
RICE UNIVERSITY 

Essays on Fair Division and Social Choice 

by 

Sinan Ertemel 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

" 
Herve A. Peterkin Professor 

--$-·~~~ 
Anna Bogomolnaia, Professor 
Economics 



ABSTRACT

Essays on Fair Division and Social Choice

Sinan Ertemel

In my dissertation, I studied Social Choice and Fair Division problems under

uncertainty. In the �rst chapter, I de�ned welfare egalitarianism in the form of

certainty equivalence where the individuals are endowed with state contingent con-

sumption bundles and provided an axiomatic characterization of this ordering by

e�ciency, equity and monotonicity axioms. In the second chapter, I introduced

two natural extensions of the proportional rules on the rationing problem with

state contingent claims and provided the characterization of those two rules by

No Advantageous Reallocation, i.e. no group of agents can bene�t from reallocat-

ing their claims amongst each other, which is de�ned across states or individuals,

combined with some standard axioms in the literature. And �nally in the last
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chapter, I consider a class of resolute social choice correspondences and charac-

terize the strong Nash equilibrium outcomes of their voting games in terms of a

generalization of the Condorcet principle.
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CHAPTER 1

Welfare Egalitarianism under Uncertainty

1.1. Introduction

Consider an environment where individuals are endowed with state contingent

consumption bundles. Our main motivation is to come up with an intuitive and

fair method of aggregating individual preferences into a social preference in this

risky environment. Harsanyi (1955)'s aggregation theorem shows that if individu-

als and social planners has expected utility consistent preferences, then the Pareto

principle forces the social welfare to be a�ne with respect to individual utilities.

This utilitarian form of social welfare is indi�erent to the distribution of welfare

which is a huge drawback in terms of social justice. To accommodate egalitarian-

ism, one either takes ex-ante approach by relaxing rationality, i.e. Diamond (1967)

or by taking ex-post approach by relaxing Pareto principle, i.e. Hammond (1983).

In this chapter, by employing ordinal and noncomparable individual preferences,

following Fair Social Choice Theory introduced by Fleurbaey and Maniquet (1996),

we characterize an egalitarian social welfare ordering, that is, giving the priority

to the worse-o�.
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Fair Social Choice Theory seeks Social Welfare Orderings for all possible allo-

cations, not only e�cient but also satisfying some fairness properties. It provides a

crucial link between Social Choice and Fair Allocation Theory. It evaluates alloca-

tion of the resources by constructing social preferences from Social Choice Theory

and borrows equity axioms from the Fair Allocation literature.1 Arrovian Social

Choice Theory is after de�ning social choice functions which gives a complete

ranking over all the feasible allocations. On the other hand, fair allocation theory

provides rules which give the optimal allocations, that is, it gives a two-tier social

ordering, optimal and non-optimal ones. Fair Social Choice Theory takes social

choice approach in the sense that it gives �ne grained rankings. This approach

has clear advantages if one is interested in the implementation problems, that is,

sometimes policy maker has to choose among the non-optimal allocations due in-

centive constraints coming from asymmetric information, or status quo problems

(for example, linear taxation). 2

Arrovian Social Choice Theory showed the Independence of the Irrelevance

axiom is quite incompatible with Pareto axioms. Eventhough Independence axiom

brings informational simplicity, combined with Pareto axioms, it gives nondesirable

(dictatorial) outcomes. For example Bordes and Le Breton (1989) showed that

1For a more detailed treatment of fair allocation rules one can see Moulin and Thomson (1997)
and Thomson (2013)

2One can see Maniquet and Sprumont (2006,2007 and 2011) for this second best approach in the
optimal taxation problem.
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under supersaturating preference domain Independence and Weak Pareto results in

dictatorial outcomes. Fair Social Choice Theory aims to weaken the Independence

axiom by replacing with equity axioms inspired by Fair Allocation Rules and comes

up with the possibility results, mostly in the egalitarian sense.

Fair Social Choice Theory can also be considered as a welfarist approach, it

provides a social welfare ordering from given individual welfare indices. The wel-

farist approach uses exogenous interpersonally comparable utility functions.3 In-

stead of taking exogenous welfare indices, Fair Social Choice Theory takes ordinal

preferences and obtains interpersonal comparisons drawn by preferences over re-

sources. This follows the idea by Rawls (1971), and Sen (1992) saying that utility

comparisons involve value judgments and therefore it cannot be compared across

individuals. And interpersonal comparisons should be based on resource metric.

Furthermore fair social orderings literature di�ers from other models in the sense

that it allows heterogeneous preferences. However mostly egalitarian aggregation

methods are possible through this approach.

Fair Social Choice Theory provides a hierarchy in the normative criteria which is

also followed in this chapter. E�ciency is seen as the �rst and foremost condition

to be satis�ed. Then various criteria of fairness are introduced. There is an

e�ciency-equality con
ict in the sense that reducing inequalities in the resource

3Bossert and Weymark (2004) and d'Aspremont and Gevers (2002) are excellent surveys for
characterizations of cardinal preferences.
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does not necessarily lead to e�cient outcomes.4Equity axioms are weakened until

they capture some basic form of e�ciency. Next, the robustness conditions are

introduced. A robust allocation implies that social preference is independent of

changes of some irrelevant parameters of the model. E�ciency and relevant equity

conditions, combined with the robustness conditions, give us a set of acceptable

social orderings.

In one public and one private good model, Moulin (1987a) de�ned egalitarian

equivalent allocations by �nding highest level of public good that is consumed for

free which yields feasible utility distribution) by Pareto Optimality, Cost Mono-

tonicity, Individual Rationality and No Private Transfers (no agent receives posi-

tive amount of private good). Maniquet and Sprumont (2004) used an alternative

approach, that is, fair social orderings. They de�ned welfare egalitarianism in

the economies with one private good and one partially excludable nonrival good.

First they de�ne an individual's welfare as the amount of nonrival good which

leaves him indi�erent to his initial consumption bundle. They then ranked these

bundles by the leximin criterion and characterized the maximin ordering by Unan-

imous Indi�erence, Responsivess, and Free Lunch Aversion axioms. Maximizing

this social ordering with respect to technological constraints gives exactly the same

public good level proposed by Moulin (1987a). This chapter can be regarded as an

extension of Maniquet and Sprumont (2004) to economies with state contingent

4On the full domain, no social choice function satis�es Pigou-Dalton principle and weak Pareto.
See Fleurbaey and Maniquet (2011).
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endowment vectors. The natural way of de�ning welfare in this framework is the

"riskless" allocation, e.g. certainty equivalent allocation. The main contribution

of this chapter can be seen as de�ning an equity criterion ensuring some form of

aversion to income inequality where inequality is de�ned as two individuals be-

ing a�ected from an event in opposite directions. One can �nd this axiom quite

compelling for some catastrophic events, such as natural disasters (earthquake,

hurricane, etc.), where it is socially undesirable for some individuals to bene�t

from that event at the expense of others. This axiom, combined with e�ciency

and robustness conditions, leads to a social ordering with an in�nite aversion to

inequality { a maximin ordering.

The rest of the chapter is organized as follows. In Section 2 the axioms and

the model are introduced. The results are stated in Section 3. Section 4 concludes

with possible directions for future research.

1.2. Preliminaries

Consider a �nite set of individuals N with jN j � 2. S is a �nite set of distinct

states of nature,with jSj � 2. 
 2 (RS+)N denotes the social endowment of the state

contingent goods. Consumption of individual i 2 N at state s 2 S is denoted as

zis 2 R+. Ri 2 R is ex-ante and state independent preference of individual i 2 N

which is a binary relation over state contingent goods, that is complete, transitive,
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convex, continuous, and strictly increasing in each state contingent good. Social

preference pro�le is denoted as R = (Ri)i2N 2 RN : An economy is de�ned as a

quadruple E = (N;S;
; R) 2 E . An allocation is a vector of zN = (zi)i2N 2

(RS+)N : An allocation is feasible if
P
zi � 
. The set of feasible allocations is

denoted as Z(E). Upper contour set of Ri at zi is denoted as B(Ri; zi) = fz0i 2 RS+

j z0iRizig. Social ordering function R assigns a binary and transitive ranking for all

E 2 E , e.g. zNR(E)z0N means allocation zN is socially preferred to z0N . I(E) and

P(E) are de�ned as counterparts for social indi�erence and social strict preference

respectively.

Next, we will de�ne the notion of Certainty Equivalent Egalitarianism. Indi-

vidual welfare levels are measured on the certainty ray, that is the sure allocation

that leaves an individual indi�erent to his original allocation. For the sake of

exposition, throughout the chapter, we will provide our results for two states.5

State contingent endowment of individual i is denoted as zi = (xi; yi) 2 R2+ where

xi denotes individual i's endowment for state 1 and yi denotes individual i's en-

dowment for state 2. Certainty Equivalent welfare level of agent i 2 N with a

preference relation Ri at the allocation zi is given as ci 2 R++ where ziIi(ci; ci).

Then, social preference is found by applying leximin ordering to the individual

welfare levels. We will provide three axioms that would provide a characterization

of this particular maximin ordering. First, Unanimous Indi�erence condition says

5This is by no means a simpli�cation as the results follow for any S as any S � 1 states can be
represented as a projection to one state.
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that two allocations that leave all the individuals indi�erent should be deemed

socially equivalent. This is a weaker condition than Pareto, and it is clearly sat-

is�ed by Certainty Equivalent Leximin ordering. The Responsiveness condition

ensures that social ordering is preserved if better sets for all individuals shrink for

the better allocation, and they expand for the worse allocation. And �nally, Aver-

sion to Attendant Gains is the equity condition requiring a transfer between two

agents as a social improvement, as long as they have the same endowment under

one event and the transfer is done under the event in which the endowment of two

agents lie on the opposite sides of the certainty equivalent line provided that their

orientation with respect to certainty ray does not change after transfer. Figure

1.1 illustrates how Certainty Equivalent Leximin ordering satis�es the Aversion

to Attendant Gains condition. By Unanimous Indi�erence, one can move along

the indi�erence curve such that (z1;z2)I(E)(�z1;�z2). And by Aversion to Attendant

Gains, we have (z01;z
0
2)R(E)(�z1;�z2) as min(c

0
i; c

0
j) = c

0
i > ci = min(ci; cj).

Now, we will turn to the formal model. The �rst axiom captures the mini-

mum e�ciency condition. Unanimous Indi�erence requires social preferences to

agree with individual preferences, e.g. if all agents are indi�erent to two di�er-

ent bundles then social preference agrees with it. This axiom is weaker than the

Pareto principle. In the next section, we will show that this axiom, combined with

the Responsiveness and Aversion to Attendant Gains axioms, will give Unanimous

Preference and Unanimous Strict Preference.
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Figure 1.1. CE Leximin ordering satis�es AAG.

De�nition 1. Unanimous Indi�erence (UI): Let E = (N;S;
; R) 2 E be given.

Let zN ; z
0
N 2 Z(E), If ziIiz0i, for all i 2 N , then zNI(E)z0N

Now, we will de�ne an equity criterion relevant to our framework which is

inspired by Free Lunch Aversion Axiom introduced by Maniquet and Sprumont

(2004). It is a fairly minimal inequality aversion condition whose ethical justi�ca-

tion was presented in the introduction. Aversion to Attendant Gains condition says

that if two individuals face the risk of one unexpected event in opposite directions,

then reducing the gap of that risk by transfer improves social welfare, provided

that the orientation with respect to certainty ray would not change after transfer.
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This axiom is clearly weaker than Pigou-Dalton transfer which contradicts with

the e�ciency.6

De�nition 2. Aversion to the Attendant Gains (AAG) with respect to state

s: Let E = (N;S;
; R) 2 E be given. Let zN ; z0N 2 Z(E) such that there exist

s 2 S and i; j 2 N with zis = zjs and there exist t 2 S and � > 0 such that

zit < zit +� = z0it < zis = zjs < z
0
jt = zjt �� < zjt and zks = z

0
ks for all k 6= i; j

and for all s 2 S. Then z0NP(E)zN :

The third axiom presents the robustness condition which can also be seen as

an independence axiom. It is borrowed from Fleurbaey and Maniquet (1996).

Say an allocation zN is socially preferred to another allocation z
0
N . The Respon-

siveness condition ensures that social preference is preserved if better sets of all

the individuals shrink for the "better" allocation and they shrink for the "worse"

allocation.

De�nition 3. Responsiveness (R): Let E = (N;A;
; R) 2 E and E 0 =

(N;A;
; R0) 2 E be given. Let zN ; z0N 2 Z(E). Let B(R0i; zi) � B(Ri; zi) and

B(R0i; z
0
i) � B(Ri; z

0
i) for all i 2 N , then fzNR(E)z0Ng ) fzNR(E 0)z0Ng and

fzNP(E)z0Ng ) fzNP(E 0)z0Ng
6See Theorem 2.1. Fleurbaey and Maniquet (2011).
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1.3. The Results

Before stating our results, we will formally de�ne Certainty Equivalent Welfare

Ordering. For each Ri 2 R and for each zi 2 RS+, there is a unique level of

c(Ri; zi) 2 R+ such that ziIic(Ri; zi)1s where 1s = (1; :::; 1) 2 RS+. Certainty

equivalent welfare level of individual i with preference pro�le R at zi is denoted

by c(Ri; zi). A social ordering is in the form of certainty equivalent maximin,

if the ordering of two social allocations are obtained according to the maximin

ordering of certainty equivalent welfare levels. That is, for any R 2 RN and for

any zN ; z
0
N 2 (RS+)N

min
i2N

c(Ri; zi) > min
i2N

c(Ri; z
0
i) =) zNP(E)z

0
N

Leximin ordering is the eminent example of the maximin ordering. Let%lexdenote

the usual leximin ordering7 on (RS+)N . Certainty Equivalent Welfare Leximin Or-

dering RL ranks the vectors of certainty equivalent welfare levels by applying

leximin ordering. For any R 2 RN and for any zN ; z
0
N 2 (RS+)N

zNR
L(E)z0N () (c(Ri; zi))i2N %lex (c(Ri; z0i))i2N

7For two vectors uN ; vN 2 RN+ , we have uN %lex vN if the smallest component of uN is larger
than vN . If they are equal the next smallest component is compared, and so on.
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Before going into our characterization theorem, we will state two lemmas. It is

important to note that Unanimous Indi�erence is a fairly minimal condition of

e�ciency. The next two lemmas show that stronger e�ciency criteria, such as

Unanimous Preference and Unanimous Strict Preference, could be obtained by

adding Responsiveness and Aversion to the Attendant Gains conditions.

De�nition 4. Unanimous Preference (UP): Let E = (N;S;
; R) 2 E be given.

Let zN ; z
0
N 2 Z(E). If ziRiz0i, for all i 2 N , then zNR(E)z0N .

De�nition 5. Unanimous Strict Preference (USP): Let E = (N;S;
; R) 2 E

be given. Let zN ; z
0
N 2 Z(E). If ziPiz0i, for all i 2 N , then zNP(E)z0N :

The following results are mostly adapted from Maniquet and Sprumont (2004).

Lemma 6. If a social ordering satis�es Unanimous Indi�erence and Respon-

siveness, then it satis�es Unanimous Preference.

Proof. Suppose R satis�es Unanimous Indi�erence and Responsiveness. To get

a contradiction, assume that R fails Unanimous Preference. That is, there exist

R 2 RN and two social allocations z1N ; z
2
N 2 Z(E) with z1NP(E)z

2
N and there
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exists M � N such that z2i Piz
1
i ; for all i 2 M and z2j Ijz

1
j ; for all j 2 NnM .

Without loss of generality assume that M = fig:8

As shown in Figure 1.2, choose z3i such that z
3
i Iiz

1
i and y

3
i > y

1
i ; y

2
i . Let C be the

convex hull of f(xi; yi) 2 B(Ri; z1i ) j y1i � y3i g[B(Ri; z2i ) and let @C = f(xi; yi) 2 C

j ((x0i; y0i) = (xi; yi), for all (xi; yi) 2 C such that x0i � xi and y0i � yig. So, there

exists z4i 2 @C such that z4i Iiz2i : By Unanimous Indi�erence, (z3i ; z1�i)P(E)(z4i ; z2�i).

Now we can construct R0i 2 < such that B(R0i; z
3
i ) = C. By continuity and

strict monotonicity of the preferences there exists z4i 2 @C such that z4i I
0
iz
3
i .

Since B(R0i; z
3
i ) � B(Ri; z3i ) and B(R0i; z4i ) � B(Ri; z4i ), by Responsiveness we get

(z3i ; z
1
�i)P(E

0)(z4i ; z
2
�i), which contradicts with the Unanimous Indi�erence.

�

Lemma 7. If a social ordering satis�es Unanimous Preference and Aversion

to the Attendant Gains, then it satis�es Unanimous Strict Preference.

Proof. Suppose R satis�es Unanimous Preference and Aversion to the Attendant

Gains. To get a contradiction, assume that R fails Unanimous Strict Prefer-

ence. That is, there exist R 2 RN and two social allocations zN ; ~zN 2 Z(E) with

zNR(E)~zN such that ~ziPizi for all i 2 N . Without loss of generality, assume that

8For jM j � 2; construct a sequence of fz(t)gt=jN jt=0 where zj(t) = z
2
j for j � t and z1j otherwise.

Because R is transitive, there exists some t 2 f1; :::; jN jg such that z(t� 1)P(R)z(t).
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Figure 1.2. UI and R implies UP.

c(R1; z1) � c(Ri; zi); for all i 2 N: Therefore c(R1; ~z1) � c(Ri; zi); for all i 2 N: As

shown in Figure 1.3, we can choose ẑ1 = (x̂1; �y) and ẑ2 = (x̂2; �y).

Then there exists � > 0 such that x̂2+� � y � x̂1�� and (x̂1; y)P1(x̂1��; y)

and (x̂2 +�; y)P2(x̂2; y).

By Aversion to the Attendant Gains, ((x̂1��; y); (x̂2+�; y); z�12)P(E)((x̂1; y); (x̂2; y); z�12).

By Unanimous Indi�erence, ((x̂1; y); (~x2; y); z�12)I(E)(~z1; z2; z�12).

And by Unanimous Preference (~z1; z2; z�12)R(E)(z1; z2; z�12).

Since zNR(E)~zN we get ((x̂1��; y); (x̂2+�; y); z�12)P(E)(~z1; ~z2; ~z�12); which

contradicts with the Unanimous Preference. �



14

Figure 1.3. UR and AAG implies USP.

The previous two lemmas show that social preferences follow, not only for in-

di�erence of individual preferences, but also follow for weak and strict preferences.

Now we are ready to state our main characterization theorem.

Theorem 8. The Certainty Equivalent Leximin ordering RL satis�es Unani-

mous Indi�erence, Responsiveness and Aversion to Attendant Gains. Conversely,

every social ordering R satisfying Unanimous Indi�erence, Responsiveness and

Aversion to Attendant Gains is in the form of certainty equivalent maximin.

Proof. First we will show that Certainty Equivalent Leximin ordering RL satis�es

Unanimous Indi�erence, Responsiveness and Aversion to the Attendant Gains.
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Let R 2 RN and zN ;z
0
N 2 Z(E) such that ziIiz0i for all i 2 N . So c(Ri; zi) =

c(Ri; z
0
i) for all i 2 N . Therefore zNI(E)z0N . So Unanimious Indi�erence holds.

To show that Responsiveness is satis�ed assume that zNR(E)z
0
N withB(R

0
i; zi) �

B(Ri; zi) and B(R
0
i; z

0
i) � B(Ri; z

0
i) for all i 2 N . Then c(R0i; zi) � c(Ri; zi) and

c(R0i; z
0
i) � c(Ri; z0i); for all i 2 N: So zNR(E 0)z0N . Hence Responsiveness holds.

And to check Aversion to the Attendant Gains, let i; j 2 N and assume that

zi = (xi; y) ; zj = (xj; y) where xi > y and xj < y and xj < x
0
j = xj + � � y �

xi �� = x0i < xi. Further assume that z�ij = z0�ij.

Then c(Ri; (x
0
i; y)) < c(Ri; zi) and c(Rj; (x

0
j; y)) > c(Rj; zj)

So (c(Ri; z
0
i))i2N %lex (c(Ri; zi))i2N which implies z0P(E)z. Thus Aversion to

the Attendant Gains holds as well.

Now we will prove that a social ordering satisfying Unanimous Indi�erence,

Responsiveness and Aversion to the Attendant Gains has to be in the form of

certainty equivalent maximin.

To get a contradiction, suppose that there exists R 2 RN and zN ;z
0
N 2 Z(E)

such that min
i2N

c(Ri; zi) < min
i2N

c(Ri; z
0
i) yet zNR(E)z

0
N .

So c(Ri; zi) � min
k2N

c(Rk; z
0
k) � c(Rj; zj) for all i 2M and for all j 2 NnM .

Since zNR(E)z
0
N we have jM j > 0: And we have jM j < jN j as jM j = jN j

contradicts with the Unanimous Strict Preference. Take jM 0j = jM j + 1 and

construct R0 2 RN such that c(R0i; qi) < min
k2N

c(R0k; qk) � c(R0j; qj) for all i 2 M

and for all j 2 NnM 0 and qNR(E)q
0
N :
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By repeating this construction jN j � jM j times, we get a contradiction with

the Unanimous Strict Preference.

Without loss of generality, we will take 1 2 M; 2 2 NnM and assume that

c(R1; z1) < c(R2; z
0
2) = min

k2N
c(Rk; z

0
k) < c(R1; z

0
1) < c(R2; z2).

Figure 1.4. UI, R, and AAG forces CE Maximin ordering

So ((c1; c1); (c2; c2); z�12)R(E)((c
0
1; c

0
1); (c

0
2; c

0
2); z

0
�12): As shown in Figure 1.4, by

continuity and strict monotonicity, there exists " > 0 such that x1(") < c2� " and

x2(") > c2 � " which ensures (x1("); c2 � ")I1(c1; c1) and (x2("); c2 � ")I2(c2; c2)

and x1(") + x2(") < c2 � ". Then, there exist y0(") > y(") and x01(") < y0(")

and x02(") > y
0(") which implies (x01("); y

0("))I1(x1(") + x2(") + "� c2; c2 � ") and

(x02("); y
0("))I2(c

0
2; c

0
2) and c1 < y(") < y

0(") < c02
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Now, we will choose "0 > 0 small enough to ensure that (c2; c2)P2(x
0
2(") +

"0; y0(")): Construct a preferenceR02 2 R such thatB(R02; (c02; c02)) = B(R2; (c02; c02); (x02(")+

"0; y0("))I 02(c2 � "; c2 � "); (x2("); c2 � ")I 02(c2; c2):

Let R0i = Ri; for all i 2 Nnf2g and let q = ((x01(") + 2"
0; y0(")); (x02(") �

"0; y0(")); z�12:

qNP(E
0)((x01(") + y

0(")); (x02(") + "
0; y0(")); z�12)

I(E 0)((x1(") + x2(") + c2 � "; c2 � "); (c2 � "; c2 � "); z�12)

P(E 0)((x1("); c2 � "); (x2("); c2 � "); z�12)

I(E 0)((c1; c1); (c2; c2); z�12)

R(E 0)((c01; c
0
1); (c

0
2; c

0
2); z�12) = q0N by applying Aversion to Attendant Gains,

Unanimous Indi�erence, Aversion to Attendant Gains, Unanimous Indi�erence

and Responsiveness respectively.

Now, takeM 0 =M[f2g and repeat these steps until you get contradiction. �

1.4. Conclusion

In this chapter, we provide an axiomatic characterization of welfare egalitari-

anism de�ned by the certainty equivalence form. The equity condition formulated

by the Aversion to the Attendant Gains axiom, which is a fairly minimal condition

combined with Unanimous Indi�erence and Responsiveness, leads to an ordering

which gives absolute priority to the worse o�, that is, in�nite aversion to inequal-

ity. By making use of ordinal and noncomparable preferences, and providing social
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orderings for all the possible preference pro�les, this model is quite rich for policy

analysis which seeks to recommend second best allocations. For problems in which

the policy maker has imperfect information on the individuals who are bounded

by incentive constraints, the e�cient allocations might not be implementable. So-

cial welfare ordering de�ned in this chapter can give the second best allocations

by maximizing this ordering, subject to the relative constraints de�ned by that

particular problem, e.g. status quo, incentive constraints, etc. One can take any

other reference bundle than the certainty ray. For example in the standard model,

total endowment vector is meaningful with the fairness criterion like equal-split.

Certainty Equivalent Leximin ordering de�ned in this chapter can also be seen

as a contribution to the welfarist approach. It di�ers from the classical character-

izations which are de�ned for cardinal and comparable preferences. Those models

de�ne indices of the welfare exogenously. On the other hand, Certainty Equivalent

Leximin ordering utilizes ordinal and noncomparable preferences and de�nes the

welfare by a fairness condition speci�c to the model itself.

There are various resource equality axioms in the fair allocations literature such

as Equal Split Transfer, Proportional Allocations Transfer, Equal Split Allocation,

Transfer among Equals, and Nested Contour Transfer. One can clearly see that

Certainty Equivalent Leximin Ordering satis�es all of these axioms. One axiom



19

stands out here in the state contingent endowment framework: Proportional Al-

locations transfer in which proportionality is de�ned on the certainty ray. This

axiom is clearly weaker than the Aversion to the Attendant Gains axiom. It is

an interesting problem to study other robustness conditions weaker than Respon-

siveness, so that it forces social ordering to be in maximin form combined with

Unanimous Indi�erence and Proportional Allocations transfer.

Here we studied the full domain of preferences. In decision theory, it is very

practical to restrict the domain to additively separable preferences, i.e. expected

utility consistent preferences. Moreover in this restricted domain the certainty

equivalence becomes a stronger benchmark as all redistributions of wealth even

the risky transfers satisfy Pareto e�ciency. However Responsiveness axiom loses

much of its bite in this domain because knowing indi�erence curves of expected

utility maximizers does not provide much information for the rest of the indi�erence

map. One can conjecture that by introducing stronger Responsiveness condition

or introducing another transfer axiom, i.e. certainty transfer, one can extend our

characterization to this restricted domain, as shown in Fleurbaey and Maniquet

(2011) with a di�erent set of axioms.

Social ordering in the leximin form can be seen as strongly egalitarian, i.e.

giving absolute priority to the worse o�. There are other social ordering functions

in the literature relaxing this strong form of egalitarianism. One example is the
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Nash-product social welfare function instead of the leximin criterion. This so-

cial ordering satis�es Pareto in the strong sense and the Proportional Allocations

Transfer, but not the rest of the aforementioned transfer axioms. For future re-

search, one can study possible characterization of Nash-product maximin ordering

with appropriate robustness conditions.



CHAPTER 2

Proportional Allocation Rules under Uncertainty

2.1. Introduction

Rationing problem is arguably the simplest model of the distributive justice.

The problem involves a resource to be divided among a number of agents who

submit claims for the resource. Rationing is required when the sum of the claims

is larger than the resource, with typical examples being bankruptcy, taxation,

inheritance, etc. Perhaps the problem of rationing is as old as the history of

civilization itself; and one can �nd documentation of such problems in ancient

texts such as Talmud, Aristotle's books, etc. The very �rst formal analysis to the

rationing problem was presented by O'Neill (1982) where he interprets the resource

as "inheritance". Aumann and Maschler (1985) provides a rule from Talmud in

the "bankruptcy" context. Young (1987a) characterizes a class of parametric rules

in the "taxation" problem.

The problem of rationing concerns more of ethical or normative issues since

market or traditional institutions can not convincingly provide a way out. For

this reason adopting axiomatic approach has been the focus of the literature on

rationing. Probably the most natural rule in this context arises from Aristotle's

21
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maxim, "Equals should be treated equally, and unequals unequally, in proportion

to relevant similarities and di�erences" from Nicomachean Ethics. Proportional

rule gives shares in proportion to claims. There are various normative treatments

of the proportional rule, such as O'Neill (1982), Moulin (1987b), Chun (1988),

Young (1988), and Ju et al. (2007), etc. Two other rules central in the literature

exhibit some form of egalitarianism. Uniform Gains rule equalizes the shares such

as the shares do not exceed the claims. And Uniform Losses rule equalizes the

losses (di�erence between claim and share) as much as possible. One can refer

to some axiomatic characterizations of egalitarian rules in Dagan (1996), Herrero

and Villar (2001), Sprumont (1991), etc. Furthermore Young (1987b) introduced

another interesting family of rules called the "equal sacri�ce" rules. One can see

Moulin (2002) and Thomson (2003) for a survey of axiomatic characterization of

the rationing rules.

We consider the rationing problems where the claims are state contingent. In

stage one, each agent submits a claim for every possible state of the world. The

realization of state happens in stage two. A rule must distribute the resources

in the stage one i.e., before the realization of the state of the world. Such a

situation may arise, for instance, in the allocation of �scal budget of a country.

Di�erent departments of the government may require di�erent amounts based on

the state of the world to be realized in the coming �scal year. For example, the

Department of Defense may have di�erent requirements depending on its relations
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with the neighbouring countries in the following year. Department of Agriculture

have requirements based on factors like the rainfall in the following year. The

Department of Health may have requirements that depend on factors like incidence

of epidemic, weather, etc. However, the federal budget must be allocated at the

beginning of the �scal year. Another example of our setting is the distribution of

research funds (or travel grants) among the graduate students of a department in a

university who expect travels or research expenses based on the state of the world

(e.g., expenses based on the results of her research, travels based on the conferences

accepting her paper, etc.). A situation like our setting also arises in the allocation

of university funds among di�erent departments based on their performance/need,

or NSF funds to researchers from various universities, etc.

This natural framework of rationing problem has not been given much consid-

eration in the literature. A fairly close setting called multi-issue allocations (MIA),

introduced in Calleja et al. (2005), has been studied in the literature. Berganti~nos

et al. (2011), and Lorenzo et al. (2009) provide several axiomatic characteriza-

tions of Uniform Gains and Uniform Losses rules in MIA whereas Moreno-Ternero

(2009), and Berganti~nos et al. (2010) provide axiomatic characterizations of Pro-

portional rule in MIA. The MIA framework does not consider uncertainty. A

similar framework to ours that considers uncertainty has been studied by Habis

and Herings (2013). They are interested in checking the stability1 of the stochas-
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tic extensions of various rationing rules and show that the only stable rule is the

stochastic extension of the Uniform Gains.

In our two-stage framework where the agents submit their claims in the �rst

stage and uncertainty is resolved in the second stage, the resource must be allocated

in the �rst stage. Two particularly natural approaches in such situations arise. The

�rst one is to apply a rationing rule on the expectation of the claims, which we

call ex-ante rationing rule. The other approach is to consider the expectation of

the allocations (by a rule) corresponding to the various state contingent claims,

which we call ex-post rationing rule. In this chapter, we will focus our attention to

proportional rules and characterize both ex-ante and ex-post proportional rules.

Our axiomatic characterizations are based on No Advantageous Reallocation axiom

introduced by Moulin (1985). This axiom states that no group of agents can

bene�t from reallocating their claims amongst them. We extend this concept to

our state contingent framework and introduce two nonmanipulability conditions.

The �rst extension which we call No Advantageous Reallocation across Individuals

(NARAI ) requires that no group of agents bene�ts if transfers are allowed within

a state. The next extension considers transfers across states which we call No

Advantageous Reallocation across States (NARAS ). We also use the axioms of

Anonymity (AN ), Symmetry (SYM ), Continuity (CONT ), No Award for Null

1They used a notion that they call "Weak Sequential Core" as the stability criterion.
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(NAN ), and Independence (IND). AN says that the rule should not distinguish

based on the names of the agents and SYM requires that the names of the states

do not matter. CONT states that the rule should be a continuous function in

its arguments and NAN says that agents with zero claims in all states should be

allocated zero amount. IND says that if we mix two lotteries2 with a third one,

then the allocation rule associated with these two mixed lotteries does not depend

on the third lottery used. We show that ex-ante proportional rule is the only

rule satisfying AN, SYM, CONT, NAN, NARAI, and NARAS whereas ex-post

proportional rule is characterized by AN, SYM, CONT, NAN, NARAI, and IND.

Another interesting aspect of this problem is to compare the shares allocated

by the ex-ante and ex-post proportional rules. In the appendix, we do the compar-

ison for the ex-ante and ex-post allocations by the proportional rules for various

distributions of claims and �nd su�cient conditions under which a particular agent

will be favoured by one approach compared to the other. Section 2 provides the

preliminaries. Section 3 gives the characterization results, and section 4 concludes

with some directions for future research.

2By lottery we mean probability distribution over states of the world to be realized in the stage
two.
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2.2. Preliminaries

In the state contingent claims' framework, a rationing problem is a tuple

(N;S; x; p; t) where N is a �nite set of agents and S is a �nite set of the states

of the world.3 The state contingent claim matrix x 2 RN�S+ represents the claims

of agents in various states, where xis denotes the claim of agent i in state s. The

probabilities of states is denoted by p 2 �jSj and t � 0 is the resource to be shared

among the agents.4 It is assumed that
P
i2N

xis� t for all s 2 S. Throughout the

chapter, we consider a �xed population N and a �xed set S of states. For the

sake of brevity, we denote our problem (x; p; t). A nonempty set of problems is

called a domain and is denoted by D.5 A rationing rule ' : D ! RN+ gives a vector

of shares such that
P
i2N

'i(x; p; t) = t. We restrict our attention to rich domains

which is de�ned as follows:

De�nition 9. A domain D is rich if for all x; x0 2 RN�S+ for all p 2 �jSj for

all t � 0 with xNs = x0Ns6 for all s 2 S, then f(x; p; t) 2 D )(x0; p; t) 2 Dg.

3The standard rationing problem is de�ned as (N;x; t) where N is a �nite set of agents, x is
a claim vector x = (xi)i2N � 0 and t � 0 is the resource to be shared among the agents. A
rationing rule ', assigns a vector of shares '(N;x; t) 2 RN+ to every rationing problem such thatP
i2N

'i(N;x; t) = t.

4�jSj denotes an jSj dimensional simplex.
5More precisely this is a restricted domain of problems where N and S are �xed so a better
notation would be D(N;S): However, for notational simplicity we use D since it does not raise
any confusion.
6We use the notation xTs :=

P
i2T (xis), where T � N:
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Now we will de�ne two rationing rules which involve proportionality idea. Since

our rules are based on proportionality idea, let us recall the standard proportional

rule when there is only one (certain) state of the world s, i.e., S = fsg.

The proportional rule is de�ned as

pri(x; p; t) =
xis
xNs

t for all i 2 N

Ex-ante proportional rule is de�ned as applying proportional rule to the expec-

tation of the state contingent claims.

pri(x; p; t) := pri (Ep [x] ; t) =

P
s2S
(psxis)P

j2N

P
s2S
(psxjs)

t =

P
s2S
(psxis)P

s2S
(psxNs)

t for all i 2 N

Ex-post proportional rule is de�ned as expectation of the shares found by the

proportional rule on the state contingent claims.

epri(x; p; t) := Ep [pri (x; t)] =X
s2S

�
ps
xis
xNs

�
t for all i 2 N

The illustration of the ex-ante and ex-post proportional rules for a simple econ-

omy with two people and two states is presented in Figure 2.1.

As it is shown in the Figure 2.1, the ex-ante and ex-post proportional rules do

not necessarily coincide. For jN j = 2, aforementioned rules give identical shares
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Figure 2.1. Ex-ante vs Ex-Post Proportional Rule (for p1 = p2 =
1
2
)

when the sum of the claims is equal for each state (Figure 2.2) or the ratio of the

claims for each state is equal (Figure 2.3). The di�erence of the shares for the

ex-ante and ex-post proportional rules for general economy with �nite number of

people and states are given in the Appendix.

2.3. Characterizations

Now by using natural axioms we will characterize the rules we introduced above.

Continuity (CONT): For all (x; p; t) 2 D and for all sequences (xk; pk; tk) 2 D,

if (xk; pk; tk)! (x; p; t), then '(xk; pk; tk)! '(x; p; t).
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Figure 2.2. The sum of the claims for each state is equal: xN1 = xN2

Figure 2.3. The ratio of the claims for each state is equal: x11
x21
= x12

x22

Continuity tells us that small changes in the parameters of the problem do not

bring big jumps in the allocations. Continuity is desirable because we do not want

small errors (e.g., measurement errors) to lead to big changes in the allocations.
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Anonymity (AN): For all (x; p; t) 2 D, for all permutations � : N ! N; and

for all i 2 N , 'i(x; p; t) = '�(i)(x�; p; t); where x� = (x�(1); x�(2); :::x�(jN j)):

Anonymity says that the names of the agents do not matter. This is very

natural axiom and is central to the literature on fairness.

Symmetry (SYM): For all (x; p; t) 2 D, for all permutations � : S ! S; and

for all i 2 N , 'i(x; p; t) = 'i(x�; p�; t); where p� = (p�(1); p�(2); :::; p�(jSj)) and

x� = (x�(1); x�(2); :::; x�(jSj)):

Symmetry is similar to the the Anonymity axiom with the role of agents sub-

stituted by states. It says that the names of the states do not matter.

No Award for Null (NAN): For all (x; p; t) 2 D and for all i 2 N , if xis = 0 for

all s 2 S, then 'i(x; p; t) = 0.

No Award for Null axiom says that an agent with zero claim for each state

should get zero share. This axiom is also called dummy axiom in the literature.

Moulin (1985) de�ned Non-Advantageous Reallocation axiom to characterize

the egalitarian and utilitarian solutions in quasi-linear social choice problems.
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We will de�ne two axioms on invariance to reallocation in a similar manner

where transfers are made either across individuals or across states.

Non-advantageous Reallocation across Individuals (NARAI): For all (x; p; t); (x0; p; t) 2

D and for all i 2 N , if
P

j2Nnfig
xjs =

P
j2Nnfig

x0js and xis = x
0
is for all s 2 S, then

'i(x; p; t) = 'i(x
0; p; t).

NARAI states that the share of agent i depends on the sum of the total claim

of the agents other than him. In other words, individuals other than i cannot

a�ect the share of i by reallocating their claims among themselves, i.e. the share

of individual i is a function of xi; xNni; p; and t:

Non-advantageous Reallocation across States (NARAS): For all (x; p; t); (x0; p; t) 2

D and for all i 2 N , if
P
s2S
(psxis) =

P
s2S
(psx

0
is) and xjs = x

0
js for all j 2 Nnfig and

for all s 2 S, then 'j(x; p; t) = 'j(x0; p; t) for all j 2 Nnfig.

NARAS implies that if agent i reallocates his claim across all the states given

his expected claim is constant then the share of the other individuals would not

change.

Now we will characterize the class of sharing rules satisfying NARAI, Anonymity,

and Continuity.
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Theorem 10. Let jN j � 3. Let (x; p; t) and (x0; p; t) 2 D. A sharing rule '

satis�es NARAI, AN, and CONT if there exists a continuousWs : RS��jSj�R+ !

R for all s 2 S such that for all i 2 N we have

(2.1) 'i(x; p; t) =
t

jN j +
X
s2S

��
xis �

xNs
jN j

�
Ws(xN ; p; t)

�

And conversely every rule satisfying NARAI, AN, and CONT must be in the form

of [2.1].

Proof. The �rst statement is obvious. We will prove the second statement. Let

(x; p; t) 2 D: Let ' be a rationing rule satisfying NARAI, AN, and CONT.

Let x0 = (x1 + x2; 0; x3; :::). Apply NARAI for the coalition f1; 2g, we get

(2.2) '1(x; p; t) + '2(x; p; t) = '1(x
0; p; t) + '2(x

0; p; t):

Let x
00
= (x1; xNnf1g; 0; 0; :::). Now we'll apply NARAI for the coalition Nnf1g:

This implies

(2.3) 'Nnf1g(x; p; t) = 'Nnf1g(x
00
; p; t):

Thus we have t�'Nnf1g(x; p; t) = '1(x; p; t) = '1(x
00
; p; t) = t�'Nnf1g(x

00
; p; t).

'2(x; p; t) = '1(x2; xNnf2g; 0; :::; 0; p; t) by [2.3] and AN.

'1(x
0; p; t) = '1(x1 + x2; xNnf1;2g; 0; :::; 0; p; t) by [2.3].

'2(x
0; p; t) = '1(0; xN ; 0; :::; 0; p; t) by [2.3] and AN.

Let us plug these back into [2.2].
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'1(x1; xNnf1g; 0; :::; 0; p; t)+'1(x2; xNnf2g; 0; :::; 0; p; t) = '1(x1+x2; xNnf1;2g; 0; :::; 0; p; t)+

'1(0; xN ; 0; :::; 0; p; t)

Let us de�ne f : RS � RS ��jSj � R+ ! R such that

f(xi; xN ; p; t) = '1(xi; xNnfig; 0; :::; 0; p; t)� '1(0; xN ; 0; :::; 0; p; t)

and de�ne g : RS��jSj�R+ ! R such that g(xN ; p; t) = '1(0; xN ; 0; :::; 0; p; t).

Thus we get

f(x1; xN ; p; t) + f(x2; xN ; p; t) = f(x1 + x2; xN ; p; t):

f is additive in the �rst term and by de�nition, f is continuous (' is con-

tinuous). Fix (xN ; p; t). So by invoking Eichhorn (1978) - Cor 3.1.9, p.51, we

deduce that f is linear in the �rst term, that is, there exists a continuous W :

RS ��jSj � R+ ! RS such that

f(xi; xN ; p; t) =
P
s2S
[Ws(xN ; p; t)xis] :

So 'i(x; p; t) =
P
s2S
[(Ws(xN ; p; t)xis)] + g(xN ; p; t):

Summing over i 2 N we getP
i2N

'i(x; p; t) =
P
s2S
[(Ws(xN ; p; t)xNs)] + jN jg(xN ; p; t) = t.

So g(xN ; p; t) =
t�
P
s2S

[(Ws(xN ;p;t)xNs)]

jN j .

Hence we get the desired functional form.

'i(x; p; t) =
t
jN j +

P
s2S

h�
xis � xNs

jN j

�
Ws(xN ; p; t)

i
for all i 2 N . �

Example 11. Note that proportional and egalitarian rules are members of the

family of the rules characterized in the previous theorem.
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� We have equal split rule, 'i(x; p; t) = t
jN j when Ws(xN ; p; t) = 0.

� Ws(xN ; p; t) satisfying
P
s2S
[Ws(xN ; p; t)xNs] = t gives the family of propor-

tional rules, e.g. 'i(x; p; t) =
P
s2S
[Ws(xN ; p; t)xis].

� If the weight functions are uniform with respect to states, that is,Ws(xN ; p; t) =

tP
s2S

xNs
for all s then 'i(x; p; t) =

P
s2S

xisP
s2S

xNs
t.

� We have ex-ante proportional rule, 'i(x; p; t) =
P
s2S

(psxis)P
s2S

(psxNs)
t whenWs(xN ; p; t) =

pstP
s2S

(psxNs)
:

� We get ex-post proportional rule, 'i(x; p; t) =
P
s2S

�
ps

xis
xNs

�
t whenWs(xN ; p; t) =

pst
xNs
:

� The family contains nonsymmetric proportional rules with respect to states

as well, e.g. 'i(x; p; t) =
xi1
xN1
t when W1(xN ; p; t) =

t
xN1
;W2(xN ; p; t) =

W3(xN ; p; t) = ::: = 0 (all the weight is given to state 1).

Theorem 12. Let jN j � 3. A sharing rule ' satis�es NARAI, NARAS, AN,

SYM, CONT, and NAN if and only if ' is ex-ante proportional rule.

Proof. "If" part is obvious. We will prove the "only if" part. Let (x; p; t) 2

D: Let ' be a rationing rule satisfying NARAI, NARAS, AN, CONT, and NAN.

Given that ' satis�es the premises of Theorem 1, we have 'i(x; p; t) =
t
jN j +P

s2S

h�
xis � xNs

jN j

�
Ws(xN ; p; t)

i
. Fix i 2 N and let xis = 0 for all s 2 S. NAN
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implies that 'i(x; p; t) =
t
jN j +

P
s2S

h�
xis � xNs

jN j

�
Ws(xN ; p; t)

i
= 0. So we getP

s2S
[Ws(xN ; p; t)xNs] = t. Hence 'i(x; p; t) =

P
s2S
[(Ws(xN ; p; t)xis)].

Let
P
s2S
(psxis) =

P
s2S
(psx

0
is) and xjs = x

0
js for all j 2 Nnfig and for all s 2 S.

So we get

(2.4)
X
s2S

[ps (xis � x0is)] = 0 for all i 2 N:

By NARAS, we have 'i(x; p; t) = 'i(x
0; p; t) for all i 2 N . Then

(2.5)
X
s2S

[(Ws(xN ; p; t)xis)] =
X
s2S

[(Ws(x
0
N ; p; t)x

0
is)] for all i 2 N:

Fix j 2 Nnfig; by [2.5] we have
P
s2S
[(Ws(xN ; p; t)xjs)] =

P
s2S

��
Ws(x

0
N ; p; t)x

0
js

��
=P

s2S
[(Ws(x

0
N ; p; t)xjs)].

By the richness of D, we have Ws(xN ; p; t) = Ws(x
0
N ; p; t) for all s 2 S. By

using [2.5] we get

(2.6)
X
s2S

[Ws(xN ; p; t) (xis � x0is)] = 0 for all i 2 N:

By [2.4] and [2.6], we deduce that p and W are colinear. So for all s 2 S there

exists hs : RS � R+ ! R+ such that Ws(xN ; p; t) = hs(xN ; t)ps for all s 2 S. By

SYM, we have hs = ht for all t 2 Snfsg. So we can write it as h(xN ; t).
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Summing over i 2 N ,
P
i2N

P
s2S
[(Ws(xN ; p; t)xis)] =

P
i2N

P
s2S
[h(xN ; t)psxis] =

h(xN ; t)
P
s2S
(psxNs) = t:

So h(xN ; t) =
tP

s2S
(psxNs)

: And 'i(x; p; t) =
P
s2S
[h(xN ; t)psxis] =

P
s2S

(psxis)P
s2S

(psxNs)
t for all

i 2 N . �

Before characterizing ex-post proportional rule we will show that NARAS ax-

iom is not necessarily satis�ed by ex-post proportional rules. Here we provide an

example. Suppose that each agent can reallocate their claims across states, that

is, their expected claim is constant, e.g.
P
s2S
(psxis) = ci 2 R+. Let us �nd the

optimal strategy of agent i when all the other agents have a deterministic claim,

e.g. xjs = cj 2 R+ for all j 6= i and for all s 2 S.

max
P
s2S

�
ps

xis
xNs

�
s.t.

P
s2S
(psxis) = ci

xis � 0 for all s 2 S

L =
P
s2S

�
ps

xis
xNs

�
� �

�P
s2S
(psxis)� ci

�

FOC: @L
@xis

= ps
x(Nnfig)s
(xNs)

2 ��ps � 0 for all s 2 S

By symmetry, xis = xs > 0 for all i 2 N

So � = (n�1)xs
(nxs)

2 : Hence xs =
n�1
n2�
.
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P
s2S
(psxs) = ci =)

P
s2S

�
ps
n�1
n2�

�
= ci =) � = n�1

cin2
=) xs =

n�1
n2�

= n�1
n2 n�1

cin
2
= ci

We showed that there is a symmetric Nash equilibrium where every agent i

claims ci independent of states. Therefore a claim vector satisfying mean preserving

spread makes one worse o�. Hence NARAS is not satis�ed. Figure 2.4 below

illustrates this fact, i.e. agent 1 is weakly better o� having a deterministic claim

provided that agent 2 is having a deterministic claim.

Figure 2.4. Mean preserving spread makes agent 1 worse o�.

Now we will characterize ex-post proportional rule. The functional form of

ex-post proportional rule exhibits additively separable preferences with respect to

the states. Hence we are going to utilize a version of Expected Utility Theorem.

To arrive there we are going to utilize an independence axiom in the spirit of von

Neumann - Morgenstern.
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Independence (IND): For all (x; p; t); (x; q; t); (x; r; t) 2 D, for all i 2 N , and for

all � 2 (0; 1), we have 'i(x; p; t) � 'i(x; q; t) if and only if 'i(x; �p+ (1� �)r; t) �

'i(x; �q + (1� �)r; t).

Theorem 13. Let jN j � 3. A sharing rule ' satis�es NARAI, AN, SYM,

IND, CONT, and NAN if and only if ' is ex-post proportional rule.

Proof. "If" part is obvious. We will prove the "only if" part. Let (x; p; t) 2 D:

Let ' be a rationing rule satisfying NARAI, AN, SYM, IND, CONT, and NAN.

By Theorem 1 and NAN, we have

(2.7) 'i(x; p; t) =
X
s2S

[(Ws(xN ; p; t)xis)]

.

By CONT and IND we can invoke celebrated Expected Utility Characterization

of von Neumann and Morgenstern (1947) and deduce that 'i should be additively

separable with respect to probabilities. That is, for all x 2 RN�S for all p 2 �jSj for

all i 2 N and for all s 2 S there exists uis : RN�S � R+ ! R such that

(2.8) 'i(x; p; t) =
X
s2S

[psuis (x; t)]

.
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By [2.7] and [2.8] we deduce that for all s 2 S there exists vs : RS � R+ ! R

such that

(2.9) 'i(x; p; t) =
X
s2S

[psxisvs(xN ; t)]

Consider a degenerate lottery �s, that is, �x s 2 S and let ps = 1.

So 'i(x; �s; t) = xisvs(xN ; t).

Summing over i 2 N , we get
P
i2N

'i(x; �s; t) =
P
i2N

[xisvs(xN ; t)] = vs(xN ; t)xNs =

t. So vs(xN ; t) =
t

xNs
. Hence we get the ex-post proportional rule.

'i(x; p; t) =
P
s2S
[psxisvs(xN ; t)] =

P
s2S

�
ps

xis
xNs

�
t. �

2.4. Conclusion

We studied a resource allocation problem where the claims are state contingent.

We consider proportional rules and introduce two extensions of the proportional

rules in our framework { ex-ante and ex-post proportional rules. Applying the pro-

portional rule to the expected claim gives the ex-ante proportional rule. Ex-post

proportional rule is de�ned as the expectation of the shares given by the propor-

tional rule for various states. To characterize these rules we propose two extensions

of No Advantageous Reallocation (introduced by Moulin(1985)). The �rst exten-

sion, NARAI, requires that no group of agents bene�ts if transfers are allowed

across individuals for each state whereas the second extension, NARAS, consid-

ers transfers across states. We characterize ex-ante proportional rule by NARAI
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and NARAS combined with Anonymity, Symmetry, Continuity, and No Award

for Null. To characterize ex-post proportional rule, we introduce an Independence

axiom similar to Independence axiom used in Expected Utility Theory. This ax-

iom says that by mixing two lotteries with a third one, the allocation rule remains

una�ected by the choice of the third lottery. Replacing NARAS with the afore-

mentioned Independence axiom gives the characterization of ex-post proportional

rule.

This chapter leads us to two particularly important questions to be considered

in future research. The �rst question is to �nd interesting characterizations of the

extensions of other important rules, such as, Uniform Gains, Uniform Losses, etc.

It will also be interesting to extend our framework to situations like, (a) where

the resource itself is state contingent, (b) the individuals are taking subjective

probabilities, that is, the probabilities for the states are not uniform across the

individuals.

2.5. Appendix

Proposition 14. Let (x; p; t) 2 D be given.

pri(x; p; t)� epri(x; p; t) =
P
s2S

"
psxis

 
1� ps�

P
j2N

xjs
xis

P
r 6=s

prxir
xNr

!#
P
s2S
(psxNs)

t



41

Proof. De�ne �js =
xjs
xis
for all j 2 N and for all s 2 S.

So ex-ante proportional rule for agent i is given by

pri(x; p; t) =

P
s2S

(psxis)P
s2S

(psxNs)
t =

P
s2S

(psxis)P
s2S

(psxis�Ns)
t

And ex-post proportional rule for agent i is given by

epri(x; p; t) = P
s2S

�
ps

xis
xNs

�
t =

P
s2S

ps
�Ns
t

So the di�erence between ex-ante and ex-post proportional rule is

pri(x; p; t)� epri(x; p; t) = P
s2S

(psxis)P
s2S

(psxis�Ns)
t�

P
s2S

ps
�Ns
t =

=

P
s2S

(psxis)
Q
s2S

�Ns�
P
s2S

(psxis�Ns)
Q
s2S

�Ns
P
s2S

ps
�NsQ

s2S
�Ns

P
s2S

(psxis�Ns)
t =

=

Q
s2S

�Ns

" P
s2S

(psxis)�
P
s2S

[psxis�Ns]
P
s2S

ps
�Ns

#
Q
s2S

�Ns
P
s2S

(psxis�Ns)
t =

P
s2S
[(ps�p2s)xis]�

P
s2S

(psxis�Ns)
P
r 6=s

pr
�NrP

s2S
(psxis�Ns)

t =

P
s2S

"
psxis

 
1�ps�

P
j2N

�js
P
r 6=s

pr
�Nr

!#
P
s2S

(psxis�Ns)
t =

P
s2S

"
psxis

 
1�ps�

P
j2N

xjs
xis

P
r 6=s

prxir
xNr

!#
P
s2S

(psxNs)
t: �



CHAPTER 3

Voting Games of Resolute Social Choice Correspondences

3.1. Introduction

Gibbard (1973) and Satterthwaite (1975) establish a major di�culty in imple-

menting social choice rules by asking voters their preferences: Except for trivial or

particular cases, voters' incentives to misrepresent their preferences cannot be rule

out. The pretended preferences of voters lead to a social outcome which Hurwicz

and Sertel (1999) call the performance of the social choice rule. There is no a

priori reason to believe that the performance of a social choice rule coincides with

the social choice rule itself.1 Besides, the divergence between a social choice rule

and its performance manifests the di�erence between the aimed and reached social

outcome.

We aim to determine the performance of voting rules. This requires a modelling

of the preference declaration process in terms of a voting game whose equilibria are

computed. Such an analysis depends on the structure of the voting game, as well as

the assumed game-theoretic solution concept. Although alternative models exist, it

is quite common to conceive the voting game as a normal form preference pretension

1In fact, Otani and Sicilian (1982), Thomson (1984), Tadenuma and Thomson (1995), Sertel
and Sanver (1999), Sanver (2002, 2005), Sertel and Sanver (2004) exemplify cases of divergence
between a social choice rule and its performance, in a variety of environments.

42
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game where voters are allowed to pretend any logically possible preference while

the outcome is determined by applying the prevailing social choice rule to the

pretended preference pro�le. On the other hand, the choice of the game-theoretic

solution concept exhibits a broad variety.2

Our analysis is closely related to Sertel and Sanver (2004) who characterize

strong equilibrium outcomes of preference pretension games in terms of what they

call \(n; q)-Condorcet winners" - a concept which generalizes the usual notion of

a Condorcet winner. Although their environment covers a quite wide class of so-

cial choice rules, it is restricted to social choice functions where the outcome is

a single alternative at every preference pro�le. However, many interesting social

choice rules are social choice correspondences which allow sets of alternatives as

outcomes. These sets can be irresolute outcomes arising from the inevitability

of ties when both voters and alternatives are equally treated (see Moulin (1983))

but also resolute ones when the social choice problem is concerned with the de-

termination a list of mutually compatible alternatives, such as the members of a

committee. In the latter case, the social choice rule is called a resolute social choice

correspondence.3

We ask the extent to which the characterization results of Sertel and Sanver

(2004) subsume resolute social choice correspondences. In Section 2, we introduce

2For example, we see the use of Nash equilibrium by Farquharson (1969); dominance solvability
by Moulin (1979); coalition proof Nash equilibrium by Keiding and Peleg (2002); strong Nash
equilibrium by Sertel and Sanver (2004), Barbera and Coelho (2009).
3For a more detailed treatment of resolute social choice correspondences, one can see Ozyurt and
Sanver (2008) and Re�gen (2008).
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the model. Although we essentially borrow the model of Sertel and Sanver (2004),

our analysis handles the additional complication of determining individuals' pref-

erences over sets. In Section 3, we characterize strong equilibrium outcomes of

voting games induced by resolute social choice correspondences in terms of sets

which are (n; q)-Condorcet winners according to preferences over sets. Under very

mild axioms to extend a ranking over a set to its power set, our characteriza-

tions directly generalize those of Sertel and Sanver (2004). However, unlike their

counterpart in Sertel and Sanver (2004), they do not fully describe the strong

equilibrium outcomes we are after. For, the property of being an (n; q)-Condorcet

winner according to preferences over sets needs to be translated into a property

de�ned according to preferences over alternatives. We address this problem in

Section 4 and solve it by using the techniques introduced by Kaymak and Sanver

(2003) and further elaborated by Barbera and Coelho (2008), hence being able to

reach the characterization we are after. We conclude in Section 5.

3.2. The Model

3.2.1. Basic Concepts

Consider a society N = f1; :::; ng with n � 2, confronting a �nite set of alter-

natives A with #A = m � 2. Writing � for the set of complete, transitive and

antisymmetric binary relations over A, we interpret �i 2 � as the preference of
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individual i 2 N over A. We write ��i for the strict counterpart of �i.
4 A preference

pro�le over A is an n-tuple �N = (�1; :::; �n) 2 �N of individual preferences over A.

Throughout the chapter we �x some k 2 f1; :::;m� 1g and write Ak = fX � A :

#X = kg for the set of k�element subsets of A. A (resolute) social choice corre-

spondence (SCC) is a mapping F : �N ! Ak.

Let < be the set of re
exive and transitive binary relations over A = 2Anf;g

such that for any R 2 < and for any X; Y 2 A we have

(i) X R Y or Y R X whenever #X = #Y ;

(ii) � X R Y and � Y R X whenever #X 6= #Y .

So any two sets of equal cardinality are compared by R while sets of di�erent

cardinality are incomparable. The strict counterpart of R is denoted P . We

interpret Ri 2 < as the preference of i 2 N over A while RN = (R1;:::;Rn) 2 <N is

a preference pro�le over A. We assume that the preference of an individual over

A exhibits a consistency with his preference over A. This is expressed through an

extension map � which assigns to each � 2 � a non-empty subset �(�) of < such

that for every R 2 �(�) we have fxgRfyg () x � y 8x; y 2 A. The elements

of �(�) are interpreted as the preferences over A that are admissible under �.

Remark that �(�) \ �(�0) = ; for distinct �, �0 2 �. We consider extension maps

which satisfy the following Condition �: Let maxk(�) 2 Ak be the set consisting
4So for any x; y 2 A, we have x �� y i� x � y holds but y � x does not. As � is antisymmetric,
when x and y are distinct, we have either x �� y or y �� x.
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of the best k elements in A with respect to � 2 �, i.e., x�y holds 8x 2 maxk(�),

8y 2 An maxk(�). Given any � 2 � and any R 2 �(�), we have maxk(�) P Y

for all Y 2 Aknfmaxk(�)g. So Condition � requires the best k element set to be

preferred to any other k element set. From now on, we pick an extension map �

satisfying Condition � and use it throughout the chapter. By a slight abuse of

notation, we write �(�N) = fRN 2 <N : Ri 2 �(�i) for each i 2 Ng for the set of

preference pro�les over A that are admissible under �N 2 �N .

The �rst extension map we consider is a separability condition which Roth and

Sotomayor (1990) call \responsiveness".5 We call this the RS extension and de�ne

it as follows: For any � 2 � and any R 2 <, we have R 2 �(�) () X P Y

8X; Y 2 Ak with X = (Y nfyg) [ fxg for some y 2 Y and x 2 AnY satisfying x �

y.

The next extension map we consider is a modi�ed version of the extension map

introduced by Kelly (1977): We say that � is the Kelly extension i� given any

� 2 � and any R 2 < we have R 2 �(�) if and only if

(i) X P Y for all distinct X; Y 2 Ak with x �� y 8x 2 X, 8y 2 Y

and

(ii) maxk(�) P Y 8Y 2 Aknfmaxk(�)g.

5Nevertheless, Erdamar and Sanver (2008) argue for the inapropriateness of this axiom when sets
are non-resolute outcomes.
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Example 15. In order to illustrate our extension maps consider the preference

� = (a; b; c; d) where the leftmost alternative is preferred the most.

Based on the RS extension map for two-element sets the preferences over sets

that are consistent with � are

R1 = (fa; bg ; fa; cg ; fb; cg ; fa; dg ; fb; dg ; fc; dg)

and R2 = (fa; bg ; fa; cg ; fa; dg ; fb; cg ; fb; dg ; fc; dg).

Similarly, based on the Kelly extension map for the two-element sets the pref-

erences that are consistent with � are so that fa; bg is listed as the top preference

and the rest of the rankings can be anything.

We close this section by introducing a generalization of the concept of a Con-

dorcet winner, de�ned over elements of Ak. Given any q 2 f0; 1; :::; n + 1g; any

RN 2 <N and any X; Y 2 Ak, we say that X (n; q)�dominates Y (accord-

ing to RN) i� #fi 2 N : X Pi Y g � q. We write X D(RN ;n; q) Y when

X (n; q)�dominates Y . The set C(RN ;n; q) = fX 2 Ak : there exists no

Y 2 AknfXg with Y D(RN ;n; q) Xg contains the elements of Ak which are

undominated according to D(RN ;n; q) or simply the (n; q)�Condorcet winners at

RN . Our de�nition of an (n; q)�Condorcet winner generalizes the standard notion.

In particular, when n is even, letting �� = minfk 2 f0; 1; :::; ng : k > n � kg and

� = �� � 1; we have C(RN ; n; ��) as the set of weak Condorcet winners at RN

and C(RN ;n; �) as the set of strong Condorcet winners at RN . When n is odd,
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C(RN ; n; �
�) is the set of Condorcet winners at RN while the distinction between

\strong" and \weak" vanishes.

Remark that (n; q)�Condorcet winners are de�ned with respect to preference

pro�les over A. Following Kaymak and Sanver (2003), we extend the concept so

that it is de�ned with respect to preference pro�les over A. We say that X 2 Ak

is an (n; q)�Condorcet winner at �N 2 �N i� X 2 C(RN ;n; q) for some RN 2

�(�N). We call X 2 Ak a universal (n; q)�Condorcet winner at �N 2 �N i�

X 2 C(RN ;n; q) for all RN 2 �(�N). We denote the set of (n; q)�Condorcet

winners at �N as C(�N ;n; q) while C
�(�N ;n; q) stands for the set of universal

(n; q)�Condorcet winners at �N .6

3.2.2. Voting games

Pick some SCC F : �N ! Ak. At each �N 2 �N , take some RN 2 �(�N) and

consider the (normal form) voting game G(RN) = f(Si; Ri)gi2N where Si = �

is the strategy space of i 2 N while sN Ri s
0
N () F (sN) Ri F (s

0
N) holds for

all sN ; s
0
N 2 S =

Y
i2N

Si. We say that s = fsigi2N 2 S is a strong (Nash)

equilibrium of G(RN) i� given any K � N there exists no s0N = fs0igi2N 2 S with

s0j = sj for all j 2 NnK such that s0N Pi sN for each i 2 K. We denote the set of

6Qualifying X 2 Ak as a (universal) (n; q)�Condorcet winner at �N 2 �N is not informative
about the properties of X with respect to individual preferences at �N . We address this issue in
Section 4.
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strong equilibria of G(RN) as �[G(RN)]. Whenever sN 2 �[G(RN)], we call F (sN)

a strong equilibrium outcome of G(RN).

Let �F (�N) = fG(RN)gRN2�(�N ) be the class of voting games induced by F

at �N 2 �N . We say that X 2 Ak is a strong equilibrium outcome of F at

�N 2 �N i� X is a strong equilibrium outcome of some G 2 �F (�N). We call

X 2 Ak a universally strong equilibrium outcome of F at �N 2 �N i� X is a

strong equilibrium outcome of every G 2 �F (�N). We denote the set of strong

equilibrium outcomes of F at �N 2 �N as F�(�N) while F
�
� (�N) stands for the

universally strong equilibrium outcomes of F at �N 2 �N . Of course F�(�N); a

fortiori F �� (�N) may be empty.

Let D =
S
�2�
�(�) be the set of all admissible individual preferences over A

under the extension map �. We de�ne the function f : DN ! Ak which maps

every RN 2 DN to f(RN) = F (�N) where RN 2 �(�N). As �(�N) \ �(�0N) = ;

for distinct �N ; �
0
N 2 �N , f is well-de�ned. We call f the equivalent social choice

hyperfunction (SCH) of F .

When the SCH f : DN ! Ak is instituted as the social choice rule, at each

RN 2 DN , it induces a voting game �f (RN) = f(Si; Ri)gi2N where Si = D is

the strategy space of i 2 N while sN Ri s
0
N () f(sN) Ri f(s

0
N) holds for all

sN ; s
0
N 2 S =

Y
i2N

Si. We say that sN = fsigi2N 2 S is a strong (Nash)

equilibrium of �f (RN) i� given any K � N there exists no s0N = fs0igi2N 2 S

with s0j = sj for all j 2 NnK such that s0NPi sN for each i 2 K. We denote the

set of strong equilibria of �f (RN) as �[�f (RN)]. Whenever sN 2 �[�f (RN)], we
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call f(sN) a strong equilibrium outcome of �f (RN). Let f�(RN) be the (possibly

empty) set of strong equilibrium outcomes of �f (RN).

We are after characterizing the (universal) strong equilibrium outcomes of F ,

expressed through the correspondences F� and F
�
� . As the proposition below states,

these are related to the strong equilibrium outcomes of its equivalent SCH f ,

expressed through the correspondence f�.

Proposition 16. Given any �N 2 �N and any X 2 Ak, we have

(i) X 2 F�(�N)() X 2 f�(RN) for some RN 2 �(�N).

(ii) X 2 F �� (�N)() X 2 f�(RN) for all RN 2 �(�N).

Proof. Take any �N 2 �N and any X 2 Ak. We �rst prove (i). To show the

\if" part, let X 2 f�(RN) for some RN 2 �(�N). So there exists sN 2 DN with

sN 2 �(�f (RN)) and f(sN) = X. Let rN 2 �N be such that sN 2 �(rN). So

F (rN) = X. We consider G(RN) 2 �F (�N) and claim rN 2 �(G(RN)), hence

X 2 F�(�N). Suppose, for a contradiction, rN =2 �(G(RN)). So there exist K � N

and r0N 2 �N with r0j = rj for all j 2 NnK such that F (r0N) Pi F (rN) = X for each

i 2 K. Pick some s0N 2 DN with s0j = sj for all j 2 NnK while s0N 2 �(r0N). As

f(s0N) = F (r
0
N) and F (rN) = f(sN), we have f(s

0
N) Pi f(sN) for each i 2 K, hence

sN =2 �(�f (RN)), giving the desired contradiction. To show the \only if" part, let

X 2 F�(�N). So there exists rN 2 �N such that rN 2 �(G(RN)) for some G(RN) 2

�F (�N) while F (rN) = X. Take some sN 2 DN with sN 2 �(rN). So f(sN) = X.

We claim sN 2 �(�f (RN)), hence X 2 f�(RN) for some RN 2 �(�N): Suppose,



51

for a contradiction, sN =2 �(�f (RN)). So there exist K � N and s0N 2 DN with

s0j = sj for all j 2 NnK such that f(s0N) Pi f(sN) for each i 2 K. Pick some

r0N 2 �N with r0j = rj for all j 2 NnK while s0N 2 �(r0N). As f(s0N) = F (r0N) and

F (rN) = f(sN), we have F (r
0
N) Pi F (rN) for each i 2 K, hence rN =2 �(G(RN)),

giving the desired contradiction. This establishes (i).

We now prove (ii). To show the \if" part, let X 2 f�(RN) for every RN 2

�(�N). Now take any G(RN) 2 �F (�N). Consider sN 2 DN with sN 2 �(�f (RN))

and f(sN) = X. Take any rN 2 �N with sN 2 �(rN), hence F (rN) = X.

The arguments used in proving the \if" part of (i), mutatis mutandis, establish

rN 2 �(G(RN)), hence X 2 F �� (�N). To show the \only if" part, let X 2 F �� (�N).

Take any RN 2 �(�N). As X 2 F �� (�N), there exists rN 2 �N with F (rN) = X

such that rN 2 �(G(RN)) where G(RN) 2 �F (�N). Pick any sN 2 DN with

sN 2 �(rN), hence f(sN) = X. The arguments used in proving the \only if"

part of (i), mutatis mutandis, establish that sN 2 �(�f (RN)), hence X 2 f�(RN),

completing the proof. �

We devote the next section to characterizations of f�, F�, and F
�
� .

3.3. Characterizations

In characterizing strong equilibrium outcomes of F in terms of (n; q)�Condorcet

winners, the value that q gets depends on the power distribution that the equiv-

alent SCH f induces among coalitions. Following Moulin and Peleg (1982), Moulin
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(1983), Peleg (1984), and Ichiishi (1986), we express this power distribution through

the \e�ectivity" of a coalition. Given the SCH f : DN ! Ak, a coalition K � N

of individuals is �-e�ective for X 2 Ak i� for all RNnK 2 DNnK , there exists

RK 2 DK such that f(RK ; RNnK) = X. Let �+f (X) be the set of coalitions

which are � - e�ective for X under f . A coalition K � N of individuals is

weakly �-e�ective for X 2 Ak i� there exists Y 2 AknfXg such that for some

RNnK 2 DNnK with fY g = argmaxAk Ri for all i 2 NnK, there exists RK 2 DK

such that X = f(RK ; RNnK). Let �
�
f (X) be the set of coalitions which are weakly

�-e�ective for X under f . We de�ne b+f (X) = minf#KgK2�+f (X) if �
+
f (X) 6= ;

and b�f (X) = minf#KgK2��f (X) if �
�
f (x) 6= ;. So in case �+f (X) (resp., ��f (X)) is

non-empty, b+f (X) (resp., b
�
f (X)) is the cardinality of a minimal cardinality coali-

tion belonging to �+f (X) (resp., �
�
f (X)). By convention, we set b

+
f (X) = n + 1 if

�+f (X) = ; and b�f (X) = n+1 if �
�
f (X) = ;. Finally, let b+f = maxX2Ak b+f (X) and

b�f = minX2Ak b
�
f (X). Note that as �

+
f (X) � ��f (X) 8X 2 Ak holds by de�nition,

we have b�f � b+f .

We start by characterizing f�.
7 We say that f : DN ! Ak is anonymous i�

given any permutation p : N ! N of individuals and any (Ri)i2N 2 DN , we have

f((Ri)i2N) = f((Rp(i))i2N).

7By conceiving each set as an independent alternative, a SCH can be conceived as a resolute
social choice rule. Hence the environment of Sertel and Sanver (2004) includes the voting game
induced by f : DN ! Ak. As a result, Proposition 2, Proposition 3, and Proposition 4 below
indeed follow from their Theorem 4.3, Theorem 4.1, and Theorem 4.7 respectively.
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Proposition 17. If f : DN ! Ak is anonymous, then f�(RN) � C(RN ;n; b+f )

8RN 2 <N .

Proof. Let f : DN ! A be an arbitrary anonymous SCH. Take any RN 2 DN , any

X 2 f�(RN) and any Y 2 AknfXg. As X 2 f�(RN), there exists sN 2 �[�f (RN)]

with f(sN) = X. Thus, fi 2 N : Y Pi Xg =2 �+f (Y ). Moreover, as f is anonymous,

there exists an integer k such that �+f (Y ) = fK � N : #K � kg: Hence #fi 2

N : Y PiXg < b+f (Y ) � b+f , establishing the failure of Y D (RN ;n; b
+
f ) X, which

shows X 2 C (RN ;n; b+f ): �

We say that f : DN ! Ak is top-unanimous i� for any X 2 Ak and any RN

2 D with #fi 2 N : X Pi Y 8Y 2 AknfXgg = n, we have f(RN) = X.

Proposition 18. If f : DN ! Ak is top-unanimous, then C(RN ;n; b�F ) �

f�(RN) 8RN 2 <N .

Proof. Let f : DN ! A be an arbitrary top-unanimous SCH. Take any RN 2 DN

and any X 2 C(RN ;n; b�F ). Consider the game �f (RN) and pick some sN 2 DN

with X Pi Y 8Y 2 AknfXg, 8i 2 N . As f is top-unanimous, we have f(sN) = X.

We complete the proof by establishing sN 2 �[�f (RN)], hence X 2 f�(RN). Take

any Y 2 AknfXg. Since X 2 C(RN ;n; b
�
F ), we have #fi 2 N : Y Pi Xg <

b�F � b�F (Y ), which implies fi 2 N : Y Pi Xg =2 ��f (Y ). So there exists no
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s0N 2 DN with s0j = sj 8j 2 N n fi 2 N : Y Pi Xg while f(s0N) = Y; which shows

sN 2 �[�f (RN)]. �

We say that f : DN ! Ak is top-majoritarian i� for any X 2 Ak and any RN

2 D with #fi 2 N : X Pi Y 8Y 2 AknfXgg � ��, we have f(RN) = X. Top-

majoritarianism implies top-unanimity. Moreover, for a top-majoritarian SCH f ,

we have b�f = b+f = �� when n is odd and fb�f ; b+f g � f�; ��g when n is even.

These observations, together with Proposition 17 and Proposition 18, lead to the

following corollary:

Proposition 19. Let f : DN ! Ak be anonymous and top-majoritarian. For

any RN 2 <N , we have

(i) f�(RN) = C(RN ;n; �
�) if n is odd.

(ii) C(RN ;n; �) � f�(RN) � C(RN ;n; ��) if n is even.

We now characterize F� and F
�
� . A SCC F : �N ! Ak is anonymous i�

given any permutation p : N ! N of individuals and any (�i)i2N 2 �N , we have

F ((�i)i2N) = F ((�p(i))i2N). We �rst show that under anonymous SCCs, (universal)

equilibrium outcomes are sets that are (universal) (n; b+F )� Condorcet winners with

respect to preferences over sets.

Theorem 20. If F : �N ! Ak is anonymous, then F�(�N) � C(�N ;n; b
+
F )

and F �� (�N) � C�(�N ;n; b+F ) hold for every �N 2 �N .
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Proof. Let F : �N ! Ak be anonymous. Take any �N 2 �N : We �rst show

F�(�N) � C(�N ;n; b+F ). Take any X 2 F�(�N): By Proposition 16, there exists RN

2 �(�N) such that X 2 f�(RN). The anonymity of F implies the anonymity of

its equivalent SCH f : DN ! Ak. So by Proposition 17, X 2 C(RN ;n; b+f ), im-

plying X 2 C(�N ;n; b+F ). These arguments, mutatis mutandis, establish F �� (�N) �

C�(�N ;n; b
+
F ). �

A SCC F : �N ! Ak is top-unanimous i� given any X 2 Ak and any �N 2 �N

with maxk(�i) = X 8i 2 N , we have F (�N) = X. We now show that under top-

unanimous SCCs, sets that are (universal) (n; b�F )� Condorcet winners with respect

to preferences over sets are (universal) equilibrium outcomes.

Theorem 21. If F : �N ! Ak is top-unanimous, then C(�N ;n; b�F ) � F�(�N)

and C�(�N ;n; b
�
F ) � F �� (�N) hold for every �N 2 �N .

Proof. Let F : �N ! Ak be top-unanimous. Take any �N 2 �N : We �rst show

C(�N ;n; b
�
F ) � F�(�N). Take any X 2 C(�N ;n; b�F ). So X 2 C(RN ;n; b�F ) for

some RN 2 �(�N). Since the extension map � satis�es Condition �, the top-

unanimity of F implies the top-unanimity of its equivalent SCH f : DN ! Ak.

So by Proposition 18, X 2 f�(RN) and by Proposition 16, X 2 F�(�N). These

arguments, mutatis mutandis, establish C�(�N ;n; b
�
F ) � F �� (�N). �
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A SCC F : �N ! Ak is top-majoritarian i� given any X 2 Ak and any

�N 2 �N with #fi 2 N : maxk(�i) = Xg � ��; we have F (�N) = X. Under

top-majoritarian and anonymous SCCs, (universal) equilibrium outcomes coincide

with Condorcet winners in the usual sense, as we state and show below.

Theorem 22. Let F : �N ! Ak be anonymous and top-majoritarian. For any

�N 2 �N , we have

(i) F�(�N) = C(�N ;n; �
�) and F �� (�N) = C

�(�N ;n; �
�) if n is odd.

(ii) C(�N ;n; �) � F�(�N) � C(�N ;n; �
�) and C�(�N ;n; �) � F �� (�N) �

C�(�N ;n; �
�) if n is even.

Proof. Let F : �N ! Ak be anonymous and top-majoritarian. Take any �N 2

�N : We prove (i). Let n be odd. We �rst show F�(�N) = C(�N ;n; �
�). Take

any X 2 F�(�N). By Proposition 16, X 2 f�(RN) for some RN 2 �(�N) where

f : DN ! Ak is the equivalent SCH of F . The anonymity of F implies the

anonymity of f . Moreover, as F is top-majoritarian and � satis�es Condition

�, f is also top-majoritarian. So by Proposition 19, X 2 C(RN ;n; �
�), hence

X 2 C(�N ;n; ��). Now take any X 2 C(�N ;n; ��). So X 2 C(RN ;n; ��) for some

RN 2 �(�N). As f is anonymous and top-majoritarian, we have X 2 f�(RN) by

Proposition 19 and X 2 F�(�N) by Proposition 16. Thus, F�(�N) = C(�N ;n; ��).

These arguments, mutatis mutandis, establish F �� (�N) = C
�(�N ;n; �

�).

We now prove (ii). Let n be even. Recall that f is anonymous and top-

majoritarian. Take any X 2 C(�N ;n; �). So X 2 C(RN ;n; �) for some RN
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2 �(�N) and by Proposition 19, X 2 f�(RN), which, by Proposition 16, implies

X 2 F�(�N). Now take any X 2 F�(�N). By Proposition 16, X 2 f�(RN) for some

RN 2 �(�N) and by Proposition 19, X 2 C(RN ;n; ��), hence X 2 C(�N ;n; ��),

establishing C(�N ;n; �) � F�(�N) � C(�N ;n; �
�). These arguments, mutatis

mutandis, establish C�(�N ;n; �) � F �� (�N) � C�(�N ;n; ��). �

Theorems 20, 21, and 22 characterize F�(�N) and F
�
� (�N) in terms of sets

which are generalized Condorcet winners with respect to preferences over sets.

However, this is not informative about the properties of equilibrium outcomes with

respect to individual preferences over alternatives. We devote the next section to

a clari�cation of this issue.

3.4. Sets as generalized Condorcet winners

Let U�(X; �) = fY 2 Ak : Y P X 8R 2 �(�)g be the upper contour set of

X 2 Ak at � 2 � with respect to �. So U�(X; �) contains the k�element sets

which are ranked above X at every ranking of sets admissible under �. Note that

by Condition �, maxk(�) 2 U�(X; �) for all X 2 Aknfmaxk(�)g. Clearly, any

R 2 �(�) does not contradict U�, i.e., if R 2 �(�) then X R Y =) Y =2 U�(X; �)

8X; Y 2 Ak. On the other hand, not necessarily every R 2 < which does not

contradict U� is in �(�). We introduce a richness condition which ensures the

latter implication. We qualify � as rich i� given any � 2 � and any R 2 < with X
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R Y =) Y =2 U�(X; �) 8X;Y 2 Ak, we have R 2 �(�). Throughout this section,

we consider rich extension maps.8

Pick some q 2 f0; 1; :::; n+1g. At each �N 2 �N , we induce through U�(X; �),

a binary relation ��(�N ; q) over Ak as follows: Given any X; Y 2 Ak, we have Y

��(�N ; q) X () #fi 2 N : Y 2 U�(X; �i)g � q.

Proposition 23. Given any q 2 f0; 1; :::; n + 1g, any �N 2 �N and any X 2

Ak, we have

(i) X 2 C(�N ;n; q) () X is undominated with respect to ��(�N ; q).

(ii) X 2 C�(�N ;n; q) () X is dominant with respect to ��(�N ;n� q + 1).

Proof. Take any q 2 f0; 1; :::; n+ 1g, any �N 2 �N and any X 2 Ak.

We prove (i). To show the \if" part, let X be undominated with respect to

��(�N ; q). So for any Y 2 Ak we have #fi 2 N : Y 2 U�(X; �i)g < q. Pick

some RN 2 �(�N) such that for any i 2 N we have X Ri Y for all Y =2 U�(X; �i).

The existence of RN is ensured by the richness of �. By construction of RN , we

have #fi 2 N : Y Pi Xg < q for all Y 2 Ak. Thus X 2 C(RN ;n; q), which in

turn implies X 2 C(�N ;n; q). To show the \only if" part, suppose Y ��(�N ; q)

X for some Y 2 Ak, which implies #fi 2 N : Y 2 U�(X; �i)g � q. Hence,

X 2 C(RN ;n; q) fails for every RN 2 �(�N), establishing X =2 C(�N ;n; q).

We prove (ii). To show the \if" part, let X =2 C�(�N ;n; q). So there exists

Y 2 Ak such that #fi 2 N : Y Pi Xg � q for some RN 2 �(�N). Thus,

8Consider the preference relation given in the Example 15. Under RS extension, � is not rich
either R1 or R2 is not in �:
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#fi 2 N : X 2 U�(Y ; �i)g � n� q, implying the failure of X ��(�N ;n� q + 1) Y .

Hence, X is not dominant with respect to ��(�N ;n � q + 1). To show the \only

if" part, let X ��(�N ;n� q + 1) Y fail for some Y 2 AknfXg. So #fi 2 N : X 2

U�(Y ; �i)g < n � q + 1. Hence, there exists RN 2 �(�N) with #fi 2 N : Y Pi

Xg � q, which implies X =2 C�(�N ;n; q). �

Clearly, the structure of U�(X; �) and ��(�N ; q), hence of C
�(�N ;n; q) and

C(�N ;n; q) depends on the particularities of �. We consider two well-known ex-

tension maps. The �rst extension map we consider is a separability condition which

Roth and Sotomayor (1990) call \responsiveness".9 We call this the RS extension

and de�ne it as follows: For any � 2 � and any R 2 <, we have R 2 �(�) () X

P Y 8X; Y 2 Ak with X = (Y nfyg)[fxg for some y 2 Y and x 2 AnY satisfying

x � y. Note that the RS extension is rich.

Given any � 2 �, let, without loss of generality, X = fx1; :::; xkg and Y =

fy1; :::; ykg such that xj � xj+1 and yj � yj+1 for all j 2 f1; :::; k � 1g. Given any

� 2 �, we introduce the following componentwise dominance relation 
(�) over

Ak: For any X; Y 2 Ak, Y 
(�) X () yj � xj for all j 2 f1; :::; kg.

Proposition 24. Let � be the RS extension. For any � 2 � and any distinct

X; Y 2 Ak, we have Y 2 U�(X; �)() Y 
(�)X.

9Nevertheless, Erdamar and Sanver (2008) argue for the inapropriateness of this axiom when sets
are non-resolute outcomes.
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Proof. Let � be the RS extension. Take any � 2 � and any X; Y 2 Ak. To show

the \if" part let Y 
(�) X. Write, without loss of generality, X = fx1; x2; :::; xkg

and Y = fy1; y2; :::; ykg such that xj�xj+1 and yj�yj+1 for all j 2 f1; 2; :::; k � 1g.

Since Y 
(�) X, we have yj�xj for all j 2 f1; 2; :::; k � 1g. Let Z0 = Y , Zk = X,

and Zs = fx1; :::; xs; ys+1; ::; ykg for s 2 f1; 2; ::; k � 1g. As � is the RS extension,

for any R 2 �(�) we have ZtRZt+1 for each t 2 f0; 1; 2; ::; k � 1g and ZtPZt+1

for some t 2 f0; 1; 2; ::; k � 1g. Hence, by transitivity of every R 2 �(�), we have

Y 2 U�(X; �). To show the \only if" part, let Y 2 U�(X; �). Suppose, for a

contradiction, that Y 
(�) X fails. So xj�
�yj for some j 2 f1; 2; :::; kg. Note that

if the RS extension does not enforce a ranking between X and Y , then by richness

any ranking between X and Y is possible for some R 2 �(�). The RS extension

enforces Y PX for any R 2 �(�), by transitivity, only if there is a sequence of

sets fZtg such that Z0 = Y , Zn = X, Zt = (Zt�1nfzt�1g) [ fztg with zt�1�zt for

t 2 f1; 2; ::; ng: But since xj��yj we can not �nd such a sequence. Hence, we have

Y =2 U�(X; �). This is a contradiction. �

Proposition 24 establishes, under the RS extension, the relationship between


(�) and U�(: ; �). The general relationship between U�(X; �) and ��(�N ; q) is

given by de�nition. Hence we have the relationship between 
(�) and ��(�N ; q)

under the RS extension, which we state in the following proposition.
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Proposition 25. Let � be the RS extension. For any q 2 f0; 1; :::; n+1g, any

�N 2 �N , and any X 2 Ak we have

(i) X is undominated with respect to ��(�N ; q)() there exists no Y 2 AknfXg

with #fi 2 N : Y 
(�i)Xg � q.

(ii) X is dominant with respect to ��(�N ; q)() #fi 2 N : X
(�i)Y g � q for

any Y 2 AknfXg.

The three theorems below follow as a corollary to Theorems 20-22, Proposition

23, and Proposition 25.

Theorem 26. Let F : �N ! Ak be anonymous and � be the RS extension.

For any �N 2 �N and any X 2 Ak, we have

(i) X 2 F�(�N) =) there exists no Y 2 AknfXg with #fi 2 N : Y 
(�i)

Xg � b+F .

(ii) X 2 F �� (�N) =) #fi 2 N : X
(�i)Y g � n� b+F + 1 for all Y 2 AknfXg.

Theorem 26 announces for anonymous SCCs and under the RS extension that

a set X is a strong equilibrium outcome only if for any other set Y , the number of

individuals i for whom Y dominates X with respect to the binary relation 
(�i) is

less than b+F ; and X is a universal strong equilibrium outcome only if for any other

set Y , the number of individuals i for whom X dominates Y with respect to the

binary relation 
(�i) is at least n� b+F + 1.
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Theorem 27. Let F : �N ! Ak be top-unanimous and � be the RS extension.

For any �N 2 �N and any X 2 Ak, we have

(i) There exists no Y 2 AknfXg with #fi 2 N : Y 
(�i) Xg � b�F =) X 2

F�(�N).

(ii) #fi 2 N : X
(�i)Y g � n� b�F + 1 for all Y 2 AknfXg =) X 2 F �� (�N).

Theorem 27 announces for top-unanimous SCCs and under the RS extension

that a set X is a strong equilibrium outcome if for any other set Y , the number of

individuals i for whom Y dominates X with respect to the binary relation 
(�i)

is less than b�F ; and X is a universal strong equilibrium outcome if for any other

set Y , the number of individuals i for whom X dominates Y with respect to the

binary relation 
(�i) is at least n� b�F + 1.

By conjoining the two partial characterizations established by Theorem 26 and

Theorem 27, we obtain a full characterization for anonymous and top-majoritarian

(hence top-unanimous) SCCs, where generalized Condorcet winners coincide with

the standard de�nition of the concept. This is formally stated by the following

theorem, whose proof is left to the reader:

Theorem 28. Let F : �N ! Ak be anonymous and top-majoritarian while �

is the RS extension. For any �N 2 �N and any X 2 Ak, we have

(a) For n being odd,
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(i) X 2 F�(�N) () there exists no Y 2 AknfXg with #fi 2 N : Y 
(�i)

Xg � ��.

(ii) X 2 F �� (�N)() #fi 2 N : X
(�i)Y g � n���+1 for all Y 2 AknfXg.

(b) For n being even,

(i) There exists no Y 2 AknfXg with #fi 2 N : Y 
(�i) Xg � � =) X 2

F�(�N) =) there exists no Y 2 AknfXg with #fi 2 N : Y 
(�i) Xg � ��.

(ii) #fi 2 N : X
(�i)Y g � n � � + 1 for all Y 2 AknfXg =) X 2

F �� (�N) =) #fi 2 N : X
(�i)Y g � n� �� + 1 for all Y 2 AknfXg.

The next extension map we consider is a modi�ed version of the extension map

introduced by Kelly (1977): We say that � is the Kelly extension i� given any

� 2 � and any R 2 < we have R 2 �(�) if and only if

(i) X P Y for all distinct X;Y 2 Ak with x �� y 8x 2 X, 8y 2 Y

and

(ii) maxk(�) P Y 8Y 2 Aknfmaxk(�)g.

Note that the Kelly extension is rich. Also remark that for any X; Y 2 Ak

Y 2 U�(X; �) implies X \ Y = ; or Y = maxk(�). We write max(X; �) 2 A for

the best element in X 2 Ak with respect to � 2 �, i.e., max(X; �) � x holds for all

x 2 X. Similarly, min(X; �) 2 A is the worst element in X 2 Ak with respect to

� 2 �, i.e., x � min(X; �) holds for all x 2 X. Given any � 2 �, we introduce the

following absolute dominance relation �(�) over Ak: For any X; Y 2 Ak, Y �(�) X
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()min(Y ; �) �� max(X; �) or Y = maxk(�). Note that under the Kelly extension,

given any � 2 � and any distinct X;Y 2 Ak, we have Y 2 U�(X; �) () Y �(�)

X. This relationship between �(�) and U�(: ; �) which exists under the Kelly

extension conjoined with the general relationship between U�(X; �) and ��(�N ; q)

establishes the relationship between �(�) and ��(�N ; q) under the Kelly extension,

which we state in the following proposition.

Proposition 29. Let � be the Kelly extension. Take any q 2 f0; 1; :::; n+ 1g,

any �N 2 �N , and any X 2 Ak.

(i) X is undominated with respect to ��(�N ; q)() there exists no Y 2 AknfXg

with #fi 2 N : Y �(�i)Xg � q.

(ii) X is dominant with respect to ��(�N ; q) () #fi 2 N : X�(�i)Y g � q for

all Y 2 AknfXg.

The three theorems below follow as a corollary to Theorems 20-22, Proposition

23, and Proposition 29.

Theorem 30. Let F : �N ! Ak be anonymous and � be the Kelly extension.

For any �N 2 �N and any X 2 Ak, we have

(i) X 2 F�(�N) =) there exists no Y 2 AknfXg with #fi 2 N : Y �(�i)Xg �

b+F .

(ii) X 2 F �� (�N) =) #fi 2 N : X�(�i)Y g � n� b+F + 1 for all Y 2 AknfXg.
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Theorem 30 announces for anonymous SCCs and under the Kelly extension

that a set X is a strong equilibrium outcome only if for any other set Y , the

number of individuals, for whom the worst element of Y is better than the best

element of X or Y is the set of best k alternatives, is less than b+F . On the other

hand, X is a universal strong equilibrium outcome only if for any other set Y , the

number of individuals, for whom the worst element of X is better than the best

element of Y or X is the set of best k alternatives, is at least n� b+F + 1.

Theorem 31. Let F : �N ! Ak be top-unanimous and � be the Kelly exten-

sion. For any �N 2 �N and any X 2 Ak, we have

(i) There exists no Y 2 AknfXg with #fi 2 N : Y �(�i)X g � b�F =) X 2

F�(�N).

(ii) #fi 2 N : X�(�i)Y g � n� b�F + 1 for all Y 2 AknfXg =) X 2 F �� (�N).

Theorem 31 announces for top-unanimous SCCs and under the Kelly extension

that a set X is a strong equilibrium outcome if for any other set Y , the number of

individuals, for whom the worst element of Y is better than the best element of X

or Y is the set of best k alternatives, is less than b�F . Moreover, X is a universal

strong equilibrium outcome only if for any other set Y , the number of individuals,

for whom the worst element of X is better than the best element of Y or X is the

set of best k alternatives, is at least n� b�F + 1.
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By conjoining the two partial characterizations established by Theorem 30 and

Theorem 31, we obtain a full characterization for anonymous and top-majoritarian

(hence top-unanimous) SCCs, where generalized Condorcet winners coincide with

the standard de�nition of the concept. This is formally stated by the following

theorem, whose proof is left to the reader:

Theorem 32. Let F : �N ! Ak be anonymous and top-majoritarian while �

is the Kelly extension. For any �N 2 �N and any X 2 Ak, we have

(a) For n being odd,

(i) X 2 F�(�N)() there exists no Y 2 AknfXg with #fi 2 N : Y �(�i)Xg �

��.

(ii) X 2 F �� (�N)() #fi 2 N : X�(�i)Y g � n���+1 for all Y 2 AknfXg.

(b) For n being even,

(i) There exists no Y 2 AknfXg with #fi 2 N : Y �(�i)Xg � � =) X 2

F�(�N) =) there exists no Y 2 AknfXg with #fi 2 N : Y �(�i)Xg � ��.

(ii) #fi 2 N : X�(�i)Y g � n� �+1 for all Y 2 AknfXg =) X 2 F �� (�N)

=) #fi 2 N : X�(�i)Y g � n� �� + 1 for all Y 2 AknfXg.

Now, we explore the existence of (n; q)� Condorcet winners and universal

(n; q)� Condorcet winners. Our approach is similar to that of Sertel and San-

ver (2004). We �nd a lower bound for q which ensures the existence of (n; q)�

Condorcet winner and an upper bound for q at which higher values q implies
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non-existence of the universal (n; q)� Condorcet winner. Hence, for the universal

Condorcet winner case we provide a condition for non-existence rather than exis-

tence. For this purpose we de�ne q(n; c) = bn(c � 1)=cc + 1 where c = m!
k!(m�k)! is

the number of k combinations from set of alternatives and b:c denotes the 
oor

function. The following proposition shows the acyclicity of the binary relation

��(�N ; q(n; c)).

Proposition 33. For any �N 2 �N and j 2 f2; 3; :::; cg, we have Xi ��(�N ; q(n; c))

Xi+1 for all i 2 f1; 2; :::; j � 1g ) � Xj ��(�N ; q(n; c))X1 where Xi 2 Ak for all

i 2 f1; 2; :::; j � 1g.10

Proof. Take any j 2 f2; 3; :::; cg, any �N 2 �N and assume thatXi��(�N ; q(n; c))Xi+1

for all i 2 f1; 2; :::; j � 1g. Denote Ki = ft 2 N : Xi 2 U�(Xi+1; �t)g for all

i 2 f1; 2; :::; j � 1g. Note that since Xi 2 U�(Xi+1; �t) and Xi+1 2 U�(Xi+2; �t)

implies Xi 2 U�(Xi+2; �t), we have ft 2 N : X1 2 U�(Xj; �t)g �
Tj�1
i=1 Ki. Note

also that #
�Tj�1

i=1 Ki

�C
= #

Sj�1
i=1 K

C
i �

Pj�1
i=1 #K

C
i � (j�1)(n�q(n; c)). Hence,

#
Tj�1
i=1 Ki � n� (j � 1)(n� q(n; c)) implying that #ft 2 N : Xj 2 U�(X1; �t)g �

(j�1)(n� q(n; c)). Thus it is enough to have (c�1)(n� q(n; c)) < q(n; c) in order

to get acyclicity. Hence, c�1
c
n < q(n; c) or q(n; c) = bn(c� 1)=cc+ 1 is a su�cient

condition for acyclicity �
10Essentially our proposition is the same as Nakamura's (1979) result in a slightly di�erent
framework. See also Moulin (1981) for a generalization of Nakamura's result in the context of
e�ectivity functions.
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Proposition 34. For any �N 2 �N and q 2 f0; 1; :::; n + 1g, if we have X is

undominated with respect to ��(�N ; q), then q
� > n � q + 1 assures that X is not

dominant with respect to ��(�N ; q
�).

Proof. Assume that X is undominated with respect to ��(�N ; q). Then, there

exists no Y 2 AknfXg such that fi 2 N : Y 2 U�(X; �i)g � q. Hence, for any

Y 2 AknfXg we have fi 2 N : Y 2 U�(X; �i)g < q. Then, it is possible that q� 1

individuals can rank Y above X for some RN 2 �(�N). Therefore, X cannot be

dominant with respect to ��(�N ; q
�) if q� > n� q + 1. �

By Propositions 33 and 34 we conclude that X is undominated with respect

to ��(�N ; q(n; c)) and X cannot be dominant with respect to ��(�N ; q
�) when

q� > n � q(n; c) + 1. So although we do not know the minimal q assuring the

existence of universal (n; q)� Condorcet winner, we know that in order to assure

existence we have to restrict ourselves to a subset of f0; 1; 2; :::; n � q(n; c) + 1g.

The following theorem follows from Propositions 23, 33, and 34.

Theorem 35. For every �N 2 �N we have C(�N ;n; q) 6= ; for all q � q(n; c)

and C�(�N ;n; q
�) = ; for all q� < q(n; c).
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3.5. Conclusion

We characterize equilibrium outcomes of voting games induced by a fairly large

class of resolute social choice correspondences. We show that under a reasonable

extension map,

� For anonymous SCCs, (universal) strong equilibrium outcomes are sets

that are (universal) generalized Condorcet winners with respect to pref-

erences over sets.

� For top-unanimous SCCs, sets that are (universal) generalized Condorcet

winners with respect to preferences over sets are (universal) strong equi-

librium outcomes.

� The parameter q which generalizes the concept of a Condorcet winner

depends on the power distribution induced by the instituted social choice

correspondence. For top-majoritarian social choice correspondences, q

becomes equal to the usual majority, hence (n; q)� Condorcet winners

coincide with the standard de�nition of a Condorcet winner.

These results sound as transferring the �ndings of Sertel and Sanver (2004)

to our more general environment.11 However, they can be further elaborated by

revealing the meaning of \being a generalized Condorcet winner with respect to

preferences over sets" in terms of preferences over alternatives. We do this for

11When k = 1, the de�nition of \being a universal strong equilibrium outcome" and of \be-
ing a strong equilibrium outcome" are equivalent. Our �ndings -naturally- comply with this
equivalence.
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two well-known extension maps of the literature, namely the RS extension and

the Kelly extension. For each of these, we are able to express (universal) strong

equilibrium outcomes in terms of their dominance/undominance with respect to a

binary relation derived from individual preferences over alternatives. Moreover,

through this binary relation we provide an existence/non-existence condition for

(universal) generalized Condorcet winners.



References

[1] Arrow, K.J. (1963), "Social Choice and Individual Values", 2nd ed New York:
John Wiley & Sons.

[2] Aumann, R.J., and Maschler, M., (1985), "Game-theoretic analysis of a bank-
ruptcy problem from the Talmud", Journal of Economic Theory, 36, 195-213.

[3] Barbera, S., and Coelho, D. (2008), "How to Choose a Non-Controversial List
with k Names", Social Choice and Welfare, 31(1), 79{96.

[4] Barbera, S., and Coelho, D. (2010), "On the Rule of k Names", Games and
Economic Behavior, 70, 44{61.

[5] Berganti~nos, G., Lorenzo, L., and Lorenzo-Freire, S., (2010), "A characteriza-
tion of the proportional rule in multi-issue allocation situations", Operations
Research Letters 38, 17-19.

[6] Berganti~nos, G., Lorenzo, L., and Lorenzo-Freire, S., (2011), "New charac-
terizations of the constrained equal awards rule in multi-issue allocation prob-
lems", Mathematical Methods of Operations Research 74, 311-325.

[7] Bordes G., and Le Breton, M., (1989), "Arrovian theorems with private alter-
natives domains and sel�sh individuals", Journal of Economic Theory 47:257-
281.

[8] Bossert W., and Weymark, J.A., (2004), \Utility theory in social choice", in S.
Barbera, P.J. Hammond, C. Seidl (eds.), Handbook of Utility Theory, vol.2,
Dordrecht: Kluwer.

[9] Calleja, P., Borm, P., and Hendrickx, R., (2005), "Multi-issue allocation situ-
ations", European Journal of Operational Research 164, 730-747.

71



72

[10] Chun, Y., (1988), "The proportional solution for rights problems", Math. Soc.
Sci. 15, 231-246.

[11] Dagan, N., (1996), "New characterizations of old bankruptcy rules", Social
Choice and Welfare 13: 51-59.

[12] D'Aspremont C., and Gevers L. (2002) , "Social Welfare Functionals and
Interpersonal Comparability", in Handbook of Social Choice and Welfare, Vol.
II, ed. by K. J. Arrow, A. K. Sen, and K. Suzumura. Amsterdam: North-
Holland, Ch. 10.

[13] Diamond, Peter A., (1967), \Cardinal Welfare, Individualistic Ethics, and In-
terpersonal Comparisons of Utility: Comment." Journal of Political Economy
75: 765{66.

[14] Eichhorn, W. (1978), "Functional Equations in Economics", Addison-Wesley,
Massachusetts.

[15] Erdamar, B., and Sanver, M.R. (2009), "Choosers as Extension Axioms",
Theory and Decision, 2009, 67(4), 375-384.

[16] Farquharson, R. (1969), "Theory of Voting", New Haven, Connecticut: Yale
University Press.

[17] Fleurbaey, M., and Maniquet F. (1996), \Utilitarianism Versus Fairness
in Welfare Economics", in Justice, Political Liberalism and Utilitarianism:
Themes from Harsanyi and Rawls, ed. by M. Salles and J.Weymark. Cam-
bridge: Cambridge University Press.

[18] Fleurbaey, M., and Maniquet, F. (2008), "Fair Social Orderings", Economic
Theory 38: 25-45.

[19] Fleurbaey, M., and Maniquet, F. (2011), "A Theory of Fairness and Social
Welfare", Cambridge: Cambridge University Press.

[20] Gibbard, A. (1973), "Manipulation of Voting Schemes", Econometrica, 41,
587{601.

[21] Habis, H. and Herings, J-J., (2013), \Stochastic bankruptcy games", Interna-
tional Journal of Game Theory, 42: 973-988.



73

[22] Hammond, P. (1983), \Ex Post Optimality as a Dynamically Consistent Objec-
tive for Collective Choice under Uncertainty." In Social Choice and Welfare,
edited by Prasanta K. Pattanaik and Maurice Salles. Amsterdam: North-
Holland.

[23] Harsanyi, John C. (1955), \Cardinal Welfare, Individualistic Ethics, and In-
terpersonal Comparisons of Utility", Journal of Political Economy, 63, 309{
321.

[24] Herrero, C., and Villar, A., (2001), "The three musketeers: four classical
solutions to bankruptcy problems", Mathematical Social Sciences 39, 307{328.

[25] Hurwicz, L., and Sertel, M.R. (1999), "Designing Mechanisms, in Particular
for Electoral Systems: The Majoritarian Compromise", in Sertel, M.R. (ed)
Economic Behaviour and Design, Vol. 4 (Contemporary Economic Issues).
MacMillan, London.

[26] Ichiishi, T. (1986), "Stable Extensive Game Forms with Perfect Information",
International Journal of Game Theory, 15, 163-174.

[27] Ju, B-G., Miyagawa, E., and Sakai, T. (2007), "Non-Manipulable division
rules in claim problems and generalizations", Journal of Economic Theory
132:1{26.

[28] Kaminski, M., (2006), "Parametric rationing methods", Games and Economic
Behavior 54, 115-133.

[29] Kannai, Y., and Peleg, B. (1984), "A note on the Extension of an Order on a
Set to the Power Set", Journal of Economic Theory, 32, 172{175.

[30] Kaymak, B., and Sanver, M.R. (2003), "Sets of Alternatives as Condorcet
Winners", Social Choice and Welfare, 20, 477{494.

[31] Keiding, H., and Peleg, B. (2002), "Representation of E�ectivity Functions
in Coalition Proof Nash Equilibrium: A Complete Characterization", Social
Choice and Welfare, 19(2), 241{263.

[32] Kelly, J. (1977), "Strategy-Proofness and Social Choice Functions without
Single-Valuedness", Econometrica, 45, 439{446.



74

[33] Le Breton, M., and Weymark J. (2002), \Arrovian Social Choice Theory on
Economic Models" in Handbook of Social Choice and Welfare, Vol. II, ed. by
K. J. Arrow, A. K. Sen, and K. Suzumura. Amsterdam: North-Holland, Ch.
16.

[34] Lorenzo-Freire S., Casas-M�endez, B., and Hendrickx, R., (2010), "The two-
stage constrained equal awards and losses rules for multi-issue allocation sit-
uations", Top 18(2): 465{480.

[35] Maniquet, F., and Sprumont, Y. (2004), "Fair Production and Allocation of
an Excludable Nonrival Good", Econometrica, 72: 627-640.

[36] Maniquet, F., and Sprumont, Y. (2005), "Welfare Egalitarianism in nonrival
environments", Journal of Economic Theory 120: 155-174.

[37] Maniquet, F. (2008), "Social orderings for the assignment of indivisible ob-
jects", Journal of Economic Theory, 143: 199-215.

[38] Moreno-Ternero, J., (2009), "The proportional rule for multi-issue bankruptcy
problems", Economics Bulletin, 29(1), 483-490.

[39] Moulin, H. (1979), "Dominance-Solvable Voting Schemes", Econometrica, 47,
1337-1351.

[40] Moulin, H. (1981), "The Proportional Veto Principle", The Review of Eco-
nomic Studies, 48, 407-416.

[41] Moulin, H., and Peleg, B. (1982), "Cores of E�ectivity Functions and Imple-
mentation Theory", Journal of Mathematical Economics, 10, 115-145.

[42] Moulin, H (1983), "The Strategy of Social Choice", North-Holland, Nether-
lands.

[43] Moulin, H. (1985), "Egalitarianism and utilitarianism in quasi-linear bargain-
ing", Econometrica 53, 49{67.

[44] Moulin, H. (1987a), "Egalitarian Cost Sharing of a Public Good", Economet-
rica, 55, 963-976



75

[45] Moulin, H. (1987b), "Equal or proportional division of a surplus and other
methods", International Journal of Game Theory 16(3):161-186.

[46] Moulin, H., and Thomson, W. (1997), \Axiomatic analysis of resource allo-
cation problems", in K. J. Arrow, A. Sen, K. Suzumura (Eds.), Social Choice
Re-examined, Vol. 1, London: Macmillan and New-York: St. Martin's Press.

[47] Moulin, H. (2000), "Priority rules and other asymmetric rationing methods",
Econometrica 83, 643{684.

[48] Moulin, H. (2002), "Axiomatic Cost and Surplus-Sharing", Chapter 6 of K.
Arrow, A. Sen and K. Suzumura (Eds.), The Handbook of Social Choice and
Welfare, Vol. 1. North-Holland.

[49] Nakamura, K. (1979), "The Vetoers in a Simple Game with Ordinal Prefer-
ences", International Journal of Game Theory, 8, 55-62.

[50] O'Neill, B. (1982), "A problem of rights arbitration from the Talmud", Math-
ematical Social Sciences 2", 345-371.

[51] Otani, Y., and Sicilian, J. (1982), "Equilibrium of Walras Preference Games",
Journal of Economic Theory, 27, 47-68.

[52] Ozyurt, S., and Sanver, M.R. (2008), "Strategy-Proof Resolute Social Choice
Correspondences", Social Choice and Welfare, 30, 89{101.

[53] Peleg, B. (1984), "Game Theoretic Analysis of Voting in Committees", Econo-
metric Society Monographs in Pure Theory, Cambridge University Press,
Cambridge.

[54] Rawls, J. (1971), "Theory of Justice", Cambridge: Harvard University Press.

[55] Re�gen, A. (2011), "Generalizing the Gibbard-Satterthwaite Theorem: Par-
tial Preferences, the Degree of Manipulation, and Multi-Valuedness", Social
Choice and Welfare 37(1), 39{59.

[56] Roberts, K.W.S. (1980), \Social choice theory: The single and multi-pro�le
approaches", Review of Economic Studies 47: 441-450.



76

[57] Roth, A.E., Sotomayor, M.A.O. (1990), "Two-Sided Matching: A Study in
Game Theoretic Modeling and Analysis", Cambridge University Press, Cam-
bridge.

[58] Sanver, M. R. (2002), "An Allocation Rule with Wealth-Regressive Tax Rates",
Journal of Public Economic Theory, 4(1), 63-69.

[59] Sanver, M. R. (2005), "Equilibrium Outcomes of Taxation Endowment
Games", Review of Economic Design, 9 (4), 307-316.

[60] Satterthwaite, M. (1975), "Strategy-Proofness and Arrow's Conditions: Exis-
tence and Correspondence Theorems for Voting Procedures and Social Welfare
Functions", Journal of Economic Theory, 10, 187{217.

[61] Sen A. K. (1992), "Inequality Reexamined", Cambridge, MA: Harvard Uni-
versity Press.

[62] Sertel, M.R. and Sanver, M.R. (1999), "Equilibrium Outcomes of Lindahl
Endowment Pretension Games", European Journal of Political Economy, 15,
149-162.

[63] Sertel, M.R. and Sanver, M.R. (2004), "Strong Equilibrium Outcomes of Vot-
ing Games are the Generalized Condorcet Winners", Social Choice and Wel-
fare, 22(2), 331-347.

[64] Sprumont, Y. (1991), "The division problem with single-peaked preferences:A
characterization of the uniform allocation rule", Econometrica, 59, 2: 509-519.

[65] Tadenuma T. and Thomson, W. (1995), "Games of Fair Division", Games
and Economic Behavior, 9 (2), 191-204.

[66] Thomson, W. (1984), "The Manipulability of Resource Allocation Mecha-
nisms", Review of Economic Studies, 51, 447-460.

[67] Thomson, W. (2003), "Axiomatic and Game-Theoretic Analysis of Bank-
ruptcy and Taxation problems: a survey", Mathematical Social Sciences 45,
249-297.

[68] Thomson, W. (2006), "How to divide when there isn't enough: From the Tal-
mud to game theory", Manuscript, University of Rochester.



77

[69] Thomson W. (2013), "The Theory of Fair Allocation", Princeton: Princeton
University Press, forthcoming.

[70] von Neumann, J. and Morgenstern, O. (1947), "Theory of Games and Eco-
nomic Behavior", Princeton: Princeton University Press.

[71] Young, H.P. (1987a), "On dividing an amount according to individual claims
or liabilities", Mathematics of Operations Research 12: 398-414.

[72] Young, H.P. (1987b), "Progressive taxation and the equal sacri�ce principle",
Journal of Public Economics 32, 203{214.

[73] Young, H.P. (1988), "Distributive justice in taxation", Journal of Economic
Theory 43, 321{335.


