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ABSTRACT

Complex Flow and Transport Phenomena in Porous Media

by

Ayçıl Çeşmelioğlu

This thesis analyzes partial differential equations related to the coupled surface

and subsurface flows and develops efficient high order discontinuous Galerkin (DG)

methods to solve them numerically. Specifically, the coupling of the Navier-Stokes

and the Darcy’s equations, which is encountered in the environmental problem of

groundwater contamination through lakes and rivers, is considered. Predicting accu-

rately the transport of contaminants by this coupled flow is of great importance for

the remediation strategies.

The first part of this thesis analyzes a weak formulation of the time-dependent

Navier-Stokes equation coupled with the Darcy’s equation through the Beavers-Joseph-

Saffman condition. The analysis changes depending on whether the inertial forces

are included in the interface conditions or not. The inclusion of the inertial forces

(Model I) remedies the difficulty in the analysis caused by the nonlinear convection

term; however, it does not reflect the physical interactions on the interface correctly.

Hence, I also analyze the weak problem by omitting these forces (Model II) which

complicates the analysis and necessitates an extra small data condition. For Model

I, a fully discrete scheme based on the DG method and the Crank-Nicolson method

is introduced. The convergence of the scheme is proven with optimal error estimates.

The second part couples the surface flow and a convection-diffusion type trans-



port with miscible displacement in the subsurface. Initially, I consider the coupled

stationary Stokes and Darcy’s equations for the flow and establish the existence of a

weak solution. Next, imposing additional assumptions on the data, I extend the result

to the nonlinear case where the surface flow is given by the Navier-Stokes equation.

The analysis also applies to the particular case where the flow is loosely coupled to

the transport, that is, the velocity field obtained from the flow is an input for the

transport equation. The flow is discretized by combinations of the continuous finite

element method and the DG method whereas the discretization of the transport is

done by a combined DG and backward Euler methods. The scheme yields optimal

error estimates and its robustness for fractured porous media is shown by a numerical

example.
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Chapter 1

Introduction

The coupling of the Navier-Stokes/Stokes and the Darcy’s equations arises in many

important engineering problems, an example of which is the contamination of ground-

water through lakes and rivers. Everyday more and more contaminants, such as haz-

ardous solids, liquid wastes and toxic wastes, are produced by industries or consumers.

These contaminants percolate through lakes, rivers and streams to the groundwater,

which is the main source of daily drinking water and irrigation water. It is impor-

tant to prevent health-threatening situations which may either be caused indirectly

by contamination of irrigation water, eventually harming life forms through the food

chain, or directly by contamination of drinking water. Development of reliable meth-

ods to accurately predict the transport of contaminants for a given time period is

extremely important for remediation processes.

The domain of this coupled flow is divided into two subdomains that represent the

surface and the subsurface regions. In the surface region, the flow is characterized by

the incompressible time-dependent/steady Navier-Stokes/Stokes equations, whereas

in the subsurface region, the flow is characterized by the Darcy’s equation. For a

discussion of the development of these equations, the reader may refer to Darrigol [1].

The coupling of these two different types of flow is accomplished through certain

interface conditions. Even though there is no universal agreement on the choice of the

right interface conditions, the usual conditions include the Beavers-Joseph-Saffman

law [2, 3], the continuity of the normal component of velocity and the balance of forces.
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This work also accepts these interface conditions to complete the partial differential

equation systems modeling the surface/subsurface flow.

In the coupled surface/subsurface flows, the heterogeneous nature of the reservoir

is an important factor determining the properties of the flow. For example, because

of the infinite combinations of porous medium structure (arrangement, composition),

it is only natural to expect dramatic variations in the permeability (the transmission

property of the porous medium) over the region. These variations cause difficulty in

the simulations. Discontinuous Galerkin (DG) methods are suitable to overcome this

difficulty as the discrete spaces are the discontinuous piecewise polynomial spaces.

In spite of being costly for triangular meshes, DG methods are advantageous over

other methods in the literature. First, DG methods are ideal for adaptivity since

they allow for hanging nodes. This is important to deal with complicated geometries.

The continuous finite element methods (FEM) can also handle adaptivity, but they

cannot handle meshes with several hanging nodes per edge. Second, with the DG

method, it is easy to change the degree of the approximating polynomial to get high

order approximations, while this takes much more effort in the case of classical finite

element method. Indeed, to change the polynomial degree in a DG code amounts

to changing only the routine generating the basis functions, whereas with the finite

element code, one has to basically rewrite the code. Another property that the DG

methods have, but the FEM methods lack, is the local mass conservation property.

In the absence of local mass conservation, the numerical solution of the coupled flow

and transport problems in porous media will be unstable [4, p.41]. For these reasons,

the discrete schemes I develop are based on the discontinuous Galerkin methods.

The history of the DG methods dates back to 1973 when they were introduced

by Reed and Hill for linear hyperbolic type problems to solve transport of neutrons
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using triangular and quadrilateral elements [5]. These methods were mathematically

analyzed later in 1974 by LeSaint and Raviart [6]. The application of these meth-

ods to elliptic and parabolic equations was through the introduction of the interior

penalty methods of Baker [7]. These methods arose from the observation that inter-

element continuity can be imposed weakly instead of being built into the finite element

space. Over the years new DG schemes were formulated that use symmetric or non-

symmetric bilinear forms, with or without stabilization and penalty terms and written

in a mixed or non-mixed form. Cockburn et al. [8] provides a review of the develop-

ment of the DG methods. The reader can also refer to the recent books by Rivière [4]

and Warburton and Hesthaven [9] on the DG methods. Because of the type of equa-

tions governing the flow problems, the DG methods considered in this thesis are the

interior penalty Galerkin methods that are designed to solve the elliptic and parabolic

type of problems. To be specific, symmetric interior penalty Galerkin method (SIPG)

introduced by Wheeler [10], Douglas and Dupont [11] and Arnold [12]; non-symmetric

interior penalty Galerkin method (NIPG) introduced by Rivière, Wheeler and Gi-

rault [13, 14, 15]; incomplete interior penalty Galerkin method (IIPG) introduced by

Dawson, Sun and Wheeler [16], Sun and Wheeler [17]; and Oden Babuska Baumann

(OBB) method [18] are used. These methods differ either by the sign of the stabil-

ity term or by the existence of the penalty term. NIPG and SIPG methods have

been successfully applied to various flow and transport problems in porous media

such as single-phase [13, 19, 20, 21] and two-phase [22, 23, 24, 25, 26, 27, 28] flow

problems, linear and reactive transport problems [29, 30] and miscible displacement

problems [31, 32, 33, 34].

The first problem of this research, part of which has been studied mathematically

in [35, 36], is the coupled time-dependent Navier-Stokes and Darcy’s equations. This
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flow is analyzed in two models depending on the choice of the balance of forces

interface condition. In the first model (Model I), the inertial forces are included in

the balance of forces, remedying the difficulty in the analysis caused by the nonlinear

convection term. However, this condition with the inertial forces does not reflect

the physical interactions on the interface correctly [37]. Hence, in the second model

(Model II), the balance of forces is considered without the inertial forces, giving a

more physical condition. This chapter can be seen as an extension of the steady-

state case which has been analyzed by Girault and Rivière [38] and Chidyagwai

and Rivière [39]. Girault and Rivière [38] prove the existence of a weak solution

under small data condition and its local uniqueness for the steady-state case of Model

II. Chidyagwai and Rivière [39] consider non-homogeneous boundary condition for

two model problems: one omits the inertial forces as in the paper by Girault and

Rivière [38]; the second one includes the inertial forces as in Model I and the existence

of a weak solution is proved unconditionally. The weak problem of a similar coupling

is analyzed by Badea et al. [40], where an interface problem with Steklov-Poincaré

operators is formulated. Removing the nonlinearity from the stationary Navier-Stokes

equations leads to the coupling of the Stokes and the Darcy’s equations. This problem

has been extensively studied in the literature. See, for instance, Layton et al. [41]

and Discacciati et al. [42] for the analysis of the weak solution.

Starting from the coupled problem with the mentioned interface conditions, I

define a weak solution and prove its existence. The proof is based on a Galerkin

technique and uses compactness results in Bochner spaces. In Model II, without

the aid of the inertial forces, an extra small data condition is necessary which gives a

conditional existence result for the weak solution. Also, under additional assumptions,

uniqueness is proved which is only in the local sense for Model II.
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For Model I, based on the weak formulation, I propose a fully discrete scheme

and prove optimal error estimates in space and a second order error estimate in time.

Based on the paper by Çeşmelioğlu and Rivière [36], the discretization is done by

discontinuous Galerkin (DG) methods in space and the Crank-Nicolson method in

time. The approximation spaces for the fluid velocity and the pressure in the Navier-

Stokes region are the discontinuous piecewise polynomials of degree k1 and k1 − 1.

On the other hand, the approximation of the fluid pressure in the Darcy region is

done by the discontinuous piecewise polynomials of degree k2. The reader can refer to

[43, 44, 45, 41, 46, 47, 48, 49, 50] for a variety of numerical schemes for the steady-state

Stokes/Darcy problem. For the numerical schemes and examples of the steady-state

Navier-Stokes/Darcy coupling, one can refer to [40, 38, 39, 51].

To further understand the groundwater contamination by lakes and rivers, I cou-

ple the surface/subsurface flow with a convection-diffusion transport equation. The

published literature is very sparse on this problem. The mathematical analysis of the

miscible displacement problem in subsurface was done in a seminal paper by Alt and

Luckhaus [52], and by others such as Marpeau and Saad [53] and Fabrie and Gal-

louët [54]. My contribution is the analysis of the more general coupling of miscible

displacement in porous media with surface flow and transport which to my knowl-

edge is the first analysis of this problem. First, I consider the steady-state case of the

Stokes/Darcy flow for the underlying flow problem as presented in [55]. I define the

mathematical model and introduce the necessary assumptions on the data. Then I

formulate the weak problem. The existence proof is based on a Galerkin approach in

time. To define the approximate solution, constant and linear interpolation operators

are used as in [52, 53]. Then using compactness results, passing to the limit in the

approximate solution gives the existence result for the linear problem. Next, I extend



6

this result to the nonlinear case, that is, I consider the Navier-Stokes/Darcy problem

to model the surface/subsurface flow. For this case, only the balance of forces condi-

tion excluding the inertial forces is considered. The reason is that the other condition

in Model I is relatively easier to prove and gives stronger mathematical results. The

proof for this nonlinear problem again is similar to the Stokes case under additional

assumptions on the data. This mathematical analysis also applies to the particular

case where the flow problem is loosely coupled to the transport problem.

In this loose one-way coupling, the velocity field obtained from the Stokes/Darcy

problem becomes an input data for the transport equation. A numerical scheme based

on a mixed method for the coupled Stokes/Darcy equations and a local discontinuous

Galerkin method [56] for the transport problem has been analyzed for this particular

case by Vassilev and Yotov [57]. In this thesis, the numerical analysis and a numer-

ical example from the paper by Çeşmelioğlu et al. [58] are included where the flow

problem is approximated by either the DG method or the FEM or by their combina-

tion. The transport problem is discretized by a DG method where upwinding, which

causes stability without the need for slope limiters, is used for the flux terms in the

subsurface [59]. The numerical example aims to show that the methods are robust

for fractured porous media.

This thesis is organized as described in the table of contents. Roughly, besides

this introduction chapter, there are five more chapters. Chapter 2, titled “Prelim-

inaries”, gives necessary notation, definitions and theorems. Chapter 3 studies the

time-dependent Navier-Stokes and Darcy coupling problem and the fourth Chapter

investigates the Navier-Stokes/Stokes-Darcy-transport problem. Chapter 5 gives con-

clusions of this thesis and the last chapter discussed possible extensions. The contents

of each chapter is described therein.



7

Chapter 2

Preliminaries

This section provides the well-known definitions, notation, inequalities and theorems

as well as the definition of the domain used throughout this thesis. Interested reader

should refer to [60, 61, 62, 63, 64, 65, 66, 67] for more details. For any space X,

X2 simply means the product space X ×X. The dual space of X is denoted by X ′

with the duality pairing 〈·, ·〉X′,X . The variable x = (x1, x2) ∈ R2 denotes the spatial

coordinate. We define the gradient of a scalar function v : R2 → R and the gradient

of a vector function v : R2 → R2 by

∇v =

(
∂v

∂xi

)
1≤i≤2

, ∇v =

(
∂v

∂xi

)
1≤i≤2

.

The divergence of a vector function v = (v1, v2) is defined by

∇ · v =
∑
i=1,2

∂vi

∂xi

.

Finally, for two vectors v = (v1,v2),u = (u1,u2), the dot product is defined to be

v · u =
∑
i=1,2

viui.

Let Ω ⊂ R2. For 1 ≤ p <∞, we define

Lp(Ω) = {v : Ω → R : v is measurable,

∫
Ω

|v|pdx <∞},

equiped with the norm

‖v‖Lp(Ω) =

(∫
Ω

|v|pdx
) 1

p

.
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The choice p = ∞ corresponds to the space of bounded functions defined as

L∞(Ω) = {v : Ω → R : v is measurable, ess sup
x∈Ω

|v| <∞},

equipped with the norm

‖v‖L∞(Ω) = ess sup
x∈Ω

|v|.

The space Lp(Ω), 1 ≤ p ≤ ∞ is a Banach space with the ‖ ·‖Lp(Ω) norm. When p = 2,

the space of square integrable functions L2(Ω) is a Hilbert space with the L2-inner

product

(v, w)Ω =

∫
Ω

vwdx, for scalar-valued functions v, w,

(v,w)Ω =

∫
Ω

v ·wdx, for vector-valued functions v,w,

(V ,W )Ω =
∑
i,j

∫
Ω

V ijW ijdx, for matrix-valued functions V ,W .

Furthermore,

Lemma 1. Let 1 ≤ p ≤ ∞. Then any sequence in Lp(Ω) that converges with respect

to the norm ‖ · ‖Lp(Ω), has a subsequence that converges pointwise almost everywhere.

For any continuous function v on R2, we define its support as

supp(v) = {x ∈ R2 : v(x) 6= 0}.

and denote the space of smooth functions with compact support (or the space of test

functions) in Ω by D(Ω). The following result is used for the density arguments.

Theorem 2. For 1 ≤ p <∞, the space D(Ω) is dense in the space Lp(Ω).

For a given Banach space B, the Bochner spaces are denoted by Lk(0, T ;B),

1 ≤ p ≤ ∞, k ≥ 1. The space Lk(0, T ;B) is also a Banach space equipped with the
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norm (
∫ T

0
‖ · ‖k

Bdt)
1/k for 1 ≤ p <∞ and esssupt∈(0,T )‖ · ‖B for p = ∞.

For any integer m, the classical Sobolev space is defined as

Hm(Ω) = {v ∈ L2(Ω) : ∂kv ∈ L2(Ω), ∀|k| ≤ m},

where k = (k1, k2), |k| = k1 +k2, k1, k2 ≥ 0 and ∂kv = ∂|k|v

∂x
k1
1 ∂x

k2
2

. On the space Hm(Ω),

the seminorm | · |Hm(Ω) and the norm ‖ · ‖Hm(Ω) are defined as follows:

|v|Hm(Ω) =

∑
|k|=m

∫
Ω

|∂kv|2dx

 1
2

, ‖v‖Hm(Ω) =

( ∑
0≤j≤m

|v|2Hj(Ω)dx

) 1
2

.

With the inner product (·, ·)Hm(Ω) =
∑

0≤|k|≤m(∂k·, ∂k·), the Sobolev space Hm(Ω)

is a separable Hilbert space . Also note that for m = 2, |v|H1(Ω) = ‖∇v‖L2(Ω). We

also define the Sobolev spaces for fractional indices. The space Hm+1/2(Ω) is the

interpolation of the spaces Hm(Ω) and Hm+1(Ω) which satisfies

Hm+1(Ω) ⊂ Hm+1/2(Ω) ⊂ Hm(Ω), and

∀v ∈ Hm+1(Ω), ‖v‖Hm+1/2(Ω) ≤ C‖v‖
1
2

Hm(Ω)‖v‖
1
2

Hm+1(Ω),

where C is a constant depending on Ω.

To properly define values of Sobolev functions on the boundary, we have the

following trace theorem:

Theorem 3. (Trace theorem) Assume that Ω is bounded with polygonal boundary

∂Ω. Then there exists surjective operators γ0 : Hr(Ω) → Hr−1/2(∂Ω), r > 1
2

and

γ1 : Hr(Ω) → Hr−3/2(∂Ω), r > 3
2

such that

∀v ∈ C1(Ω), γ0v = v|∂Ω, γ1v = ∇v · n|∂Ω

where n denotes the outward unit normal of ∂Ω.
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For Γ ⊂ ∂Ω, |Γ| 6= 0, we define

H1
0,Γ(Ω) = {v ∈ H1(Ω) : v = 0 on Γ}

where v = 0 on Γ is interpreted in the sense of the trace of a Sobolev space function

and we abuse notation by denoting γ0v by also v on Γ. When Γ = ∂Ω, we denote

H1
0,Γ(Ω) = H1

0 (Ω). The dual space of Lp(Ω), 1 ≤ p < ∞ is Lq(Ω) where q is the

conjugate of p, that is, 1
p

+ 1
q

= 1. For 1 ≤ m <∞, we denote by H−m(Ω), the dual

space of Hm
0 (Ω) together with the norm

‖f‖H−m(Ω) = sup
v∈Hm

0 (Ω),v 6=0

〈v, f〉H−m(Ω),Hm
0 (Ω)

‖v‖Hm(Ω)

.

Let X and Y be two Hilbert spaces such that X ⊂ Y is a continuous embedding.

Let f : [0, T ] → Y be an integrable function. We define the extension f̃ of f by

f̃(t) =

 f(t), t ∈ [0, T ]

0, otherwise

We define the Fourier transform of f̃ by

f̂(τ) =

∫ ∞

−∞
f̃(t)e−2πitτdt, ∀τ ∈ R.

Further, for any γ > 0, we define

Hγ(0, T ;X, Y ) = {f ∈ L2(0, T ;X) : |τ |γ f̂ ∈ L2(R;Y )}

equipped with the norm

‖f‖Hγ(0,T ;X,Y ) =
(
‖f‖2

L2(0,T ;X) + ‖|τ |γ f̂‖2
L2(R;Y )

) 1
2
.

The space Hγ will be useful in proving strong convergence results via compactness.

We proceed by stating important results of Calculus, Functional Analysis, Real

and Complex Analysis, Ordinary Differential Equations and Sobolev Space theory
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that we frequently use. For the weak formulation of our partial differential equations

system, we need formulas to relate the vector identities such as the divergence, the

gradient and the Laplacian.

Theorem 4. (Generalized Green’s formula) Assume that Ω is a Lipschitz domain.

Let u ∈ H1(Ω), v ∈ H2(Ω). Then∫
Ω

u∇ · F∇vdx = −
∫

Ω

F∇v · ∇udx +

∫
∂Ω

F∇v · nudσ

where n is the outward unit normal vector of ∂Ω and F is a matrix-valued function.

In particular when F = I,∫
Ω

u∆vdx = −
∫

Ω

∇v · ∇udx +

∫
∂Ω

∇v · nudσ

To apply the fixed point theorems to a function, we first need to show that

this function is really well-defined. Next two theorems are useful to prove the well-

definition of these functions. The first theorem supplies us a way to represent uniquely

the bounded linear functionals on Hilbert spaces in terms of the inner product.

Theorem 5. (Riesz representation theorem) Any continuous linear functional L on

a Hilbert space H with the inner product (·, ·)H has a unique representation, i.e.,

∃ !u ∈ H : L(v) = (u, v)H, ∀v ∈ H.

Furthermore, the mapping L 7→ u is an isomorphism of H′ → H.

The following theorem is an extension of the Riesz representation theorem which

is generally used to prove existence and uniqueness.

Theorem 6. (Lax-Milgram theorem) Let H be a Hilbert space and B : H ×H → R

be a bilinear mapping such that there exists α, β > 0 satisfying
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• |B(u, v)| ≤ α‖u‖H‖v‖H, ∀u, v ∈ H, (continuity)

• |B(u, u)| ≥ β‖u‖2
H, ∀u ∈ H. (coercivity)

If L : H → R is a bounded linear functional on H, then there exists a unique u ∈ H

such that

B(u, v) = L(v), ∀v ∈ H.

Moreover, the mapping L 7→ u is an isomorphism from H′ to H.

The following theorem is a special case of the compactness theorem of Rellich and

Kondrachov that is enough for our purposes.

Theorem 7. (Rellich-Kondrachov theorem) Let Ω ⊂ R2 be an open, bounded Lips-

chitz domain.

• If 0 ≤ l < 1, then H1(Ω) is compactly embedded in H l(Ω).

• H1(Ω) is compactly embedded in L1(Ω).

The following theorems are used to prove existence results for nonlinear partial

differential equations. The first one is used for the finite dimensional case and the

next one is used for the infinite dimensional case.

Theorem 8. (Corollary to Brouwer’s fixed point theorem) Let H be a finite dimen-

sional Hilbert space. Let F : H → H be a continuous mapping such that there exists

C > 0 satisfying

∀v ∈ H, ‖v‖H = C, (F(v), v)H ≥ 0.

Then F has a zero v0 in a ball withg radius C of H, i.e.,

∃ v0 ∈ H : F(v0) = 0 and ‖v0‖H ≤ C.
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Theorem 9. (Schauder’s fixed point theorem) Let X be a Banach space and E ⊂ X is

nonempty, closed and convex. If f : E → X is a continuous map such that f(E) ⊂ E

and f(E) is compact, then f has a fixed point in E, i.e., there exists x in E such that

f(x) = x.

One of the most important convergence theorems of Lebesgue integration theory

is stated next. For this thesis, the a.e. version is chosen.

Theorem 10. (Lebesgue dominated convergence theorem) Let (X,µ) be a measure

space. Suppose that {fn} is a sequence of complex measurable functions defined a.e.

in X such that

f = lim
n→∞

fn, a.e. in X

If there is g ∈ L1(X) such that

|fn| ≤ g, n = 1, 2, . . . , a.e. in X

then f ∈ L1(X),

lim
n→∞

∫
X

|fn − f |dµ = 0

and

lim
n→∞

∫
X

fndµ =

∫
Ω

fdµ.

Weak and weak? topologies possess important compactness properties which allow

one to extract weakly and weakly? convergent subsequences from bounded sequences.

The following states the compactness property related to the weak topology.

Theorem 11. In a reflexive Banach space, any bounded set is relatively weakly com-

pact.

The next theorem is related to the compactness property of the weak∗ topology.
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Theorem 12. (Banach-Alaoglu theorem)

Let X be a normed space. Then the unit ball of the dual space X’ of X is weakly?

compact.

Next two compactness results have been proven by Simon [67]. Let X ⊂ B ⊂ Y

be Banach spaces with compact embedding X ↪→ B.

Theorem 13. For 1 ≤ p ≤ ∞, assume that F is a bounded set in Lp(0, T ;X), and

‖f(t+ h)− f(t)‖Lp(0,T−h;Y ) → 0 as h→ 0, uniformly for f ∈ F.

Then F is relatively compact in Lp(0, T ;B).

Theorem 14. Assume that F is a bounded set in L∞(0, T ;X), and

{∂f
∂t

: f ∈ F} is bounded in Lr(0, T ;Y ), r > 1.

Then F is relatively compact in C0(0, T ;B).

Theorem 15. (Schauder’s theorem for compact operators) Let X, Y be Banach spaces

and T : X → Y be a bounded linear operator. Then T is a compact operator if and

only if T ? is compact.

By the Rellich-Kondrachov theorem and Schauder’s theorem we deduce the fol-

lowing:

Corollary 16. L∞(Ω) is compactly embedded in (H1(Ω))′.

The following focuses on some well-known inequalities.

Theorem 17. (Triangle inequality) Let X be a normed space equipped with norm

‖ · ‖X . Then,

∀x, y ∈ X, ‖x+ y‖X ≤ ‖x‖X + ‖y‖X .

--
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Theorem 18. (Young’s inequality) Let p, q > 1, 1
p
+ 1

q
= 1. Then, for any nonnegative

a, b ∈ R,

ab ≤ ap

p
+
bq

q
.

Using the Young’s inequality, one can prove the following theorem:

Theorem 19. (Hölder’s inequality) Let 1 ≤ p1, . . . , pk ≤ ∞ such that 1
p1

+. . .+ 1
pk

= 1.

• Generalized Integral form : If fi ∈ Lpi(Ω), i = 1, . . . , k, then∫
Ω

|f1 . . . fk|dx ≤
k∏

i=1

‖fi‖Lpi (Ω).

• Summation form for finite sums: Let ai, bi ∈ R, i = 1, . . . , k. Then

k∑
i=1

|aibi| ≤ (
k∑

i=1

|ai|p)
1
p (

k∑
i=1

|bi|q)
1
q .

Theorem 20. (Cauchy-Schwarz inequality) Let X be an inner product space over the

field of real numbers, with inner product (·, ·)X . Then

|(u, v)| ≤ ‖u‖X‖v‖X , ∀u, v ∈ X.

Remark 21. Cauchy-Schwarz inequality can be seen as a special case of Hölder’s

inequality integral form when k = 2, p1 = p2 and X = L2(Ω).

The rest of the inequalities and theorems come from the Sobolev space theory.

Theorem 22. (Sobolev imbedding) Let Ω ⊂ R2. H1
0 (Ω) is compactly imbedded into

Lp(Ω), for any p <∞ and there exists C > 0 that depends only on Ω such that

∀v ∈ H1
0 (Ω), ‖v‖Lp(Ω) ≤ C‖∇v‖L2(Ω). (2.1)

Remark 23. When r = 2, the inequality (2.1) is called Poincaré inequality. By the

virtue of this inequality, | · |H1(Ω) is a norm on H1
0 (Ω).
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Figure 2.1 : The domain Ω = Ω1 ∪ Ω2 ⊂ R2.

The symmetric deformation tensor D(u) = ∇u+∇uT

2
to be used in the Navier-

Stokes/Stokes equations satisfies the following inequality:

Theorem 24. (Korn’s inequality) Let v ∈ H1
0,Γ(Ω) where |Γ| 6= 0. There exists a

constant C > 0 such that

‖D(v)‖L2(Ω) ≤ C‖v‖H1(Ω).

Now let us introduce the region of concern Ω ⊂ R2, which is shown in the Fig-

ure 2.1, for the flow problems of this thesis. The domain Ω is subdivided into two

subregions as Ω = Ω1 ∪ Ω2 where Ω1 corresponds to the surface region and Ω2 corre-

sponds to the subsurface region. We assume that Ω is an open, bounded, connected

Lipschitz domain with Lipschitz boundary denoted by ∂Ω. The vector n stands for

the unit outward normal to ∂Ω.

Let ∂Ωi, i = 1, 2, denote the boundary of Ωi with exterior unit normal nΩi
and

define the interface separating Ω1 and Ω2 by Γ12 = ∂Ω1 ∩ ∂Ω2 with unit normal

Stokes /N avier-Stokes 

0 1 

Darcy 

02 
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n12 pointing from Ω1 to Ω2. We denote the tangential unit vector of Γ12 by τ 12.

The portion of the boundary ∂Ωi different from the interface Γ12 is denoted by Γi =

∂Ωi\Γ12, i = 1, 2. The boundary Γ2 is further decomposed into two disjoint parts

to differentiate the Dirichlet and Neumann boundaries; that is, Γ2 = Γ2D ∪ Γ2N with

|Γ2D| > 0.

Finally, some notation related to the DG methods are presented. Let Ω be a

polygonal domain subdivided into a regular mesh Eh, which contains triangular or

rectangular elements E, with h being the maximum element diameter. We define the

discontinuous piecewise polynomial space of degree r ≥ 1 on mesh Eh by

Dr(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ Pr(E)}

where Pr(E) is the space of polynomials of degree less than or equal to r, defined on E.

For each edge e on the mesh Eh, we pick a unit normal vector ne. If the edge e is shared

by two elements, first we order them as E1 and E2, then we assume ne is pointing

from E1 to E2. If the edge is on the boundary, we pick by convention the outward

unit normal. Since continuity across the mesh interior edges is not a requirement for

the discrete functions, these functions take different values on different sides of the

edge e. This makes new definitions necessary to account for this difference. Define

the jump and average values of v ∈ Dr(Eh) on the edge e ⊂ ∂E1 ∩ ∂E2 by

[v] = v|E1 − v|E2 , {v} =
v|E1 + v|E2

2
.

For the case of a boundary edge e which belongs to an element E, by convention we

set

[v] = {v} = v|E.

We denote the length of the edge e by |e|.
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Chapter 3

Coupling of the Time-Dependent Navier-Stokes

and Darcy Equations

Coupling of the incompressible Navier-Stokes and Darcy’s equations has been an im-

portant multiphysics problem which models the interaction between incompressible

free flow and porous media flow. This coupling problem has many applications in

natural and industrial settings. It is used, for example, to model groundwater con-

tamination through lakes and rivers, which is an important environmental issue. We

depend on groundwater as an important source of daily drinking water and irrigation

water. So it is crucial to keep our water free from chemical or organic pollutants if

possible. Developing accurate simulation methods to foresee the behavior of contam-

inants is a necessary component in the remediation of contaminated groundwater.

The first objective of this chapter is to formulate a weak problem to the partial

differential equations system governing the coupled flow and then show the existence

of a weak solution. The second objective is to introduce and analyze a fully discrete

scheme to solve this coupled flow problem. Solving this problem is challenging because

of the complicated physical interactions on the interface between the two fluid regions.

Appropriate conditions must be chosen to reflect these interactions. Two widely

accepted interface conditions, the continuity of the normal component of the velocity

and the balance of forces, together with the emprical interface condition of Beavers-

Joseph-Saffman are assumed in this work.

This chapter explains the analysis of the coupled time-dependent Navier-Stokes
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and Darcy’s equations with respect to two different models, part of what has been

done by Çeşmelioğlu and Rivière [35, 36], in more detail. The difference between these

models is the inclusion of the inertial forces in the balance of forces interface condition.

It is not clear whether to include the inertial forces is necessary or not. Including

them makes sense in mathematical point of view and the mathematical analysis is

more easier whereas omitting them is physically more meaningful but much more

challenging. Both of these models are governed by the same set of partial differential

equations and completing initial and boundary conditions. The first section defines

these equations and conditions describing the coupling of the time-dependent Navier-

Stokes flow and Darcy flow while pointing out the difference in the balance of forces

interface condition to be used in Model I and Model II. The third section provides the

derivation of a weak formulation, which is equivalent to the original problem under

enough smoothness assumptions. The fourth section establishes the existence and

uniqueness of the weak solution to this weak formulation using the Galerkin method.

The fifth section introduces a numerical scheme based on DG methods in space and

Crank-Nicolson method in time. The sixth section states the necessary properties of

the spaces and forms that arise from the numerical scheme. The last two sections

focus on the existence and uniqueness results and the error estimates for the discrete

solution under appropriate conditions on the data. To my knowledge, this analysis is

the first in the literature for the time-dependent coupling problem.

3.1 Model Problem

The governing equations for the coupled surface and subsurface flow depend on the

major dynamical laws of continuum mechanics, such as the continuity equation (or

conservation of mass) and the momentum equation (or conservation of momentum).
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Denote by Ω ⊂ R2 a bounded region decomposed into two disjoint domains; Ω1 for

the Navier-Stokes flow region and Ω2 for the Darcy flow region. The unknowns are

the fluid velocity u(x, t) and the fluid pressure p(x, t) in the Navier-Stokes region Ω1

and the fluid pressure ϕ(x, t) in the Darcy region Ω2. The flow in Ω1 over the time

interval (0, T ) is characterized by the time-dependent Navier-Stokes equations:

∂u

∂t
−∇ · (2νD(u)− pI) + u · ∇u = Ψ, in Ω1 × (0, T ), (3.1)

where ν > 0 is the kinematic fluid viscosity (measure of the internal resistance of a

fluid to flow or to shear) and the vector function Ψ(x, t) is a body force, including

the gravitational forces, acts on Ω1 × [0, T ]. The deformation tensor D(u) in (3.1)

is defined to be the symmetric part of ∇u, that is, D(u) = 1
2
(∇u + (∇u)T ). The

Navier-Stokes equations defined by (3.1) represents the conservation of momentum.

The flow is incompressible in the Navier-Stokes region Ω1, which means that the

volume of any part of the fluid remains constant during the flow. So, the density

remains constant and the mass conservation (or continuity) equation implies

∇ · u = 0, in Ω1 × (0, T ). (3.2)

The flow in the porous media Ω2 is characterized by the Darcy’s law, which states

that the flux is proportional to the pressure gradient:

−∇ ·K∇ϕ = Π, in Ω2 × (0, T ). (3.3)

Here, K(x) is a positive definite symmetric matrix corresponding to the hydraulic

conductivity of Ω2, that is, the ability of the porous medium to conduct fluids con-

sidering the dynamic viscosity [68]. The hydraulic conductivity K depends on space

location and may be highly discontinuous. The scalar function Π(x, t) is an external
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force, including the gravitational forces, acts on Ω2× [0, T ]. Completion of the system

(3.1)-(3.3) is through the initial condition

u = u0, in Ω1 × {0}, (3.4)

and a set of boundary and interface conditions defined below. On Γ1, the Dirichlet

(or no-slip) boundary condition is assumed,

u = 0, on Γ1 × (0, T ). (3.5)

On Γ2, the Dirichlet and the Neumann (or no-flow) boundary conditions are assumed.

ϕ = 0, on Γ2D × (0, T ), (3.6)

K∇ϕ · nΩ2 = 0, on Γ2N × (0, T ). (3.7)

The flow on different sides of the interface is governed by different types of par-

tial differential equations. Suitable interface conditions are crucial to overcome the

incompatibility caused by distinct behaviors of these two flow types. An obvious

interface condition is the continuity of the flux (or mass conservation),

u · n12 = −K∇ϕ · n12, on Γ12 × (0, T ). (3.8)

Correction for the tangential velocity should also be imposed on the interface. The

widely accepted Beavers-Joseph-Saffman interface condition [2, 3, 69], based on ex-

perimentation and later mathematically justified by Jäger and Mikelić [70], sets the

tangential component of the velocity to be proportional to the shear stress.

GK− 1
2 u · τ 12 = −2νD(u)n12 · τ 12. (3.9)

The positive proportionality constant G in (3.9) is determined experimentally [2,

3, 69]. The last interface condition is the main difference between the two models

-
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presented in this thesis. For Model I, the balance of forces includes the inertial forces

1
2
u · u and given as

((−2νD(u) + pI)n12) · n12 +
1

2
(u · u) = ϕ, onΓ12 × (0, T ). (3.10)

Chidyagwai and Rivière [39] and Çeşmelioğlu and Rivière [35] consider this condition,

which arises naturally from the momentum equation written in divergence form.Also

note that (3.10) prevents p + C, where C is a constant, to solve the system given

a solution p. So there is no need to have an extra condition for uniqueness on the

Navier-Stokes pressure p.

For Model II, we omit the inertial forces hence the balance of forces is as follows:

((−2νD(u) + pI)n12) · n12 = ϕ, on Γ12 × (0, T ). (3.11)

Now that the system describing this surface and subsurface flow is complete, one of

the questions that this thesis seeks an answer to is whether there is a solution to (3.1)-

(3.9) with the condition (3.10) or (3.11). Rather than looking for a classical solution,

a weaker solution (u, p, ϕ) in suitable spaces is sought by relaxing the smoothness

requirements. We proceed by first showing the existence of a weak solution for Model

I and analyzing the proposed numerical method. Then we provide similar results for

Model II under additional small data condition.

3.2 Model I with the Inertial Forces on the Interface

As mentioned before, this section considers the time-dependent Navier-Stokes/Darcy

coupling where the balance of forces interface condition includes the inertial forces.

First, the corresponding weak problem is formulated and the existence of a weak

solution is provided. Then a numerical scheme based on the Discontinuous Galerkin
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methods in space and Crank-Nicolson method in time is derived. Existence of the

discrete solution and error analysis are also given in this section.

3.2.1 Weak Formulation

The underlying spaces for a weak solution are defined as follows:

X = H1
0,Γ1

(Ω1)
2, M1 = L2(Ω1), M2 = H1

0,Γ2D
(Ω2).

For simplicity, I define a form γ which will take into account the interface conditions

of the weak formulation as follows:

∀u,v ∈ X, ∀p, q ∈M2, γ(u, p; v, q) = (p− 1

2
(u · u),v · n12)Γ12

+G(K− 1
2 u · τ 12,v · τ 12)Γ12 − (u · n12, q)Γ12 .

Consequently, observe that

∀u ∈ X, ∀p ∈M2, γ(u, p; u, p) = −1

2
(u·u,u·n12)Γ12+G(K− 1

2 u·τ 12,u·τ 12)Γ12

≥ −1

2
(u · u,u · n12)Γ12 (3.12)

as K− 1
2 is positive semi-definite. Together with this notation, the following weak

formulation is proposed:

Find (u, p, ϕ) ∈ (L2(0, T ; X)∩H1(0, T ;L2(Ω1)
2))×L2(0, T ;M1)×L2(0, T ;M2) such

that

(P )



∀v ∈ X,∀q ∈M2, (∂u
∂t
,v)Ω1 + 2ν(D(u),D(v))Ω1 + (u · ∇u,v)Ω1

− (p,∇ · v)Ω1 + (K∇ϕ,∇q)Ω2 + γ(u, ϕ; v, q)

= (Ψ,v)Ω1 + (Π, q)Ω2 ,

∀q ∈M1, (∇ · u, q)Ω1 = 0,

∀v ∈ X, (u(0),v)Ω1 = (u0,v)Ω1 .
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The following lemma shows the equivalence of the original problem and the weak

problem under appropriate smoothness assumptions defined in its statement.

Lemma 25. Assume that

Ψ ∈ L2(0, T ;L2(Ω1)
2), Π ∈ L2(0, T ;L2(Ω2)) (3.13)

and K ∈ L∞(Ω2)
2×2 is uniformly bounded and positive definite in Ω2, i.e., there exists

λmin, λmax > 0 such that

λmin|x|2 ≤ Kx · x ≤ λmax|x|2, a.e. x ∈ Ω2. (3.14)

In addition, let u0 be in L2(Ω1)
2. Then any solution (u, p, ϕ) of (3.1)-(3.10) that

belongs to (L2(0, T ; X) ∩ H1(0, T ;L2(Ω1))
2) × L2(0, T ;M1) × L2(0, T ;M2) is also a

solution to (P ). Conversely any solution to (P ) satisfies (3.1)-(3.10).

Proof. Let (u, p, ϕ) ∈ (L2(0, T ; X)∩H1(0, T ;L2(Ω1)
2))×L2(0, T ;M1)×L2(0, T ;M2)

be a solution to (3.1)-(3.10). Note that because of the assumptions on the data, the

following Green’s formulas hold [38, p.2056]:

∀v ∈ H1(Ω1)
2, (∇ · (2 νD(u)− pI),v)Ω1

= −(2 νD(u),∇vΩ1 + (p,∇ · v)Ω1 + 〈(2 νD(u)− pI)nΩ1 ,v〉∂Ω1 .

and

∀q ∈ H1(Ω2), −(∇ ·K∇ϕ, q)Ω2 = (K∇ϕ, q)Ω2 − 〈K∇ϕ · nΩ2 , q〉∂Ω2 ,

The first step is to prove that (u, p, ϕ) satisfies the problem (P ). For that purpose,

let v ∈ X. The scalar product of (3.1) with v ∈ X over Ω1 yields

(
∂u

∂t
,v)Ω1 − (∇ · (2νD(u)− pI),v)Ω1 + (u · ∇u,v)Ω1 = (Ψ,v)Ω1 .--
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Green’s formula applied to the second term gives

(
∂u

∂t
,v)Ω1 + (2νD(u),∇v)Ω1 − (p,∇ · v)Ω1 + 〈(−2νD(u) + pI)nΩ1 ,v〉∂Ω1

+ (u · ∇u,v)Ω1 = (Ψ,v)Ω1 .

Observe that by the symmetry property of D(u),

(D(u),∇v)Ω1 =

∫
Ω1

2∑
i,j=1

(D(u))ij(∇v)ijdx =

∫
Ω1

2∑
i,j=1

(D(u))ji(∇v)ijdx

=

∫
Ω1

2∑
i,j=1

(D(u))ji((∇v)T )jidx = (D(u), (∇v)T )Ω1 .

Therefore,

(D(u),D(v))Ω1 = (D(u),
1

2
(∇v + (∇v)T ))Ω1 =

1

2
(D(u),∇v)Ω1 +

1

2
(D(u), (∇v)T )Ω1 = (D(u),∇v)Ω1 . (3.15)

This and the assumption that v = 0 on Γ1 gives

(
∂u

∂t
,v)Ω1 + (2νD(u),∇v)Ω1 − (p,∇ · v)Ω1 + 〈(−2νD(u) + pI)n12,v〉Γ12

+ (u · ∇u,v)Ω1 = (Ψ,v)Ω1 . (3.16)

Now let q ∈M2. Taking the scalar product of (3.3) with q over Ω2 yields

(−∇ ·K∇ϕ, q)Ω2 = (Π, q)Ω2 .

Green’s formula, the boundary condition (3.7) and the fact that nΩ2 = −n12 implies

(K∇ϕ,∇q)Ω2 + 〈(K∇ϕ) · n12, q〉Γ12 = (Π, q)Ω2 . (3.17)

Adding (3.16) and (3.17) yields

(
∂u

∂t
,v)Ω1 + (2νD(u),D(v))Ω1 + (u · ∇u,v)Ω1 + (K∇ϕ,∇q)Ω2

− (p,∇ · v)Ω1 + 〈(−2νD(u) + pI)n12,v〉Γ12 + 〈(K∇ϕ) · n12, q〉Γ12

= (Ψ,v)Ω1 + (Π, q)Ω2 . (3.18)
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The velocity vector v can be written as the sum of its normal and tangential compo-

nents, that is,

v = (v · n12)n12 + (v · τ 12)τ 12.

Also, according to Girault and Rivière [38],

((2νD(u)− pI)n12) · n12 ∈ L2(Γ12) (3.19)

yielding

〈(−2νD(u) + pI)n12,v〉Γ12 = (((−2νD(u) + pI)n12) · n12,v · n12)Γ12

+ (((−2νD(u))n12) · τ 12,v · τ 12)Γ12 .

Thus, recalling (3.9) and (3.10),

〈(−2νD(u) + pI)n12,v〉Γ12 = (ϕ− 1

2
(u · u),v · n12)Γ12 +G(K− 1

2 u · τ 12,v · τ 12)Γ12 .

Further, taking scalar product of (3.8) with q ∈M2 on Γ12 gives

〈K∇ϕ · n12, q〉Γ12 = −(u · n12, q)Γ12 .

Combining these with (3.18) gives the following equation, which is the exact copy of

the first equation in the formulation (Q):

(
∂u

∂t
,v)Ω1 + (2νD(u),D(v))Ω1 + (u · ∇u,v)Ω1 + (K∇ϕ,∇q)Ω2 − (p,∇ · v)Ω1

+ γ(u, ϕ; v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 .

Now let q ∈M1 and multiply (3.2) by q and integrate over Ω1 to get (∇ ·u, q)Ω1 = 0.

This completes the weak formulation (P ).

To show the converse, take a solution (u, p, ϕ) of (P ) such that (u, p, ϕ) ∈

(L2(0, T ; X) ∩ H1(0, T ;L2(Ω1))
2 × L2(0, T ;M1) × L2(0, T ;M2). As u(t) ∈ X and
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ϕ(t) ∈ M2, by definition of these spaces, equations (3.5) and (3.6) are satisfied im-

mediately. The assumption (∇ · u, q)Ω1 = 0 for all q ∈ M1 gives (3.2). To get (3.1),

let v ∈ D(Ω1)
2 and q = 0. This, using the definition of weak derivatives yields

(
∂u

∂t
− 2ν∇ ·D(u) + u · ∇u +∇p,v)Ω1 = (Ψ,v)Ω1 .

Therefore, in the sense of distributions on Ω1,

∂u

∂t
− 2ν∇ ·D(u) + u · ∇u +∇p = Ψ. (3.20)

which is (3.1). Similarly, letting v = 0 and q ∈ D(Ω2) in the same equation of (P )

yields

−(∇ ·K∇ϕ, q)Ω2 = (Π, q)Ω2 .

Hence, in the distributional sense on Ω2,

−∇ ·K∇ϕ = Π. (3.21)

Hence (3.3) is satisfied. Taking the scalar product of (3.20) with v ∈ X yields

(
∂u

∂t
,v)Ω1 − (2ν∇ ·D(u),v)Ω1 + (u · ∇u,v)Ω1 + (∇p,v)Ω1 = (Ψ,v)Ω1 .

By Green’s formula, we get

(
∂u

∂t
,v)Ω1 + (2νD(u),∇v)Ω1 + (u · ∇u,v)Ω1 − (p,∇ · v)Ω1

+ 〈(−2νD(u) + pI)nΩ1 ,v〉∂Ω1 = (Ψ,v)Ω1 . (3.22)

Multiplying (3.21) by q ∈M2 and integrating over Ω2 gives

(−∇ ·K∇ϕ, q)Ω2 = (Π, q)Ω2 .

As q ∈ H1(Ω2), applying Green’s formula once more gives

(K∇ϕ,∇q)Ω2 − 〈(K∇ϕ) · nΩ2 , q〉Ω2 = (Π, q)Ω2 . (3.23)
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Adding (3.22) and (3.23) and using (3.15) gives

(
∂u

∂t
,v)Ω1 + (2νD(u),D(v))Ω1 + (u · ∇u,v)Ω1 − (p,∇ · v)Ω1 + (K∇ϕ,∇q)Ω2

+〈(−2νD(u) + pI)nΩ1 ,v〉∂Ω1 + 〈−(K∇ϕ) · nΩ2 , q〉∂Ω2 = (Ψ,v)Ω1 + (Π, q)Ω2 .

A comparison of the above equation with (P ) yields

∀v ∈ X,∀q ∈M2, (ϕ− 1

2
(u · u),v · n12)Γ12 +G(K− 1

2 u · τ 12,v · τ 12)Γ12

− (u · n12, q)Γ12 = 〈(−2νD(u) + pI)nΩ1 ,v〉∂Ω1 + 〈−(K∇ϕ) · nΩ2 , q〉∂Ω2 . (3.24)

Letting v = 0 in (3.24),

(u · n12, q)Γ12 = 〈K∇ϕ · nΩ2 , q〉∂Ω2 . (3.25)

Choosing q = 0 on Γ12 and since q = 0 on Γ2D,

〈K∇ϕ · nΩ2 , q〉Γ2N
= 0.

which implies (3.7). This, nΩ2 = −n12 on Γ12 and q = 0 on Γ2D reduces (3.25) to

∀q ∈M2, (u · n12, q)Γ12 = −〈K∇ϕ · n12, q〉Γ12

which leads to (3.8). Next, taking q = 0 in (3.24) gives

∀v ∈ X, (ϕ− 1

2
(u · u),v · n12)Γ12 + G(K− 1

2 u · τ 12)τ 12,v)Γ12

= 〈(−2νD(u) + pI)n12,v〉Γ12 .

Thus,

(−2νD(u) + pI)n12 = (ϕ− 1

2
(u · u))n12 +G(K− 1

2 u · τ 12)τ 12. (3.26)

Taking dot product of (3.26) with n12 and τ 12, respectively, concludes the proof by

establishing the conditions (3.9) and (3.10). D 
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Hence the problem (3.1)-(3.10) is equivalent to the problem (P ). In other words,

if a weak solution is smooth enough, it is, in fact, a strong solution. So, rather than

searching for a strong solution, it suffices to show the existence of a weak solution.

We conclude this section by recalling some important inequalities, such as Poincaré,

Sobolev’s, Korn’s and trace inequalities introduced in the preliminary chapter. For

any v ∈ X, there exist constants S2, S4, T2, T4, CD > 0 depending only on Ω1 such

that

‖v‖L2(Ω1) ≤ S2|v|H1(Ω1), ‖v‖L4(Ω1) ≤ S4|v|H1(Ω1), (3.27)

‖v‖L2(Γ12) ≤ T2|v|H1(Ω1), ‖v‖L4(Γ12) ≤ T4|v|H1(Ω1), (3.28)

|v|H1(Ω1) ≤ CD‖D(v)‖L2(Ω1). (3.29)

Also, for any q ∈M2, there exist S̃2 depending only on Ω2 satisfying

‖q‖L2(Ω2) ≤ S̃2|q|H1(Ω2), (3.30)

3.2.2 Existence of a Weak Solution

The method to prove the existence of a weak solution is the Galerkin method. The

idea is to convert the problem to a finite dimensional one by representing the solution

in terms of the basis functions of a finite dimensional subspace of the solution space.

Then the weak solution is obtained as the limit of the Galerkin approximation. In

addition, from the assumption (3.14), we have

1√
λmax

‖K
1
2∇q‖L2(Ω2) ≤ |q|H1(Ω2) ≤

1√
λmin

‖K
1
2∇q‖L2(Ω2). (3.31)

Now define the product space Y = X ×M2 with the norm

∀(v, q) ∈ Y , ‖(v, q)‖Y = (2ν‖D(v)‖2
L2(Ω1) + ‖K

1
2∇q‖2

L2(Ω2))
1
2
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and the associated scalar product

∀(v, q), (w, r) ∈ Y , ((v, q), (w, r))Y = 2ν(D(v),D(w))Ω1 + (K∇q,∇r)Ω2

derived from the weak formulation. Because of (3.29) and (3.31), the norm ‖(·, ·)‖Y

is equivalent to the following product norm:

∀(v, q) ∈ Y , ‖(v, q)‖ = (|v|2H1(Ω1) + |q|2H1(Ω2))
1
2 .

So (Y , ‖(·, ·)‖Y ) is a Hilbert space. Consider now a nicer subspace of Y on which

the problem (P ) is simplified. This subspace on which the Navier-Stokes pressure p

vanishes is the product space of the space of divergence free functions

V = {v ∈ X : ∇ · v = 0 in Ω1}

and M2, that is, W = V ×M2. The space W is also a Hilbert space with the norm

and scalar product of Y . Restricting the test functions v to V in (P ), we obtain a

simpler variational formulation:

Find (u, ϕ) ∈ (L2(0, T ; V ) ∩H1(0, T ;L2(Ω1)
2)× L2(0, T ;M2) such that

(PV )


∀(v, q) ∈ W , (∂u

∂t
,v)Ω1 + 2ν(D(u),D(v))Ω1 + (u · ∇u,v)Ω1

+(K∇ϕ,∇q)Ω2 + γ(u, ϕ; v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 ,

∀v ∈ V , (u(0),v)Ω1 = (u0,v)Ω1 .

Clearly, if (u, p, ϕ) is a solution to (P ), then (u, ϕ) is a solution to (PV ) but not vice

versa. So, after showing the existence of a solution (u, ϕ) to problem (PV ) using the

Galerkin method, a Navier-Stokes pressure p should be constructed such that (u, p, ϕ)

is a solution to (P ).

Because, the spaces V and M2 are separable, the product space W is also a sepa-

rable. Thus, we can find a basis {wi, ri}i≥1 of W such that wi ∈ V ∩H2(Ω1)
2 and ri ∈
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M2∩H2(Ω2). Fix a positive integerm and let W m = span{(wi, ri), i = 1, . . . ,m}. De-

note by u0m the orthogonal projection in L2(Ω1)
2 of u0 onto span{wi, i = 1, . . . ,m}.

Specifically, u0m is chosen to be any element in W m such that u0m → u0 strongly in

L2(Ω1)
2. Then a Galerkin approximation to problem (PV ) is the finite-dimensional

problem (Pm) defined as

Find (um, ϕm) ∈ L2(0, T ; W m) with um ∈ H1(0, T ;L2(Ω1)
2) such that

(Pm)


∀(v, q) ∈ W m, (∂um

∂t
,v)Ω1 + 2ν(D(um),D(v))Ω1 + (um · ∇um,v)Ω1

+(K∇ϕm,∇q)Ω2 + γ(um, ϕm; v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 ,

∀v ∈ V m (um(0),v)Ω1 = (u0m,v)Ω1 .

The following shows the existence of a unique solution to (Pm) and also a uniform

bound for the solution. If it exists, a solution (um, ϕm), expanded in terms of the

basis functions, is of the form

um(x, t) =
m∑

j=1

αm
j (t)wj(x), ϕm(x, t) =

m∑
j=1

βm
j (t)rj(x)

where (αm
j , β

m
j ) is selected so that (Pm) is satisfied. Letting v = wi and q = ri, in

(Pm), i = 1, . . . ,m, we obtain an equivalent system written in matrix form. For that

aim, the following mass and stiffness matrices A,B,C and M are defined:

Aij = (wj,wi)Ω1 , Bij = 2ν(D(wj),D(wi))Ω1 +G(K− 1
2 wj · τ 12,wi · τ 12)Γ12 ,

Mij = (K∇rj,∇ri)Ω2 , Cij = (rj,wi · n12)Γ12 , i, j = 1, . . . ,m.

The unknown vectors α and β are defined as αi = αm
i , βi = βm

i , i = 1, . . . ,m and

we also define the right hand side vectors F (α), b, c and g0 as follows:

(F (α))i = N iα ·α, bi = (Ψ,wi)Ω1 , ci = (Π, ri)Ω2 , (g0)i = (Πmu0,wi)Ω2

where N i =
(
(wj · ∇wk,wi)Ω1 − 1

2
(wj ·wk,wi · n12)Γ12

)
1≤j,k≤m

.
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With this notation (Pm) is equivalent to the following first order non-homogeneous

nonlinear system of ordinary differential equations
Aα′ + Bα + F(α)−CT β = b

Mβ + Cα = c

Aα(0) = g0

(3.32)

As K is symmetric positive definite and ri’s are linearly independent, M is also sym-

metric positive definite. Hence, we can plug β = M−1
(
c−Cα

)
in the first equation.

Note also that as wi’s are linearly independent, the Gram matrix A is invertible and

positive definite. Hence (3.32) leads to the following initial value problem: α′(t) + A−1
(
B + CTM−1C

)
α = A−1

(
b− F(α) + CTM−1c

)
α(0) = A−1g0

(3.33)

By Carathéodory’s theorem [62, p.43, Thm 1.1], this nonlinear differential system has

a maximal solution α defined on some interval [0, tm]. Then, showing a priori bounds

on the solution will imply that tm = T . Indeed, I will show later that um is bounded

in L∞(0, T ;L2(Ω1)
2) and Carathéodory’s theorem will imply that there is a maximal

solution α(α(0); t) on some interval [0, tm] where 0 ≤ tm ≤ T . Let [0, tmax[ be the

maximal half-open subinterval of [0, T ] such that α(α(0); t) exists. Let

G(α(t), t) = A−1
(
b(t)− F(α(t)) + CTM−1c(t)− (B + CTM−1C)α(t)

)
.

Integrating (3.33), from boundedness of G, there exists M > 0 such that

‖α(t)−α(s)‖ ≤
∫ t

s

‖G(α(ξ), ξ)‖dξ ≤M(t− s)

for any t, s ∈ [0, T ]. Hence α = limt→tmax α(t) exists. We want to show that tmax = T .

Assume otherwise that tmax < T . Set a new initial value problem as follows: α′(t) = G(α(t), t),

α(tmax) = α.
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Using Carathéodory’s theorem once more, we get a solution α(α(tmax), t) on [0, tm].

Now consider the function defined by

α(t) =

 α(α(0); t), t ∈ [0, tmax);

α(α(tmax); t− tmax), t ∈ [tmax, tmax + tm].

This is a solution on the interval [0, tmax + tm], a contradiction to the maximality of

tmax. Thus tmax = T .

Next, as promised before, a priori estimates for the solution (um, ϕm) will be

derived. Choosing (v, q) = (um, ϕm) in (Pm) yields

(
∂um

∂t
,um)Ω1 + 2ν(D(um),D(um))Ω1 + (um · ∇um,um)Ω1 + (K∇ϕm,∇ϕm)Ω2

+ γ(um, ϕm; um, ϕm) = (Ψ,um)Ω1 + (Π, ϕm)Ω2 . (3.34)

To rewrite the third term, observe that, by Green’s theorem, for all v ∈ V ,

0 = (∇ · v,v · v)Ω1 = −2(v,v · ∇v)Ω1 + (v · nΩ1 ,v · v)∂Ω1

= −2(v,v · ∇v)Ω1 + (v · n12,v · v)Γ12 .

Hence as um ∈ V ,

(um,um · ∇um)Ω1 =
1

2
(um · n12,um · um)Γ12 .

This cancels the same term with the opposite sign in γ(um, ϕm; um, ϕm). Thus from

(3.12), γ(um, ϕm; um, ϕm) ≥ 0 which applied to (3.34) yields,

1

2

d

dt
‖um‖2

L2(Ω1) + 2ν‖D(um)‖2
L2(Ω1) + ‖K

1
2∇ϕm‖2

L2(Ω2) ≤ (Ψ,um)Ω1 + (Π, ϕm)Ω2 .

The terms on the right-hand side are bounded using the Cauchy-Schwarz inequality
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and the inequalities (3.27)-(3.31):

(Ψ,um)Ω1 + (Π, ϕm)Ω2 ≤ ‖Ψ‖L2(Ω1)S2|um|H1(Ω1) + ‖Π‖L2(Ω2)S̃2|ϕm|H1(Ω2)

≤ ‖Ψ‖L2(Ω1)S2CD‖D(um)‖L2(Ω1) + ‖Π‖L2(Ω2)S̃2
1√
λmin

‖K
1
2∇ϕm‖L2(Ω2)

≤ 1

4ν
S2

2C
2
D‖Ψ‖2

L2(Ω1) + ν‖D(um)‖2
L2(Ω1) +

1

2

S̃2
2

λmin

‖Π‖2
L2(Ω2) +

1

2
‖K

1
2∇ϕm‖2

L2(Ω2).

Therefore,

1

2

d

dt
‖um‖2

L2(Ω1) + ν‖D(um)‖2
L2(Ω1) +

1

2
‖K

1
2∇ϕm‖2

L2(Ω2)

≤ 1

4ν
S2

2C
2
D‖Ψ‖2

L2(Ω1) +
1

2

S̃2
2

λmin

‖Π‖2
L2(Ω2).

Multiplying this by 2 and integrating from 0 to t concludes

‖um(t)‖2
L2(Ω1) + 2

∫ t

0

‖(um, ϕm)‖2
Y ≤ C2

e , (3.35)

where

Ce =
(
‖u0‖2

L2(Ω1) +
1

2ν
S2

2C
2
D‖Ψ‖2

L2(0,T ;L2(Ω1)) +
S̃2

2

λmin

‖Π‖2
L2(0,T ;L2(Ω2)))

1
2 . (3.36)

Therefore, taking supremum over [0, T ] yields

sup
t∈[0,T ]

‖um(t)‖2
L2(Ω1) + ‖(um, ϕm)‖2

L2(0,T ;Y ) ≤ C2
e .

This a priori bound implies existence of a solution to (3.33) on the interval [0, T ].

The following theorem summarizes the results so far:

Theorem 26. Under the assumptions of Lemma 25 there exists a solution (um, ϕm) ∈

W m to the problem (Pm) satisfying

sup
t∈[0,T ]

‖um(t)‖2
L2(Ω1) + ‖(um, ϕm)‖2

L2(0,T ;Y ) ≤ C2
e , (3.37)

where Ce is the constant independent of m defined explicitly by (3.36).
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Recall that (um, ϕm) is an approximation of (u, ϕ). Hence, passing to the limit

as m → ∞ will yield the existence of a solution for the problem (PV ). However,

certain convergence results for the sequences um and ϕm are necessary to validate

the passage to the limit. These properties come from the boundedness of (um, ϕm),

some compactness theorems and a Fourier transform in time, as discussed below.

As shown above, the sequence {(um, ϕm)}m≥1 is bounded in L2(0, T,W ). Since

W is reflexive, so is L2(0, T,W ). Hence, by Theorem 11, there is a subsequence still

denoted by {(um, ϕm)}m≥1 and a pair (u, ϕ) ∈ L2(0, T ; W ) such that

um → u weakly in L2(0, T ; V ), and (3.38)

ϕm → ϕ weakly in L2(0, T ;M2). (3.39)

Also, since the sequence {um}m≥1 is bounded in L∞(0, T ;L2(Ω1)
2), by the Banach-

Alaoglu Theorem 12, there exists a further subsequence, still denoted by {um}m≥1

such that for some u∗ ∈ L∞(0, T ;L2(Ω1)
2),

um → u∗ weakly ∗ in L∞(0, T ;L2(Ω1)
2). (3.40)

This implies that∫ T

0

(um(t)− u∗(t),v(t))Ω1dt→ 0, ∀v ∈ L2(0, T ;L2(Ω1)
2). (3.41)

Also, by (3.38),∫ T

0

(um(t)− u(t),v(t))Ω1dt→ 0, ∀v ∈ L2(0, T ;L2(Ω1)
2). (3.42)

Therefore comparing (3.41) and (3.42) gives

∀v ∈ L2(0, T ;L2(Ω1)
2),

∫ T

0

(u(t)− u∗(t),v(t))Ω1dt→ 0.

Hence,

u = u∗ ∈ L2(0, T ; V ) ∩ L∞(0, T ;L2(Ω1)
2). (3.43)
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Next, consider ψ : [0, T ] → R such that ψ(T ) = 0 and ψ ∈ C1([0, T ]). Multiply the

first equation in (Pm) by ψ(t) and integrate from 0 to T . Integrating by parts applied

to the first term together with the initial condition of (Pm) yields for all (v, q) ∈ W

that

−
∫ T

0

(um(t), ψ′(t)v)Ω1dt− (u0m,v)Ω1ψ(0) + 2ν

∫ T

0

(D(um), ψ(t)D(v))Ω1dt

+

∫ T

0

(um(t) · ∇um(t), ψ(t)v)Ω1dt+

∫ T

0

(K∇ϕm(t), ψ(t)∇q)Ω1dt

+

∫ T

0

γ(um, ϕm; v, q)dt =

∫ T

0

(Ψ(t), ψ(t)v)Ω1dt+

∫ T

0

(Π(t), ψ(t)q)dt.

By (3.38), (3.39), (3.40), (3.43) and letting m → ∞, in the linear terms, um and

ϕm can be replaced with u and ϕ. As um(0) = u0m → u0 strongly in L2(Ω1)
2,

letting m → ∞, u0m can be replaced with u0. However, passing to the limit in the

nonlinear terms and the interface terms is not that easy. For that, the compactness

result on Hγ(0, T,V , L2(Ω1)
2) [71, p.186] with 0 < γ < 1/4, which requires the

boundedness of the sequence {um}m≥1 in the spaceHγ(0, T,V , L2(Ω1)
2), will be used.

This boundedness can be shown using a Fourier transform in time. For the details,

see A.1. Then, applying the compactness result, another subsequence {um}m≥1 can

be extracted such that

um → u strongly in L2(0, T ;L2(Ω1)
2). (3.44)

Observe also that for any u ∈ V and any v,w ∈ X,

(u · ∇v,w) = −(u · ∇w,v)Ω1 + (u · nΩ1 ,v ·w)∂Ω1

= −(u · ∇w,v)Ω1 + (u · n12,v ·w)Γ12 (3.45)
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Then, using the previous choice of ψ,

∫ T

0

(um(t) · ∇um(t), ψ(t)v)Ω1dt

= −
∫ T

0

(um(t) · ψ(t)∇v,um(t))Ω1dt+

∫ T

0

(um(t) · n12,um(t) · ψ(t)v)Γ12dt.

By (3.38) and (3.44),∫ T

0

(um(t) · ψ(t)∇v,um(t))Ω1dt→
∫ T

0

(u(t) · ψ(t)∇v,u(t))Ω1dt.

Recall that the trace operator from H1(Ωi) to H
1
2 (∂Ωi) is continuous [60, p.216] for

the weak topology. Thus, (3.38) and (3.39) yield

um|∂Ω1 → u|∂Ω1 weakly in L2(0, T ;H
1
2 (∂Ω1)

2), and (3.46)

ϕm|∂Ω2 → ϕ|∂Ω2 weakly in L2(0, T ;H
1
2 (∂Ω2)). (3.47)

Also from a Sobolev embedding [60, p.97], after extracting another subsequence,

um|∂Ω1 → u|∂Ω1 strongly in L2(0, T ;L4(∂Ω1)
2), (3.48)

which allows the passage to the limit in the interface terms.

Finally, for any (v, q) ∈ W m and ψ ∈ C1[0, T ] with ψ(T ) = 0,

−
∫ T

0

(u(t),v)Ω1ψ
′(t)dt+ (u0,v)Ω1ψ(0) + 2ν

∫ T

0

(D(u),D(v))Ω1ψ(t)dt

+

∫ T

0

(u(t) · ∇u(t),v)Ω1ψ(t)dt+

∫ T

0

(K∇ϕ(t),∇q)Ω1ψ(t)dt

+

∫ T

0

γ(u(t), ϕ(t); v, q)dt =

∫ T

0

(Ψ(t),v)Ω1ψ(t)dt+

∫ T

0

(Π(t), q)ψ(t)dt. (3.49)

The second equation in Pm is true for u and u0 as u0m → u0 strongly in L2(Ω1)
2.

Indeed, letting m→∞ in (um(0),v) = (u0m,v), we obtain

(u(0),v) = (u0,v), ∀v ∈ V m. (3.50)
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Recall that {(wi, ri)}i∈N is total in W , which means that any (v, q) ∈ W can be

approximated by the elements of W m’s. Therefore, (3.49) holds for any (v, q) ∈ W .

As D(0, T ) contains functions which vanish at both 0 and T , the term with ψ(0) can

be removed by restricting ψ to D(0, T ). Then (3.49) gives

−
∫ T

0

(u(t),v)Ω1ψ
′(t)dt+2ν

∫ T

0

(D(u),D(v))Ω1ψ(t)dt+

∫ T

0

(u(t)·∇u(t),v)Ω1ψ(t)dt

+

∫ T

0

(K∇ϕ(t),∇q)Ω1ψ(t)dt+

∫ T

0

γ(u(t), ϕ(t); v, q)ψ(t)dt

=

∫ T

0

(Ψ(t),v)Ω1ψ(t)dt+

∫ T

0

(Π(t), q)Ω2ψ(t)dt.

By the definition of weak derivatives,

−
∫ T

0

(u(t),v)Ω1ψ
′(t)dt =

∫ T

0

(u′(t),v)Ω1ψ(t)dt.

So, for any ψ ∈ D(0, T ),

∫ T

0

(
u′(t),v)Ω1 +2ν(D(u(t)),D(v))Ω1 +

∫ T

0

(u(t) ·∇u(t),v)Ω1 +(K∇ϕ(t),∇q)Ω1

+ γ(u(t), ϕ(t),v, q)
)
ψ(t)dt =

∫ T

0

(
(Ψ(t),v)Ω1 + (Π(t), q)Ω2ψ(t)

)
dt.

Therefore, for all (v, q) ∈ W ,

(u′,v)Ω1 + 2ν(D(u),D(v))Ω1 + (u · ∇u,v)Ω1 + (K∇ϕ,∇q)Ω1

+ γ(u, ϕ; v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 (3.51)

in the distributional sense.

To see u0 = u(0), we multiply (3.51) with ψ ∈ C1[0, T ] such that ψ(T ) = 0. Then
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integrating from 0 to T and applying integration by parts on the first term yields

−
∫ T

0

(u(t),v)Ω1ψ
′(t)dt− (u(0),v)Ω1ψ(0) + 2ν

∫ T

0

(D(u),D(v))Ω1ψ(t)dt

+

∫ T

0

(u(t) · ∇u(t),v)Ω1ψ(t)dt+

∫ T

0

(K∇ϕ(t),∇q)Ω1ψ(t)dt∫ T

0

γ(u(t), ϕ(t); v, q)dt =

∫ T

0

(Ψ(t),v)Ω1ψ(t)dt+

∫ T

0

(Π(t), q)Ω2ψ(t)dt.

Comparing this with (3.49) yields (u0,v)Ω1ψ(0) = (u(0),v)Ω1ψ(0). Finally, choosing

a nonzero ψ(0) gives (u0−u(0),v)Ω1 = 0,∀v ∈ V , completing the existence proof of

(u, ϕ) to the problem (PV ) .

In the following, we state the above result in which the a priori estimate is deduced

trivially from the approximate case by the weak lower semicontinuity of the norm.

Corollary 27. Under the same assumptions on the data as in Lemma 25 there exists

a solution (u, ϕ) of (PV ). Furthermore, any solution of (PV ) satisfies

sup
t∈[0,T ]

‖u‖2
L2(Ω1) + ‖(u, ϕ)‖2

L2(0,T ;Y ) ≤ C2
e (3.52)

where Ce is defined by (3.36).

In the following, the uniqueness of the solution (u, ϕ) is provided. The common

technique to prove uniqueness is supposing that there are two solutions and showing

that they coincide. That being said, assume that (u, ϕ) and (ũ, ϕ̃) are two solutions

of (PV ). Let w = u− ũ and r = ϕ− ϕ̃. Then, the first equation in (PV ) implies that

(w, r) ∈ L2(0, T ; W ) satisfies

(
∂w

∂t
,v)Ω1 + 2ν(D(w),D(v))Ω1 + (w · ∇u,v)Ω1 + (ũ · ∇w,v)Ω1

+ (K∇r,∇q)Ω2 + γ(u, ϕ; v, q)− γ(ũ, ϕ̃; v, q) = 0.

--
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Then, choose v = w and q = r in the above equation, use (3.12), add and subtract

1
2
(ũ · u,v · n12) to get

1

2

d

dt
‖w‖2

L2(Ω1) + 2ν‖D(w)‖2
L2(Ω1) + ‖K

1
2∇r‖2

L2(Ω2) + (w · ∇u,w)Ω1 + (ũ · ∇w,w)Ω1

− 1

2
(w · u,w · n12)Γ12 −

1

2
(ũ ·w,w · n12)Γ12 ≤ 0. (3.53)

From (3.45), (ũ · ∇w,w)Ω1 = −(ũ · ∇w,w)Ω1 + (ũ · n12,w ·w)Γ12 , which gives

(ũ · ∇w,w)Ω1 =
1

2
(ũ · n12,w ·w)Γ12 .

This reduces (3.53) to

1

2

d

dt
‖w‖2

L2(Ω1) + 2ν‖D(w)‖2
L2(Ω1) + ‖K

1
2∇r‖2

L2(Ω2) ≤ −(w · ∇u,w)Ω1

− 1

2

(
(w ·w, ũ · n12)Γ12 −

1

2
(w · (u + ũ),w · n12)Γ12

)
.

The right hand side of the above equation can be bounded, by the virtue of (3.27)-

(3.30) and (3.52), with the following expression:

≤ ‖w‖2
L4(Ω1)‖∇u‖L2(Ω1) +

1

2
‖w‖2

L4(Γ12)(‖u‖L2(Γ12) + 2‖ũ‖L2(Γ12))

≤ C3
D‖D(w)‖2

L2(Ω1)

(
S2

4‖D(u)‖L2(Ω1) +
1

2
T 2

4 (T2‖D(u)‖L2(Ω1) + 2T2‖D(ũ)‖L2(Ω1))
)

≤ C3
D

Ce√
2ν

(
S2

4 +
3

2
T2T

2
4 )‖D(w)‖2

L2(Ω1).

Thus,

1

2

d

dt
‖w‖2

L2(Ω1) + (2ν − C3
D

Ce√
2ν

(
S2

4 +
3

2
T2T

2
4 ))‖D(w)‖2

L2(Ω1) + ‖K
1
2∇r‖2

L2(Ω2) ≤ 0.

Since w(0) = 0, multiplying by 2 and taking the integral from 0 to T yields

‖w(T )‖2
L2(Ω1) + 2(2ν − C3

D

Ce√
2ν

(
S2

4 +
3

2
T2T

2
4 ))‖D(w)‖2

L2(0,T ;L2(Ω1)2×2)

+ 2‖K
1
2∇r‖2

L2(0,T ;L2(Ω2)2) ≤ 0. (3.54)
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Lastly, imposing the condition

(2ν)3/2 > C3
DCe

(
S2

4 +
3

2
T2T

2
4 ),

the inequality (3.54) leads to (w, r) = (0, 0) which gives uniqueness.

So far, under additional assumptions on the data, the uniqueness of the solution

(u, ϕ) of the problem (PV ) is proved. The only thing left to show is, given the

solution (u, ϕ) of the problem (PV ), the existence of a pressure p, for which (u, p, ϕ)

is a solution of the problem (P ). I will follow the argument in [71]. Observe first

that (u,v,w) 7→ (u · ∇v,w)Ω1 is a continuous trilinear form on V . Therefore, there

exists B(u,v) ∈ V ′ such that (u · ∇v,w)Ω1 = 〈B(u,v),w〉V ′,V , for all w ∈ V . Let

Bu = B(u,u). Also observe that for any u ∈ L2(0, T ; V ′), Bu ∈ L1(0, T ; V ′). Now,

define

Υ(t) =

∫ t

0

u(s)ds, Ξ(t) =

∫ t

0

Ψ(s)ds, ∆(t) =

∫ t

0

Buds.

Then Υ, Ψ, ∆ ∈ C(0, T ; V
′
). Integrating (PV ) from 0 to t, choosing v ∈ V with

v = 0 on Γ12 and q = 0 yields

∀t ∈ (0, T ), 2ν(D(Υ(t)),D(v))Ω1 = 〈u(0)− u(t)−∆(t) + Ξ(t),v〉V ′,V

where u(0) − u(t) −∆(t) + Ξ(t) ∈ C(0, T ; V ′). So, for all t ∈ [0, T ], there exists a

P (t) ∈ L2(Ω1) such that

∀t ∈ (0, T ), ∇P (t) = Ξ(t)− u(t) + u(0) + 2ν∇ ·D(Υ(t))−∆(t). (3.55)

Because right-hand side of (3.55) belongs to C([0, T ];H−1(Ω1)
2), so does ∇P . The

fact that the gradient operator is an isomorphism from L2(Ω1) \ R into H−1(Ω1)
2

concludes that P belongs to C([0, T ];L2(Ω1)). Differentiating (3.55) with respect to

time on Ω1 × (0, T ) gives

∂u

∂t
− 2ν∇ ·D(u) + u · ∇u +∇p = Ψ
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in the distributional sense where

p =
∂P

∂t
.

The following theorem concludes this section by stating the existence and uniqueness

results obtained above.

Theorem 28. Let u0 ∈ V and suppose that the data assumptions of Lemma 25 holds.

If in addition,

(2ν)3/2 > C3
DCe

(
S2

4 +
3

2
T2T

2
4 ),

then the problem (PV ) has a unique solution (u, ϕ) ∈ (L2(0, T ; V )∩H1(0, T ;L2(Ω1)
2)×

L2(0, T ;M2) such that

sup
t∈[0,T ]

‖u(t)‖2
L2(Ω1) + ‖(u, ϕ)‖2

L2(0,T ;Y ) ≤ C2
e , (3.56)

with the constant defined in Theorem 26. Moreover, there exists p ∈ L2(0, T ;M1)

such that (u, p, ϕ) is a solution to the problem (P ).

Now that the results about existence and uniqueness for the weak solution of (P )

are achieved, I will proceed with the formulation of a discrete scheme.

3.2.3 Numerical Scheme

This section contains a more elaborate version of the method given in the paper by

Çeşmelioğlu and Rivière [36]. I begin by introducing necessary notation for the space

discretization. For i = 1, 2, let E i
h be a regular mesh of Ωi consisting of triangles or

quadrilaterals. As usual, the size of the mesh is characterized by h, the maximum

diameter of the mesh elements. Let Γ1
h denote the set of edges that are either in the

interior of Ω1 or on the boundary Γ1. Let Γ2
h denote the set of edges that are either in

the interior of Ω2 or on the Dirichlet boundary Γ2D. The meshes are not assumed to
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match at the interface Γ12. Let k1 and k2 be two positive integers. We consider the

following finite dimensional spaces for the discretization of the Navier-Stokes velocity,

the Navier-Stokes pressure and the Darcy pressure :

Xh = (Dk1(E1
h))2, M1

h = Dk1−1(E1
h), M2

h = Dk2(E2
h).

The discretization of the elliptic operators −2ν∇ ·D(u) and −∇ ·K∇ϕ is done by

the bilinear forms aNS and aD defined below:

∀u,v ∈ Xh, aNS(u,v) = 2ν
∑
E∈E1

h

(D(u),D(v))E − 2ν
∑
e∈Γ1

h

({D(u)ne}, [v])e

+2εNSν
∑
e∈Γ1

h

({D(v)ne}, [u])e + ν
∑
e∈Γ1

h

σe

|e|
([u], [v])e,

∀p, q ∈M2
h , aD(p, q) =

∑
E∈E2

h

(K∇p,∇q)E −
∑
e∈Γ2

h

({K∇p · ne}, [q])e

+εD
∑
e∈Γ2

h

({K∇q · ne}, [p])e +
∑
e∈Γ2

h

σe

|e|
([p], [q])e.

The symmetrization parameters εNS, εD take a constant value among {−1, 0, 1} that

specifies which variation of the primal DG method is being used. For example, the

choice εNS = εD = 1 corresponds to the non-symmetric interior penalty Galerkin

(NIPG) method, the choice εNS = εD = −1 corresponds to the symmetric interior

penalty Galerkin (SIPG) method and the choice εNS = εD = 0 corresponds to the

incomplete interior penalty Galerkin (IIPG) method. These interior penalty methods

were introduced for the elliptic problem in [10, 13, 16]. The parameters σe are positive

constants defined for each edge e to be used to penalize the jumps or in other words

to control the amount of discontinuity. Denote by σmin the minimum value of σe over

all edges e ∈ Γ1
h ∪ Γ2

h. From now on, σmin is assumed to be greater than 1, which is

necessary for the analysis of the scheme.
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The discretization of the pressure term ∇p is done by the bilinear form bNS:

∀v ∈ Xh, ∀p ∈M1
h , bNS(v, p) = −

∑
E∈E1

h

(p,∇ · v)E +
∑
e∈Γ1

h

({p}, [v] · ne)e. (3.57)

For the discretization of the nonlinear convectionb term u · ∇u, I introduce further

notation. For any element E, nE denotes the outward unit normal to ∂E. The trace

of a function v on ∂E coming from the interior of E is denoted by vint, whereas

the trace coming from the exterior is denoted by vext. If the edge belongs to Γ1, by

convention, vint = v and vext = 0. In a sense, the difference vint−vext is just another

way to write the jump of v on the edge. With these notations, the discretization of

u · ∇u is through the forms cNS and dNS defined below.

∀u,v,w ∈ Xh, cNS(u; v,w) =
∑
E∈E1

h

(u · ∇v,w)E +
1

2

∑
E∈E1

h

(∇ · u,v ·w)E

−1

2

∑
e∈Γ1

h

([u] · ne, {v ·w})e,

∀z,u,v,w ∈ Xh, dNS(z,u; v,w) =
∑
E∈E1

h

(|{u} · nE|(vint − vext),wint)∂E−(z)\Γ12 ,

where ∂E−(z) = {x ∈ ∂E : {z(x)} · nE < 0} is the inflow boundary of ∂E with

respect to the vector field z. Clearly, the form cNS is linear with respect to all

arguments, whereas the form dNS is nonlinear with respect to all of its first argument.

The nonlinear dNS uses upwinding along the inflow boundary of ∂E with respect to

the vector field z.

Group all the linear terms involving u and ϕ by defining a bilinear form B:

B([u, ϕ]; [v, q]) = aNS(u,v) + aD(ϕ, q)

+ (ϕ,v · n12)Γ12 − (u · n12, q)Γ12 +G(K− 1
2 u · τ 12,v · τ 12)Γ12 .

Note that the semi-column in the definition is just a notation to identify the bilinearity

of the form B, that is, the linearity with respect to (u, ϕ) and with respect to (v, q).
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Since the spaces are finite dimensional, the bilinearity of B implies that it is bounded.

Also define a form N that combines the discretization of the nonlinear terms:

N(z,u; v,w) = cNS(u; v,w) + dNS(z,u; v,w)− 1

2
(v · u,w · n12)Γ12 . (3.58)

With these notations, the semi-discrete scheme is

Find uh ∈ L2(0, T ; Xh) ∩ H1(0, T ;L2(Ω1)
2), ph ∈ L2(0, T ;M1

h), Φh ∈ L2(0, T ;M2
h)

such that for all t > 0,

∀v ∈ Xh, ∀q ∈M2
h , (

∂uh

∂t
,v)Ω1 +B([uh,Φh]; [v, q]) + bNS(v, ph)

+N(uh,uh; uh,v) = (Ψ,v)Ω1 + (Π, q)Ω2 , (3.59)

∀q ∈M1
h , bNS(uh, q) = 0. (3.60)

∀v ∈ Xh, (uh(0),v)Ω1 = (u(0),v)Ω1 , (3.61)

Lemma 29. The solution (u, p, ϕ) of (3.1)-(3.10) satisfies (3.59)-(3.61) under the

additional assumption u ∈ L2(0, T ;H3/2+δ(Ω1)
2) and ϕ ∈ L2(0, T ;H3/2+δ(Ω2)) for

any δ > 0.

Proof. The proof is similar to the continuous case. Let E be any element in E1
h.

Multiply (3.1) by v ∈ Xh and integrate over E. Using Green’s formula and summing

over all E’s,

∑
E∈E1

h

(
∂u

∂t
,v)E + 2ν

∑
E∈E1

h

(D(u),D(v))E +
∑
E∈E1

h

((−2νD(u) + pI)nE,v)∂E

−
∑
E∈E1

h

(p,∇ · v)E +
∑
E∈E1

h

(u · ∇u,v)E = (Ψ,v)Ω1 .

For the boundary integrals switch to edge sums rather than element sums. Consider

an interior edge e with neighbors E1 and E2. As mentioned in the preliminary chapter,

we pick the normal vector of e such that ne = nE1 . Then nE2 = −ne. Summation
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over all elements have a double effect in terms of edge sums. For example, for any

interior edge e, there is a contribution both from E1 side and E2 side when we sum

over the elements. Together with the regularity of u and p, this means,

((−2νD(u) + pI)|E1nE1 ,v|E1)e + ((−2νD(u) + pI)|E2nE2 ,v|E2)e

= ((−2νD(u) + pI)ne, [v])e = ({(−2νD(u) + pI)ne}, [v])e

This implies,

∑
E∈E1

h

(
∂u

∂t
,v)E + 2ν

∑
E∈E1

h

(D(u),D(v))E −
∑
E∈E1

h

(p,∇ · v)E +
∑
E∈E1

h

(u · ∇u,v)E

+
∑
e∈Γ1

h

({(−2νD(u) + pI)ne}, [v])e +
∑

e∈Γ12

((−2νD(u) + pI)n12,v)e = (Ψ,v)Ω1 .

As it is, the method is not stable. Therefore, it is necessary to add the stabilization

and penalty terms. The addition of these terms is allowed because they are identically

zero by the regularity of the exact solution u and by the boundary condition (3.5).

(
∂u

∂t
,v)Ω1 + 2ν

∑
E∈E1

h

(D(u),D(v))E −
∑
E∈E1

h

(p,∇ · v)E +
∑
E∈E1

h

(u · ∇u,v)E

+
∑
e∈Γ1

h

({(−2νD(u) + pI)ne}, [v])e +
∑

e∈Γ12

((−2νD(u) + pI)n12,v)e

+ 2εNSν
∑
e∈Γ1

h

({D(v)}ne, [u])e + ν
∑
e∈Γ1

h

σe

|e|
([u], [v])e = (Ψ,v)Ω1 . (3.62)

Next, multiply (3.3) by q ∈M2
h and integrate over E ∈ E2

h. Applying Green’s formula

and summing over all the elements E ∈ E2
h,

∑
E∈E2

h

(K∇ϕ,∇q)E −
∑
E∈E2

h

(K∇ϕ · nE, q)∂E = (Π, q)Ω2 .

As in the previous derivation, consider the summation of the boundary terms on edges
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rather than on elements. By the regularity of ϕ ,∑
E∈E2

h

(K∇ϕ,∇q)E −
∑
e∈Γ2

h

({K∇ϕ · ne}, [q])e −
∑

e∈Γ2N

(K∇ϕ · ne, q)e

+
∑

e∈Γ12

(K∇ϕ · n12, q)e = (Π, q)Ω2 .

Here, the third term can be removed because of (3.7). The stabilization and the

penalty terms can be added because of the regularity of ϕ on Γ2
h and the boundary

condition (3.6).∑
E∈E2

h

(K∇ϕ,∇q)E −
∑
e∈Γ2

h

({K∇ϕ · ne}, [q])e + εD
∑
e∈Γ2

h

({K∇q · ne}, [ϕ])e

+
∑
e∈Γ2

h

σe

|e|
([ϕ], [q])e +

∑
e∈Γ12

(K∇ϕ · n12, q)e = (Π, q)Ω2 . (3.63)

Observe by the regularity of u and as ∇ · u = 0 on Ω1,

cNS(u; u,v) + dNS(u,u; u,v) =
∑
E∈E1

h

(u · ∇u,v)E.

Hence, adding (3.62) and (3.63) gives

(
∂u

∂t
,v)Ω1 + aNS(u,v) + bNS(v, p) + aD(ϕ, q) + cNS(u; u,v) + dNS(u,u; u,v)

+
∑

e∈Γ12

((−2νD(u) + pI)n12,v)e +
∑

e∈Γ12

(K∇ϕ · n12, q)e = (Ψ,v)Ω1 + (Π, q)Ω2 .

(3.64)

Now decompose v into its normal and tangential components, that is,

v = (v · n12)n12 + (v · τ 12)τ 12.

For any e ∈ Γ12, (3.19), (3.9) and (3.10) implies

((−2νD(u) + pI)n12,v)e =

= (((−2νD(u) + pI)n12) · n12,v · n12)e + (((−2νD(u) + pI)n12) · τ 12,v · τ 12)e

= (ϕ− 1

2
(u · u),v · n12)e +G(K− 1

2 u · τ 12,v · τ 12)e.
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Summing this over all e ∈ Γ12 gives

∑
e∈Γ12

((−2νD(u) + pI)n12,v)e = (ϕ− 1

2
(u ·u),v ·n12)Γ12 +G(K− 1

2 u · τ 12,v · τ 12)Γ12 .

In a similar fashion, the following holds:

∑
e∈Γ12

(K∇ϕ · n12, q)e = −(u · n12, q)Γ12 .

With these two equations, (3.64) exactly gives (3.59). To get (3.60), let E ∈ E1
h.

Multiply (3.2) by q ∈M1
h , integrate over E ∈ E1

h and sum over all E to get

∑
E∈E1

h

(∇ · u, q)E = 0.

Using (3.5) and the regularity of u leads to

∑
E∈E1

h

(∇ · u, q)E −
∑
e∈Γ1

h

({q}, [u] · ne)e = 0.

Therefore bNS(u, q) = 0 for all q ∈ M1
h . This completes the derivation of the semi-

discrete scheme.

More notation is necessary to pass from the semi-discrete scheme to the fully-

discrete scheme. Let NT > 0 be the number of time steps, t1 be the first time

homstep and define

∆t =
T − t1

NT − 1
, ti = t1 + (i− 1)∆t, 2 ≤ i ≤ NT .

For a sequence {φi}i≥1 or for a function φi = φ(ti), define

φi+ 1
2 =

φi+1 + φi

2
.

The following fully-discrete scheme is obtained from the semi-discrete scheme by

applying the Crank-Nicolson method:

D 
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Find {U i
h}i≥0 in Xh, {P i

h}i≥1 ∈M1
h and {Φi

h}i≥1 in M2
h such that,

∀v ∈ Xh, (U 0
h,v)Ω1 = (u(0),v)Ω1 , (3.65)

∀v ∈ Xh,∀q ∈M2
h , (

U 1
h −U 0

h

t1
,v)Ω1 +B([U 1

h,Φ
1
h]; [v, q]) + bNS(v, P

1
h )

+N(U 1
h,U

1
h; U

1
h,v) = (Ψ1,v)Ω1 + (Π1, q)Ω2 , (3.66)

∀v ∈ Xh,∀q ∈M2
h , (

U i+1
h −U i

h

∆t
,v)Ω1 +B([U

i+ 1
2

h ,Φ
i+ 1

2
h ]; [v, q])

∀i ≥ 1, +bNS(v, P
i+ 1

2
h ) +N(U

i+ 1
2

h ,U
i+ 1

2
h ; U

i+ 1
2

h ,v)

= (Ψi+ 1
2 ,v)Ω1 + (Πi+ 1

2 , q)Ω2 , (3.67)

∀i ≥ 0,∀q ∈M1
h , bNS(U

i+1
h , q)Ω1 = 0. (3.68)

The equation (3.67) corresponds to a Crank-Nicolson discretization, which is chosen

to achieve second order error estimates. In order to solve (3.67), the pressure and

velocity at time t1 are needed. I use a lower order and simpler scheme, namely a

first order backward Euler scheme (3.66) to compute U 1
h, P

1
h and Φ1

h. I will show

that the resulting scheme is second order in time if the first time step t1 is chosen

appropriately.

Remark 30. It is only a technical point to add non-homogeneous boundary conditions

for the Darcy problem. For instance, assume that ϕ = gD on Γ2D with gD ∈ H
1
2
00(Γ2D).

There exists a function pD ∈ H1(Ω2) that vanishes on Γ12, that is equal to gD on Γ2D

and such that

‖pD‖H1(Ω2) ≤ C‖gD‖H
1
2 (Γ2D)

.

The weak solution becomes (u, p, ϕ̃) where ϕ̃ = ϕ + pD and with (u, p, ϕ) satisfying

problem (P ). Next, consider an approximation phD ∈ M2
h of the lift pD. Then, the

numerical solution becomes (U i
h, P

i
h, Φ̃

i
h), where Φ̃i

h = Φi
h + phD and (U i

h, P
i
h,Φ

i
h)

satisfies (3.65)-(3.68) with modified right-hand sides. The analysis given below can
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be adapted to the case of non-homogeneous boundary conditions as analyzed for the

stationary case by Chidyagwai and Rivière [39].

In order to prove the existence of a weak solution, it is important to know more

about the discrete spaces and the discrete forms we have defined on them.

Properties of Discrete Spaces and Forms

In this section we state important properties of the discrete spaces and the bilinear

forms. The propositions presented here are obtained from [72, 73, 74, 38].

The spaces Xh,M
1
h and M2

h are equipped with the following norms:

∀v ∈ Xh, ‖v‖Xh
=

2
∑
E∈E1

h

‖D(v)‖2
L2(E) +

∑
e∈Γh

1

σe

|e|
‖[v]‖2

L2(e)

 1
2

,

∀q ∈M1
h , ‖q‖M1

h
= ‖q‖L2(Ω1),

∀q ∈M2
h , ‖q‖M2

h
=

∑
E∈E2

h

‖K
1
2∇q‖2

L2(E) +
∑
e∈Γh

2

σe

|e|
‖[q]‖2

L2(e)

 1
2

.

Further, we define the discrete divergence-free subspace V h of Xh as

V h = {v ∈ Xh : ∀q ∈M1
h , bNS(v, q) = 0}.

The following proposition extends the usual Sobolev imbeddings and trace inequalities

to the discontinuous discrete spaces.

Proposition 31. For any r ≥ 2, there exist constants C1r, C2, C̃1r and C̃2r indepen-

dent of h, but dependent on σmin such that

∀v ∈ Xh, ‖v‖Lr(Ω1) ≤ C1r‖v‖Xh
, (3.69)

∀q ∈M2
h , ‖q‖L2(Ω2) ≤ C2‖q‖M2

h
, (3.70)

∀v ∈ Xh, ‖v‖Lr(Γ12) ≤ C̃1r‖v‖Xh
, (3.71)

∀q ∈M2
h , ‖q‖Lr(Γ12) ≤ C̃2r‖q‖M2

h
. (3.72)
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The next proposition states the coercivity properties of aNS and aD. These prop-

erties are true for the NIPG method, for any σmin. However for both SIPG and IIPG

methods, coercivity is valid only if σmin is large enough as suggested by Epshteyn and

Rivière [75].

Proposition 32. There exist constants C3 and C4, independent of h and ν, such that

∀v ∈ Xh, C3ν‖v‖2
Xh
≤ aNS(v,v), (3.73)

∀q ∈M2
h , C4‖q‖2

M2
h
≤ aD(q, q). (3.74)

A straightforward bound for B, which is deduced from (3.73) and (3.74, is given

in the following corollary.

Corollary 33. ∀v ∈ Xh, ∀q ∈M2
h ,

B([v, q]; [v, q]) ≥ C3ν‖v‖2
Xh

+ C4‖q‖2
M2

h
. (3.75)

Proof. Since the terms (q,v · n12)Γ12 and (v · n12, q)Γ12 cancel, we have

B([v, q]; [v, q]) = aNS(v,v) + aD(q, q) +G(K− 1
2 v · τ 12,v · τ 12)Γ12

≥ C3ν‖v‖2
Xh

+ C4‖q‖2
M2

h
.

The form (cNS +dNS) has been extensively studied in the literature. From [72, 76],

the following result for N , defined by (3.58), can be deduced.

Proposition 34. For all u,v ∈ Xh,

N(u,u; v,v) =
1

2

∑
E∈E1

h

‖|{u} · nE|
1
2 [v]‖2

L2(∂E−(u)\∂Ω1) + ‖|u · nΩ1|
1
2 v‖2

L2(Γ1−(u))

+
1

2
(u · n12,v · v)Γ12 −

1

2
(u · v,v · n12)Γ12 (3.76)

D 



52

where the inflow boundary of Γ1 is defined by

Γ1−(u) = {x ∈ Γ1 : {u(x)} · nΩ1 < 0}.

The positivity result

N(u,u; u,u) ≥ 0 ∀u ∈ Xh (3.77)

is a special case of (3.76) obtained by taking u = v. The following bounds are

important for the uniqueness proof of the numerical solution.

Proposition 35. There exists a constant C5 independent of h and ν such that for all

u ∈ V h, z,v,w ∈ Xh,

|cNS(u; v,w)|+ |dNS(z,u; v,w)| ≤ C5‖u‖Xh
‖v‖Xh

‖w‖Xh
. (3.78)

Proof. This result follows from (3.69), (3.70) and Lemma 6.4 of [72].

The next proposition is technical and can be found in [38] and included in the

Appendix A.2 for completeness.

Proposition 36. There exists a constant C6 independent of h but dependent on σmin
1

such that for all u,v,w ∈ Xh,

|dNS(u,u; u,w)− dNS(v,v; v,w)| ≤ C6‖u− v‖Xh
‖w‖Xh

(‖u‖Xh
+ ‖v‖Xh

). (3.79)

Now everthing is ready to prove the existence and uniqueness of the discrete

solution and derive the error estimates. A version of the Brouwer’s fixed point theorem

is the key to prove these results.

D 
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3.2.4 Existence and Uniqueness of the Numerical Solution

As done in the continuous case, we simplify the problem (3.65)-(3.68) by restricting

to the subspace V h ⊂ Xh defined in the previous section as

V h = {v ∈ Xh : ∀q ∈M1
h , bNS(v, q) = 0}.

This will remove the bNS terms. Corresponding to Y defined in the continuous case,

let Y h = Xh ×M2
h equipped with the inner product ((·, ·)) defined by

(( (z, r), (v, q) )) = 2ν
∑
E∈E1

h

(D(z),D(v))E + ν
∑
e∈Γ1

h

σe

|e|
([z], [v])e

+
∑
E∈E2

h

(K∇r,∇q)E +
∑
e∈Γ2

h

σe

|e|
([r], [q])e.

The norm on Y h is ‖(v, q)‖Y h
=
(
2ν‖v‖2

Xh
+ ‖q‖2

M2
h

) 1
2
, for all (v, q) ∈ Y h. Also

define the subspace W h = V h ×M2
h of Y h equipped with the same norm. Clearly

from (3.65), the initial velocity U 0
h is uniquely defined. Now the question is if there

exists a solution {U i
h,Φ

i
h}i≥1 ∈ W h satisfying

∀v ∈ V h,∀q ∈M2
h , (

U 1
h −U 0

h

t1
,v)Ω1 +B([U 1

h,Φ
1
h]; [v, q])

+N(U 1
h,U

1
h; U

1
h,v) = (Ψ1,v)Ω1 + (Π1, q)Ω2 , (3.80)

∀v ∈ V h,∀q ∈M2
h , (

U i+1
h −U i

h

∆t
,v)Ω1 +B([U

i+ 1
2

h ,Φ
i+ 1

2
h ]; [v, q])

∀i ≥ 1, +N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,v)

= (Ψi+ 1
2 ,v)Ω1 + (Πi+ 1

2 , q)Ω2 . (3.81)

The following lemma answers the existence question.

Lemma 37. There exists a solution {(U i
h,Φ

i
h)}i≥1 of (3.80)-(3.81) satisfying

‖U 1
h‖2

L2(Ω1) + t1 min(C3, C4)‖(U 1
h,Φ

1
h)‖2

Yh
≤ C2

1, (3.82)
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and for all 2 ≤ m ≤ NT ,

‖Um
h ‖2

L2(Ω1) + min(C3, C4)∆t
m−1∑
i=1

‖(U i+ 1
2

h ,Φ
i+ 1

2
h )‖2

Yh
≤ C2

, (3.83)

where the constant C1 and C are defined as follows:

C1 = (‖u0‖2
L2(Ω1) +

C2
12

C3ν
t1‖Ψ1‖2

L2(Ω1) +
C2

2

C4

t1‖Π1‖2
L2(Ω2))

1
2 ,

C =
(
‖U 1

h‖2
L2(Ω1) +

C2
12

C3ν
∆t

NT−1∑
i=1

‖Ψi+ 1
2‖2

L2(Ω1) +
C2

2

C4

∆t

NT−1∑
i=1

‖Πi+ 1
2‖2

L2(Ω2)

) 1
2 . (3.84)

Proof. The first step is to show that the pair (U 1
h,Φ

1
h) exists. Define a mapping

F1 : V h ×M2
h → V h ×M2

h by

∀(z, r), (v, q) ∈ V h ×M2
h , ((F1(z, r), (v, q) )) = (

z −U 0
h

t1
,v)Ω1 +B([z, r]; [v, q])

+N(z, z; z,v)− (Ψ1,v)Ω1 − (Π1, q)Ω2 .

By the Riesz representation theorem and the inequalities (3.27)-(3.30), F1 is a well-

defined mapping from Y h into itself. From Theorem 8 (Brouwer’s fixed point theo-

rem), showing that there is a ball on which ((F1(z, r), (z, r))) ≥ 0 implies, that there

is a zero (z∗, r∗) of F1 inside the ball. Clearly, this zero is a solution to (3.80). Taking

(v, q) = (z, r) in the definition of F1 and using (3.75) and (3.76) gives

((F1(z, r), (z, r) )) ≥ 1

2t1
‖z‖2

L2(Ω1) −
1

2t1
‖U 0

h‖2
L2(Ω1)

+ C3ν‖z‖2
Xh

+ C4‖r‖2
M2

h
− (Ψ1, z)Ω1 − (Π1, r)Ω2 . (3.85)

Using the Cauchy-Schwarz inequality, (3.69) and (3.70) yields

|(Ψ1, z)Ω1 + (Π1, r)Ω2| ≤ C12‖z‖Xh
‖Ψ1‖L2(Ω1) + C2‖r‖M2

h
‖Π1‖L2(Ω2)

≤ C3ν

2
‖z‖2

Xh
+

C2
12

2C3ν
‖Ψ1‖2

L2(Ω1)

+
C4

2
‖r‖2

M2
h

+
C2

2

2C4

‖Π1‖2
L2(Ω2). (3.86)
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Substituting (3.86) in (3.85) results in

((F1(z, r), (z, r) )) ≥ 1

2
min(C3, C4)‖(z, r)‖2

Yh

− C2
12

2C3ν
‖Ψ1‖2

L2(Ω1) −
C2

2

2C4

‖Π1‖2
L2(Ω2) −

1

2t1
‖U 0

h‖2
L2(Ω1).

Therefore, choosing

R1 =
( 1

min(C3, C4)

( 1

t1
‖U 0

h‖2
L2(Ω1) +

C2
12

C3ν
‖Ψ1‖2

L2(Ω1) +
C2

2

C4

‖Π1‖2
L2(Ω2))

) 1
2

(3.87)

concludes that ((F1(z, r), (z, r) )) ≥ 0 for ‖(z, r)‖Yh
= R1. This yields a solution

(U 1
h,Φ

1
h) in the ball of radius R1, that is, (U 1

h,Φ
1
h) satisfies

‖(U 1
h,Φ

1
h)‖Yh

≤ R1. (3.88)

The next step, which is to show that (U i
h,Φ

i
h) satisfying (3.81) exists for all i ≥ 2,

follows a similar argument. So, assume that U i
h and Φi

h are given for some i ≥ 1.

This time we introduce a mapping Fi : W h → W h defined by

∀(v, q) ∈ W h, ((Fi(z, r), (v, q) )) = (
2z − 2U i

h

∆t
,v)Ω1 +B([z, r]; [v, q])

+N(z, z; z,v)− (Ψi+ 1
2 ,v)Ω1 − (Πi+ 1

2 , q)Ω2 .

The Riesz representation theorem applied once more shows that Fi is a well-defined

continuous map from W h into itself. Observe that if (z∗, r∗) is a zero of Fi, then

(2z∗ −U i
h, 2r

∗ − Φi
h) solves (3.81). As before, the definition gives

((Fi(z, r), (z, r) )) ≥ 1

∆t
‖z‖2

L2(Ω1) −
1

∆t
‖U i

h‖2
L2(Ω1) + C3ν‖z‖2

Xh

+ C4‖r‖2
M2

h
− (Ψi+ 1

2 , z)Ω1 − (Πi+ 1
2 , r)Ω2 .

Same inequalities used for (3.86) show that

|(Ψi+ 1
2 , z)Ω1|+ |(Πi+ 1

2 , r)Ω2| ≤
C3ν

2
‖z‖2

Xh
+

C2
12

2C3ν
‖Ψi+ 1

2‖2
L2(Ω1)

+
C4

2
‖r‖2

M2
h

+
C2

2

2C4

‖Πi+ 1
2‖2

L2(Ω2).
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This leads to

((Fi(z, r), (z, r) )) ≥ 1

2
min(C3, C4)‖(z, r)‖2

Yh

− C2
12

2C3ν
‖Ψi+ 1

2‖2
L2(Ω1) −

C2
2

2C4

‖Πi+ 1
2‖2

L2(Ω2) −
1

∆t
‖U i

h‖2
L2(Ω1).

Thus, if

Ri =
( 1

min(C3, C4)

( 2

∆t
‖U i

h‖2
L2(Ω1) +

C2
12

C3ν
‖Ψi+ 1

2‖2
L2(Ω1) +

C2
2

C4

‖Πi+ 1
2‖2

L2(Ω2))
) 1

2
,

then ((Fi(z, r), (z, r) )) ≥ 0 whenever ‖(z, r)‖Yh
= Ri. The Brouwer’s fixed point

theorem now gives a solution (U i+1
h ,Φi+1

h ) in the ball of radius Ri, i.e.,

‖(U i+1
h ,Φi+1

h )‖Yh
≤ Ri.

This completes the proof of existence of {(U i
h,Φ

i
h)}i≥1 satisfying (3.80)-(3.81). The

a priori estimates for {(U i
h,Φ

i
h)}i≥1 are hidden in the above proof. Indeed, choose

(v, q) = (U 1
h,Φ

1
h) in (3.80) and use (3.76), (3.75), the Cauchy-Schwarz inequality,

(3.69) and (3.70) to obtain

(
U 1

h −U 0
h

t1
,U 1

h)Ω1 + C3ν‖U 1
h‖2

Xh
+ C4‖Φ1

h‖2
M2

h

≤ C12‖Ψ1‖L2(Ω1)‖U 1
h‖Xh

+ C2‖Π1‖L2(Ω2)‖Φ1
h‖M2

h
.

Now, the Young’s inequality, and the fact that (a− b)a ≥ 1
2
a2 − 1

2
b2 for any a, b ∈ R

leads to

1

2t1
‖U 1

h‖2
L2(Ω1) −

1

2t1
‖U 0

h‖2
L2(Ω1) + C3ν‖U 1

h‖2
Xh

+ C4‖Φ1
h‖2

M2
h

≤ C2
12

2C3ν
‖Ψ1‖2

L2(Ω1) +
C3ν

2
‖U 1

h‖2
Xh

+
C2

2

2C4

‖Π1‖2
L2(Ω2) +

C4

2
‖Φh‖2

M2
h
.

Then, using the definition of ‖(·, ·)‖Y h
and multiplying by 2t1 gives

‖U 1
h‖2

L2(Ω1) + t1 min(C3, C4)‖(U 1
h,Φ

1
h)‖2

Y h

≤ ‖U 0
h‖2

L2(Ω1) + t1
C2

12

C3ν
‖Ψ1‖2

L2(Ω1) + t1
C2

2

C4

‖Π1‖2
L2(Ω2).
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For the other estimate, let (v, q) = (U
i+ 1

2
h ,Φ

i+ 1
2

h ) in (3.81). The results (3.76), (3.75),

the Cauchy-Schwarz inequality, (3.69) and (3.70) yields

(
U i+1

h −U i
h

∆t
,U

i+ 1
2

h )Ω1 + C3ν‖U
i+ 1

2
h ‖2

Xh
+ C4‖Φ

i+ 1
2

h ‖2
M2

h

≤ C12‖Ψi+ 1
2‖L2(Ω1)‖U

i+ 1
2

h ‖Xh
+ C2‖Πi+ 1

2‖L2(Ω2)‖Φ
i+ 1

2
h ‖M2

h
.

As before, the Young’s inequality implies

1

2∆t
‖U i+1

h ‖2
L2(Ω1) −

1

2∆t
‖U i

h‖2
L2(Ω1) +

1

2
min(C3, C4)‖(U

i+ 1
2

h ,Φ
i+ 1

2
h )‖2

Y h

≤ C2
12

2C3ν
‖Ψi+ 1

2‖2
L2(Ω1) +

C2
2

2C4

‖Πi+ 1
2‖2

L2(Ω2).

Multiplying by 2∆t and summing from 1 to m− 1 where 2 ≤ m ≤ NT finally yields

‖Um
h ‖2

L2(Ω1) + ∆tmin(C3, C4)
m−1∑
i=1

‖(U i+ 1
2

h ,Φ
i+ 1

2
h )‖2

Y h

≤ ‖U 1
h‖2

L2(Ω1) + ∆t
C2

12

C3ν

m−1∑
i=1

‖Ψi+ 1
2‖2

L2(Ω1) + ∆t
C2

2

C4

m−1∑
i=1

‖Πi+ 1
2‖2

L2(Ω2)

≤ ‖U 1
h‖2

L2(Ω1) + ∆t
C2

12

C3ν

NT−1∑
i=1

‖Ψi+ 1
2‖2

L2(Ω1) + ∆t
C2

2

C4

NT−1∑
i=1

‖Πi+ 1
2‖2

L2(Ω2).

Next lemma gives the uniqueness of the solution under some condition on the data

and on the time step.

Lemma 38. Let R1 be defined by (3.87) and C defined by (3.84). Under the following

condition

ν3/2 >
1

C3

(2C5 + 2C6 − C̃2
14C̃12) max

(
R1,

2
1
2C

(∆tmin(C3, C4))
1
2

)
,

there exists a unique solution {(U i
h,Φ

i
h)}i≥1 ⊂ W h satisfying (3.80)-(3.81).

D 
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Proof. Existence of a solution has already been proven and therefore, enough to show

uniqueness of (U 1
h,Φ

1
h) and (U

i+ 1
2

h ,Φ
i+ 1

2
h ). Assume that there are two solutions, which

are denoted by (U 1
h,Φ

1
h) and (Ũ

1

h, Φ̃
1
h). Let w1 = U 1

h − Ũ
1

h and r1 = Φ1
h − Φ̃1

h. It

follows from (3.80) that for all v ∈ Xh and q ∈M2
h ,

(
w1

t1
,v)Ω1 +B([w1, r1]; [v, q]) +N(U 1

h,U
1
h; U

1
h,v)−N(Ũ

1

h, Ũ
1

h; Ũ
1

h,v) = 0.

Choosing v = w1 and q = r1 and using (3.75) gives

1

t1
‖w1‖2

L2(Ω1) + C3ν‖w1‖2
Xh

+ C4‖r1‖2
M2

h

+N(U 1
h,U

1
h; U

1
h,w

1)−N(Ũ
1

h, Ũ
1

h; Ũ
1

h,w
1) ≤ 0. (3.89)

We first consider the forms cNS and dNS that are included in the nonlinear term

N(U 1
h,U

1
h; U

1
h,w

1)−N(Ũ
1

h, Ũ
1

h; Ũ
1

h,w
1). Adding and subtracting cNS(Ũ

1

h; U
1
h,w

1)

results in

cNS(U
1
h; U

1
h,w

1)− cNS(Ũ
1

h; Ũ
1

h,w
1) = cNS(w

1; U 1
h,w

1) + cNS(Ũ
1

h; w
1,w1).

These terms are bounded by (3.78) and (3.88) as follows,

|cNS(w
1; U 1

h,w
1) + cNS(Ũ

1

h; w
1,w1)|

≤ C5‖w1‖2
Xh

(‖U 1
h‖Xh

+ ‖Ũ 1

h‖Xh
) ≤ 2√

ν
C5R1‖w1‖2

Xh
.

The terms involving dNS are bounded by Proposition 36 and (3.82),

|dNS(U
1
h,U

1
h; U

1
h,w

1)− dNS(Ũ
1

h, Ũ
1

h; Ũ
1

h,w
1)|

≤ C6‖w1‖2
Xh

(‖U 1
h‖Xh

+ ‖Ũ 1

h‖Xh
) ≤ 2√

ν
C6R1‖w1‖2

Xh
.

The remaining nonlinear terms in N(U 1
h,U

1
h; U

1
h,w

1) − N(Ũ
1

h, Ũ
1

h; Ũ
1

h,w
1) can be

bounded by the Hölder’s inequality, (3.71) and (3.88) after adding and subtracting
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the expression 1
2
(Ũ

1

h ·U 1
h,w

1 · n12)Γ12 as follows:

| − 1

2
(U 1

h ·U 1
h,w

1 · n12)Γ12 +
1

2
(Ũ

1

h · Ũ
1

h,w
1 · n12)Γ12|

= |1
2
(w1 ·U 1

h,w
1 · n12)Γ12 +

1

2
(Ũ

1

h ·w1,w1 · n12)Γ12|

≤ 1

2
‖w1‖L4(Γ12)‖w1‖L2(Γ12)(‖U 1

h‖L4(Γ12) + ‖Ũ 1

h‖L4(Γ12))

≤ 1

2
C̃2

14C̃12‖w1‖2
Xh

(‖U 1
h‖Xh

+ ‖Ũ 1

h‖Xh
) ≤ C̃2

14C̃12R1√
ν

‖w1‖2
Xh
.

Combining the bounds above with (3.89) finally gives

1

t1
‖w1‖2

L2(Ω1) + C4‖r1‖2
M2

h
+ (C3ν −

2√
ν
R1(C5 + C6)−

C̃2
14C̃12√
ν

R1)‖w1‖2
Xh
≤ 0.

This yields w1 = 0, r1 = 0 and hence Ũ
1

h = U 1
h, Φ̃1

h = Φ1
h, if the following condition

is satisfied:

ν3/2 >
1

C3

R1(2C5 + 2C6 + C̃2
14C̃12).

Next, fix i ≥ 1 to show the uniqueness of (U i+1
h ,Φi+1

h ). Assume that (U i
h,Φ

i
h) exists

and is unique. As before, take the differences wi+1 = U i+1
h − Ũ

i+1

h and ri+1 =

Φi+1
h − Φ̃i+1

h . Then from (3.81), for any v ∈ V h and for any q ∈M2
h ,

(
wi+1

∆t
,v) +B([wi+ 1

2 , ri+ 1
2 ]; [v, q]) +N(U

i+ 1
2

h ,U
i+ 1

2
h ; U

i+ 1
2

h ,v)

−N(Ũ
i+ 1

2

h , Ũ
i+ 1

2

h ; Ũ
i+ 1

2

h ,v) = 0.

Choosing v = wi+ 1
2 , q = ri+ 1

2 and using (3.75) gives

1

∆t
‖wi+1‖2

L2(Ω1) + C3ν‖wi+ 1
2‖2

Xh
+ C4‖ri+ 1

2‖2
M2

h

+N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,wi+ 1

2 )−N(Ũ
i+ 1

2

h , Ũ
i+ 1

2

h ; Ũ
i+ 1

2

h ,wi+ 1
2 ) ≤ 0. (3.90)

As before, we deal with the nonlinear terms by adding and substracting suitable terms.

For the terms which involve the form cNS, add and subtract cNS(Ũ
i+ 1

2

h ; U
i+ 1

2
h ,wi+ 1

2 )
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to get

cNS(U
i+ 1

2
h ; U

i+ 1
2

h ,wi+ 1
2 )− cNS(Ũ

i+ 1
2

h ; Ũ
i+ 1

2

h ,wi+ 1
2 )

= cNS(w
i+ 1

2 ; U
i+ 1

2
h ,wi+ 1

2 ) + cNS(Ũ
i+ 1

2

h ; wi+ 1
2 ,wi+ 1

2 ).

By (3.78) and the bound (3.83),

|cNS(w
i+ 1

2 ; U
i+ 1

2
h ,wi+ 1

2 ) + cNS(Ũ
i+ 1

2

h ; wi+ 1
2 ,wi+ 1

2 )|

≤ C5‖wi+ 1
2‖2

Xh
(‖U i+ 1

2
h ‖Xh

+ ‖Ũ i+ 1
2

h ‖Xh
)

≤ 23/2C5C
(ν∆tmin(C3, C4))

1
2

‖wi+ 1
2‖2

Xh
.

The terms involving dNS are bounded by Proposition 36 and the bound (3.83):

|dNS(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,wi+ 1

2 )− dNS(Ũ
i+ 1

2

h , Ũ
i+ 1

2

h ; Ũ
i+ 1

2

h ,wi+ 1
2 )|

≤ C6‖wi+ 1
2‖2

Xh
(‖U i+ 1

2
h ‖Xh

+ ‖Ũ i+ 1
2

h ‖Xh
) ≤ 23/2C6C

(ν∆tmin(C3, C4))
1
2

‖wi+ 1
2‖2

Xh
.

Lastly, we bound the nonlinear interface terms by adding and subtracting the form

1
2
(Ũh

i+ 1
2 ·U i+ 1

2
h ,wi+ 1

2 · n12)Γ12 and using the Hölder’s inequality, (3.71) and (3.83):

| − 1

2
(wi+ 1

2 ·U i+ 1
2

h ,wi+ 1
2 · n12)Γ12 −

1

2
(Ũ

i+ 1
2

h ·wi+ 1
2 ,wi+ 1

2 · n12)Γ12|

≤ 2
1
2 C̃2

14C̃12C
(ν∆tmin(C3, C4))

1
2

‖wi+ 1
2‖2

Xh
.

Combining the bounds above with (3.90) leads to

1

∆t
‖wi+1‖2

L2(Ω1) + C4‖ri+ 1
2‖2

M2
h

+ (C3ν −
2

1
2C

(ν∆tmin(C3, C4))
1
2

(2C5 + 2C6)

− 2
1
2 C̃2

14C̃12C
(ν∆tmin(C3, C4))

1
2

)‖wi+ 1
2‖2

Xh
≤ 0.

Therefore, if

ν3/2 >
2

1
2C

C3(∆tmin(C3, C4))
1
2

(2C5 + 2C6 − C̃2
14C̃12),
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then the functions wi+ 1
2 and ri+ 1

2 vanish. Observing that wi+ 1
2 = 0.5wi+1 and ri+ 1

2 =

0.5ri+1 concludes that wi+1 = 0 and ri+1 = 0 for all i ≥ 1.

This completes the proof of existence and uniqueness of the solution {(U i
h,Φ

i
h)}i≥1

to the problem restricted to the space V h. Existence and uniqueness of the Navier-

Stokes pressure P i
h, for which {(U i

h, P
i
h,Φ

i
h)}i≥1 is a solution of (3.65)-(3.68), is a

consequence of the following inf-sup condition: There exists a positive constant β∗

independent of h such that

inf
q∈M1

h

sup
v∈Xh

bNS(v, q)

‖v‖Xh
‖q‖M1

h

≥ β∗. (3.91)

The proof of this inf-sup condition can be found in [72, 77] and follows a standard

argument found, for instance, in [64]. Now that the existence and uniqueness of the

numerical solution is established, the next step is to show that if the scheme converges.

3.2.5 Error Analysis

This section derives some error estimates. Decompose the error into an approximation

error and a numerical error. For any time t ≥ 0, let ũ(t) ∈ Xh be an approximation

of u(t) satisfying

bNS(u(t)− ũ(t), q) = 0, ∀q ∈M1
h . (3.92)

Existence of such an approximation is given in [72, 77]. Let p̃(t) ∈ M1
h be the L2-

projection of p(t), i.e.,

(p(t)− p̃(t), q)Ω1 = 0, ∀q ∈M1
h . (3.93)

D 
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Finally, let ϕ̃(t) ∈ M2
h be an approximation of ϕ(t). In addition, assume that the

approximation errors are optimal, that is, for any time t ≥ 0:

‖u(t)− ũ(t)‖Xh
≤ Chk1|u(t)|Hk1+1(Ω1), (3.94)

‖u(t)− ũ(t)‖L2(Ω1) ≤ Chk1+1|u(t)|Hk1+1(Ω1), (3.95)

i = 0, 1,

∑
E∈E1

h

‖∇ip(t)−∇ip̃(t)‖2
L2(E)

 1
2

≤ Chk1−i|p(t)|Hk1 (Ω1), (3.96)

i = 0, 1,

∑
E∈E2

h

‖∇iϕ(t)−∇iϕ̃(t)‖2
L2(E)

 1
2

≤ Chk2+1−i|ϕ(t)|Hk2+1(Ω2). (3.97)

Using the triangle inequality and the approximation property (3.94), there is a con-

stant Ca > 0 independent of h and ν such that

‖ũ(t)‖Xh
≤ ‖u(t)− ũ(t)‖Xh

+ ‖u(t)‖Xh
≤ Ca|u(t)|H1(Ω1). (3.98)

In this section, C is a positive generic constant, which may have a different value at

different places, independent of h and ν. Denote ui = u(ti), ũi = ũ(ti), ϕi = ϕ(ti)

and ϕ̃i = ϕ̃(ti) and write for any i ≥ 0:

U i
h − ui = χi − ηi, where χi = U i

h − ũi, ηi = ui − ũi,

Φi
h − ϕi = ξi − ζ i, where ξi = Φi

h − ϕ̃i, ζ i = ϕi − ϕ̃i.

Using these decompositions, it is enough to analyze χi and ξi as the rest follows from

the triangle inequality and the approximation properties. The following theorem

states error bounds of the quantities χi and ξi.

Theorem 39. Assume that the weak solution of (u, p, ϕ) of problem (P ) satisfies

u ∈ L2(0, T ;Hk1+1(Ω1)
2) ∩ L∞(0, T ;H1(Ω1)

2), p ∈ L2(0, T ;Hk1(Ω1)), and

ϕ ∈ L2(0, T ;Hk2+1(Ω2)). Further, if u0 ∈ Hk1+1(Ω1)
2, ut ∈ L∞(0, T ;Hk1(Ω1)

2),



63

uttt ∈ L∞(0, T ;L2(Ω1)
2) and ν > 4C4

C3
(C5 + 3

2
C̃12C̃

2
14)‖u‖L∞(0,T ;H1(Ω1)2), then, there

exists a constant C independent of h, t1, ∆t and ν such that

‖χ1‖2
L2(Ω1) +

C3ν

2
t1‖χ1‖2

Xh
+ C4t

1‖ξ1‖2
M2

h
≤ Ch2k1+2|u0|2Hk1+1(Ω1)

+ C(1 + ν + ν−1)t1h2k1|u1|2Hk1+1(Ω1) + C(1 + ν−1)t1h2k2|ϕ1|2Hk2+1(Ω2)

+ Cν−1t1h2k1|p1|2Hk1 (Ω1) + Cν−1(t1)3‖uttt‖2
L∞(0,T ;L2(Ω1)2)

+ Cν−1t1h2k1‖ut‖2
L∞(0,T ;Hk1 (Ω1)2). (3.99)

and for any m ≥ 2,

‖χm‖2
L2(Ω1) +

C3ν

2
∆t

m−1∑
i=1

‖χi+ 1
2‖2

Xh
+ C4∆t

m−1∑
i=1

‖ξi+ 1
2‖2

M2
h
≤ ‖χ1‖2

L2(Ω1)

+ C(ν−1 + ν + 1)h2k1|u|2L2(0,T ;Hk1+1(Ω1)2) + C(ν−1 + 1)h2k2|ϕ|2L2(0,T ;Hk2+1(Ω2))

+ Cν−1h2k1|p|2L2(0,T ;Hk1 (Ω1)) + Cν−1h2k1‖ut‖2
L∞(0,T ;L2(Ω1)2)

+ Cν−1∆t4
(
‖ut‖2

L∞(0,T ;H1(Ω1)2) + ‖uttt‖2
L∞(0,T ;L2(Ω1)2)

)
. (3.100)

Proof. From the consistency result of Lemma 29, for any i ≥ 1, for all v ∈ Xh and

q ∈M2
h , the exact solution satisfies

(u
i+ 1

2
t ,v)Ω1 +B([ui+ 1

2 , ϕi+ 1
2 ]; [v, q]) +

1

2
N(ui+1,ui+1; ui+1,v)

+
1

2
N(ui,ui; ui,v) + bNS(v, p

i+ 1
2 ) = (Ψi+ 1

2 ,v)Ω1 + (Πi+ 1
2 , q)Ω2 , (3.101)

Subtract (3.101) from (3.67). Then, add and substract terms with ũ and ϕ̃m to get

(
χi+1 − χi

∆t
,v)Ω1 +B([χi+ 1

2 , ξi+ 1
2 ], [v, q]) + bNS(v, P

i+ 1
2

h )

+N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,v) = (u

i+ 1
2

t ,v)Ω1 − (
ũi+1 − ũi

∆t
,v)Ω1 + bNS(v, p

i+ 1
2 )

+B([ηi+ 1
2 , ζ i+ 1

2 ], [v, q]) +
1

2
N(ui+1,ui+1; ui+1,v) +

1

2
N(ui,ui; ui,v). (3.102)
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Choosing v = χi+ 1
2 and q = ξi+ 1

2 in (3.102) and using (3.75) yields:

1

2∆t
(‖χi+1‖2

L2(Ω1) − ‖χi‖2
L2(Ω1)) + C3ν‖χi+ 1

2‖2
Xh

+ C4‖ξi+ 1
2‖2

M2
h

≤ −N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,χi+ 1

2 ) +
1

2
N(ui+1,ui+1; ui+1,χi+ 1

2 )

+
1

2
N(ui,ui; ui,χi+ 1

2 ) + (u
i+ 1

2
t ,χi+ 1

2 )Ω1 − (
ũi+1 − ũi

∆t
,χi+ 1

2 )Ω1

+B([ηi+ 1
2 , ζ i+ 1

2 ], [χi+ 1
2 , ξi+ 1

2 ]) + bNS(χ
i+ 1

2 , pi+ 1
2 − P

i+ 1
2

h ). (3.103)

First, consider the nonlinear terms in (3.103).

N = N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,χi+ 1

2 )

− 1

2
N(ui+1,ui+1; ui+1,χi+ 1

2 )− 1

2
N(ui,ui; ui,χi+ 1

2 ). (3.104)

Because the exact solution is continuous,

dNS(u
i,ui; ui,χi+ 1

2 ) = dNS(u
i+1,ui+1; ui+1,χi+ 1

2 ) = 0

So, these can be replaced in (3.104) by the terms dNS(U
i+ 1

2
h ,ui; ui,χi+ 1

2 ) and

dNS(U
i+ 1

2
h ,ui+1; ui+1,χi+ 1

2 ), which are also identically zero. Thus,

N = N(U
i+ 1

2
h ,U

i+ 1
2

h ; U
i+ 1

2
h ,χi+ 1

2 )

− 1

2
N(U

i+ 1
2

h ,ui+1; ui+1,χi+ 1
2 )− 1

2
N(U

i+ 1
2

h ,ui; ui,χi+ 1
2 ).

Manipulating these nonlinear terms by adding and subtracting

N(U
i+ 1

2
h ,U

i+ 1
2

h ; ũi+ 1
2 ,χi+ 1

2 ), N(U
i+ 1

2
h , ũi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 ),

N(U
i+ 1

2
h ,ui+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 ) and N(U
i+ 1

2
h ,ui+ 1

2 ; ui+ 1
2 ,χi+ 1

2 ) leads to the following ex-

pression:

N = N(U
i+ 1

2
h ,U

i+ 1
2

h ; χi+ 1
2 ,χi+ 1

2 ) +N(U
i+ 1

2
h ,χi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )

−N(U
i+ 1

2
h ,ηi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )−N(U
i+ 1

2
h ,ui+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 )

− 1

4
N(U

i+ 1
2

h ,ui+1 − ui; ui+1 − ui,χi+ 1
2 ).
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Now applying (3.76) gives the following equation:

N =
1

2

∑
E∈E1

h

‖|{U i+ 1
2

h } · nE|
1
2 [χi+ 1

2 ]‖2

L2(∂E−(U
i+1

2
h )\∂Ω1)

+ ‖|U i+ 1
2

h · nΩ1|
1
2 χi+ 1

2‖2

L2(Γ−(U
i+1

2
h ))

+
1

2
(U

i+ 1
2

h · n12,χ
i+ 1

2 · χi+ 1
2 )Γ12

− 1

2
(U

i+ 1
2

h · χi+ 1
2 ,χi+ 1

2 · n12)Γ12 +N(U
i+ 1

2
h ,χi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )

−N(U
i+ 1

2
h ,ηi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )−N(U
i+ 1

2
h ,ui+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 )

− 1

4
N(U

i+ 1
2

h ,ui+1 − ui; ui+1 − ui,χi+ 1
2 ). (3.105)

The first two terms of N are positive. So, it suffices to bound the remaining terms.

Rewrite the third and the fourth terms in (3.105) and apply the Hölder’s inequality,

(3.71), (3.83) and (3.98). This gives

|1
2
(U

i+ 1
2

h · n12,χ
i+ 1

2 · χi+ 1
2 )Γ12 −

1

2
(U

i+ 1
2

h · χi+ 1
2 ,χi+ 1

2 · n12)Γ12|

= |1
2
(ũi+ 1

2 · n12,χ
i+ 1

2 · χi+ 1
2 )Γ12 −

1

2
(ũi+ 1

2 · χi+ 1
2 ,χi+ 1

2 · n12)Γ12|

≤ 1

2
‖ũi+ 1

2‖L2(Γ12)‖χi+ 1
2‖2

L4(Γ12) +
1

2
‖ũi+ 1

2‖L4(Γ12)‖χi+ 1
2‖L4(Γ12)‖χi+ 1

2‖L2(Γ12)

≤ C̃12C̃
2
14‖ũi+ 1

2‖Xh
‖χi+ 1

2‖2
Xh

≤ CaC̃12C̃
2
14‖u‖L∞(0,T ;H1(Ω1))‖χi+ 1

2‖2
Xh
.

Applying (3.78), the Hölder’s inequality, (3.71) and (3.98), the fifth term in (3.105)

can be bounded by

|N(U
i+ 1

2
h ,χi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )| ≤ (C5 +
1

2
C̃12C̃

2
14)‖ũi+ 1

2‖Xh
‖χi+ 1

2‖2
Xh

≤ Ca(C5 +
1

2
C̃12C̃

2
14)‖u‖L∞(0,T ;H1(Ω1)2)‖χi+ 1

2‖2
Xh
.

Next, consider the sixth term N(U
i+ 1

2
h ,ηi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 ) in (3.105) and analyze the

(cNS + dNS) term and the interface term, separately. From [72] (see Remark 6.5),
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Korn’s inequality [74] and (3.69),

cNS(η
i+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 ) + dNS(U
i+ 1

2
h ,ηi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )

≤ C‖ũi+ 1
2‖Xh

‖χi+ 1
2‖Xh

(‖ηi+ 1
2‖Xh

+ ‖ηi+ 1
2‖L4(Ω1)).

The interface term is bounded by (3.71) and the Hölder’s inequality.

1

2
(ũi+ 1

2 · ηi+ 1
2 ,χi+ 1

2 · n12)Γ12 ≤
1

2
C̃14C̃12‖ũi+ 1

2‖Xh
‖χi+ 1

2‖Xh
‖ηi+ 1

2‖L4(Γ12).

Combining the bounds above and using (3.98), the sixth term in (3.105) gives

N(U
i+ 1

2
h ,ηi+ 1

2 ; ũi+ 1
2 ,χi+ 1

2 )

≤ C‖χi+ 1
2‖Xh

(‖ηi+ 1
2‖Xh

+ ‖ηi+ 1
2‖L4(Γ12) + ‖ηi+ 1

2‖L4(Ω1))

≤ νδ‖χi+ 1
2‖2

Xh
+
C

νδ
(‖ηi+ 1

2‖2
Xh

+ ‖ηi+ 1
2‖2

L4(Γ12) + ‖ηi+ 1
2‖2

L4(Ω1)),

where δ is any positive constant (by the Young’s inequality) and C is a constant

independent of h and ν but dependent on |ui+ 1
2 |H1(Ω1). Similarly the terms cNS+dNS in

the expression N(U
i+ 1

2
h ,ui+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 ) are bounded by Remark 6.5 of [72], Korn’s

inequality [74], (3.69) and from a Sobolev imbedding as follows:

cNS(u
i+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 ) + dNS(U
i+ 1

2
h ,ui+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 )

≤ C‖χi+ 1
2‖Xh

|ui+ 1
2 |H1(Ω1)‖ηi+ 1

2‖Xh
.

The associated interface term is bounded using (3.71), the Hölder’s inequality and a

trace inequality,

|1
2
(ηi+ 1

2 · χi+ 1
2 ,ui+ 1

2 · n12)Γ12| ≤ C|ui+ 1
2 |H1(Ω1)‖χi+ 1

2‖Xh
‖ηi+ 1

2‖L4(Γ12).

The bounds above, for some constant C independent of h and ν but dependent on
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|ui+ 1
2 |H1(Ω1), yields

N(U
i+ 1

2
h ,ui+ 1

2 ; ηi+ 1
2 ,χi+ 1

2 ) ≤ C‖χi+ 1
2‖Xh

(‖ηi+ 1
2‖Xh

+ ‖ηi+ 1
2‖L4(Γ12))

≤ νδ‖χi+ 1
2‖2

Xh
+
C

νδ
(‖ηi+ 1

2‖2
Xh

+ ‖ηi+ 1
2‖2

L4(Γ12)).

The term N(U
i+ 1

2
h ,ui+1 − ui; ui+1 − ui,χi+ 1

2 ) simplifies to

N(U
i+ 1

2
h ,ui+1 − ui; ui+1 − ui,χi+ 1

2 )

=
∑
E∈E1

h

((ui+1−ui) · ∇(ui+1−ui),χi+ 1
2 )E −

1

2
((ui+1−ui) · (ui+1−ui),χi+ 1

2 ·n12)Γ12

≤ C‖χi+ 1
2‖Xh

‖∇(ui+1 − ui)‖2
L2(Ω1)

from a Sobolev imbedding, a trace inequality and the bound (3.71). From a Taylor

expansion,

ui+1 − ui = ∆tut(t̃
i) for some t̃i ∈ (ti, ti+1).

Thus,

N(U
i+ 1

2
h ,ui+1 − ui; ui+1 − ui,χi+ 1

2 ) ≤ C∆t2‖χi+ 1
2‖Xh

‖∇ut(t̃
i)‖2

L2(Ω1)

≤ νδ‖χi+ 1
2‖2

Xh
+
C

νδ
∆t4‖∇ut(t̃

i)‖4
L2(Ω1).

Next, consider the terms

D = (u
i+ 1

2
t ,χi+ 1

2 )Ω1 − (
ũi+1 − ũi

∆t
,χi+ 1

2 )Ω1

= (u
i+ 1

2
t − ui+1 − ui

∆t
,χi+ 1

2 )Ω1 + (
ηi+1 − ηi

∆t
,χi+ 1

2 )Ω1 .

Again a Taylor expansion implies the existence of some ti1, t
i
2 ∈ (ti, ti+1), such that,

u
i+ 1

2
t − ui+1 − ui

∆t
= uttt(t

i
1)

∆t2

8
− uttt(t

i
2)

∆t2

24
.
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Then, the Cauchy-Schwarz and the Young’s inequalities and the bound (3.69), for

any δ1 > 0, give

|D| ≤ νδ‖χi+ 1
2‖2

Xh
+
C

νδ

(
∆t4

2∑
θ=1

‖uttt(t
i
θ)‖2

L2(Ω1) +
1

∆t2
‖ηi+1 − ηi‖2

L2(Ω1)

)
.

The interface terms in B([ηi+ 1
2 , ζ i+ 1

2 ], [χi+ 1
2 , ξi+ 1

2 ]) are bounded as follows by using

(3.71) and (3.72):

|(ζ i+ 1
2 ,χi+ 1

2 · n12)Γ12 − (ηi+ 1
2 · n12, ξ

i+ 1
2 )Γ12 +G(K− 1

2 ηi+ 1
2 · τ 12,χ

i+ 1
2 · τ 12)Γ12|

≤ C̃12‖ζ i+ 1
2‖L2(Γ12)‖χi+ 1

2‖Xh
+ C̃22‖ηi+ 1

2‖L2(Γ12)‖ξi+ 1
2‖M2

h

+GC̃12

√
λmax‖ηi+ 1

2‖L2(Γ12)‖χi+ 1
2‖Xh

.

The remaining terms in B([ηi+ 1
2 , ζ i+ 1

2 ], [χi+ 1
2 , ξi+ 1

2 ]) are bounded using standard tech-

niques to discontinuous Galerkin methods. Details can be found in [14, 72]. Therefore,

from the approximation results (3.94) and (3.97), Young’s inequality implies for any

positive constants δ and δ̃,

B([ηi+ 1
2 , ζ i+ 1

2 ], [χi+ 1
2 , ξi+ 1

2 ]) ≤ νδ‖χi+ 1
2‖2

Xh
+ δ̃‖ξi+ 1

2‖2
M2

h

+ C(
ν

δ
+

1

δ̃
+ 1)h2k1|ui+ 1

2 |2Hk1+1(Ω1) + C(
1

δ̃
+

1

νδ
)h2k2|ϕi+ 1

2 |2Hk2+1(Ω2).

Finally it remains to bound bNS(χ
i+ 1

2 , pi+ 1
2 − P

i+ 1
2

h ). Start by writing

bNS(χ
i+ 1

2 , pi+ 1
2 − P

i+ 1
2

h ) = bNS(χ
i+ 1

2 , pi+ 1
2 − p̃

i+ 1
2

1 ) + bNS(χ
i+ 1

2 , p̃i+ 1
2 − P

i+ 1
2

h ).

The second term vanishes because of (3.68) and since b(ũi+ 1
2 , q) = b(ui+ 1

2 , q) = 0 for

any q ∈M1
h . The first term is reduced to

bNS(χ
i+ 1

2 , pi+ 1
2 − p̃

i+ 1
2

1 ) =
∑
e∈Γ1

h

([χi+ 1
2 · ne], {pi+ 1

2 − p̃i+ 1
2})e,
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as p̃ is the L2-projection of p and as ∇ ·χi+ 1
2 ∈M1

h . The Cauchy-Schwarz inequality,

a trace inequality and the approximation result (3.96) give

∑
e∈Γ1

h

([χi+ 1
2 · ne], {pi+ 1

2 − p̃i+ 1
2})e

≤ νδ
∑
e∈Γ1

h

σe

|e|
‖[χi+ 1

2 ]‖2
L2(e) +

C

νδ

∑
e∈Γ1

h

|e|
σe

‖{pi+ 1
2 − p̃i+ 1

2}‖2
L2(e)

≤ νδ‖χi+ 1
2‖2

Xh
+
C

νδ
h2k1|pi+ 1

2 |2Hk1 (Ω1).

Then, combine the bounds above with (3.103) and choose δ = C3

12
and δ̃ = C4

2
. The

approximation result (3.94) yields

1

2∆t
(‖χi+1‖2

L2(Ω1) − ‖χi‖2
L2(Ω1)) +

C4

2
‖ξi+ 1

2‖2
M2

h

+
(C3

2
ν − Ca(C5 +

3

2
C̃12C̃

2
14)‖u‖L∞(0,T ;H1(Ω1)2)

)
‖χi+ 1

2‖2
Xh

≤ C
(
(ν−1 + ν + 1)h2k1|ui+ 1

2 |2Hk1+1(Ω1) + (ν−1 + 1)h2k2|ϕi+ 1
2 |2Hk2+1(Ω2)

+ ν−1h2k1|pi+ 1
2 |2Hk1 (Ω1) + ν−1∆t4(‖ut‖2

L∞(0,T ;H1(Ω1)2) + ‖uttt‖2
L∞(0,T ;L2(Ω1)2))

+ ν−1h2k1‖ut‖2
L∞(0,T ;L2(Ω1)2)

)
. (3.106)

Multiply the equation (3.106) by 2∆t and sum from i = 1 to i = m−1, m ≥ 2. Then

under the condition

ν >
4Ca

C3

(C5 +
3

2
C̃12C̃

2
14)‖u‖L∞(0,T ;H1(Ω1)2), (3.107)

the inequality (3.100) is obtained.

It remains to find a bound for ‖χ1‖2
L2(Ω1). For this, consider the equation (3.66).
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Following a similar derivation as above, the error equation is

1

2t1
(‖χ1‖2

L2(Ω1) − ‖χ0‖2
L2(Ω1)) + C3ν‖χ1‖2

Xh
+ C4‖ξ1‖2

M2
h

≤ −N(U 1
h,U

1
h; U

1
h,χ

1) +N(u1,u1; u1,χ1) + (u1
t ,χ

1)Ω1 −
1

t1
(ũ1 − ũ0,χ1)Ω1

+B([η1, ζ1], [χ1, ξ1]) + bNS(χ
1, p1 − P 1

h ). (3.108)

The terms in the right-hand side of (3.108) are bounded using a similar argument as

above. In fact, the error analysis is simpler. For instance, note that the nonlinear

terms are rewritten as

N(U 1
h,U

1
h; U

1
h,χ

1)−N(u1,u1; u1,χ1) = N(U 1
h,U

1
h; χ

1,χ1) +N(U 1
h,χ

1; ũ1,χ1)

−N(U 1
h,η

1; ũ1,χ1)−N(U 1
h,u

1; η1,χ1).

The resulting inequality similar to (3.106) is

1

2t1
(‖χ1‖2

L2(Ω1)−‖χ0‖2
L2(Ω1))+

(C3

2
ν−Ca(C5 +

3

2
C̃12C̃

2
14)‖u‖L∞(0,T ;H1(Ω1)2)

)
‖χ1‖2

Xh

+
C4

2
‖ξ1‖2

M2
h
≤ C(ν−1 + ν + 1)h2k1|u1|2Hk1+1(Ω1) + C(ν−1 + 1)h2k2|ϕ1|2Hk2+1(Ω2)

+ Cν−1h2k1|p1|2Hk1 (Ω1) + Cν−1(t1)2‖uttt‖2
L∞(0,T ;L2(Ω1)) + Cν−1h2k1‖ut‖2

L∞(0,T ;L2(Ω1)).

Multiplying this by 2t1 and using the fact that ‖χ0‖L2(Ω1) ≤ Chk1+1|u0|Hk1+1(Ω1) (from

the approximation result (3.95)) gives (3.99) under the assumption (3.107).

Remark 40. FEM analysis of this problem is simpler and yields the same error

estimates [35].

In order to obtain a scheme that is second order in time, the first time step t1

has to be chosen small enough, namely t1 ≤ ∆t4/3. The final results are summarized

below.

D 
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Corollary 41. Under the assumptions of Theorem 39 and assuming t1 ≤ ∆t2, there

exists a constant C independent of h, t1 and ∆t but dependent on ν and the weak

solution, such that

‖u1−U 1
h‖2

L2(Ω1) +νt1‖u1−U 1
h‖2

Xh
+ t1‖ϕ1−Φ1

h‖2
M2

h
≤ Ch2k1+2 +C(h2k1 +h2k2 +∆t4),

and for any m ≥ 2,

‖um −Um
h ‖2

L2(Ω1) + ν∆t
m−1∑
i=1

‖ui+ 1
2 −U

i+ 1
2

h ‖2
Xh

+ ∆t
m−1∑
i=1

‖ϕi+ 1
2 − Φ

i+ 1
2

h ‖2
M2

h

≤ C(h2k1 + h2k2 + ∆t4).

Remark 42. The assumption on ut can be weakened in the following sense. If ut be-

longs only to L∞(0, T ;L2(Ω1)
2), and if the ratio h/∆t is bounded above by a constant,

then the results of Corollary 41 are valid.

An error estimate for the Navier-Stokes pressure p is obtained by the inf-sup

condition (3.91). The error bounds depend on error estimates of the discrete derivative

of the velocity in the L2-norm, which are not derived.

Theorem 43. Assume that the weak solution of problem (P ) satisfy the regular-

ity assumptions of Theorem 39. In addition, let u ∈ L∞(0, T ;Hk1+1(Ω1)
2), p ∈

L∞(0, T ;Hk1(Ω1)
2) and ϕ ∈ L∞(0, T ;Hk2+1(Ω2)). Then there exists a constant C

independent of h, t1 and ∆t such that

‖p1 − P 1
h‖L2(Ω1) ≤

C

t1
‖(u1 −U 1

h)− (u0 −U 0
h)‖L2(Ω1) + C(hk1 + hk2 + ∆t2), (3.109)

∀i ≥ 1, ‖pi+ 1
2 − P

i+ 1
2

h ‖L2(Ω1) ≤
C

∆t
‖(ui+1 −U i+1

h )− (ui −U i
h)‖L2(Ω1)

+ C(hk1 + hk2 + ∆t2). (3.110)
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Proof. This proof is only a sketch as the argument is standard. From the inf-sup

condition, there exists a velocity v̂1 ∈ Xh such that

n1(v̂
1, P 1

h − p̃1) = ‖P 1
h − p̃1‖2

L2(Ω1), ‖v̂1‖Xh
≤ 1

β∗
‖P 1

h − p̃1‖L2(Ω1).

With the choice (v, q) = (v̂1, 0), the error equation becomes

n1(v̂
1, P 1

h − p̃1) =
1

t1
((u1 −U 1

h)− (u0 −U 0
h), v̂

1)Ω1 +B([u1 −U 1
h, ϕ

1 −Φ1
h]; [v̂

1, 0])

+N(u1,u1; u1, v̂1)−N(U 1
h,U

1
h; U

1
h, v̂

1) + bNS(v̂
1, p1 − p̃1).

It suffices to bound the terms on the right-hand side. All terms except the first one

are bounded using the same techniques as in the proof of Theorem 39. They yield

optimal bounds with respect to h and ∆t. The first term is simply bounded by using

the Cauchy-Schwarz inequality. A similar argument is used to derive (3.110).

The above error estimate concludes this section on the numerical analysis of the

first model of the time-dependent Navier-Stokes equation coupled with the Darcy’s

equation.

3.3 Model II without the Inertial Forces on the Interface

In the previous section, I analyzed this time-dependent problem with the inertial

forces included in the balance of forces. Inclusion of inertial forces in the interface

condition makes it easier to analyze the problem which is complicated because of

the nonlinear convection term. However, inclusion of inertial forces is not physically

meaningful although it is meaningful from the mathematical point of view. So, in this

section, the inertial forces are omitted and the more challenging problem is analyzed.

Here, we use the same notation as in Section 3.2. There is a minor difference in the

D 
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boundary conditions. This time rather than the homogeneous Neumann condition on

Γ2N, we consider a non-homogeneous condition given as follows:

K∇ϕ · nΩ2 = g on Γ2N × (0, T ).

We assume that |Γ2D| 6= 0. As mentioned above, we no longer have the inertial forces

on the interface. Hence the balance of forces is given as

((−2νD(u) + pI)n12) · n12 = ϕ, on Γ12 × (0, T ).

Finally the initial condition is fixed to be

u(0, x) = 0, in Ω1. (3.111)

The previous assumptions on the data Ψ,Π and g are not sufficient for the analysis

of the weak problem. The existence of this weak problem will be proven under extra

assumptions again using the Galerkin technique. Now, we ask for

Ψ ∈ C1(0, T ;L2(Ω1)
2), Π ∈ C1(0, T ;L2(Ω2)), g ∈ C1(0, T ;H− 1

2 (Γ2N)).

3.3.1 Weak Formulation

The Sobolev spaces X, M1 and M2 are defined the same way as in Model I and the

weak formulation corresponding to Model II given as follows :

Find (u, p, ϕ) ∈ (L2(0, T ; X) ∩ L∞(0, T ;L2(Ω1)
2))× L2(0, T ;H1(Ω1))× L2(0, T ;M2)

such that u′ ∈ L∞(0, T ;L2(Ω1)
2) and

(P̃ )



∀v ∈ X,∀q ∈M2, (∂u
∂t
,v)Ω1 + 2ν(D(u),D(v))Ω1 + (u · ∇u,v)Ω1

− (p,∇ · v)Ω1 + (K∇ϕ,∇q)Ω2 + γ̃(u, ϕ; v, q)

= (Ψ,v)Ω1 + (Π, q)Ω2 + (g, q)Γ2N
,

∀q ∈M1, (∇ · u, q)Ω1 = 0,

∀v ∈ X, (u(0),v)Ω1 = 0.
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Note that there is a slight change in the weak formulation because of the non-

homogeneous Neumann condition and the removal of the inertial forces from the

interface conditions. Now the solution spaces are different and the form, which in-

cludes the interface terms, is defined differently as

∀u,v ∈ X, ∀p, q ∈M2,

γ̃(u, p; v, q) = (p,v · n12)Γ12 +G(K− 1
2 u · τ 12,v · τ 12)Γ12 − (u · n12, q)Γ12 . (3.112)

With this γ, we have

∀v ∈ X, ∀q ∈M2, γ̃(v, q; v, q) = G(K− 1
2 v · τ 12,v · τ 12)Γ12 ≥ 0

as K− 1
2 is positive semi-definite. In addition to the inequalities (3.27)-(3.29) stated

previously, we introduce two more inequalities. There exists T12, TN > 0 depending

only on Ω2 satisfying

‖q‖
H

1
2 (Γ12)

≤ T12|q|H1(Ω2), ‖q‖
H

1
2 (Γ2N )

≤ TN |q|H1(Ω2). (3.113)

3.3.2 Existence of a Weak Solution

I will first state the existence theorem and proceed with the proof by pointing out

which results still hold and what is different in this case. I will also provide demon-

strations of the results when necessary.

Theorem 44. Suppose that the above assumptions on the data Ψ,Π, g and K hold.

Assume also that u0 = 0. Then under the assumption

A+
C2

DS
2
2

4ν
‖Ψ‖2

L∞(0,T ;L2(Ω1)2) +
S̃2

2

λmin

‖Π‖2
L∞(0,T ;L2(Ω2)) +

T 2
N

λmin

‖g‖2

L∞(0,T ;H− 1
2 (Γ2N ))

<
ν3

32S2
4C

6
D

(3.114)
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the problem (P) has at least one solution (u, p, ϕ) ∈ (L2(0, T ; V )∩H1(0, T ;L2(Ω1)
2)×

L2(0, T ;M1)× L2(0, T ;M2) satisfying

sup
t∈[0,T ]

‖u(t)‖2
L2(Ω1) + ν‖D(u)‖2

L2(0,T ;L2(Ω1)2×2) + ‖K
1
2∇ϕ‖2

L2(0,T ;L2(Ω2)2) ≤M2 (3.115)

where

M =

(
C2

DS
2
2

2ν
‖Ψ‖2

L2(0,T ;L2(Ω1)2) +
2S̃2

2

λmin

‖Π‖2
L2(0,T ;L2(Ω2)) +

2T 2
N

λmin

‖g‖2

L2(0,T ;H− 1
2 (Γ2N ))

) 1
2

and

A = M×
(4C2

LT
2
12

λ2
min

(
S̃2

2‖Π(0)‖2
L2(Ω2) + T 2

N‖g(0)‖2

H− 1
2 (Γ2N )

)
+ 2‖Ψ(0)‖2

L2(Ω1)

+
C2

DS
2
2

2ν
‖Ψ′‖2

L2(0,T ;L2(Ω1)2) + 2
S̃2

2

λmin

‖Π′‖2
L2(0,T ;L2(Ω2)) + 2

T 2
N

λmin

‖g′‖2

L2(0,T ;H− 1
2 (Γ2N ))

) 1
2
.

(3.116)

We again use the technique of restricting the problem to the divergence free sub-

space V of X and consider the weak problem:

Find u ∈ L∞(0, T ;L2(Ω1)) ∩ L2(0, T ; V ) and ϕ ∈ L2(0, T ;M2) such that u′ ∈

L∞(0, T ;L2(Ω1)) and

(P̃V )


∀(v, q) ∈ W , (ut,v)Ω1 + 2ν(D(u),D(v))Ω1 + (u · ∇u,v)Ω1 + (K∇ϕ,∇q)Ω2

+γ̃(u, ϕ,v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 + (g, q)Γ2N
,

∀v ∈ V , (u(0),v)Ω1 = 0.

Theorem 45. Assume that the assumptions of Theorem 44 hold. Then there exists

a solution (u, ϕ) to the problem (P̃V ) satisfying (3.115).

Proof. The proof is the same in essence as the existence proof of the restricted

weak problem of Model I and only the differences will be highlighted. We first



76

show existence and uniqueness of a solution (um, ϕm) of the following finite dimen-

sional problem: Find (um, ϕm) ∈ L2(0, T ; W m) with um ∈ L∞(0, T ;L2(Ω1)
2) and

u′m ∈ L∞(0, T ;L2(Ω1)
2) such that for all (v, q) ∈ W m,

(P̃m)


(u′m,v)Ω1 + 2ν(D(um),D(v))Ω1 + (um · ∇um,v)Ω1 + (K∇ϕm,∇q)Ω2

+γ̃(um, ϕm; v, q) = (Ψ,v)Ω1 + (Π, q)Ω2 + (g, q)Γ2N
,

(um(0),v)Ω1 = 0.

Here the notation u′m is used for the time derivative of um. Recall that W m is the

finite dimensional Galerkin space which approximates W . Then the problem becomes
Aα′ + Bα + F̃ (α) + CT β = b

Mβ + Cα = c̃

Aα(0) = 0

with the vector α and β containing the components αm
i and βm

i respectively. The

matrices are defined exactly the same as in Model I. And the vectors except the

following are again defined the same way. Let

(F̃ (α))i = Ñ iα ·α, c̃i = (Π, ri)Ω2 + (g, ri)Γ2N

where Ñ i =
(
(Φj ·∇Φk,Φi)Ω1)

)
1≤j,k≤m

is a matrix for each i = 1, . . .m. Thus, solving

the problem defined by (P̃m) is equivalent to solving α′ + A−1(B −DM−1C)α = A−1(b− F̃ (α)−DM−1c̃)

α(0) = 0.

From the theory of ordinary differential equations [62], there exists a unique maximal

solution on the interval [0, Tm] for some Tm such that 0 < Tm ≤ T . We need an

a priori bound on (um, ϕm) to conclude that Tm = T . Consider equation (P̃m) and

choose v = um and q = ϕm. After applying Cauchy-Schwarz and Hölder’s inequalities
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and using the nonnegativity of the γ̃ term, we obtain

1

2

d

dt
‖um‖2

L2(Ω1) + 2ν‖D(um)‖2
L2(Ω1) + ‖K

1
2∇ϕm‖2

L2(Ω2)

≤ S2
4C

3
D‖D(um)‖3

L2(Ω1) + S2‖Ψ‖L2(Ω1)‖∇um‖L2(Ω1) + S̃2‖Π‖L2(Ω2)‖∇ϕm‖L2(Ω2)

+ TN‖g‖H− 1
2 (Γ2N )

‖∇ϕm‖L2(Ω2). (3.117)

Thus, by Young’s inequality,

1

2

d

dt
‖um‖2

L2(Ω1) + ν‖D(um)‖2
L2(Ω1) +

1

2
‖K

1
2∇ϕm‖2

L2(Ω2)

≤ S2
4C

3
D‖D(um)‖3

L2(Ω1) +
C2

DS
2
2

4ν
‖Ψ‖2

L2(Ω1) +
S̃2

2

λmin

‖Π‖2
L2(Ω2) +

T 2
N

λmin

‖g‖2

H− 1
2 (Γ2N )

.

(3.118)

The term that gives a problem is the first term on the right hand side of (3.118).

We want to hide it in the second term on the left hand side. Observe that under

the assumption um(0) = 0, the continuity of the solution implies that there exists

Tm > 0 such that Tm < Tm and

∀t ∈ [0, Tm], ‖D(um)‖L2(Ω1) <
ν

4S2
4C

3
D

. (3.119)

Our aim is to show that (3.119) holds for all t ∈ [0, Tm]. This will give an a priori

bound for the Galerkin solution (um, ϕm) thus enabling us to conclude that Tm = T .

We will proceed by contradiction and assume that there is a time T ∗ such that

0 < T ∗ ≤ Tm and

‖D(um)‖L2(Ω1) <
ν

4S2
4C

3
D

, 0 ≤ t < T ∗, ‖D(um)‖L2(Ω1) =
ν

4S2
4C

3
D

, t = T ∗. (3.120)

Observe that (3.120) suggests ‖D(um)‖L2(Ω1) ≤ ν
2S2

4C3
D

on [0, T ∗]. Then from (3.118)
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using Cauchy-Schwarz on the first term, we see that

ν

2
‖D(um)‖2

L2(Ω1) +
1

2
‖K

1
2∇ϕm‖2

L2(Ω2) ≤ ‖u′m‖L2(Ω1)‖um‖L2(Ω1) +
C2

DS
2
2

4ν
‖Ψ‖2

L2(Ω1)

+
S̃2

2

λmin

‖Π‖2
L2(Ω2) +

T 2
N

λmin

‖g‖2

H− 1
2 (Γ2N )

. (3.121)

Now we need to bound the first term on the right hand side of (3.121). A common

approach to find a bound for ‖u′m‖L2(Ω1) is differentiating the first equation (P̃m) with

respect to t (See [78] for the procedure). As u′m(t) ∈ V m and ϕ′m ∈ Mm, choosing

v = u′m and q = ϕ′m yields

(u′′m,u
′
m)Ω1 + 2ν(D(u′m),D(u′m))Ω1 + (u′m · ∇um,u

′
m)Ω1 + (um · ∇u′m,u

′
m)Ω1

+(K∇ϕ′m,∇ϕ′m)Ω2 + γ̃(u′m, ϕ
′
m; u′m, ϕ

′
m) = (Ψ′,u′m)Ω1 + (Π′, ϕ′m)Ω2 + (g′, ϕ′m)Γ2N

.

Using Hölder’s and Cauchy-Schwarz inequalities and nonnegativity of γ̃ term, we

obtain

1

2

d

dt
‖u′m‖2

L2(Ω1) + 2ν‖D(u′m)‖2
L2(Ω1) + ‖K

1
2∇ϕ′m‖2

L2(Ω2)

≤ 2S2
4‖∇u′m‖2

L2(Ω1)‖∇um‖L2(Ω1) + S2‖Ψ′
1‖L2(Ω1)‖∇u′m‖L2(Ω1)

+ S̃2‖Π′‖L2(Ω2)‖∇ϕ′m‖L2(Ω2) + TN‖g′‖H− 1
2 (Γ2N )

‖∇ϕ′m‖L2(Ω2).

Thus, similar to before, we have

1

2

d

dt
‖u′m‖2

L2(Ω1) + ν‖D(u′m)‖2
L2(Ω1) +

1

2
‖K

1
2∇ϕ′m‖2

L2(Ω2)

≤ 2S2
4C

3
D‖D(u′m)‖2

L2(Ω1)‖D(um)‖L2(Ω1) +
C2

DS
2
2

4ν
‖Ψ′‖2

L2(Ω1) +
S̃2

2

λmin

‖Π′‖2
L2(Ω2)

+
T 2

N

λmin

‖g′‖2

H− 1
2 (Γ2N )

. (3.122)
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Then the assumption (3.120) and the equation (3.122) imply for all t ∈ [0, T ?] that,

1

2

d

dt
‖u′m‖2

L2(Ω1) +
ν

2
‖D(u′m)‖2

L2(Ω1) +
1

2
‖K

1
2∇ϕ′m‖2

L2(Ω2)

≤ C2
DS

2
2

4ν
‖Ψ′‖2

L2(Ω1) +
S̃2

2

λmin

‖Π′‖2
L2(Ω2) +

T 2
N

λmin

‖g′‖2

H− 1
2 (Γ2N )

. (3.123)

Multiply this by two and integrate from 0 to t to obtain

‖u′m(t)‖2
L2(Ω1) − ‖u′m(0)‖2

L2(Ω1) + ν

∫ t

0

‖D(u′m)‖2
L2(Ω1)dt+

∫ t

0

‖K
1
2∇ϕ′m‖2

L2(Ω2)dt

≤ C2
DS

2
2

2ν
‖Ψ′‖2

L2(0,T ;L2(Ω1)) +
2S̃2

2

λmin

‖Π′‖2
L2(0,T ;L2(Ω2)) +

2T 2
N

λmin

‖g′‖2

L2(0,T ;H− 1
2 (Γ2N ))

(3.124)

for all t ∈ [0, T ?]. To bound the term ‖u′m(0)‖2
L2(Ω1) on the left hand side of (3.124),

we use v = u′m(0) and q = 0 in the first equation of (P̃m). Since um(0) = 0, this

yields the following when evaluated at time t = 0:

‖u′m(0)‖2 + (ϕm(0),u′m(0) · n12)Γ12 = (Ψ(0),u′m(0)).

Therefore we have

‖u′m(0)‖2
L2(Ω1) ≤ ‖ϕm(0)‖

H
1
2 (Γ12)

‖u′m(0) · n12‖(H
1
2 (Γ12))′

+ ‖Ψ(0)‖L2(Ω1)‖u′m(0)‖L2(Ω1) (3.125)

From Lemma 72 in the Appendix, there exists a constant CL > 0 such that

‖u′m(0) · n12‖(H
1
2 (Γ12))′

≤ CL‖u′m(0)‖L2(Ω1).

Hence from (3.125),

‖u′m(0)‖L2(Ω1) ≤ CL‖ϕm(0)‖
H

1
2 (Γ12)

+ ‖Ψ(0)‖L2(Ω1). (3.126)
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We bound ‖ϕm(0)‖
H

1
2 (Γ12)

on the right hand side of inequality (3.126) by plugging

v = 0 and q = ϕm in (P̃m) and evaluating at time t = 0. This gives

(K∇ϕm(0),∇ϕm(0))Ω2 = (Π(0), ϕm(0))Ω2 + (g(0), ϕm(0))Γ2N
.

Then (3.31) and the Cauchy-Schwarz inequality imply

|ϕm(0)|2H1(Ω2) ≤
1

λmin

(
‖Π(0)‖L2(Ω2)‖ϕm(0)‖L2(Ω2) + ‖g(0)‖

H− 1
2 (Γ2N )

‖ϕm(0)‖
H

1
2 (Γ2N )

)
.

Hence by the Poincaré inequality and the trace theorem, we obtain

‖ϕm(0)‖
H

1
2 (Γ12)

≤ T12

λmin

(
S̃2‖Π(0)‖L2(Ω2) + TN‖g(0)‖H− 1

2 (Γ2N )

)
. (3.127)

Therefore, (3.124), (3.126) and (3.127) yield

‖u′m(t)‖2
L2(Ω1) + ν

∫ t

0

‖D(u′m)‖2
L2(Ω1)dt+

∫ t

0

‖K
1
2∇ϕ′m‖2

L2(Ω2)dt

≤ 4C2
LT

2
12

λ2
min

(
S̃2

2‖Π(0)‖2
L2(Ω2) + T 2

N‖g(0)‖2

H− 1
2 (Γ2N )

)
+ 2‖Ψ(0)‖2

L2(Ω1)

+
C2

DS
2
2

2ν
‖Ψ′‖2

L2(0,T ;L2(Ω1)) +
2S̃2

2

λmin

‖Π′‖2
L2(0,T ;L2(Ω2)) +

2T 2
N

λmin

‖g′‖2

L2(0,T ;H− 1
2 (Γ2N ))

(3.128)

for all t ∈ [0, T ?]. This gives the bound for ‖u′m‖2
L2(Ω1) on the right hand side of the

inequality (3.121).

To get a bound for ‖um‖L2(Ω1) on the right hand side of (3.121), we multiply (3.118)

by two, and use the assumption (3.120) which says S2
4C

3
D‖D(um)‖L2(Ω1) ≤ ν/2. This

implies

d

dt
‖um‖2

L2(Ω1) + ν‖D(um)‖2
L2(Ω1) + ‖K

1
2∇ϕm‖2

L2(Ω2)

≤ C2
DS

2
2

2ν
‖Ψ‖2

L2(Ω1) +
2S̃2

2

λmin

‖Π‖2
L2(Ω2) +

2T 2
N

λmin

‖g‖2

H− 1
2 (Γ2N )

.
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We then integrate both sides from 0 to t for all 0 ≤ t ≤ T ? and use the second

condition in (P̃m). This yields

‖um‖2
L2(Ω1) + ν

∫ t

0

‖D(um)‖2
L2(Ω1)dt+

∫ t

0

‖K
1
2∇ϕm‖2

L2(Ω2)dt

≤ C2
DS

2
2

2ν
‖Ψ‖2

L2(0,T ;L2(Ω1)2) +
2S̃2

2

λmin

‖Π‖2
L2(0,T ;L2(Ω2)) +

2T 2
N

λmin

‖g‖2

L2(0,T ;H− 1
2 (Γ2N ))

(3.129)

Combining (3.128) and (3.129), we finally have the following bound to be used in

(3.121):

‖u′m‖L2(Ω1)‖um‖L2(Ω1) ≤ A

where A is defined as in (3.116). Thus we conclude from (3.121) that

‖D(um)‖2
L2(Ω1) ≤

2

ν

(
A+

C2
DS

2
2

4ν
‖Ψ‖2

L∞(0,T ;L2(Ω1)2)

+
S̃2

2

λmin

‖Π‖2
L∞(0,T ;L2(Ω2)) +

T 2
N

λmin

‖g‖2

L∞(0,T ;H− 1
2 (Γ2N ))

)
.

Since this inequality is valid for t = T ∗ and because we have made the assumption

(3.114) on the data, we conclude that

‖D(um)‖L2(Ω1) <
ν

4S4C3
D

, t = T ∗

which is a contradiction.

To summarize, we showed the existence and uniqueness of the maximal solution

(um, ϕm) on the interval [0, Tm]. From the a priori bound (3.129) valid for [0, Tm],

we conclude that the solution to the problem defined by (P̃m) exists on the whole

interval [0, T ]. Finally, we deduce the (um, ϕm) version of the bound defined in

(3.115). Indeed, taking supremum over [0, T ], we obtain for any m ≥ 1,

sup
t∈[0,T ]

‖um(t)‖2
L2(Ω1) + ν‖D(um)‖2

L2(0,T ;L2(Ω1)2×2) + ‖K
1
2∇ϕm‖2

L2(0,T ;L2(Ω2)2) ≤M2.

(3.130)
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Note that M is independent of m. Next step is to pass to the limit in (P̃m) to obtain

a solution to the problem defined by (P̃V ).

We start by examining the bound (3.130) on the sequence {(um, ϕm)}m which will

give us the necessary convergence results for {um}m and {ϕm}m. First, (3.130) says

that {um}m is bounded in L2(0, T ; V ) and {ϕm}m is bounded in L2(0, T ;M2). As

both V and M2 are reflexive, up to a subsequence, there exists u ∈ L2(0, T ; V ) and

ϕ ∈ L2(0, T ;M) such that

um → u, weakly in L2(0, T ; V ), (3.131)

ϕm → ϕ, weakly in L2(0, T ;M). (3.132)

The bound (3.130) also says that um is bounded in L∞(0, T ; V ). This gives a further

subsequence, still denoted by um such that

um → u, weakly- ? in L∞(0, T ;L2(Ω1)
2). (3.133)

Furthermore, from Lemma A.1 in the Appendix, um is bounded inHγ(0, T ; V , L2(Ω1)
2)

for 0 < γ < 1
4
. Hence, from a compactness result [71, p.186], we have

um → u, strongly in L2(0, T ;L2(Ω1)
2). (3.134)

Lastly, we can pass to the limit in the interface terms, as the continuity of the trace

operator implies

um → u, weakly in L2(0, T ;H
1
2 (∂Ω1)

2), (3.135)

ϕm → ϕ, weakly in L2(0, T ;H
1
2 (∂Ω2)). (3.136)

Using these convergence results, we pass to the limit same way as before which com-

pletes the proof of Theorem 45. D 
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The balance of forces interface condition doesn’t really make up for the nonlinear

term completely. However, if we assume an additional small data condition, we can

obtain local uniqueness of (u, ϕ).

Theorem 46. Under the assumption ‖D(u)‖L2(Ω1) ≤ ν
S2

4C3
D
, the solution (u, ϕ) of

(P̃V ) is unique.

Proof. Let (u, ϕ) and (ũ, ϕ̃) be two solutions to (PV ). Let w = u− ũ and ϕ = ϕ− ϕ̃.

Then for all v ∈ V and q ∈M2,

(wt,v)Ω1 + 2ν(D(w),D(v))Ω1 + (u · ∇u− ũ · ∇ũ,v)Ω1 + (K∇ϕ,∇q)Ω2

γ̃(u, ϕ; v, q)− γ̃(ũ, ϕ̃; v, q) = 0

and for all v ∈ V ,

(w(0),v)Ω1 = 0.

Letting v = w and q = ϕ yields

1

2

d

dt
‖w‖2

L2(Ω1) + 2ν‖D(w)‖2
L2Ω1

+ (u · ∇u − ũ · ∇ũ,w)Ω1 + ‖K
1
2∇ϕ‖2

L2(Ω2) ≤ 0

We rewrite and bound the third term in the above equation as follows:

|(w · ∇u,w)Ω1 + (ũ · ∇w,w)Ω1|

≤ ‖w‖2
L4(Ω1)‖∇u‖L2(Ω1) + ‖ũ‖L4(Ω1)‖∇w‖L2(Ω1)‖w‖L4(Ω1)

≤ 2S2
4C

3
D‖D(w)‖2

L2(Ω1)

(
‖D(u)‖L2(Ω1) + ‖D(ũ)‖L2(Ω1)

)
. (3.137)

Thus, we obtain

1

2

d

dt
‖w‖2

L2(Ω1) +
(
2ν − 2S2

4C
3
D(‖D(u)‖2

L2(Ω1) + ‖D(ũ)‖2
L2(Ω1))

)
‖D(w)‖2

L2Ω1

+ ‖K
1
2∇ϕ‖2

L2(Ω2) ≤ 0 (3.138)
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Therefore, given ‖D(u)‖ ≤ ν
S2

4C3
D

for any solution of PV ,

1

2

d

dt
‖w‖2

L2(Ω1) + ‖K
1
2∇ϕ‖2

L2(Ω2) ≤ 0. (3.139)

Now, integrate this from 0 to t. As, w(0) = 0, we get

1

2
‖w(t)‖2

L2(Ω1) +

∫ t

0

‖K
1
2∇ϕ‖2

L2(Ω2)dt ≤ 0. (3.140)

for t ∈ [0, T ]. This yields w = 0, ϕ = 0.

The construction of the Navier-Stokes pressure p from the solution of (P̃V ) follows

the same proof as in the case of Model I.

3.4 Summary

In this chapter, a mathematical model is presented for the coupled surface and sub-

surface flow. The proposed weak problem is analyzed completely for two different

models. For Model I, where we include the inertial forces in the interface conditions,

the existence result is obtained unconditionally. However for Model II because of the

missing inertial forces, a small data assumption is required to prove existence. Then

for Model I, a numerical scheme based on DG methods and Crank-Nicolson method

is derived and optimal error estimates in space and second order estimates in time are

proved. Similar results have been proved using the FEM method rather than the DG

method [35]. The analysis of this method is not included as it is a simplified version

of the DG analysis and same error estimates hold.

D 
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Chapter 4

Coupling of Surface Flow and Transport with

Miscible Displacement

In order to better understand the groundwater contamination problem, we consider

the miscible displacement in the subsurface whereas the surface flow is characterized

by the steady-state case of the Navier-Stokes/Stokes equations from Chapter 3 where

they are coupled with a transport equation. Our motivation is to predict how the

coupled surface and subsurface flow carry the pollutants to the groundwater supplies.

The first section introduces the model problem for both the Stokes and the Navier-

Stokes cases following exactly the notation of Chapter 3 for the flow part. The second

section considers the Stokes/Darcy coupling, which can be thought of as the linear

case of the Navier-Stokes/Darcy coupling, for the underlying flow problem. This

part is a more elaborate version of [55] and proves the existence of a weak solution.

In the following section, these results are extended to the full Navier-Stokes/Darcy

problem. The numerical analysis and simulations of a special case, which is the one-

way coupling of the Navier-Stokes/Darcy flow with the transport equation, are given

in the last section. Here the velocity acts like an input to the transport equation.

This part comes from [58] where the numerical scheme is based on a combination of

FEM and DG method in space and backward Euler method in time. The convergence

analysis is provided for this problem and to show the robustness of the derived schemes

one numerical example is also presented.
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4.1 Model Problem

This section defines the model problem with the assumptions on the data for the

coupling of a transport equation with the surface/subsurface flow. The equations are

coupled through the velocity field and the concentration. The flow problem of this

chapter for the Navier-Stokes problem is the stationary case of Model II of Chapter 3

with minor differences, and for the Stokes problem the nonlinear term is also omitted.

For the sake of completeness, we present the problem once more. Let u, p and ϕ

denote the fluid velocity in Ω, the Stokes pressure in Ω1 and the Darcy pressure in

Ω2, respectively. We assume that |Γ1| > 0. Let QT = Ω×(0, T ) and ΣT = ∂Ω×(0, T ).

The flow is characterized in the surface Ω1 by the Stokes equations

−∇ · (2µ(c)D(u)− pI) = Ψ, in Ω1 × (0, T ), (4.1)

or the Navier-Stokes equations

−∇ · (2µ(c)D(u) + u · ∇u− pI) = Ψ, in Ω1 × (0, T ), (4.2)

and the incompressibility condition

∇ · u = 0, in Ω1 × (0, T ). (4.3)

In the subsurface Ω2, the flow is governed by the Darcy’s law

u = − K

µ(c)
(∇ϕ− ρg), ∇ · u = Π, in Ω2 × (0, T ). (4.4)

Note that we take into account the gravitational pressure drop in the Darcy’s equa-

tions. The interface conditions are given by the continuity of the flux,

u|Ω1 · n12 = u|Ω2 · n12, on Γ12 × (0, T ), (4.5)

---
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the Beavers-Joseph-Saffman law [2, 3],

GK− 1
2 u|Ω1 · τ 12 = −2µ(c)D(u|Ω1)n12 · τ 12, on Γ12 × (0, T ), (4.6)

and the balance of forces without the inertial forces,

((−2µ(c)D(u|Ω1) + p)n12) · n12 = ϕ, on Γ12 × (0, T ). (4.7)

The Stokes/Darcy flow is fully coupled to the following diffusion-convection transport

equation which defines the concentration (fraction of volume) c of a contaminant

transported in the domain Ω over the time interval (0, T ).

∂

∂t
(φc)−∇ · (F (u)∇c− cu) = Λ, in QT . (4.8)

This system of equations is subject to the following boundary and initial conditions:

u = 0, on Γ1 × (0, T ), (4.9)

u · n = U , on Γ2 × (0, T ), (4.10)

F (u)∇c · n =

 (c− C)(u · n), on ∂Ωin × (0, T )

0, on ∂Ωout × (0, T )
, (4.11)

c = c0, in Ω× {0} (4.12)

where the inflow boundary and outflow boundaries are defined as

∂Ωin =: {x ∈ ∂Ω : (u · n)(x) < 0}, ∂Ωout := {x ∈ ∂Ω : (u · n)(x) ≥ 0}.

Since |Γ2D| = 0, the uniqueness of the Darcy pressure is satisfied by the assumption∫
Ω2

ϕ = 0. (4.13)

In the following, we define the coefficients of the equations above and set suitable

assumptions, which are necessary for the conclusions of this chapter, on these coeffi-

cients.
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• The fluid viscosity µ = µ(c), which measures the resistance of a fluid to flow,

belongs to C(R+; R+) and there exists µL, µU > 0 satisfying

µL ≤ µ(x) ≤ µU for any x ∈ R+. (4.14)

• The symmetric rate of strain matrix D(u) = 0.5(∇u + (∇u)T ) is the same as

in Section 3.2 and so satisfies (3.15) and (3.29).

• The vector function Ψ and the scalar functions, Π and Λ are the source/sink

terms such that

Π ≥ 0, Π ∈ L2(0, T ;L2(Ω2)), Ψ ∈ L2(0, T ;L2(Ω1)
2)

and

Λ ≥ 0, Λ ∈ L1(0, T ;L∞(Ω)) ∩ L2(0, T ; (H1(Ω))′).

• The permeability matrix K ∈ L∞(Ω2)
2×2 is a symmetric positive definite matrix

bounded from above and below by kU > 0 and kL > 0, that is,

∀ξ ∈ R2, kLξ · ξ ≤ Kξ · ξ ≤ kUξ · ξ. (4.15)

Remark 47. In the previous chapter, the matrix K is the hydraulic conductivity

which is proportional to the ratio of the permeability to the viscosity. Thus it

was a property of both the porous media and the fluid. Here K is only related

to the porous material.

• The fluid density ρ is a positive constant.

• The gravitational acceleration g belongs to L∞(Ω)2.
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• The coefficient G that appears in the Beavers-Joseph-Saffman interface condi-

tion (4.6) is a positive constant that depends on the properties of the porous

medium and is determined experimentally [2, 3].

• The porosity φ is defined to be the ratio of the void volume to the total volume.

There exists φL > 0 such that

φ(x) = 1, a.e. in Ω1, φL ≤ φ(x) ≤ 1, a.e. in Ω2. (4.16)

• The diffusion/dispersion matrix F (u) is equal to dmI in the surface Ω1 as in

river flow dispersion is not that important because of high velocity. In the

subsurface Ω1, F (u) depends on the velocity in the following manner [79]:

F (u) =
(
αt‖u‖+ dm

)
I +

(
αl − αt

)uuT

‖u‖
,

where dm > 0 is the molecular diffusivity constant, αl, αt ≥ 0 are the longitu-

dinal and transverse dispersivities and ‖ · ‖ denotes the Euclidean norm. F (u)

can be shown to be a continuous and bounded function from R2 to R2×2, that

is, there exists FC > 0 and FB > 0 such that

F (w) is measurable ∀w ∈ R2, ‖F (w)‖ ≤ FC‖w‖, ‖F (w)‖ ≤ FB. (4.17)

In addition, F (w) is assumed to be uniformly positive definite for all w ∈ R2,

that is,

∃α > 0 : F (w)ξ · ξ ≥ α ξ · ξ, ∀ξ ∈ R2. (4.18)

• The boundary flux U belongs to L2(0, T ;L2(Γ2)). Because of the Neumann

boundary condition on the subsurface region, the data Π and U are assumed to

satisfy the compatibility condition∫
Γ2

U =

∫
Ω2

Π. (4.19)

---
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We assume that there is a subset of Γ2 of positive measure, corresponding to

an outflow boundary, on which U is positive. From (4.9), we extend U to Γ1 by

zero and write:

u · n = U , on ∂Ω. (4.20)

• The function C is the prescribed concentration on the inflow boundary such that

C ∈ L∞(ΣT ), C ≥ 0, a.e. in ΣT . (4.21)

For any function z, we define the negative part z− and the positive part z+ as

z− =
|z| − z

2
, z+ =

|z|+ z

2
.

Note that z+ = max(0, z) and z− = max(0,−z). Using these definitions, we

rewrite (4.11) as

F (u)∇c · n = (C − c)U−, on ΣT . (4.22)

• The initial concentration c0 ∈ L∞(Ω) satisfies

c0 ≥ 0, a.e in Ω. (4.23)

We again recall from the preliminary section two trace inequalities and the Poincaré

inequality that we use frequently. Let D be a bounded domain in R2. There are

constants M2,M4 > 0 such that for any function z ∈ H1(D), we have

‖z‖L2(∂D) ≤M2‖z‖H1(D), (4.24)

‖z‖L4(∂D) ≤M4‖z‖H1(D). (4.25)

In addition, if z ∈ H1(D) such that z = 0 on a subset of D or
∫

D
zdx = 0, then there

exists MS,MP > 0 satisfying

‖z‖L4(D) ≤MS‖∇z‖L2(D), (4.26)

‖z‖L2(D) ≤MP‖∇z‖L2(D). (4.27)
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The next section analyzes the problem when the Stokes case is considered for the

surface flow.

4.2 Coupling of the Stokes and Darcy Flow with Transport

The following defines a weak formulation based on the model problem.

4.2.1 Weak Formulation

Let us first define the spaces for the Stokes velocity, the Stokes pressure and the Darcy

pressure. The first two spaces are the same as in Chapter 3 but the Darcy pressure

space is a little different as (4.13) is assumed for uniqueness.

X = H1
0,Γ1

(Ω1)
2, R1 = L2(Ω1), R2 = {q ∈ H1(Ω2) :

∫
Ω2

q = 0}. (4.28)

Also from Chapter 3, Model II, recall the definition of γ̃ for the interface terms. For

all u,v ∈ X, and for all p, q ∈ R2,

γ̃(u, p,v, q) = (p,v · n12)Γ12 +G(K− 1
2 u · τ 12,v · τ 12)Γ12 − (u · n12, q)Γ12

which takes a nonnegative value when u = v, p = q.

Definition 48. The weak formulation of the coupled flow-transport problem defined

by (4.2)-(4.13) is to find u|Ω1 ∈ L2(0, T ; X), p ∈ L2(0, T ;R1), ϕ ∈ L2(0, T ;R2) and

c ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ) such that

t→ c(·, t) ∈ C([0, T ]; (H1(Ω))
′
), t→ ∂c

∂t
(·, t) ∈ L2(0, T ; (H1(Ω))

′
), and (4.29)

c(·, 0) = c0(·), a.e. in Ω (4.30)
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satisfying for all v ∈ L2(0, T ; X), r ∈ L2(0, T ;R1) and q ∈ L2(0, T ;R2),∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2 − (∇ · v, p)Ω1

+ (∇ · u, r)Ω1 + γ(u, ϕ; v, q)
)
dt =

∫ T

0

(
(Ψ,v)Ω1 + (Π, q)Ω2 − (U , q)Γ2

)
dt (4.31)

and for all ψ ∈ L2(0, T ;H1(Ω)),∫ T

0

〈φ∂c
∂t
, ψ〉(H1(Ω))′,H1(Ω)dt+

∫
QT

(F (u)∇c−cu) ·∇ψdxdt+
∫

ΣT

(cU+−CU−)ψdσdt

=

∫ T

0

〈Λ, ψ〉(H1(Ω))′,H1(Ω)dt. (4.32)

The velocity u|Ω2 ∈ L2(0, T ;L2(Ω2)
2) in the Darcy region Ω2 is obtained from the

Darcy pressure ϕ by the equation

u = − K

µ(c)
(∇ϕ− ρg), a.e. in Ω2 × (0, T ). (4.33)

Derivation of the weak formulation :

Let ψ ∈ L2(0, T ;H1(Ω)). Multiply (4.8) by ψ, integrate over QT and use Green’s

formula:∫
QT

∂

∂t
(φc)ψdxdt+

∫
QT

(F (u)∇c− cu) · ∇ψdxdt−
∫

ΣT

(F (u)∇c− cu) · nψdσdt

=

∫ T

0

〈Λ, ψ〉(H1(Ω))′,H1(Ω)dt.

Assuming φ∂c
∂t
∈ L2(0, T ; (H1(Ω))′), and observing from (4.22) that

(F (u)∇c− cu) · n = F (u)∇c · n− c(u · n)+ + c(u · n)− = CU− − cU+,

we obtain∫ T

0

〈φ∂c
∂t

, ψ〉(H1(Ω))′,H1(Ω)dt+

∫
QT

(F (u)∇c−cu) ·∇ψdxdt+
∫

ΣT

(CU+−cU−)ψdσdt

=

∫ T

0

〈Λ, ψ〉(H1(Ω))′,H1(Ω)dt
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which yields (4.32). The weak formulation for the flow part is gathered similarly as

in [38].

4.2.2 Existence of a Weak Solution

The following theorem gives the main result of this section which is the existence of

a weak solution.

Theorem 49. There exists a weak solution (u, p, ϕ, c) to the problem defined in Def-

inition 48. In addition, (u, ϕ) satisfies

2µL‖D(u)‖2
L2(0,T ;L2(Ω1)2×2) +

1

µU

‖K
1
2∇ϕ‖2

L2(0,T ;L2(Ω2)2) ≤
M2

PC
2
D

2µL

‖Ψ‖2
L2(0,T ;L2(Ω1)2)

+
3µU

kL

(
M2

P‖Π‖2
L2(0,T ;L2(Ω2)) +M2

2‖U‖2
L2(0,T ;L2(Γ12)) +

ρ2T

µL

2
)
, (4.34)

and c satisfies

0 ≤ c ≤
∥∥∥∥Λ

φ

∥∥∥∥
L1(0,T ;L∞(Ω))

+ max(‖c0‖L∞(Ω), ‖C‖L∞(ΣT )), a.e. in QT . (4.35)

The existence result is shown using the method in Chapter 3, which is working on

the space of divergence-free functions V defined by

V = {v ∈ X : ∇ · v = 0 in Ω1}.

Using this space another variational formulation of (4.31) is defined where the Stokes

pressure term p is eliminated, that is,

Find u|Ω1 ∈ L2(0, T ; V ) and ϕ ∈ L2(0, T ;R2) such that for all v ∈ L2(0, T ; V ) and

for all q ∈ L2(0, T ;R2),∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2 + γ̃(u, ϕ; v, q)

)
dt

=

∫ T

0

((Ψ,v)Ω1 + (Π, q)Ω2 − (U , q)Γ2) dt. (4.36)



94

The following states the existence theorem for this new problem.

Theorem 50. There exist u|Ω1 ∈ L2(0, T ; V ), ϕ ∈ L2(0, T ;R2) and c ∈ L∞(QT ) ∩

L2(0, T ;H1(Ω)) satisfying the equations (4.29), (4.30), (4.36), (4.32), (4.33) and the

stability bounds (4.34) and (4.35).

The proof follows a similar technique as in [52, 53] and is based on a Galerkin

approach in time and consists of several steps. First an intermediate result and re-

lated estimates are proved. This solution to the intermediate problem is then used

in the definition of the approximate solution. Then passing to the limit in this ap-

proximate definition proves existence result for the restricted problem as stated in

the Theorem 50. Finally the main result Theorem 64 is deduced by recovering the

Stokes pressure p which was lost due to the restriction to V .

Approximate solution Extra notation is necessary for both the intermediate and

the approximate problems. For a fixed positive integer N , let ∆t = T
N

. Let ti = i∆t,

i = 0, . . . , N . Next, for any Banach space B and for any z ∈ L1(0, T ;B), define

averages at each time step by

zN
0 = 0, zN

i =
1

∆t

∫ i∆t

(i−1)∆t

z(t)dt, i = 1, . . . , N. (4.37)

This averaging technique is applied to the source terms Λ, Ψ, Π, the boundary flux

U and the inflow concentration C to obtain

Λ
N

= (Λ
N

0 , . . . ,Λ
N

N), Ψ
N

= (Ψ
N

0 , . . . ,Ψ
N

N), Π
N

= (Π
N

0 , . . . ,Π
N

N),

UN
= (UN

0 , . . . ,U
N

N), CN
= (CN

0 , . . . , C
N

N).

Observe that for any z ∈ L∞(0, T ;B) and i = 1, . . . , N ,

‖zN
i ‖B =

∥∥ 1

∆t

∫ i∆t

(i−1)∆t

z(x, t)dt
∥∥

B
≤ 1

∆t

∫ i∆t

(i−1)∆t

‖z(x, t)‖Bdt ≤ ‖z‖L∞(0,T ;B).
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Hence,

‖zN
i ‖B ≤ ‖z‖L∞(0,T ;B), i = 0, . . . N. (4.38)

Also for any z ∈ Lp(0, T ;B), 1 ≤ p < ∞, Hölder’s inequality imply that for any

i = 1, . . . , N ,

‖zN
i ‖B ≤ 1

∆t

∫ i∆t

(i−1)∆t

‖z(x, t)‖Bdt ≤
1

(∆t)
1
p

(∫ i∆t

(i−1)∆t

‖z(x, t)‖p
Bdt

) 1
p

.

Therefore, 1 ≤ p <∞,

‖zN
i ‖B ≤ 1

(∆t)
1
p

‖z‖Lp(0,T ;B), i = 0, . . . N. (4.39)

The following proposition introduces the intermediate problem to (4.36) and (4.32).

Proposition 51. For n = 0, . . . , N − 1, given CN
n ∈ L2(Ω), there exists a unique

(UN
n+1,Φ

N
n+1) ∈ V ×R2 satisfying

(P )

 ∀(v, q) ∈ V ×R2, 2(µ(CN
n )D(UN

n+1),D(v))Ω1 + ( K
µ(CN

n )
(∇ΦN

n+1 − ρg),∇q)Ω2

+γ̃(UN
n+1,Φ

N
n+1; v, q) = (Ψ

N

n+1,v)Ω1 + (Π
N

n+1, q)Ω2 − (UN

n+1, q)Γ2 .

In Ω2, if UN
n+1 ∈ L2(Ω2)

2 is defined as

UN
n+1 = − K

µ(CN
n )

(∇ΦN
n+1 − ρg), in Ω2, (4.40)

then it satisfies

∇ ·UN
n+1 = Π

N

n+1, in Ω2 (4.41)

and

UN
n+1 · n = UN

n+1, in Γ2. (4.42)

Furthermore,

2µL‖D(UN
n+1)‖2

L2(Ω1) +
1

µU

‖K
1
2∇ΦN

n+1‖2
L2(Ω2) ≤ (Mn

D)2, (4.43)
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where Mn
D is a constant independent of UN

n+1 and ΦN
n+1 and defined by

Mn
D =

(M2
PC

2
D

2µL

‖ΨN

n+1‖2
L2(Ω1)

+
3µU

kL

(
M2

P‖Π
N

n+1‖2
L2(Ω1) +M2

2‖U
N

n+1‖2
L2(Γ1) +

ρ2

µ2
L

‖Kg‖2
L2(Ω2)

)) 1
2
. (4.44)

Proof. The proof of the existence of (UN
n+1,Φ

N
n+1) in a ball of radius Mn

D with respect

to the norm

‖(v, q)‖ =
(
2µL‖D(UN

n+1)‖2
L2(Ω1) +

1

µU

‖K
1
2∇ΦN

n+1‖2
L2(Ω2)

) 1
2

can be established by a slight modification of the existence proof of [38] which involves

a Galerkin approximation and a variant of Brouwer’s fixed point theorem. For other

proofs refer to [41, 40].

To obtain (4.41), let v = 0 and q ∈ C∞0 (Ω2) in (P ). Then using (4.40),

−(UN
n+1,∇q)Ω2 = (Π

N

n+1, q)Ω2 .

So (4.41) holds in the distributional sense, that is,

∇ ·UN
n+1 = Π

N

n+1, in Ω2.

To show (4.42), let v ∈ C∞0 (Ω1)
2 and q = 0 in (P ). Then

2(µ(CN
n )D(UN

n+1),D(v))Ω1 = (Ψ
N

n+1,v)Ω1

and together with (3.15) the definition of weak derivatives yields

−2∇ · (µ(CN
n )D(UN

n+1)) = Ψ
N

n+1, in Ω1, (4.45)

in the distributional sense. Multiplying this by v ∈ X, integrating over Ω1 and using

Green’s formula, we obtain

(2(µ(CN
n )D(UN

n+1),D(v))Ω1 − (2µ(CN
n )D(UN

n+1)n,v)∂Ω1 = (Ψ
N

n+1,v)Ω1 . (4.46)
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Next, multiply (4.41) by q ∈ R2 and use Green’s formula to get

−(UN
n+1,∇q)Ω2 + (UN

n+1 · n, q)∂Ω2 = (Π
N

n+1, q)Ω2 .

Adding this to (4.46), comparing the sum with (P ) and using (4.40) yields,

(2µ(CN
n )D(UN

n+1)nΩ1 ,v)∂Ω1 + γ̃(UN
n+1,Φ

N
n+1; v, q)− (UN

n+1 · n, q)∂Ω2 = −(UN

n+1, q)Γ2 .

Letting v = 0 in this equation and choosing q such that q = 0 on Γ12 implies

(UN
n+1 · n, q)Γ2 = (UN

n+1, q)Γ2 .

Therefore, (4.42) holds.

Proposition 52. For n = 0, 1, . . . , N − 1, given CN
n ∈ L2(Ω), there exists CN

n+1 ∈

H1(Ω) satisfying

0 ≤ CN
n+1(x) ≤ ∆t

∥∥∥∥∥Λ
N

n+1

φ

∥∥∥∥∥
L∞(Ω)

+ max
(
‖CN

n ‖L∞(Ω), ‖C
N

n+1‖L∞(∂Ω)

)
, a.e. x ∈ Ω

(4.47)

and for all ψ ∈ H1(Ω),

1

∆t

∫
Ω

φ(CN
n+1 − CN

n )ψdx +

∫
Ω

(F (UN
n+1)∇CN

n+1 − CN
n+1U

N
n+1) · ∇ψdx

+

∫
∂Ω

(CN
n+1(U

N

n+1)
+ − CN

n+1(U
N

n+1)
−)ψdσ =

∫
Ω

Λ
N

n+1ψdx. (4.48)

where UN
n+1 is defined in Proposition 51.

Proof. In the following, the superscript N is dropped for convenience. Let

M = ∆t

∥∥∥∥Λn+1

φ

∥∥∥∥
L∞(Ω)

+ max
(
‖Cn‖L∞(Ω), ‖Cn+1‖L∞(∂Ω)

)
.

Define a bounded piecewise function H on R by

H(x) =


0, if x ≤ 0,

x, if 0 ≤ x ≤M,

M, if x ≥M.

D 
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The existence of Cn+1 ∈ H1(Ω) will be shown such that for all ψ ∈ H1(Ω),

1

∆t

∫
Ω

φ(Cn+1 − Cn)ψdx +

∫
Ω

F (Un+1)∇Cn+1 · ∇ψdx−
∫

Ω

H(Cn+1)Un+1 · ∇ψdx

+

∫
∂Ω

(Cn+1(Un+1)
+ − Cn+1(Un+1)

−)ψdσ =

∫
Ω

Λn+1ψdx. (4.49)

Observe that the solution to (4.49) solves (4.47) and (4.48) if 0 ≤ Cn+1 ≤ M, a.e.

in Ω. Theorem 9 (Schauder’s fixed point theorem) is suitable to show that such a

solution exists. Define an operator θ : L2(Ω) → L2(Ω) by θ(w) = v where v is the

unique function of H1(Ω) such that for any ψ ∈ H1(Ω),

1

∆t

∫
Ω

φ vψdx +

∫
Ω

F (Un+1)∇v · ∇ψdx +

∫
∂Ω

v (Un+1)
+ψdσ

=
1

∆t

∫
Ω

φCnψdx +

∫
Ω

H(w)Un+1 · ∇ψdx +

∫
∂Ω

Cn+1(Un+1)
−ψdσ +

∫
Ω

Λn+1ψdx.

(4.50)

Clearly, any fixed point of (4.50) is a solution to (4.49). Well-definition of θ comes

from the Lax-Milgram theorem. Indeed, define a bilinear form B by

B(v, ψ) =
1

∆t

∫
Ω

φ vψdx +

∫
Ω

F (Un+1)∇v · ∇ψdx +

∫
∂Ω

v (Un+1)
+ψdσ,

and a linear form L by

L(ψ) =
1

∆t

∫
Ω

φCnψdx+

∫
Ω

H(w)Un+1 ·∇ψdx+

∫
∂Ω

Cn+1(Un+1)
−ψdσ+

∫
Ω

Λn+1ψdx.

Then from the Cauchy-Schwarz inequality, (4.16), (4.17), (4.25) and (4.39),

|B(v, ψ)| ≤ 1

∆t
‖v‖L2(Ω)‖ψ‖L2(Ω) + ‖F (Un+1)∇v‖L2(Ω)‖∇ψ‖L2(Ω)

+ ‖v‖L4(∂Ω)‖(Un+1)
+‖L2(∂Ω)‖ψ‖L4(∂Ω)

≤ 1

∆t
‖v‖H1(Ω)‖ψ‖H1(Ω) + FB‖v‖H1(Ω)‖ψ‖H1(Ω) +M2

4‖v‖H1(Ω)‖Un+1‖L2(∂Ω)‖ψ‖H1(Ω)

=

(
1

∆t
+ FB +

M2
4

∆t
1
2

‖U‖L2(0,T ;L2(∂Ω))

)
‖v‖H1(Ω)‖ψ‖H1(Ω).
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Thus, B is continuous. Coercivity of B follows from (4.16) and (4.18).

B(v, v) =
1

∆t

∫
Ω

φ v2dx +

∫
Ω

F (Un+1)∇v · ∇vdx +

∫
∂Ω

U +
v2dσ

≥ φL

∆t
‖v‖2

L2(Ω) + α‖∇v‖2
L2(Ω) ≥ min

(
φL

∆t
, α

)
‖v‖2

H1(Ω).

Finally, using the bound on the function H, the Cauchy-Schwarz inequality, (4.16),

(4.24), (4.38) and (4.39), L is continuous as shown below:

|L(ψ)| ≤ 1

∆t
‖Cn‖L2(Ω)‖ψ‖L2(Ω) +M‖Un+1‖L2(Ω)‖∇ψ‖L2(Ω)

+ ‖Cn+1‖L∞(∂Ω)‖U
−
n+1‖L2(∂Ω)‖ψ‖L2(∂Ω) + ‖Λn+1‖(H1(Ω))′‖ψ‖H1(Ω)

≤
( 1

∆t
‖Cn‖L2(Ω) +M‖Un+1‖L2(Ω)

+
1

∆t
1
2

(
M2‖C‖L∞(ΣT )‖U‖L2(0,T ;L2(∂Ω)) + ‖Λ‖L2(0,T ;(H1(Ω))′)

))
‖ψ‖H1(Ω).

Hence from Lax-Milgram theorem there exists a unique v ∈ H1(Ω) such that B(v, ψ) =

L(ψ) for any ψ ∈ H1(Ω).

Schauder’s fixed point theorem requires that θ is continuous and θ(L2(Ω)) is rela-

tively compact in L2(Ω). The relative compactness property will follow from Rellich-

Kondrachov theorem [60, see remark 6.3] once θ(L2(Ω)) is shown to be bounded in

H1(Ω). In (4.50), take ψ = v,

1

∆t

∫
Ω

φ v2dx +

∫
Ω

F (Un+1)∇v · ∇vdx +

∫
∂Ω

(Un+1)
+v2dσ

=
1

∆t

∫
Ω

φCnvdx +

∫
Ω

H(w)Un+1 · ∇vdx +

∫
∂Ω

Cn+1(Un+1)
−vdσ +

∫
Ω

Λn+1vdx.

Therefore, by positiveness of the third term, boundedness of H, (4.16), (4.38), (4.39),



100

(4.18) and (4.24),

φL

∆t
‖v‖2

L2(Ω) + α‖∇v‖2
L2(Ω) ≤

1

∆t
‖Cn‖L2(Ω)‖v‖L2(Ω) +M‖Un+1‖L2(Ω)‖∇v‖L2(Ω)

+ ‖Cn+1‖L∞(∂Ω)‖Un+1‖L2(∂Ω)‖v‖L2(∂Ω) + ‖Λn+1‖(H1(Ω))′‖v‖H1(Ω)

≤ A‖v‖H1(Ω),

where

A =
( 1

∆t
‖Cn‖L2(Ω)+M‖Un+1‖L2(Ω)+M2‖Cn+1‖L∞(∂Ω)‖Un+1‖L2(∂Ω)+‖Λn+1‖(H1(Ω))′

)
.

Therefore,

‖v‖H1(Ω) ≤
A

min( φL

2∆t
, α

2
)

(4.51)

which means that θ(L2(Ω)) is bounded in H1(Ω) as and A is independent of w.

To show the continuity of θ, let {wk}k be a sequence in L2(Ω) such that wk → w

in L2(Ω). Let vk = θ(wk). The convergence vk → θ(w) in L2(Ω) will be shown by

using the estimate (4.51). First from Lemma 1, convergence of {wk}k to w in L2(Ω)

implies that there exists a subsequence wkj
, wkj

→ w a.e. in Ω as j →∞. As H(w)

is bounded and continuous in w, H(wkj
) → H(w) a.e in Ω as j → ∞. Then by the

Lebesgue dominated convergence theorem,

H(wkj
) → H(w) strongly in L2(Ω). (4.52)

By (4.51), {vkj
}j is bounded in H1(Ω) so there exists a subsequence still denoted by

{vkj
}j such that

vkj
→ v weakly in H1(Ω) (4.53)

for some v ∈ H1(Ω). As H1(Ω) is compactly embedded in L2(Ω), again, up to a

subsequence,

vkj
→ v strongly in L2(Ω). (4.54)
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Since the trace function is continuous from L2(Ω) to L2(∂Ω),

vkj
→ v strongly in L2(∂Ω). (4.55)

Consider (4.50) with vkj
and wkj

in place of v and w. With the above convergence

results (4.52), (4.53), (4.54) and (4.55), passing to the limit in (4.50) yields v = θ(w).

Hence vkj
→ v = θ(w) strongly in L2(Ω). Similarly, every subsequence of {vk}k

converging in L2(Ω) has limit θ(w). Therefore {vk}k has a unique accumulation

point. As θ(L2(Ω)) is relatively compact in L2(Ω), θ(wk) = vk → θ(w) in L2(Ω).

Hence θ is continuous which concludes that there exists a fixed point Cn+1 ∈ H1(Ω)

satisfying (4.50), hence yielding a solution to (4.49).

Next step is to show that 0 ≤ Cn+1 ≤M, a.e. in Ω which proves (4.47) and also

implies that H(Cn+1) = Cn+1. This will give (4.48).

Let us first show Cn+1 ≥ 0, a.e. in Ω. From Stampacchia [80, p.50], C−
n+1 ∈ H1(Ω).

In (4.49), let ψ = −C−
n+1

− 1

∆t

∫
Ω

φ(Cn+1 − Cn)C−
n+1dx +

∫
Ω

H(Cn+1)u · ∇C−
n+1dx

−
∫

Ω

F (Un+1)∇Cn+1 · ∇C−
n+1dx−

∫
∂Ω

(Cn+1U
+

n+1 − Cn+1U
−
n+1)C

−
n+1dσ

+

∫
Ω

Λn+1C
−
n+1dx = 0.

Observe that for any function z,

zz− =

 −(z−)2, if z < 0,

0, otherwise

 = −(z−)2.

Similarly, F (Un+1)∇Cn+1 · ∇C−
n+1 = −F (Un+1)∇C−

n+1 · ∇C−
n+1. The second term in

the equation vanishes since for Cn+1 ≤ 0, H(Cn+1) = 0 and for Cn+1 ≥ 0, C−
n+1 = 0.
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Therefore,

1

∆t

∫
Ω

φ(C−
n+1)

2dx +
1

∆t

∫
Ω

φCnC
−
n+1dx +

∫
Ω

F (Un+1)∇C−
n+1 · ∇C−

n+1dx

+

∫
∂Ω

(C−
n+1)

2U +

n+1dσ +

∫
∂Ω

Cn+1U
−
n+1C

−
n+1dσ +

∫
Ω

Λn+1C
−
n+1dx = 0.

Observe that C0 ≥ 0 and U −
n+1,U

+

n+1, Cn+1,Λn+1 ≥ 0, for all n ≥ 0. This, together

with (4.18) shows that

1

∆t

∫
Ω

φ(C−
1 )2dx +

1

∆t

∫
Ω

φC0C
−
1 dx + α

∫
Ω

|∇C−
1 |dx +

∫
∂Ω

(C−
1 )2U +

1 dσ

+

∫
∂Ω

C1U
−
1 C

−
1 dσ +

∫
Ω

Λ1C
−
1 dx = 0,

in which all the terms except the first one are nonnegative. Hence 1
∆t

∫
Ω
φ(C−

1 )2dx ≤

0. This implies C−
1 = 0, a.e. in Ω as φ > 0. In other words, C1 ≥ 0, a.e. in Ω. Then

an induction argument shows that Cn ≥ 0, a.e. in Ω for all n ≥ 0.

Now we will show Cn+1 ≤M, a.e. in Ω by proving that (Cn+1−M)+ = 0, a.e. in

Ω. As before, from [80], (Cn+1 −M)+ ∈ H1(Ω). So let ψ = (Cn+1 −M)+ in (4.49).

1

∆t

∫
Ω

φ(Cn+1 − Cn)(Cn+1 −M)+dx−
∫

Ω

H(Cn+1)Un+1 · ∇(Cn+1 −M)+dx

+

∫
Ω

F (Un+1)∇Cn+1 ·∇(Cn+1−M)+dx+

∫
∂Ω

(Cn+1 U
+

n+1−Cn+1U
−
)(Cn+1−M)+dσ

−
∫

Ω

Λn+1(Cn+1 −M)+dx = 0. (4.56)

Note that

F (Un+1)∇Cn+1 · ∇(Cn+1 −M)+ = F (Un+1)∇(Cn+1 −M) · ∇(Cn+1 −M)+

= F (Un+1)∇(Cn+1 −M)+ · ∇(Cn+1 −M)+.

So, the third term in (4.56) is positive by (4.18). Now let

I = −
∫

Ω

H(Cn+1)Un+1·∇(Cn+1−M)+dx+

∫
∂Ω

(Cn+1 U
+

n+1−Cn+1U
−
n+1)(Cn+1−M)+dσ.
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From the definition of H, we have

H(Cn+1)Un+1 · ∇(Cn+1 −M)+ = MUn+1 · ∇(Cn+1 −M)+, a.e. in Ω.

This and the Green’s formula gives

I =

∫
Ω

M∇ · Un+1(Cn+1 −M)+dx−
∫

∂Ω

MUn+1(Cn+1 −M)+dσ

+

∫
∂Ω

(Cn+1 U
+

n+1 − Cn+1U
−
n+1)(Cn+1 −M)+dσ.

Then by (4.41) and (4.42), we obtain

I =

∫
Ω2

MΠn+1(Cn+1 −M)+dx +

∫
∂Ω

(Cn+1 −M)U+

n+1(Cn+1 −M)+dσ

+

∫
∂Ω

(M−Cn+1)U
−
n+1(Cn+1 −M)+dσ.

Note that M,Πn+1, (Cn+1 −M)+ and U+

n+1 are nonnegative and Cn+1 ≤ M. These

together with the fact that (Cn+1−M)(Cn+1−M)+ = ((Cn+1−M)+)2 yields I ≥ 0.

Then from (4.56) we conclude that∫
Ω

(φ(Cn+1 − Cn)−∆tΛn+1)(Cn+1 −M)+dx ≤ 0.

As Cn + ∆tΛn+1

φ
≤M, a.e. in Ω, Cn+1−Cn −∆tΛn+1

φ
≥ Cn+1−M, a.e. in Ω. Hence∫

Ω
φ((Cn+1 −M)+)2dx ≤ 0 yielding

(Cn+1 −M)+ = 0, a.e. in Ω.

This concludes the proof.

Let CN
0 = c0, ΦN

0 = 0, UN
0 = 0 and by Proposition 51 and Proposition 52, define

CN = (CN
0 , . . . , C

N
N ), ΦN = (ΦN

0 , . . . ,Φ
N
N), UN = (UN

0 , . . . ,U
N
N).

Now we will define constant and linear interpolation operators for the approximations

of Λ
N
,Π

N
,Ψ

N
, CN

and CN ,UN ,ΦN .

D 
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Definition 53. Let B be a Banach space. For ξ = (ξ0, . . . , ξN) ∈ BN+1, define

I0ξ, I1ξ : [0, T ] → B by

I0ξ(t) =

 ξ0, t = 0

ξn+1, if n∆t < t ≤ (n+ 1)∆t, n = 0, . . . , N − 1

and

I1ξ(t) =

(
1 + n− t

∆t

)
ξn+

(
t

∆t
− n

)
ξn+1 , if n∆t ≤ t ≤ (n+1)∆t, n = 0, . . . , N−1.

Also define Ĩ0 to be the extension of the constant interpolation operator such that

Ĩ0ξ(t) =

 ξ0 t ∈ [−∆t, 0],

ξn+1 t ∈ (n∆t, (n+ 1)∆t], n = 0, . . . N − 1.

Observe that I1ξ is continuous and,

∂

∂t
I1ξ(t) =

1

∆t
(ξn+1 − ξn) , if n∆t < t < (n+ 1)∆t, n = 0, . . . , N − 1. (4.57)

Also for all 1 ≤ p <∞,

‖I0ξ‖Lp(0,T ;B) = (∆t
N∑

n=1

‖ξn‖p
B)

1
p , (4.58)

the proof of which is included in the Appendix A.4. For p = ∞,

‖I0ξ‖L∞(0,T ;B) = ess sup
t∈[0,T ]

‖I0ξ(t)‖B = max
n=1,...,N

‖ξn‖B. (4.59)

Furthermore, from Appendix A.4, for z ∈ Lp(0, T ;B), if zN = (zN
0 , . . . , z

N
N) is defined

as in (4.37), then for all 1 ≤ p <∞,

I0z
N → z strongly in Lp(0, T ;B) as N →∞. (4.60)

With these properties of the constant and linear interpolation operators, integrating

(4.48) and (P ) from n∆t to (n+ 1)∆t, summing from n = 0 to n = N − 1 and using

(4.40) yields the following definition of the approximate solution to the Stokes-Darcy-

transport problem.
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Definition 54. (Definition of the approximate solution) For all v ∈ L2(0, T ; V ) and

for all q ∈ L2(0, T ;R2),∫ T

0

(
2(µ(Ĩ0C

N

∆t)D(I0U
N),D(v))Ω1 +

( K

µ(Ĩ0C
N

∆t)
(∇I0ΦN − ρg),∇q

)
Ω2

+ (I0Φ
N ,v · n12)Γ12 +G(K− 1

2 I0U
N · τ 12,v · τ 12)Γ12 − (I0U

N · n12, q)Γ12

)
dt

=

∫ T

0

(
(I0Ψ

N
,v)Ω1 + (I0Π

N
, q)Ω2 − (I0U

N
, q)Γ2

)
dt (4.61)

where

I0U
N = − K

µ(Ĩ0C
N

∆t)
(∇I0ΦN − ρg), in Ω2 × (0, T ). (4.62)

and the concentration equation is defined as

∫ T

0

〈 ∂
∂t
I1C

N , ψ〉(H1(Ω))′,H1(Ω)dt−
∫

QT

I0C
NI0U

N · ∇ψdxdt

+

∫
QT

F (I0U
N)∇I0CN · ∇ψdxdt+

∫
ΣT

(I0C
N(I0U

N
)+ − I0C

N
(I0U

N
)−)ψdσdt

−
∫ T

0

〈I0Λ
N
, ψ〉(H1(Ω))′,H1(Ω)dt = 0, (4.63)

for all ψ ∈ L2(0, T ;H1(Ω)). The function Ĩ0C
N

∆t denotes the translated function:

Ĩ0C
N

∆t(x, t) = Ĩ0C
N

(x, t − ∆t). Furthermore, multiplying by ∆t and summing from

n = 0 to N − 1 both sides of the bound (4.43), we obtain

2µL‖D(I0U
N)‖2

L2(0,T ;L2(Ω1)2×2) +
1

µU

‖K
1
2∇(I0Φ

N)‖2
L2(0,T ;L2(Ω2)2)

≤ M2
PC

2
D

2µL

‖Ψ‖2
L2(0,T ;L2(Ω1)2) +

3µU

kL

(
M2

P‖Π‖2
L2(0,T ;L2(Ω2))

+M2
2‖U‖2

L2(0,T ;L2(Γ12)) +
ρ2T

µL

2

‖Kg‖2
L2(Ω)

)
. (4.64)

We will pass to the limit in this definition. First we need some bounds for the

approximate solution, which are derived in the next section.
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Stability bounds The first proposition of this section gives a uniform L∞-bound

for I0C
N which will be used when passing to the limit. A slightly more general version

of this result can be found in [53].

Proposition 55. For n = 0, . . . , N

0 ≤ CN
n (x) ≤ N , a.e. x ∈ Ω, (4.65)

where N is the right-hand side of (4.35), i.e.,

N =

∥∥∥∥Λ

φ

∥∥∥∥
L1(0,T ;L∞(Ω))

+ max(‖c0‖L∞(Ω), ‖C‖L∞(ΣT )).

Proof. For readibility again, we drop the superscript N . Using (4.47) and (4.38)

recursively, for all n = 1, . . . , N , we obtain for a.e. x ∈ Ω that

0 ≤ Cn(x) ≤ ∆t

∥∥∥∥Λn

φ

∥∥∥∥
L∞(Ω)

+ max
(
‖Cn−1‖L∞(Ω), ‖Cn‖L∞(∂Ω)

)
≤ ∆t

∥∥∥∥Λn

φ

∥∥∥∥
L∞(Ω)

+max
((

∆t

∥∥∥∥Λn−1

φ

∥∥∥∥
L∞(Ω)

+max
(
‖Cn−2‖L∞(Ω), ‖C‖L∞(ΣT )

) )
, ‖C‖L∞(ΣT )

)
≤ ∆t

∥∥∥∥Λn−1

φ

∥∥∥∥
L∞(Ω)

+ ∆t

∥∥∥∥Λn

φ

∥∥∥∥
L∞(Ω)

+ max
(
‖Cn−2‖L∞(Ω), ‖C‖L∞(ΣT )

)
≤ . . .

. . . ≤ ∆t
n∑

i=1

∥∥∥∥Λi

φ

∥∥∥∥
L∞(Ω)

+ max(‖C0‖L∞(Ω), ‖C‖L∞(ΣT )).

Observe from the proof of (4.38) that we have

∆t
n∑

i=1

∥∥∥∥Λi

φ

∥∥∥∥
L∞(Ω)

≤
n∑

i=1

∫ i∆t

(i−1)∆t

∥∥∥∥Λ(t)

φ

∥∥∥∥
L∞(Ω)

dt

≤
∫ T

0

∥∥∥∥Λ(t)

φ

∥∥∥∥
L∞(Ω)

dt =

∥∥∥∥Λ

φ

∥∥∥∥
L1(0,T ;L∞(Ω))

.

Then the result follows from this and the assumption that C0 = c0.

Remark 56. It is trivial to deduce the following uniform bounds for I0C
N and I1C

N :

0 ≤ I0C
N(x, t) ≤ N , 0 ≤ I1C

N(x, t) ≤ N , a.e. x ∈ Ω, ∀ t ∈ (0, T ). (4.66)

D 
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The next proposition gives uniform bounds for the terms related to the Stokes-

Darcy flow.

Proposition 57. There exists a constant M independent of N such that

‖I0UN‖L2(0,T ;L2(Ω)2) ≤M. (4.67)

Furthermore,

‖I0Λ
N‖L1(QT ) ≤ ‖Λ‖L1(QT ), (4.68)

‖I0Λ
N‖L2(0,T ;(H1(Ω))′) ≤ ‖Λ‖L2(0,T ;(H1(Ω))′), (4.69)

‖I0U
N‖L1(ΣT ) ≤ ‖U‖L1(ΣT ), (4.70)

‖I0U
N‖L2(ΣT ) ≤ ‖U‖L2(ΣT ). (4.71)

Proof. The estimates (4.68), (4.69), (4.70) and (4.71) are easy consequences of (A.13).

To obtain (4.67), note from (4.64) that we have a uniform L2(0, T ;L2(Ω2)
2)-estimate

for ∇I0ΦN with respect to N . This gives a bound for I0U
N on Ω2 as a result of (4.62)

and (4.14). Similarly, we have a uniform L2(0, T ;L2(Ω1)
2×2) bound for D(I0U

N).

This implies a uniform L2(0, T ;L2(Ω1)
2) bound for I0U

N in Ω1 from Poincaré in-

equality (4.27). Therefore (4.67) holds.

The following result gives various bounds for the interpolation of the concentra-

tion.

Proposition 58. There exists a constant M independent of N such that

‖I0CN‖L2(0,T ;H1(Ω)) ≤ M, (4.72)

∀t′ > 0, ‖I0CN
−t′ − I0C

N‖2
L2((0,T−t′);L2(Ω)) ≤ M t′, (4.73)

‖ ∂
∂t
I1C

N‖L2(0,T ;(H1(Ω))′) ≤ M, (4.74)

‖I1CN − I0C
N‖2

L2(0,T ;(H1(Ω))′) ≤ M ∆t, (4.75)

D 
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‖CN

n ‖L∞(∂Ω) ≤ ‖C‖L∞(ΣT ), (4.76)

‖I0C
N‖L∞(∂Ω) ≤ ‖C‖L∞(ΣT ), (4.77)

where Ct′(x, t) = C(x, t− t′) is the translation of C to (0, T − t′).

Proof. The inequality (4.76) follows from (4.38) and the last estimate (4.77) is a direct

consequence of (A.13). We will prove the first four bounds. In (4.48), omitting the

superscript N and letting ψ = Cn+1, we have

1

∆t

∫
Ω

φ(Cn+1−Cn)Cn+1dx+

∫
Ω

F (Un+1)∇Cn+1·∇Cn+1dx−
∫

Ω

Cn+1Un+1·∇Cn+1dx

+

∫
∂Ω

(Cn+1(Un+1)
+ − Cn+1(Un+1)

−)Cn+1dσ =

∫
Ω

Λn+1Cn+1dx.

By Green’s formula and (4.42) we rewrite the third terms as∫
Ω

Cn+1Un+1 · ∇Cn+1dx = −
∫

Ω

∇(Cn+1Un+1)Cn+1dx +

∫
∂Ω

Un+1C
2
n+1dσ

= −
∫

Ω

(Cn+1∇ ·Un+1 +∇Cn+1 ·Un+1)Cn+1dx +

∫
∂Ω

Un+1C
2
n+1dσ.

Since we have (4.41), this implies

2

∫
Ω

Cn+1Un+1 · ∇Cn+1dx = −
∫

Ω

∇ ·Un+1C
2
n+1dx +

∫
∂Ω

Un+1C
2
n+1dσ

= −
∫

Ω2

Πn+1C
2
n+1dx +

∫
∂Ω

Un+1C
2
n+1dσ.

Then,

1

∆t

∫
Ω

φ(Cn+1 − Cn)Cn+1dx +

∫
Ω

F (Un+1)∇Cn+1 · ∇Cn+1dx +
1

2

∫
Ω2

Πn+1C
2
n+1dx

− 1

2

∫
∂Ω

Un+1C
2
n+1dσ+

∫
∂Ω

(Cn+1(Un+1)
+−Cn+1(Un+1)

−)Cn+1dσ =

∫
Ω

Λn+1Cn+1dx.

Note that (Un+1)
+ − 1

2
Un+1 = 1

2
|Un+1|. So,

1

∆t

∫
Ω

φ(Cn+1 − Cn)Cn+1dx +

∫
Ω

F (Un+1)∇Cn+1 · ∇Cn+1dx +
1

2

∫
Ω2

Πn+1C
2
n+1dx

+
1

2

∫
∂Ω

|Un+1|C2
n+1dσ =

∫
∂Ω

Cn+1(Un+1)
−Cn+1dσ +

∫
Ω

Λn+1Cn+1dx.
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Using the assumption Π ≥ 0 and (4.18),

1

∆t

∫
Ω

φ(Cn+1 − Cn)Cn+1dx + α

∫
Ω

|∇Cn+1|2dx

≤
∫

∂Ω

Cn+1(Un+1)
−Cn+1dσ +

∫
Ω

Λn+1Cn+1dx.

Finally noting that 1
2
(C2

n+1 − C2
n) ≤ (Cn+1 − Cn)Cn+1, we further obtain

1

2∆t

∫
Ω

φ(C2
n+1−C2

n)dx+α‖∇Cn+1‖2
L2(Ω) ≤

∫
∂Ω

Cn+1(Un+1)
−Cn+1dσ+

∫
Ω

Λn+1Cn+1dx.

This, (4.65) and (4.38) implies

1

2∆t

∫
Ω

φ(C2
n+1 − C2

n)dx + α‖∇Cn+1‖2
L2(Ω)

≤ N‖Λn+1‖L1(Ω) +N‖C‖L∞(ΣT )‖Un+1‖L1(∂Ω).

Multiplying by 2∆t, summing from 0 to m− 1, for any 1 ≤ m ≤ N , and using (4.58),

(A.13) and (4.70) we get

∫
Ω

φC2
mdx + 2α

m−1∑
n=0

∆t‖∇Cn+1‖2
L2(Ω) ≤

∫
Ω

φC2
0dx + 2N

m−1∑
n=0

∆t‖Λn+1‖L1(Ω)

+ 2N 2

m−1∑
n=0

∆t‖Un+1‖L1(∂Ω) =

∫
Ω

φC2
0dx + 2N‖I0Λ‖L1(QT ) + 2N 2‖I0U‖L1(ΣT )

≤
∫

Ω

φC2
0dx + 2N‖Λ‖L1(QT ) + 2N 2‖U‖L1(ΣT ).

Therefore from (4.16), for all 1 ≤ m ≤ N ,

φL‖Cm‖2
L2(Ω) + 2α

m−1∑
n=0

∆t‖∇Cn+1‖2
L2(Ω) ≤ A, (4.78)

where A =
∫

Ω
φC2

0dx + 2N‖Λ‖L1(QT ) + 2N 2‖U‖L1(ΣT ).This implies (4.72) as
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‖I0C‖L2(0,T ;H1(Ω)) =

(
N−1∑
n=0

∆t‖Cn+1‖2
H1(Ω)

) 1
2

=

(
N−1∑
n=0

∆t(‖Cn+1‖2
L2(Ω) + ‖∇Cn+1‖2

L2(Ω))

) 1
2

≤

((
N−1∑
n=0

∆t
A

φL

)
+

A

2α

) 1
2

=

(
AT

φL

+
A

2α

) 1
2

.

What comes next is the proof of (4.73), which comes from [81, 53]. Fix t′ > 0. As

before define dte = min{n ∈ Z : t ≤ n}. Then

∫
Ω

φ(I0C−t′ − I0C)2dx =

∫
Ω

φ
(
Cd t+t′

∆t e − Cd t
∆te
)2

dx

=

∫
Ω

φ
(
Cd t+t′

∆t e − Cd t
∆te
)(

Cd t+t′
∆t e − Cd t

∆te
)
dx

=

∫
Ω

φ

n1(t)−1∑
n=n0(t)

(Cn+1 − Cn)(Cn1(t) − Cn0(t))dx,

where n0(t) =
⌈

t
∆t

⌉
and n1(t) =

⌈
t+t′

∆t

⌉
. Multiplying (4.48) by ∆t, summing from

n0(t) to n1(t)− 1 and choosing ψ = Cn1(t) − Cn0(t) we have

J :=

∫
Ω

n1(t)−1∑
n=n0(t)

φ(Cn+1 − Cn)(Cn1(t) − Cn0(t))dx

= −∆t

n1(t)−1∑
n=n0(t)

∫
Ω

(
F (Un+1)∇Cn+1 − Cn+1Un+1

)
· ∇(Cn1(t) − Cn0(t))dx

−∆t

n1(t)−1∑
n=n0(t)

∫
∂Ω

(Cn+1(Un+1)
+ − Cn+1(Un+1)

−)(Cn1(t) − Cn0(t))dσ

+ ∆t

n1(t)−1∑
n=n0(t)

∫
Ω

Λn+1(Cn1(t) − Cn0(t))dx.
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Then from (4.17) and (4.65), we obtain

J ≤ ∆t

n1(t)−1∑
n=n0(t)

∫
Ω

(
FB|∇Cn+1|+N|Un+1|

)
|(|∇Cn1(t)|+ |∇Cn0(t)|)dx

+ ∆t

n1(t)−1∑
n=n0(t)

∫
∂Ω

2N (N + |Cn+1|)|Un+1|dσ + ∆t

n1(t)−1∑
n=n0(t)

∫
Ω

2N|Λn+1|dx

Applying Young’s inequality to the first term of the right hand side of the above

inequality implies

J ≤ ∆t

n1(t)−1∑
n=n0(t)

(∫
Ω

(F 2
B|∇Cn+1|2 +N 2|Un+1|2 + 2N|Λn+1|)dx

+

∫
∂Ω

2N (N + |Cn+1|)|Un+1|dσ
)

+ ∆t

n1(t)−1∑
n=n0(t)

∫
Ω

|∇Cn1(t)|2 + ∆t

n1(t)−1∑
n=n0(t)

∫
Ω

|∇Cn0(t)|2.

Now, define

pn :=

∫
Ω

(F 2
B|∇Cn|2 +N 2|Un|2 + 2N|Λn|)dx +

∫
∂Ω

2N (N + |Cn|)|Un|dσ

and

qn :=

∫
Ω

|∇Cn|2.

Therefore, we can rewrite∫
Ω

φ(I0C−t′ − I0C)2dx ≤ ∆t

n1(t)−1∑
n=n0(t)

pn+1 + ∆t

n1(t)−1∑
n=n0(t)

qn1(t) + ∆t

n1(t)−1∑
n=n0(t)

qn0(t).

Now let

χn(t, t+ t′) =

 1, if n∆t ∈ [t, t+ t′)

0, otherwise.

Then∫ T−t′

0

n1(t)−1∑
n=n0(t)

pn+1dt =

∫ T−t′

0

N−1∑
n=0

pn+1χn(t, t+ t′)dt =
N−1∑
n=0

pn+1

∫ T−t′

0

χn(t, t+ t′)dt

≤
N−1∑
n=0

pn+1

∫
R
χn(t, t+ t′)dt =

N−1∑
n=0

pn+1

∫ n∆t

n∆t−t′
dt = t′

N−1∑
n=0

pn+1.
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Observe that n0(t) = m for some m ∈ N if and only if t ∈ ((m− 1)∆t,m∆t]. Then∫ T−t′

0

n1(t)−1∑
n=n0(t)

qn0(t)dt =

∫ T−t′

0

N−1∑
n=0

qn0(t)χn(t, t+ t′)dt =

∫ T−t′

0

qn0(t)

N−1∑
n=0

χn(t, t+ t′)dt

≤
N∑

m=1

∫ m∆t

(m−1)∆t

qm

N−1∑
n=0

χn(t, t+ t′)dt ≤
N∑

m=1

qm

N−1∑
n=0

∫ m∆t

(m−1)∆t

χn(t, t+ t′)dt

=
N∑

m=1

qm

N−1∑
n=0

∫ (2m−n)∆t

(2m−n−1)∆t

χn(s+ (n−m)∆t, s+ (n−m)∆t+ t′)ds

=
N∑

m=1

qm

N−1∑
n=0

∫ (2m−n)∆t

(2m−n−1)∆t

χm(s, s+ t′)ds

≤
N∑

m=1

qm

∫
R
χm(s, s+ t′)ds =

N∑
m=1

qm

∫ m∆t

m∆t−t′
ds = t′

N∑
m=1

qm.

Similarly, ∫ T−t′

0

n1(t)+1∑
n=n0(t)

qn1(t)dt = t′
N∑

m=1

qm.

Therefore, from (4.16),

‖I0C−t′ − I0C‖2
L2((0,T−t′);L2(Ω)) =

∫ T−t′

0

∫
Ω

(I0C−t′ − I0C)2dx ≤ t′
∆t

φL

N∑
n=1

(pn + 2qn).

Let us see that ∆t
∑N

n=1 pn and ∆t
∑N

n=1 qn are bounded uniformly in N . From

Cauchy-Schwarz inequality,

∆t
N∑

n=1

pn ≤ F 2
B∆t

N∑
n=1

‖∇Cn‖2
L2(Ω) + ∆t

N∑
n=1

N 2‖Un‖2
L2(Ω) + 2N∆t

N∑
n=1

‖Λn‖L1(Ω)

+ 2N 2∆t
N∑

n=1

‖Un‖L1(∂Ω) + 2N∆t
N∑

n=1

‖Cn‖L2(∂Ω)‖Un‖L2(∂Ω).

Then, (4.58), (4.67), (4.68), (4.70), (4.71), (4.77) and (4.78) imply

∆t
N∑

n=1

pn ≤ F 2
B

A

2α
+N 2M2 +2N‖Λ‖L1(QT ) +2N 2‖U‖L1(ΣT ) +2N‖C‖L2(ΣT )‖U‖L2(ΣT ).

Again from (4.78),

∆t
N∑

n=1

qn = ∆t
N∑

n=1

‖∇Cn‖2
L2(Ω) ≤

A

2α
.
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Therefore, ∆t
∑N

n=1 pn and ∆t
∑N

n=1 qn are bounded uniformly in N implying

‖I0C−t′ − I0C‖2
L2(0,T−t′;L2(Ω)) ≤ M t′,

where M is a constant independent of N . Let us prove (4.74). From (4.57),∥∥∥∥ ∂∂tI1C
∥∥∥∥2

L2(0,T ;(H1(Ω))′)

=

∫ T

0

∥∥ ∂
∂t
I1C

∥∥2

(H1(Ω))′
dt

=
N−1∑
m=0

∫ (m+1)∆t

m∆t

1

(∆t)2
‖Cm+1 − Cm‖2

(H1(Ω))′dt =
1

∆t

N−1∑
m=0

‖Cm+1 − Cm‖2
(H1(Ω))′ .

To bound this, Cauchy-Schwarz inequality, Hölder’s inequality and (4.17) are applied

to (4.48). This yields for all ψ ∈ H1(Ω),

1

∆t
|〈φ(Cn+1 − Cn), ψ〉(H1(Ω))′,H1(Ω)|

≤
(
FB‖∇Cn+1‖L2(Ω) + ‖Cn+1‖L∞(Ω)‖Un+1‖L2(Ω)

)
‖∇ψ‖L2(Ω)

+
(
‖Cn+1‖L4(∂Ω)‖ψ‖L4(∂Ω) + ‖Cn+1‖L∞(∂Ω)‖ψ‖L2(∂Ω)

)
‖Un+1‖L2(∂Ω)

+ ‖Λn+1‖(H1(Ω))′‖ψ‖H1(Ω).

Then by (4.24), (4.25), (4.65) and (4.76) we have

1

∆t
|〈φ(Cn+1 − Cn), ψ〉(H1(Ω))′,H1(Ω)| ≤

(
FB‖∇Cn+1‖L2(Ω) +N‖Un+1‖L2(Ω)

+(M2
4‖Cn+1‖H1(Ω) +M2‖C‖L∞(ΣT ))‖Un+1‖L2(∂Ω) + ‖Λn+1‖(H1(Ω))′

)
‖ψ‖H1(Ω).

Taking supremum over all ψ ∈ H1(Ω) such that ‖ψ‖H1(Ω) = 1, using (4.16), (4.39)

and (4.78), we see that there exists a constant M independent of N such that

1

∆t2
‖Cn+1 − Cn‖2

(H1(Ω))′ ≤M(‖∇Cn+1‖2
L2(Ω) + ‖Un+1‖2

L2(Ω)

+
1

∆t2
‖U‖2

L2(ΣT ) + ‖Un+1‖2
L2(∂Ω) + ‖Λn+1‖2

(H1(Ω))′).
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Multiplying by ∆t, summing from 0 to N − 1 and using (4.58), (4.72) and (A.13) we

obtain (4.74). (4.75) follows from (4.74) as

‖I1C − I0C‖2
L2(0,T ;(H1(Ω))′) =

N−1∑
m=0

∫ (m+1)∆t

m∆t

‖(1 +m− t

∆t
)(Cm − Cm+1)‖2

(H1(Ω))′dt

=
N−1∑
m=0

‖Cm−Cm+1‖2
(H1(Ω))′

∫ (m+1)∆t

m∆t

(1+m− t

∆t
)2dt =

∆t

3

N−1∑
m=0

‖Cm−Cm+1‖2
(H1(Ω))′ .

Passing to the limit Passing to the limit in (4.61)-(4.63) requires certain conver-

gence properties that we now state and prove.

Proposition 59. There exists a subsequence of {CN}N≥1 still denoted by {CN}N≥1

and a function c ∈ L∞(QT )∩L2(0, T ;H1(Ω)) such that t→ c(·, t) ∈ C([0, T ]; (H1(Ω))′)

satisfying

I0C
N → c weakly - ? in L∞(QT ), (4.79)

I0C
N → c weakly in L2(0, T ;H1(Ω)), (4.80)

I0C
N → c strongly in L2(QT ) and a.e. in QT , (4.81)

I0C
N → c strongly in L2(ΣT ), (4.82)

∂

∂t
I1C

N → ∂

∂t
c weakly in L2(0, T ; (H1(Ω))′), (4.83)

I1C
N → c strongly in C([0, T ]; (H1(Ω))′), (4.84)

I0Λ
N → Λ strongly in L2(0, T ; (H1(Ω))′), (4.85)

I0C
N → C strongly in L2(ΣT ), (4.86)

as N →∞.

Proof. The last two convergence results follow trivially from (4.60). To prove the

rest we will use the estimates from the previous section. From (4.66) and (4.72), we

D 
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know that {I0CN}N is bounded both in L∞(QT ) and in L2(0, T ;H1(Ω)). Because

L∞(QT ) = (L1(QT ))′, by Theorem 12 (Banach-Alaoglu theorem), we can extract a

subsequence still denoted by {CN}N≥1 (from now on we will denote each extracted

subsequence by {CN}N≥1) and find a function c ∈ L∞(QT ) such that (4.79) holds.

Next the reflexivity of the space L2(0, T ;H1(Ω)) implies that there exists a subse-

quence {CN}N≥1 and a function c1 ∈ L2(0, T ;H1(Ω)) such that I0C
N → c1 weakly

in L2(0, T ;H1(Ω)). This also implies that I0C
N → c1 weakly-? in L∞(QT ). There-

fore, c1 = c by uniqueness of the weak-? limits. Hence (4.80) holds. From (4.73),

‖I0CN
−t′ − I0C

N‖L2((0,T−t′);L2(Ω)) → 0 as t′ → 0 uniformly for all N . Theorem 7 states

that H1(Ω) is compactly embedded in L2(Ω). So applying Theorem 13 we can find

a subsequence {CN}N and a function c2 ∈ L2(QT ) such that I0C
N → c2 strongly in

L2(QT ). This further implies the weak convergence in L2(QT ). But (4.80) gives weak

convergence in L2(QT ) as well. Therefore, c2 = c by the uniqueness of the weak limits

and hence (4.81) holds. Similarly, by Theorem 7, as H1(Ω) is compactly embedded

in H
1
2 (Ω), so we can find a subsequence {CN}N≥1 such that I0C

N → c strongly in

L2(0, T ;H
1
2 (Ω)). Then the continuity of the trace operator gives (4.82).

Recall from (4.66) that I1C
N is uniformly bounded. So again by the Banach-

Alaoglu theorem, up to a subsequence, there exists c3 ∈ L∞(QT ) such that

I1C
N → c3 weakly- ? in L∞(QT ).

The bound (4.74) and the reflexivity of L2(0, T ; (H1(Ω))′) gives a subsequence for

which we have (again by uniqueness of weak-? limits c3 = c)

∂

∂t
I1C

N → ∂

∂t
c weakly in L2(0, T ; (H1(Ω))′).

We know that {I1CN}N≥1 is bounded in L∞(QT ) by (4.66) and { ∂
∂t
I1C

N}N≥1 is

bounded in L2(0, T ; (H1(Ω))′) by (4.74). Also by Corollary 16, L∞(Ω) is compactly
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embedded in (H1(Ω))′. Then (4.84) is a consequence of Theorem 14 which implies

that there exists a subsequence {CN}N and a function c4 ∈ C([0, T ]; (H1(Ω))′) such

that

I1C
N → c4 strongly in C([0, T ]; (H1(Ω))′).

The bound (4.75) implies

I1C
N − I0C

N → 0 strongly in L2(0, T ; (H1(Ω))′).

This together with (4.81) yields

I1C
N → c strongly in L2(0, T ; (H1(Ω))′)

and thus c4 = c yielding (4.84).

Proposition 60. The following convergence results hold.

I0Π
N → Π strongly in L2(0, T ;L2(Ω2)), (4.87)

I0Ψ
N → Ψ strongly in L2(0, T ;L2(Ω1)

2), (4.88)

I0U
N → U strongly in L2(ΣT ), (4.89)

and there exists u ∈ L2(QT )2 such that

I0U
N → u strongly in L2(QT )2. (4.90)

Proof. The results (4.87), (4.88) and (4.89) are direct consequences of (4.60). For

(4.90), consider the following problem where c is the limit found in Proposition 59.

Find (u|Ω1 , ϕ) ∈ L2(0, T ; V )× L∞(0, T ;R2) satisfying∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2 + γ̃(u, ϕ; v, q)

=

∫ T

0

((Ψ,v)Ω1 + (Π, q)Ω2 − (U , q)Γ2) dt, (4.91)

D 
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for all v ∈ L2(0, T ; V ) and for all q ∈ L2(0, T ;R2). It is known that there exists a

unique solution (u, ϕ) to this problem [40, 38]. Next define u|Ω2 ∈ L2(0, T ;L2(Ω2)
2)

as

u = − K

µ(c)
(∇ϕ− ρg), a.e. in Ω2 × (0, T ).

The difference of (4.61) and (4.114) yields

∫ T

0

(
2(µ(Ĩ0C

N

∆t)D(I0U
N)− µ(c)D(u),D(v))Ω1

+ (
K

µ(Ĩ0C
N

∆t)
(∇I0ΦN − ρg)− K

µ(c)
(∇ϕ− ρg),∇q)Ω2 + γ̃(I0U

N − u, I0Φ
N − ϕ; v, q)

=

∫ T

0

(
(I0Ψ

N −Ψ,v)Ω1 + (I0Π
N − Π, q)Ω2 − (I0U

N − U , q)Γ2

)
dt. (4.92)

Observe that the first and the second terms can be written as

∫ T

0

2(µ(Ĩ0C
N

∆t)D(I0U
N)− µ(c)D(u),D(v))Ω1dt

=

∫ T

0

2
(
µ(Ĩ0C

N

∆t)(D(I0U
N)−D(u)),D(v)

)
Ω1

dt

+

∫ T

0

2
(
(µ(Ĩ0C

N

∆t)− µ(c))D(u),D(v)
)

Ω1

dt

and

∫ T

0

(
K

µ(Ĩ0C
N

∆t)
(∇I0ΦN − ρg)− K

µ(c)
(∇ϕ− ρg),∇q)Ω2dt

=

∫ T

0

(
K

µ(Ĩ0C
N

∆t)
(∇I0ΦN −∇ϕ),∇q)Ω2dt+

∫ T

0

((
1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)K∇ϕ,∇q)Ω2dt

−
∫ T

0

((
K

µ(Ĩ0C
N

∆t)
− K

µ(c)
)ρg,∇q)Ω2dt.

With these, letting v = I0U
N − u, q = I0Φ

N − ϕ in (4.92), using the nonnegativity

of the form γ̃, and the bounds (4.14) and (4.15) give
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∫ T

0

(
2µL‖D(I0U

N − u)‖2
L2(Ω1) +

1

µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(Ω2)

)
dt

≤
∫ T

0

(
(I0Ψ

N −Ψ, I0U
N − u)Ω1 + (I0Π

N − Π, I0Φ
N − ϕ)Ω2

− (I0U
N − U , I0ΦN − ϕ)Γ2 − 2((µ(Ĩ0C

N

∆t)− µ(c))D(u),D(I0U
N − u))Ω1

− ((
1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)K∇ϕ,∇(I0Φ

N − ϕ))Ω2

)
dt

+

∫ T

0

(ρ
( 1

µ(Ĩ0C
N

∆t)
− 1

µ(c)

)
Kg,∇(I0Φ

N − ϕ)Ω2)dt.

Using Cauchy-Schwarz, Poincaré (4.27) and Young’s inequalities together with (3.29)

and (4.24) yield

µL

C2
D

‖∇(I0U
N − u)‖2

L2(0,T ;L2(Ω1)2×2) +
kL

2µU

‖∇(I0Φ
N − ϕ)‖2

L2(0,T ;L2(Ω2)2)

≤M
(
‖I0Ψ

N −Ψ‖2
L2(0,T ;L2(Ω1)2) + ‖I0Π

N −Π‖2
L2(0,T ;L2(Ω2)) + ‖I0U

N −U‖2
L2(0,T ;L2(Γ2))

+ ‖(µ(Ĩ0C
N

∆t)− µ(c))D(u)‖2
L2(0,T ;L2(Ω1)) + ‖( 1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)K∇ϕ‖2

L2(0,T ;L2(Ω2)2×2)

+ ‖ρ( 1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)Kg‖2

L2(0,T ;L2(Ω2))

)
,

where M > 0 is a generic constant independent of N . Then by boundedness and

continuity of µ, (4.74), (4.87), (4.88) and (4.89) together with the Lebesgue dominated

convergence theorem imply as N →∞ that

µL‖D(I0U
N − u)‖2

L2(0,T ;L2(Ω1)2×2) +
1

2µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(0,T ;L2(Ω2)2) → 0.

Thus, as N →∞,

∇I0UN → ∇u strongly in L2(0, T ;L2(Ω1)
2×2), (4.93)

∇I0ΦN → ∇ϕ strongly in L2(0, T ;L2(Ω2)
2). (4.94)

The result (4.90) follows from (4.62), the continuity of µ, (4.27), Proposition 59,

(4.93) and (4.94). D 
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Proof of Theorem 50 We are now ready to prove the existence result for

the weak solution of the restricted problem. Recall that in order to obtain a weak

solution we need to pass to the limit in the approximate solution equations (4.61)-

(4.64). Passing to the limit in the flow equations (4.61) and (4.62) and the bound

(4.64) is easy due to the continuity and the bound (4.14) of µ, (4.93) and (4.94). The

convergence result (4.83) implies that

∂

∂t
I1C

N → ∂

∂t
c weakly- ? in L2(0, T ; (H1(Ω))′).

Thus,

lim
N→∞

∫ T

0

〈 ∂
∂t
I1C

N , ψ〉dt =

∫ T

0

〈 ∂
∂t
c, ψ〉dt, ∀ψ ∈ L2(0, T ;H1(Ω)). (4.95)

Note that

(I0C
NI0U

N ,∇ψ)QT
−(cu,∇ψ)QT

= ((I0C
N−c)I0UN ,∇ψ)QT

+(c(I0U
N−u),∇ψ)QT

:= I1 + I2.

The first part I1 of the above equation converges to zero by (4.79) and (4.67) and the

second part I2 converges to zero by (4.90) and the result from Proposition 59 saying

that c ∈ L∞(QT ). Thus

lim
N→∞

(I0C
NI0U

N ,∇ψ)QT
= (cu,∇ψ)QT

. (4.96)

To pass to the limit in the third term in (4.63), we write:∫
QT

F (I0U
N)∇I0CN · ∇ψdxdt−

∫
QT

F (u)∇c · ∇ψdxdt

=

∫
QT

(F (I0U
N)− F (u))∇I0CN · ∇ψdxdt+

∫
QT

F (I0U
N)(∇I0CN −∇c) · ∇ψdxdt

:= J1 + J2.
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The strong convergence I0U
N −u → 0 in L2(QT )2 implies I0U

N −u → 0 a.e. in QT

up to a subsequence. So as F is continuous,

F (I0U
N)− F (u) → 0 a.e. in QT .

Therefore J1 converges to zero. By (4.80) and the bound (4.17) on F , J2 converges

to zero as well. Hence

lim
N→∞

∫
QT

F (I0U
N)∇I0CN · ∇ψdxdt =

∫
QT

F (u)∇c · ∇ψdxdt. (4.97)

The boundary terms in (4.63) are handled as follows∫
ΣT

(I0C
N(I0U

N
)+ − I0C

N
(I0U

N
)−)ψdσdt−

∫
ΣT

(cU+ − CU−)ψdσdt

=

∫
ΣT

(I0C
N − c)(I0U

N
)+ψdσdt+

∫
ΣT

c((I0U
N

)+ − U)+)ψdσdt

−
∫

ΣT

(I0C
N − C)(I0U

N
)−ψdσdt−

∫
ΣT

C((I0U
N

)− − U−)ψdσdt. (4.98)

By (4.82), (4.86) and (4.89), up to a subsequence, the terms on the right hand side

of (4.98) converge to zero. Hence,

lim
N→∞

∫
ΣT

I0C
N(I0U

N
)+ψdσdt−

∫
ΣT

I0C
N

(I0U
N

)−ψdσdt

=

∫
ΣT

cU+ψdσdt−
∫

ΣT

CU−ψdσdt. (4.99)

Finally from (4.85),

lim
N→∞

∫ T

0

〈I0Λ
N
, φ〉(H1(Ω))′,H1(Ω)dt =

∫ T

0

〈Λ, φ〉(H1(Ω))′,H1(Ω)dt. (4.100)

Combining (4.95), (4.96), (4.97), (4.99) and (4.100), we obtain (4.63). We also need

to prove the following to complete the proof of Theorem 64:

c(x, 0) = c0(x), (4.101)

0 ≤ c(x, t) ≤ N , a.e. (x, t) ∈ QT , (4.102)
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where N is defined in Proposition 55. To prove (4.101), we observe from (4.84)

that I1C
N(0, ·) → c(0, ·) strongly in (H1(Ω))′. But I1C

N(0) = c0 for all N . So

c(·, 0) = c0(·), a.e. in Ω. For (4.102), recall that we have a uniform bound (4.66) on

I0C
N . Then letting N →∞ and using the Lebesgue dominated convergence theorem,

we finally get

0 ≤ c(x, t) ≤ N a.e in QT .

Proof of Theorem 64 The following completes the proof of the main result of

this section. The existence of a weak solution (u, ϕ) ∈ L2((0, T ); V )× L2((0, T );R2)

is established above. Hence as the final step, we recover the Stokes pressure p using

an inf-sup condition.

Lemma 61. For any q ∈ L2(0, T ;R1), there exists v ∈ L2(0, T ; X) such that ∇·v = q

in (0, T )× Ω1 and

‖v‖L2(0,T ;X) ≤ β‖q‖L2(0,T ;R1),

for some positive constant β > 0 independent of v and q.

Proof. Let q ∈ L2(0, T ;R1). For a.e t ∈ [0, T ], define qt(x) = q(x, t), for a.e x ∈ Ω1.

Then qt ∈ R1. From the inf-sup condition [38, Lemma 1.2], there exists vt ∈ X and

β > 0 independent of qt, such that

∇ · vt = qt in Ω1, ‖∇vt‖L2(Ω1) ≤ β‖qt‖L2(Ω1).

Now, set v(x, t) = vt(x), for a.e (x, t) ∈ Ω1 × [0, T ]. Then ∇ · v = q and as q ∈

L2(0, T ;R1), ∇·v ∈ L2(0, T ; X). Integrating the square of the above inequality from

0 to T in time, we also have

‖v‖L2(0,T ;X) ≤ β‖q‖L2(0,T ;R1).

D 



122

Equivalently, we have the following inf-sup condition: there exists a constant β > 0

such that

inf
q∈L2(0,T ;R1)

sup
v∈L2(0,T ;X)

∫ T

0
(q,∇ · v)Ω1

‖q‖L2(0,T ;R1)‖v‖L2(0,T ;X)

≥ β.

This trivially implies that

inf
q∈L2(0,T ;R1)

sup
(v,r)∈L2(0,T ;X×R2)

∫ T

0
(q,∇ · v)Ω1

‖q‖L2(0,T ;R1)‖(v, r)‖L2(0,T ;X×R2)

≥ β.

From (4.31), we have for any v ∈ L2(0, T ; X) and q ∈ L2(0, T ;R2):∫ T

0

(∇ · v, p)Ω1dt = L(v, q), (4.103)

where L is a continuous linear functional on L2(0, T ; X)× L2(0, T ;R2):

L(v, q) =

∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2

+ γ̃(u, ϕ; v, q)− (Ψ,v)Ω1 − (Π, q)Ω2 + (U , q)Γ2

)
dt. (4.104)

As (u, ϕ) solves (4.36), L vanishes on the space L2(0, T ; V ) × L2(0, T ;R2). Thus,

from [64, Lemma 4.1], there exists a unique p ∈ L2(0, T ;R1) such that for all (v, q) ∈

L2(0, T ; X)× L2(0, T ;R2), (4.103) holds. This completes the proof of Theorem 64.

Remark 62. This inf-sup condition also shows that the weak problems (4.31) and

(4.36) are equivalent.

This concludes the analysis of the weak formulation of the Stokes-Darcy-transport

problem. Next section proves existence result for the Navier Stokes-Darcy-transport

problem where we added the nonlinearity to the system.
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4.3 Coupling of the Navier-Stokes and Darcy Flow with Trans-

port

We accept the same problem as in Section 4.1 but with the Navier-Stokes equations for

the surface flow rather than the Stokes equations. The existence proof for the Stokes

problem hold for the most part in this case, so this section will only be pointing out

the differences and modifications. First we recall the Navier-Stokes equations where

this time on Ω1, u denotes the Navier-Stokes velocity and p denotes the Navier-Stokes

pressure.

∂u

∂t
−∇ · (2µ(c)D(u)− pI) + u · ∇u = Ψ, in Ω1 × (0, T ) (4.105)

Also, the balance of forces interface condition will be the same as in Model II of

Chapter 3 as the other case is simpler.

4.3.1 Weak Formulation

The underlying spaces are defined exactly the same as in (4.28) from the Stokes case.

Although the weak formulation differs only in the flow equation by the addition of the

nonlinear term u · ∇u, for integrity the weak problem definition is presented below:

Definition 63. The weak formulation of the coupled flow-transport problem defined

by (4.2)-(4.13) is to find u|Ω1 ∈ L2(0, T ; X), p ∈ L2(0, T ;R1), ϕ ∈ L2(0, T ;R2) and

c ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ) such that

t→ c(·, t) ∈ C([0, T ]; (H1(Ω))
′
), t→ ∂c

∂t
(·, t) ∈ L2(0, T ; (H1(Ω))

′
) (4.106)

and c(·, 0) = c0(·) a.e. in Ω (4.107)
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satisfying for all v ∈ L2(0, T ; X), r ∈ L2(0, T ;R1) and q ∈ L2(0, T ;R2),∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2 + (u · ∇u,v)Ω1 − (∇ · v, p)Ω1

+ γ̃(u, ϕ; v, q)
)
dt =

∫ T

0

(
(Ψ,v)Ω1 + (Π, q)Ω2 − (U , q)Γ2

)
dt, (4.108)

and for all ψ ∈ L2(0, T ;H1(Ω)),∫ T

0

〈φ∂c
∂t
, ψ〉(H1(Ω))′,H1(Ω)dt+

∫
QT

(F (u)∇c−cu) ·∇ψdxdt+
∫

ΣT

(cU+−CU−)ψdσdt

=

∫ T

0

〈Λ, ψ〉(H1(Ω))′,H1(Ω)dt. (4.109)

The velocity u|Ω2 ∈ L2(0, T ;L2(Ω2)
2) in the Darcy region Ω2 is obtained from the

Darcy pressure ϕ by the equation

u = − K

µ(c)
(∇ϕ− ρg), a.e. in Ω2 × (0, T ). (4.110)

4.3.2 Existence of a Weak Solution

The following theorem gives the existence result for this formulation. There is a

difference in the statement of the theorem compared to the Stokes case. Here we

need an additional smallness assumption for the data or in other words, we need the

viscosity to be big enough.

Theorem 64. Assume that

µ
3/2
L > C3

DM
2
S‖MD‖L∞(0,T ) (4.111)

where

MD(t) =
(C2

DM
2
P

µL

‖Ψ(t)‖2
L2(Ω1)

+
3µU

kL

( ρ2

µ2
L

‖Kg‖2
L2(Ω2) +M2

P‖Π(t)‖2
L2(Ω2) +M2

2‖U(t)‖2
L2(Γ2)

)) 1
2
,
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a.e. in (0, T ). Then there exists a weak solution (u, p, ϕ, c) to the problem defined in

Definition 63. In addition, (u, ϕ) satisfies

µL‖D(u)‖2
L2(0,T ;L2(Ω1)2×2) +

1

µU

‖K
1
2∇ϕ‖2

L2(0,T ;L2(Ω2)2) ≤ ‖MD‖2
L2(0,T ),

and c satisfies

0 ≤ c(x, t) ≤
∥∥∥∥Λ

φ

∥∥∥∥
L1(0,T ;L∞(Ω))

+ max(‖c0‖L∞(Ω), ‖C‖L∞(ΣT )), a.e. (x, t) ∈ QT .

(4.112)

Remark 65. We can obtain stronger mathematical results if we add inertial forces to

the balance of forces as in Model I of Chapter 3. The resulting weak problem contains

an additional term, namely −1
2
(u · u,v · n12)Γ12 in the left-hand side of (4.108).

As before we consider the problem restricted to the divergence free subspace and

drop the term with the Navier-Stokes pressure. We again use the Galerkin approach.

This time the definition of the intermediate problem given in Proposition 51 includes

the term (UN
n+1 · ∇UN

n+1,v)Ω1 corresponding to the nonlinearity of the Navier-Stokes

equations. Because of this addition, to prove the intermediate result, we ask for the

extra assumption namely

µ
3/2
L > C3

DM
2
SMn

D

where

Mn
D =

(M2
1M

2
P

µL

‖ΨN

n+1‖2
L2(Ω1)

+
3µU

kL

( ρ2

µ2
L

‖Kg‖2
L2(Ω2) +M2

P‖Π
N

n+1‖2
L2(Ω2) +M2

2‖U
N

n+1‖2
L2(Γ2)

)) 1
2
.

Indeed, this is a consequence of (4.111) using (4.38). This assumption then implies

that on the sphere of radius Mn
D, we have

‖∇UN
n+1‖L2(Ω1) ≤

Mn
DCD√
µL

<
µL

C2
DM

2
S

.
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Then we can hide the nonlinear terms in ‖D(UN
n+1)‖L2(Ω1) as follows by Hölder’s

inequality and Sobolev’s inequality:

|(UN
n+1 · ∇UN

n+1,U
N
n+1)Ω1| ≤ ‖UN

n+1‖2
L4(Ω1)‖∇UN

n+1‖L2(Ω1) ≤M2
S‖∇UN

n+1‖3
L2(Ω1)

<
µL

C2
D

‖∇UN
n+1‖2

L2(Ω1) < µL‖D(UN
n+1)‖L2(Ω1).

The bound obtained in this case is the same as (4.43) written in a more compact form

for simplification. Other than this there is no difference to the proof of Proposition 51.

Proposition 52 about the existence of concentration CN
n of the intermediate problem

still holds. As before, we obtain the approximate solution after integrating the inter-

mediate equations from n∆t to (n+1)∆t and summing from n = 0 to n = N−1. This

results in an approximate solution definition which is only different in the inclusion

of the term
∫ T

0
(I0U

N · ∇I0UN ,v)Ω1dt and the bound of the approximate solution

(I0U
N , I0Φ

N). The bound we have in this case is

µL‖D(I0U
N)‖2

L2(0,T ;L2(Ω1)2×2) +
1

µU

‖K
1
2∇I0ΦN‖2

L2(0,T ;L2(Ω2)2)

≤
(C2

DM
2
P

µL

‖Ψ‖2
L2(0,T ;L2(Ω1)2) +

3µU

kL

(ρ2T

µ2
L

‖Kg‖2
L2(Ω2)

+M2
P‖Π‖2

L2(0,T ;L2(Ω2)) +M2
2‖U‖2

L2(0,T ;L2(Γ2))

))
. (4.113)

Again every result holds as they are except the strong convergence (4.90) of I0U
N

presented in Proposition 60. For that, we need some modification in the proof. Recall

that in the proof we considered a problem where c is the limit found in Proposition 59.

This time the problem we define with the limit c is the following: Find (u|Ω1 , ϕ) ∈

L2(0, T ; V 1)× L2(0, T ;R2) satisfying∫ T

0

(
2(µ(c)D(u),D(v))Ω1 + (

K

µ(c)
(∇ϕ− ρg),∇q)Ω2 + (u · ∇u,v)Ω1

+ γ̃(u, ϕ; v, q)
)
dt =

∫ T

0

((Ψ,v)Ω1 + (Π, q)Ω2 − (U , q)Γ2) dt, (4.114)
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for all v ∈ L2(0, T ; V 1) and for all q ∈ L2(0, T ;R2). The existence result of (u, ϕ)

to this problem is an easy modification of [38] under the condition (4.111). For this,

consider finding (ut|Ω1 , ϕ
t) ∈ V ×R2 satisfying

2(µ(c(t))D(ut),D(v))Ω1 + (
K

µ(c(t))
(∇ϕt − ρg),∇q)Ω2 + γ̃(ut, ϕt; v, q)

− (ut · n12, q)Γ12 = (Ψ(t),v)Ω1 + (Π(t), q)Ω2 − (U(t), q)Γ2 , (4.115)

for a.e. t ∈ (0, T ). Then assuming (4.111) we also have

µ(c(t))3/2 > C3
DM

2
SMD(t) for a.e. t ∈ (0, T ).

Then there exists (ut, ϕt) ∈ V ×R1 satisfying (4.115), such that

µL‖D(ut)‖2
L2(Ω1) +

1

µU

‖K
1
2∇ϕt‖2

L2(Ω2) ≤MD(t)2. (4.116)

Let u(x, t) = ut(x). Integrating (4.115) and (4.116) from 0 to T, we get (4.114) and

µL‖D(u)‖2
L2(0,T ;L2(Ω1)2×2) +

1

µU

‖K
1
2∇ϕ‖2

L2(0,T ;L2(Ω2)2) ≤ ‖MD‖2
L2(0,T ). (4.117)

Define u|Ω2 ∈ L2(0, T ;L2(Ω2)
2)) as

u = − K

µ(c)
(∇ϕ− ρg), a.e. in Ω2 × (0, T ).

As before we look at the difference between the equations (4.61) and (4.114). This

yields∫ T

0

(
2(µ(Ĩ0C

N

∆t)D(I0U
N)− µ(c)D(u),D(v))Ω1

+ (
K

µ(Ĩ0C
N

∆t)
(∇I0ΦN − ρg)− K

µ(c)
(∇ϕ− ρg),∇q)Ω2

+ (I0U
N · ∇I0UN − u · ∇u,v)Ω1 + γ̃(I0U

N − u, I0Φ
N − ϕ; v, q)

)
dt

=

∫ T

0

(
(I0Ψ

N −Ψ,v)Ω1 + (I0Π
N − Π, q)Ω2 − (I0U

N − U , q)Γ2

)
dt. (4.118)
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We deal with all the terms except the nonlinear ones exactly the same way as before.

To handle the nonlinear terms we write

∫ T

0

(I0U
N · ∇I0UN − u · ∇u,v)Ω1dt

=

∫ T

0

((
(I0U

N − u) · ∇I0UN ,v
)
Ω1

+
(
u · ∇(I0U

N − u),v
)
Ω1

)
dt.

We bound the integrand of the above equation by using Hölder’s inequality, (3.29)

and (4.26) as follows

|
(
(I0U

N − u) · ∇I0UN ,v
)
Ω1

+
(
u · ∇(I0U

N − u),v
)
Ω1
|

≤ C2
DM

2
S

(
‖∇I0UN‖L2(Ω1) + ‖∇u‖L2(Ω1)

)
‖D(I0U

N − u)‖L2(Ω1)‖D(v)‖L2(Ω1)

(4.119)

Then letting v = I0U
N − u, q = I0Φ

N − ϕ in (4.118), using (4.15), (4.14), the

nonnegativity of the γ̃ term and (4.119), we have

∫ T

0

((
2µL − C2

DM
2
S(‖∇I0UN‖L2(Ω1) + ‖∇u‖L2(Ω1))

)
‖D(I0U

N − u)‖2
L2(Ω1)

+
1

µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(Ω2)

)
dt ≤

∫ T

0

(
(I0Ψ

N −Ψ, I0U
N − u)Ω1

+ (I0Π
N − Π, I0Φ

N − ϕ)Ω2 − (I0U
N − U , I0ΦN − ϕ)Γ2

− 2
(
(µ(Ĩ0C

N

∆t)− µ(c))D(u),D(I0U
N − u)

)
Ω1

−
(
(

1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)(K(∇ϕ− ρg),∇(I0Φ

N − ϕ)
)
Ω2

)
dt.

Observe from (4.43), which still holds for the Navier-Stokes case with the modification

of the first coefficient, that if we take the maximum over n = 1, . . . , N and recalling

(4.38) and (4.59),

µL‖D(I0U
N)‖2

L∞(0,T ;L2(Ω1)2×2) ≤ max
n=1,...,N

(Mn
D)2 ≤ ‖MD‖2

L∞(0,T ).
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Also, from (4.116),

µL‖D(u)‖2
L∞(0,T ;L2(Ω1)2×2) ≤ ‖MD‖2

L∞(0,T ).

Therefore,∫ T

0

2
(( µL

C2
D

− C3
DM

2
S

µ
1
2
L

‖MD‖L∞(0,T )

)
‖D(I0U

N − u)‖2
L2(Ω1)

+
1

µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(Ω2)

)
dt ≤

∫ T

0

(
(I0Ψ

N −Ψ, I0U
N − u)Ω1

+ (I0Π
N − Π, I0Φ

N − ϕ)Ω2 − 2
(
(µ(Ĩ0C

N

∆t)− µ(c))D(u),D(I0U
N − u)

)
Ω1

− (I0U
N −U , I0ΦN −ϕ)Γ2−

(
(

1

µ(Ĩ0C
N

∆t)
− 1

µ(c)

)
(K(∇ϕ−ρg),∇(I0Φ

N −ϕ))Ω2)
)
dt.

Using Cauchy-Schwarz inequality, Poincaré inequality (4.27) and Young’s inequality

together with (4.24) gives

(
µL −

C3
DM

2
S

µ
1
2
L

‖MD‖L∞(0,T )

)
‖D(I0U

N − u)‖2
L2(0,T ;L2(Ω1)2×2)

+
1

2µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(0,T ;L2(Ω2)2) ≤M

(
‖I0Ψ

N −Ψ‖2
L2(0,T ;L2(Ω1)2)

+ ‖I0Π
N − Π‖2

L2(0,T ;L2(Ω2)) + ‖I0U
N − U‖2

L2(0,T ;L2(Γ2))

+ ‖(µ(Ĩ0C
N

∆t)− µ(c))D(u)‖2
L2(0,T ;L2(Ω1)2×2) + ‖( 1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)K∇ϕ‖2

L2(0,T ;L2(Ω2)2)

+ ‖ρ( 1

µ(Ĩ0C
N

∆t)
− 1

µ(c)
)Kg‖2

L2(0,T ;L2(Ω2))

)
,

where M is a generic constant independent of N . Then by uniform boundedness

(4.14) and continuity of µ, (4.74), (4.87), (4.88) and (4.89) together with the Lebesgue

dominated convergence theorem imply

(
µL −

C3
DM

2
S

µ
1
2
L

‖MD‖L∞(0,T )

)
‖D(I0U

N − u)‖2
L2(0,T ;L2(Ω1)2×2)

+
1

2µU

‖K
1
2∇(I0Φ

N − ϕ)‖2
L2(0,T ;L2(Ω2)2) → 0, as N →∞.
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Thus, because of the small data condition (4.111) and (3.29), letting N → ∞, we

again obtain

∇I0UN → ∇u strongly in L2(0, T ;L2(Ω1)
2×2), (4.120)

∇I0ΦN → ∇ϕ strongly in L2(0, T ;L2(Ω2)
2). (4.121)

Then (4.90) follows from (4.62), the continuity of µ, (4.27), proposition 59, (4.120)

and (4.121).

The rest of the proof works the same way except that in the last step in recovering

the Navier-Stokes pressure p, the linear function L now includes the term (u·∇u,v)Ω1

in the integrand of the right hand side.

Next section deals with the numerical approximation of the special case of the

problems described in the previous two sections.

4.4 One-Way Coupling of the Navier-Stokes/Stokes and Darcy

Flow with Transport

The contents of this section comes from a joint work with P. Chidyagwai and B.

Rivière [58]. This section drops the assumption that µ is a function of the concen-

tration c and simply sets it equal to a positive constant. Hence, the coupling is a

one-way coupling, in the sense that the velocity field obtained from solving the sur-

face/subsurface flow problem, becomes an input data for the transport problem. We

also assume that the Dirichlet boundary |Γ2D| 6= 0 and that it is contained in the

outflow boundary, that is,

Γ2D ⊂ {x ∈ ∂Ω : U(x) ≥ 0}

Hence, the analysis of the previous section is still valid in this case and the weak

formulation and the deduced existence result is stated below. The weak formulation of
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the coupled flow problem is to find u ∈ X, p ∈ R1, ϕ ∈ R2 and c ∈ L2(0, T ;H1(Ω))∩

L∞(QT ) such that

t→ c(t, ·) ∈ C([0, T ]; (H1(Ω))
′
), t→ ∂c

∂t
(t, ·) ∈ L2((0, T ); (H1(Ω))

′
), (4.122)

c(0, x) = c0(x), a.e. x ∈ Ω. (4.123)

and satisfying for all v ∈ X,∀r ∈ R1,∀q ∈ R2,

2µ(D(u),D(v))Ω1 + (u · ∇u,v)Ω1 + (
K

µ
∇ϕ,∇q)Ω2 − (∇ · v, p)Ω1 + (ϕ,v · n12)Γ12

+G(K
1
2 u · τ 12,v · τ 12)Γ12 − (u · n12, q)Γ12 + (∇ · u1, r)Ω1

= (Ψ,v)Ω1 + (Π +
K

µ
ρg, q)Ω2 + (U , q)Γ2 (4.124)

and for all z ∈ L2(0, T );H1(Ω),∫ T

0

〈ϕ∂c
∂t
, z〉(H1(Ω))′,(H1(Ω))dt−

∫
QT

cu · ∇zdxdt+

∫
QT

F (u)∇c · ∇zdxdt

+

∫
ΣT

(cU+ − CU−)zdσdt =

∫
QT

Λzdxdt. (4.125)

From the results of the previous sections, we obtain the following existence result:

Theorem 66. Assume that Ψ ∈ L2(Ω1)
2, Π ≥ 0, Π ∈ L2(Ω2) and Λ ≥ 0, Λ ∈

L1(0, T ;L∞(Ω)) ∩ L2(0, T ;L2(Ω)). There exists a constant M̃ > 0 such that if

µ2 > M̃
(
‖Ψ‖2

L2(Ω1) + ‖Kg‖2
L2(Ω2) + µ2

(
‖Π‖2

L2(Ω2) + ‖U‖2
L2(Γ2)

)) 1
2
,

then there exists a weak solution (u, p, ϕ, c) to the weak problem defined in (4.122)-

(4.125).

Remark 67. Similar results hold if the interface condition with the inertial forces

defined in Model II is used. The coupled flow problem with this interface condition

has been studied numerically by Chidyagwai and Rivière [39]. If the Stokes equations
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are used rather than the Navier-Stokes equations, then there is no need for a small

data condition like the one given in Theorem 66 above.

We direcly move to the numerical analysis of the problem. The flow problem

is approximated by a combination of the FEM and DG method. The transport

problem is solved by a DG method that upwinds the numerical fluxes in the subsurface

region [59]. In this case, one does not need to use slope limiters. In the following the

numerical schemes are defined and error estimates are obtained and the schemes are

tried on a numerical example to show the robustness of the methods for fractured

porous media. The chapter proceeds by assuming that the free flow is governed by the

Navier-Stokes equation and the simplifications are mentioned if the Stokes equation

is used instead of the Navier-Stokes equation.

4.4.1 Numerical Scheme

Let Eh be a regular family of triangulations of Ω (see [82]) and let h denote the

maximum diameter of the triangles. We assume that the interface Γ12 is a finite union

of triangle edges. The restriction of Eh to Ωi is also a regular family of triangulations

of Ωi; we denote it by E i
h and impose that the two meshes E i

h coincide at the interface

Γ12. This restriction simplifies the discussion, but it can be relaxed. We accept the

rest of the notation about the mesh as it is.

Numerical Approximation of Flow Problem

The approximation of the flow problem is done using three different schemes based

on combinations of the FEM and the DG method. For now the discretization of the

flow problem is introduced in a general form. Formally, the discrete weak formulation

of (3.38)-(3.44) can be written as:
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Find U 1
h ∈ Xh, Ph ∈ R1

h,Φh ∈ R2
h such that

∀v ∈ Xh, ∀q ∈ R2
h, aNS(U

1
h,v) + bNS(v, Ph) + kNS(U

1
h; U

1
h,v) + aD(Φh, q)

+γ̃(U 1
h,Φh; v, q) = L(v, q),

∀r ∈ R1
h, bNS(U

1
h, r) = 0,∫

Ω1

Ph +

∫
Ω2

Φh = 0.

Denote by U 1
h the resulting velocity field of the coupled Navier-Stokes and Darcy

equations. The velocity U 1
h is defined in Ω by:

U 1
h =

 U 1
h, in Ω1

−K
µ

(∇Φh − ρg), in Ω2

(4.126)

The form L is defined as:

L(v, q) = (Ψ,v)Ω1 + (Π +
K

µ
ρg, q)Ω2 + (U , q)Γ2

and the form γ̃ is given in (3.112). The following sections describe the forms aNS, aD,

bNS and kNS corresponding to different schemes which were studied in [38, 39, 51].

For completeness all methods are defined below and the results are stated together

with the results for concentration.

DG Method The primal DG method is applied to both the Navier-Stokes equations

and the Darcy equations. The notation will be the same as in Section 3.2.3. To

simplify the text, we assume that σe = σ and εNS = εD = ε are fixed constants for

both forms aNS and aD. Let k1, k2 ≥ 1 be integers and set the discrete spaces as

X1
h = Dk1(E1

h), R1
h = Dk1−1(E1

h), R2
h = Dk2(E2

h).

The forms aNS and dNS are exactly the same as in Section 3.2.3. However, the form

aD, presented below, has an extra µ−1 coefficient since compared to (3.3), (4.4) has
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an extra 1/µ.

∀z2
h, q

2
h ∈Mh

2 , aD(zh, qh) = µ−1
∑
E∈E2

h

(K∇zh,∇qh)E − µ−1
∑
e∈Γ2

h

({K∇zh · ne}, [qh])e

+µ−1ε2
∑
e∈Γ2

h

({K∇qh · ne}, [zh])e +
∑
e∈Γ2

h

σ

|e|
([zh], [qh])e, (4.127)

We define the nonlinear form using the definition (3.58) as follows:

∀uh,vh,wh ∈ X1
h, kNS(uh; vh,wh) = N(uh,uh; vh,wh).

In this case, the norms associated with the discrete spaces are:

‖v‖X1
h

=

∑
E∈E1

h

‖D(v)‖2
L2(E) +

∑
e∈Γ1

h∪Γ1

|e|−1‖[v]‖2
L2(e)

 1
2

‖q‖R1
h

= ‖q‖L2(Ω1)

‖q‖R2
h

=

∑
E∈E2

h

‖K
1
2∇q‖2

L2(E) +
∑
e∈Γ2

h

|e|−1‖[q]‖2
L2(e)

 1
2

.

FEM Method In this second approach, the discrete spaces are conforming spaces of

order k1 for Ω1 and k2 for Ω2. For instance, to approximate the Navier-Stokes velocity

and pressure, one can use the MINI elements [83] of order one and the Taylor-Hood

elements [84] of order two. These spaces satisfy an inf-sup condition, with an inf-sup

constant independent of h. The Darcy pressure space is

R2
h = {qh ∈ C(Ω2) : qh|E ∈ Pk2(E),∀E ∈ E2

h}.

The FEM spaces are equipped with the following norms:

‖v‖X1
h

= ‖D(v)‖L2(Ω1), ‖q‖R1
h

= ‖q‖L2(Ω1), ‖q‖R2
h

= ‖K
1
2∇q‖L2(Ω2)
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The bilinear forms are

aNS(vh,wh) = 2µ(D(vh),D(wh))Ω1 , (4.128)

bNS(vh, rh) = −(rh,∇ · vh)Ω1 , (4.129)

aD(zh, qh) = (K∇zh,∇qh)Ω2 (4.130)

kNS(zh; vh,wh) =
1

2
(zh · ∇vh,wh)Ω1 −

1

2
(zh · ∇wh,vh)Ω1 +

1

2
(zh · n12,vh ·wh)Γ12 ,

(4.131)

FEM/DG Method In this third approach, we propose to employ the FEM to

solve the Navier-Stokes equations in Ω1 and to employ the DG method to solve the

Darcy equations in Ω2. Conforming element spaces of order k1 are used for the spaces

X1
h and R1

h, and discontinuous piecewise polynomials of degree k2 are used for the

space R2
h. The bilinear forms are the forms defined by (4.128), (4.129), (4.131) and

(4.127).

Numerical Approximation of the Transport Problem

The transport equation (4.8) is discretized by a combined backward Euler and DG

method. Let ∆t be a positive time step and let tj = j∆t denote the time at the jth

step. Let

Qh = Dr(E2
h).

The approximation of the initial concentration is obtained by an L2 projection:

∀qh ∈ Qh, (C0
h, qh)Ω = (c0, qh)Ω
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For any j ≥ 0, the approximation Cj+1
h of the concentration c at time tj+1 is defined

by the following discrete variational problem.

∀qh ∈ Qh, ϕ(
Cj+1

h − Cj
h

∆t
, qh)Ω + aT (U 1

h;C
j+1
h , qh) + dT (U 1

h;C
j+1
h , qh) = Lj+1

T (qh)

(4.132)

where the bilinear form aT is a DG discretization of the operator −∇· (F (u)∇c) and

the bilinear form dT is a DG discretization of the operator ∇ · (uc). Before defining

these forms, we introduce the upwind value q↑h of a function qh in Qh with respect to

the velocity field U 1
h, defined by (4.126). Let e be an edge shared by the elements E1

and E2 and let the unit normal vector ne point outward of E1.

q↑h =

 qh|E1 if {U 1
h} · ne > 0,

qh|E2 if {U 1
h} · ne ≤ 0.

The penalty parameter is denoted by σe as it varies from edge to edge. The sym-

metrization parameter is denoted by εT ∈ {−1, 1}. The forms aT , dT , LT are given

below for any θh, qh in Qh:

aT (U 1
h; θh, qh) =

∑
E∈E1

h

(F (U 1
h)∇θh,∇qh)E +

∑
e∈Γh

|e|−1(σe[θh], [qh])e

−
∑
e∈Γh

((F (U 1
h)∇θh · ne)

↑, [qh])e + εT
∑
e∈Γh

((F (U 1
h)∇qh · ne)

↑, [θh])e

+
∑
e∈∂Ω

(θh,U+qh)e,

dT (U 1
h; θh, qh) = −

∑
E∈E1

h

(θhU
1
h,∇qh)E +

∑
e∈Γh

(θ↑h{U
1
h · ne}, [qh])e,

Lj+1
T (qh) =

∫
Ω

Λ(tj+1)qh +

∫
∂Ω

C(tj+1)U−qh.

This scheme uses an improved DG method in which the diffusive fluxes are upwinded

whereas in the standard DG method the diffusive fluxes are averaged. The improved
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method is more stable and does not require the use of slope limiters [59]. The space

Qh is equipped with the following semi-norm:

|qh|Qh
=
( ∑

E∈E1
h

‖∇qh‖2
L2(E) +

∑
e∈Γh

|e|−1‖σ
1
2
e [qh]‖2

L2(e)

)
.

We now recall the coercivity property of the form aT : there is a constant κ > 0 such

that

∀qh ∈ Qh, aT (U 1
h; qh, qh) ≥ κ|qh|2Qh

+ ‖(U+)
1
2 qh‖2

L2(∂Ω). (4.133)

This is straightforward for the NIPG method (εT = 1) and in that case the constant

κ = min(1, α) where α is the lower bound for F (u). For the SIPG method (εT = −1),

we use the fact that the matrix F (U 1
h) is bounded above and the coercivity is obtained

if the penalty parameter is large enough.

We will use the following inverse inequality for the existence and uniqueness result

corresponding to the concentration. There is a constant M > 0 independent of h such

that

∀qh ∈ Qh, ∀E ∈ E1
h, ‖qh‖L∞(E) ≤Mh−1‖qh‖L2(E). (4.134)

4.4.2 Existence and Uniqueness of the Numerical Solution

Flow Problem

The discretization with DG method and the FEM/DG method of the flow problem

were analyzed in [38, 39, 51] for different boundary conditions for the Darcy pressure.

It is a technicality to redo the analysis for the case of Neumann boundary condition.

A similar analysis can be done for the FEM method. Existence and uniqueness of

the numerical solution (U 1
h, Ph,Φh) are obtained under small data condition.
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Concentration Problem

To prove existence and uniqueness of the discrete solution of the concentration prob-

lem, it suffices to show uniqueness since the system is linear. Clearly the initial

concentration is uniquely defined. Fix j ≥ 0. Let θh = Cj+1
h − C̃j+1

h be the difference

of two solutions of (4.132). The function θh satisfies

ϕ

∆t
‖θh‖2

L2(Ω) + aT (U 1
h; θh, θh) + dT (U 1

h; θh, θh) = 0.

Next, we use coercivity of aT (4.133):

ϕ

∆t
‖θh‖2

L2(Ω) + κ|θh|2Qh
≤ |dT (U 1

h; θh, θh)|.

The first term in dT (U 1
h; θh, θh) is bounded using Cauchy-Schwarz inequality, the

inverse inequality (4.134) and the bound (4.138).

|
∑
E∈E1

h

(θhU
1
h,∇θh)E| ≤

∑
E∈E1

h

‖θh‖L∞(E)‖U 1
h‖L2(E)‖∇θh‖L2(E)

≤Mh−1
∑
E∈E1

h

‖θh‖L2(E)‖U 1
h‖L2(E)‖∇θh‖L2(E) ≤MMh−1

∑
E∈E1

h

‖θh‖L2(E)‖∇θh‖L2(E)

≤ M2M
2

κh2
‖θh‖2

L2(Ω) +
κ

4

∑
E∈E1

h

‖∇θh‖2
L2(E).

The second term in dT (U 1
h; θh, θh) is bounded similarly, but here we take advantage

of the penalty term:

|
∑
e∈Γh

(θ↑h{U
1
h · ne}, [θh])e| ≤M

∑
e∈Γh

|e|−
1
2‖σ

1
2
e [θh]‖L2(e)h

1
2‖θ↑h‖L∞(e)‖{U 1

h · ne}‖L2(e)

≤M
∑
e∈Γh

|e|−
1
2‖σ

1
2
e [θh]‖L2(e)h

1
2h−1‖θh‖L2(E12

e )‖{U 1
h · ne}‖L2(e)

≤M
∑
e∈Γh

|e|−
1
2‖σ

1
2
e [θh]‖L2(e)h

1
2h−1‖θh‖L2(E12

e )h
− 1

2‖U 1
h‖L2(E12

e ).
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In the bound above we have used the inverse inequality ‖U 1
h‖L2(e) ≤Mh−

1
2‖U 1

h‖L2(E).

We also defined the union of the elements who share the edge e by E12
e . Next, we use

the bound on the discrete velocity (4.138) and we obtain:

|
∑
e∈Γh

(θ↑h{U
1
h · ne}, [θh])e| ≤

M2M
2

h2κ
‖θh‖2

L2(Ω) +
κ

4

∑
e∈Γh

|e|−1‖σ
1
2
e [θh]‖2

L2(e).

Therefore we have

( 1

∆t
− 2M2M

2

κh2

)
‖θh‖2

L2(Ω) +
3κ

4
|θh|2Qh

≤ 0.

We conclude that θh = 0 if the time step satisfies the following condition:

∆t <
κh2

2M2M
2 .

We summarize our result below.

Lemma 68. There is a constant M0 > 0 such that if ∆t < M0h
2, there is a unique

solution to the scheme (4.132).

4.4.3 Error Analysis

Flow Problem

Convergence rates are optimal [38, 39, 51]. More precisely, there is a constant M

independent of h such that

‖u1 −U 1
h‖X1

h
+ ‖p1 − Ph‖R1

h
+ ‖p2 − Φh‖R2

h
≤M(hk1 + hk2). (4.135)

Using the fact that ‖ · ‖L2(Ω1) ≤ M‖ · ‖X1
h
, we obtain an error bound of the velocity

field in the L2-norm.

‖u−U 1
h‖L2(Ω) ≤M(hk1 + hk2). (4.136)
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As a consequence, using a trace theorem, an inverse inequality, and the Lagrange

interpolant of u, we have

∀e ∈ Γh, ‖u−U 1
h‖L2(e) ≤M(hk1− 1

2 + hk2− 1
2 ). (4.137)

One can also show that the velocity U 1
h is bounded in the L2 norm by the data:

there is a constant M > 0 independent of h, but dependent on the data µ, ‖Ψ‖L2(Ω1),

‖Π‖L2(Ω2) and ‖U‖L2(∂Ω), such that

‖U 1
h‖L2(Ω) ≤M. (4.138)

Concentration problem

We decompose the error at time tj into an approximation error η and a numerical

error ξ. Let c̃ ∈ Qh ∩ C(Ω) be an approximation of c in the sense that the following

approximation bounds [61, p.111] hold:

‖c(tj)−c̃(tj)‖L2(Ω) ≤Mhr+1‖c(tj)‖Hr+1(Ω), ‖∇(c(tj)−c̃(tj))‖L2(Ω) ≤Mhr‖c(tj)‖Hr+1(Ω),

‖c(tj)−c̃(tj)‖L∞(Ω) ≤Mhr+1‖c(tj)‖Hr+1(Ω), ‖∇(c(tj)−c̃(tj))‖L∞(Ω) ≤Mhr‖c(tj)‖Hr+1(Ω).

We write

Cj
h − c(tj) = ηj − ξj, ηj = Cj

h − c̃(tj), ξj = c(tj)− c̃(tj).

Theorem 69. Under the assumption of Lemma 68 and the additional regularity as-

sumption c ∈ L2(0, T ;Hr+1(Ω)) ∩W 1,∞(Ω), ct ∈ L2(0, T ;Hr(Ω)), c0 ∈ Hr(Ω), there

is a constant M independent of h and ∆t such that for all m ≥ 1, such that for ∆t

small enough, we have the error bound

‖ηm‖2
L2(Ω) + κ∆t

m∑
j=1

|ηj|2Qh
+ ∆t

m∑
j=1

‖|U|
1
2ηj‖2

∂Ω ≤M(h2r + h2k1 + h2k2 + ∆t2)
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Proof. The error equation becomes

(ϕ
ηj+1 − ηj

∆t
, qh)Ω + aT (U 1

h; η
j+1, qh) + dT (u; ηj+1, qh) = (ϕ

∂ξ

∂t
(tj+1), qh)Ω

+ (ϕ
∂c̃

∂t
(tj+1)− ϕ

c̃j+1 − c̃j

∆t
, qh)Ω + dT (u−U 1

h; η
j+1, qh) + aT (U 1

h; ξ
j+1, qh)

+dT (U 1
h; ξ

j+1, qh)+dT (u−U 1
h; c(t

j+1), qh)+aT (u; c(tj+1), qh)−aT (U 1
h; c(t

j+1), qh).

for all qh ∈ Qh. We take qh = ηj+1 and we use coercivity of aT :

ϕ

2∆t
(‖ηj+1‖2

L2(Ω) − ‖ηj‖2
L2(Ω)) + κ|ηj+1|2Qh

+ dT (u; ηj+1, ηj+1) + ‖(U+)
1
2ηj+1‖2

L2(∂Ω)

≤ |(∂ξ
∂t

(tj+1), ηj+1)Ω|+ |(∂c̃
∂t

(tj+1)− c̃j+1 − c̃j

∆t
, ηj+1)Ω|+ |dT (u−U 1

h; η
j+1, ηj+1)|

+ |aT (U 1
h; ξ

j+1, ηj+1)|+ |dT (U 1
h; ξ

j+1, ηj+1)|+ |dT (u−U 1
h; c(t

j+1), ηj+1)|

+ |aT (u; c(tj+1), ηj+1)− aT (U 1
h; c(t

j+1), ηj+1)| (4.139)

Since the weak solution satisfies ∇·u|Ω1 = 0 and ∇·u|Ω2 = Π ≥ 0, we use integration

by parts and obtain:

dT (u; ηj+1, ηj+1) + ‖(U+)
1
2ηj+1‖2

L2(∂Ω) =
1

2
(U+, (ηj+1)2)∂Ω +

1

2
(U−, (ηj+1)2)∂Ω ≥ 0

We now bound the first and second terms in the right-hand side of (4.139), under the

regularity assumption for the exact solution c.

|(∂ξ
∂t

(tj+1), ηj+1)Ω| ≤ ‖ηj+1‖2
L2(Ω) +Mh2r‖∂c

∂t
(tj+1)‖2

Hr(Ω).

|(∂c̃
∂t

(tj+1)− c̃j+1 − c̃j

∆t
, ηj+1)Ω| ≤ ‖ηj+1‖2

L2(Ω) +
∆t

12

∫ tj+1

tj
‖∂

2c̃

∂t2
‖2

L2(Ω).

We now bound the dT terms. Using standard techniques, inequality (4.134), we obtain

dT (u−U 1
h; η

j+1, ηj+1) ≤Mh−1‖ηj+1‖L2(Ω)‖u−U 1
h‖L2(Ω)|ηj+1|Qh

.

Using the velocity bound (4.136) and the fact that k1 ≥ 1, k2 ≥ 1, we have

dT (u−U 1
h; η

j+1, ηj+1) ≤ κ

8
|ηj+1|2Qh

+M‖ηj+1‖2
L2(Ω).
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Similarly, using (4.138), we have

dT (U 1
h; ξ

j+1, ηj+1) ≤M‖ξj+1‖L∞(Ω)‖U 1
h‖L2(Ω)|ηj+1|Qh

≤M‖ξj+1‖L∞(Ω)|ηj+1|Qh
.

and using (4.136), (4.137) and the boundedness of the weak solution, we have

dT (u−U 1
h; c(t

j+1), ηj+1) ≤M‖c(tj+1)‖L∞(Ω)|ηj+1|Qh

(
‖u−U 1

h‖L2(Ω)

+ (
∑
e∈Γh

|e|‖u−U 1
h‖2

L2(e))
1
2

)
≤ κ

8
|ηj+1|2Qh

+M(h2k1 + h2k2).

The diffusive term aT (U 1
h; ξ

j+1, ηj+1) is bounded using standard techniques.

aT (U 1
h; ξ

j+1, ηj+1) ≤ κ

8
|ηj+1|2Qh

+
1

8
‖(U+)

1
2ηj+1‖2

L2(∂Ω) +Mh2r‖c(tj+1)‖2
Hr+1(Ω).

To bound the remaining diffusive terms, we use the boundedness of c, the Lipschitz

continuity of F and the bounds (4.136), (4.137) [Note: here we need ‖∇c‖L∞(E,e) < M ]

aT (u; c(tj+1), ηj+1)− aT (U 1
h; c(t

j+1), ηj+1) ≤ κ

8
|ηj+1|2Qh

+M(h2k1 + h2k2).

We can now conclude by combining all bounds, summing over the time steps, and

using Gronwall’s inequality.

4.4.4 Numerical Example

In this section, we show that our schemes are robust for fractured porous medium.

For more numerical examples of heterogeneous porous media see [58]. We also inves-

tigate the effect of different approximations of velocity on the concentration solution.

In the following, the fluid viscosity is equal to 1, and the Beavers-Joseph-Saffman

constant is equal to to 0.1. Meshes are generated using Gmsh [85], visualization is

done using Tecplot [86] and the simulations are done using software developed by

Rivière. Uniqueness of the pressure is obtained by imposing a Dirichlet boundary

condition on part of the subsurface boundary.

D 
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Ω1

A
A
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B

C

B

C
C

B

D D

Figure 4.1 : Domain for surface coupled with fractured subsurface. Permeability

value is 10−9 in A region, 10−5 in B region, 10−7 in C region and 10−4 in D region

(slanted fractures).

Fractured Subsurface

In this example, the porous medium Ω = (0, 12) × (0, 6) contains three horizontal

layers of varying permeability that are intersected by two slanted faults. The per-

meability matrix is equal to 10−4I, 10−9I, 10−5I, 10−7I in the faults, the top layer,

the middle layer and the bottom layer respectively (see Fig. 4.1). First for the flow

problem, we impose a parabolic velocity profile on the left vertical boundary of Ω1

and a similar profile on the right vertical boundary of Ω1 but with a smaller magni-

tude. Zero Neumann boundary conditions are imposed on the Darcy pressure for the

vertical boundaries of Ω2 and Dirichlet pressure is prescribed on bottom horizontal

boundary. The Dirichlet values are given below:

∀y ≥ 4, u1(0, y) = (0.25(y − 4)(8− y), 0), u1(12, y) = ((3/16)(y − 4)(8− y), 0),

∀0 ≤ x ≤ 12, u1(x, 6) = (1, 0), p2(x, 0) = 105.

Fig. 4.2 shows the pressure contours and the velocity field obtained with the DG

method of first and second order, which yields 8707 and 17679 degrees of freedom

respectively. The pressure follows a vertical gradient, and thus the velocity in the
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Figure 4.2 : Pressure and velocity field obtained with the DG method of order one

(left figure) and order two (right figure).

middle layer (denoted by B on Fig. 4.1) remains small. For this example, we also

solve the flow problem using the FEM/DG method of order one. The MINI elements

are used for the Navier-Stokes region. Discontinuous piecewise linear or quadratic

approximations are used in the Darcy region. Fig. 4.3 shows the pressure contours and

streamlines obtained on the same mesh as the solutions in Fig. 4.2. Using FEM/DG

is computationally cheaper than DG alone, as the number of degrees of freedom is

7899 and 14766 for piecewise linears and quadratics respectively. However we observe

that even though the streamlines are similar, the values for the pressure differ. If we

solve the problem on a finer mesh, the pressure values match those obtained by the

DG scheme (see Fig. 4.4). The number of degrees of freedom is 125043 and 234915

for piecewise linears and quadratics respectively. Similar conclusions can be made if

the FEM scheme is used in the whole domain. The method of order one yields the

smallest number of degrees of freedom (2196), however the solution is not accurate

enough and the mesh needs to be finer.

Next we describe the parameters chosen for the transport problem. The coeffi-

cients are: ϕ = 0.2, αl = 0.1, αt = 0.01, C = 0, dm = 10−4 in Ω2, dm = 10−2 in Ω1.
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Figure 4.3 : Pressure and velocity field obtained with the FEM/DG method of order

one (left figure) and order two (right figure).

We simulate the leakage of a contaminant in the surface. The initial concentration

is equal to one in a localized region in the surface, and zero elsewhere. In addition,

there is a temporary source of contaminant (for t ≤ t∗, with t∗ = 3) defined by:

f(t, x, y) =

 0.5, t < 3, and ((x− 2.0)2 + (y − 5.1)2)
1
2 ≤ 0.5

0, otherwise

We obtain the numerical approximation of the concentration by the DG method

with parameters r = ε = σ = 1. In Fig. 4.5, 4.6, 4.7, we show the concentration

contours at different times in the case where the numerical approximation of the

velocity is obtained by DG (with k1 = k2 = 2), FEM/DG (with k1 = 1 and k2 = 2)

and FEM (with k1 = k2 = 1) schemes. We note that the mesh used for the transport

problem is the same as the one used in Fig. 4.2 and Fig. 4.3. The overall behavior of

the solution is as expected: the contaminant is transported faster in the surface region,

and some of it penetrates the subsurface via the slanted fractures. Because of the

intermediate value of the permeability in the middle layer, some of the contaminant

appears in part of region B neighboring the fractures. The interest of this example is
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Figure 4.4 : Pressure and velocity field obtained with the FEM/DG method of order

one (left figure) and order two (right figure) on a very fine mesh.

to see that the poor/good accuracy of the input velocity has an important effect on

the concentration solution. At the times t1 and t2, solutions obtained with FEM/DG

or FEM input velocities are similar. At the time t3 (which is greater than t∗, the

time when the source disappears), we observe an unphysical accumulation of mass at

the outflow boundary of the left fracture if the FEM velocity is used. The use of DG

in the subsurface region for the flow problem removes this numerical problem. We

also note that the solution obtained with DG input velocity differs from the other

two solutions. The contaminant plume appears to be less diffusive, and further along

the x-axis. This is particularly clear in Fig. 4.7, where we see that the left fracture

contains very little contaminant if the input velocity is obtained with DG. In addition,

a larger amount of contaminant has reached the second fracture.

4.5 Summary

The coupling of surface/subsurface flow and transport is studied theoretically and

numerically by the use of finite element methods and discontinuous Galerkin methods.

It is shown that the DG scheme is robust and yields accurate solutions for fractured
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Figure 4.5 : Concentration contours at time t1 with input velocity obtained from DG

(a), FEM/DG (b) and FEM (c).
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Figure 4.6 : Concentration contours at time t2 = 2t1 with input velocity obtained

from DG (a), FEM/DG (b) and FEM (c).
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Figure 4.7 : Concentration contours at time t3 = 5t1 with input velocity obtained

from DG (a), FEM/DG (b), and FEM (c).
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subsurface. A finer mesh is needed to obtain an accurate FEM/DG or FEM velocity.

If one is constrained to use the same computational mesh for both flow and transport,

then the most economical solution is still given by the DG method. It would be of

interest to study the effects of projection of the velocity field, if independent meshes

are used for the flow and transport problems.
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Chapter 5

Conclusions

The first chapter of this thesis gives the first mathematical analysis of the coupled

time-dependent Navier-Stokes and Darcy equations. The standard transmissibility

conditions, namely the continuity of the flux, the Beavers-Joseph-Saffman condition

and the balance of forces, are assumed on the interface separating the surface and sub-

surface. The last of these conditions is considered in two versions. First version adds

the inertial forces 1
2
u ·u to the condition hence canceling the problematic term. This

violates the physical laws but is mathematically more convenient. I presented a weak

formulation of this version and proved the existence of a weak solution. The second

version without the additional inertial forces however is mathematically challenging

and asks for an additional requirement on the data. Hence the existence of the weak

solution in this second case is proved conditionally. This chapter also numerically

analyzes the first version discretized with the DG methods and the Crank-Nicolson

scheme. I showed that the error is optimal in space and second order in time. I have

also discretized the same problem by the continuous FEM rather than the DG method

and the results are similar [35]. Thus they are not included in here. This part of my

thesis can also be seen as completing the series of papers on the Navier-Stokes/Darcy

coupling [39, 51, 38] by extending the results to the time-dependent case.

The second problem of this thesis is again based on the coupling of Navier-Stokes

and Darcy’s equations. This flow is coupled to a convection-diffusion transport equa-

tion to account for the contaminant concentration in the problem of groundwater

-
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contamination through rivers. The published literature is very sparse on the coupling

of Navier-Stokes/Darcy-transport problem. In this chapter, I first proved existence

result for a weak solution for the linear case (Stokes and Darcy’s equations) where

the nonlinearity is neglected. I built the Navier-Stokes analysis on the analysis of

this simpler case while pointing out the differences in between. I determined the

additional small data assumption in order to have the existence of a weak solution.

Furthermore, I provided numerical analysis of the scheme derived by using FEM and

DG methods and presented a numerical example that shows that the DG scheme is

robust and yields accurate solutions for fractured subsurfaces. The conclusion from

the results is that a finer mesh is needed to obtain an accurate FEM/DG or FEM

velocity. If one is constrained to use the same computational mesh for both flow and

transport, then the most economical solution is still given by the DG method.
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Chapter 6

Current and Future Work

Similar to the numerical analysis of Model I of Chapter 3, we can obtain conver-

gence results under additional assumptions. The backward Euler method, which is

chosen for simplicity, is applied to the fully coupled linearized problem. The next

section describes the numerical scheme based on DG methods derived for Model II

of Chapter 3.

6.1 Numerical Scheme For Model II

Let Xh,M
1
h ,M

2
h denote the finite element spaces for the discretization of the Navier-

Stokes velocity, Navier-Stokes pressure and Darcy pressure. The terms aNS and aD

stand for the discretization of the elliptic operators −2µ∇ · D(u) and −∇ · K∇ϕ.

The discretization of the pressure term ∇p is denoted by the bilinear form bNS and

the discretization of the nonlinear terms is taken care of by the term cNS. Lastly, the

interface terms are combined in γ̃. Let N ≥ 1 and ∆t = T
N

. Define ti = i∆t. Then

the fully discrete scheme is given by:

Find {(U i
h, P

i
h,Φ

i
h}i ∈ Xh ×M1

h ×M2
h such that

∀v ∈ Xh, q ∈M2
h ,

(
U i+1

h −U i
h

∆t
,v

)
Ω1

+ aNS(U
i+1
h ,v) +N(U i

h,U
i
h; U

i+1
h , v)

+bNS(p
i+1,v) + aD(ϕi+1, q) + γ(U i+1

h , ϕi+1; v, q) = L(v, q)

∀q ∈M1
h , bNS(q,U

i+1
h ) = 0

∀v ∈ Xh, (U 0
h,v)Ω1 = (u0,v)Ω1



154

The forms aNS, bNS and aD are defined similarly as in Section 3.2. The form N in this

case is free of the discrete form of the inertial forces. Under additional assumptions

and using standard techniques, one can show that there exists a unique discrete

solution and that the error is optimal.

The numerical results obtained for one-way coupling problem can be extended to

the full-coupling problem. The next section describes the numerical scheme.

6.2 Numerical Scheme for the Fully Coupled Flow and Trans-

port

Denote by Xh, R
1
h, R

2
h andQh the discrete spaces. The choice for the time-discretization

is the backward Euler method. Let ∆t be a positive time step and let tj = j∆t denote

the time at the jth step. The fully-discrete problem is as follows:

Find (U i
h)0≤i≤N ∈ (Xh)

N+1, (P i
h)0≤i≤N ∈ (R1

h)
N+1, (Φi

h)0≤i≤N ∈ (R2
h)

N+1, (Ci
h)0≤i≤N ∈

(Qh)
N+1 such that

∀zh ∈ Qh, (C0
h, zh)Ω = (c0, zh)Ω,

for all 0 ≤ i ≤ N − 1,
∫

Ω1
P i+1

h = 0 and

∀vh ∈ Xh,∀rh ∈ R1
h, ãNS(C

i+1
h ; U i+1

h ,vh) + b̃NS(vh, P
i+1
h ) + ãD(Ci+1

h ; Φi+1
h , zh)

+ k̃NS(U
i+1
h ; U i+1

h ,v) + γ̃(U i+1
h ,Φi+1

h ; vh, zh) = L̃(Ci+1
h ; vh, zh),

∀zh ∈ R2
h, bNS(U

i+1
h , rh) = 0, and

∀qh ∈ Qh, φ
(Ci+1

h − Ci
h

∆t
, qh
)
Ω
+aT(U i+1

h ;Ci+1
h , qh)+dT(U i+1

h ;Ci+1
h , qh) = Lj+1

T (qh)

and the discrete velocity on Ω2 is given as

U i+1
h = − K

µ(Ci+1
h )

(∇Φh
i+1 − ρg), in Ω2.
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The forms ãNS, b̃NS, ãD and k̃NS this time incorporates the concentration into the

scheme. So they will be defined in a slightly different way. This gives us a nonlinear

system of equations. In addition to the existence and uniqueness of this fully discrete

system, stability of the scheme can be proved.

6.3 Coupling of the Navier-Stokes/Stokes Flow with Two

Phase Flow

Rather than coupling the surface flow with the single phase (Darcy) flow, I plan

to consider the coupling with the two phase flow in the subsurface which is the

simultaneous flow within a porous medium of two immiscible fluids such as oil and

water. Immiscibility of fluids means that there is no mass transfer between the fluids.

Two-phase flow occurs in a variety of flow phenomena in the subsurface. One example

is the oil flow in reservoirs. See, for instance, Aziz and Settari [87], Parker [88]

and Wheeler [89] for oil-reservoir modeling. NIPG and SIPG methods have been

successfully applied to the two-phase flow problem [22, 23, 24, 25, 26, 27, 28]. My

plan in the general sense is to combine the results for the surface/subsurface flow with

the results for the two-phase flow.
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Appendix A

Results for Chapter 3 and Chapter 4

A.1 Boundedness of {um}m≥1 in Hγ(0, T ; V , L2(Ω1)
2) for 0 <

γ < 1
4.

In the following, C will be a generic constant independent of m. The proof is modified

from [71, p.193] and [90, p.163] and uses Fourier transforms. Recall from Chapter 2

that the extension to R of a function f is denoted by f̃ and the Fourier transform of f̃

is denoted by f̂ . By Theorem 26, um is bounded in L2(0, T ; V ). Hence, it is enough

to bound ‖|τ |γûm(τ)‖2
L2(0,T ;L2(Ω1)2) to obtain boundedness in Hγ(0, T ; V , L2(Ω1)

2).

Extending the functions, the first equation in (Pm) is equivalent to

∂

∂t
(ũm(t),v)Ω1 +2ν(D(ũm(t)),D(v))Ω1 +(ũm(t) ·∇ũm(t),v)Ω1 +(K∇p̃m(t),∇q)Ω2

+ (p̃m(t)− 1

2
(ũm(t) · ũm)(t),v · n12)Γ12 +G(K−1/2ũm(t) · τ 12,v · τ 12)Γ12

− (ũm(t) · n12, q)Γ12 = (Ψ̃(t),v)Ω1 + (Π̃(t), q)Ω2 (A.1)

for all t ∈ R, for all v ∈ V m and for all q ∈ Mm. Let us now find a more suitable

expression for the first term of this equation. By the definition of weak derivative

and regularity of um, for any φ ∈ D(R),∫ T

0

∂

∂t
(ũm(t),v)Ω1φ(t)dt = −

∫
R
(ũm(t),v)Ω1φ

′dt = −
∫ T

0

(um(t),v)Ω1φ
′dt

=

∫ T

0

∂

∂t
(um(t),v)Ω1φ(t)dt+ (um(0),v)Ω1φ(0)− (um(T ),v)Ω1φ(T )

=

∫
R

(
(
∂̃

∂t
um(t),v)Ω1 + (um(t),v)Ω1δ0 − (um(t),v)Ω1δT

)
φ(t)dt.
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where δ0 and δT are Dirac delta functions centered at 0 and T , respectively. So, in

the sense of distributions in R,

∂

∂t
(ũm,v)Ω1 = (

∂̃

∂t
um,v)Ω1 + (um(t),v)Ω1δ0 − (um(t),v)Ω1δT . (A.2)

For the third term in (A.1), we use

(ũm · ∇ũm,v)Ω1 = −(ũm · ∇v, ũm)Ω1 + (ũm · v, ũm · n12)Γ12 .

Note that,

(ũm · ∇v, ũm)Ω1 = (ũm ⊗ ũm,∇v)Ω1 , (ũm · v, ũm · n12)Γ12 = (ũm ⊗ ũm,v ⊗ n12)Γ12 ,

where ⊗ denote the outer product of two vectors. Using (A.1), (A.2) and the above

observations, for all 1 ≤ i ≤ m and for all t ∈ R,

∂

∂t
(ũm,v)Ω1 + 2ν(D(ũm), D(v))Ω1 − (ũm ⊗ ũm,∇v)Ω1 + (K∇p̃m,∇q)Ω2

+(ũm⊗ ũm,v⊗n12)Γ12 +(p̃m−
1

2
(ũm · ũm),v ·n12)Γ12 +G(K−1/2ũm ·τ 12,v ·τ 12)Γ12

− (ũm · n12, q)Γ12 = (Ψ̃,v)Ω1 + (Π̃, q)Ω2 + (um(t),v)Ω1δ0 − (um(t),v)Ω1δT . (A.3)

Taking Fourier transform of the above equation,

2πiτ(ûm(τ),v)Ω1+2ν(D(ûm(τ)), D(v))Ω1−( ̂ũm ⊗ ũm(τ),∇v)Ω1+(K∇p̂m(τ),∇q)Ω2

+ ( ̂ũm ⊗ ũm,v ⊗ n12)Γ12 − (p̂m(τ)− 1

2
( ̂ũm · ũm)(τ),v · n12)Γ12

− (ûm(τ) · n12, q)Γ12 +G(K−1/2ûm(τ) · τ 12,v · τ 12)Γ12 = 〈Ψ̂(τ),v〉V ′,V

+ 〈Π̂(τ), q〉M ′,M + (u0m,v)Ω1 − (um(T ),v)Ω1e
−2πiTτ .
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Letting v = ûm(τ) and cancelling (ûm(τ) · n12, p̂m(τ))Γ12 terms we obtain

2πiτ‖ûm(τ)‖2
L2(Ω1) + 2ν‖D(ûm(τ))‖2

L2(Ω1) − ( ̂ũm ⊗ ũm(τ),∇ûm(τ))Ω1

+ (K∇p̂m(τ),∇p̂m(τ))Ω2 + ( ̂ũm(t)⊗ ũm(t)(τ), ûm(τ)⊗ n12)Γ12

+G(K−1/2ûm(τ) · τ 12, ûm(τ) · τ 12)Γ12)− (
1

2
( ̂ũm · ũm(τ), ûm(τ) · n12)Γ12

= 〈Ψ̂(τ), ûm(τ)〉V ′,V + 〈Π̂(τ), p̂m(τ)〉M ′,M

+ (u0m, ûm(τ))Ω1 − (um(T ), ûm(τ))Ω1e
−2πiTτ . (A.4)

Observe that, second, fourth and sixth terms are real. Then taking the imaginary

part of (A.4) yields

2πτ‖ûm(τ)‖2
L2(Ω1) = Im

(
( ̂ũm ⊗ ũm(τ),∇ûm(τ))Ω1 +

1

2
( ̂ũm · ũm(τ), ûm(τ) · n12)Γ12

− ( ̂ũm(t)⊗ ũm(t), ûm(τ)⊗ n12)Γ12 + 〈Ψ̂(τ), ûm(τ)〉V ′,V

+ 〈Π̂(τ), p̂m(τ)〉M ′,M + (u0m, ûm(τ))− (um(T ), ûm(τ))e−2πiTτ
)
.

Using the Cauchy-Schwarz inequality,

2π|τ |‖ûm(τ)‖2
L2(Ω1) ≤ ‖ ̂ũm ⊗ ũm(τ)‖L2(Ω1)

(
‖ûm(τ)‖H1(Ω1) + ‖ûm(τ)⊗ n12‖L2(Γ12)

)
+

1

2
‖ ̂ũm · ũm(τ)‖L2(Γ12)‖ûm(τ)‖L2(Γ12) + ‖Ψ̂(τ)‖V ′‖ûm(τ)‖V + ‖Π̂(τ)‖M ′‖p̂m(τ)‖M

+
(
‖u0m‖L2(Ω1) + ‖um(T )‖L2(Ω1)

)
‖ûm(τ)‖L2(Ω1).

To bound the right hand side a series of estimates are needed. Applying the Hölder’s

inequality and using (3.37),

‖ ̂ũm ⊗ ũm(τ)‖L2(Ω1) = ‖
∫

R
ũm ⊗ ũm(t)e−2πitτdt‖L2(Ω1) ≤

∫
R
‖ũm ⊗ ũm(t)‖L2(Ω1)dt

=

∫ T

0

‖um(t)⊗ um(t)‖L2(Ω1)dt =

∫ T

0

(
n∑

i=1

n∑
j=1

‖ui
m(t)uj

m(t)‖2
L2(Ω1)

)1/2

dt

≤
∫ T

0

n∑
i=1

‖ui
m(t)‖2

L2(Ω1)dt =

∫ T

0

‖um‖2
L2(Ω1)dt = ‖um‖2

L2(0,T ;L2(Ω1)2).
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Then ‖ ̂ũm ⊗ ũm(τ)‖L2(Ω1) is bounded by (3.37) which also says that ‖u0m‖L2(Ω1) =

‖um(0)‖L2(Ω1) and ‖um(T )‖L2(Ω1) are bounded. Further,

‖Π̂(τ)‖M ′ = ‖
∫

R
Π̃(t)e−2πitτdt‖M ′ ≤

∫
R
‖Π̃(t)‖M ′dt =

∫ T

0

‖Π(t)‖M ′dt,

‖Ψ̂(τ)‖V ′ = ‖
∫

R
Ψ̃(t)e−2πitτdt‖V ′ ≤

∫
R
‖Ψ̃(t)‖V ′dt =

∫ T

0

‖Ψ(t)‖V ′dt.

Observe that,

‖ûm(τ)⊗ n12‖L2(Γ12) =

(∑
i

∑
j

‖ûi
m(τ)nj

12‖2
L2(Γ12)

) 1
2

≤ ‖ûm(τ)‖L2(Γ12)‖n12‖L2(Γ12) ≤ C‖ûm(τ)‖H1(Ω).

The last bound needed is for ‖ ̂ũm · ũm(τ)‖L2(Γ12).

‖ ̂ũm · ũm(τ)‖L2(Γ12) ≤ ‖
∫

R
ũm · ũm(τ)e−2πitτdt‖L2(Γ12) ≤

∫
R
‖ũm · ũm(t)‖L2(Γ12)dt

=

∫ T

0

‖um · um(t)‖L2(Γ12)dt ≤ C

∫ T

0

‖um‖2
L4(Γ12) ≤ C‖um‖2

L2(0,T ;H1(Ω1)2).

Combining all of these,

2π|τ |‖ûm(τ)‖2
L2(Ω1) ≤ C

(
‖ûm(τ)‖L2(Ω1)+‖ûm(τ)‖H1(Ω1)+‖ûm(τ)‖V +‖p̂m(τ)‖M

)
.

(A.5)

Now fix σ ∈]1
2
, 1[. Note that Fourier transformation preserves the norm in L2(R) by

Parseval’s equality. Then,∫
R
‖ûm(τ)‖2

H1(Ω)dτ =

∫
R
‖ũm(t)‖2

H1(Ω)dt =

∫ T

0

‖um(t)‖2
H1(Ω)dt = ‖um‖2

L2(0,T ;H1(Ω1)2).

Hence, ∫
R

‖ûm(τ)‖H1(Ω1)

1 + |τ |σ
dτ ≤ ‖um‖2

L2(0,T ;H1(Ω1)2)

(∫
R

1

(1 + |τ |σ)2
dτ

) 1
2

.



160

Let M :=
(∫

R
1

(1+|τ |σ)2
dτ
) 1

2
<∞. Then,∫

R

‖ûm(τ)‖H1(Ω1)

1 + |τ |σ
dτ ≤M‖um‖L2(0,T ;H1(Ω1)2),

and similarly,∫
R

‖ûm(τ)‖L2(Ω1)

1 + |τ |σ
dτ ≤M‖um‖L2(0,T ;L2(Ω1)2),

∫
R

‖ûm(τ)‖V

1 + |τ |σ
dτ ≤M‖um‖L2(0,T ;V ),

and ∫
R

‖p̂m(τ)‖M

1 + |τ |σ
dτ ≤ M‖ϕm‖L2(0,T ;M),

which are bounded by (3.37). Therefore (A.5) gives∫
R

|τ |‖ûm(τ)‖2
L2(Ω1)

1 + |τ |σ
dτ ≤ C,

where C > 0 is a generic constant independent of m. Observe that for |τ | < 1,

1
1+|τ |σ >

1
2

and for |τ | > 1, |τ |1−σ

2
≤ |τ |

1+|τ |σ . Then,∫
R

|τ |‖ûm(τ)‖2
L2(Ω1)

1 + |τ |σ
dτ =

∫ 1

−1

|τ |‖ûm(τ)‖2
L2(Ω1)

1 + |τ |σ
dτ +

∫
|τ |>1

|τ |‖ûm(τ)‖2
L2(Ω1)

1 + |τ |σ
dτ

≥ 1

2

∫ 1

−1

|τ |‖ûm(τ)‖2
L2(Ω1)dτ +

1

2

∫
|τ |>1

|τ |1−σ‖ûm(τ)‖2
L2(Ω1)dτ.

Thus, ∫
|τ |>1

|τ |1−σ‖ûm(τ)‖2
L2(Ω1)dτ ≤ C

Consequently,∫
R
|τ |1−σ‖ûm(τ)‖2

L2(Ω1)dτ ≤ ‖um‖2
L2(0,T ;L2(Ω1)2) + C ≤ C.

Therefore, um is bounded in Hγ(0, T ; V , L2(Ω1)
2) where 0 < γ = 1−σ

2
< 1

4
.

Remark 70. This proof works also for Model II with minor modifications because of

the extra right hand side term coming from the nonhomogeneous Neumann boundary

condition and as the inertial forces are omitted.
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A.2 Bounds for Discrete Forms

This section contains results from [38]. For the proof of Proposition 36, the following

result is necessary:

Lemma 71. There exists a constant C, independent of h, but dependent on σmin
1 ,

such that for all edges e ∈ Γ1
h,

∣∣∣ ∑
E∈E1

h

({u}·nE(uext−uint),wint)∂E∗
−(u,v)∩e−

∑
E∈E1

h

({u}·nE(uext−uint),wint)∂E∗
−(v,u)∩e

∣∣∣
≤ C‖u− v‖L2(∆e)

σe

|e|
‖[u]‖L2(e)‖[w]‖L2(e), (A.6)

where

∂E∗
−(u,v) = {x ∈ ∂E : {u(x)} · nE < 0 and {v(x)} · nE 6= 0},

and ∆e is the union of elements of E1
h adjacent to e.

Proof. Let u,v,w ∈ Xh and define the set

∂E−(u,−v) = {x ∈ ∂E : {u(x)} · nE < 0 and {v(x)} · nE > 0}.

Consider first an interior edge e in Γ1
h. The proof is based on the identity (see formula

(5.32), Chapter IV, [64]):

∑
E∈E1

h

({u}·nE(uext−uint),wint)∂E∗
−(u,v)∩e−

∑
E∈E1

h

({u}·nE(uext−uint),wint)∂E∗
−(v,u)∩e

= −
∑
E∈E1

h

({u} · nE(uext − uint),wext −wint)∂E−(u,−v)∩e =: A,

and on the remark that on ∂E−(u,−v), we have

|{u} · nE| < |{u− v} · nE| . (A.7)

--
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Therefore

|A| ≤ ‖{u− v} · nE‖L∞(e)‖[u]‖L2(e)‖[w]‖L2(e). (A.8)

As u and v belong to a finite-dimensional space in each element E, we easily deduce

that

|e|
σe

‖{u− v}‖L∞(e) ≤ C‖u− v‖L2(∆e) , (A.9)

where ∆e is the union of all elements of E1
h adjacent to e, and C is a constant that

depends on σmin
1 , but not on h. Then (A.6) follows easily from (A.8) and (A.9).

Next, we prove the result for a boundary edge e. In this case, we easily obtain

that

A = −
∑
E∈E1

h

(u · nEu,w)∂E−(u,−v)∩e +
∑
E∈E1

h

(u · nEu,w)∂E−(v,−u)∩e.

The proof is concluded as above by noting that (A.7) holds also on ∂E−(v,−u).

The following proves Proposition 36.

Proof. We first note that for any u ∈ Xh, on any fixed edge e, we have either

{u} · ne ≡ 0 or {u} · ne 6= 0 except possibly on a finite number of points, in which

case {u} ·ne 6= 0 a.e.. Therefore, Γ1
h can be partitioned into Γ1

h = F1 ∪F2 ∪F3, with

F1 = {e : {u} · ne = 0 on e and {v} · ne 6= 0 on e a.e.},

F2 = {e : {v} · ne = 0 on e and {u} · ne 6= 0 on e a.e.},

F3 = Γ1
h \ (F1 ∪ F2).

We then have

dNS(u,u; u,w)−dNS(v,v; v,w) =
3∑

i=1

∑
e∈Fi

∑
E∈E1

h

({u}·nE(uint−uext),wint)∂E−(u)∩e

−
3∑

i=1

∑
e∈Fi

∑
E∈E1

h

({v} · nE(vint − vext),wint)∂E−(v)∩e =
3∑

i=1

Qi.

D 
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We now consider each subset Fi separately:

Q1 =
∑
e∈F1

∑
E∈E1

h

({u− v} · nE(vint − vext),wint)∂E−(v)∩e

≤ C(‖v‖Xh
‖u− v‖L4(Ω1)‖w‖L4(Ω1),

similarly,

Q2 =
∑
e∈F2

∑
E∈E1

h

({u− v} · nE(vint − vext),wint)∂E−(v)∩e

≤ C(‖u‖Xh
‖u− v‖L4(Ω1)‖w‖L4(Ω1);

finally,

Q3 =
∑
e∈F3

∑
E∈E1

h

({u} · nE(uint − uext),wint)∂E−(u)∩e

−
∑
e∈F3

∑
E∈E1

h

({u} · nE(uint − uext),wint)∂E−(v)∩e

+
∑
e∈F3

∑
E∈E1

h

({u− v} · nE(uint − uext),wint)∂E−(v)∩e

+
∑
e∈F3

∑
E∈E1

h

({v} · nE((uint − vint)− (uext − vint)),wint)∂E−(v)∩e. (A.10)

The first two terms in the right-hand side of (A.10) are equivalently rewritten as

∑
e∈F3

∑
E∈E1

h

({u} · nE(uint − uext),wint)∂E∗
−(u,v)∩e

−
∑
e∈F3

∑
E∈E1

h

({u} · nE(uint − uext),wint)∂E∗
−(v,u)∩e,

and in view of Lemma 71, are bounded by:

C‖u− v‖L2(Ω1)

∑
e∈F3

σe

|e|
‖[u]‖L2(e)‖[w]‖L2(e) ≤ C‖u− v‖L2(Ω1)‖u‖Xh

‖w‖Xh
.--
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The second and third lines in the right-hand side of (A.10) are easily bounded respec-

tively by

C‖u− v‖L4(Ω1)‖u‖Xh
‖w‖L4(Ω1) and C‖v‖L4(Ω1)‖u− v‖Xh

‖w‖L4(Ω1).

Then (3.79) follows from the above bounds, (3.69) and a Korn’s inequality [74].

A.3 Bound for u′
m(0) · n12 in (H

1
2 (Γ12))

′

The following is used for the existence result of Model II.

Lemma 72. For any v ∈ V , there exists CL > 0 such that

‖v · n12‖(H
1
2 (Γ12))′

≤ CL‖v‖L2(Ω1).

Proof. We use the definition of the dual space norm. Recall that

‖v · n12‖(H
1
2 (Γ12))′

= sup
ϕ∈H

1
2 (Γ12)

〈v · n12, ϕ〉Γ12

‖ϕ‖
H

1
2 (Γ12)

.

Then let R : H
1
2
0 (Γ12) → H1(Ω1) be a continuous extension (lifting) operator such

that there exists CL > 0 satisfying

‖R(ϕ)‖H1(Ω1) ≤ CL‖ϕ‖H
1
2 (Γ12)

.

Observe that v · n∂Ω1 = 0 on Γ1 as v = 0 on Γ1. This implies

〈v · n12, ϕ〉Γ12 = 〈v · n12,R(ϕ)〉Γ12 = 〈v · n∂Ω1 ,R(ϕ)〉∂Ω1 .

As ∇ · v = 0 on Ω1, using Green’s formula,

〈v · n∂Ω1 ,R(ϕ)〉∂Ω1 =

∫
Ω1

R(ϕ)∇ · v +

∫
Ω1

v · ∇R(ϕ) =

∫
Ω1

v · ∇R(ϕ)

D 
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These imply that

|〈v · n12, ϕ〉Γ12| ≤ ‖v‖L2(Ω1)|R(ϕ)|H1(Ω1) ≤ CL‖v‖L2(Ω1)‖ϕ‖H
1
2 (Γ12)

Therefore,

‖v · n12‖(H1/2(Γ12))′ ≤ CL‖v‖L2(Ω1)

A.4 Properties of the Linear Interpolation Operator I0

This section contains properties of the interpolation operators that are used to con-

struct the approximate solution for the weak problems of Chapter 4. The following

result can be found in [53]. For completeness, the sketch of the proof is given here.

Lemma 73. For z ∈ Lp(0, T ;B), let zN = (zN
0 , . . . , z

N
N) where zN

i is the average on

the interval [(i− 1)∆t, i∆t] defined as in (4.37). Then for all 1 ≤ p <∞,

‖I0zN‖Lp(0,T ;B) =

(
∆t

N∑
n=1

‖zN
n ‖

p
B

) 1
2

, (A.11)

and

I0z
N → z strongly in Lp(0, T ;B) as N →∞. (A.12)

Furthermore, for all 1 ≤ p ≤ ∞,

‖I0zN‖Lp(0,T ;B) ≤ ‖z‖Lp(0,T ;B). (A.13)

Proof. For 1 ≤ p <∞,

‖I0zN‖Lp(0,T ;B) ==

(
N∑

n=1

∫ n∆t

(n−1)∆t

‖zN
n ‖

p
Bdt

) 1
p

=

(
∆t

N∑
n=1

‖zN
n ‖

p
B

) 1
p

.

D 
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Then Hölder’s inequality and (4.58) imply

‖I0zN‖Lp(0,T ;B) =

(
∆t

N∑
n=1

∥∥ 1

∆t

∫ n∆t

(n−1)∆t

z(t)dt
∥∥p

B

) 1
p

≤

(
N∑

n=1

∫ n∆t

(n−1)∆t

‖z(t)‖p
Bdt

) 1
p

=

(∫ T

0

‖z(t)‖p
Bdt

) 1
p

= ‖z‖Lp(0,T ;B).

Also by (4.59) and (4.38),

‖I0zN‖L∞(0,T ;B) = max
n=1,...,N

‖zN
n ‖B ≤ 1

∆t
max

n=1,...,N

∫ n∆t

(n−1)∆t

‖z(t)‖Bdt = ‖z‖L∞(0,T ;B).

Therefore the result holds for 1 ≤ p ≤ ∞. We will first show the last result for

z ∈ C([0, T ];B). Then we will conclude by a density argument as C(0, T ;B) is dense

in Lp(0, T ;B).

Let ε0 > 0. Let χn denote the characteristic function on the interval (n∆t, (n +

1)∆t). Then,

‖I0zN − z‖p
Lp(0,T ;B) =

∫ T

0

‖I0zN(t)− z(t)‖p
Bdt =

∫ T

0

χn(t)‖zn+1 − z(t)‖p
Bdt

=

∫ T

0

χn(t)

∥∥∥∥∥ 1

∆t

∫ (n+1)∆t

n∆t

z(s)ds− z(t)

∥∥∥∥∥
p

B

dt

≤
∫ T

0

χn(t)

(
1

∆t

∫ (n+1)∆t

n∆t

‖z(s)ds− z(t)‖B

)p

dt

As any continuous function on a compact set is uniformly continuous, z is uniformly

continuous on [0, 1]. So for any ε1 > 0, we can find δ > 0 such that for any t, s ∈ [0, 1],

|t − s| < δ implies ‖z(t) − z(s)‖B < ε1. Let N0 be such that T
N0

< δ. Then for all

N ≥ N0, ∆t < δ. Thus for 0 < ε1 < T−
1
p ε0,

‖I0zN − z‖p
Lp(0,T ;B) ≤

∫ T

0

χn(t)εp1dt = ε′p∆t ≤ Tεp1 < εp0 (A.14)

yielding I0z
N → z in Lp(0, T ;B) for any z ∈ C([0, T ];B). The result then follows by

the density. D 
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[81] R. Eymard, T. Gallouët, and R. Herbin, “The finite volume method,” in Hand-

book of Numerical Analysis (P. Ciarlet and J.-L. Lions, eds.), pp. 713–1020, North

Holland, 2000.

[82] P. Ciarlet, The finite element method for elliptic problems. North-Holland, Am-

sterdam, 1978.



177

[83] D. Arnold, F. Brezzi, and M. Fortin, “A stable finite element for the Stokes

equations,” Calcolo, vol. 21, no. 6, pp. 337–344, 1984.

[84] P. Hood and C. Taylor, “A numerical solution of the Navier-Stokes equations

using the finite element technique,” Comp. and Fluids, vol. 1, pp. 73–100, 1973.

[85] C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh

generator with built-in pre- and post-processing facilities,” International Journal

for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

[86] http://www.tecplot.com/.

[87] K. Aziz and A. Settari, Petroleum Reservoir Simulation. Applied Science, Lon-

don, 1979.

[88] J. C. Parker, “Multiphase flow and transport in porous media,” Rev. Geophys,

vol. 27, pp. 311–328, 1989.

[89] M. F. Wheeler, Numerical Simulation in Oil Recovery. Springer, New York,

1988.

[90] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes

Equations. Springer, Berlin, 1979.


