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Abstract - We propose a new filtering/estimation method 
for nuclear medicine imaging. The statistical method of cross- 
validation is used to design optimal wavelet domain filters for 
improved image estimation. The quality of the resulting im- 
ages is much better than standard image estimates, in both 
visual and mean square error senses. Moreover, experiments 
have shown that,  using the new estimate, we can reduce the 
acquisition time by a factor of two and still retain high image 
quality. 

I. INTRODUCTION 

This paper reports on the development of a new wavelet- 
based filtering algorithm for nuclear medicine imaging. 
Wavelet-based filtering is a relatively recent advance in digital 
signal processing (DSP) [l]. Wavelet-based filtering offers sig- 
nificant theoretical advantages over classical linear filters [l, 41, 
and real-world applications have demonstrated the outstanding 
performance of these new methods [3]. 

The basic DSP problem in nuclear medicine imaging is to 
design a digital filter that that  recovers the signal (intensity 
image) from the noisy observation (observed counts). Nuclear 
medicine images have a low signal-to-noise ratio (SNR) com- 
pared to other imaging modalities. There are several sources of 
noise in nuclear medicine: low count levels, scatter, attenuation, 
and electronic noises in the detector/camera. These noises can 
severely degrade image quality. 

The standard imaging technique forms an image based di- 
rectly on the total counts detected over a fixed observation pe- 
riod. This image is an estimate of the underlying intensity of 
the decay process, and is proportional to the Maximum Likeli- 
hood Estimate (MLE) (assuming a Poisson model and ignoring 
noises other than those due to low counts). The MLE has the 
desirable property that it is unbiased. However, because of the 
noise in the imaging process, the MLE image appears noisy 
and has a large variance about its true mean (the underlying 
intensity of the Poisson process). A simple approach to  noise 
reduction is linear filtering or smoothing of the MLE. However, 
linear filtering of the MLE reduces the noise at the expense of 
blurring important details in the signal of interest (e ,g . ,  edges 
in the image). 

In this paper, we introduce a new estimation/filtering method 
for nuclear medicine images. The new estimate is based on a 
nonlinear filtering scheme applied in the wavelet domain. This 
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is in marked contrast to classical linear filtering, which has a 
simple interpretation in the frequency domain. The wavelet 
domain filter is essentially a spatially-varying filter that auto- 
matically adjusts to the local signal and noise structure. The 
new estimate based on wavelet domain filtering sacrifices the 
unbiased property of the MLE in order to reduce the variance 
of the estimate. By allowing a negligible amount of bias, the 
variance of the estimate can be significantly reduced. Hence, 
the overall quality of the new estimate is much better than the 
standard MLE image. Moreover, because the wavelet domain 
filtering adjusts to the local signal and noise structure, the new 
estimate is significantly better than linear filtered versions of the 
MLE - noise is reduced, but important signal structure is not 
blurred. The paper quantifies this improvement statistically. 

The paper is organized as follows. In Section 11, we describe 
the fundamentals of wavelet domain filtering, and describe how 
it differs from classical linear (space-invariant) filtering meth- 
ods. In Section 111, we provide a novel wavelet-domain filter 
design method that minimizes two important error measures si- 
multaneously, thus providing an optimal wavelet domain filter. 
In Section IV, we assess the performance of our new method 
in several numerical simulations. We also demonstrate the per- 
formance of the new method on clinical nuclear medicine data. 
Conclusions and future avenues of research are discussed in Sec- 
tion V. 

11. WAVELET DOMAIN FILTERING 

A .  The Wavelet Transform 
The one-dimensional wavelet transform is described as fol- 

lows [a] .  The wavelet decomposition uses basis functions that 
are translates and dilates of a prototype wavelet. This pro- 
vides a natural tiling of the time-frequency plane where high 
frequencies are analyzed with short time-duration basis func- 
tions and low frequencies with long time-duration basis func- 
tions. A prototype wavelet function and translates and dilates 
of this prototype are shown in Fig. 1. One of the key features 
of the wavelet transform is that it provides information about 
how the signal's frequency content varies over time. The two 
dimensional wavelet transform is the natural extension of these 
ideas to  spatial-spatial frequency analysis for images. 

B. Wavelet-Based Image Filtering 
Filtering in the wavelet domain allows one to perform sig- 

nal processing operations that are localized in both space and 
frequency. This can be advantageous in many non-stationary 
problems, such as radar imaging [3]. Furthermore, empiri- 
cal evidence shows that wavelet bases generally provide more 
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Fig. 1. Wavelet basis functions. (a) Prototype wavelet 
function. (b) Translated and dilated‘ wavelet for low fre- 
quency analysis of signal early in time. (c) Translated 
and compressed wavelet function for high frequency anal- 
ysis later in time. Many different prototype wavelet func- 
tions can be used in the analysis. Pictured here is the 
Daubechies-6 wavelet [Z]. 

efficient representations of real-world data than pixel or fre- 
quency domain representations. Because wavelets are able to 
concisely represent complicated signal structure, filtering tech- 
niques based on the wavelet decomposition are much better at  
separating signals from noise than classical approaches based 
in the pixel or frequency domain. From a theoretical perspec- 
tive, it has been shown that,  because wavelet bases are uncon- 
ditional bases for wide classes of signals, the wavelet transform 
is optimal for noise reduction [l]. Wavelet bases are uncondi- 
tional for many important and practical signal spaces including 
Besov spaces. Roughly speaking, Besov spaces include signals 
that are generally smooth except for some possible points of 
discontinuity. The Besov norm measures signal “smoothness” 
quite differently from conventional frequency domain notions 
of smoothness, by allowing local signal discontinuities. Besov 
spaces are therefore very appropriate for dealing with real-world 
signals like images. 

C. Wavelet  Shrinkage 

The most popular form of wavelet-based filtering is commonly 
known as Wavelet Shrinkage [l]. The basic wavelet shrinkage 
program is described as follows. We observe samples {yi} of an 
unknown function f with additive i.i.d. Gaussian noises { q ” } :  

yi = f(i) + 76, i = 1,. . . ,n .  (2.1) 

The observations are arranged in a vector y = [ y ~  . . . ynIT, and 
we compute the discrete wavelet transform 8 = Wy. Next, we 
apply a “soft-threshold” nonlinearity to the wavelet coefficients 
in 8. The soft-threshold sets very small coefficients to zero and 
reduces all other coefficients by a fixed amount proportional to 
the known (or estimated) noise variance. The inverse discrete 
wavelet transform is applied to the thresholded coefficients to 
produce a “denoised” signal. An example of Wavelet Shrinkage 
denoising is shown in Fig. 2.  

The unconditional nature of the wavelet basis is crucial to 
wavelet domain filtering, because it guarantees that filtering al- 
ways tends to smooth a signal, in the sense of the Besov norm. 
Smoothing in this sense removes noise while still preserving im- 
portant image features like edges (see Fig. 2 (c)). Classical 
linear filtering in the frequency domain removes noise at  the 
expense of blurring important details in the signal (see Fig. 2 
(d)). The ability of the wavelet transform to represent signal 
features that are localized in both space and frequency enables 
adaptive smoothing that adjusts to the local image structure. 
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Fig. 2. Wavelet Shrinkage ofnoisy one-dimensional “Heavi- 
Sine” signal [l]. (a) Noise-free signal. (b) Signal p lus  white 
Gaussian noise. (c) Denoised signal obtained using nonlin- 
ear wavelet shrinkage. (d) For comparison, linear filter- 
ing with a Butterworth lowpass filter. Note that nonlinear 
wavelet soft-thresholding both removes noise and preserves 
the sharp edge in the signal. Classical linear filtering re- 
moves noise but smears the edge. 

Wavelet Shrinkage is an optimal filtering scheme for station- 
ary Gaussian white noise environments [l]. Unfortunately, in 
many problems of interest, including nuclear medicine imaging, 
the noise is non-Gaussian and non-stationary. In such instances, 
we must employ more sophisticated filtering methods. The next 
section describes a novel method for designing optimal wavelet 
domain filters. 

111. OPTIMAL WAVELET DOMAIN FILTER 
DESIGN VIA CROSS-VALIDATION 

A .  Wavele t  Domazn Filtering 
Wavelet domain filtering is achieved by the following proce- 

dure. First, we compute the two-dimensional wavelet transform 
of the nuclear medicine image. If f is the original image, the 
wavelet transform is denoted by 

w = Wf. (3.1) 

The wavelet transformed image w has the same dimensions as 
f .  We denote the z , ~ - t h  pixel in f by ftr3. Similarly, the i , ~ - t h  
“wavelet coefficient” is denoted by w , , ~ .  The coefficient w ~ , ~  
is a real-valued quantity that reflects the contribution of i, j- th 
wavelet basis function that is present in the image f .  

With w in hand, we can filter (or attenuate) the contribu- 
tions of particular wavelet basis functions by multiplying the 
corresponding coefficient by a number 0 5 ht,3 _< 1. That is, 
we modify w ~ , ~  according to 

Setting hz,3 = 0 completely removes the contribution of this 
wavelet basis function; setting hs,3 = 1 leaves it unaltered. 
Choosing 0 < h*,3 < 1 attenuates the contribution of the i , j - th  
wavelet basis accordingly. 
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After modifying the wavelet coefficients in this manner, we 
compute the inverse wavelet transform, denoted by 

?., 
f = w-%. (3.3) - 

The new image f is called a wavelet domain filtered version o f f .  
The crucial issue in wavelet domain filtering is how to design 

the filter. The filter design problem is the specification of the 
hs,j. In the Wavelet Shrinkage program described in the previ- 
ous section, the hs,J are determined by the wavelet coefficients 
themselves. The Wavelet Shrinkage filter is given by: 

where 7 is a user-specified threshold (usually related to the 
known or estimated global noise variance). The important thing 
to note about Wavelet Shrinkage is that this filter, in effect, 
performs an identical nonlinear transformation on each wavelet 
coefficient. If the noise in the image is white, then the noise 
power is the same in each wavelet coefficient, and this proce- 
dure is asymptotically minimax optimal [l]. If the noise is not 
white, then the noise power will differ between wavelet coeffi- 
cients. Wavelet Shrinkage does not adjust to these differences. 

The noise in nuclear medicine is not white. Considering only 
the noise due to  low counts, the noise is larger in pixels with 
higher intensity. This spatial variation in noise power must be 
accounted for in the wavelet domain filter design. Given the 
signal and noise powers, a natural choice for a wavelet domain 
filter is 

( 3 . 5 )  
1, if SNR in w1,3 is high 

’‘33 0 ,  if SNR in wI,3 is low. i 
Next, we describe a design procedure that results in an optimal 
filter of this form. 

B. Optamal Falter Desagn m a  Cross- Valzdataon 
Cross-validation is a standard procedure for assessing the per- 

formance of an estimator [4]. The idea behind cross-validation 
is to compute an estimate using only part of the data, then 
validate the estimate by assessing how well it predicts the re- 
maining data. We now formulate a cross-validation procedure 
for the wavelet domain filter design problem. 

Rather than working with the total count image, we subdi- 
vide the total acquisition period, T seconds, into N subintervals 
of T I N  seconds each. We then acquire N low counts images in 
each subinterval, denoted by f ( l ) ,  . . . , f (N) .  Commercial imag- 
ing machines can easily acquire these images using a “dynamic 
acquisition” mode. The dynamic acquisition mode is normally 
reserved for time varying studies. Here, we use the dynamic 
acquisition to obtain N low count images of a static study. The 
low-count images are independent and identically distributed 
in this case. The total count image is related to the low-count 
images by 

N 

f = C f ( j ) .  
3=1 

We use the method of cross-validation and the N low-count 
images to design an optimal wavelet domain filter as follows. 
First, compute an image using all but the k-th low-count images: 

3 f k  

The image f ( k )  is called a “leaving-one-out” image. Next, we 
compute the w_avelet domain filtered versioz of f ( k )  and denote 
the result by f(k).  Note that the image f(k) depends on the 
wavelet domain filter-coefficients h. The cross-validation idea 
is to assess how well f (k )  predicts the low-count image that we 
have not used, namely f(k). We measure the prediction error 
bv 

e(”(h) = - f (k ) l12  F , (3.8) 

where 11 . ]I$ is simply the sum of squared errors, pixel by pixel. 
Note that we view the error as a function of the wavelet domain 
filter coefficients h. We repeat this process for k = 1 , 2 , .  . . , N 
and consider the predictive sum of squares (PRESS) 

N 

V(h) = e(”(h) (3 .9)  
k=l 

The PRESS may be viewed as a small-sample optimality cri- 
terion measuring the quality of the estimator and the wavelet 
domain filter coefficients h. The objective is to choose h to 
minimize V(h). 

It is shown that the optimal h, minimizing the PRESS, is 
given by [4] 

where w;,~ is the square of the i , j - th  wavelet coefficient of the 
total count image, u Z , , ~  is an estimate variance in the i , j  - 
th  wavelet coefficient, and (.)+ denotes positive part (negative 
values set to zero). The variance is estimated from the N low- 
count images according to: 

h 

N 

(3.11) 
k = l  

where ~ , , ~ ( k )  is the z, j- th wavelet coefficient of the low count 
image f ( k )  . 

We call h(PRESS) the PRESS-optimal wavelet domain filter, 
and the call the resulting filtered image, denoted f(PRESS), the 
PRESS-optimal estimate. 

Several comments are in order. First, in addition to mini- 
mizing the PRESS, the wavelet domain filter is asymp- 
totically optimal in the mean-square error (MSE) sense. This 
result follows from a straightforward application of the Strong 
Law of Large Numbers [4]. This implies that as the total counts 
increase, h , ( y S S )  tends to  the wavelet domain filter that mini- 
mizes the MSE, a wavelet domain analog of the classical Wiener 
filter. Secondly, inspection of (3.10) shows that hkySS) is zero 
when the estimated SNR 

(3.12) 

is less than 0 dB. Furthermore, hjyESS) tends to unity as the 
estimate SNR increases. Thirdly, the complexity of the opti- 
mal filter design is roughly N times that of Wavelet Shrinkage, 
because we need to compute the wavelet transform of each low- 
count image. Finally, note that we require N > 1 low-count 
images to compute the optimal wavelet domain filter. However, 

1804 



it is possible to design a filter using only the total count image. 
Due to space limitations, we only briefly sketch the idea here. 
The details are given in the full-length version of the paper [5]. 
If we assume that the noise is due to low-count levels alone, 
then the total count image is an unbiased estimate of both the 
signal (underlying intensity) and the noise power (variance of 
the underlying intensity). This is based on the Poisson model 
of the counts. Hence, we can compute an unbiased estimate 
of noise power in each wavelet coefficient from the total count 
image alone. A wavelet domain filter, similar in form to (3.10), 
can be computed using these estimated noise powers and the 
wavelet transform of the total count image. 

IV. SIMULATIONS AND CLINICAL STUDY 

In this section, we present several simulated imaging experi- 
ments that quantify the performance of the cross validation esti- 
mation method. In all experiments, the PRESS-optimal wavelet 
domain filter is designed using the Daubechies-6 [2] prototype 
wavelet function. This wavelet function is chosen because of 
its good localization and smoothness properties. The PRESS- 
optimal filter design is based on splitting the observation period 
T into N disjoint time intervals to obtain N independent ob- 
servations of the underlying process. In this application, we 
can choose N as we like, within the limits of the acquisition 
system. Our experiments have shown that best results are ob- 
tained by choosing N as large as possible. However, increasing 
N increases the amount of data that must be stored and pro- 
cessed. We have found very little improvement is obtained by 
choosing N > 10, and therefore we have selected N = 10 in all 
simulations. For more details, please see [5]. 

A .  Experiment 1: Bar Phantom 
To compare the performance of the PRESS-optimal estimate 

to that of the standard MLE, a simulated 256 x 256 resolu- 
tion bar phantom was designed. The design is similar to the 
4-quadrant bar phantom commonly used in nuclear medicine. 
To provide a meaningful simulation of actual imaging situations, 
we have smoothed an ideal (sharp edged) bar phantom by a sim- 
ulated modulation transfer function (for details, see [5]). The 
smoothed phantom used in this experiment is depicted in Fig. 3. 

estimate of the phantom. We repeated this experiment at dif- 
ferent count levels, and generated 50 independent trials at  each 
count level. Using these trials, we computed the mean square 
error (MSE) of both estimators at  each count level. Fig. 4 is a 
plot of the MSE of both the MLE and PRESS-optimal estima- 
tor, as a function of the total counts. Note that in each case the 
MSE of the PRESS-optimal estimate is less than half that of 
the MLE. This means that for a given MSE level, the PRESS- 
optimal estimate requires less than half the counts required for 
the same error using the MLE. Hence, using the PRESS-optimal 
wavelet domain filter we may be able to reduce the acquisition 
time or radioactive dosage level by more than a factor of two 
and still retain the same image quality. 

I 
x I O 6  

1 2 3 4 
total counts 

Fig. 4. Comparison o f  squared error of MLE and PRESS- 
optimal estimate vs. total counts. MSE o f  the PRESS- 
optimal estimator is less than half the MSE of the MLE, 
at all count levels. 

B. Experiment 2: Line Phantom 
To evaluate the potential trade-off between noise reduction 

and signal smoothing, we simulate a 128 x 128 resolution line 
phantom with lines of varying intensity levels and widths as 
shown in Fig. 5 (a). The average background level is 8 counts, 
the maximum line count is 16 (at top), and the minimum line 
count is 0 (at bottom). Generating counts from this phantom, 
we compute the MLE and the PRESS-optimal estimate. We 
compare these to estimates to conventional linear filter smooth- 
ing of the MLE in Fig. 5 and Fig. 6 (for details, see [SI). 

C. Clinical Data 
The MLE and PRESS-optimal estimate of a 256 x 256 reso- 

lution nuclear medicine spinal study are shown in Fig. 7, below. 
The data for this example were collected using a “dynamic ac- 
quisition.” Such acquisitions are usually used to collect multiple 
images for time-varying nuclear medicine studies. For our pur- 
poses, the dynamic acquisition was used to collect N = 10, i.i.d. 
images of a static nuclear medicine study. Fig. 3. Smoothed bar phantom used to compare the perfor- 

mance of PRESS-optimal estimates to that o f  the standard 
total count MLE image. V. CONCLUSIONS AND FUTURE WORK 

The PRESS-optimal wavelet domain filter is an optimal, 
We generated Poisson counts according to the smoothed bar data-adaptive filter designed using the method of cross- 

The PRESS-optimal filter is also asymptotically phantom, and computed both the MLE and PRESS-optimal validation. 
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Fig. 5. Comparison of  (a) Phantom, (b)  MLE, (c) PRESS- 
optimal estimate, (d)  linear smooth o f  MLE. Note that the 
noise in the PRESS-optimal estimate is reduced, but the 
sharp line structure is preserved. The  noise is reduced by 
linear filtering the MLE, but at the expense of  reduced 
contrast in the lines. 

optimal in the MSE-sense. We have shown that the PRESS- 
optimal filter can be applied to nuclear medicine imaging, re- 
sulting in much better estimates of the underlying intensity. 
The PRESS-optimal filter significantly reduces noise in the im- 
age, while preserving important structure in the image, con- 
trary to conventional linear filtering. A more comprehensive 
study and analysis of the PRESS-optimal wavelet domain filter 
for nuclear medicine is given in [5]. 

There are several avenues for future work. First, the new 
filtering method can easily be extended to filtering for tomo- 
graphic reconstruction. Second, the PRESS-optimal filter can 
be used in conjunction with “resolution recovery” schemes to 
reduce the effects of blurring due to  collimation, while still re- 
ducing noise. Third, the PRESS-optimal wavelet domain filter 
is applicable to  a wide variety of other imaging modalities in- 
cluding CT, PET, and even MRI. We are currently investigating 
these areas. 

Fig. 6. Comparison of horizontal profiles from images in 
Pig. 5. (a) Phantom (b)  MLE (c) PRESS-optimal estimate 
(d) linear smooth of MLE. Noise is reduced in the PRESS- 
optimal estimate, but the sharp line structure is-preserved. 
Noise is smoothed and reduced by linear filtering the M L E  
at the expense of smoothing the lines. 

( 4  (b) 
Fig. 7 .  Comparison of  (a) MLE and (b)  PRESS-optimal 
estimate for spinal study. Notice that the optimal esti- 
mate has much better S N R  than the MLE and does not 
oversmooth detail in the spinal structure. 
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