyl-type cyclases. Thalianol arises from a B-ring chair 

intermediate, and marneral is produced through initial cyclization to a bicyclic 

carbocation that undergoes Grob fragmentation to cleave the A-ring. 

Protosteryl-type cyclases and dammarenyl-type cyclases promote different 

substrate conformations, and these changes are presumably due to significant differences 

mostly in hydrophobic or aromatic amino acids active site residues that preorganize the 

initial conformation of oxidosqualene. A phylogenetic tree constructed to account for all 

known (or most known) oxidosqualene cyclases demonstrates that dammarenyl-type 

cyclases and protosteryl-type cyclases diverged only once in the past, within the plant 

71 T) T\ 74 7^ 

kingdom, and is a rare evolutionary event. ' ' ' ' 
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oxidosqualene 

protosteryl type cyclases / \ dammarenyl type cyclases 

**h$l 

protosteryl cation dammarenyl cation 

Scheme 1.4. Cation formation in protosteryl and dammarenyl type cyclases. 

The most studied dammarenyl-type cyclases are lupeol synthases and P-amyrin 

synthases (reviewed in 21,29). P-amyrin and lupeol are biosynthesized through the 

dammarenyl cation, with further D-ring expansion and annulation to give the lupyl 

cation, followed by C-29 deprotonation to give lupeol, or E-ring expansion and 1,2-

hydride shifts to give p-amyrin.1 Most lupeol and p-amyrin synthases have high product 

selectivity, however there are a number of enzymes with a broader spectrum of products, 

including mixed amyrin synthases from Pisum sativum? Lotus japonicus77 Costus 

speciosus,7* and Kandelia candel (L.).79 Cyclases that make different dammarenyl-type 

triterpenes, such as isomultiflorenol synthase from Luffa cylindrical or dammarenediol-

II synthase from Panax ginseng, are known as well. 
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1.7. Oxidosqualene Cyclases from Arabidopsis 

A total of thirteen oxidosqualene cyclases have been identified by a BLAST 

search from the Arabidopsis genome. Plants usually contain more oxidosqualene cyclases 

then animals and fungi, which usually have only one - lanosterol synthase. However, the 

number of oxidosqualene cyclases in different plants could vary, therefore sequencing of 

plant genomes would uncover the exact number of genes that encode oxidosqualene 

cyclases. The Arabidopsis cyclases share 44-84% amino acid sequence and can be 

divided into 3 groups (clades): CAS clade (CAS1 and LSS1), LUP clade (LUP1, LUP2, 

LUP3, LUP4, LUP5), and PEN clade (PEN1, PEN2, PEN3, PEN4, PEN5, PEN6), 

according to their sequence distances and phylogenetic relationship (Figure 1.3).22 

CAS clade 

LUP clade 

-100 changes 

PEN clade 

Figure 1.3. Computed phylogenetic relationships between Arabidopsis oxidosqualene 

cyclases. The tree was generated using the bootstrap method with 1000 replicates with 

equal weight given to all the characters and maximum parsimony as the optimality 

criterion. 
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Before the initiation of my thesis research, three oxidosqualene cyclases from 

Arabidopsis, including cycloartenol synthase (CAS1),49 lupeol synthase (LUP1)74'75'82'83 

and mixed lupeol synthase (LUP2)22'84 were characterized by heterologous expression in 

yeast (Scheme 1.5). 

germanicol 

Scheme 1.5. Biosynthesis of triterpenes in Arabidopsis. 

Later, two more enzymes, including marneral synthase (PEN5, MRN1)69 an 

enzyme that makes a B-ring monocycle after rearrangement and Grob fragmentation, and 

thalianol synthase (PEN4, THAS1),70 an enzyme that makes the novel tricyclic 6/6/5 

triterpene thalianol, were characterized using this same approach. Another two enzymes 
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were partially characterized (PEN6 and LUP5) and reported to make a-amyrin, 

bauerenol, lupeol (PEN6), and tirucalla-7,24-dienol (LUP5).85 Another cyclase, PEN1,22 

was expressed in yeast, however oxidosqualene cyclization products were not detected. 

Heterologous expression of just a few reported Arabidopsis oxidosqualene 

cyclases demonstrated that they are capable of production of more triterpenes than found 

by extraction from Arabidopsis plants. This indicates the tremendous potential for 

triterpene discovery, even within a simple model plant such as Arabidopsis. 

This work presents characterization of three additional Arabidopsis oxidosqualene 

cyclases with novel functions not previously observed in plants, including the first plant 

lanosterol synthase (LSS1), the first enzyme (camelliol C synthase, CAMS1) that 

efficiently blocks B-ring formation to make a monocyclic triterpene, and an enzyme 

(PEN1) that makes a novel tricyclic triterpene diol and makes the most compounds (>25) 

ever observed for a triterpene synthase. It also provides additional insights into the 

mechanisms of oxidosqualene cyclization and catalytic differences in protosteryl-type 

cyclases. 
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CHAPTER 2 

Materials and Methods 

2.1 Materials 

Restriction enzymes and Quick T4 DNA Ligation Kit were purchased from New 

England BioLabs (Beverly, MA). The Triple Master PCR System was from Eppendorf 

(Westbury, NY). A RETROscript kit for making Arabidopsis cDNA was purchased from 

Ambion (Austin, TX). Gene pure agarose LE (ISC BioExpress, Kaysville, UT) was used 

for gels. TOPO TA Cloning Kit for Sequencing was purchased from Invitrogen 

(Carlsbad, CA). Qiagen Gel Extraction Kit was used for DNA recovery from agarose gel 

(Qiagen, Inc., Valencia, CA). Media components were purchased from United States 

Biological (Swampscott, MA). Glass beads for yeast homogenization were purchased 

from BioSpec Products (Bartlesville, OK). Hemin chloride (heme), ergosterol, 

bis(trimethylsilyl)trifluoroacetamide (BSTFA) and Triton X-100 were from Sigma-

Aldrich (St. Louis, MO). Pyridine, TLC plates, and solvents for extraction and 

saponification were purchased from EMD Chemicals, Inc. (Gibbstown, NJ). 

2.2 Nuclear Magnetic Resonance (NMR) 

'H, 13C, and 2D Nuclear Magnetic Resonance (NMR) spectra were acquired at 25 

°C in deuterated chloroform (CDCI3) solution that had been filtered through activated 

basic alumina. Samples for NMR measurements were prepared in 5 mm glass tubes 

(Wilmad Glass Co., Inc or Shigemi Inc). Spectra were obtained on Varian Inova 800 

equipped with a cold probe, Varian Inova 600, and Bruker Avance 500 spectrometers. 

Spectra were referenced to tetramethylsilane at 0 ppm for 'H and to CDCI3 at 77.00 ppm 

for 13C NMR. 
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2.3 Gas Chromatography - Mass Spectrometry (GC-MS) 

Gas chromatography - mass spectrometry analysis was done with an Agilent 

5973N GC-MSD instrument interfaced to an Agilent 6890N GC system containing an 

Rtx-35ms column (30 m x 0.25 mm x 0.1 um, Restek). Samples (2 u.L) were injected 

into the inlet using a 40:1 split; the injection temperature was 280 °C, and the isothermal 

oven temperature was either 260 °C (MDKTRIT2 method) or 270 °C (MDKTRIT1 

method) for 30 min. MS data were acquired in the full-scan mode from 50 to 650 amu 

after a 3 min solvent delay. 

2.4 Gas Chromatography-Flame Ionization Detection (GC-FID) 

Gas chromatography-flame ionization detection was performed using a Hewlett-

Packard 6890 instrument (equipped with a 30 m x 0.25 mm ID x 0.1 urn film thickness, 

Rtx-5 column from Restek). Two methods, MDKTRIT2 and MDKTRIT1, were used for 

analysis. The following conditions were used for the analysis: the inlet and FID were held 

at 290 °C, an isothermal oven program held at 270 °C (MDKTRIT1) or 260 °C 

(MDKTRIT2) for 30 min, the split ratio was 40:1, gas flow (helium) was 0.6 mL/min at a 

constant pressure. 

2.5 High-Performance Liquid Chromatography (HPLC) 

HPLC separations of triterpene products were done with an Agilent 1100 series 

instrument containing a Phenomenex column (ODS(3), 250 x 21 mm, 5-um pore size, 

100 A pore size, Prodigy). Separations were performed isocratically at a flow rate of 8 
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mL/min or 7 mL/min with a mobile phase of water/methanol and UV detection at 210 

nm. 

2.6 UV Spectroscopy 

UV visible spectrophotometric measurements were done on a Shimadzu UV-

visible spectrophotometer UV-1601 at 600 nm, using 10 mm UV-grade 

polymethylmethacrylate (PMMA) cuvettes from VWR International Inc. (West Chester, 

PA). 

2.7 Centrifugation 

Centrifugations of 1.5-mL and 2-mL tubes were performed on Eppendorf 

Centrifuge models 5415D and 581 OR. Centrifugations of 15- to 250-mL tubes and 

centrifuge cans were performed using Eppendorf Centrifuge 5810 (variable temperature 

and speed). 

2.8 Incubations 

Microbial plate cultures were grown in Fisher Scientific Isotemp incubators at 30 

°C or 37 °C. All liquid cultures of E. coli and S. cerevisiae were grown in either a New 

Brunswick Series 25 Incubator Shaker or a New Brunswick C24 Incubator Shaker. 
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2.9 Polymerase Chain Reaction (PCR) 

Polymerase chain reactions (PCR) and reverse transcriptase polymerase chain 

reactions (RT-PCR) were performed using an Eppendorf (Hamburg, Germany) 

Mastercycler Gradient thermocycler. 

Oligonucleotides were purchased from Integrated DNA Technologies, Inc. 

(Houston, TX) or Sigma-Genosys (The Woodlands, TX). Oligonucleotides were 

dissolved in mqHzO to a final concentration of 100 pmol/piL. An aliquot of the 100 

pmol/nL solution was used to make a 20 pmol/^L stock solution used for PCR reactions. 

Oligonucleotides for sequencing were diluted to 5 pmol/^L. Stock solutions were stored 

at -20 °C. 

A reaction for PCR amplification typically contained template DNA (cDNA, 

plasmid 1-10 ng), a forward primer (20 pmol), a reverse primer (20 pmol), 5 ^L lOx 

High Fidelity Buffer (5 prime or Eppendorf), deoxyribonucleotide triphosphates (dNTPs) 

(10 mmol each), Triple Master Polymerase (1-2 U) and mqH20 to 50 \iL total reaction. 

For PCR amplification a CAPS program was used that included the following program: 

95 °C, 1 min; 65 °C, 30 s; 72 °C, 3 min with final 5 min extension at 72 °C, all repeated 

36 times. 

DNA mutagenesis was generally performed by introducing the desired mutation 

into the gene through PCR amplification with modified oligonucleotides. A mutation was 

usually designed by substituting a codon with minimal change to the nucleotide 

sequence. Unique restriction sites used for cloning were either found in the initial DNA 

sequence within 30 bp of the mutation, or by artificially introducing the site by nucleotide 

substitution without changing the amino acid sequence, also within 30 bp of the mutation. 
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That the desired mutation was introduced without changing other amino acids was 

established by sequencing the insert in the expression construct. 

2.10 DNA Plasmid Purification 

For mini-prep analysis of DNA sets of 12 or 24 bacterial cultures (2 mL each) 

were grown overnight in selective LB media. Bacterial cells were pelleted by 

centrifugation, followed by removal of supernatants. The cell pellets were then 

resuspended in 100 u.L cooled (4 °C) buffer PI (50 mM Tris-HCl (pH 8.0), 10 mM 

ethylene diamine tetraacetic acid (EDTA)) containing 20 mg/mL RNase A. After 15 min 

incubation with PI, 100 uL P2 lysis buffer (200 mM NaOH, 1% sodium dodecyl sulfate 

(SDS) (w/v)) were added and the samples were very gently mixed and incubated 3-5 min 

at room temperature. Addition of 100 uL cooled P3 buffer (3.1 M potassium acetate, pH 

5.5) and incubation at 4 °C for 30 min to 1 h terminated alkaline lyses. The cellular debris 

was pelleted by centrifugation and supernatants containing the DNA were transferred to 

new 1.5-mL tubes. To precipitate DNA 2.5 volumes of absolute EtOH were added to the 

supernatants, mixed by vortexing and incubated for at least 1 h at -20 °C. The ethanolic 

mixtures were centrifuged, the supernatants discarded and the DNA pellets were air-dried 

prior to dissolving in 100 uL TE8 buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA). 

Aliquots of 250 [iL absolute EtOH were added for DNA re-precipitation and the mixtures 

were chilled at -20 °C. The precipitation mixtures were centrifuged, the supernatants 

were discarded, and the DNA pellets were dried and resuspended in 50 uL TE8. The 

DNA solutions obtained by this method were stored at -20 °C. 
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For preparative DNA purification, large-scale (30-100 mL) bacterial cultures were 

grown in LB media containing selective antibiotic for 12-16 h. Cell pellets obtained by 

centrifugation were resuspended in 1 or 2 mL cooled PI buffer supplemented with RNase 

A. An equal amount of P2 buffer was added to the pellets, gently mixed and incubated for 

5 min at room temperature, followed by addition of P3 buffer (1 or 2 mL). The mixture 

was then kept on ice for a minimum of 1 h before being transferred to 1.5-mL centrifuge 

tubes and centrifuged to precipitate cell debris. The supernatant was moved to clean 

centrifuge tubes, and 0.7 volumes of isopropyl alcohol was added prior to vortexing and 

chilling at - 20 °C for at least 1 h to enhance yield. Following centrifugation, the 

supernatant was removed by decanting and drying residual EtOH. The DNA pellets were 

dissolved in TE8 and combined into a single tube. After combining all DNA into one 

tube, a second DNA precipitation was performed using 2.5 volumes of absolute EtOH. 

The DNA was pelleted by centrifugation, ethanolic supernatant was removed and dried 

DNA pellets were resuspended in 50-150 ^L TE8 buffer. Obtained DNA solutions were 

stored at -20 °C. 

DNA was sequenced was performed by Seqwright DNA Technology Services 

(Houston, TX) and by Lone Star Labs, Inc. (Houston, TX). 

2.11 DNA Restriction Digestion 

The DNA digestion conditions were used according to the manufacturer 

recommendations provided in the New England Biolabs 2007-08 Catalog & Technical 

Reference. Reactions were incubated for a minimum of 1 h. For analytical purposes 10-
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100 ng of DNA was used for a digest in 20 uL reaction mixtures; for preparative 

purposes 100-1000 ng of DNA was used in 30-100 uL reaction mixtures. 

2.12 DNA Gel Analysis 

Two types of agarose gels were used for DNA analysis. One type was used for 

analytical purposes and was prepared by micro waving 5 g agarose in 500 mL lx Tris-

Acetic acid-EDTA (TAE) buffer followed by addition of ethidium bromide (final 

concentration 5 ug/100 mL gel). A stock 50x TAE buffer was prepared by dissolving 242 

g Tris base, 57.1 g glacial acetic acid, and 18.6 g EDTA in 1 L mqFkO. For preparative 

analysis of DNA GTAE buffer (TAE with addition of 0.283 g guanosine per 1 L of 1 x 

TAE) was used. 

For DNA analysis a lOx gel loading buffer (20% Ficoll 400, 0.1 mM EDTA, pH 

8.0, 0.25% bromophenol blue, and 0.25% xylene cyanol) was added to each sample 

loaded. An appropriate molecular weight DNA marker (typically X DNA digested with 

BstE II) was used as a control. 

DNA fragments run on preparative gels were excised with razor blades and eluted 

with QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer's manual. 

2.13 DNA Ligation 

A Quick T4 DNA Ligation Kit was used for DNA ligation. To a 10 uL aliquot of 

2x ligation buffer the vector DNA and insert DNA (or two insert DNA in case of 3-piece 

ligation) fragments with cohesive ends were added in amounts to achieve a 2:1 molar 

ratio of insert to vector (or 2:2:1 in case of a 3-piece ligation) and a total volume of 19 
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\iL. A 1-uL aliquot of Quick Ligase was added and mixed by pipetting. After incubation 

at room temperature for 5-30 min the ligation was immediately used for E. coli 

transformation. 

Several plasmid vectors were usually used for cloning and ligation, including 

pRS305Gal, pRS316Gal, and pRS426Gal.86 

2.14 Bacterial Media 

E. coli cultures were grown in Luria-Bertani (LB) broth (LB, 10 g/L tryptone, 5 

g/L yeast extract, and 5 g/L NaCl) supplemented with a selection antibiotic. The LB 

media was sterilized by autoclaving at 121 °C for 35 min followed by cooling to room 

temperature, and addition of antibiotics ampicillin (to final concentration 100 ug/mL) or 

kanamycin (to final concentration 50 (xg/mL). Solid LB media was prepared as described 

above except with the addition of agar (15 g/L) prior to sterilization. Selection antibiotics 

were stored at -20 °C as stock solutions of 25 mg/mL antibiotic in 1:1 ethanol/water 

solution. Incubations of bacterial cultures were performed at 37 °C. 

During bacterial transformation procedure a rich SOC medium (20 g/L bacto-

tryptone, 5 g/L yeast extract, 0.5 g/L sodium chloride, 0.186 g/L potassium chloride, 3.6 

g/L glucose) was usually used for incubation of the bacteria. 

2.15 E. coli Transformation 

Three types of chemically competent cells, (stored at -80 °C) DH5a, NEB 5-alpha 

Competent E. coli (New England Biolabs, Inc.) and One Shot Machl - Tl Chemically 

Competent E. coli, (Invitrogen) were used for DNA transformations. For plasmid 
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transformations, cells were thawed on ice for 15 min. DNA was added to the cells and 

then incubated on ice for 20 min. The cells were heat-shocked at 42 °C for 30 s with 

further incubation of cells on ice for 2 min. An aliquot of 250 uL SOC medium was then 

added to cells and incubated with shaking at 37 °C for 1 h. After incubation aliquots of 

the transformation (25 uL and 250 uL) were plated on selective LB agar plates and 

spread with sterile glass beads. 

2.16 Yeast Strains Used for Expression of Oxidosqualene Cyclases 

Two types of yeast strains were used for the experiments. SMY887 (MATa 

erg7::HIS3 heml::TRPl ura3-52 trpl-A63 leu2-3,112 his3-A200 ade2 GAL+) is a 

lanosterol synthase deletion mutant and RXY688 (MATa. erglr.KanMX erg7::HIS3 

heml::TRPl ura3-52 trpl-A63 Ieu2-3,112 his3-A200 ade2 GAL+) is a lanosterol 

synthase / squalene epoxidase double deletion mutant. 

Oxidosqualene cyclases that generate compounds similar to lanosterol may not be 

rigorously characterized by in vivo accumulation studies alone. Because yeast possesses 

enzymes that convert lanosterol to ergosterol, most of the lanosterol it biosynthesizes 

accumulates as ergosterol or other demethylated metabolites. These enzymes can accept a 

reasonably broad array of triterpene alcohols, including cycloartenol and parkeol.89 

Consequently, any byproducts generated by a lanosterol synthase might be metabolized 

more quickly or more slowly than lanosterol, and they would be correspondingly under-

or overrepresented in the extract. The oxidative enzymes require NADPH, which depletes 

rapidly in a cell-free homogenate, and triterpene alcohols are consequently not 

significantly metabolized in vitro. However, if in vitro assays are conducted using 
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homogenates derived from strains that can produce substrate, triterpene alcohols that 

accumulated in vivo during the induction phase would compromise the analysis. The 

yeast strain RXY6 is an ideal host for expressing oxidosqualene cyclase protein for in 

vitro analysis. Its lanosterol synthase deletion abolishes in vivo and in vitro 

oxidosqualene cyclization by yeast enzymes and thereby ensures that any recovered 

C30H50O compounds are products of the foreign oxidosqualene cyclase. The additional 

deletion of squalene epoxidase precludes the biosynthesis of the precursor oxidosqualene 

and thereby ensures that any cyclization occurs after cell lysis when oxidases are 

inactivated by low NADPH levels.90 

2.17 Yeast Media 

Yeast cultures were grown in several types of media. For yeast strains RXY6 and 

SMY8 that did not carry plasmids a rich YP media (10 g/L yeast extract, 20 g/L peptone) 

was used. Yeast strains containing transformed plasmids with selection markers were 

grown in synthetic complete (SC; 1.7 g/L yeast nitrogen base, 5 g/L ammonium sulfate, 2 

g/L amino acid mixture) media. Amino acid mixtures were prepared by combining 10 g 

of leucine and 2 g each of alanine, arginine, asparagine, aspartic acid, cysteine, 

glutamine, glutamic acid, glycine, histidine, isoleucine, lysine, methionine, 

phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, adenine, and uracil. 

Amino acid mixtures SC-Ura (SC media without uracil) or SC-Leu (SC media without 

leucine) were lacking either uracil or leucine, depending on the selective marker 

(selective media). 
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All cultures were supplemented with carbon source either dextrose or galactose 

with a final concentration of 20 g/L. Galactose was used as the inducing sugar in 

inducing media. Solid media were prepared by addition of 7.5 g agar to the sugar source. 

Additional components were heme (in the form of hemin chloride 13 \ig/mL), ergdsterol 

(20 \ig/mL), and Tween 80 (5 g/L). 

Stock solutions for media components (YP, SC-Ura, SC-Leu, dextrose, galactose) 

were prepared as 2 x solutions, by dissolving components in mqtbO and autoclaving at 

121 °C for 35 min. Stock solutions for heme, ergosterol and Tween 80 were prepared as 

lOOx Heme (65 mg hemin hydrochloride, 25 mL absolute EtOH, 25 mL dl tfeO, and 0.75 

mL 1M NaOH) and lOOx ergosterol-Tween 80 solution (20 mg ergosterol, 5 mL absolute 

EtOH, and 5 mL Tween 80). All yeast cultures were cultivated at 30 °C. 

2.18 Yeast Transformation 

A 10-mL yeast culture was grown to saturation at 30 °C. Cells were collected by 

centrifugation for 5 min at 3000 rpm. After discarding the supernatant, the yeast pellet 

was washed twice with 20 mL sterile mqH20. The pellet was resuspended in the residual 

water. Plasmid DNA (5-15 \ig) was added to the suspension of the yeast pellet followed 

by addition of pre-heated salmon sperm ssDNA solution (1 mg/mL). Two mL of yeast 

transformation buffer containing aqueous solution of 40% polyethylene glycol (PEG) 

3350, 0.1 M lithium acetate, 10 mM tris buffer (pH 7.5), 1 mM EDTA, and 100 mM 

dithiothreitol (DTT) was added last and mixed by vortexing. The transformation mixture 

was incubated at room temperature for 8-16 h. 
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After incubation, a 20-mL aliquot of sterile rnqf^O was added to the yeast 

suspension and vortexed and the yeast pellet was collected by centrifugation. After 

discarding the supernatant the pellet was washed two times with 20 mL sterile water. The 

supernatant was discarded, and the pellet was resuspended in the residual water and 

plated on selective plates by spreading with sterile glass beads. 

Yeast colonies grown on the selective transformation plates were then inoculated 

into 10 mL of selective liquid media with dextrose, grown to saturation and used for 

preparation of a glycerol stock and for further in vivo and in vitro assays. Glycerol stock 

solutions were prepared by mixing 0.8 mL of culture with 0.8 mL of 80% glycerol in 

water solution and were stored at -80 °C. All yeast cultures were cultivated at 30 °C. 

2.19 (±)-2,3-Oxidosqualene Synthesis 

Racemic oxidosqualene was synthesized from squalene as described previously.91 

The starting material squalene (22.5 g) was dissolved in 500 mL tetrahydrofuran (THF) 

and cooled on ice for 10 min. Water (100 mL) was added to the solution while stirring 

until it became cloudy, and then THF (70 mL) was added until the solution became clear 

again. Freshly recrystallized Af-bromosuccinimide (NBS, 11 g) was added in small 

portions over 10 min while constantly stirring for 20 min. The reaction mixture was 

concentrated 40-50% by evaporation in vacuo. Water (200 mL) was added to the 

concentrated reaction mixture and the crude bromohydrin was extracted with 4 x 200 mL 

hexanes. The combined hexane fractions were washed with 5 x 100 mL water and 

concentrated in vacuo to 80 mL. The concentrated crude bromohydrin was then purified 

by silica-gel column chromatography (280 g of silica gel 60), starting with 2% ether in 
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hexane and then increasing the ether concentration to 5% and ending with 7% ether. 

Fractions containing the bromohydrin were combined and concentrated in vacuo, 

yielding about 8 g of bromohydrin. Potassium carbonate (K2CO3, 25 g) and methanol 

(200 mL) were added to the bromohydrin and were stirred for 3 h. Fifty milliliters of 

water was added to the reaction mixture, followed by extraction of the final 

oxidosqualene product with 4 x 100 mL hexanes. The combined hexane fractions were 

washed with 3 x 100 mL water and concentrated in vacuo. The racemic oxidosqualene 

was purified by silica-gel column chromatography using conditions described previously. 

A total of 27 fractions (~130 mL each) were collected. Fractions 15-18 containing 

oxidosqualene were combined and concentrated, giving 5.1 g of racemic oxidosqualene. 

A portion of the purified product was analyzed by 800 MHz NMR to determine the purity 

of the synthesized oxidosqualene. This racemic mixture was stored at -20 °C and used for 

preparation of the 20 x racemic oxidosqualene solutions used for in vitro reactions. 

2.20 Preparation of 20 x (±)-2,3-Oxidosqualene Solutions 

For preparation of a 20 x stock oxidosqualene solution an aliquot of 100 mg of 

racemic synthetic oxidosqualene was mixed with 100 mg of either Tween 80 or Triton X-

100 in the presence of methylene chloride (400 piL). After 20 min of stirring on ice, 

methylene chloride was removed under vacuum. A 4.8-mL aliquot of rnqF^O was then 

added to the mixture and stirred for 40 min while keeping the mixture on ice. The final 

solution was a white emulsion and was stored at -20 °C. 
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2.21 Small Scale Oxidosqualene Cyclase Assay 

Several yeast strains were tested for oxidosqualene conversion in vitro at small-

scale. For these experiments 10-mL yeast cultures were grown in selective media in the 

presence of the inducing sugar galactose. The yeast cell pellets were collected by 

centrifugation and re-suspended in 100 mM sodium phosphate buffer (pH 6.2) at a ratio 

of 1 mL buffer per 1 g cell pellet. To this suspension, oxidosqualene was added to a final 

concentration of 1 mg/mL, followed by addition of 300-500 \iL of acid-washed glass 

beads (0.5 mm in diameter). Yeast pellets were lysed by vortexing for 3 min, followed by 

1 min incubation on ice, and repeating this 2-step vortexing routine twice. Yeast cell 

lysates were then incubated at room temperature 12-24 h and later checked by TLC 

analysis. Negative control reactions were done in the same manner, except no substrate 

was added to the cell suspension. 

2.22 Large Scale Oxidosqualene Cyclase Assay 

Large-scale (2-L) cultures were grown in selective media with the inducing sugar 

galactose. Growth of yeast cultures was monitored by measuring the optical density (OD) 

using a 1:10 dilution of each culture. Once cells had reached a certain density and the OD 

was constant for two consequent measurements (between 0.5 to 0.8) taken within 3-4 h of 

each other, the cell pellets were collected by centrifugation and supernatants were 

discarded. The cells were resuspended in one volume 100 mM sodium phosphate buffer 

(pH 6.2) and homogenized using an EmulsiFlex-C5 cell homogenizer (Avestin Inc., 

Ottawa, Canada) at a minimum of 10,000 psi. A small aliquot of homogenate was 

typically collected for negative control, where no substrate was added. The remainder of 
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the homogenate was used for a reaction with synthetic oxidosqualene, added as a 20 x 

solution with either Triton X-100 or Tween 80 to a final concentration of 1 mg/mL OS. 

The homogenate was then mixed and incubated for 24-28 h at room temperature. 

Upon completion, the homogenate was quenched twice with one volume of 

ethanol, mixed and separated by centrifugation on cell debris pellet and supernatant that 

was collected. Combined ethanolic fractions were then concentrated under vacuum and 

then run through a small (6-7 g) silica plug with 2% ether in hexane. Fractions containing 

squalene and unreacted oxidosqualene were then removed and the rest of the eluted 

components (cyclic products and ergosterol) were combined together and stored at -20 

°C. Part of the combined material was used for GC-MS and GC-FID analysis and the rest 

of the extract was subjected to preparative thin layer chromatography (PTLC). 

2.23 In vivo Assay 

Yeast cultures (small scale 10- or 100-mL, or large scale 1- to 50-L) were 

cultivated in selective media supplemented with galactose. When cultures reached 

saturation, the cells were pelleted by centrifugation. Supernatants were often collected as 

well and used for further analysis of polar components. Collected cell pellets were then 

saponified with 10% KOH in 80% EtOH at 70 °C for 2 h, using 5 mL of saponification 

solution per 1 g of cell pellet. One volume of water was then added to the saponified 

mixture, followed by extraction of the non-saponifiable lipids (NSL) with hexane. For 

small-scale assays 4 x 1 5 mL of hexane was used for extraction (for both 10 and 100 mL 

cultures); for large scale assays 4 x 30 mL of hexane was typically used per liter of 

culture. Hexane fractions were combined, washed with water and concentrated in vacuo. 
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Sometimes, additional extraction with methyl tert-butyl ether (MTBE) was done and the 

hexane and MTBE extracts were combined and concentrated under vacuum. The 

obtained extracts of NSL were subjected to GC-MS, GC-FID, and NMR analyses, or 

further purified by silica-gel chromatography, HPLC, or PTLC. 

2.24 Isolation of Triterpene Alcohols from the Media with Resin 

If polar components were expected among triterpene products, the medium 

collected after separation from the cells was further incubated with activated Diaion HP-

20 resin (20 g of resin per 1 L of media, activated with methanol for 15 min, Supelco). 

After 12-24 h of incubation the medium was separated from the resin by filtration and the 

collected resin was extracted with ethanol until the extracts were colorless. Combined 

ethanol fractions were further concentrated in vacuo and run through a silica-gel column 

using ether. Obtained fractions were then analyzed by GC-MS and subjected to further 

purification by silica-gel column chromatography or PTLC. 

2.25 Purification of Triterpene Alcohols by Silica Gel Chromatography 

Silica gel 60 (240-400 mesh) was used for silica-gel chromatography. Columns 

were wet-packed with solvent systems to be used for separation or dry-packed. The 

amount of silica used for separation was 500-1000 times more than the amount of crude 

material to be separated. Solvent systems were usually 2% ether in hexane with 

consequent increase of ether concentration, unless specifically noted. Fractions were 

collected in disposable borosilicate tubes. Column progress was monitored by TLC, 

developed in 1:1 hexane/ether or methylene chloride, and stained with anisaldehyde. 
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2.26 Purification of Triterpene Alcohols by Preparative Thin Layer 

Chromatography 

Silica Gel 60 F254 pre-coated plates for thin layer chromatography were used for 

all PTLC purifications. Prior to loading samples, all plates were pre-washed with ether (if 

expected developing system was hexane/ether), or methanol/methylene chloride 1:1 

mixture (if the later developing system was methylene chloride). During preparation, the 

washing solvent was allowed to run to the end of the plate. The solvent was allowed to 

evaporate and the plate was heated in the oven at 120 °C overnight (no longer than 24 h). 

After the plate was cooled to room temperature, the sample was loaded as a thin line 20 

mm from the bottom of the plate and the plate was developed in 200 mL of solvent. For 

good separation no more then 20 mg of sample was loaded per plate. The solvent was 

evaporated and the plate was checked under UV for the presence of UV-active 

components. A small vertical strip of the plate was cut, stained with anisaldehyde and 

analyzed for distribution of separated components. Areas of the plate that contained the 

desired compounds were scraped with a razor blade, ground with a mortar and pestle, 

eluted with ether, and analyzed by NMR or GC-MS. 

2.27 Trimethylsilyl (TMS) Derivatization of Triterpene Alcohols 

Samples for GC-MS and GC-FID analysis were injected either underivatized in 

toluene or as the TMS ether in the derivatization reagent. TMS ethers were made by 

dissolving each sample in 100 uL pyridine, followed by addition of 100 uL (bis-

trimethylsilyl)-trifluoroacetamide (BSTFA). The mixture was kept at 37 °C for 1 h and 

then used directly for GC-MS or GC-FID analysis. 
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CHAPTER 3 

Cloning and Characterization of Lanosterol Synthase from Arabidopsis thaliana: 

Discovering Lanosterol Biosynthesis in Plants 

This chapter describes functional characterization of the oxidosqualene cyclase 

AtLSSl, encoded by At3g45130 in the Arabidopsis genome. Phylogenetic analysis of 

Arabidopsis oxidosqualene cyclases (Figure 1.3) showed that the AtLSSl belongs to the 

same clade as Arabidopsis cycloartenol synthase. Comparison of amino acid sequences 

has predicted that AtLSSl is a protosteryl-type oxidosqualene cyclase. Because before 

this experiment all characterized protosteryl-type cyclases from plants were cycloartenol 

synthases, it was interesting to uncover the function of the AtLSSl, the second putative 

protosteryl-type cyclase from Arabidopsis. Therefore the functional characterization of 

AtLSS 1 by heterologous expression in yeast was undertaken. 

3.1 Previous Work 

Initial analysis, cloning, and expression of the At3g45130 gene were done by Dr. 

Ling Hua before I joined the project. Sequences similar to the Arabidopsis cycloartenol 

synthase were obtained by a tblastn search against the A. thaliana genome.94 A cDNA 

corresponding to the A. thaliana coding sequence At3g45130 was cloned by hybridizing a 

radiolabeled probe obtained by PCR-amplification of cDNA. After screening 3 x 105 

colonies from an A. thaliana young seedling cDNA library,95 a clone with a 2.4 kbp 

insert was obtained and named pLHl.l. The Not I fragment of pLHl.l was subcloned 

into pBluescript II KS (+) to give pLH1.2. The plasmid pLH1.2 was sequenced, revealing 

that the second exon of LH1.2 (62 amino acids) was absent. A Not I - Sal I fragment was 
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cloned from the plasmid pLH1.2 into the galactose-inducible yeast expression vector 

pRS316GAL to give pLH1.19. The initial clones were transformed into SMY8 yeast 

strain, however no expression was detected and no oxidosqualene cyclization products 

were observed. 

3. 2 Experimental Procedures 

3.2.1 Cloning of the Full-Length At3g45130 

To obtain a full-length AtLSSl cDNA, the primer pair LHl-Sall-F 5'-

TAATgtcgacTAATATGTGGAGGTTAAAGTTA-3' and LHl-BsrGI-R 5'-

TATGAGAGCACtgtacaAAACATGGTGCTATT-3' was designed to amplify the 538 

bp at the 5' end of the expected coding sequence and thereby obtain a properly spliced 

fragment.96 These primers were used to PCR-amplify an A. thaliana cDNA. The PCR 

reaction mixtures (50 uL) contained 0.2 ug of the 7 day-old seedlings cDNA pool, 20 \iL 

2.5 x Triple Master Mix, 20 pmol of each primer, and 3 units of Triple Master 

polymerase. The amplicon was gel-purified and cloned into pLH1.19 using Sal I and 

BsrG I restriction enzymes. The resultant expression plasmid, named pLH1.25, was 

confirmed to contain the full-length ORF (2271 bp), including the exon that was missing 

previously. The plasmid pLH1.25 was transformed into two yeast strains, SMY8 

(lanosterol synthase deletion mutant) and RXY6 (lanosterol synthase and squalene 

epoxydase double deletion mutant) and the obtained transformants were plated on 

selective media. 
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3.2.2 Heterologous Expression of At3g45130 in Yeast 

To study in vitro expression of the AtLSSl in yeast, the RXY6[pLH1.25] was 

grown to saturation in 100 mL induction medium. The 1.1-g pellet was lysed by 

vortexing for 10 min with 1 mL acid-washed glass beads, 1.1 mg synthetic racemic 2,3-

oxidosqualene, and 1.1 mg Tween 80 and 1.1 mL of sodium phosphate buffer pH 6.2. 

The lysates were incubated for 30 h at 25 °C. A reaction with a 0.5 g of yeast pellet 

incubated without oxidosqualene was used as a control. The suspensions were extracted 

three times with 10 mL hexane, and the combined organic extracts were concentrated to 

dryness and further studied by GC-FID, GC-MS, and NMR. 

To obtain enough triterpene material for detailed analysis, characterization and 

ratio determination of AtLSSl minor products a large scale (2L) RXY6[pLH1.25] culture 

was grown in inducing medium. A total of 15 g cell pellet was collected by 

centrifugation. The cell pellet was lysed by vortexing 3 x 5 min with glass beads (5 mL) 

in presence of 15 mL of 100 mM sodium phosphate buffer (pH 6.2). After 

homogenization, 300 uL of mixture containing 20 mg/mL racemic oxidosqualene and 20 

mg/mL Triton X-100 was added to the cell lysate and incubated overnight at room 

temperature. After incubation the cell homogenate was extracted 4 x 20 mL of ethanol. 

Ethanol fractions were combined together and concentrated under vacuum. The resultant 

residue was dissolved in 15 mL of water and extracted with 4 x 30 mL of hexane. The 

combined hexane fractions were concentrated to dryness. The extract was further 

subjected to a short silica gel column to remove oxidosqualene, using 5.5 g of silica gel 

and eluting with 2% ether in hexane until oxidosqualene was completely removed. The 

remaining organics were eluted from the column with ether, and this fraction lacking 
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oxidosqualene was further subjected to preparative TLC (1:1 hexane/ether). The silica 

from the preparative TLC plate above ergosterol (where all triterpene alcohols should 

run) was scraped form the plate and eluted with ether. Eluted fraction was further 

analyzed by 'H NMR. 

For in vivo studies, a 100-mL culture of SMY8[pLH1.25] was grown to saturation 

in induction medium. After 2 days at 30 °C, a 1.2 g cell pellet was collected and 

saponified with 6 mL 10% KOH in 80% ethanol and 2 mg of the antioxidant butylated 

hydroxytoluene. The suspension was deoxygenated under a nitrogen stream for 5 min and 

was incubated at 70 °C for 2 h. The reaction mixture was diluted with 10 mL of water 

and partitioned with 3 x 10-mL aliquots of hexane. The combined hexane layers were 

washed with distilled water and brine followed by evaporation in vacuo to give the 

nonsaponifiable lipid (NSL) fraction, which was analyzed by GC-MS and NMR. 

To study if the Arabidopsis lanosterol synthase could complement the lanosterol 

synthase deletion, the SMY8[pLH1.25] strain was grown on sterol-free inducing 

medium, solidified with agar. Growth on this media would indicate the strain was able to 

rescue lanosterol, and thus ergosterol, biosynthesis. 

3.3 Results 

3.3.1 Heterologous Expression of Arabidopsis Lanosterol Synthase in Yeast 

The plasmid pLH1.25 was expressed in the yeast lanosterol synthase deletion 

mutant SMY8 to generate oxidosqualene cyclization products in vivo. Nonsaponifiable 

lipids were obtained from an induced culture of SMY8[pLH1.25]. GC-MS analysis of the 

trimethylsilyl ethers revealed a component that was absent in an uninduced control, with 
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the mass spectral fragmentation pattern and retention time (9.88 min) of the product 

experimentally indistinguishable from a trimethylsilyl lanosterol standard. No other 

signals with m/z equal to 498 (corresponding to the trimethylsilyl ether of a C30H50O 

triterpene alcohol) were observed within 1% peak intensity of lanosterol (Figure 3.1). The 

*H NMR spectrum exhibited signals characteristic of lanosterol at 5 0.690 (H-18, s), 

0.811 (H-31, s), 0.876 (H-32, s), 0.983 (H-19, s), and 1.001 (H-30, s)97 and of ergosterol 

at 6 0.631 (H-18, s), 0.948 (H-19, s), 0.918 (H-28, d, 6.8 Hz), 1.037 (H-21, d, 6.7 Hz), 

5.385 (H-7, dt, 5.6, 2.7 Hz), and 5.573 (H-6, dd, 5.6 Hz).98 ]H NMR analysis revealed no 

signals corresponding to the alternative sterol precursors cycloartenol" and parkeol100 or 

the monocyclic compounds achilleol A101 and camelliol C102 (within a 1% detection 

limit). That SMY8 completely lacks lanosterol synthase activity was established through 

control reactions previously.90 These data unambiguously established that recombinant 

At3g45130 is a lanosterol synthase. 

The lanosterol yield was calculated to be 4 ug/100 mL by comparing the H-18 

signal intensity of lanosterol to that of the internal standard epicoprostanol (8 0.641). *H 

NMR and GC-MS of a control NSL similarly obtained from a culture grown on glucose 

did not reveal any signals corresponding to lanosterol or any other triterpene 

monoalcohol products. 
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Figure 3.1. GC-MS analysis of the total crude NSL from SMY8[pLH1.25] after induction 

with galactose. (A) Total ion chromatogram (signals labeled as "non C30H50O triterpene" 

are oxidosqualene cyclase products further metabolized by yeast enzymes). (B) Selective 

ion chromatogram of the components with m/z 498. (C) Electron-impact mass spectrum 

of the peak from total ion chromatogram (B) that demonstrates a mass spectrum identical 

to a TMS-lanosterol standard. 

The cell homogenate of RXY6[pLH1.25] cultured in induction medium was 

incubated with synthetic oxidosqualene. GC-MS and *H NMR analysis of the crude 
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hexane extract of the reaction mixture demonstrated lanosterol production (2.6 ug/100 

mL), which was absent in a control reaction with no oxidosqualene added. No signals 

were observed for any other products from oxidosqualene cyclization within a 1% 

detection limit. These results established that the At3g45130 gene encodes a lanosterol 

synthase with catalytic fidelity >99%. 

Analysis of the triterpenes obtained from a large scale in vitro reaction showed 

presence of several minor compounds, including epilanosterol, epiparkeol, 

isomalabaricatrienol, and parkeol at levels 2.5%, 0.4%, 0.3% and 0.1% correspondingly 

(Figure 1, Appendix A). Epilanosterol and epiparkeol are not mechanistically accessible 

from 3(5)-oxidosqualene, and their presence is consequently attributed to the ability of 

AtLSSl to utilize the 3R epimer of 2,3-oxidosqualene from the racemic stock. 

Complementation studies with SMY8[pLH1.25] on sterol-free induction medium 

showed that pLH1.25 allowed sufficient sterol biosynthesis to compensate for the yeast 

lanosterol synthase mutation. GC-MS and 'H NMR of the NSL confirmed the presence of 

lanosterol and ergosterol, which were 5 ug/100 mL and 42 ug/100 mL, respectively. The 

low lanosterol to ergosterol ratio indicates that most of the lanosterol was metabolized 

further by the yeast sterol metabolic pathway. 

3.4 Discussion 

Heterologous expression of At3g45130 in yeast showed conversion of 

oxidosqualene to lanosterol (99%). The gene product of At3g45130 was named LSS1 

(LanoSterol Synthase) and was the first example of a lanosterol synthase cloned from a 

plant. 
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Plant lanosterol synthases use catalytic motifs distinct from those in animal, 

fungal, and protozoal lanosterol synthases, consistent with the independent evolution of 

these groups from cycloartenol synthase. These residues are most readily discussed in the 

context of known structure-function relationships in cycloartenol synthase. The active 

site residues His257, Tyr410, His477 and Ile481 (Arabidopsis cycloartenol synthase 

numbering) are essential in cycloartenol biosynthesis (see Chapter 1). The Arabidopsis 

lanosterol synthase has Asn477 and Val481 residues in the positions where cycloartenol 

synthases has His477 and Ile481 (Figure 3.2). That these are the catalytically important 

differences between plant lanosterol synthases and cycloartenol synthases is apparent in 

light of previous mutagenesis experiments with cycloartenol synthase (for details see 

Chapter 1). The AtCASl His477Asn Ile481Val double mutations cooperate to promote 

accurate lanosterol biosynthesis.65 The catalytically important His257, Tyr410, Asn477, 

and Val481 are conserved in several uncharacterized eudicot oxidosqualene cyclases, 

suggesting that these are also lanosterol synthases (Figure 3.2). 

The Asn477 Val481 pair that this Arabidopsis enzyme uses to promote lanosterol 

biosynthesis is distinct from catalytic motifs in known lanosterol synthases. Previously 

described lanosterol synthases also enlarge the active site with the Val substitution, but 

they use other motifs to reposition polarity. In kinetoplastid lanosterol synthases, a 

His477Gln mutation relocates Tyr410 to approximately the right location, but a third 

unknown mutation is needed to make lanosterol accurately. Opisthokonts move polarity 

through a Tyr410Thr mutation, but again another compensatory mutation is necessary. 

The Tyr410Thr Ile481Val double mutant is a lanosterol synthase that generates 25% 90-

lanosta-7,24-dien-3P-ol (9f$-A7 lanosterol) and parked as byproducts.66 
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Figure 3.2. Comparison of amino acid residues in lanosterol synthases and cycloartenol 

synthases. Deltas (A) denote essential catalytic positions corresponding to Tyr410, 

Asn477, and Val481 in Arabidopsis LSS1. Blue highlights lanosterol synthases, pink 

shows cycloartenol synthases. One asterisk (*) shows Arabidopsis cycloartenol synthase 

His477Asn and Ile481Val double mutants. Two asterisks (**) indicate the Arabidopsis 

lanosterol synthase Asn477His Val481Ile double mutant. 

The Arabidopsis lanosterol synthase predicted protein sequence is closely related 

(62-66% identical) to cycloartenol synthases from the gymnosperm Abies magnifica 

(Genbank # AF216755), several monocots (Avena clauda, Avena longiglumis, Avena 

prostrata, Avena strigosa, Avena ventricosa, and Costus speciosus), and a range of 

eudicots (A. thaliana, Cucurbita pepo, Luffa cylindrica, Betula platyphylla, Pisum 

sativum, Glycyrrhiza glabra, and Panax g/rae„g).17'49>68-78"103-104'105>106.107 A m a x imum 

parsimony tree was generated to reconstruct the relationship between these cycloartenol 

synthases, the A. thaliana lanosterol synthase, putative lanosterol synthases from other 

plants, and uncharacterized cyclases from the green alga Ostreococcus tauri (Genbank # 

CR954203) and the lycophyte Selaginella moellendorffii (Genbank # AC158179) (Figure 
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3.3). The A. thaliana lanosterol synthase forms a clade with a family of uncharacterized 

enzymes both from other eurosids (LcOSC2*° from L. cylindrica and CPR6S from C. 

pepo) and from asterids (OSCPNZlm from P. ginseng and 77?V75 from Taraxacum 

officinale). Their phylogenetic grouping with At3g45130 suggests that these enzymes 

may be lanosterol synthases, and the conservation of key catalytic residues supports this 

position. 

The presence of probable lanosterol synthase orthologs in both eurosids and 

asterids establishes that this clade arose before the divergence of eurosids and asterids. 

The phylogenetic tree (Figure 3.3) suggests an even earlier origin. In this tree, the plant 

lanosterol synthases arose after the evolution of angiosperms (marked by the divergence 

of cycloartenol synthases from the gymnosperm Abies magnifica and the angiosperms), 

but before the monocot cycloartenol synthases diverge from the eudicot cycloartenol 

synthases. However, it is worth noting that the sequenced rice genome and existing 

sequence on other monocots lack obvious lanosterol synthase orthologs, and we cannot 

preclude the possibility that the placement prior to the divergence of monocots and 

eudicots is an artifact of rapidly mutating lanosterol synthase sequence. 
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Figure 3.3. Phylogenetic analysis of cycloartenol synthases and lanosterol synthases from 

plants. 

Lanosterol synthases from opisthokonts (animals and fungi) and kinetoplastids 

were shown previously to have evolved independently in the unikonts and in the 

euglenids, respectively.109 These evolutionary events are much more ancient than the 

origin of higher plants, and plant lanosterol synthases consequently comprise a third 

evolutionarily distinct class of lanosterol synthases. 

The role of lanosterol synthases in plants is still unclear. Early experiments in 

oxidosqualene cyclization established that lanosterol is the first carbocyclic intermediate 

in mammals and fungi.30'110 Similar experiments in diverse plants from red algae to 

angiosperms111'32'33 uncovered the biosynthesis of cycloartenol rather than lanosterol. 

Cycloartenol is detected routinely in plants/7.49-68.78.103'104.105'106'107 and cloning and 

genomic information suggest that cycloartenol synthases are ubiquitous plant enzymes.112 
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Experiments in tobacco42 and blackberry31'32 established that cycloartenol is a plant sterol 

precursor; exogenous cycloartenol is metabolized to stigmasterol, sitosterol, and other 

phytosterols by a multi-step sequence including the opening of the cyclopropyl ring. The 

plant sterol biosynthetic pathway can also accept lanosterol,42,43'44 which already has the 

appropriate skeleton to be elaborated into conventional plant sterols. Lanosterol is, in a 

structural sense, a shortcut to sterols because it lacks the cyclopropyl ring, although some 

plant enzymes seem to be optimized for substrates with the cyclopropyl group and 

metabolize lanosterol less efficiently.42'44 

Lanosterol has been precluded as a plant sterol biosynthetic intermediate because 

its biosynthesis cannot be readily detected in plants.34'35'36'45'111 The new discoveries do 

not challenge the long-standing acceptance of cycloartenol as the primary precursor of 

plant sterols. Although the cycloartenol route to plant sterols clearly predominates, a 

low-level route through lanosterol may exist. Latex from the eurosid Euphorbia lathyris 

has been shown to biosynthesize lanosterol from oxidosqualene,35'45 however this is 

apparently a secondary metabolic process; E. lathyris continues to utilize the cycloartenol 

pathway to sterols. 

The conservation of lanosterol synthases across eudicots in the presence of a 

cycloartenol route to sitosterol and stigmasterol suggests a role for lanosterol separate 

from being a membrane sterol precursor. Because plants encode cycloeucalenol 

isomerase to open the cyclopropyl ring to the A8 olefin present in lanosterol, most 

lanosterol metabolites could be biosynthesized readily from cycloartenol, with the 

notable exception of 4,4-dimethyl A8 sterols, as described in Chapter 1. One possibility is 

that 4,4-dimethyl A8 sterols derive from lanosterol than cycloartenol, because the 40-
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dimethyl group blocks access to cyclopropyl ring in cycloeucalenol isomerase.31 Kinetic 

preferences of other enzymes could divert lanosterol to other compounds distinct from 

those derived from cycloartenol. 

The sporadic detection of lanosterol and lanostane saponins in plants was 

previously attributed to inaccurate cycloartenol synthases. The discovery of plant 

lanosterol synthases reveals a more direct pathway to the lanosterol metabolites, and this 

correlates well with protein expression data. Expression profiles of Arabidopsis LSS1 

indicate increased expression of AtLSSl as a response to methyl jasmonate treatment that 

serves as a signal for biotic and abiotic stress in plants.113 Infection with Pseudomonas 

syringae increases lanosterol synthase expression in Arabidopsis as well. These data 

suggest possible defense role of lanosterol or metabolites thereof in plants. 

After my discovery of the Arabidopsis lanosterol synthase it was also reported by 

another group.114 Another plant lanosterol synthase was characterized from L. japonicus 

and had similar amino acid residues, corresponding to Asn477 and Val481 in AtLSSl 

confirming that lanosterol synthases are distributed in plants.115 
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CHAPTER 4 

Mutagenesis of Lanosterol Synthase to Biosynthesize Parkeol and Cycloartenol 

Discovery of a lanosterol synthase from a plant and the fact that plant lanosterol 

synthases have evolved from plant cycloartenol synthase has raised a question how the 

transition between cycloartenol and lanosterol biosynthesis was promoted. Another 

question was what changes within the active site should be made to change catalytic 

properties of the enzyme and if it is possible to design an enzyme that would produce 

more complicated structure than its ancestor does. 

4.1 Experimental Procedures 

4.1.1 Construction of Arabidopsis Lanosterol Synthase Asn477His/Val481Ile 

Double Mutant 

Two pairs of primers, 5'-CTCCaccggtGACcATCCATGGCCTaTCTCTG-3' 

with 5-TAATgtcgacTAATATGTGGAGGTTAAAGTTA-3'. and 5'-

CAGAGAtAGGCCATGGATgGTCaccggtGGAG-3' with 5'-

TAATgcggccgcTAATAGTCTATACTCACAAAGA-3', were designed to introduce 

both Asn477His and Val481Ile mutations into A. thaliana lanosterol synthase (AtLSSl). 

Additional silent mutations were introduced into the primers in order to obtain the 

restriction site Age I. These primers were used for PCR amplification of two parts of 

AtLSSl, the front piece (containing the two introduced mutations) and the back piece, 

using the pLH1.25 plasmid as template. Obtained PCR fragments were gel-purified, 

digested with Sal I - Age I and Age I - Not I restriction enzymes, respectively, and 

cloned together into pRS426Gal vector, digested with Sal I and Not I, using a 3-piece 
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ligation method. The resulting expression plasmid was named pMDK14.3, and 

sequencing confirmed the presence of the two intended amino acid mutations Asn477His 

and Val481Ile, and the absence of undesired point mutations. 

4.1.2 Construction of Arabidopsis Lanosterol Synthase Asn477His and 

Val481 lie Single Mutants 

To construct the Asn477His and Val481Ile single mutants a similar strategy was 

used, with primers containing the desired single mutation and a silent mutation to 

introduce the Age I restriction site. To prepare the Asn477His mutant the front part of 

AthLSSl was PCR-amplified using a pair of primers 5'-

CTCCaccggtGACcATCCATGGCCTGTCTCTG-3' and 5'-

TAATgtcgacCTAATATGTGGAGGTTAAAGTTA-3'. The 3- end of the Val481Ile 

mutant was PCR-amplified with the primers 5'-

CTCCaccggtGACAATCCATGGCCTaTCTCTG-3' and 5'-

TAATgtcgacCTAATATGTGGAGGTTAAAGTTA-3'. The 5' end was identical to that 

in used in the double mutant, described above. The resultant plasmids, containing 

Asn477His and Val481Ile single mutants of Arabidopsis lanosterol synthase, were named 

pDAL6.0 and pDAL7.0, respectively. 

4.1.3 Yeast Transformations 

The yeast strains SMY8 and RXY6 were transformed with the plasmids 

pMDK14.3, pDAL6.0, and pDAL7.0 using the lithium acetate method to generate yeast 

strains SMY8[pMDK14.3], RXY6[pMDK14.3], SMY8[pDAL6.0], RXY6[pDAL6.0], 
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SMY8[pDAL7.0], and RXY6[pDAL7.0]. Transformants was selected on selective 

medium lacking uracil and solidified with 1.5% agar. To determine whether the obtained 

mutants biosynthesize enough lanosterol to support yeast growth, SMY8[pMDK14.3], 

SMY8[pDAL6.0], and SMY8[pDAL7.0] were plated on sterol-free inducing medium. 

4.1.4 In Vitro Characterization of Arabidopsis Lanosterol Synthase 

Asn477His and Val481Ile Single Mutants and the Asn477His/VaI481Ile Double 

Mutant 

RXY6[pMDK14.3], RXY6[pDAL6.0], and RXY6[pDAL7.0] were grown to 

saturation in 100 mL of inducing medium. The cells were collected by centrifugation 

giving 0.94 g, 0.76 g, and 0.92 g cell pellets for RXY6[pMDK14.3], RXY6[pDAL6.0], 

and RXY6[pDAL7.0], respectively. The cell pellets were lysed with 200 uL of acid-

washed glass beads in 100 mM sodium phosphate buffer pH 6.2. Aliquots (94 uL, 76 uL, 

and 92 uL, respectively) of a mixture containing synthetic racemic 2,3-oxidosqualene (2 

mg/mL) and Triton X-100 (2 mg/mL) were added to each yeast homogenate and left 

incubating for 30 h at room temperature. After incubation with oxidosqualene, each cell 

homogenate was quenched with 3 x 20 mL ethanol and each set of the ethanolic fractions 

were combined. Water (60 mL) and brine (10 mL) were added to each ethanolic extract, 

and the triterpene alcohols were extracted with 3 x 30 mL hexanes. Each extract was 

subjected to preparative TLC, developed in a 50% hexane - 50% ethyl ether mixture, to 

separate the triterpene alcohols from ergosterol and oxidosqualene. The fractions were 

then analyzed by !H NMR and GC-MS. 
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To show that changes in the product profile of AtLSSl mutants were indeed 

introduced by the installed desired mutations, each yeast strain RXY6[pMDK14.3], 

RXY6[pDAL6.0], and RXY6[pDAL7.0] was used for colony PCR amplification of the 

encoded AtLSSl mutant with LHl-Sall-F 5'-

TAATgtcgacTAATATGTGGAGGTTAAAGTTA-3' and LHl-Notl-R 5'-

TAATgcggccgcTAATAGTCTATACTCACAAAGA-3' pair of primers. Obtained 

amplicons were further sequenced. 

4.2 Results 

4.2.1 Functional Characterization of Arabidopsis Lanosterol Synthase 

Val481 lie and Asn477His Single Mutants 

The triterpene fraction of RXY6[pDAL7.0], corresponding to the Val481Ile 

single mutant of AtLSSl, contained 80% lanosterol and 20% parkeol (established from 

*H NMR spectra, Figure 2, Appendix A). Cycloartenol was not observed among the 

cyclization products. No other triterpene alcohols were detected within a 1% detection 

limit. 

'H NMR 800 MHz data of the RXY6[pDAL6.0] triterpene fraction, 

corresponding to the Asn477His single mutant, allowed for identification of lanosterol 

(81%), parkeol (16%), and cycloartenol (3%) (Figure 3, Appendix A). Each compound 

was identified by comparison of chemical shifts of the upfield methyl signals with those 

of authentic standards. No other triterpene alcohol was detected within a 1% detection 

limit. 
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4.2.2 Functional Characterization of Arabidopsis Lanosterol Synthase 

Asn477His/Val481Ile Double Mutant 

The AtLSSl N477H V481I double mutant produces 31% cycloartenol, 63% 

parkeol, and 6% lanosterol (Figure 4, Appendix A). The absence of other compounds, 

including monocyclic and bicyclic compounds (which move faster on silica), more polar 

compounds, and alternative deprotonation structures such as ketones or ethers (which 

move faster on silica) was established through analysis of 'H NMR data and the absence 

of methyl shifts characteristic of those compounds (within a detection limit <1%). 

4.2.3 Complementation Studies of Arabidopsis Lanosterol Synthase Mutants 

All three AtLSSl mutants, including the Asn477His and Val481Ile single mutants 

and the Asn477His/Val481Ile double mutant, expressed in SMY8 grew on sterol-free 

inducing medium. This indicated that all three mutants were able to complement 

lanosterol production in vivo. 

4.3 Discussion 

In efforts to obtain information on the catalytic differences between Arabidopsis 

lanosterol synthase and cycloartenol synthase, mutagenesis experiments were undertaken 

in which residues from AtLSSl were replaced with corresponding residues from 

AtCASl. First, the AtLSSl Val481Ile mutant was expressed in yeast and produced 80% 

lanosterol and 20% parkeol (Scheme 4.1), as determined by !H NMR. In contrast, the 

corresponding mutation in yeast lanosterol synthase (Val454Ile) had no effect on the 

product profile.65 
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lanosterol 

AtLSSI Asn477His 83 % 

AtLSSI Val481 lie 80 % 

AtLSSI Asn477His / Val481 lie 6 % 

Scheme 4.1. Cyclization of oxidosqualene by AtLSSI Asn477His, Val481Ile, and 

Asn477His/Val481Ile mutants. 

This Val481Ile mutation introduced into AtLSSI a cycloartenol synthase residue 

that added one methylene group, slightly decreasing the available volume in the active 

site. The mutant has the same triad of catalytically important residues (Tyr410, Asn477, 

and Ile481) as the parallel CAS1 His477Asn mutant, which produces 88% lanosterol and 

12% parked.63 The Ile481 residue in AtCASl promotes cycloartenol biosynthesis though 

steric bulk that positions the intermediate cation relative to His257 and Tyr410, residues 

that participate in deprotonation at C-19.63 

The next mutant studied was the AtLSSI Asn477His single mutant, which 

replaced the lanosterol synthase asparagine residue with the corresponding cycloartenol 

synthase histidine residue. When expressed in yeast, the enzyme still produced lanosterol 

as the major product (83%) together with parkeol (16%), and cycloartenol (1%). This 
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product profile suggests that introduced changes in polarity moved the deprotonating 

base closer to the C19-C9-C10 plane and away from the C9-C8, resulting in biosynthesis 

of 1% cycloartenol and 16% parkeol. This is the first example in which a single mutation 

in a lanosterol synthase allowed for biosynthesis of cycloartenol. The analogous mutation 

was not studied in ScERG7 and therefore cannot be compared. 

Modeling and mutation studies of Arabidopsis cycloartenol synthase suggest that 

the His477 residue affects the location of polar His257 and Tyr410 residues situated close 

to C-9 and C-ll.60'63'65 The Asn477His mutation in AtLSSl alters polarity at the 477 

position, likely causing the increased production of cycloartenol. The AtLSSl Asn477His 

mutant also has the same triad of catalytically important residues (Tyr410, His477, and 

Val481) as the corresponding AtCASl Ile481Val mutant, which makes 54% 

cycloartenol, 25% lanosterol and 21% parkeol,62 indicating importance of the polarity in 

this position in both AtCASl and AtLSSl. 

Finally, the AtLSSl double mutant Asn477His/Val481Ile was expressed in yeast 

and showed a dramatically different product profile compared to the single mutants. This 

mutant produced parkeol as the major product (61%), but it also produced a significant 

amount of cycloartenol (31%). Lanosterol was a minor product, composing only 6% of 

the total triterpene profile. 

These two mutations together have an additive effect in the AtLSSl 

Asn477His/Val481Ile double mutant. The parental ability to deprotonate from C-9 and 

form lanosterol is nearly eliminated by the combination of steric and polar mutations. The 

increased ratio of cycloartenol to parkeol in the double mutant suggests that the 

deprotonating base was moved closer to C-19 and C-10. However, while the AtCASl 
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double mutant His47Asn/Ile481Val transforms the cycloartenol synthase into an accurate 

lanosterol synthase, the analogous transformation in lanosterol synthase does not 

achieve such accuracy. Additional modifications in the enzyme will be necessary to force 

the deprotonating base closer to C-19. Nevertheless, the AtLSSl Asn477His/Val481Ile 

double mutant produces the largest amount of cycloartenol ever detected in a lanosterol 

synthase background. 

Comparing the effects of mutations in positions 477 and 481 in native and mutant 

Arabidopsis cycloartenol synthase with those in lanosterol synthases from Arabidopsis 

and S. cerevisiae helps to illuminate the functions of these key residues (Table 4.1). 

Table 4.1. Percentage product composition of Arabidopsis cycloartenol synthase 

(AtCASl), Arabidopsis lanosterol synthase (AtLSSl) and yeast lanosterol synthase 

(ScERG7) mutants. 

Protein, mutation 
AtCASl, none 
AtCASl, 148IV 
AtCASl, H477N 
AtCASl, 
H477N/I481V 
ScERG7, none 
ScERG7, V454I 
AtLSSl, none 
AtLSSl, V4811 

AtLSSl, N477H 

AtLSSl, 
N477H/V481I 

Cycloartenol 
99 
54 

1 

31 

Lanosterol 

25 
88 
99 

100 
100 
99.5 
80 

83 

6 

Parked 
1 

21 
12 
1 

<0.5 
20 

16 

63 

Ref 
49 
62 

63 
64 

50,51 

65 

96 
This 

work 

This 

work 

This 

work 

These mutagenesis experiments show that the active site composition of AtLSSl 

resembles that of AtCASl more closely than that of ScERG7. That the AtLSSl and 
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ScERG7 mutants demonstrate such different results also suggests that AtLSSl likely 

utilizes a different set of catalytic residues that observed of ScERG7 with similar general 

mechanism of bond rearrangement. Comparable results between the product profiles of 

AtCASl and the AtLSSl mutants that have residues Tyr410, Asn477, and Ile481 support 

the suggestion that the two enzymatic active sites are similar in their overall organization. 

Application of molecular modeling experiments that were not performed at this point 

could be a way to confirm the suggestions. It also demonstrates that AtLSSl has acquired 

additional catalytically relevant mutations than these two, and that reverse conversion of 

lanosterol synthase into cycloartenol synthase requires additional changes. 

Evolutionary relationships between cycloartenol synthases and plant lanosterol 

synthases have shown that Arabidopsis lanosterol synthase diverged from cycloartenol 

synthase by acquiring specific mutations that allowed for changes in the deprotonation 

strategy of the enzymes (see Chapter 3). Previous mutagenesis studies were carried out 

using AtCASl and ScERG7, but these enzymes have a low sequence identity (~40%), 

making it more difficult to compare catalytic activity and determine evolutionary 

relationships between the enzyme families. The higher sequence similarity between 

Arabidopsis cycloartenol synthase and lanosterol synthase (65% identity) helps to 

illuminate potential amino acid residues that allow catalytic changes between the two 

enzymes. 

Previous mutagenesis experiments on Arabidopsis cycloartenol synthase have 

shown that only two mutations, His477Asn and Ile481Val, could convert an accurate 

cycloartenol synthase (99% cycloartenol) into an accurate lanosterol synthase (99% 

lanosterol).64 All previous efforts to introduce cycloartenol synthase activity into a 
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lanosterol synthase background have been unsuccessful until this work. Therefore the use 

of a native Arabidopsis lanosterol synthase has been demonstrated to be an effective tool 

to elucidate catalytically relevant residues for the production of cycloartenol. 

During the course of our analyses, a paper appeared in which the Asn477His 

Val481Ile double mutant was generated in the lanosterol synthase isolated from Lotus 

japonicus.115 The authors reported results similar to present work. Introduction of the 

Asn477His and Val481Ile mutations into Lotus lanosterol synthase (LjLAS) produced 

4% lanosterol, 13% cycloartenol, and 83% parkeol, compared to the results observed in 

our AtLSSl Asn477His/Val481Ile double mutant that makes 6% lanosterol, 31% 

cycloartenol, and 61% parkeol. The AtLSSl and LjLAS 1 enzymes are 66% identical, and 

the LjLAS 1 and LjCASl shows 66% homology, similar to that between AtCASl and 

AtLSS 1. Expression of the mutant Lotus lanosterol synthase was done in a yeast strain 

that only allows in vivo production of triterpenes, and therefore reported ratio of the 

triterpene products is not reliable, because lanosterol, cycloartenol, and parkeol are 

metabolized by yeast at different rates. However, general conclusions about the 

evolutionary relationships between plant cycloartenol synthases and plant lanosterol 

synthases and the importance of specific active-site residues in the bifurcation of 

lanosterol and cycloartenol biosynthesis support our results and conclusions. 
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CHAPTER 5 

Cloning and Characterization of Camelliol C Synthase From Arabidopsis thaliana: 

an Enzyme That Makes Monocycles Evolved From Those That Make Pentacycles 

This chapter describes functional characterization of the Arabidopsis 

oxidosqualene cyclase (LUP3), encoded by Atlg78955. Initially this gene was annotated 

as a fusion with another gene with unknown function (Atlg78950). LUP3 belongs to the 

LUP clade of Arabidopsis oxidosqualene cyclases (Figure 1.3) and demonstrates high 

amino acid identity with enzymes that make pentacycles (lupeol and P-amyrin synthases). 

5.1 Experimental Procedures 

5.1.1 Cloning and Subcloning of Atlg78955 (LUP3, CAMS1)116 

To obtain expression construct for heterologous expression of LUP3 in yeast an 

A. thaliana sequence Atlg78955 similar to AtCASl was found by BLASTN search 

against the A. thaliana genome. A. thaliana cDNA was made by RT-PCR from mRNA 

isolated from siliques using a RETROscript kit. Two pairs of primers, ORF2 Sail F 5'-

(TAAAgtcgacTAAAATGTGGAAGTTGAAGATAGC)-3' with ORF2 EcoRI R 5'-

(TGCAATCCACAAGTAATCAGAAAT)-3' and ORF2 EcoRI F 5'-

(TAGCCGTTATATTACCATTGGATGTGTT)-3' with ORF2 NotI R 5'-

(TTTAgcggccgcTTTACTAACTTCTTCTCTCTGTT)-3\ were used to PCR-amplify 

the two parts of Atlg78955 from A. thaliana cDNA. The two PCR amplicons obtained 

were gel-purified and cloned into TOPO vector using a TOPO-TA Cloning kit according 

to manufacturer's instructions, yielding two plasmids named pMDK4.6 and pMDK4.7. 

The plasmids pMDK4.6 and pMDK4.7 contained the front and back fragments of 
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Atlg78955, respectively. Fragments were digested with Sal I - EcoR I and EcoR I - Not I 

restriction enzymes, respectively, and the gel-purified fragments were subcloned together 

into the yeast expression vector pRS426Gal digested with Sal I and Not I. The resultant 

plasmid containing the 2310-bp ORF was named pMDK4.8. The insert was sequenced 

and confirmed to be identical to the predicted nucleotide sequence ofAtlg78955. 

5.1.2 Functional Characterization of the Camelliol C Synthase by 

Heterologous Expression in Yeast 

Two S. cerevisiae strains RXY6 and SMY8 were transformed with the plasmid 

pMDK4.8 using the lithium acetate method. Transformants were selected on synthetic 

complete medium lacking uracil. 

For in vitro studies, a 100-mL culture of RXY6[pMDK4.8] was grown to 

saturation in selective medium. The resulting 1.1-g cell pellet was collected by 

centrifugation and lysed by vortexing with 1.1 mL 100 mM sodium phosphate buffer (pH 

6.2) and 10 mL acid-washed glass beads. A 110-uL aliquot of a solution containing 2.2 

mg synthetic racemic 2,3-oxidosqualene and 2.2 mg Triton X-100 dissolved in water was 

added to the lysate. A control reaction with 0.6 g of the cell lysates was incubated with 

600 uL 100 mM sodium phosphate buffer (pH 6.2) containing 1.2 mg Triton X-100 

without addition of oxidosqualene. After 48-h incubation at 25 °C, ethanol (20 mL) was 

added to the yeast suspension, followed by vortex mixing and centrifugation. The pellet 

was subjected two more times to this procedure. The combined ethanol fractions (3 x 20 

mL) were diluted with water (40 mL) and the mixture was extracted with hexanes (3 x 35 

mL). The combined extracts were concentrated in vacuo, yielding 56.5 mg of crude 
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extract. The residue was used for GC-MS analysis and further separation (Figure 5.1). To 

avoid non-enzymatic cyclization, we removed unreacted oxidosqualene and squalene 

from the triterpene products and ergosterol with a short silica gel column (6 g, 230-400 

mesh, elution with gradients of ethyl ether in hexanes). The triterpene fraction was 

further subjected to preparative TLC in dichloromethane, giving three bands. Each of 

those was scraped onto small columns and eluted with ethyl ether. 
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Figure 5.1. GC-MS analysis of the crude extract of RXY6[pMDK4.8] incubated with 

racemic oxidosqualene: total ion chromatogram, oven temperature 260 °C. 

To study in vivo expression of LUP3, a 4-L yeast culture of SMY8[pMDK4.8] 

was grown to saturation in inducing medium at 30 °C. A 41.3-g yeast pellet was collected 

and saponified with 160 mL ethanolic potassium hydroxide (10% KOH in 80% EtOH) 

and 80 mg butylated hydroxytoluene (BHT, as an antioxidant agent) at 70 °C for 2 h. The 

reaction mixture was diluted with an equal amount of water (160 mL) and extracted with 

5 x 100 mL hexanes. The organic extracts were combined, washed with water, and 

concentrated in vacuo to a residue (0.256 g) of nonsaponifiable lipids (NSL). An aliquot 

(1%) of the NSL was analyzed by GC-MS (Figure 5.2) and 'H NMR, and the remaining 



62 

NSL was subjected to column chromatography (40 g silica gel, elution with 2% ether in 

hexane for 6 fractions followed by elution with ether). A total of 10 fractions were 

collected and analyzed by GC-MS and 'H NMR. 
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Figure 5.2. GC-MS analysis of the crude NSL of SMY8[pMDK4.8]: total ion 

chromatogram, oven temperature 270 °C. Asterisks (*) denote non-triterpene 

components, as judged by their mass spectra and the black diamond ( • ) corresponds to 

achilleol A. 

5.2 Results 

5.2.1 Functional Characterization of the Camelliol C Synthase 

All three fractions from the RXY6[pMDK4.8] preparative TLC were analyzed by 

800 MHz *H NMR. The first band contained the major product camelliol C102 together 

with achilleol A101 (Figure 5.3). In the second fraction, P-amyrin9 was identified on the 

basis of several resolved upfield methyl signals that matched those of an authentic 

standard within 0.0004 ppm. These methyl signals showed very similar splitting behavior 

upon resolution enhancement, notably splitting of the singlet at 1.136 ppm into a doublet 

{J = 0.9 Hz) in spectra of both the standard and the second fraction. The third fraction 
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contained mainly of ergosterol with no detectable triterpene alcohols. Whereas the in 

vitro reaction with oxidosqualene generated camelliol C, achilleol A, and P-amyrin in a 

98:2:0.2 ratio, no triterpenes were detected in the parallel control reaction lacking 

oxidosqualene. 
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Figure 5.3. 'H NMR spectrum of the first PTLC fraction from the RXY6[pMDK4.8] in 

vitro reaction. 

Analysis of the fractions obtained by column chromatography separation of the 

NSL obtained from SMY8[pMDK4.8] showed that fractions 1-4 contained squalene, 

oxidosqualene, and dioxidosqualene. Fractions 6-10 contained ergosterol, ergosterol 

derivatives, acetylated glycerols, and epoxide ring opening products of oxidosqualene 

and dioxidosqualene that occurred during saponification (resulting in diol and hydroxy-
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ethoxy derivatives). Only fraction 5 contained cyclized triterpene alcohols, namely the 

major product camelliol C and minor products achilleol A and p-amyrin (Figure 5.4). 

camelliol C 

<u o c 
CO 

• o c 
3 

.O < 

achilleol AI 

0-amyrin 

x20 

4 6 8 10 12 14 16 18 20 22 24 26 28 30 
Time (min) 

Figure 5.4. GC-MS analysis of fraction 5 from column separation of the crude 

SMY8[pMDK4.8] NSL: total ion chromatogram of underivatized triterpenes, oven 

temperature 260 °C. Asterisks (*) denote non-triterpene components, as identified 

through their mass spectral patterns. 

The three products camelliol C, achilleol A, and P-amyrin were separated by 

HPLC and characterized by GC-MS and 800 MHz *H NMR (Figures 5 - 7 , Appendix A). 

HPLC fractions 44-45, 47-52, and 76-79 contained achilleol A, camelliol C, and 0-

amyrin, respectively. No other HPLC fractions showed the presence of triterpene 

alcohols by 800 MHz 'H NMR. Additionally, HSQC, HMBC, DEPT, and 13C NMR 

spectra of camelliol C were collected using triterpene material from another CAMS1 in 

vivo experiment, which gave similar results. 
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5.3 Discussion 

Most known triterpene synthases make major products containing four or five 

rings.21 The Arabidopsis oxidosqualene cyclase encoded by Atlg78955 converts 

oxidosqualene to the monocyclic triterpene camelliol C (98%) and two minor by­

products: the monocycle achilleol A (2%) and the pentacycle p-amyrin (0.02%). This 

enzyme, CAMS1, is the first example of a native triterpene synthase that makes an A-ring 

monocyclic triterpene as the dominant product (Scheme 5.1). 

oxidosqualene camelliol C achilleol A p-amyrin 

Scheme 5.1. CAMS1 cyclizes oxidosqualene to monocyclic triterpenes and the 

pentacycle P-amyrin. 

CAMS1 is 70-78% identical to the Arabidopsis enzymes LUP1, LUP2, and LUP5 

that predominantly make penta- and tetracycles. More distantly related are families of 

enzymes that make the pentacycles P-amyrin (72-75% identical) and lupeol (59-61% 

identical).21 Arabidopsis enzymes that predominantly make tricycles (THAS1 and 

PEN1)70 and B-ring monocycle marneral (MRN1)69 are more distantly related then some 

P-amyrin synthases. Phylogenetic analysis suggests that camelliol C synthase evolved 

from p-amyrin synthases (Figure 5.5). One might imagine that polycyclic triterpene 

synthases evolved from enzymes that form smaller ring systems by iterative addition of 
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motifs favoring an extra ring. However, CAMS1 shows the reverse evolutionary order, 

being a descendant of enzymes that form polycyclic triterpenes. 
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Figure 5.5. Phylogenetic analysis of CAMS1 and related plant oxidosqualene cyclases. 

Camelliol C synthase demonstrates high product specificity compared to many 

enzymes involved in secondary metabolism (e.g., Arabidopsis arabidiol synthase, baruol 

synthase and lupeol synthase). Such product accuracy can be attributed to a short 

biosynthetic route that stops cyclization immediately after A-ring formation. Accuracy 

would require simply excluding rearrangement, further cyclization, and alternate 

deprotonation. If a small portion of the monocyclic carbocation escapes deprotonation, it 

undergoes further annulation to the bicyclic carbocation and continues cyclization to 0-

amyrin. 

To understand how camelliol C synthase produces monocycles, we compared 

CAMS1 amino acid residues with available sequences of other oxidosqualene cyclases. 

The active-site residues of CAMS1 and p-amyrin synthases are identical except for 

Ala484, which is Val or He in nearly all other plant cyclases (Figure 5.6). Previous 
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mutation studies61'65 suggested that decreased steric bulk at this position (notably 

mutations to alanine or glycine) promotes the formation of monocycles. For example, 

Ile481Ala mutation of AtCASl results in the production of 13% achilleol A and 6% 

camelliol C, and Ile481Gly shows 44% achilleol A and 12% camelliol C.61 The 

analogous Val454Ala mutation in yeast lanosterol synthase allows for 5% biosynthesis of 

achilleol A.65 Notably, in all experiments, achilleol A production was dominant over 

camelliol C. Mutations in the corresponding positions of dammarenyl type cyclases have 

not been studied. However, we predict that cyclases utilizing smaller residues (alanine or 

glycine) in this position may likewise be compromised in B-ring formation. An 

uncharacterized cyclase from Betula platyphylla (OSCBPD),111 for example, encodes 

alanine at this position and may produce monocycles as well. 
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21,117,118 An Figure 5.6. Partial alignment of oxidosqualene cyclase amino acid sequences 

asterisk (*) denotes the position corresponding to Ala484 in CAMS1, corresponding to 

Val481 in Arabidopsis LSS1. Active site residues alignment is based on a comparison 

with human lanosterol synthase. 
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If the transition between enzymes that make polycycles and monocycles requires 

relatively few mutations, then evolution of this kind could be more frequent, which is 

consistent with the punctate distribution of monocycles across the vast diversity of higher 

plants. Camelliol C and achilleol A have been found in asterids {Camellia sasanqua, 

Camellia japonica, Achillea odorata, Bupleurum spinosum, and Santolina elegans), two 

eurosids {Euphorbia antiquorum and Garcinia speciosa),101'102'119'120'121 the monocots 

wheat and rice, and the fern Polypodiodes formosana. ' ' ' 

The dominance of camelliol C instead of achilleol A in the product profile of 

CAMS1 suggests that camelliol C or a metabolite thereof provides a competitive 

advantage that achilleol A does not replicate. While the biological role of enzymes and 

their products can often be illuminated by microarray data, the initial annotation of the 

Arabidopsis genome included Atlg78955 {CAMS1) as a fusion with Atlg78950 {LUP4), 

and these genes were not distinguished in early microarrays. The limited available 

nonarray expression data (Arabidopsis MPSS Plus: Gene Analysis) show elevated 

amounts of Atlg78955 mRNA in Arabidopsis inflorescence tissue.125 However because 

the data is limited, the actual distribution of camelliol C may be not limited to the 

flowering parts of the plant. Further investigation is necessary to establish the actual 

biological role of camelliol C. 

Because monocyclic and polycyclic triterpenes have rather different spectral and 

chromatographic signatures, most monocycles were described as components of plant 

oils (usually lacking polycyclic triterpenes) rather than in surveys of triterpene 

distribution. This suggests that monocyclic triterpenes are more widespread than 

literature suggests. 
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CHAPTER 6 

Cloning and Characterization of Arabidiol Synthase: Water Addition in Triterpene 

Biosynthesis 

This chapter describes functional characterization of another oxidosqualene 

cyclase from Arabidopsis, PEN1. The oxidosqualene cyclase PEN1 encoded by 

At4gl5340 belongs to PEN clade of Arabidopsis oxidosqualene cyclases (Figure 1.3). 

Functional characterization of several other cyclases from the same clade has resulted in 

identification of cyclases with novel catalytic activities that make either previously 

unknown triterpene structures (e.g., thalianol synthase)70 or perform mechanistically 

unusual oxidosqualene cyclization (e.g., marneral synthase).69 Therefore, the closely 

related to thalianol synthase PEN1 was a good candidate for analysis with potential for 

discovery of novel triterpene products or enzymatic functionalities. 

The PEN1 characterization was once attempted in the past, but no cyclization 

products were found.221 undertook functional characterization of PEN 1 by heterologous 

expression in yeast resulting in successful identification of PEN 1 cyclization products. 

6.1 Experimental Procedures 

6.1.1 Cloning and Subcloning of At4gl5340 (PEN1) 

To design an expression construct containing full-length PEN], the A. thaliana 

sequence At4gl5340 similar to AtCASl was found by a BLASTN search against the A. 

thaliana genome. An Arabidopsis cDNA library was made from mRNA126 isolated from 

7-day old seedlings with use of a RETROscript kit (Ambion) and was used for PCR 

amplification with the pair of primers 5'-
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(TAAAgtcgacTAAAATGTGGAGACTAAGAATTGGAGCT)-3' and 5'-

(TTTAgcggccgcTTTATCAAGGCTGAAGCC)-3?. The PCR-amplified fragment was 

gel-purified, digested with Sal I and Not I restriction enzymes, and cloned into the yeast 

expression vector pRS426Gal. The resultant plasmid containing the 2301-bp ORF was 

named pMDK3.6. The insert was sequenced and confirmed to be identical to 

At4gl5340}21 

6.1.2 Functional Characterization of the Arabidiol Synthase by Heterologous 

Expression in Yeast: Analysis of the Dominant Compound Arabidiol 

The plasmid pMDK3.6 was used to transform S. cerevisiae strains RXY6 and 

SMY8. Transformants were selected on synthetic complete medium lacking uracil, 

solidified with 1.5% agar, and supplemented with 2% glucose, 13 mg/L hemin chloride, 

20 mg/L ergosterol, and 5 g/L Tween 80. 

A 2-L RXY6[pMDK3.6] culture was grown to saturation in selective inducing 

medium, yielding an 18-g cell pellet, which was collected by centrifugation and lysed by 

homogenization using a cell disruptor with 30 mL of 100 mM sodium phosphate buffer 

(pH 6.2). An ethanol solution (400 uL) containing 8 mg synthetic racemic 2,3-

oxidosqualene and 8 mg Triton X-100 was added to the cell homogenate and this mixture 

was incubated at room temperature for 24 h. After incubation, ethanol (30 mL) was added 

to the cell homogenate and the mixture was vortexed and centrifuged to separate 

ethanolic fraction from the cellular debris. After removal of the ethanolic fraction, the 

cell debris was again extracted with 30 mL ethanol, followed by 2 x 30 mL of hexane. 

The combined ethanolic and hexane supernatants were concentrated in vacuo. To the 
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obtained extract, 30 mL water was added and the mixture was extracted with hexanes (3 

x 30 mL) and 2 x 30 mL methyl tert-butyl ether (MTBE). The combined hexanes and 

MTBE extracts were concentrated in vacuo and 5% of the crude extract was used for GC-

MS and 'H NMR analysis. The remainder of the residue was subjected to a short silica 

gel column run with 2% ether in hexane to remove unreacted oxidosqualene and to 

prevent the possibility of non-enzymatic cyclization during the remaining workup. A 

portion (5%) of the purified triterpene fraction was used for !H NMR analysis to establish 

the ratio of the major component to the minor compounds. The remainder of the extract 

was further subjected to preparative TLC developed in 1:1 ether/hexane, allowing 

separation of the minor products from and ergosterol and the major triterpene product for 

further detailed analysis of the minor compounds !H NMR. A 1-L culture of 

SMY8[pMDK3.6] was grown to saturation at 30 °C in inducing medium containing 2% 

galactose, 13 mg/L hemin chloride, 20 mg/L ergosterol, 5 g/L Tween 80, and synthetic 

complete medium lacking uracil. The resulting 8.2 g yeast pellet was collected and 

saponified with 45 mL of ethanolic potassium hydroxide (10% KOH, in 80% EtOH and 

20 mg BHT) at 70 °C for 2 h. The reaction mixture was diluted with an equal amount of 

water (45 mL) and extracted with 3 x 50 mL of hexanes. The organic extracts were 

combined and concentrated in vacuo. This nonsaponifiable lipid (NSL) fraction was 

analyzed by GC-MS, GC-FID and 'H NMR. 

The medium that remained after recovering yeast SMY8[pMDK3.6] from a 1-L 

culture was used to identify possible oxidosqualene cyclization products that could have 

been emitted from the yeast. Diaion HP-20 resin (15 g) was activated with 50 mL 

methanol for 15 min, and the resin was added to the medium after removing the methanol 
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by decanting. The medium was incubated with activated resin overnight at 30 °C while 

shaking (200 rpm) and the resin was recovered from the medium by filtering and 

extracted with 4 x 50 mL ethanol. The ethanol fractions were combined together and 

concentrated in vacuo. The obtained extract was further subjected to silica-gel column 

chromatography (10 g of silica), eluting with ether. The collected ether fractions (12 mL 

each) were combined, concentrated in vacuo, and used for GC-MS analysis. 

To obtain sufficient material to determine structures of minor compounds, a large-

scale (30 L) culture was grown in inducing medium. A 180-g cell pellet was collected, 

saponified for 2 h at 70 °C with 450 mL of 10% KOH in 80% EtOH and 360 mg BHT. 

The cooled reaction mixture was extracted with 5 x 150 mL of hexanes. The combined 

hexane fractions were washed with water and brine and concentrated in vacuo. A small 

aliquot of the resulting residue of NSL (0.76 g) was analyzed by GC-MS. The remaining 

NSL residue was subjected to chromatography on a silica gel column using 100 g silica 

gel as the stationary phase and gradients of 2% - 50% ether in hexanes as the mobile 

phase. Collected fractions were combined, giving a total of 16 fractions. Each fraction 

was analyzed by GC-MS and *H NMR and was further purified by HPLC or PTLC, as 

necessary. 

6.1.3 Degradation of the Major Product to the Corresponding Lactone 

In principle, the C14 stereochemistry of arabidiol could be resolved through a 

series of molecular modeling experiments to predict the NMR chemical shifts of both 

epimers, and comparing these values to experimental results. However, the flexible side 

chain of arabidiol introduced a large number of conformers that complicated calculations. 
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To reduce the number of conformers, I obtained 5 mg of arabidiol from in vivo culture 

and an undergraduate student Allie Obermeyer modified arabidiol128 to a lactone through 

a sequence of reactions that preserved the initial C-14 configuration of arabidiol (Scheme 

6.1). Material for chemical degradation of the lactone was obtained from the extract of a 

large-scale culture purified by a silica gel column. Fraction 11, containing arabidiol and 

ergosterol, was subjected to PTLC (developed with 50% ether in hexanes). Ozonolysis of 

arabidiol was conducted in a CH2C12/CH30H solution (1:1) at -78 °C, followed by 

treatment with NaBEU. The triol intermediate was oxidized to the lactone with N-

methylmorpholine-A^-oxide (NMO), tetrapropylammonium perruthenate (TPAP), and 4 A 

molecular sieves in CH2CI2 at room temperature. 

Scheme 6.1. Synthesis of lactone. 

6.1.4 Purification of Minor Products 

Most minor compounds were present in column fractions 8 and 9, with just traces 

of triterpenes in fractions 7 and 10. During column chromatography of the large scale in 

vivo extract, the precautions against non-enzymatic cyclization were not undertaken and 

therefore some of the mono-, bi-, and tricyclic compounds may be artifacts.129 

From the 30-L NSL column fractions, fractions 1 - 7 were analyzed by GC-MS 

and *H NMR and did not require further purification or analysis. Fractions 10 and 12-16 

were analyzed and did not undergo further purification or analysis. Fraction 11 was 

further purified by PTLC (see section 6.1.4) to separate ergosterol from arabidiol. 
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Fraction 8 (12.2 mg, dissolved in 80 [iL methanol) was further subjected to 

preparative HPLC separation using a reverse-phase column. A mobile phase of 95% 

methanol with 5% was used to separate the mixture of triterpene alcohols, and the eluted 

material was collected and divided into approximately 200 fractions. HPLC fractions 

were combined based on UV detection results and were further analyzed by H NMR 

(800 MHz) and GC-MS. 

Fraction 9 (14.6 mg) was dissolved in methanol with 5% MTBE (total 150 uL) 

and split in half. Both parts were subjected to reverse-phase HPLC with a 95:5 methanol-

water mobile phase at a flow rate of 7.5 mL/min. Collected fractions (over 200 in each 

HPLC run) were combined together based on UV activity detected by HPLC and were 

rigorously analyzed by 800 MHz *H NMR. All compounds found in the HPLC fractions 

were either identified by comparison to authentic standards or literature data or were 

analyzed by 'H, 13C and 2D NMR (HSQC, HMBC, NOESY) for full spectral data. 

6.2 Results 

6.2.1 Analysis and Structure Determination of the Major Product Arabidiol 

GC-MS analysis of extracts obtained from both in vitro (RXY6) and in vivo 

(SMY8) experiments demonstrated the presence of a dominant oxidosqualene cyclization 

product with m/z 444 underivatized and m/z 514 derivatized, corresponding to a putative 

triterpene diol (Figure 6.1). Further *H NMR analysis showed five upfield methyl singlets 

at 0.788 ppm, 0.859 ppm, 0.972 ppm, 0.979 ppm, and 1.268 ppm, suggesting a tricyclic 

triterpene skeleton. The more downfield singlet at 1.268 ppm was likely to be adjacent to 

a second alcohol group, further indication of a triterpene diol. 
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Figure 6.1. Electron impact mass spectrum of the underivatized triterpene diol (arabidiol). 

Initial NMR analysis ('H, 13C, DEPT, HMBC, and HSQC spectra are shown in 

Appendix A, Figures 5-9, respectively) allowed for determination of the basic structure 

and connectivity of the major product arabidiol.127 Arabidiol was determined to be a 

tricyclic triterpene with hydroxyl groups at C-3 and C-14. The stereochemistry of most 

positions was determined by NOE experiments (Figure 10, Appendix A). However, 

establishing the C-14 configuration of arabidiol was nontrivial. The C-14 stereocenter is 

located in the side chain, where free rotation about C-C bonds generates conformational 

heterogeneity that complicates interpretation of NOE results. To reduce the number of 

conformers, arabidiol was modified to a lactone through a sequence of reactions that 

preserved the initial C-14 configuration of arabidiol (Scheme 6.1). 

To resolve the C-14 stereochemistry of the lactone and arabidiol, a series of 

quantum mechanical calculations was performed by William K. Wilson.127 The quantum 

mechanical calculations127 predicted that the results of NOESY and ID NOE difference 

experiments for the lactone favored the 14ft epimer. Analogous calculations and NOESY 
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data for arabidiol also strongly favored the 14/? configuration. Based on these two 

independent structure analyses the structure of arabidiol was assigned as (13/?,14i?,17F)-

malabarica-17,21-diene-3/?,14-diol (Figure 6.2). Detailed NMR assignment is provided in 

Table 1, Appendix A. 

0.859 
25 

23 24 
0.973 0.788 

Figure 6.2. Structure of arabidiol with atoms numbered. Underlined are upfield methyl 

singlets (in ppm). 

6.2.2 Analysis of Media for Triterpene Products 

Analysis of the resin extraction of the medium revealed large amounts of arabidiol 

(Figure 6.3), suggesting that increase in polarity could promote triterpene emission to the 

medium. 

arabidiol 

Figure 6.3. Total ion chromatogram of the medium extract. 
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6.2.3 Analysis and Structure Determination of Minor Products 

Careful GC-MS and !H NMR analyses of crude arabidiol synthase products 

indicated the presence of many minor triterpene alcohols. For detailed analysis of the 

minor products, a large-scale (30 L) culture was grown to provide enough material for 

analysis and structure elucidation. After subjecting the obtained NSL to column 

chromatography and separating the initial material into 16 fractions (Scheme 6.2), all 

fractions were analyzed by GC-MS and 'H NMR (500 MHz)) (Fi gures 11-13, Appendix 

A), fractions 8, 9 and 10 were further separated by HPLC and rigorously analyzed by *H 

800 MHz NMR (Figures 14-25, Appendix A). 

Fractions 1 to 6 contained squalene, oxidosqualene, dioxidosqualene, monocyclic 

ketone,130 isocamelliol,129 and other non-triterpene compounds, as judged by their mass-

spectral characteristics and absence of *H NMR chemical shifts characteristic for other 

triterpene alcohols. The presence of the monocyclic ketone and isocamelliol was 

attributed to non-enzymatic cyclization of oxidosqualene. Sterols were most likely 

introduced as impurities of ergosterol added to the medium during incubation of 

SMY8[pMDK3.6]. Fractions 1-6 were not analyzed further. 

GC-MS and 'H NMR analysis of fraction 7 showed small amounts of several 

monocyclic, bicyclic and tricyclic triterpene alcohols, including achilleol A, camelliol C, 

A7-polypodatetraenol, and (13iU4.E,17£)-malabarica-14,17,21-trien-3j8-ol. All 

compounds were identified by comparison with authentic standards or spectral data 

available from the literature. The novel tricycle (13i?,14£',17£r)-malabarica-14,17,21-

trien-3/S-ol was identified from the material obtained from fractions 8 and 9 and is 

described below. 
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Scheme 6.2. Scheme of chromatographic separation of NSL extract from a 30-L culture 

ofSMY8[pMDK3.6]. 
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Initial GC-MS and H NMR (Figure 11, Appendix A) analysis of column fraction 

8 indicated that several triterpene alcohols were present. Fraction 8 was further subjected 

to preparative HPLC separation, and the purified components were further analyzed by 

'H 800 MHz NMR and GC-MS (Table 6.1). 

Fraction 9 contained the majority of the minor triterpene products (Figure 6.4). 

This fraction was further purified by HPLC and the combined HPLC fractions were 

rigorously analyzed by 800 MHz 'H NMR. 

http://Fr.11
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Table 6.1. Triterpene alcohols identified by 'H NMR analysis of column fraction 8 after 

HPLC separation. £ indicates the stereochemistry was not determined. 

Fraction 
number 

1-74 
75-80 
81-87 

88-90 
91-92 

93-98 

99-200 

Compound 

nothing 
achilleol A 

(13R,14E,17E)- malabarica-14,17,2 l-trien-3 -ol 
A8(26)-polypodatetraenol 

camelliol C 
isocamelliol 

unidentified peaks 
none 

thalianol 
A8-polypodatetraenol 

14-epithalianol 
(13R, 14E, 1 IE)- malabarica-14,17,21 -trien-3/?-ol 

isocamelliol 
(13R, 14|, 17£)-podioda-7,17,21 -trien-3/3-ol 

A7-polypodatetraenol 
14-epithalianol 

sterols or non triterpenes 

Ratio relative to major 
compound in the 

fraction 

1 
1 

0.1 
0.1 
0.1 

<0.05 

1 
0.12 
0.09 
0.06 
0.01 
0.01 

1 
0.09 

The most abundant minor product in both in vivo and in vitro experiments was 

another tricycle that had a mass spectrum (Figure 6.5) essentially identical to that of 

thalianol, with a GC retention time ca. 1 min longer than that of thalianol. ID (*H, 13C) 

and 2D (NOESY, HSQC, and HMBC) NMR experiments revealed a podiodatrienol 

skeleton for 14-epithalianol but were insufficient for determining the stereochemistry at 

C-14. Several groups have isolated podiodatrienols or mixtures thereof,134,135'130'131'132,133 

but assignment of the C-14 configuration of 14-epithalianol was not possible from 

comparisons with any of literature values. However, previous determination70 of the C-14 

configuration of thalianol as 14R would suggest that by default 14-epithalianol should be 

the 14S epimer of thalianol. For a rigorous proof of structure, we confirmed the C-14 

configuration of thalianol using the methodology described above for arabidiol.127 
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Figure 6.4. Total ion chromatogram from GC-MS of fraction 9 from silica gel 

chromatography (no derivatization; 260 °C oven temperature), illustrating the 

multiplicity of triterpene alcohol products from arabidiol synthase. It should be noted that 

this chromatogram does not represent the relative abundance of the enzymatic products 

because fraction 9 represents only a portion of the monohydroxy triterpene products. 

160000 

1*000 

120000 • 

100000 

80000 • 

60000 ' 

4OX0 

20000 

0 

14-epithalianol 229 247 

81 93 

JUL. 
107 -

I I 133 1 « 1 5 9 173 1 8 6 ,, 

IIJ ,I|IJ .ill, j l . \f. .[, 4 1 *-, 
60 100 140 180 220 260 

m/z 
300 

Figure 6.5. Electron impact mass spectrum of underivatized 14-epithalianol. 
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From HPLC fractions 126-132, the 'H NMR spectra of the next most abundant 

compound (1/3 intensity of the major compound 14-epithalianol) had 4 distinct methyl 

singlets, suggesting a tricyclic triterpene structure. Carbon connectivity was determined 

from additional 13C, DEPT, HSQC, HMBC, and NOESY data as a 6/6/5 tricycle with 

unknown C-13 and C14-C15 double bond stereochemistry. 

A series of quantum mechanical predictions of stereochemistry for different C-13 

structures and 14-15 double bond isomers and comparison to recent literature values for a 

malabaricatrienol C14-C15 double bond skeleton129 allowed for assignment of the 

stereochemistry for the unknown tricycle to be 13i? and the C14-C15 double bond to 

possess a Z configuration, yielding the structure (13i?,14Z,l 7£)-malabarica-14,17,21-

trien-3yg-ol.129 

Another previously unreported tricyclic isomer was characterized from the 

products of arabidiol synthase. 'H NMR spectra showed four upfield methyl singlets, 

corresponding to another 6/6/5 tricyclic triterpene alcohol. Using 2D NMR data for initial 

structure determination and molecular modeling for establishing stereochemistry at C-14 

and C-13, the structure of the tricycle was determined as (13i?,14£',17£)-malabarica-

14,17,2 l-trien-3/?-ol 

Six tetracycles were identified by comparison of literature values, including 

euphol, butyrospermol, tirucalla-7,24-dienol, tirucalla-8,24-dienol, dammara-13(17),24-

dienol, and bacchara-12,21-dienol. The structure of another tetracycle, dammara-12,24-

dienol, was predicted based on available data from the corresponding 3-desoxy analog 

characterized by NMR. Finally, the structure of a novel tetracyclic triterpene alcohol was 
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deduced through 13C, DEPT, HMBC, HSQC, and NOE data to be bacchara-13(18),21-

dienol. 

Pentacycles lupeol, P-amyrin and germanicol were also determined from *H 

NMR. While lupeol and germanicol were present in large amounts, P-amyrin was present 

only in a trace amount. 

Relative ratios of the compounds found in fraction 9 were obtained from 'H NMR 

of the fraction prior to HPLC separation (Figures 12-13, Appendix A). In vivo production 

of tetracycles and pentacycles is significantly lower than that of tricycles, with 20 times 

less tetra- and pentacycles seen in comparison with tricycles. The ratio of arabidiol to the 

dominant tetra- and pentacycles was at most 100:0.2. The final composition of fraction 9 

is summarized in Table 6.2. 

Fraction 10 contained small amounts of (135,172s)-malabarica-14(27), 17,21 -trien-

3/? -ol, sterols, and non-triterpene components. Fraction 11 contained the major product 

arabidiol and ergosterol which were separated by preparative TLC. Part of the purified 

arabidiol was used for synthesis of the lactone and determination of the arabidiol 

stereochemistry as described above. Fraction 12 contained small amounts of arabidiol, 

ergosterol and fatty acids. 

GC-MS analysis effractions 13 and 14 revealed several minor polar compounds 

with m/z 426 and 444, corresponding to triterpene alcohols and triterpene diols. However, 

the amount of material available was not sufficient for structure determination and these 

products were not analyzed in detail. Fraction 14 contained large amounts of arabidiol 

epoxide, the product of enzymatic cyclization of dioxidosqualene. The structure of 

arabidiol epoxide with undetermined C-14 stereochemistry was described previously.128 
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Fractions 15 and 16 contained fatty acids, dihydroxysqualene, sterols, and other 

minor polar components. 

Table 6.2. Triterpene alcohols in HPLC-purified column fraction 9, detected by 'H NMR 

analysis. 

Fraction 
number 

88-94 

97-98 
101-102 
110-111 

112-114 

115-117 

118-120 
126-132 

136-137 

138-139 

141-143 

Compound 

(13R, 1AE, 1 IE)- malabarica-14,17,21 -trien-30-ol 
camelliol C 
isocamelliol 

A8(26)-polypodatetraenol 
unidentified peaks 

small unidentified peaks 
small unidentified peaks 

A8(26)-polypodatetraenol 
isocamelliol 

(13R, 1 AE, 1 IE)- malabarica-14,17,21 -trien-30-ol 
A8(26)-polypodatetraenol 

isocamelliol 
unidentified peaks 

isocamelliol 
unidentified peaks 

(13i?,17£)-malabarica-14(27),17,21-trien-3/3-ol 
14-epithalianol 

(13i?,14Z,17£)-malabarica-14,17,21-trien-3/3-ol 
(13R, 14§, 17£)-podioda-7,17,21 -trien-3j6-ol 

dammara-20,24-dienol 
unidentified peaks 

(135,1 AE, 1 IE)- malabarica-14,17,21 -trien-3£-ol 
(13R, 14f, 17£)-podioda-7,17,21 -trien-3 -ol 

14-epithalianol 
(13R, 1AZ, 17£)-malabarica-l 4,17,21 -trien-3/?-ol 
(135,17£>malabarica-14(27), 17,21 -trien-3/?-ol 
(135,1 AE, 1 IE)- malabarica-14,17,21 -trien-3/8-ol 
(135,17£>malabarica-14(27), 17,21 -trien-3 jS-ol 

14-epithalianol 
unidentified peaks 

(135,17£>malabarica-l 4(27), 17,21-trien-3/?-ol 
(135,\AE, 1 IE)- malabarica-14,17,21 -trien-3£-ol 

unidentified peaks 

Ratio relative to 
major compound in 

the fraction 
1 

0.07 
0.06 
0.04 

O.01 

1 
0.02 

1 
0.4 
0.2 

<0.2 
1 

0.1 
1 
1 

0.33 
0.16 

<0.03 
<0.01 

1 
0.01 
0.01 

<0.01 
<0.01 

1 
0.08 

<0.01 
<0.01 

1 
0.08 

<0.01 
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Fraction 
Number 

145-147 

148-152 

162-166 

167-171 

172-175 

All other 
fractions 

combined and 
all fractions 

after 180 

Compound 

(135, 17£)-malabarica-14(27),17,21 -trien-30-ol 
lupeol 

dammara 13(17),24-dienol 
(135, 1AE, 1 IE)- malabarica-14,17,21 -trien-3/?-ol 

14-epithalianol 
unidentified peaks 

bacchara-13(18),21 -dienol 
(135,17£>malabarica-14(27), 17,21 -trien-3/?-ol 

lupeol 
(13S,14E,17E)- malabarica-14,17,2 l-trien-3 -ol 

unidentified peaks 
bacchara-12,21 -dienol 
tirucalla-7,24-dienol 

dammara-12,24-dienol 
tirucalla-8,24-dienol 
unidentified peaks 

euphol 
tirucalla-7,24-dienol 

germanicol 
butyrospermol 

unidentified peaks 
butyrospermol 

P-amyrin 
germanicol 

euphol 
unidentified peaks 

(13/?,17£)-malabarica-14(27),17,21-trien-3j8-ol 
(13/?,14^,17£)-podioda-7,17,21-trien-3y3-ol 

14-epithalianol, 
(135,17£)-malabarica-14(27), 17,21 -trien-3/? -ol, 

A7-polypodatrienol, thalianol, achilleol A, 
camelliol C, isocamelliol, unidentified peaks 

Ratio relative to 
major compound in 

the fraction 
1 

0.6 
0.1 
0.05 

<0.01 
<0.01 

1 
0.07 
0.07 

<0.01 
<0.07 

1 
0.7 

0.55 
0.1 

<0.01 
1 

0.4 
0.04 
0.04 

<0.04 
1 

0.0125 
<0.01 
<0.01 
<0.01 

1 
0.5 

<0.5 other 
triterpenes 

Overall, the large-scale culture of arabidiol synthase showed the presence of two 

monocyclic triterpenes, achilleol A and camelliol C, and three bicyclic triterpenes, A7-

polypodatetraenol, A8-polypodatetraenol, and A8(26)-polypodatetraenol. Nine tricyclic 

triterpenes were identified as arabidiol, 14-epithalianol, thalianol, (13i?,14Z,17£)-

malabarica-14,17,21 -trien-3/3-ol, (13R, 1 4E, 17£)-malabarica-14,17,21 -trien-3j6-ol, 
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(13S, 14E, 17£)-malabarica-14,17,21 -trien-3/3-ol, (13R, 17£)-malabarica-14(27), 17,21 -

trien-3)3-ol, (13£17^-malabarica-l 4(27), 17,2 l-trien-3/3-ol, and (13/?,14|,17£)-podioda-

7,17,21-trien-3/J-ol. Further analysis uncovered eight tetracycles: euphol, butyrospermol, 

tirucalla-7,24-dienol, tirucalla-8,24-dienol, dammara-12,24-dienol, dammara-13(17),24-

dienol, bacchara-13(18),21-dienol, and bacchara-12,21-dienol. Finally, three pentacycles 

were identified as lupeol, P-amyrin, and germanicol (Figure 6.6). 

14-epithalianol (13RJ-malabarica- (13R>malabarica- (13ftj-malabarica- euphol 
14(27)-trienol 14(15)Z-trienol 14(15)£-trienol 

germanicol tirucalla-7,24-dienol tirucalla-8,24-dienol bacchara-13(18),21- dammara-13(17),24-
dienol dienol 

p-amyrin lupeol bacchara-12,21-dienol dammara-12,24-dienol butyrospermol 

Figure 6.6. Triterpenes identified in a 30-L extract from in vivo expression of arabidiol 

synthase. 

We do not preclude the possibility that other triterpenes could be formed as by-products 

of arabidiol synthase, but these would be found at much lower levels (<0.01% of the 
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total). That some of the mono-, bi-, and tricycles are products of non-enzymatic 

cyclization of oxidosqualene is also a possibility. Monocyclic ketone and isocamelliol are 

the most abundant products of non enzymatic cyclization and therefore we suggest that 

those are artifacts. Non-enzymatic formation of terra- and pentacycles was not previously 

observed.129 

6.2.4 Spectral Analysis of Arabidiol Synthase Minor Compounds 

Identification of minor compounds was done by comparison of obtained [H NMR 

spectra with spectra available from the literature or comparison with available *H NMR 

spectra of authentic standards. Usually, upfield methyl peaks and olefinic signals were 

used for identification of the compound. 

Two monocycles including monocyclic ketone134 and isocamelliol,129 were 

identified by upfield signals at 0.578 ppm (s), 0.900 ppm (d) and 0.931 ppm (d) for 

monocyclic ketone, and by two methyl singlets at 1.012 ppm and 1.074 ppm for 

isocamelliol. 

The monocyclic triterpene achilleol A101 was identified by two characteristic 

methyl singlets at 0.715 ppm (H-23, s) and 1.032 ppm (H-24, s), and two olefinic signals 

at 4.607 ppm and 4.874 ppm. Distinctive NMR signals, including singlets at 0.831 ppm 

(H-24) and 0.969 ppm (H-23) and an olefinic peak at 5.237 ppm, allowed for camelliol 

C102 identification. 

Bicyclic triterpenes were identified by comparison of NMR values with those 

reported previously. Each of the polypodatetraenols was identified by three distinctive 

methyl singlets for H-23, H-24, and H-25 and olefinic peaks. A7-polypodatetraenol135 
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(0.971 ppm, 0.851 ppm, 0.744 ppm, and 5.390 ppm), A8-polypodatetraenol69 (1.007 ppm, 

0.804 ppm, and 0.946 ppm) and A8(26)-polypodatetraenol136 (0.992 ppm, 0.770 ppm, 

0.672 ppm, 4.557 ppm, and 4.846 ppm) were thus identified. 

Previously reported tricyclic triterpenes were identified from JH NMR spectra, 

including distinctive upfield signals for thalianol70 (0.820 ppm (s), 0.836 ppm (d), 0.934 

ppm (s), 0.947 ppm (s), 1.017 ppm (s), and two olefinic signals at 5.097 ppm and 5.112 

ppm). The 'H NMR spectrum of (13,S,14£,17£)-malabarica-14,17,2 l-trien-3/3-ol129 

indicated the presence of characteristic singlets at 0.621 ppm, 0.792 ppm, 0.839 ppm, 

0.979 ppm, and a broad triplet at 5.118 ppm. The spectrum of (13i?,17£)-malabarica-

14(27), 17,2 l-trien-3)S-ol137 showed singlets at 0.781 ppm, 0.855 ppm, 0.959 ppm, 0.979 

ppm and two olefinic signals at 4.589 ppm and 4.877 ppm. The 13S isomer (13S,17E)-

malabarica-14(27),17,21-trien-3/?-ol133 was also identified by upfield singlets at 0.661 

ppm, 0.795 ppm, 0.852 ppm, 0.980 ppm, and two olefinic signals at 4.742 ppm and 4.904 

ppm. The [H NMR spectra of (13/U4£17^-podioda-7,17,21-trien-3£-ol138'139 with 

undetermined C14 stereochemistry showed presence of previously reported signals at 

0.707 ppm (s), 0.808 ppm (d), 0.876 ppm, 0.927 ppm, 0.997 ppm and 5.220 ppm (dt). 

The tricycle 14-epithalianol was characterized through ID ('H, 13C) and 2D 

(NOESY, HSQC, and HMBC) NMR experiments. The C-14 stereocenter was confirmed 

using the methodology described above for arabidiol (see section 6.1.3) and explained in 

detail in Kolesnikova et al.127 

*H NMR spectra of a novel tricycle (13iU4Z,17£>malabarica-14,17,2 l-trien-3y(?-

ol (from column fraction 9, HPLC fractions 126-132) showed 4 methyl singlets (0.776 
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ppm, 0.849 ppm, 0.966 ppm, and 0.978 ppm) in the upfield region. Carbon connectivity 

was determined from additional 13C, DEPT, HSQC, HMBC, and NOESY data. 

The 'H NMR spectrum of another novel tricycle showed four upfield methyl 

singlets (0.781 ppm, 0.843 ppm, 0.955 ppm, and 0.957 ppm). 2D NMR data established 

the structure as (13i?,14ii,17£)-malabarica-14,17,21-trien-3/?-ol, and molecular modeling 

established the stereochemistry at C-14 and C-13. 

Euphol9 (0.754 ppm (s), 0.801 ppm (s), 0.855 ppm (d), 0.875 ppm (s), 0.951 ppm 

(s), 1.003 ppm (s), and 5.093 ppm), butyrospermol9 (0.744 ppm (s), 0.805 ppm (s), 0.849 

ppm (d), 0.860 ppm (s), 0.970 ppm (s), 0.974 ppm (s), 5.101 ppm, and 5.255 ppm), 

tirucalla-7,24-dienol9'140'141 (0.747 ppm (s), 0.809 ppm (s), 0.861 ppm (s), 0.882 ppm (d), 

0.968 ppm (s), 0.970 ppm (s), 5.099 ppm, and 5.256 ppm), tirucalla-8,24-dienol9 (0.756 

ppm (s), 0.801 ppm (s), 0.867 ppm (s), 0.917 ppm (d), 0.953 ppm, 1.003 ppm, and 5.101 

ppm), and bacchara-12,21-dienol142 (0.748 ppm (s), 0.792 ppm (s), 0.968 ppm (s), 0.994 

ppm (s), and 1.001 ppm (s)) were also identified. 

The structure of the novel tetracyclic triterpene bacchara-13(18),21-dienol was 

determined from ID and 2D NMR spectra of the HPLC fractions 148-152. The six 

upfield methyl singlets at 0.770 ppm, 0.881 ppm, 0.918 ppm, 0.939 ppm, 0.991 ppm, and 

1.098 ppm, along with further assignments from 13C, DEPT, HMBC, HSQC and NOE 

data allowed for determination of its structure to be bacchara-13(18),21-dienol. 

The tetracycles dammara-12,24-dienol and dammara-13(17),24-dienol were 

identified by comparison of the :H NMR with data available for their 3-desoxy 

analogs.143'144 Comparison of our spectral data for dammara-12,24-dienol (0.784 ppm (d, 

J=7.0), 0.798 ppm (s), 0.931 (d, 7=7.0 Hz), 0.937 ppm (s), 0.953 ppm (s), 0.998 ppm (s), 
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0.999 ppm (s), and olefinic peak at 5.255 ppm), and dammara-13(17),24-dienol (0.770 

ppm (s), 0.815 ppm (s), 0.846 ppm (s), 0.960 ppm (d), 0.987 ppm (s), 1.082 ppm (s), 

and 5.077 ppm) with the signals for the 3-deoxy analogs predicted the structure of the 

tetracycles as dammara-12,24-dienol and dammara-13(17),24-dienol correspondingly. 

Lupeol9 was identified in 'H NMR spectra by distinctive signals (methyl singlets 

at 0.761 ppm, 0.788 ppm, 0.831 ppm, 0.944 ppm, 0.968 ppm, and 1.030 ppm, and 

olefinic signals at 4.566 ppm and 4.687), germanicol9 was identified by (methyl singlets 

at 0.736 ppm, 0.769 ppm, 0.879 ppm, 0.937 ppm, 0.940 ppm, 0.972 ppm, 1.019 ppm, and 

1.078 ppm, and olefinic signal at 4.855 ppm), and P-amyrin9 by (methyl singlets at 0.792 

ppm, 0.833 ppm, 0.870 ppm, 0.872 ppm, 0.939 ppm, 0.969 ppm, 0.998 ppm, and 1.136 

ppm). 

6.2.5 Quantitative Characterization of Arabidiol Synthase from In Vitro 

Analysis 

Analysis of a 2-L in vitro extract allowed for clarification of the relative amounts 

of triterpene products in the arabidiol synthase product profile. Analysis of the crude 

extract established the ratio of arabidiol to the dominant minor product 14-epithalianol as 

roughly 100:4. Estimated ratios of the other minor products were calculated from the 

preparative TLC fraction containing only minor products (Figures 26-27, Appendix A). 

Ratios of 14-epithalianol, (13S,17£)-malabarica-l 4(27), 17,2 l-trien-30-ol, 

(135,14Z, 17£)-malabarica-14,17,21 -trien-3yS-ol, (13S, 1AE, 17£)-malabarica-14,17,21 -

trien-3/J-ol, (13/?,14|f,17is)-podioda-7,17,21-trien-3/3-ol, and A7-polypodatetraenol were 

determined from 'H NMR as 4:4:3.6:1.6:0.4:0.4. Two tricyclic triterpenes, (13/?,17£)-
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malabarica-14(27), 17,21 -trien-3/?-ol and (13R, 1AE, 17£)-malabarica-14,17,21 -trien-3/?-ol, 

did not have well-separated signals for quantitation, however together they had a ratio to 

14-epithalianol of 2.8:4. Bicyclic triterpenes A8-polypodatetraenol and A8(26)-

polypodatetraenol were present at levels lower than 0.2% compared to arabidiol. 

Monocyclic triterpenes were not distinctively identified in the mixture of the 

triterpenes because they have only 2 upfield methyl peaks each and were covered by 

other peaks, however a peak at 1.032 ppm suggests the presence of achilleol A in the 

mixture at low levels (less than 0.1%). Among the terra- and pentacycles identified from 

the large-scale in vivo experiment, only signals for lupeol and bacchara-13(18),21-dienol 

that were present in dominant amounts compared to other penta- and most tetracycles in 

vivo, were identified from in vitro extracts, and only at very low levels (less than 0.1% of 

arabidiol). However, because other tetracyclic triterpenes were present in vivo at amounts 

significantly lower than that for tricycles, and because formation of terra- and pentacycles 

was not previously observed as a result of non-enzymatic oxidosqualene cyclization, we 

conclude that penta- and tetracyclic triterpenes are produced at levels significantly lower 

than 0.1% of the total. Therefore estimating total product ratios from available 'H NMR 

data, arabidiol synthase makes 85.4% arabidiol, 3.4% each 14-epithalianol and 

(13S, 17£)-malabarica-14(27), 17,21 -trien-3/S-ol, 3% (135,14Z, 17£)-malabarica-14,17,21-

trien-3/S-ol, 1.4% (13S,14£,17£)-malabarica-14,17,21-trien-3£-ol, 2.4% between both 

(13R, 17£)-malabarica-14(27), 17,21 -trien-3/3-ol and (13R, 1 AE, 17£)-malabarica-14,17,21 -

trien-3j3-ol, 0.3% each (13fl,14f,17£)-podioda-7,17,21-trien-3|G-ol and A7-

polypodatetraenol, and less than 0.2% each A8-polypodatetraenol and A8(26)-
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polypodatetraenol. All other triterpenes were present at levels less than 0.1% of the total 

product yield. 

6.3 Discussion 

Expression of At4gl5340 (PEN1) in yeast resulted in isolation of the major 

product arabidiol and numerous minor triterpene products, and therefore PEN1 was 

named arabidiol synthase. 

Arabidiol synthase belongs to the PEN clade of Arabidopsis oxidosqualene 

cyclases. This enzyme is 72-82% identical to other cyclases from the PEN clade, 

including 82% to baruol synthase (BARS1, PEN2), 81% to thalianol synthase (THAS1, 

PEN4), marneral synthase (MRN1, PEN5), seco-amyrin synthase (PEN6), and an 

uncharacterized enzyme (PEN3). It also shows 78% homology with AtCASl. More 

distantly (59-61%), PEN1 is related to several P-amyrin synthases, including those from 

Panax ginseng,' ° Euphorbia tirucalli,'45 and Betula platyphylla.x M 

Although PEN1 has more amino acid residues in common with baruol synthase, 

its phylogenetic origin shows that it is closer to thalianol synthase (Figure 1.3). In fact, 

analysis of their major products arabidiol and thalianol shows that these most likely 

arrived from the same cation A (Scheme 6.3), and therefore active site organization of 

PEN1 and thalianol synthase are more similar than PEN1 and baruol synthase.129 

Arabidiol synthase produces 85.4% arabidiol and 14.6% minor compounds. These 

minor products include three bicycles and eight more tricycles. Additionally, small 

amounts of monocycles (achilleol A), eight tetracycles and six pentacyclic triterpenes 

were identified. From these, five novel structures were characterized through extensive 
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GC-MS and NMR studies, bringing the total number of triterpenes isolated from 

Arabidopsis triterpene synthases up to over 40. 

Through molecular modeling experiments and degradation of the diol to the 

corresponding lactone, we were able to deduce the stereochemistry of arabidiol and 14-

epithalianol. Furthermore, analysis of the media revealed that arabidiol was being 

released into the medium, underlining the significance of in vitro experiments for 

establishing product ratios. Differences in product polarities could cause significant 

underestimation of polar products compared to less polar triterpenes. 

How arabidiol synthase biosynthesizes arabidiol and these numerous minor 

products is illustrated in Scheme 6.3. The typical tricyclic precursor of tetracyclic and 

pentacyclic triterpenes is the 13/? malabaricadienyl cation B. However, its 135 epimer A 

is clearly the precursor of arabidiol and thalianol. Rotations of A about the C13-C14 bond 

to form cation B or D are unlikely because of restricted volume in the cyclase active site 

cavity. To form arabidiol (pathway II), a replenishable ordered water in the active site 

might attack the C-14 cation of A on its proximal side (facing the cyclized core) or its 

distal side (facing the entrance channel of the active site) or it could attack cation C from 

above or below. Molecular modeling calculations with addition of dummy oxygen atoms 

to a B3LYP/6-31G* model146 of cation A were prepared to investigate these possibilities. 

The obtained results suggested that the only place where water would preferentially 

attack A is on the distal face of the carbocation. All other positions of water prior the 

attack would result in deprotonation (such as pathway III) or would be impossible 

because of steric conflict (Figure 6.7). 
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Scheme 6.3. Mechanistic pathways of product formation in arabidiol synthase. 

rotation about 
C13-C14bond 

II 

III 

13R A14(27) and A14 species | |V 

V 

rotation about V ~ 
C13-C14bond V 

14-epithalianol, 
double bond 
isomer (14S) 

VI 

These thoughts lead us to the conclusion that the C-14 configuration could have 

been deduced a priori. Similar thoughts and molecular modeling of horizontal conformers 

of the isomalabaricadienyl, epidammarenyl, lupanyl, and hopanyl cations shows a 

stronger bias for water addition on the distal face of the cation. This reasoning allowed to 

assign stereochemistry for several other triterpenes previously reported with ambiguous 

stereochemistry (Figure gg)81'83-147-148
 md suggested a unifying rule that water attacks 

only the distal face of triterpene cationic intermediates. 
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Figure 6.7. Predicted steric conflict of water addition during formation of arabidiol. 

Black dots show positions of dummy oxygen atoms that would result in deprotonation 

from positions marked in red. The blue dot corresponds to a position of the dummy 

oxygen atom that would successfully quench the carbocation and result in the formation 

of arabidiol. 

Figure 6.8. Triterpene products formed by water addition. 

Water addition in triterpene biosynthesis is uncommon when compared to 

biosynthesis of triterpenes obtained by deprotonation. There are just two other reported 

examples of native oxidosqualene cyclases terminating triterpene biosynthesis by water 

addition, Arabidopsis lupeol synthase (LUP1)74'75'80'81 and dammarendiol-II synthase 

from Panax ginseng*1 Hydroxylation is more difficult for cyclases to carry out and is 

favored over deprotonation only if the ordered water is efficiently replenished for each 

new substrate, and if the trajectory of attack closely follows the axis of the empty 2p 

orbital. This insight aligns with observations that cyclases usually terminate the cationic 
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cascade by deprotonation and that cyclases that do perform hydroxylation also generate 

olefinic byproducts as shown in this work. 

Occasional misplacement or absence of replenishable water in the enzyme causes 

formation of cation B and could lead to the formation of the minor products via pathways 

IV, V, or VI. A detailed scheme of the arabidiol synthase product formation is illustrated 

in Scheme 6.4. In arabidiol synthase, there are at least 24 minor products generated from 

this deprotonation side reaction. Tetracycles and pentacycles are likely derived from 

deprotonation of the 13/? malabaricadienyl cation B (pathway V), while the tricycles are 

produced by further ring expansion, rearrangements and deprotonation. 

The ability of oxidosqualene cyclases to make numerous products and the 

reasoning for such biosynthetic diversity in the product profiles of cyclases has been 

discussed previously.129 Assuming that arabidiol synthase produces all tetra- and 

pentacyclic compounds at lower levels (less then 0.1% of the total), the total number of 

positions from which deprotonation can occur is close to that seen in baruol synthase. 

Therefore the arabidiol synthase is another example of a cyclase that relatively efficiently 

biosynthesizes a dominant product (85.4% of the total triterpenes). However, because of 

low selective pressure it does not improve its accuracy and allows for minor products to 

be formed. These results support previous suggestions that biosynthetic diversity is a 

default for oxidosqualene cyclases.129 



96 

Scheme 6.4. Proposed mechanism of triterpene formation by arabidiol synthase. 

(J-amyrin lupeol bacchara-12,21-dienol dammara-12,24-dienol butyrospermol euphol 

Arabidiol synthase was previously reported as an accurate enzyme that makes a 

single product arabidiol.128 However the present work demonstrated that the arabidiol 

synthase in fact makes numerous minor products and is a first example of the 

oxidosqualene cyclase that can make a spectrum of triterpenes, from mono- to 

pentacycles. This enzyme generates more triterpene products than any other triterpene 

synthase to date, dramatically increasing the metabolic profile of this small plant. 
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CHAPTER 7 

Conclusions 

Genome mining is a powerful approach to uncover new enzymes with unknown 

functions. Comparison of closely related enzymes with similar active site organization 

while tracking small changes within the active site, including changes in polarity or steric 

bulk of the residues, and correlating it with product outcome allows elucidation of 

catalytic functions of enzymatic residues and prediction of mechanisms of enzymatic 

catalysis. Sequence comparison and phylogenetic analysis further supports elucidating 

how enzymes evolved and what mechanisms were developed to introduce novel 

functionality and to achieve product specificity. 

The genome of the model plant Arabidopsis thaliana encodes thirteen 

oxidosqualene cyclases. Initial expectations of triterpene production in the plant were 

more modest than the obtained results, in terms of diversity of characterized triterpene 

structures and variety of enzymatic functions. To date eleven Arabidopsis oxidosqualene 

cyclases have been characterized, and eight of these (MRN1, THAS1, CAMS1, PEN1, 

LSS1, BARS1, LUP5, PEN6) have catalytic activity that previously were not typically 

found in Arabidopsis.116(and references therein) This work has reported characterization of three 

of these oxidosqualene cyclases. 

Discovery of Arabidopsis lanosterol synthase, the first example of a lanosterol 

synthase found in plants, has demonstrated the biosynthetic ability of plants to make the 

alternative sterol precursor lanosterol that is presumably used in plants as a secondary 

metabolite, in contrast with animals and fungi which utilize lanosterol for primary 
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metabolism. It was also shown that lanosterol synthases in plants evolved independently 

from lanosterol synthases in animals and fungi and phylogenetic analysis suggests 

evolution from plant cycloartenol synthases. This enzyme also utilizes a different set of 

active site residues to biosynthesize lanosterol than previously seen in animals and fungi. 

Previous mutagenesis experiments converted an accurate cycloartenol synthase into an 

accurate lanosterol synthase, showing an evolutionary path to altering enzymatic activity 

by just changing two AtCASl active site residues, His477 and Ile481. These changes in 

polarity and steric bulk allowed for the deprotonating base to shift within the active site. 

The reverse mutations in Arabidopsis lanosterol synthase to change polarity and steric 

bulk in the active site to those in cycloartenol synthase resulted in a partial success, 

allowing the deprotonating base to shift back to C-19. However, this work also 

demonstrated that during evolution plant lanosterol synthases acquired additional 

mutations that would need to be altered to improve accuracy in cycloartenol synthase 

formation. Nevertheless, the observed production of cycloartenol (31%) in a lanosterol 

synthase background is the highest known level for introducing the ability to form the 

cyclopropyl ring through protein engineering. 

The characterization of Arabidopsis camelliol C synthase has demonstrated that 

the physiological role and distribution of monocycles might have been previously 

underestimated. It also showed that evolution of oxidosqualene cyclases does not 

necessarily go through continuous iterative addition of motifs that change the product 

outcome from smaller ring systems to larger ones, but can be done spontaneously. 

Identification of a potential active site residue that might be responsible for this change 

predicts that a decrease in steric bulk above ring A could promote monocyclization. 
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Heterologous expression of arabidiol synthase in yeast resulted in isolation and 

characterization of the novel tricyclic triterpene diol arabidiol. Analysis of the arabidiol 

structure and determination of arabidiol stereochemistry has allowed development of a 

general rule for water addition in triterpene biosynthesis in which water adds from the 

distal side of the carbocation for the majority of carbocations, with the notable exception 

of tetracycles. Mechanistic analysis of product formation in arabidiol synthase explains 

why deprotonation dominates over water addition in triterpene biosynthesis and why 

cyclases that produce diols also exhibit olefinic product formation. Analysis of the 

arabidiol synthase minor products provided another example of a cyclase previously 

reported as an accurate enzyme but in fact produces numerous minor products. It also 

supports the suggestion that inaccuracy in triterpene biosynthesis is a default for cyclases. 

Arabidiol synthase is also the first example of a cyclase that makes all variety of ring 

systems, from mono- to pentacycles. 

Functional characterization of these three oxidosqualene cyclases has made a 

significant contribution to illuminating triterpene biosynthesis in Arabidopsis. This work 

demonstrates the utility of the genome mining approach in conjunction with heterologous 

expression and uncovered three enzymes with novel functions. 

Some of the questions yet to be answered are what is the complete triterpene 

product profile of Arabidopsis, and what is the function of these compounds in plants. 

The complete characterization of Arabidopsis oxidosqualene cyclases will be finished 

soon and would address the first question. Application of bioinformatics tools, 

consideration of already available expression data, and overexpression/knockout 

experiment with plants could help with establishing biological functions of identified 



100 

triterpenes. Insights gained in this way could be extended to analysis of oxidosqualene 

cyclases from other sources and potentially lead to the discovery of novel natural 

products. 
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Figure 1. 800 MHz 'H NMR analysis of the triterpene fraction of RXY6[pLH1.25]. Peaks 

denoted Lan correspond to lanosterol, EL corresponds to epilanosterol, P to parkeol, EP 

epiparkeol, and IM to isomalabaricatrienol. 
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Figure 2. 800 MHz 'H NMR analysis of the triterpenes produced by AtLSSl Val481Ile 

mutant RXY6[pDAL7.0]. Peaks denoted Lan correspond to lanosterol, P to parkeol. 
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Figure 3. 800 MHz !H NMR analysis of the triterpenes produced by AtLSSl Asn477His 

mutant RXY6[pDAL6.0]. Peaks denoted Lan correspond to lanosterol, P to parked, and 

C to cycloartenol. 
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Figure 4. 800 MHz !H NMR analysis of the triterpenes produced by AtLSSl 

Asn477His/Val481Ile double mutant RXY6[pMDK14.3]. Peaks denoted Lan correspond 

to lanosterol, P to parkeol, and C to cycloartenol. 
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Table 1. 13C and *H NMR assignments for arabidiol 

Carbon 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

4a-Me 

4p-Me 

10-Me 

8-Me 

14-Me 

18-Me 

22-Me (E) 

22-Me (Z) 

5c 
38.67 

27.14 

79.25 

38.68 

56.01 

19.05 

42.44 

43.89 

63.13 

36.72 

19.24 

21.94 

58.46 

75.01 

43.84 

22.85 

•124.28 

135.17 

39.68 

26.67 

•124.34 

131.39 

28.06 

15.17 

15.78 

15.72 

25.78 

16.00 

25.69 

17.69 

Hydrogen 

l a 

IP 
2a 

2p 

3a 

5a 

6a 

6p 

7a 

7p 

9a 

11a 

l i p 

12a 

12P 

13a 

15R 

15S 

16R 

17 

19 

20 

21 

4a-Me 

4p-Me 

10-Me 

8-Me 

14-Me 

18-Me 

22-Me (E) 

22-Me (Z) 

6H 

1.016 

1.493 

1.628 

1.596 

3.200 

0.767 

1.559 

1.488 

1.205 

2.088 

1.067 

1.473 

1.361 

1.678 

1.755 

1.381 

1.367 

1.433 

1.97 

5.095 

1.97 

2.06 

5.083 

0.973 

0.788 

0.859 

0.979 

1.268 

1.607 

1.679 

1.599 

Scalar 'H-'H couplings (Hz) 

td, 13.1,4.4 

dt, 13.3,3.5 

dddd, 13.2, 5.3, 4.4, 3.3 

m 

dd, 11.0,5.4 

dd, 12.2,2.6 

m 

dddd, 14.0, 12.6, 12.2,3.5 

td, 12.7,4.3 

dt, 12.8, 3.4 

dd, 13.2,7.1 

dddd, 12.2, 9.7, 7.2, 3.4 

brqd, 13, 6.6 

dtd, 13.3, 9.5, 6.6 

dddd, 13.4,11.4,10.4,3.4 

dd, 10.4, 9.5 

m 

m 

m 

t of sextet, 7.0, 1.3 

m 

m 

t of septet, 7.0, 1.4 

s 

s 

d,0.8 

d,0.7 

s 

dt, 1.5,0.7 

qd, 1.3,0.3 

brddt, 1.4,0.9,0.7 

" Data were acquired on 500 or 800 MHz instruments in CDC13 solution (<10 mM) at 25 °C. 
Chemical shifts were corrected for effects of strong coupling. Under the specified conditions of 
temperature and concentration, reproducibility is ca. ±0.001 ppm ('H shieldings given to 3 
decimal places), ±0.03 ppm (13C shieldings), or ±0.3 Hz ('H-'H couplings). Values marked by an 
asterisk may be interchanged. 
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Figure 5. 800 MHz 'H NMR spectrum of arabidiol. 
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Figure 7. DEPT spectra of arabidiol. 



108 

o 

& 

•o 

@ o 

oo 0 ^ 

0 

<S> 
0 <® 

<3) 

o 

£3 o 

o ® e 

W^ 

00-O <ffi 

00 # 

0 0 

oCO 

oo„o 

° " <• J D L Q J » l 

2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 ppm 

Figure 8. 2D HMBC spectrum of arabidiol. 
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Figure 9. 2D HSQC spectrum of arabidiol. 
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Figure 11. 500 MHz lU NMR analysis of column fraction 8 from SMY8[pMDK3.6]. 

Peaks corresponding to achilleol A are denoted as A, thalianol peaks denoted as T, peaks 

for A7-polypodatertaenol are assigned as A7p, and peaks for (13.K,14£',17E')-malabarica-

14,17,21-trien-3|3-ol are shown as M. 
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Figure 12. 500 MHz :H NMR analysis of column fraction 9 from SMY8[pMDK3.6]. 

Peaks corresponding to 14-epithalianol are denoted as ET, peaks for A7-

polypodatertaenol are assigned as A7, and peaks for (132?, 142s, 172s)-malabarica-14,17,21 -

trien-3|3-ol are assigned as M. 
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Figure 13. 500 MHz 'H NMR analysis of column fraction 9 from SMY8[pMDK3.6] 

(expanded upfield region). Peaks corresponding to lupeol are denoted as L, peaks for 

euphol are assigned as E, and peaks for butyrospermol are assigned as U. 
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Figure 14. 800 MHz !H NMR analysis of column fraction 8 from SMY8[pMDK3.6], 

HPLC fractions 75-80. Peaks corresponding to achilleol A are assigned as A. 
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Figure 15. 800 MHz *H NMR analysis of column fraction 8 from SMY8[pMDK3.6], 

HPLC fractions 81-87. Peaks corresponding to camelliol C are assigned as C. Peaks for 

A8(26)-polypodatetraenol are shown as A8(26), and Ml denotes peaks corresponding to a 

novel tricyclic triterpene (13R,14E,\7E)- malabarica-14,17,2l-trien-3/J-ol. 
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Figure 16. 800 MHz 'H NMR analysis of column fraction 8 from SMY8[pMDK3.6], 

HPLC fractions 91-92. Peaks corresponding to thalianol are assigned as T. Peaks for A8-

polypodatetraenol are shown as A8, and Ml denotes peaks corresponding to 

(13R, 14E, 17£)-malabarica-14,17,21 -trien-3/? -ol. 
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Figure 17.800 MHz 'H NMR analysis of column fraction 8 from SMY8[pMDK3.6], 

HPLC fractions 93-98. Peaks corresponding to 14-epithalianol are assigned as ET. Peaks 

for A7-polypodatetraenol are shown as A7. 
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Figure 18. 800 MHz !H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 

HPLC fractions 112-114. Peaks for A8(26)-polypodatetraenol are shown as A8, and Ml 

denotes peaks corresponding to (13/?,14£,17is)-malabarica-14,17,21-trien-3)8-ol. 
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Figure 19. 800 MHz 'H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 

HPLC fractions 126-132. Peaks corresponding to 14-epithalianol are assigned as ET. 

Peaks for (13i?,14lf,17ir)-malabarica-7,17,21-trien-3/?-ol are shown as A7, and M 

indicates peaks corresponding to a novel tricyclic triterpene (13/?,14Z,17£)-malabarica-

14,17,2 l-trien-3£-ol. 
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Figure 20. 800 MHz *H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 

HPLC fractions 138-139. M2 indicates peaks corresponding to (135,1 AE,\ 1E)-

malabarica-14,17,2l-trien-3/3-ol. The M13S assigns peaks for (B^n^-malabarica-

14(27),17,21-trien-3j3-ol. 
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Figure 21. 800 MHz *H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 

HPLC fractions 145-147. M2 indicates peaks corresponding to (135,14E,17E)-

malabarica-14,17,21-trien-3/?-ol. MBS assigns peaks for (135,17£)-malabarica-

14(27), 17,2 l-trien-3/?-ol. L corresponds to lupeol signals, and the D sign indicates peaks 

for dammara-13(17),24-dienol. 
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Figure 22. 800 MHz !H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 

HPLC fractions 148-152. Ml3S assigns peaks for (13S,l7£)-malabarica-14(27), 17,21 -

trien-3/J-ol. The L sign corresponds to lupeol signals. Peaks corresponding to a novel 

tetracyclic triterpene bacchara-13(18),21-dienol are shown as B. 
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Figure 23. 800 MHz *H NMR analysis of column fraction 9 from SMY8[pMDK3.6], 
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for tirucalla-7,24-dienol as T7,24; for tirucalla-8,24-dienol as T8,24; and for dammara-
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Figure 26. 800 MHz H NMR spectrum of the preparative TLC fraction of 
RXY6[pMDK3.6] containing minor compounds. Characteristic peaks for minor 
compounds are denoted as: A7 for A7-polypodatetraenol, A8 for A8-polypodatetraenol, 
A8(26) for A8(26)-polypodatetraenol, ET for 14-epithalianol, M for (13Z?,14Z,17£> 
malabarica-14,17,21 -trien-3;8-ol, M1 for (13R, 1AE, 17£)-malabarica-14,17,21 -trien-3£-ol, 
M2 for (13S;i4£,17j^-malabarica-14,17,21-trien-3/?-ol, MBS for (13S,17£)-
malabarica-14(27), 17,2 l-trien-3/S-ol, and M13R for (13#,17£)-malabarica-14(27), 17,21-
trien-3yS-ol. 
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Figure 27. The expanded upfield region of the 800 MHz 'H NMR spectrum of the 

preparative TLC fraction of RXY6[pMDK3.6] containing minor compounds. 

Characteristic peaks for minor compounds are denoted as: A7 for A7-polypodatetraenol, 

A8 for A8-polypodatetraenol, A8(26) for A8(26)-polypodatetraenol, L for lupeol, A for 

achilleol A, and B for bacchara-13(18),21-dienol. 
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13(18),21-dienol, (13iU4Z,17£)-malabarica-14,17,21-trien-3/?-ol, and (\3R,UE,nE)-

malabarica-14,17,21 -trien-3/J-ol. 
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