


ABSTRACT

The large scale geometry of strongly aperiodic subshifts of finite type

by

David Bruce Cohen

A subshift on a group G is a closed, G-invariant subset of AG, for some finite set A.

It is said to be of finite type if it is defined by a finite collection of “forbidden patterns”

and to be strongly aperiodic if it has no points fixed by a nontrivial element of the

group. We show that if G has at least two ends, then there are no strongly aperiodic

subshifts of finite type on G (as was previously known for free groups). Additionally,

we show that among torsion free, finitely presented groups, the property of having a

strongly aperiodic subshift of finite type is invariant under quasi isometry.
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0.1 Introduction

Recall that a topological dynamical system is a pair (Ω, G) where G is a group acting

by homeomorphisms on the compact space Ω. For instance, if A is a finite discrete

set, then the group G acts (on the right) on the compact space AG by homeomorpisms

via

(σ · h)(g) = σ(hg).

This action makes the pair (AG, G) into a topological dynamical system called the

right shift. When G = Z, an element h of G acts on a biinfinite word σ ∈ AG by

“shifting” it, whence the name. A closed, G-invariant subset of AG is known as a

subshift. To say that a subshift X codes a dynamical system (Ω, G) means that there

exists a continuous G-equivariant surjection from X to Ω.

Subshifts of finite type (see [3, §2]). How would one construct a subshift? The

simplest idea is to start with a closed set C of AG and intersect its G-translates.

The most important case of this construction arises when C is determined by finitely

many coordinates.

Definition 0.1 Let A be a finite set and G a group. If S is a finite subset of G and L

a subset of AS, then the clopen set

{σ ∈ AG : σ|S ∈ L}

is known as a cylinder set. If C is a cylinder set, then the set X given by
⋂

g∈G(C · g)

is called a subshift of finite type. We say that X is defined on S. If F is a finite set,

then α ∈ AF is called a forbidden pattern for X if it is never equal to (σ · g)|F for

any σ ∈ X.
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0.1.1 Strongly aperiodic subshifts of finite type.

We will be most interested in subshifts of finite type on which G acts freely. These

are the only subshifts which may code free actions.

Definition 0.2 Let X ⊂ AG be a nonempty subshift, and σ a point of X. Then σ

is said to be periodic if it has nontrivial stabilizer in G, and is said to be g-periodic

for any g ∈ StabG σ. If X contains no periodic points, then X is said to be strongly

aperiodic.

It is not hard to see that, if G is equal to Z, then it admits no strongly aperiodic

subshifts of finite type (by convention, the empty subshift is not strongly aperiodic.)

The idea is that if X is defined by forbidden patterns on [−n, n], then we may find,

inside some σ0 ∈ X, a block of length longer than 2n occuring in at least two places.

We can then repeatedly copy and paste the segment of σ0 connecting these two blocks

to obtain a periodic element σ of X (see Figure 3 in §0.2).

Wang tilings. The problem of finding a strongly aperiodic subshift of finite type

on Z
2 goes back to Wang [11]. Suppose we are given a finite set A of 1 × 1 square

tiles, such that each edge of each tile is assigned some color. The tiling problem

asks whether we may fill out the entire plane with copies of these tiles such that

neighboring edges have the same color. In the simplest examples, a collection of tiles

which succesfully tiles the plane can do so periodically. Wang conjectured that this is

always the case—i.e., that A tiles periodically if it tiles at all. He observed that if his

conjecture were true, then the tiling problem would be solvable (by Turing machines).

Wang’s conjecture was disproved by his student Berger [1], who found a counterexample—

i.e., a set A of tiles which can tile the plane, but cannot do so periodically. Since
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Figure 1 : An interesting tiling of the plane using the set A consisting of the eight tiles
depicted at right. The orbit closure in AZ

2

of the given pattern is strongly aperiodic,
and is coded by a subshift of finite type called the Robinson tiling, in which the tiles
carry slightly more data.

then, many people have obtained tile sets with this property. Our favorite is the

Robinson tiling [8], which codes the orbit closure of the pattern depicted in Figure 1.

The reader has probably observed that if A cannot tile periodically, then we obtain

a strongly aperiodic subshift of finite type inside AZ
2

, where the forbidden patterns

consist of pairs of adjacent tiles with non-matching edges.

0.1.2 Endedness and QI invariance

Some progress on the problem of finding strongly aperiodic subshifts of finite type

has been made for other groups. In particular, higher dimensional free abelian groups

[1], uniform lattices in higher rank simple Lie groups [6], and the integral Heisenberg



4

group [9] are known to admit strongly aperiodic subshifts of finite type, and because

there exist strongly aperiodic tilings of H2 [4], it seems likely that there are strongly

aperiodic subshifts of finite type on the fundmental group of a closed surface. On

the other hand, free groups, including Z, are known not to admit strongly aperiodic

subshifts of finite type [7, §3, Theorem 2.2].

Recall that the Cayley graph of a group G with respect to a generating set S is

the graph whose vertex set is G, with an edge between vertices g and h whenever

gs = h for some s in S (Figure 2 depicts some Cayley graphs). The existence of

strongly aperiodic subshifts of finite type on a finitely generated group G appears to

be closely connected to the large scale geometry of its Cayley graph (with respect to

an arbitrary finite generating set). In particular, the arguments which show that free

groups have no such subshift are based on the fact that the Cayley graph of a free

group may be disconnected by removing a sufficiently large ball around a point. The

following definition captures this idea.

Definition 0.3 Let S be a finite generating set for a group G. The number of ends

of G is defined to be the limit as n goes to infinity of the number of unbounded

connected components of G \ Bn, where Bn is the ball of radius n around 1G in the

Cayley graph of G. It is understood that this limit is often infinite.

The number of ends of G is invariant under changing the generating set S. The

point is that, if S ′ is some other finite generating set, then the Cayley graphs associ-

ated to S and S ′ are quasi isometric (Definition 0.4) and the the number of ends is a

“QI invariant”. Hopf discovered that the number of ends of a group is either 0, 1, 2,

or ∞ [5], and Stallings [10] showed that a group has at least 2 ends if and only if

it splits nontrivially as an amalgamated free product or HNN extension over a finite
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Figure 2 : Some Cayley graphs of groups with respect to their standard generating
sets.

group (of course, G has 0 ends if and only if it is finite). Of the examples above, Z

has 2 ends (as Z ∼= {1}∗{1}), higher rank free groups have infinitely many ends, and

the Heisenberg group, fundamental groups of closed surfaces, and free abelian groups

are all one ended. Our first main theorem, which will be proved in §0.4, is as follows.

Theorem 0.1

If G is a finitely generated group with at least 2 ends, then G does not admit a

strongly aperiodic subshift of finite type.

This theorem gives one instance where the geometry of G constrains the existence

of strongly aperiodic subshifts of finite type on G. Our other main theorem will show

that having such a subshift is, in some sense, a geometric property. To make this

precise, we will need the notion of a QI invariance, which was alluded to above.

Definition 0.4 A map f : X → Y between metric spaces X and Y is said to be an

n-quasi isometric embedding if for any points x1, x2 ∈ X,

d(x1, x2)

n
− n ≤ d(f(x), f(y)) ≤ nd(x1, x2) + n.
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It is said to be n-quasi surjective if the n neighborhood of f(X) equals all of Y .

We say that f is a quasi isometry if (for some n) it is an n-quasi surjective n-quasi

isometric embedding.

Two spaces are said to be quasi isometric if there exists a quasi isometry between

them, and it is easily seen that this is an equivalence relation. This equivalence

relation is interesting for Cayley graphs, which may be metrized by taking each edge

to have length 1. As mentioned above, if S, S ′ are finite generating sets for a group

G, then the Cayley graph of G with respect to S is quasi isometric to the Cayley

graph of G with respect to S ′. The following definition is the basis of the subject of

geometric group theory.

Definition 0.5 We say that finitely generated groups G and H are quasi isometric

if their Cayley graphs are quasi isometric. If η is an invariant of groups such that

η(G) = η(H) whenever G and H are quasi isometric, we say that η is a QI invariant.

As remarked above, the number of ends of a group is the prototypical QI invariant.

For another example, finite presentation is a QI invariant—if G is finitely presented

and G is quasi isometric to H, then H is finitely presented. Our (second) main

theorem states that, for finitely presented groups, having a strongly aperiodic subshift

of finite type is a QI-invariant.

Theorem 0.2

Let G and H be torsion free finitely presented groups, and suppose that G is quasi

isometric to H. Then G admits a strongly aperiodic subshift of finite type if and only

if H does.

Remark. We note that Carroll and Penland have shown independently that having

a strongly aperiodic subshift of finite type is a commensurability invariant [2], even
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without assuming torsion freeness or finite presentation. Two groups G and H are

said to be commensurable if some finite index subgroup of G is isomorphic to some

finite index subgroup of H. If G and H are commensurable, then they are quasi

isometric to each other, but there are many examples of pairs of groups which are

quasi isometric but not commensurable.

The main step in the proof of Theorem 0.2 produces a subshift of finite type which

parameterizes quasi isometries (of some fixed regularity) from G to H. This idea is

closely related to the construction of Mozes [6] which codes the tiling of a symmetric

space associated to some uniform lattice by a subshift of finite type over some other

uniform lattice.

0.1.3 Subshifts and geometry.

Given a map f : G 7→ H, and a point σ ∈ AH , we define the pullback f ∗σ ∈ AG to be

the composition g 7→ σ(f(h)). In order to prove our theorem, we would like to take

a strongly aperiodic subshift of finite type X on a group H, together with a quasi

isometry f : G → H, and use this data to obtain a strongly aperiodic subshift of finite

type on G. As a first attempt, we could try f ∗X = {f ∗σ : σ ∈ X}, but this is usually

not even a subshift. The biggest problem is that the behavior of f on B(n, g) will

generally change as we vary g ∈ G, and so there is no way to know which patterns to

forbid. In order to “smooth out” the bad behavior of any individual quasi isometry

f , we would like to somehow pull X back under a broad class of quasi isometries.

More precisely, assuming that G and H are finitely presented, we will find a set

A and a subshift of finite type Y ⊂ A
G such that points of Y parametrize pairs (f, σ)

such that f : G → H is a quasi isometry satisfying some conditions and σ is a point
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of X. Furthermore, when g ∈ G fixes the point of Y corresponding to a pair (f, σ),

it will follow that f(g) must fix σ (and thus Y is strongly aperiodic because X is.)

0.1.4 Organization.

The paper is organized as follows. Section 0.2 gives the proof of Theorem 0.1. Sec-

tion 0.3 defines the notion of the derivative of an n-Lipschitz function on a finitely

generated group, which will be crucial in proving 0.2. In this section, we prove The-

orem 0.4, which states that the collection of derivatives of n-Lipschitz functions on a

finitely presented group forms a subshift of finite type. Section 0.4 proves Theorem

0.2.

Acknowledgments. We wish to thank Andy Putman for his guidance, Ayse Sahin

for discussing her work with us, and Ilya Kapovich for his thoughtful comments on

early drafts of this paper. We also wish to thank Andrew Penland for explaining his

results to us, and Danijela Damjanovich for hosting the 2014 Rice Dynamics Meeting.

0.2 Groups with at least two ends do not admit a strongly

aperiodic subshift of finite type.

We now prove theorem 0.1.

Theorem 0.3

Let G be a finitely generated group with at least 2 ends. Let X ⊂ AG be a nonempty

subshift of finite type. Then there exists σ ∈ X and g ∈ G not equal to 1G such that

σ · g = σ.
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An example: G = Z. We begin by illustrating the proof in a special case (see

Figure 3). Assume G = Z and X ⊂ AG a non empty subshift of finite type. Suppose

that X is defined on B = BG(n, 1G), meaning that to determine whether σ ∈ AG is

an element of X, we just need to check that the set

{σ · g|B : g ∈ Z}

contains no forbidden pattern. Since we assumed that X is nonempty, there exists

σ0 ∈ X. We observe that there must exist m1,m2 ∈ Z such that m2 −m1 > 2n and

σ0 ·m1|B = σ0 ·m2|B. We will find σ ∈ X such that σ is m2 −m1-periodic, meaning

that σ · (m2 −m1) = σ.

Let S = {m1 − n,m1 − n + 1, . . . ,m2 − n − 1} and S ′ = S ∪ (m2 + B). Let

m : G → S be specified by m(x) ≡ x mod m2 − m1 for every x ∈ G. We define σ

to be x 7→ σ0(m(x)). Manifestly, σ is m2 −m1-periodic. To show that σ is in X, we

start with the following observations.

(a) On S ′, the functions σ and σ0 agree. To see this, note that if x ∈ S, then σ(x) =

σ0(x) by definition, and if x ∈ S ′ \S, then x ∈ m2+B, so m(x) = x−(m2−m1)

and

σ(x) = σ0(x− (m2 −m1)) = σ0(x)

by our assumption that σ0 ·m1|B = σ0 ·m2|B.

(b) For all x ∈ G, there exists some k ∈ Z such that

k(m2 −m1) + x+ B ⊂ S ′.

This follows from the fact that S ′ contains the n-neighborhood of {m1,m1 +

1, . . . ,m2 − 1} which is a complete set of coset representatives mod m2 −m1.
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m1 +B m2 +B

S

σ0 :

σ :

Figure 3 : Given σ0, a point of X, a subshift of finite type on Z, one can construct a
periodic point σ of X by repeating the pattern found in σ0 between two balls m1+B

and m2 + B on which σ0 has the same behavior.

We now show σ ∈ X. Given x ∈ G, choose k as in (ii) above. Then by periodicity

and (i),

σ · x|B = σ · (k(m2 −m1) + x+ B)|B = σ0 · (k(m2 −m1) + x)|B.

It follows that σ ∈ X.

The general case. From here on, we will assume that G is a group with at least

2 ends, so that for n sufficiently large, ΓS \ |BG(n, 1G)| has at least 2 unbounded

connected components. The following definition will be crucial.

Definition 0.6 Let B0, B1, B2 be finite subsets of G such that each |Bi| is connected.

We say that B1 separates B0 from B2 when B1 and B2 lie in distinct connected

components of ΓS \ |B0|.

For example, in Z, b+B(n, 1) separates a+B(n, 1) from c+B(n, 1) when c− b >

2n and b − a > 2n. The following lemma encodes some trivial observations about

separation.

Lemma 0.1

Suppose that B1 separates B0 from B2.

(a) If g ∈ G, then gB1 separates gB0 from gB2.
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(b) If C is an unbounded component of

ΓS \ (|B0| ∪ |B1| ∪ |B2|),

then C cannot touch both B0 and B2.

(c) If we also know that B2 separates B1 from some finite B3, then it follows that

B0 and B3 are separated by Bi if i is 1 or 2.

Proof 0.1 Part (a) is trivial.

To see part (b), observe that if C were an unbounded component which touched

both B0 and B2, then we could find a path in C joining a vertex of B0 to a vertex

of B2. Hence, B0 and B2 would lie in the same connected component of ΓS \ |B1|

(whichever one contains C,) contrary to the definition.

To obtain part (c), we reason as follows. Because ΓS is connected, there exists a

path in ΓS from B3 to B1, but any such path must go through B2 because B2 separates

B3 from B1. Hence, B2 and B3 are in the same connected component of ΓS \ |B1|,

and therefore B3 and B0 are in different connected components of ΓS \ |B1| as desired

since B1 separates B0 from B2. The same argument shows that B2 separates B0 from

B3.

We now define the notion of an n-axial element g ∈ G. Intuitively (if not in

reality,) left multiplication by such an element drags the Cayley graph of G along

some axis.

Definition 0.7 Let n be a natural number. We say that g ∈ G is n-axial if, for all

integers a < b < c, we have that gbBG(n, 1G) separates g
aBG(n, 1G) from gcBG(n, 1G).

In Z, an element g is n-axial exactly when it has absolute value greater than 2n.

We now prove that every group with at least two ends has an n-axial element for
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sufficiently large n.

Lemma 0.2

Under our standing assumption that G is a finitely generated group with at least 2

ends, there exists some NG such that for any n ≥ NG, there exists an n-axial g ∈ G.

Proof 0.2 (See the potentially deceptive Figure 4). Suppose n is large enough that

ΓS \ |BG(n, 1G)| has at least two unbounded components, and write B for BG(n, 1G).

Choose x, y ∈ G such that each has norm greater than 2n and x and y lie in distinct

unbounded components of ΓS \ |B|. Manifestly, B separates xB from yB, and B also

separates x−1B from y−1B since S is assumed symmetric, so a path from x−1 to y−1

which did not pass through B could be reflected to get a path from y to x not passing

through B. We will see that x−1y is n-axial.

Inductively define a biinfinite sequence Bi of finite subsets of G by setting B0 = B

and B1 = x−1B, and mandating that Bi+2 = x−1yBi for all integers i. We know that

B0 separates B−1 = y−1B from B1, and also that B1 separates B0 from B2 = x−1yB

(by translating xB,B, yB by x−1.) Hence Lemma 0.1(a) gives us that Bi separates

Bi−1 from Bi+1 for all i. But then part (c) of the lemma says that (in particular) B2b

separates B2a from B2c whenever a < b < c are integers. I.e., x−1y is n-axial.

We are now finally ready to prove the theorem (Figure 5 illustrates the proof in

the case where G = Z ∗Z). Choose n large enough that X is defined on n and there

exists an n-axial gax ∈ G. Write B for BG(n, 1G) and B2 for BG(2n, 1G) and let g

be some power of gax such that gkB2 is always disjoint from B2 for k 6= 0—such a g

exists because B2 only meets finitely many gkaxB
2. Since X is nonempty, there exists

some σ0 ∈ X. Pick distinct integers m1 and m2 such that σ0 · g
m1 and σ0 · g

m2 agree

on B2. If we wish to proceed as we did in the case G = Z must find a set of orbit



13

xB yB

y−1xy−1xB y−1xB

B

x−1yB x−1yx−1yB

(y−1x)2y−1B y−1xy−1B

y−1B x−1B

x−1yx−1B (x−1y)2x−1B

?

Figure 4 : Constructing an n-axial element. The question mark indicates one possible
way the diagram can be misleading: it is possible that xB and y−1B are in the same
connected component.

representatives S ⊂ G for the (left) action of 〈gm2−m1〉 on G containing gm1B and

having properties analogous to the S we found for Z. We define S as follows.

Definition 0.8 Let Bk = gm1+k(m2−m1)B and let {Ci} consist of all connected compo-

nents of ΓS \
⋃

k∈Z Bk. Note that Lemma 0.1 implies that each Ci touches at most

two of the Bk, and these two must have consecutive k. We take S to be the union of

• B0,

• the vertex sets of those Ci which touch only B0 (and no other Bk,)

• and the vertex sets of those Ci which touch both B0 and B1.

The following lemma enumerates most of the neccessary properties of S.

Lemma 0.3

In the situation of the above paragraph, there exists S ⊂ G such that the following

conditions hold.

• For any integer k 6= 0, we have gk(m2−m1)S ∩ S = ∅.

• For any h ∈ G, there exists an integer k such that h lies in gk(m2−m1)S.
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gm1B2 gm2B2

S

σ0

σ

Figure 5 : If X a subshift of finite type on Z ∗Z, and σ0 ∈ X, then σ0 has the same
behavior on two balls gm1B2 and gm2B2 whose radius is twice the defining radius of
X. A periodic element σ of X is constructed by repeating the pattern realized by X

on S, a fundamental domain for the action of gm2−m1 which contains a ball around
gm1 .

• For any h ∈ G, there exists an integer k such that

hB ⊂ S ∪ gm1B2 ∪ gm2B2.

• S contains gm1B.

Proof 0.3 We now verify that S has the desired properties, in order.

• For a nonzero integer k, it is clear that gk(m1−m2)B0 (which is just Bk) will not

meet S. Similarly, if Ci touches just B0, then gk(m1−m2)Ci touches just Bk, and

does not intersect S. Finally, if some Ci touches B0 and B1, then gk(m1−m2)Ci

touches Bk and Bk+1, and hence does not intersect S.
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• Any element of G lies in some Bk or some Ci. The translate g−k(m1−m2)Bk is

equal to B1 ⊂ S. If Ci meets just Bk, then g−k(m1−m2)Ci meets just B0, and

hence lies in S. If Ci meets Bk and Bk+1, then g−k(m1−m2)Ci meets B0 and B1,

and is thus a subset of S.

• If x ∈ Bk, then g−k(m2−m1)B ⊂ gm1B2. If x is in some Ci which touches just Bk,

then any path of length n starting at x must either stay in Ci or go through Bk.

Hence, xB ⊂ Ci ∪ gm1+k(m2−m1)B2, so g−k(m2−m1)xB ⊂ gm1B2 ∪ S. If x lies in

some Ci which touches Bk and Bk+1, then by the same logic, g−k(m2−m1)xB ⊂

gm1B2 ∪ S ∪ gm2S.

• By definition, S contains gm1B, which is B0.

We now finish the proof of Theorem 0.3. Take S as in the lemma. For x ∈ G,

define m(x) to be the gk(m2−m1) translate of x which lies in S. Define σ(x) = σ0(m(x)),

so that by definition σ · gm2−m1 = σ. Let S ′ = S ∪ gm1B2 ∪ gm2B2. As in the Z case,

we have that σ agrees with σ0 on S ′ by the following case by case argument.

• If x ∈ S, then σ(x) = σ0(x) by definition.

• If x ∈ gm1B2 \ S, then x lies in some Ci which touches B0 (and possibly also

B−1,) because there is a path of length at mst n from x to B0, and this path

cannot pass through any other Bk by our assumption that the gkB2 are all

disjoint. It follows that either x or gm2−m1x lies in S, so that we have either

σ(x) = σ0(x)

by definition, or

σ(x) = σ0(g
m2−m1x) = σ0(x),

by our assumption that σ0 · g
m1 and σ0 · g

m2 agree on B2.
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• If x ∈ gm2B2 \ S, then we see similarly that x lies in some Ci which touches B1

(and possibly also B2,) and we can proceed in the same fashion.

We see that σ ∈ X because for any x ∈ G, Lemma 0.3 gives us a k such that

gk(m2−m1)xB ∈ S ′, and then we have

σ · x|B = σ · g−k(m2−m1)x|B = σ0 · g
−k(m2−m1)x|B.

Since X is defined on B, this establishes the desired result. We already observed that

σ is gm2−m1 periodic, so we have proved the theorem.

0.3 Derivative subshifts.

In this section, we will exhibit a subshift of finite type which parametrizes n-Lipschitz

functions from a finitely presented group G to a finitely generated group H, up

to translation on H (Theorem 0.4). The idea is that an n-Lipschitz function f is

determined, up to choice of f(1), by its derivative (Definition 0.9), which is a bounded

function from G×S to H whose value at (g, s) measures the difference between f(g)

and f(gs). The set of such derivatives is shown to be a subshift of finite type when

G is finitely presented, by showing that a function on G × S which looks like a

derivative locally can be “integrated” to give a globally defined n-Lipschitz function.

Of course, the condition of looking like a derivative locally will be encoded by a finite

set of forbidden patterns. Note that similar subshifts have previously arisen in the

literature. For example Gromov used a subshift parameterizing “integer 1-cocycles”

to code the boundary of a hyperbolic group [3, §3].

Notation. Throughout this section, G will be a group generated by a finite sym-

metric set S, and H will be a group generated by a finite symmetric set T . As usual,

fixing a finite generating set for a group endows it with a word metric.
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Definition 0.9 Fix n ∈ Z and finitely generated groups G and H. We denote the

set of n-Lipschitz functions from G to H by Lipn(G,H). The derivative is the map

d : Lipn(G,H) → (BH(N, 1H)
S)G which takes f ∈ Lipn(G,H) to

df : g 7→ (s 7→ f(g)−1f(gs)).

We write 〈df(g), s〉 for df(g) evaluated at s.

Observe that f ∈ Lipn(G,H) is determined by f(1) and df . We now state the

primary theorem of this section.

Theorem 0.4

If G is finitely presented, then for any integer n and finitely generated group H, we

have that

{df : f ∈ Lipn(G,H)} ⊂ (BH(N, 1H)
S)G

is a subshift of finite type.

Proof of Theorem 0.4. Let Xn denote the set {df : f ∈ Lipn(G,Z)}, let A denote

BZ(n, 0)
S, and let the natural number KG ≥ 2 be such that G is presented with

respect to S by relators of length at most KG. We wish to prove that Xn is a subshift

of finite type, meaning that membership in Xn is determined by some finite list of

local conditions. What sort of local conditions must derivatives satisfy? At least one

is immediately obvious, namely we know, for any g ∈ G, that

〈df(g), s〉 = 〈df(gs), s−1〉.

More generally, if some word w = s0 . . . sk in S∗ is a relation, then we must have that

the telescoping product

〈df(g), s0〉〈df(gs0), s1〉 . . . 〈df(gs0 . . . sk−1), sk〉
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represents 1H for any g ∈ G. For a fixed w, this represents a local condition on df ,

since the product depends only on the values taken by df in BG(|w|, 1). Since G is

finitely presented, we might hope that Xn is defined by a finite set of conditions of

this nature, and this is in fact the case. We begin by giving the expected notation

for products like the above.

Definition 0.10 Let g be an element of G, let w ∈ S∗ be some word s0s1 . . . sk (where

si ∈ S,) and let σ be an element of AG. We define
∫
g·w

σ as the product

〈σ(g), s0〉〈σ(gs0), s1〉〈σ(gs0s1), s2〉 . . . 〈σ(gs0 . . . sk−1), sk〉.

We now record some properties of this gadget.

Lemma 0.4

The integral has the following familiar properties.

• Locality. The value of
∫
g·w

σ is determined by σ|BG(|w|,g).

• Additivity. If w1, w2 ∈ S∗, and h is the image of w1 in G, then

∫

g·w1

σ

∫

gh·w2

σ =

∫

g·w1w2

σ.

• Fundamental theorem. Suppose f ∈ Lipn(G,H). Then for g ∈ G and

w ∈ S∗, we have ∫

g·w

df = f(g)−1f(gw).

Proof 0.4 Locality and additivity follow immediately from Definition 0.10. The fun-

damental theorem follows from collapsing the telescoping product

∫

g·w

σ = 〈σ(g), s0〉〈σ(gs0), s1〉〈σ(gs0s1), s2〉 . . . 〈σ(gs0 . . . sk−1), sk〉

= (f(g)−1f(gs0))(f(gs0)
−1f(gs0s1))(f(gs0s1)

−1f(gs0s1s2)) . . . (f(gs0 . . . sk−1)
−1f(gs0 . . . sk))

= f(g)−1f(gw).
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We will now proceed with the proof of theorem 0.4. Let Yn consist of all σ ∈ A
G

such that for any g ∈ G, ∫

g·w1

σ =

∫

g·w2

σ

whenever the words w1, w2 ∈ S∗ are such that |w1|, |w2| ≤ KG and w1 and w2 represent

same element of G. The fundamental theorem (Lemma 0.4) shows that Yn contains

Xn and locality (Lemma 0.4) shows that Yn is a subshift of finite type. To prove

Theorem 0.4, it thus suffices to show that Xn ⊃ Yn, i.e., that every element of Yn is

the derivative of some element of Lipn(G,H).

Lemma 0.5

For any σ ∈ Yn, the quantity ∫

g·w

σ

depends only on g and the value w represents in G.

Proof 0.5 Let w and w′ be words representing the same element of G. Then there

exists a homotopy

w = w0, w1, . . . , wk−1, wk = w′

from w to w′, meaning a sequence of words wi ∈ S∗ such that each pair (wi, wi+1) has

the form (uvx, uv′x) where u, v, v′, x ∈ S∗ are such that v and v′ have length ≤ KG

and represent the same element of G. But then by repeated application of Lemma

0.4 we have that ∫

g·uvx

σ =

∫

g·u

σ

∫

gu·v

σ

∫

guv·x

σ

=

∫

g·u

σ

∫

gu·v′
σ

∫

guv′·x

σ =

∫

g·uv′x

σ.

It follows that
∫
g·w

σ =
∫
g·w′

σ as desired.
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Given σ ∈ Yn, we may now define a function f ∈ Lipn(G,H) with derviative σ by

taking f(g) to be ∫

1g ·w

σ

for any w representing g (by Lemma 0.5, the choice of w is irrelevant). We can see that

f is n-Lipschitz by the fact that for words w1, w2 representing g1, g2 ∈ G respectively,

we have

d(f(g1), f(g2)) = f(g1)
−1f(g2) =

∣∣∣∣∣

(∫

1G·w1

σ

)−1 ∫

1G·w2

σ

∣∣∣∣∣
T

=

∣∣∣∣∣

∫

g1·w
−1

1
w2

σ

∣∣∣∣∣
T

=

∣∣∣∣
∫

g1·w

σ

∣∣∣∣
T

≤ nd(g1, g2)

for a geodesic word w representing g−1
1 g2 (we have used the fact that

∫
g1·w

−1

1

σ is the

inverse of
∫
1G·w1

σ for σ ∈ Yn, which follows from Lemma 0.5.) We see that df = σ by

similar reasoning. Hence, we have shown that the subshift of finite type Yn is equal

to Xn, thus establishing Theorem 0.4.

0.4 Quasi isometries and subshifts.

In this section we prove Corollary 0.1 which says that having a strongly aperiodic

subshift of finite type is a QI invariant—among torsion free, finitely presented groups.

We begin with quasi isometric groups G and H satisfying our conditions, together

with a subshift of finite type XH ⊂ AH . We will use this data to construct a subshift

of finite type XG on G which inherits certain properties of XH (Theorem 0.6). In

particular, Corollary 0.1 will follow from the fact that XG will be strongly aperiodic

when XH is.

Constructing the “pull back subshift”XG described above requires us to parametrize

objects we call n-QI pairs (Definition 0.11,) which consist of a Lipschitz function

f : G → H and a Lipschitz 2-sided quasi inverse F : H → G. Just as we found a
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subshift of finite type on a finitely presented group G which parametrized Lipschitz

functions (Theorem 0.4), so too we parameterize our n-QI pairs in terms of local

data on G (Theorem 0.5). We then form XG by adding some extra data coming

from XH . This means that a point of XG encodes some n-QI pair (f, F ) as well as a

configuration σ ∈ XH .

0.4.1 Parametrizing quasi isometries

Suppose that G and H are finitely presented groups equipped with fixed generating

sets. It would be fortuitous if the collection of all derivatives df , as f ranges over

n-quasi isometries G → H, formed a subshift of finite type, but it seems unlikely that

this is the case. Suppose that you are trying to determine whether some unknown

function f : G → H is a quasi isometry, and you are told only which patterns df

realizes on N -balls around points of G (for some fixed N). That is, you are given the

set of patterns

{(df) · g|BG(N,1G) : g ∈ G} ⊂ (BH(n, 1H)
S)BG(N,1G)

without knowning which patterns correspond to which g. It is of course easy to

tell whether f is n-Lipschitz, and with a little work we can tell whether f is locally

n-quasi surjective, in the sense that BH(2n, f(g)) can always be covered by n-balls

around points of f(BG(m, g)) (for fixed m,) which is a neccessary condition for being

a quasi isometry. Unfortunately, it seems difficult to verify global quasi injectivity

(the property that f cannot take distant points too close to each other) based just

on this data. Hence, if we wish to parameterize quasi isometries f , we will also need

to encode data about a quasi inverse to f (see the following definition).
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Definition 0.11 Let G and H be groups finitely generated by S and T respectively.

Suppose given f : G → H, F : H → G, and n ∈ N.

• If |g−1 · (F ◦ f)(g)|S ≤ n for all g ∈ G, we say that F is a left n-quasi inverse to

f and f is a right n-quasi inverse to F .

• We say that F and f are n-quasi inverses of each other if they are left (and hence

right) n-quasi inverses of each other. (This exactly means that, in the uniform

metric, F ◦ f and f ◦ F are within distance n of IdG and IdH respectively).

• We say that (f, F ) is an n-QI pair if F and f are n-Lipschitz and are n-quasi

inverses of each other.

The set of all n-QI pairs is denoted QIPn(G,H).

The following lemma says that being part of a QI pair is the same thing as being

a quasi isometry.

Lemma 0.6

Let G and H be groups, generated by finite sets S and T respectively. A function

f : G → H is a quasi isometry if and only there exists a natural number n and a

function F : H → G such that (f, F ) is an n-QI pair.

Proof 0.6 Suppose (f, F ) ∈ QIPn(G,H). Then for any x, y ∈ G,

d(x, y) ≤ d(x, (F◦f)(x))+d((F◦f)(x), (F◦f)(y))+d((F◦f)(y), y) ≤ 2n+nd(f(x), f(y)),

and thus:

d(f(x), f(y)) ≥
d(x, y)

n
− 2.

Since f is Lipschitz, this implies that f is a quasi isometric embedding. But f is

quasi surjective because for h ∈ H we have d(f(F (h)), h) ≤ n. Hence, f is a quasi

isometry.
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Conversely, suppose f is an N -quasi isometry. We will now define F : H → G

such that (f, F ) is a QI pair. Using N -quasi surjectivity, for each h ∈ H, choose an

F (h) in G such that d(f(F (h)), h) ≤ N . Since f is an N -quasi isometric embedding,

we know that for all h1, h2 ∈ H, we have

d(F (h1), F (h2))

N
−N ≤ d(f(F (h1)), f(F (h2))) ≤ d(f(F (h1)), h1)+d(h1, h2)+d(h2, f(F (h2)))

≤ 2N + d(h1, h2).

Hence

d(F (h1), F (h2)) ≤ Nd(h1, h2) + 3N2,

so F is 3N2 + N -Lipschitz (as 1 is the smallest positive distance in H). We can see

that f is 2N -Lipschitz because, since 1 is the smallest positive distance in G,

d(f(x), f(y)) ≤ Nd(x, y) +N ≤ 2Nd(x, y).

By definition, F is a right N -quasi inverse to f . To see that it is a left quasi

inverse, note that for g ∈ G we have

d(f((F ◦ f)(g)), f(g)) = d((f ◦ F )(f(g)), f(g)) ≤ N.

It follows that

d((F ◦ f)(g), g) ≤ Nd(f((F ◦ f)(g)), f(g)) +N ≤ N2 +N.

So, taking n to be greater than each of {2N, 3N2 + N,N,N2 + N}, we have that

(f, F ) is an n-QI pair.

We now define the local data ℓFf which will encode an n-QI pair (f, F ). Although

we will not immediately need the function QFf which is also defined below, it seems

logical to define it here.
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Definition 0.12 (Local data.) To a pair (f, F ) ∈ QIPn(G,H), we associate the follow-

ing two functions.

• The function ℓFf : G → BG(nN + n, 1G)
BH(N,1H) is given by setting ℓFf (g) to

be

ℓFf (g) : h 7→ g−1F (f(g)h)

for g ∈ G, where N = 2n2 + 1.

• The function QFf : H → H is given by QFf (h) = h−1f(F (h)).

We write 〈ℓFf (g), h〉 for (ℓFf (g))(h).

We should think of ℓFf (g) as telling us the values of F near f(g), via the formula

F (f(g)h) = g〈ℓFf (g), h〉. The value N = 2n2 + 1 has been chosen so that we see

enough such values around each f(g) that we can reconstruct F globally. We may

now state our theorem.

Theorem 0.5

Suppose G,H are finitely presented groups generated by sets S and T respectively.

Suppose that n is a natural number, then, writing A for the finite set

BH(n, 1H)
S ×BG(n+ nN, 1G)

BH(N,1H),

we have that

{(df, ℓFf ) : (f, F ) ∈ QIPn(G,H)} ⊂ A
G

is a subshift of finite type. (Here N = 2n2 + 1 as in Definition 0.12).

Proof 0.7 We write KG for the length of the longest relator of G in some fixed pre-

sentation for G with respect to S. Our strategy is as follows.

• First, we produce seven local conditions on A
G,
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• then we show that these conditions are satisfied by (df, ℓFf ) ∈ A
G whenever

(f, F ) is an n-QI pair,

• and finally we show that if σ = (σd, σℓ) ∈ A
G satisfies these conditions, we can

construct an n-QI pair (f, F ) such that (df, ℓFf ) = σ.

In general, the second bullet point is easy, and the third is hard. The reader should

think of σℓ(g) as giving us a local guess about how to reconstruct F near f(g) and the

later conditions as telling us that these local guesses are compatible for different g.

In practice, after stating a condition and proving that it is local, we will immediately

verify that it holds for pairs (df, ℓFf ).

We now summarize the conditions (in order, because each will be defined for σ ∈

A
G which satisfy all the previous conditions). The reader should think of conditions

Cf, CFℓ, NCF, and RCF as “integrability conditions”, saying that when we try to

reconstruct F or f in two different ways, we get the same result. On the other hand,

conditions RI, LF, and LI are “regularity conditions” on σℓ, saying that at each

point it looks like the restriction of an n-Lipschitz n-quasi inverse to a function from

G to H with derivative σd.

• The first condition on (σd, σℓ) ∈ A
G is Cf (Definition 0.13,) which ensures that

σd is the derivative of a unique n-Lipschitz function f : G → H such that

f(1G) = 1H . (See Theorem 0.4).

• For σ which satisfies Cf, we have a local guess for F near f(g), namely, h 7→

g〈σℓ(g), f(g)
−1h〉. Condition LF (Definition 0.14) says that this local guess is

n-Lipschitz.

• Similarly, condition RI (Definition 0.14) says that our local guess for F is a

local right n-quasi inverse to f .
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Once σ satisfies Cf, RI, and LF, we will be able to construct, for each g ∈ G, a

function Fσ(fg;w) on words w ∈ T ∗, which recovers F (f(g)w) when σ is of the

form (df, ℓFf ) for some pair (f, F ) in QIPn(G,H), as described in Definition 0.16,

Figure 6, and Lemma 0.7. See the notes after Definition 0.16 for an explanation

of our idiosyncratic notation. Three of the remaining four conditions on σ will be

defined in terms of this gadget Fσ(fg;w), which is “local” in the sense described by

Lemma 0.8(b). These integrability conditions will say that, as g and w vary, Fσ(fg;w)

indeed behaves as if it were of the form F (f(g)w) for some n-QI pair (f, F ), in that

Fσ(fg1;w1) = Fσ(fg2;w2) for certain gi and wi such that f(g1)w1 = f(g2)w2.

• Condition CFℓ (Definition 0.17) will mandate a local compatibility between

Fσ and σℓ. In particular, it says that if g1, g2 ∈ G are sufficiently close, and

f(g1)w = f(g2)h for some sufficiently small word w and h ∈ BH(n + 1, 1H),

then

Fσ(fg1;w) = g2〈σℓ(g2), h〉.

• Along the same lines, conditionRCF (Definition 0.18,) will say that Fσ(fg;w1) =

Fσ(fg;w2) for short words w1, w2 ∈ T ∗ which define the same element of H.

This (along with the previous condition) will imply that w 7→ Fσ(fg;w) de-

scends to a well defined function on H (Lemma 0.11).

• Condition NCF (Definition 0.20) will say that Fσ(fg;−) and Fσ(fgs;−) are

compatible whenever s ∈ S, meaning that for all h ∈ H,

Fσ(fg; f(g)
−1h) = Fσ(fgs; f(gs)

−1h).

This in turn will imply that all of the Fσ(fg;−) come from a single function

F : H → G, and we can construct F using, say, Fσ(f1G;−).
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• Finally, condition LI (Definition 0.22) will confirm that our putative F is in fact

a left n-quasi inverse to f , thus completing the proof of the theorem.

We now proceed with the plan outlined above: define local conditions, show that

they are satisfied if σ arises from an n-QI pair, and show conversely that σ satisfying

these conditions is of the form (df, ℓFf ) for an n-QI pair (f, F ).

Defining local conditions. We now give the formal definitions of all these condi-

tions, and verify that each is local and satisfied by (df, ℓFf ) for (f, F ) ∈ QIPn(G,H).

Recall that KG is the length of the longest relator of G.

Definition 0.13 (Consistency of f) We say that σ = (σd, σℓ) ∈ A
G satisfies condition

Cf if for all w1, w2 ∈ S∗ which represent the same element of G and have length at

most KG, we have (for all g ∈ G) that

∫

g·w1

σd =

∫

g·w2

σd.

Note that this condition already appeared in the proof of Theorem 0.4. See the

remarks before Lemma 0.5

Locality of Cf. Recall that
∫
g·w

σd is the product of σd(gv) as v ranges over prefixes

of w. Hence, to check Cf, we only need to look at σ|BG(g,KG).

Condition Cf is satisfied for σ arising from an n-QI pair. If σ = (df, ℓFf ) for

some (f, F ) ∈ QIPn(G,H), then by Lemma 0.4, σ satisfies Cf because for g ∈ G and

w1, w2 ∈ S∗ representing the same element,

∫

g·w1

σd = f(g)−1f(gw1) = f(g)−1f(gw2) =

∫

g·w2

σd.
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Conversely, Lemma 0.5 says that if σ satisfies Cf, there is a unique f such that

f(1G) = 1H and df = σd (namely, one defines f(g) to be
∫
1G·w

σd for any w ∈ S∗

which represents g). From now on, we will assume that σ satisfies Cf, and that f

is the unique function such that df = σd and f(1G) = 1H . In particular, we will

use σd and df interchangeably. Additionally, we will write expressions like
∫ g2

g1
df ,

understanding this to be the well defined quantity f(g1)
−1f(g2).

Defining condition LF. Recall that, for an n-QI pair (f, F ), we have that the

function

h 7→ g〈ℓFf (g), f(g)
−1h〉

represents F on BH(N, f(g)). Condition LF will say that this function must be n-

Lipschitz.

Definition 0.14 (Lipschitzness of F ) We say that σ = (σd, σℓ) ∈ A
G satisfies condi-

tion LF if, for all h1, h2 ∈ BH(N, 1H), and all g ∈ G,

dG(〈σℓ(g), h1〉, 〈σℓ(g), h2〉) ≤ ndH(h1, h2).

Locality of LF. Condition LF is manifestly local, since verifying it at g only re-

quires us to know σ(g).

Condition LF is satified for σ arising from an n-QI pair. Suppose (f, F ) ∈

QIPn(G,H). Since F is n-Lipschitz, we see that

h 7→ g〈ℓFf (g), f(g)
−1h〉

is n-Lipschitz on BH(f(g), N). It follows that

h 7→ 〈ℓFf (g), h〉
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is n-Lipschitz on BH(N, 1H) (i.e., (df, ℓFf ) satisfies LF).

In a similar vein, the next condition will say that

h 7→ g〈σℓ(g), f(g)
−1h〉

is a local right n-quasi inverse to f .

Definition 0.15 (Local right inverse) We say that σ = (σd, σℓ) ∈ A
G satisfies condi-

tion RI if for all h ∈ BH(N, 1H), and all g ∈ G,

dH

(
h ,

∫ g〈σℓ(g),h〉

g

df

)
≤ n.

Locality of RI. To verify condition RI at g, we need only know enough values of

σ to compute the integral. Thus, it suffices to know σ|BG(nN+n,g), so RI is local.

Condition RI is satisfied for σ arising from an n-QI pair. Given (f, F ) ∈

QIPn(G,H), we have that F is a local right n-quasi inverse to f , so that

(f ◦ F )(f(g)h) = f(g)

∫ g〈ℓFf (g),h〉

g

df

is within distance n of f(g)h. It follows that (df, ℓFf ) satisfies condition RI.

Developing a candidate for F Consider the following problem. We are given,

for some h ∈ H, the values of F (h), h−1f(F (h)), and ℓFf (F (h)), where (f, F ) ∈

QIPn(G,H) is unknown to us. Additionally, we are given df in the n+nN neighbor-

hood of F (h). From this data, we are asked to reconstruct F (ht) for some t ∈ T . We

can solve this probelm because ℓFf tells us the values of F in the N -neighborhood of

f(F (h)), and dH(f(F (h)), ht) ≤ n+ 1 ≤ N . Hence we have the ungainly formula

F (ht) = F (h)〈ℓFf (F (h)), f(F (h))−1ht〉
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= F (h)〈ℓFf (F (h)), Q−1t〉

where Q is the known quantity h−1f(F (h)).

Now suppose that we start with σ ∈ A
G which satisfies conditions Cf, RI, and LF.

If it happens that σ = (df, ℓFf ) for some (f, F ) ∈ QIPn(G,H), then F should satisfy

a recursion given by the formula above, and using this recursion we should be able

to recover F . We now make this precise, working in terms of the reparameterizations

h 7→ F (f(g)h) and h 7→ QFf (f(g)h) instead directly in terms of F . Specifically, in

the definition below (depicted in Figure 6), Fσ(fg; v) is intended as a guess at the

value of F (f(g)v) and Qσ(fg; v) is a guess as to QFf (f(g)v), based on σ-data in some

O(|v|) neighborhood of g (recall QFf from Definition 0.12). A careful reader will

observe that we must do a little work to ensure that this definition is meaningful.

Definition 0.16 Given σ = (σd, σℓ) ∈ A
G satisfying conditions Cf, RI, and LF, and

further given g ∈ G, we recursively define functions Fσ(fg;−) : T ∗ → G and

Qσ(fg;−) : T ∗ → BH(n, 1H) as follows, using ǫ to denote the empty word in T ∗.

We initialize Fσ(fg;−) by setting

Fσ(fg; ǫ) = g〈σℓ(g), 1H〉.

If Fσ(fg; v) has been defined for some v ∈ T ∗, we then define

Qσ(fg; v) = (f(g)v)−1f(Fσ(fg; v)),

and, for t ∈ T ,

Fσ(fg; vt) = Fσ(fg; v)〈σℓ(Fσ(fg; v)), Qσ(fg; v)
−1t〉

In general, Fσ(fg; v) is not determined by the image of v in H.



31
G H

Fσ(fg; t0 . . . tk)

Fσ(fg; t0)

Fσ(fg; t0 . . . tk−1)

Fσ(fg; t0t1)

Fσ(fg; ǫ)

〈σℓ(Fσ(fg; t0 . . . tk−1)), Qσ(fg; t0 . . . tk−1)
−1tk〉

〈σℓ(Fσ(fg; t0)), Qσ(fg; t0)
−1t1〉

〈σℓ(Fσ(fg; ǫ)), Qσ(fg; ǫ)
−1t0〉

〈σℓ(g), 1〉
g

f(Fσ(fg; t0 . . . tk))

f(Fσ(fg; t0))

f(Fσ(fg; t0 . . . tk−1))

f(Fσ(fg; t0t1))

f(Fσ(fg; ǫ))

f(g)t0 . . . tk−1

f(g)t0t1

t1

t0

f(g)

Qσ(fg; t0 . . . tk)

Qσ(fg; t0)

Qσ(fg; t0 . . . tk−1)

Qσ(fg; t0t1)

Qσ(fg; ǫ)

f(g)t0 . . . tk

f(g)t0

Figure 6 : The functions Fσ(fg;−) and Qσ(fg;−) on words in T , are defined recur-
sively. Roughly speaking, when σ arises from a QI-pair (f, F ), the defining recursions
for Fσ(fg; t0 . . . tk) and Qσ(fg; t0 . . . tk) answer the question, “what are F (f(g)vt) and
QFf (f(g)vt) in terms of F (f(g)v) and QFf (f(g)v)?”

Remark on notation. Before showing that Fσ(fg;−) is in fact well defined, we

remark that Fσ(fg;w) is determined by σ, g, and w, and the f is entirely decora-

tive. Indeed, as we saw in the remarks following the definition of condition Cf, f

is entirely determined by σ since we assume that f(1G) = 1H . We write Fσ(fg;w)

instead of something more natural like Fσ(g;w) because Fσ(fg;w) clearly aspires to

be F (f(g)w). Similar considerations apply for Qσ(fg;w). In writing this paper, we

tried many different notations for these gadgets, and any other choice would make

future equations totally opaque.
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Fσ(fg;−) is well defined. Observe that in order to even define Fσ(fg; vt), we

needed to know that Qσ(fg; v) was in BH(N − 1, 1H), so that we could evaluate

〈σℓ(Fσ(fg; v)), Qσ(fg; v)
−1t〉. In fact, the definition even promised that Qσ(fg; v)

would always be in BH(n, 1H). We will now use RI to prove this inductively. First,

condition RI directly implies that Qσ(ǫ) ∈ BH(n, 1H). Now, assume for induction

that Qσ(v) is in BH(n, 1H), so that Fσ(fg; vt) is well defined. Then it suffices to show

that Qσ(fg; vt) is in BH(n, 1H). We have

|Qσ(fg; vt)|T = dH(f(g)vt, f(Fσ(fg; vt)))

= dH(f(Fσ(fg; v))
−1f(g)vt, f(Fσ(fg; v))

−1f(Fσ(fg; vt)))

= dH

(
Qσ(fg; v)

−1t,

∫ Fσ(fg;vt)

Fσ(fg;v)

)

= dH

(
Qσ(fg; v)

−1t,

∫ Fσ(fg;v)〈σℓ(Fσ(fg;v)),Qσ(fg;v)−1t〉

Fσ(fg;v)

)
≤ n,

as desired, by RI. The fact that we can define Fσ(fg; v) (for σ satisfying some finite

set of local conditions) constitutes most of the actual mathematical content of this

proof, so we have been very careful here.

Properties of Fσ(fg;−). Before defining the last four conditions, which will force

the Fσ(fg; v) to glue together into a well defined n-quasi inverse to f , we will prove

three trivial lemmas about Fσ(fg;−) and Qσ(fg;−). The first, Lemma 0.7, says that

Fσ(fg;w) and Qσ(fg;w) recover F (f(g)w) and QFf (f(g)w) when σ = (df, ℓFf ). The

second, Lemma 0.8, says that to compute g−1Fσ(fg;w) and Qσ(fg;w), we only need

to know σ on a ball of radius O(|w| + 1) around g. The third, Lemma 0.9 gives a

condition for when we can expect two expressions of the form Fσ(fg;w) to be equal.

The reader is advised to skip the proofs.
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Lemma 0.7

If (f, F ) ∈ QIPn(G,H), and σ = (df, ℓFf ), then for any w ∈ T ∗, we have that

Fσ(fg;w) = F (f(g)w) and Qσ(fg;w) = QFf (f(g)w).

Proof 0.8 First observe that

Fσ(fg; ǫ) = g〈ℓFf (g), 1〉 = F (f(g)).

To obtain the desired equalities, it now suffices to check that w 7→ F (f(g)w) and

w 7→ QFf (f(g)w) satisfy the defining recursion for Fσ(fg;−) and Qσ(fg;−). We

have, by 0.12,

QFf (f(g)v) = (f(g)v)−1F (f(g)v),

and

F (f(g)vt) = F (f(g)v)(F (f(g)v)−1F (f(g)vt))

= F (f(g)v)〈σℓ(F (f(g)v)), ((f ◦ F )(f(g)v))−1 · (f(g)vt)〉

= F (f(g)v)〈σℓ(F (f(g)v)), Q(f(g)v)−1t〉.

Lemma 0.8

(a) For all g ∈ G and w ∈ T ∗, we have

|g−1Fσ(fg;w)|T ≤ n+ (n2 + n)|w|

(b) Both g−1Fσ(fg;w) and Qσ(fg;w) can be computed from σ|BG(n+(n2+n)|w|,g).

Proof 0.9 (a) Observe that by RI

g−1Fσ(fg; ǫ) = 〈σℓ(g), 1〉 ∈ BG(n, 1G).

Assume for induction that g−1Fσ(fg; v) ∈ BG(n+ n|v|, 1G). Then for t ∈ T ,

|g−1Fσ(fg; vt)| = |g−1Fσ(fg; v)〈σℓ(Fσ(fg; v)), Qσ(fg; v)
−1t〉|
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≤ |g−1Fσ(fg; v)|+ |〈σℓ(Fσ(fg; v)), Qσ(fg; v)
−1t〉| ≤ n+ (n2 + n)|v|+ (n2 + n)

by LF and the fact that |Qσ(fg; v)t| ≤ n+ 1.

(b) We know that g−1Fσ(fg; ǫ) is determined by σ(g). Observe that

Qσ(fg; ǫ) = f(g)−1f(g〈σℓ(g), 1〉) =

∫ Fσ(fg;ǫ)

g

df

is determined by σ|BG(n). Assume now, for induction, that for some v ∈ T ∗

we know that g−1Fσ(fg; v) and Qσ(fg; v) are determined by σ|BG(n+(n2+n)|v|,g).

Then for t ∈ T , we have

g−1Fσ(fg; vt) = g−1Fσ(fg; v)〈σℓ(Fσ(fg; v)), Qσ(fg; v)
−1t〉

so g−1Fσ(fg; vt) is determined by σ|BG(n+(n2+n)|v|,g) (by part (a) together with

our inductive hypothesis). Now observe that

Qσ(fg; vt) = (f(g)vt)−1f(Fσ(fg; vt)) = (vt)−1

∫ Fσ(fg;vt)

g

df,

so by part (a), we see that Qσ(fg; vt) is determined by σ|BG(n+(n2+n)|vt|,g).

Lemma 0.9

If f(g1)w1 = f(g2)w2 and Fσ(fg1;w1) = Fσ(fg2;w2) for some g1, g2 ∈ G and w1, w2 ∈

T ∗, then for any v ∈ T ∗,

Fσ(fg1;w1v) = Fσ(fg2;w2v).

Proof 0.10 It suffices to consider the case where |v| = 1 i.e., v ∈ T . Then we have

Qσ(fg1;w1) = (f(g1)w1)
−1f(Fσ(fg1, w1))

= (f(g2)w2)
−1f(Fσ(fg2, w2)) = Qσ(fg2;w2),

and hence

Fσ(fg1;w1v) = Fσ(fg1;w1)〈σℓ(Fσ(fg1;w1)), Qσ(fg1;w1)
−1v〉

= Fσ(fg2;w2)〈σℓ(Fσ(fg2;w2)), Qσ(fg2;w2)
−1v〉 = Fσ(fg2;w2v).
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Defining condition CFℓ. The following condition on σ will ensure that Fσ and σℓ

are locally compatible, in the following sense. Assume as usual that σ = (df, ℓFf ) for

some unknown (f, F ) ∈ QIPn(G,H). Suppose we have some h0 ∈ H which is close

to both f(g1) and f(g2) for some g1, g2 ∈ G. Then we could try to find F (h0) by

computing Fσ(fg1;w) (where w represents f(g1)
−1h0) or by computing g2〈σℓ(g2), h〉

(where h = f(g2)
−1h0). We would like these calculations to give the same result so

long as h and w are not too big. In fact, this is a local condition.

Definition 0.17 (Compatibility of Fσ with σℓ) We say that σ = (σd, σℓ) ∈ A
G satisfies

condition CFℓ if

Fσ(fg1;w) = g2〈σℓ(g2), h〉

whenever

• g1, g2 ∈ G with dG(g1, g2) ≤ 2n+ 1,

• h ∈ BH(n+ 1, 1H),

• and w ∈ T ∗ with ℓ(w) ≤ n

are such that f(g1)w = f(g2)h.

Locality of CFℓ. To check the condition at g1, we just have to compute, for various

bounded values of h, w, and g−1
1 g2, the value of

Fσ(fg1;w)
−1g2〈σℓ(g2, h)〉 = (g−1

1 Fσ(fg1;w))
−1(g−1

1 g2〈σℓ(g2), h〉).

By Lemma 0.8, this calculation is local.
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Condition CFℓ is satisfied for σ arising from an n-QI pair. Let σ = (df, ℓFf )

for some (f, F ) ∈ QIPn. Then if g1, g2, w, h are as in the statement of condition CFℓ,

we have f(g1)w = f(g2)h in H and hence, using Lemma 0.7,

Fσ(fg1;w) = F (f(g1)w) = F (f(g2)h) = g2〈ℓFf (g2), h〉,

so σ satisfies CFℓ.

The following lemma implies that if σ satisfies all conditions up through CFℓ,

then Fσ(fg; uv) is determined by Fσ(fg; u) together with the values taken by σ on a

O(|v|)-neighborhood of Fσ(fg; u).

Lemma 0.10

If σ satisfies conditions Cf, RI, LF, and CFℓ, then for words u, v ∈ T ∗ and g ∈ G,

we have

Fσ(fg; uv) = Fσ(fFσ(fg; u);Q
−1v)

where Q is any word of length at most n representing Qσ(fg; u).

Proof 0.11 We proceed by induction on v, so we must first handle the case where

v = ǫ. If u is also trivial, then the statement reduces to

g〈σℓ(g), 1〉 = Fσ(fFσ(fg; ǫ);Q
−1),

which is true by condition CFℓ, applied with g1 = g and g2 = Fσ(fg; ǫ). Hence, we

may assume that u = xt for some x ∈ T ∗ and t ∈ T . We obtain

Fσ(fg; u) = Fσ(fg; x)〈σℓ(Fσ(fg; x)), Qσ(fg; x)
−1t〉

which is equal to Fσ(fFσ(fg; u);Q
−1) by condition CFℓ, applied with g1 = Fσ(fg; x)

and g2 = Fσ(fg; u) (and thus h = Qσ(fg; x)
−1t and w = Q−1).
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We have now handled the base case (where v is empty,) so assume for an in-

duction that we know v = xt for some x ∈ T ∗ and we know that Fσ(fg; ux) =

Fσ(fg; u)Fσ(fFσ(fg; u);Q
−1x). The desired equality

Fσ(fg; uxt) = Fσ(fg; u)Fσ(fFσ(fg; u);Q
−1xt)

then follows immediately from Lemma 0.9.

Defining condition RCF . The following condition says that, if we fix g ∈ G,

then Fσ(fg;−) should give the same answer on any two sufficiently short words

which represent the same element of H. Together with Lemma 0.10, this property

will imply that Fσ(fg;−) always gives the same answer on words which represent the

same element, regardless of length. This means that Fσ(fg;−) descends to a function

on H (Lemma 0.11).

Definition 0.18 (Relator consistency of F ) Suppose σ = (σd, σℓ) ∈ A
G satisfies all

of our previous conditions. We say that σ satisfies condition RCF if Fσ(fg;w1) =

Fσ(fg;w2) for all g ∈ G and w1, w2 ∈ T ∗ which represent the same element of H and

have length less than or equal to KH + n.

Locality of RCF. By Lemma 0.8, both sides of the equality

Fσ(fg;w1) = Fσ(fg;w2)

can be computed if we know σ on the ball of radius n+ (n2 + n)(KH + n) around g.

Condition RCF is satisfied for σ arising from an n-QI pair. If σ = (df, ℓFf ),

then for g ∈ G and words w1, w2 ∈ T ∗ representing the same element of H, we have,
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by Lemma 0.7,

Fσ(fg;w1) = F (f(g)w1) = F (f(g)w2) = Fσ(fg;w2).

We now show that if σ satisfies all of the previous conditions, then Fσ(fg;w) is

determined by the image of w in H, so that we may drop our cumbersome notation

and write Fσg(h) for Fσ(fg;w) where w ∈ T ∗ is any word representing f(g)−1h.

Lemma 0.11

If σ satisfies conditions Cf, RI, LF, CFℓ, and RCF, and if w,w′ ∈ T ∗ represent the

same element of H, then for any g ∈ G,

Fσ(fg;w) = Fσ(fg;w
′),

so that we may speak of Fσ(fg;−) as a function on H.

Proof 0.12 Recall that there exists a homotopy w = w0, . . . , wk = w′ from w to w′,

where each pair (wi, wi+1) is of the form (uvx, uv′x) for some words u, v, v′, x ∈ T ∗

with v and v′ having length at most KH and representing the same element of H.

Hence, it suffices to show that Fσ(fg; uvx) = Fσ(fg; uv
′x) for such pairs.

By Lemma 0.9, it suffices to show that Fσ(fg; uv) = Fσ(fg; uv
′). Let Q be a word

of length at most n representing Qσ(fg; u). By lemma 0.10 and assumption RCF,

Fσ(fg; uv) = Fσ(fg; u)Fσ(fFσ(fg; u);Q
−1v)

= Fσ(fg; u)Fσ(fFσ(fg; u);Q
−1v′) = Fσ(fg; uv

′),

as desired.

Definition 0.19 If σ satisfies conditions Cf, RI, LF, CFℓ, and RCF, then for g ∈ G

and h ∈ H, we let Fσg(h) denote Fσ(fg;w) for any word w ∈ T ∗ representing f(g)−1h.

By lemma 0.11, the choice of w is irrelevant.
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Defining condition NCF. By Lemma 0.7, we know that if σ = (df, ℓFf ) for

some (f, F ) ∈ QIPn(G,H), then Fσg is always the same function regardless of g,

(in particular, Fσg(h) = F (h) for any g ∈ G and h ∈ H). We will now define a local

condition on σ which will imply that Fσg1(h) = Fσg2(h) for any g1, g2 ∈ G and h ∈ H

(Lemma 0.12). In particular, the condition will mandate that this equality must hold

when g1 and g2 are neighbors in the Cayley graph of G.

Definition 0.20 (Neighbor consistency of F ) Suppose σ satisfies conditions Cf, RI,

LF, CFℓ, and RCF. Then we say that σ satisfies condition NCF if for all g ∈ G and

s ∈ S, we have that Fσgs(h) = Fσg(h) for all h ∈ H.

Locality of NCF. Suppose we knew that Fσgs(f(g)) were equal to Fσg(f(g)) for

all s ∈ S. Then for h ∈ H, we would have that Fσg(h) = Fσ(fg;w) for some word

w representing f(g)−1h. But then if v were any word representing f(gs)−1f(g), we

would have

Fσ(fgs; v) = Fσgs(f(g)) = Fσg(f(g)) = Fσ(fg; ǫ),

and thus by Lemma 0.9,

Fσgs(h) = Fσ(fgs; vw) = Fσ(fg;w) = Fσg(h).

Thus, it suffices to check that for all s ∈ S and g ∈ G, we have Fσg(f(g)) = Fσgs(f(g)),

which is the same as checking that Fσ(fg; ǫ) = Fσ(fgs; v) for some word v of length

at most n representing f(gs)−1f(g). Lemma 0.8 implies that we can do this if we

know σ on the ball of radius n+ (n2 + n)n around gs. It follows that NCF is a local

condition.

Condition NCF is satisfied for σ arising from an n-QI pair. As remarked

above, Lemma 0.7 says that Fσg = F when σ = (df, ℓFf ) for some (f, F ) ∈ QIPn(G,H).
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Hence, such σ satisfy condition NCF.

The following lemma says that all of Fσg are equal, as expected, so we can define

a global candidate quasi inverse Fσ : H → G.

Lemma 0.12

If σ satisfies conditions Cf, RI, LF, CFℓ, RCF, and NCF, then Fσg1(h) = Fσg2(h)

for any g1, g2 ∈ G and h ∈ H.

Proof 0.13 Let s0, . . . , sk ∈ S be such that g2 = g1s0s1 . . . sk. Then

Fσg1(h) = Fσg1s0(h) = . . . = Fσg1s0s1...sk−1
(h) = Fσg2(h).

Definition 0.21 If σ satisfies conditions Cf, RI, LF, CFℓ, RCF, and NCF, then we

define Fσ : H → G via

Fσ(h) = Fσg(h)

for h ∈ H, and any g ∈ G (by Lemma 0.12, the choice of g does not matter).

Defining condition LI. The reader may have noticed that although we know Fσ

is n-Lipshitz by condition LF and is a right n-quasi inverse to f by RI, we have not

yet imposed any condition which would imply that F is a left n-quasi inverse to f .

The following condition will ensure this.

Definition 0.22 (F is a left inverse) Suppose σ ∈ A
G satisfies conditions Cf, RI, LF,

CFℓ, RCF, and NCF. We say that σ satisfies condition LI if for all g ∈ G,

|〈σℓ(g), 1〉|S ≤ n.

Locality of LI. Manifestly, LI is a local condition.
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Condition LI is satisfied for σ arising from an n-QI pair. Certainly, if σ =

(df, ℓFf ) for some (f, F ) ∈ QIPn(G,H), then

〈σℓ(g), 1〉 = g−1F (f(g)) ∈ BG(n, 1G)

because F is a left n-quasi inverse to f .

We now finish the proof of the theorem by showing that, if σ satisfies all of our

conditions, then (f, Fσ) ∈ QIPn(G,H) (and of course σ = (df, ℓFσf )).

Lemma 0.13

Suppose that σ ∈ A
G satisfies Cf, RI, LF, CFℓ, RCF, NCF, and LI. Then (f, Fσ)

is an n-QI pair and (df, ℓFσf ) = σ.

Proof 0.14 First we check that ℓFσf = σℓ. By definition,

〈ℓFσf (g), h〉 = g−1Fσ(f(g)h)

= g−1Fσ(fg;h) = 〈σℓ(g), h〉,

where the last equality follows from condition CFℓ. Now we must confirm that (f, Fσ)

is an n-QI pair. Trivially, f is n-Lipschitz. By condition RI, the n neighborhood of

f(G) contains the N -neighborhood of f(G), and thus is all of H. Condition LF says

that σℓ(g) is n-Lipschitz for any g ∈ G. But we know that gσℓ(g) is Fσ restricted

to BH(N, f(g)), so it follows that Fσ is n-Lipschitz (since it is n-Lipschitz on each

BH(N, f(g)) and these cover H). It follows from RI that (f(g)h)−1f(g〈σℓ(g), h〉) is

within distance n of f(g)h. Thus, Fσ is a right n-quasi inverse to f . That it is a left n-

quasi inverse follows from condition LI, in light of the fact that Fσ(f(g)) = g〈σℓ(g), 1〉.

In light of Lemma 0.13, we are done.
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0.4.2 Subshifts on G from subshifts on H.

Given σ ∈ AH and a function f : G → H, define the pullback f ∗σ of σ under f to be

σ ◦ f , as σ may be thought of as a function H → A. In order to prove that having a

strongly aperiodic subshift of finite type is a QI invariant, we now describe a procedure

which takes two quasi isometric, finitely presented groups G and H, together with

a subshift of finite type X ⊂ AH , and produces a subshift X̃n ⊂ A′H which can be

thought of as the simultaneous pullback of X under all n-Lipschitz f : G → H which

have an n-Lipschitz two-sided n-quasi inverse. Theorem 0.6 will show that X̃n, called

the pull back subshift, is of finite type. First, we require a definition.

Definition 0.23 Let H be a group, generated, as always, by a fixed finite set T .

• For σ ∈ AH , define Bn(σ) ∈
(
ABH(n,1)

)H
by setting (Bn(σ))(h) to be k 7→ σ(hk).

• For a subshift X of AH , define BnX ⊂
(
ABH(n,1)

)H
to be {Bn(σ) : σ ∈ X}.

The idea is that the value taken by Bn(σ) at some h ∈ H records the behavior

of σ in the n-ball around h. This definition is useful because, if f : G → H is a

quasi isometry, then f ∗σ may not see all the values of σ, but for sufficiently large n,

f ∗Bn(σ) will. It is trivial to observe that if X is a subshift of finite type, then so

is BnX. Furthermore, if H has solvable word problem, then the defining forbidden

patterns of BnX can be computed from those of X. Given σ0 ∈
(
ABH(n,1)

)H
, we will

write 〈σ0(h), k〉 to denote (σ0(h))(k).

Theorem 0.6

If G,H are finitely presented groups, A finite, and X ⊂ AH a subshift of finite type,

then the set X̃n defined as

{(df, ℓFf , f
∗Bn(σ)) : (f, F ) ∈ QIPn(G,H), σ ∈ X}
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is a subshift of finite type on G. Furthermore, if some point (df, ℓFf , f
∗Bn(σ)) of this

subshift is periodic under gπ ∈ G, then σ is periodic under f(gπ)f(1G)
−1.

Before proving the theorem, we remark that f(gπ)f(1G)
−1 is not a typo for

f(1G)
−1f(gπ), and in particular, this period is not determined by g and df as one

might expect. An equivalent conclusion would be that σ · f(1) (also an element of

X) is f(1)−1f(gπ)-periodic. Either way we produce a periodic element of X from a

periodic element of X̃n as long as f(1) is different from f(gπ).

Proof 0.15 First, we will show that the given subshift is of finite type, then address

the question of periodicity. Theorem 0.5 already tells us that the set of (df, ℓFf ) such

that (f, F ) is an n-QI pair is a subshift of finite type. Hence, we must find local

conditions on a triple (df, ℓFf , σ0) which are satisfied exactly when σ0 is of the form

f ∗Bn(σ) for some σ ∈ X. How shall we recover σ from σ0? Observe that since f

is n-quasi surjective, every h ∈ H has the form h = f(g)k for some g ∈ G and

k ∈ BH(n, 1H), and so we must have

σ(h) = σ(f(g)k) = 〈σ0(g), k〉.

This potentially overdetermines σ(h) because g and k are not unique. However, if

g0, g1 ∈ G and k0, k1 ∈ BH(n, 1H) are such that f(g0)k0 = f(g1)k1, then

d(g0, g1) ≤ 2n+ d(F ◦ f(g0), F ◦ f(g1))

≤ 2n+ nd(f(g0), f(g1)) ≤ 2n+ 2n2.

This yields that it is a local condition to mandate that

〈σ0(g0), k0〉 = 〈σ0(g1), k1〉
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whenever f(g0)k0 = f(g1)k1. But we have seen that this condition is sufficient to

ensure that σ0 is of the form f ∗Bn(σ). Hence, the set of triples (df, ℓFf , f
∗Bn(σ)) is

of finite type as desired.

To show the result about periodicity, suppose that (f, F ) ∈ QIPn(G,H) and

σ ∈ X, and that (df, ℓFf , f
∗Bn(σ)) is gπ-periodic. This means in particular that

df · gπ = df and f ∗Bn(σ) = f ∗Bn(σ) · gπ. It follows that for any g ∈ G,

f(gπg) = f(gπ)

∫ gπg

gπ

df = f(gπ)

∫ g

1

(df · gπ)

= f(gπ)

∫ g

1

df = f(gπ)f(1)
−1f(g), (1)

so if h ∈ H is equal to f(g)k for g ∈ G and k ∈ BH(n, 1H), then

(σ · f(gπ)f(1)
−1)(h) = σ(f(gπ)f(1)

−1h) = σ(f(gπ)f(1)
−1f(g)k)

= σ(f(gπg)k) = 〈f ∗Bn(σ)(gπg), k〉 = 〈f ∗Bn(σ)(g), k〉

= σ(f(g)k) = σ(h).

Since every element of h can be written as such an f(g)k (because f is n-quasi

surjective), this establishes that σ is f(gπ)f(1)
−1-periodic.

We will now see that under the additional hypothesis of torsion-freeness, this the-

orem implies that having a strongly aperiodic subshift of finite type is a QI invariant.

Corollary 0.1

Let G,H be torsion free finitely presented groups, and suppose that G and H are

quasi isometric. Then G admits a strongly aperiodic subshift of finite type if and

only if H does.

Proof 0.16 Suppose that XH is a strongly aperiodic subshift of finite type. For some

n, we have QIPn(G,H) non empty. Let XG be the subshift

{(df, ℓFf , f
∗Bn(σ)) : (f, F ) ∈ QIPn(G,H); σ ∈ XH}
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which is a subshift of finite type by Theorem 0.6. We will show that XG is strongly

aperiodic.

If some point (df, ℓFf , f
∗Bn(σ)) of XG is periodic, say under gπ ∈ G \ {1}, then

Theorem 0.6 implies that σ is f(gπ)f(1)
−1 periodic. Since XH is strongly aperiodic,

we must have that f(gπ)f(1)
−1 = 1, i.e., f(gπ) = f(1). But our initial data is also

periodic under any power of gπ, hence f(gkπ) = f(1) for all natural numbers k by

equation (1) in the proof of Theorem 0.6. We conclude in particular that f(gkπ) does

not depend on k. This is impossible because |f(gkπ)| → ∞ (because |gkπ| → ∞ by

torsion-freeness, and f is a quasi isometry, so the image under f of an unbounded

sequence must be unbounded). It follows that XG is strongly aperiodic.

We have shown that G admits a strongly aperiodic subshift of finite type if H

does. The converse follows by symmetry.
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