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Arnoldi’s method is often used to compute a few eigenvalues and eigenvectors of

large, sparse matrices. When the eigenvalues of interest are not dominant or well-

separated, this method may suffer from slow convergence. Spectral transformations

are a common acceleration technique that address this issue by introducing a modified

eigenvalue problem that is easier to solve than the original. This modified problem

accentuates the eigenvalues of interest, but requires solving a linear system, which is

computationally expensive for large-scale eigenvalue problems.

This thesis shows how this expense can be reduced through a preconditioning

scheme that uses a fixed-polynomial operator to approximate the spectral trans-

formation. Implementation details and accuracy heuristics for employing a fixed-

polynomial operator with Arnoldi’s method are discussed. The computational results

presented indicate that this preconditioning scheme is a promising approach for solv-

ing large-scale eigenvalue problems. Furthermore, this approach extends the domain

of applications for current Arnoldi-based software. Future research directions include

development of convergence theory, accuracy bounds for computed eigenpairs, and

alternative constructions of the fixed-polynomial operator.
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Chapter 1

Introduction

Arnoldi’s method [2] is often used to compute the eigenvalues and eigenvectors of

large, sparse matrices. Various techniques can be employed to improve the conver-

gence of this method, some resulting in considerable computational expense. This

thesis will introduce an efficient preconditioning scheme that greatly accelerates con-

vergence to the right-most eigenvalues of non-Hermitian matrices. Furthermore, this

scheme can easily be implemented with existing Arnoldi-based software, extending

the domain of application.

Before laying out the motivation for this preconditioning scheme, some notation

and definitions will be discussed in Section 1.1. Following this, the large-scale eigen-

value problem will be introduced in Section 1.2. The foundation of most current

methods for solving this problem, the power method, is presented in Section 1.3. A

generalization, Arnoldi’s method, is examined in Section 1.4, in addition to some

common acceleration and computational techniques. This is followed by the intro-

duction of the Implicitly Restarted Arnoldi [43] and rational Krylov [32] methods in

Section 1.5 and 1.6, respectively.

The discussion shows the need for a spectral transformation to improve the con-

vergence of these methods to the right-most eigenvalues. This acceleration technique

results in a linear solve for each basis vector of the Krylov subspace. Utilizing iter-

1
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ative methods for these linear solves requires a high degree of accuracy to guarantee

that the Krylov subspace has been generated. For large-scale problems this may be

necessary, but computationally expensive.

This computational expense can be reduced through a preconditioning scheme

that uses a fixed-polynomial operator to approximate a spectral transformation. The

fixed-polynomial can then be used to produce a modified problem with approximately

the same solution as the original. Most importantly, this modified problem is one that

the Krylov subspace method can solve rapidly.

1.1 Notation

The following notation will be used throughout this thesis:

• IR and lCwill denote the real and complex numbers, respectively.

• Capital and lower case Latin letters denote matrices and vectors, respectively.

Lower case Greek letters will denote scalars.

• The transpose of a matrix A is denoted by AT and the conjugate-transpose is

denoted by AH ; likewise for vectors.

• Unless otherwise specified, ‖ · ‖ is the Euclidean norm of a vector and the

induced two-norm of a matrix.

• The jth canonical basis vector is denoted by ej .

• A diagonal matrix whose diagonal elements are αi, i = 1, · · · , n is denoted by

diag(α1, α2, · · · , αn).

• Given a matrix A, R(A) and N (A) denote the range and null space of A,

respectively.
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• Given a scalar α ∈ lC, <(α) and =(α) are the real and imaginary parts of α,

respectively.

1.2 The Eigenvalue Problem

The algebraic eigenvalue problem

Ax = xλ (1.1)

is a fundamental problem in scientific computing. It appears in disciplines like eco-

nomics, dynamical systems, control theory and mechanics. The computation of solu-

tions to equation (1.1) is important for performing structural and stability analysis

on mathematical models in these disciplines.

Large eigenvalue problems commonly arise from a finite dimensional approxima-

tion of a continuous model

Lu = uλ, (1.2)

where L is a linear differential operator. Often, L is the linearization of a nonlinear

operator about a steady state. If the continuous model (1.2) is discretized by finite

differences, the result is a standard eigenvalue problem (1.1). Discretization by a finite

element method will lead to a generalized eigenvalue problem of the form

Ax = Bxλ. (1.3)

Usually A is referred to as the stiffness matrix and B is the mass matrix. Sometimes

the matrices A and B in the generalized eigenvalue problem (1.3) are referred to as

the matrix pencil (A,B).

This thesis will address both the standard and generalized eigenvalue problem.

The scalar, λ, and vector, x, that satisfy (1.1) or (1.3) are called the eigenvalue and

(right) eigenvector, respectively. Often they can also be referred to as an eigenpair
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(λ,x). Furthermore, an eigenvalue may also have a corresponding nonzero left eigen-

vector y that satisfies

yHA = yHBλ, (1.4)

where B = I if the original eigenvalue problem is in standard form (1.1).

Standard and generalized eigenvalue problems are classified by the structure of

the matrix A or the matrix pencil (A,B), respectively. These classifications guide the

design of algorithms through theoretical insight. IfA is Hermitian, A = AH , then (1.1)

is referred to as a Hermitian eigenvalue problem. Furthermore, if A and B are both

Hermitian, then (1.3) is referred to as a generalized Hermitian eigenvalue problem.

The eigenvalues are always real for Hermitian eigenvalue problems and both their left

and right eigenvectors are the same. This also holds true for the generalized case when

B is positive definite. Moreover, any standard or generalized Hermitian eigenvalue

problem is guaranteed to have an orthonormal basis of eigenvectors associated with

it.

When A is non-Hermitian, A 6= AH , then (1.1) is referred to as a non-Hermitian

eigenvalue problem. Likewise, if A and/or B is non-Hermitian, then (1.3) is referred

to as a generalized non-Hermitian eigenvalue problem. In both cases, the eigenvalues

may be real, complex, or appear as complex conjugate pairs and the left and right

eigenvectors are usually not the same. Even worse, a complete set of independent

eigenvectors may not exist, complicating the theory and algorithms for non-Hermitian

eigenvalue problems [3]. When a matrix or matrix pencil does not have an orthonor-

mal basis of eigenvectors, it will be referred to as non-normal.

Numerical methods that solve the standard (1.1) and generalized (1.3) eigenvalue

problems without direct factorizations or similarity transformations are important

for large-scale problems since the discretization of the operator L results in matrices

that are likely to be sparse. Thus, matrix-vector products can cost much less than

n2 floating point operations. The focus of this thesis will be on methods that require

only matrix-vector products. A sparse, direct factorization might be used in some
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cases as a preconditioner for an iterative linear solver or eigensolver.

Most current eigensolvers can be categorized as either a Krylov subspace method

or a subspace iteration method. However, both of these categories are generaliza-

tions of the classic power method. The behavior of this single-vector iteration is the

foundation for understanding the methods presented here. Thus, the power method

will first be introduced in Section 1.3 and some important observations will be made

before looking at Krylov subspace methods in Section 1.4.

1.3 The Power Method

The power method is a simple and efficient way to compute a single eigenvalue and

its corresponding eigenvector of the standard eigenvalue problem (1.1). The method,

described in Figure 1.1, only requires the application of a fixed operator A. It is

Input: (A, v)
Output: An eigenvalue, λ, of A and its corresponding eigenvector v.

1. for k = 1, 2, · · · , until convergence

1.1. w = Av

1.2. j = i max(w)

1.3. λ = w(j)

1.4. v ← v/λ

2. end

Figure 1.1: The Power method

well known that the power method tends to converge to the eigenvalue of A with

the largest magnitude and its corresponding eigenvector [49]. However, with the use

of a spectral transformation, this method can be made to converge to any specified

eigenvalue in the spectrum of A.
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The convergence analysis for this method is straightforward when A is diagonal-

izable and has n distinct eigenvalues which can be ordered such that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Generally, the convergence rate of v to the eigenvector q1 corresponding to λ1 is linear

and proportional to |λ2

λ1
|. Then, for some constant c,

‖v(k) − q1‖ ≤ c

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

‖v(1) − q1‖.

This may be slow if λ1 is not well separated from the rest of the spectrum. However,

if v is orthogonal to q1 and A is normal, the power method will converge to the

eigenvector q2 corresponding to λ2 at a rate proportional to |λ3

λ2
|. This realization

motivates the idea of deflation, by which another eigenpair of A is exposed.

Convergence to any eigenvalue of A near a shift σ can be achieved through the use

of a shift-invert spectral transformation, (A−σI)−1. This is called the inverse power

method and is useful for computing interior eigenvalues of A, but it still observes only

linear convergence. There is a natural extension of this method through the variation

of the shift at each step. By choosing σ to be the Rayleigh quotient of v, vHAv
vHv

, the

Rayleigh Quotient Iteration (RQI) is obtained. Convergence is generally quadratic

for this method, but increases to cubic if A is Hermitian.

The main drawback of the power method is that it only computes one eigenpair

at a time. Deflation using the spectral projector of λ1,

P1 = q1q̂
H
1 ,

where q̂1 is a left eigenvector of λ1 normalized so that q̂H
1 q1 = 1, can be used to

continue the computation. By restricting A to the complementary invariant subspace

of λ1, (I − q1q̂H
1 )A(I − q1q̂H

1 ), convergence to q2 can be achieved. This mechanism

allows for the computation of more than one eigenpair, but can be dangerous when

A is non-normal. Krylov subspace methods provide a better approach by considering

a sequence of vectors generated by the power method.
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1.4 The Arnoldi Method

A single-vector iteration like the power method does not take advantage of the infor-

mation provided by the successive vectors in the sequence

v, Av, A2v, A3v, · · · .

This sequence may be rich with information along eigenvector directions that corre-

spond to the dominant eigenvalues of A. A natural consequence is to consider the

k-dimensional Krylov subspace

Kk(A, v) = span{v, Av, A2v, · · · , Ak−1v}. (1.5)

The Arnoldi method [2], described in Figure 1.2, is used to construct an orthonormal

basis of Kk(A, v). The result is the k-step Arnoldi factorization of A

AVk = VkHk + feT
k (1.6)

where Vk ∈ lCn×k has orthonormal columns and V H
k f = 0. If A is non-Hermitian then

Hk = V H
k AVk is a k × k upper Hessenberg matrix. If A is Hermitian then Hk is

a k × k real, symmetric, tridiagonal matrix and the factorization (1.6) is called the

k-step Lanczos factorization of A.

This factorization can be used to obtain approximate eigenvalues and eigenvectors

for A. Using the eigenpairs (θ, y) of Hk, the vector x = Vky satisfies

‖Ax− xθ‖ = ‖(AVk − VkHk)y‖ = |βeT
k y| (1.7)

where β = ‖f‖. The approximate eigenpair (θ, x) is called the Ritz value and Ritz

vector, respectively, and the number |βeT
k y| is called the Ritz estimate. If A is Hermi-

tian, the Ritz estimate can be used to provide a rigorous bound on the accuracy of

the eigenvalues of Hk as estimates for the eigenvalues of A [30]. In the non-Hermitian

case, a small Ritz estimate does not imply an accurate answer due to the possible

non-normality of A.
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Input: (A, v0, k)
Output: (Vk, Hk, f) where AVk = VkHk + feT

k , V
H
k Vk = Ik, and

V H
k f = 0.

1. v1 = v0

‖v0‖

2. w = Av1, α = vH
1 w

3. H1 = [α], V1 = [v1], f = w − v1α

4. for j = 1, 2, · · · , k − 1

4.1. β = ‖f‖, vj+1 = f
β

4.2. Hj ←

[

Hj

βeT
j

]

, Vj+1 = [Vj vj+1]

4.3. w = Avj+1, h = V H
j+1w

4.4. Hj+1 ← [Hj h], f = w − Vj+1h

5. end

Figure 1.2: The Arnoldi method

The implementation of the Arnoldi method given in Figure 1.2 uses the classical

Gram-Schmidt (CGS) algorithm to build the orthogonal Krylov basis. For eigen-

value calculations an orthogonal basis is essential and CGS is notoriously unstable.

Replacing classical Gram-Schmidt with modified Gram-Schmidt (MGS) does not al-

ways ensure orthogonality. Furthermore, MGS is not as computationally efficient as

CGS. The best solution to this problem is to reorthogonalize the Krylov basis using

the Daniel, Gragg, Kaufman, and Stewart (DGKS) correction [7] whenever necessary.

It is impossible to know in advance how large the Krylov subspace must be before

the eigenvalues of Hk are good approximations to the eigenvalues of interest. For

large-scale problems, storing a sufficient number of basis vectors may not be possible.

Incorporating an acceleration scheme with the Arnoldi method helps keep k small,

while still converging to the selected eigenvalues. Two techniques briefly discussed

here are restarting and spectral transformations. These are essential for practical
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implementations, like the Implicitly Restarted Arnoldi (IRA)[43] and rational Krylov

[32] methods. More information on acceleration techniques for the Arnoldi method

can be found in Yang’s thesis [50].

1.4.1 Restarting the Arnoldi Method

Restarting accelerates convergence of the Arnoldi method by modifying the starting

vector v using eigenvector information obtained in the previous Krylov subspace. Sim-

ple restarting replaces the starting vector with a single Ritz vector [38]. Polynomial

restarting generalizes this by updating the starting vector v with

v ← ψ(A)v,

where ψ(λ) is constructed to filter out unwanted eigenvector components. The easiest

method uses a linear combination of Ritz vectors

v+ =
k

∑

j=1

qjγj, (1.8)

with some appropriate choice of weights γj [36],[39].

Another approach for building ψ is to specify its roots as points in a region con-

taining unwanted eigenvalues. A straightforward choice would be to select a set of

eigenvalues from the current Hm and use them as the roots of the polynomial ψ.

This method of selection, suggested by Sorensen [43], is called exact shifts. If K is a

compact set containing the unwanted eigenvalues, then Leja points [22] can also be

used as roots of the polynomial ψ. Given a real-valued, positive function w(z) defined

on K, the sequence of Leja points zj satisfies

w(z0)|z0| = maxz∈K w(z)|z|

w(zj)
∏j−1

k=0 |zj − zk| = maxz∈K w(z)
∏j−1

k=0 |z − zk|,

for j = 1, 2, · · · . These points are uniformly distributed in K with respect to w(z)

and are typically expensive to compute.
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Other possibilities for constructing ψ require knowledge about the region contain-

ing the wanted eigenvalues. A Chebyshev polynomial could be constructed [37] if the

containment region is a line segment or an ellipse. This idea was based upon the

acceleration scheme of Manteuffel [23]. Faber polynomials [10] can be constructed

for polygonal containment regions [16]. This is an adaptation of the hybrid Arnoldi-

Faber iterative method proposed by Starke and Varga [44] using a Schwarz-Christoffel

conformal mapping [47].

1.4.2 Spectral Transformations

Spectral transformations improve the convergence of the Arnoldi method through

the substitution of A with ψ(A), where ψ(λ) is some simple function [50]. This

transformation serves to map interior or clustered eigenvalues of A to dominant, well-

separated eigenvalues of ψ(A). The most common of these is the shift-invert spectral

transformation

ψSI(λ) =
1

λ− σ
,

which emphasizes the eigenvalues of A around the shift σ (Figure 1.3). The Arnoldi

0 1 2 3 4
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Figure 1.3: Shift-invert transformation

method applied to this transformation, called shift-invert Arnoldi, is a generalization
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of the inverse power method. If the shift σ is varied at each step, the shift-invert

Arnoldi method becomes a generalization of RQI called rational Krylov [32].

Another interesting spectral transformation is the Möbius transformation

ψM (λ) =
λ− µ

λ− σ
.

This transformation maps the eigenvalues of A close to σ far from the unit circle,

and those close to µ to eigenvalues of ψM(A) with small modulus (Figure 1.4). In

−1 0 1 2 3
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Figure 1.4: Möbius transformation

exact arithmetic there is no advantage to using this transformation with a translation-

invariant Arnoldi method because ψM(A) = I + (σ − µ)ψSI(A). However, it can be

beneficial to use ψM with an inexact Krylov subspace method.

1.4.3 Eigenvector Purification

Generalized eigenvalue problems of the form

Ax = Bxλ, (1.9)

where B is positive semidefinite, arise in many physical situations. The most common

way to this solve problem (1.9) is to transform it back to a standard eigenvalue
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problem using a spectral transformation, like the shift-invert [9]. Then the original

problem becomes

Sx = xθ,

where S = (A − σB)−1B and θ = 1
λ−σ

. This technique works well with both ratio-

nal Krylov and restarted Arnoldi methods. However, this transformation can cause

numerical problems when B is singular.

If B is singular then it is possible for Arnoldi’s method to find approximations to

the zero eigenvalues of S. These eigenvalues usually correspond to infinite eigenvalues

of the generalized eigenvalue problem (1.9), which are often considered uninteresting.

However, the eigenvectors corresponding to these uninteresting eigenvalues typically

corrupt the invariant subspace corresponding to the nonzero eigenvalues of S. The

first way to prevent this is to ensure the starting vector, v1, is in R(S) by replacing v1

with the normalized vector Sv1/‖Sv1‖. However, the final approximate eigenvector, x,

may still have components from the zero eigenvalues of S, which can again be purged

by replacing x by Sx and normalizing it. Unfortunately, this incurs an additional

matrix-vector product.

Purification of the computed eigenvectors is an efficient solution for purging these

undesirable components and is equivalent to performing a formal step of the power

method with S [9, 29]. Given a k-step Arnoldi factorization for S, where Hky = yθ

and x = Vky, then

Sx = (A− σB)−1Bx = VkHky + feT
k y = xθ + feT

k y. (1.10)

So by replacing the computed eigenvector x with x+ f
eT
k

y

θ
and renormalizing it, any

undesirable components have been purged without additional matrix-vector products.



13

1.5 Implicitly Restarted Arnoldi Method

The Implicitly Restarted Arnoldi (IRA) method [43], described in Figure 1.5, provides

a numerically stable way to extract the desired eigenvalues and eigenvectors from a

high-dimensional Krylov subspace. It implements polynomial restarting by applying

a sequence of p implicit QR updates to an m-step Arnoldi factorization, where m =

k + p. These updates apply p exact shifts implicitly to reduce the factorization back

to order k.

Input: (A, v0, m, k) where p = m− k
Output: (Vk, Hk, f) where AVk = VkHk + feT

k , V
H
k Vk = Ik, and

V H
k f = 0.

1. Compute an m-step Arnoldi factorization: AVm = VmHm + feT
m

2. for iter = 1, 2, · · · ,until convergence

2.1. Compute σ(Hm) and select p shifts µ1, µ2, · · · , µp

2.2. Q = Im
2.3. for j = 1, 2, · · · , p

2.3.1. [Qj , Rj] = qr(Hm − µjI)

2.3.2. Hm ← QH
j HmQj , Q← QQj

2.4. end

2.5. βk = Hm(k + 1, k), σk = Q(m, k)

2.6. f ← vk+1βk + fσk

2.7. Vk ← VmQ(:, 1 : k), Hk ← Hm(1 : k, 1 : k)

2.8. Apply p additional steps of the Arnoldi process to
AVk = VkHk + feT

k to obtain a new m-step Arnoldi
factorization AVm = VmHm + feT

m

3. end

Figure 1.5: The Implicitly Restarted Arnoldi method

A shift µ ∈ IR is applied implicitly using the QR factorization of Hm − µI,

Hm − µI = QmRm
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whereQm is unitary andRm is upper triangular. Multiplying the Arnoldi factorization

on the right by Qm results in

A(VmQm) = (VmQm)QH
mHmQm + fme

T
mQm. (1.11)

Since Hm is Hessenberg, Qm will also have Hessenberg structure and eT
mQm will have

m − 1 nonzero entries. Thus, the first m − 1 columns of (1.11) are a new Arnoldi

factorization. After p shifts have been applied, the new k-step Arnoldi factorization

is the first k columns of

A(VmQ)− (VmQ)QTHmQ = feT
mQ,

where Q =
∏p

j=1Qj . This can be expanded, through p steps of the Arnoldi process,

back to an m-step factorization.

1.5.1 Inexact Implicitly Restarted Arnoldi

Accelerating a Krylov subspace method with a spectral transformation requires a

linear system solve for each basis vector of the Krylov subspace. It is preferable to

use a direct method for these solves. However, for large problems it is often necessary

to use an iterative solver. This also has its drawbacks since each iterative solve must

be highly accurate to ensure that a Krylov subspace is being constructed. Usually

methods that incorporate an iterative solver with a Krylov subspace method are called

inexact.

Inexact Implicitly Restarted Arnoldi accelerated by a Möbius transformation is ef-

fective in practice. The Möbius transformation has properties that make it preferable

over shift-invert for linear stability analysis in computational fluid dynamics (CFD)

problems [13, 14, 15]. This method has been employed in the stability analysis of a

Chemical Vapor Deposition (CVD) reactor simulation with over 4 million variables

[21]. More recently, techniques based on these findings have allowed researchers to

perform stability analyses on systems with 16 million variables [6].
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1.6 The Rational Krylov Method

The rational Krylov method [32, 33, 34] is a generalization of shift-invert Arnoldi

that allows for the shift to be varied at each step. It also allows the iteration to

continue with a linear combination of the basis vectors already computed instead

of just the last one. This method builds an orthogonal basis for the k-dimensional

rational Krylov subspace

span{v, (A− σ1B)−1Bv, (A− σ2B)−1Bv, · · · , (A− σk−1B)−1Bv}.

The use of several shifts σj can improve convergence, but may result in more compu-

tationally expensive linear solves.

Input: (A,B, v0) where ‖v0‖ = 1

1. V1 = v0

2. for j = 1, 2, · · · ,until convergence

2.1. Select a shift σj and continuation vector r = Vjtj
where ‖tj‖ = 1

2.2. w = (A− σjB)−1Br

2.3. w ← w − Vjhj , where hj = V H
j w

2.4. β = ‖w‖, v = w
β

2.5. Vj+1 = [Vj v]

2.6. ĥj =
[

hj

β

]

, k̂j = σj ĥj +
[

tj
0

]

2.7. if j > 1 then

Hj+1,j ←
[

Hj,j−1

0
ĥj

]

and Kj+1,j ←
[

Kj,j−1

0
k̂j

]

else
Hj+1,j = ĥj and Kj+1,j = k̂j

2.8. Compute approximate solution and test for convergence

3. end

Figure 1.6: The Rational Krylov method
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The rational Krylov iteration illustrated in Figure 1.6 produces a generalized shift-

invert Arnoldi factorization. By eliminating w in the orthogonalization step (2.3), it

can be seen that the relationship at step j is

(A− σjB)−1BVjtj = Vj+1ĥj (1.12)

where ĥj =
[

hj

β

]

. Let t̂j =
[

tj
0

]

, then Vj+1t̂j = Vjtj and (1.12) can be rewritten as

AVj+1ĥj = BVj+1(σj ĥj + t̂j).

Collecting these relations over a sequence of iterations, j = 1, 2, · · · , k, results in

AVk+1Hk+1,k = BVk+1Kk+1,k,

where Hk+1,k and Kk+1,k are upper Hessenberg matrices, and

Kk+1,k = Hk+1,kdiag(σ1, σ2, · · · , σk) + Tk+1,k.

The columns of the upper triangular matrix Tk+1,k contain the continuation vectors

from step (2.1). If the shift is held constant, σj = σ, and the continuation vector is

the latest vector, tj = ej , for all iterations j = 1, 2, · · · , k, the resulting factorization

is the shift-invert Arnoldi

(A− σB)−1BVk = Vk+1Hk+1,k.

Extracting approximate eigenvalues and eigenvectors from the rational Krylov

subspace can be done in a variety of ways [35]. If the approximate eigenvector is

assumed to have the form x ≡ Vk+1Hk+1,ky, then (θ, x) is a Ritz pair for the matrix

pencil (A,B) with respect to the subspace R(Vk+1Hk+1,k) if and only if

HH
k+1,kKk+1,ky = θHH

k+1,kHk+1,ky. (1.13)

The accuracy of a Ritz pair (θ, x) is estimated by ‖Ax − Bxθ‖, which is approxi-

mately ‖(Kk+1,k − θHk+1,k)y‖. Calculating the Ritz values is only one approach to
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approximating the eigenvalues and eigenvectors from the rational Krylov subspace.

This theory can also be extended to compute harmonic Ritz values.

While the rational Krylov method can be very effective, there are many practical

implementation issues that need to be addressed. Choosing and deciding when to use

a new shift σj is subjective. If direct factorizations are used to solve the linear system

in step (2.2), then it might be necessary to use the same shift for multiple iterations

to reduce the computational cost. If the rational Krylov subspace becomes large,

then the cost of orthogonalization becomes computationally expensive. A strategy

for locking and purging converged Schur vectors from the rational Krylov subspace

has been proposed along with an implicit restarting scheme [35]. Both of these ideas

were based on techniques developed for the Arnoldi method [19, 43].

1.6.1 Inexact Rational Krylov

The variation of the shift in the rational Krylov method is very important. If the

shift is held constant, the resulting method is the shift-invert Arnoldi method. How-

ever, if the shift is varied every iteration and a direct factorization is used to solve

the linear system (2.2), then this method can be computationally expensive. One

approach to dealing with this issue is to use the same shift for multiple iterations.

Another would be to solve the linear system (2.2) using an iterative method. The

later approach, called inexact rational Krylov, is more effective in dealing with large

eigenvalue problems.

As opposed to the shift-invert Arnoldi method, the rational Krylov method is not

as demanding on the accuracy of the iterative solver. This is because the rational

Krylov method does not rely on the correct representation of an underlying Krylov

basis. An inexact rational Krylov method accelerated by a Möbius transformation

(IC-RKS) has been proposed by Lehoucq and Meerbergen [18]. This method has

shown that a Möbius transformation is more robust than a shift-invert transformation

when the linear systems are solved inexactly within the rational Krylov method.



Chapter 2

IRA with a Fixed-Polynomial
Operator

Accelerating the Implicitly Restarted Arnoldi (IRA) method with a spectral trans-

formation requires a linear system solve for each basis vector of the Krylov subspace.

It is preferable to use a direct method for these solves. However, due to storage

constraints and computational cost, large-scale eigenvalue problems require the use

of an iterative method for these linear solves. Unless stringent accuracy is specified,

this results in the application of a different operator φ for every linear solve with no

guarantee that the Krylov subspace has been generated. Alternatively, this thesis will

consider computing the operator φ once and applying it instead of using an iterative

solver. This approach is very similar to a class of linear solvers called hybrid methods,

which are discussed in Section 2.1.

The fixed-polynomial operator used in this thesis will be constructed using a

common iterative solver for non-Hermitian linear systems: the General Minimum

Residual (GMRES) method [40]. This method will be introduced in Section 2.2 and

the construction of the GMRES fixed-polynomial operator will follow in Section 2.3.

Using a fixed-polynomial operator to approximate the spectral transformation,

thus replacing the iterative solver, is a promising approach. The eigenpairs of the

original problem can be easily reconstructed from the Ritz vectors of the Krylov

subspace, as discussed in Section 2.4. The current accuracy and convergence heuristics

presented in Section 2.5 will show that the accuracy of these eigenpairs is dependent

18
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upon the norm of the residual polynomial, ‖p(AσM
−1
σ )‖. If the fixed-polynomial

operator closely approximates the spectral transformation, this norm should be small.

A starting vector that is equally weighted in all eigendirections seems to facilitate the

construction of such an operator. Furthermore, the summary of the algorithm in

Section 2.6 will show that once the fixed-polynomial operator is constructed the cost

of its application and storage is constant.

2.1 Hybrid Methods

Using a fixed-polynomial operator in the place of an iterative linear solver is not a

novel idea. This approach is the basis for a class of linear solvers known as hybrid

iterative methods which generally consist of a two-phase implementation. Phase I

acquires information about the spectrum of the matrix, which is used in Phase II

to design a polynomial iteration. Most hybrid algorithms rely directly on eigenvalue

estimates obtained from the Arnoldi process in Phase I. However, there are limita-

tions to this approach since eigenvalues may be misleading for non-normal matrices.

Alternative hybrid methods have been proposed by Nachtigal, Reichel, and Trefethen

[27] and Manteuffel and Starke [24] that circumvent computing eigenvalue estimates

in Phase I.

2.2 Generalized Minimum Residual Method

The Generalized Minimum Residual (GMRES) method [40] is a Krylov subspace

method for solving non-Hermitian linear systems

Ax = b. (2.1)

Given an initial guess x0 and residual r0 = b − Ax0, this method computes iterates

of the form xk = x0 + x̂k, where x̂k ∈ Kk(A, r0) solves

min
x̂∈Kk(A,r0)

‖r0 −Ax̂‖
2.
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Then x̂k = φk−1(A)r0 where φk−1(A) is called the iteration polynomial and has degree

k − 1. Now the residual at step k can be written in the form

rk = r0 −Ax̂k = (I −Aφk−1(A))r0 = pk(A)r0 (2.2)

where pk(τ) = 1 − τφk−1(τ) is the residual polynomial. As a result, ‖pk(A)‖ is a

bound on the size of ‖rk‖.

For ‖pk(A)‖ to be small, the magnitude of pk must be small over some region in

the complex plane containing the spectrum of A, σ(A). Suppose ‖pk(A)‖ = 0; then

Aφk−1(A) = I,

which means that A−1 = φk−1(A). So, for any λj ∈ σ(A),

φk−1(λj) =
1

λj
.

Now suppose that ‖pk(A)‖ is small; then it may be assumed that φk−1(λj) ≈ 1/λj

for any λj ∈ σ(A), which means that φk−1(A) ≈ A−1. This makes the iteration

polynomial φk−1 a good candidate for a fixed-polynomial operator to approximate

A−1.

If the spectrum of A is tightly clustered, then ‖pk(A)‖ can be small for a low-

degree polynomial. Since this is not an attribute of most matrices, preconditioning

must be employed to enable the construction of a low-degree polynomial pk that is

small in norm. Right preconditioning modifies the original linear system (2.1) by

multiplying A, on the right, by a matrix M−1 which gives

AM−1x̂ = b. (2.3)

To obtain the approximate solution to the original system one preconditioner solve

Mx = x̂ is required. The residual (2.2) can now be written as

rk = (I −AM−1φk−1(AM
−1))r0 = pk(AM

−1)r0.

-
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The norm of the residual polynomial pk(AM
−1) can be made small if the spectrum

of AM−1 is tightly clustered. This requires a decent preconditioner for A that has

similar spectral properties, resulting in AM−1 having a few sets of tightly clustered

eigenvalues. Ideally the spectrum of the preconditioner M would closely approximate

the spectrum of A.

Right preconditioning GMRES slightly changes the form of the fixed-polynomial

operator. If ‖pk(AM
−1)‖ is small, then ‖I − AM−1φk−1(AM

−1)‖ is small. Us-

ing the earlier argument, it can be concluded that A−1 can be approximated by

M−1φk−1(AM
−1).

2.3 The GMRES Fixed-Polynomial Operator

The GMRES iteration polynomial φk−1 is constructed through the k-step Arnoldi

factorization (1.6). Consider the right-preconditioned linear system (2.3) and assume

the zero vector as an initial guess, then r0 = b and

Mx̂k ∈ Kk(AM
−1, b).

The approximate solution x̂k can be written in terms of the Krylov orthogonal basis

Vk for Kk(AM
−1, b), x̂k = M−1Vky for some y = [η1, η2, · · · , ηk]

T ∈ IRk. Assume

the right-hand side vector b is of unit length, then each Krylov basis vector can be

computed using the equation

vj+1 =
1

γj+1,j
[AM−1vj −

j
∑

i=1

viγi,j] = φ̂j(AM
−1)b, (2.4)

for j = 1, 2, · · · , k − 1, where γi,j = Hk(i, j). Now it can be seen that

x̂k = M−1φk−1(AM
−1)b,

where φk−1(AM
−1) =

∑k−1
j=0 ηj+1φ̂j(AM

−1).

Examining the GMRES iteration polynomial in this way illuminates the idea that

it can be easily reconstructed from just Hk and y. The coefficients of the polynomial

----
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φ̂j(AM
−1) are determined by Gram-Schmidt and stored in the j-th column of Hk.

These polynomials can then be linearly combined using the weights contained in y

to obtain the GMRES iteration polynomial. It should be noted that Hk and y are

determined by the right-hand side vector b. Therefore, the choice of this vector greatly

affects the polynomial φk−1(AM
−1). While this is an issue to be explored in future

research, b is chosen to be a random unit vector in this thesis.

The ability to easily reconstruct the GMRES iteration polynomial makes it a

promising fixed-polynomial operator for approximating A−1. The polynomial can be

constructed through the solution of (2.3) with a random unit vector b. After solving

this linear system to a specified tolerance, Hk and y are stored. Then applying

M−1φk−1(AM
−1) to any arbitrary vector v is the same as building the original Krylov

basis, as illustrated in Figure 2.1. Then

w = M−1φk−1(AM
−1)v

is an approximate solution to the linear system Ax = v.

Input: (Hk,y,v)
Output: w = M−1φk−1(AM

−1)v

1. v̂1 = v

2. for j = 1, 2 · · · , k − 1

2.1. v̂j+1 = 1
γj+1,j

[AM−1v̂j −
∑j

i=1 v̂iγi,j]

3. end

4. w = M−1
∑k

j=1 ηj v̂j

Figure 2.1: Applying the GMRES iteration polynomial

There are some important observations about the application of the GMRES

iteration polynomial. The vectors constructed through this process (Figure 2.1) are

not orthogonal. Furthermore, all of them must be stored during the construction.
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This is a result of the long-term recurrence used by GMRES. An iteration polynomial

constructed from a short-term recurrence method, like Bi-Conjugate Gradient (BiCG)

[48] or Quasi-Minimal Residual (QMR) [12], would only require the two most recent

vectors to be stored. A short-term recurrence is clearly a more efficient approach for

constructing a fixed-polynomial operator, so it will be considered in future work.

2.4 Reconstructing Eigenpairs

Reconstructing approximate eigenpairs of A from a fixed-polynomial operator is

straightforward. Let σ be the shift in a shift-invert transformation of the standard

eigenvalue problem, where Aσ = A− σI and Mσ = M − σI. If IRA is applied to the

fixed-polynomial operator M−1
σ φ(AσM

−1
σ ), the resulting k-step Arnoldi factorization

is

M−1
σ φ(AσM

−1
σ )Vk = VkHk + feT

k .

To find the eigenvalues closest to the shift, select the eigenvalues of largest magnitude

of Hky = yθ and let x = Vky. Then for each eigenpair (θ, y) of Hk,

M−1
σ φ(AσM

−1
σ )x = xθ + feT

k y = x̂θ, (2.5)

where x̂ = x+ f
eT
k

y

θ
is the purified eigenvector. Now an approximate eigenpair (λ, q)

of A can be obtained from

Aσx̂− x̂
1

θ
= Ax̂− x̂(σ +

1

θ
), (2.6)

where q = x̂/‖x̂‖ and λ = σ + 1
θ
.

The reconstruction is similar for the generalized eigenvalue problem. Let σ be the

shift, Aσ = A − σB, and Mσ = M − σB. The fixed-polynomial operator for this

problem is

(A− σB)−1B ≈ M−1
σ φ(AσM

−1
σ )B.
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Applying IRA to this operator results in the factorization

M−1
σ φ(AσM

−1
σ )BVk = VkHk + feT

k .

Using the same algebraic manipulation as before, for each eigenpair (θ, y) of Hk,

M−1
σ φ(AσM

−1
σ )Bx = xθ + feT

k y = x̂θ, (2.7)

where x̂ is the purified eigenvector. Then the approximate eigenpair (λ, q) can be

obtained from

Aσx̂−Bx̂
1

θ
= Ax̂−Bx̂(σ +

1

θ
), (2.8)

where q = x̂/‖x̂‖ and λ = σ + 1
θ
.

There are some theoretical and practical issues that should be mentioned. Clearly,

the formula for directly calculating the approximate eigenvalues (2.6) cannot be ob-

tained from equation (2.5). This is because the computational formulas discussed

here ignore important error terms which will be addressed in the next section. Fur-

thermore, in practice it has been found that computing the eigenvalue with a Rayleigh

quotient using the purified eigenvector is better than calculating the eigenvalue di-

rectly using (2.6) or (2.8). This can be attributed to specific properties of the Rayleigh

quotient as discussed in [49].

2.5 Accuracy and Convergence Heuristics

While computing an approximate eigenpair of A from a fixed-polynomial operator

is straightforward, it is unclear how good the approximation is. Furthermore, it is

also unclear whether the eigenpairs of a fixed-polynomial operator will converge to

the eigenpairs of A, even if they are computed exactly. This section will discuss

accuracy and convergence heuristics, which indicate a large dependence upon the

residual polynomial of the iterative method used to construct the fixed-polynomial
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operator. These heuristics are derived from equation (2.5) to obtain the error bounds

that are ignored in (2.6) and (2.8).

If IRA is applied to a fixed-polynomial operator M−1
σ φ(AσM

−1
σ ), reconstructing

the eigenpairs of A results in an equation (2.5) which can be rewritten as

x̂θ − A−1
σ x̂ = M−1

σ φ(AσM
−1
σ )x−A−1

σ x̂. (2.9)

Multiplying both sides of (2.9) by Aσ and dividing by θ results in

Aσx̂− x̂
1

θ
=

1

θ
[AσM

−1
σ φ(AσM

−1
σ )x− x̂].

Using the definition of the purified eigenvector x̂ = x + f
eT
k

y

θ
, this equation can be

rewritten in terms of the residual polynomial p

Aσx̂− x̂
1

θ
= −

1

θ
p(AσM

−1
σ )x− f

eT
k y

θ2
, (2.10)

where p(AσM
−1
σ ) = I − AσM

−1
σ φ(AσM

−1
σ ). Now the left-hand side of (2.10) can be

rewritten using (2.6) in terms of the approximate eigenpair (λ, q) of A

Aq − qλ = −
1

θ‖x̂‖
p(AσM

−1
σ )x− f

eT
k y

θ2‖x̂‖
, (2.11)

The accuracy bound for the computed eigenpair (λ, q) of A is obtained by taking the

norm of (2.11)

‖Aq − qλ‖ =

∥

∥

∥

∥

1

θ‖x̂‖
p(AσM

−1
σ )x+ f

eT
k y

θ2‖x̂‖

∥

∥

∥

∥

≤
1

|θ|‖x̂‖
‖p(AσM

−1
σ )‖‖x‖+

‖f‖|eT
k y|

|θ|2‖x̂‖
. (2.12)

An accuracy bound for the generalized eigenvalue problem can be similarly ob-

tained. Again, for a shift σ, define Aσ = A−σB, and Mσ = M −σB. Then equation

(2.7) can be rewritten as

x̂θ −A−1
σ Bx̂ = M−1

σ φ(AσM
−1
σ )Bx− A−1

σ Bx̂. (2.13)

Multiplying both sides of (2.13) by Aσ and dividing by θ results in

Aσx̂−Bx̂
1

θ
=

1

θ
[AσM

−1
σ φ(AσM

−1
σ )Bx−Bx̂].
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Using the definition of the purified eigenvector, this equation can be rewritten in

terms of the residual polynomial p

Aσx̂−Bx̂
1

θ
= −

1

θ
p(AσM

−1
σ )Bx− Bf

eT
k y

θ2
. (2.14)

Now the left-hand side of (2.14) can be rewritten using (2.8) in terms of the approx-

imate eigenpair (λ, q) of the matrix pencil (A,B)

Aq − Bqλ = −
1

θ‖x̂‖
p(AσM

−1
σ )Bx−Bf

eT
k y

θ2‖x̂‖
. (2.15)

The accuracy bound for the computed eigenpair (λ, q) of (A,B) is

‖Aq − Bqλ‖ =

∥

∥

∥

∥

1

θ‖x̂‖
p(AσM

−1
σ )Bx+Bf

eT
k y

θ2‖x̂‖

∥

∥

∥

∥

≤
1

|θ|‖x̂‖
‖p(AσM

−1
σ )‖‖Bx‖+

‖Bf‖|eT
k y|

|θ|2‖x̂‖
. (2.16)

Since the magnitude of the Ritz value θ is expected to be large, the first term in the

bounds (2.12) and (2.16) are of primary concern. Unfortunately, the iterative method

used to construct p can only offer a bound for ‖p(AσM
−1
σ )v1‖, where v1 is the initial

vector used to construct the polynomial. It is not obvious how to bound the residual

polynomial ‖p(AσM
−1
σ )‖. However, this is necessary for determining the accuracy of

the approximate eigenpairs computed by IRA applied to a fixed-polynomial operator.

The tolerance used to build the fixed-polynomial operator can only serve as a rough

estimate of how well the spectral transformation is being approximated. Further-

more, nothing is known at this time about the convergence of these fixed-polynomial

operators to the spectral transformation they are approximating.

2.6 Summary of Algorithm

The simplicity of implementing this preconditioning scheme with any Krylov sub-

space method is appealing (Figure 2.2). The GMRES fixed-polynomial operator is

constructed through one linear solve with a random right-hand side. It is then ap-

plied during every Arnoldi step until convergence. So, the cost and storage for this
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Input: A, B, M, σ, nev, tol, maxdeg
Output: (λj, x̂j) j = 1, · · · , nev eigenpairs of (A,B) closest to σ.

Let Aσ = A− σB, Mσ = M − σB.

1. Construct the operator

1.1. Let v1 be a random vector, where ‖v1‖ = 1.

1.2. Use GMRES to solve Aσx = Bv1 with Mσ as a right
preconditioner. Run GMRES until relative residual falls
below specified tolerance tol, or deg(φ(AσM

−1
σ )) > maxdeg.

1.3. Output Hk, and y.

2. Compute eigenvectors of the operator
Use the fixed-polynomial operator M−1

σ φ(AσM
−1
σ ) with IRA to

compute the eigenvectors corresponding to the nev eigenvalues of
(A,B) closest to σ.

3. Recover eigenvalues of A
For each purified approximate eigenvector x̂j , use the Rayleigh

quotient
x̂H

j Ax̂j

x̂H
j Bx̂j

to compute the approximate eigenvalue λj.

Figure 2.2: Algorithm for implementing IRA with GMRES fixed-polynomial operator

operator is fixed once it is constructed. In practice, the dimension of the polynomial

is restricted to keep the cost of the operator low.

Some observations can be made about this algorithm. It can be extended so that

any iteration polynomial can be constructed in Step 1 and used in Step 2. Short-term

recurrence methods like BiCG and QMR construct iteration polynomials that are

less computationally expensive, but it is not known how effective these polynomials

would be as a fixed operator. Restriction of the dimension of the polynomial in Step 1

emphasizes the need for a high quality preconditioner. Furthermore, it requires that

provisions are made if the spectral transformation is not adequately approximated

by the fixed-polynomial operator. These two issues are prime candidates for future

research.



Chapter 3

Numerical Results

Several test cases are presented to illustrate the promising numerical behavior of this

preconditioning scheme. These include both Hermitian and non-Hermitian eigenvalue

problems. For some of these test cases, results are obtained for two other current

eigenvalue methods: Jacobi-Davidson [41] and Locally Optimal Block Preconditioned

Conjugate Gradient (LOBPCG) [17]. These methods will be introduced in Section

3.1.

To provide a full comparison of these methods both performance and accuracy are

analyzed. Performance is gauged by matrix-vector products and accuracy is measured

by the Ritz residual or relative error for each approximate eigenvalue. When possible,

the results are accumulated over an increasing problem size to detect any trends. To

provide consistency to these results, a set of parameters are chosen and held constant

for each method. These parameters and their settings are given in Section 3.2.

In Section 3.3 a large-scale Laplacian operator is used to compare the GMRES

fixed-polynomial operator to preconditioned GMRES started anew for each linear

solve. Then IRA with the GMRES fixed-polynomial operator is compared to the

Jacobi-Davidson method and LOBPCG using a small-scale Laplacian operator in

Section 3.4.

Two non-Hermitian eigenvalue problems were chosen to test the ability of this

28
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preconditioning scheme in finding the rightmost eigenvalues or eigenvalues of largest

imaginary part. In Section 3.5, linear stability analysis is performed on a wind-driven

barotropic ocean model. In Section 3.6, the eigenvalue of largest imaginary part from

a discretized sequence of 2D scalar wave equations is computed. This information

can be used to accelerate the solution of a 2D dynamic rate equation model for a

semiconductor laser. For both these applications, the results are compared with the

Jacobi-Davidson method.

3.1 Current Methods

There are several eigenvalue methods that can be used for comparison in illustrat-

ing the promising numerical behavior of this preconditioning scheme. Due to the

availability of software, only two of the most widely used methods were chosen for

comparison: Jacobi-Davidson and Locally-Optimal Block Preconditioned Conjugate

Gradient (LOBPCG).

3.1.1 Jacobi-Davidson

The Jacobi-Davidson [41] method is a subspace iteration method for computing a

few eigenvalues of a non-Hermitian matrix, and their corresponding eigenvectors. It is

best understood through the discussion of subspace iteration and Davidson’s method.

This will motivate the introduction of Jacobi’s orthogonal component correction as an

approach for addressing the weakness of the correction vector in Davidson’s method.

The end result is a combination of the two methods, known as Jacobi-Davidson.

Subspace iteration is another generalization of the power method that treats a

block of vectors simultaneously. The shift-invert variant of this iteration is described

in Figure 3.1. By combining steps (3.2) and (3.3), it can be seen that H = V HAV .

The Ritz pairs (θ, x) can then be computed from H exactly like those computed in

Arnoldi’s method.
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Input: (A,W ∈ lCn×k, tol)
Output: k approximate eigenpairs (θj, xj) of A.

1. Factor [V,R] = qr(W )

2. Set H = 0

3. while (‖AV − V H‖ >tol‖H‖),

3.1. µ = Select shift(H)

3.2. Solve (A− µI)W = V

3.3. Factor [V+, R] = qr(W )

3.4. H = V H
+ V R−1 + µI

3.5. V ← V+

4. end

5. Compute k Ritz pairs (θj , xj) of A.

Figure 3.1: The Generalized Shifted Inverse Power method

The most important observation about subspace iteration is that the construction

of the subspace S = R(V ) is separate from the construction of the Ritz vectors. This

means that the linear solve in step (3.2) can be computed using an iterative method.

As a result, the projected matrix H in step (3.4) would have to be obtained directly

by forming H = V H
+ AV+. Using an inexact solve for step (3.2) also means abandoning

the Krylov structure, resulting in the loss of efficiency in obtaining error estimates

for the Ritz pairs.

Subspace iteration also has some significant advantages over Krylov subspace pro-

jection. Introducing inexact solves in step (3.2) may affect convergence, but the

theoretical properties of this iteration do not require a set accuracy. This is contrary

to the effect of inexact solves in the Krylov setting. For a sequence of closely related

problems, the entire subspace basis from the previous problem can be used at the

initial basis of the next problem. Meanwhile, Krylov subspace methods need a sin-

gle starting vector so they can only use a linear combination of these basis vectors.
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Finally, constructing vectors to augment the subspace can be done very generally.

Instead of solving the shift-invert equations directly, defect corrections can be con-

structed to augment the subspace.

Davidson’s Method [8] is based on this idea. Given a k-dimensional subspace

Sk = R(Vk), where the columns of Vk are orthogonal and θ ∈ σ(V H
k AVk) is the

largest Ritz value of the projected matrix A, expand the subspace with a residual

defect correction to improve the approximation of θ. Suppose the Ritz pair (θ, x̂) is

the current approximation to the eigenpair (λ, x) and (δ, z) is the correction pair that

solves

A(x̂+ z)− (θ + δ)(x̂+ z) = 0, (3.1)

where x̂Hz = 0. Using the residual r = Ax̂− θx̂, equation (3.1) can be rewritten as

(A− θI)z = −r + x̂δ + zδ. (3.2)

Davidson suggested approximating (A−θI) with (DA−θI), where DA is the diagonal

of A. Furthermore, he chose to ignore the first- and second-order terms on the right-

hand side of equation (3.2). An approximate residual correction z to expand the

subspace Sk can then be obtained by solving

(DA − θI)z = −r. (3.3)

Davidson’s method can be quite successful in finding the dominant eigenvalues

of strongly diagonally dominant matrices. This can be attributed to the fact that

(DA − θI)−1 is a good preconditioner for r if A is diagonally dominant. However, if

(DA− θI) is replaced with (A− θI) in equation (3.3) and exactly solved, then z = x̂.

This solution does not expand the search space, contradicting the idea that solving

equation (3.3) is a preconditioning step.

The Jacobi-Davidson method improves upon Davidson’s method by restricting the

residual correction to the orthogonal complement of the existing space. Consider the

projection onto the orthogonal complement of the current Ritz vector (I − x̂x̂H) and
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the current Ritz value as a Rayleigh quotient θ = x̂HAx̂. If the correction equation

(3.2) is multiplied on the left by this projection and x̂Hz = 0, the resulting equation

is

(I − x̂x̂H)(A− θI)(I − x̂x̂H)z = (I − x̂x̂H)(−r + x̂δ + zδ) (3.4)

= −r + zδ (3.5)

≈ −r (3.6)

Only the second-order term zδ appears in the equality (3.5), proving that this formu-

lation is a second-order correction z = (I − x̂x̂H)z that is orthogonal to x̂.

The Jacobi-Davidson method is presented in Figure (3.2) for a Hermitian oper-

Input: (A, v0, tol)
Output: Approximate eigenpair (θ, x) such that ‖Ax− xθ‖ < tol.

1. x = v0/‖v0‖, w = Ax, θ = xHw

2. H1 = [θ], V1 = [x], r = w − θx

3. while (‖r‖ >tol),

3.1. Solve (approximately) for z⊥x
(I − xxH)(A− θI)(I − xxH)z = −r

3.2. c = V H
j z, z = z − Vjc

3.3. vj+1 = z/‖z‖, Vj+1 = [Vj vj+1]

3.4. w = Avj+1

3.5.
[

h
α

]

= V H
j+1w, Hj+1 =

[

Hj h
hH α

]

3.6. Compute all eigenpairs of Hj+1, select desired pair (θ, y).

3.7. x← Vj+1y

3.8. r = Ax− xθ

4. end

Figure 3.2: The Jacobi-Davidson method for A = AH

ator A. The projected correction equation (3.1.1) is solved using a preconditioned
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iterative method. This correction is then used to expand the search space. The

presented algorithm expands the subspace until convergence, which is not computa-

tionally practical. Restarting techniques are usually employed to keep the memory

usage down. Furthermore, deflation techniques allow this method to find more than

one eigenpair by forcing the subspace to be orthogonal to the converged eigenvectors.

JDQR and JDQZ [11] are implementations of the Jacobi-Davidson method that em-

ploy restarting and deflation in solving standard and generalized eigenvalue problems,

respectively.

3.1.2 Locally-Optimal Block Preconditioned Conjugate Gra-

dient

LOBPCG [17] is a method for computing a few eigenvalues of a Hermitian matrix,

and their corresponding eigenvectors. Based on the local optimization of a three-

term recurrence, this method is best understood through the introduction of precon-

ditioned simultaneous iteration. This general framework requires an iterative solver

like the preconditioned Conjugate Gradient (PCG) method to enlarge the trial sub-

space for updating the current eigenvector approximations. The scalar iteration pa-

rameters needed to compute this update are then chosen to be locally optimal using

the Rayleigh-Ritz procedure.

Consider the generalized eigenvalue problem

Ax = Bxλ, (3.7)

where A is Hermitian positive definite. If B is not positive definite, then some of the

eigenvalues of the generalized eigenvalue problem (3.7) may be infinite. In this case,

an alternative form of the generalized eigenvalue problem is considered,

Bx = Axµ. (3.8)

The infinite eigenvalues of the original problem (3.7) are now the zero eigenvalues of

the alternative form (3.8). The alternative form of the eigenvalue problem will be
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used in this section for the development of the LOBPCG method. Furthermore, the

matrix M will refer to a preconditioning matrix that approximates A−1, like those

used with preconditioned iterative solvers for linear systems.

Preconditioned Simultaneous iteration can be defined as a generalized polynomial

method that treats a group of vectors simultaneously

x
(k)
j = Pmk

(M−1A,M−1B)x
(0)
j , j = 1, · · · , m, (3.9)

where Pmk
is a polynomial of degree mk and x

(0)
j are the initial vectors. The poly-

nomial Pmk
does not have to be the same for different values of j. When it is,

preconditioned simultaneous iteration (3.9) is equivalent to subspace iteration. A re-

cursive procedure (Figure 3.3) can be developed using information from the subspace

spanned by the group of vectors x
(k)
j ,

S(k) = span{x(k)
1 , x

(k)
2 , · · · , x(k)

m },

to construct new initial vectors for simultaneous iteration (3.9). Usually, the Rayleigh-

Ritz procedure is used to extract information from the subspace S(k).

Input: (A,B,M, x
(0)
1 , x

(0)
2 , · · · , x(0)

m )

Output: Approximate eigenpairs (µ
(k)
j , x

(k)
j ) of the largest eigenvalues

and corresponding eigenvectors of Bx = Axµ.

1. for i = 1, 2, · · · , until convergence

1.1. Select x
(0)
j , j = 1, · · · , m

1.2. Iterate k steps to compute x̂
(k)
j = Pmk

(M−1A,M−1B)x
(0)
j ,

j = 1, · · · , m.

1.3. Use the Rayleigh-Ritz procedure on B−µA with the subspace

S(k) = span{x̂(k)
1 , · · · , x̂(k)

m } to compute Ritz pairs (µ
(k)
j , x

(k)
j ).

2. end

Figure 3.3: The block preconditioned eigensolver
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For Hermitian matrices, most iterative procedures for computing m eigenvectors

corresponding to a chosen set of m eigenvalues construct a matrix V ∈ lCn×m with

orthonormal columns, which are approximations to the wanted eigenvectors. The

Rayleigh-Ritz procedure (Figure 3.4) can be used to increase the accuracy of these

eigenvector estimates. In fact, the Ritz values and Ritz vectors obtained with this

procedure are the optimal approximations given only the information contained in V

[30].

Input: (A, V ∈ lCn×m), where A = AH and V HV = I
Output: Approximate eigenpairs (µj, xj) of A.

1. W = AV

2. H = V HW

3. Compute the m eigenpairs (µj, yj) of H

4. Compute the m Ritz pairs (µj, xj = V yj) of A and corresponding
residuals rj = Axj − xjµj

Figure 3.4: The Rayleigh-Ritz procedure

Under the general framework of block preconditioned eigensolvers (Figure 3.3),

the defining factor for any method is the polynomial used in step (1.2). One option

is to use the polynomial constructed through the preconditioned Conjugate Gradient

(PCG) method. For finding the smallest eigenvalues of A − λB, it is commonly

implemented using two linked two-term recurrences

p(i) = w(i) + β(i)p(i−1), x(i+1) = x(i) + α(i)p(i),

where the scalar α(i) is chosen using a line search to minimize the Rayleigh quotient

of x(i+1) and β(i) is computed to make the directions p(i) conjugate. LOBPCG (Figure

3.5) uses a variant of the PCG polynomial to find the largest eigenvalues of B−µA,

p(i) = x(i) − τ (i−1)x(i−1), x(i+1) = α(i)w(i) + τ (i)x(i) + γ(i)p(i),
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Input: (A,B,M, x
(0)
1 , x

(0)
2 , · · · , x(0)

m )

Output: Approximate eigenpairs (µ
(k)
j , x

(k)
j ) of the largest eigenvalues

and corresponding eigenvectors of Bx = Axµ.

1. Select x
(0)
j and set p

(0)
j = 0, j = 1, · · · , m

2. for i = 1, 2, · · · , until convergence

2.1. µ
(i)
j = ((x

(i)
j )HBx

(i)
j )/((x

(i)
j )HAx

(i)
j ), j = 1, · · · , m

2.2. rj = Bx
(i)
j − µ

(i)
j Ax

(i)
j , j = 1, · · · , m

2.3. w
(i)
j = M−1rj , j = 1, · · · , m

2.4. Use the Rayleigh-Ritz procedure onB−µA using the subspace

span{w(i)
1 , · · · , w(i)

m , x
(i)
1 , · · · , x

(i)
m , p

(i)
1 , · · · , p

(i)
m }.

2.5. x
(i+1)
j =

∑m
k=1 α

(i)
k w

(i)
k + τ

(i)
k x

(i)
k + γ

(i)
k p

(i)
k , j = 1, · · · , m

(the j-th Ritz vector corresponding to the j-th largest Ritz
value)

2.6. p
(i+1)
j =

∑m
k=1 α

(i)
k w

(i)
k + γ

(i)
k p

(i)
k

3. end

Figure 3.5: The Locally-Optimal Block Preconditioned Conjugate Gradient method

where w(i) = M−1(Bx(i) − µ(i)Ax(i)) and µ(i) = ((x(i))HBx(i))/((x(i))HAx(i)). The

scalars τ (i) and γ(i) are chosen to maximize the Rayleigh quotient x(i) using the

Rayleigh-Ritz procedure. This method exploits the fact that the Rayleigh-Ritz pro-

cedure is an inexpensive way to compute the local minimization of the Rayleigh

quotient for larger dimensional subspaces.

3.2 Parameter Settings

With one exception, the MATLAB implementation of each of these methods is used

to obtain the results presented in this thesis. They were treated as “out-of-the-box”

type routines. No prior knowledge about these methods is assumed, so these routines
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are not tweaked to obtain the best performance on each problem. The presented

results are meant to be impartial and fair comparisons illustrating the characteristics

of using a fixed-polynomial operator with IRA.

For some numerical examples, a comparison of these three methods is made by

obtaining the most accurate approximate eigenvalues for a set computational cost.

LOBPCG and JDQR adhere to a set cost by setting the maximum number of itera-

tions accordingly. However, JDQR computes desired eigenvalues one-at-a-time to the

desired tolerance. If the tolerance is set too high, not all of the desired eigenvalues

will be calculated. Thus, the tolerance for JDQR varies for each problem. The setting

for any parameter that varies will be defined in each section.

• Jacobi-Davidson (JDQR/JDQZ)

Parameter Setting Description

k 5 Number of desired eigenvalues

sigma 0 Shift

Tol varies Convergence tolerance

jmin 10 Minimum dimension search space

jmax 25 Maximum dimension search space

There are many more parameters that can be set with JDQR and especially

with JDQZ. The default setting can be assumed for any parameter that is not

stated here.

• Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)

Parameter Setting Description

Uini randn(n,5) Initial guess, n is dimension of matrix

mytol 10−12 Convergence tolerance

maxit varies Maximum number of iterations
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• IRA with GMRES Fixed-Polynomial

Parameter Setting Description

k 5 Number of desired eigenvalues

m 25 Maximum dimension of Krylov subspace

sigma 0 Shift

maxit varies Maximum number of iterations

gtol varies Residual tolerance of GMRES polynomial

maxdeg 25 Maximum degree of GMRES polynomial

3.3 Large-Scale Laplacian

In this example the smallest five eigenvalues of a discrete approximation to the self-

adjoint linear operator ∆u are computed using ARPACK [20]. This operator is re-

stricted to the unit square

Ω := {(x, y) ∈ IR2 : 0 < x < 1, 0 < y < 1}

and subject to Dirichlet boundary conditions. Discretization by finite differences with

a grid size h = 1
N+1

gives a matrix of the form

A =























TN −IN 0 · · · 0

−IN TN −IN
...

0
. . .

. . .
. . . 0

... −IN TN −IN

0 · · · 0 −IN TN























where IN is the identity matrix in IRN×N and

TN =























4 −1 0 · · · 0

−1 4 −1
...

0
. . .

. . .
. . . 0

... −1 4 −1

0 · · · 0 −1 4























.
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The results are compared for IRA in regular mode, where the larger Ritz values are

used as the roots of the restarting polynomial ψ, and shift-invert mode. For the shift-

invert mode, the GMRES fixed-polynomial operator is compared to preconditioned

GMRES started anew for each linear solve. A block Jacobi preconditioner is used

for both the fixed-polynomial operator and preconditioned GMRES solver. This

preconditioner is applied symmetrically so that an efficient three-term recurrence can

be employed. For the preconditioned GMRES solver, results are compared when it

is restarted, GMRES(25), and not restarted, GMRES(∞). Both GMRES(25) and

GMRES(∞) are applied with a relative tolerance of 10−6. The fixed-polynomial

operator is constructed with a relative tolerance of 10−2.

For this example, it is observed that IRA with the GMRES fixed-polynomial op-

erator is the best blend of performance and accuracy. As the problem size increases,

it uses far fewer matrix-vector products (Figure 3.6) than IRA in regular mode, GM-
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IRA, Regular Mode
GMRES(25), tol = 10−6

GMRES(∞), tol = 10−6

Figure 3.6: Matrix-vector products needed to compute smallest five eigenvalues

RES(25), or GMRES(∞). Moreover, IRA applied to the GMRES fixed-polynomial
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operator is just as accurate in computing all five eigenvalues (Figure 3.7) as the regular
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Figure 3.7: Ritz residual for the smallest five approximate eigenvalues

mode and more accurate than applying preconditioned GMRES.

The comparison of both preconditioned GMRES solvers serves to illustrate the

tradeoff between storage constraints and computational cost. As a Krylov subspace

method, it is impossible for GMRES to know in advance how large the subspace must

be to obtain a good solution to the linear system. GMRES(∞) assumes that there

is enough storage to keep all the basis vectors for the subspace, while GMRES(25)

assumes a moderate amount of available storage. While restarting GMRES slows

down the convergence, it requires a fixed amount of storage. Not restarting GM-

RES requires an increasing amount of storage for the Krylov basis, especially as the

problem size grows (Figure 3.7). Regardless, neither preconditioned GMRES solver

compares to using the GMRES fixed-polynomial operator.

~··· ·.···.··.··.··.··.· . ···· 1 E/ .. C O <; 
f > · . · . . . / l E o> <>/ / 

E c/ 
0 

c cl 1. . . .. . . . / / 
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3.4 Small-Scale Laplacian

In this example the smallest five eigenvalues of a discrete approximation to the

self-adjoint linear operator ∆u are computed using IRA with the GMRES fixed-

polynomial operator and the well-known eigensolvers Jacobi-Davidson (JDQR) and

LOBPCG. The discretization and preconditioning of the operator are the same as in

the previous section (3.3). However, the dimension of the matrices in this example

are slightly smaller, varying from 625 to 19600.

For this example there are two cost levels determined by the number of matrix-

vector products: 500 (Figure 3.8) and 1000 (Figure 3.9). LOBPCG and JDQR
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Figure 3.8: Relative error for the smallest five approximate eigenvalues

(500 matrix-vector products)

adhere to these cost levels by setting the maximum number of iterations accordingly.

However, JDQR computes the five eigenvalues one-at-a-time to the desired tolerance.

If the tolerance is set too high, not all five eigenvalues will be calculated. Thus, the
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tolerance for JDQR is different for each matrix dimension so that all five eigenvalues

were calculated to the highest accuracy possible. The GMRES fixed-polynomial oper-

ator is constructed with a relative tolerance of 10−2. Other cost levels were analyzed,

but these two are representative of the overall observed trends.

The results indicate that if five eigenvalues are required, then IRA with the fixed-

polynomial operator computes the smallest eigenvalue more accurately than JDQR

or LOBPCG, especially when the matrix-vector products are held to 500 (Figure 3.8).

However, the relative error is higher for eigenvalues further away from the shift. This

trend is similarly seen with LOBPCG. As would be expected, JDQR computes all

five of the eigenvalues to the same accuracy.
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Figure 3.9: Relative error for the smallest five approximate eigenvalues

(1000 matrix-vector products)

This experiment is designed to compare these three methods with one particular

goal: compute the same number of eigenvalues for the same cost. These methods

are then compared by analyzing the accuracy of those computed eigenvalues. The
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design of this experiment illustrates a perspective that may be unfair to JDQR. This

is because Jacobi-Davidson is intended to compute one eigenvalue at a time to a

prescribed accuracy, not multiple eigenvalues to varying precisions.

Another perspective is to compute a few eigenvalues for a fixed accuracy, where

the number of computed eigenvalues is less important and the computational cost

is still fixed. Figure 3.9 includes information about the accuracy and number of

eigenvalues computed when the tolerance is held constant with JDQR. As the problem

size increases, JDQR cannot compute all five eigenvalues to the set tolerance. Only

the information from the computed eigenvalues is displayed in Figure 3.9. If no data is

plotted, then it can be assumed that the eigenvalue was not computed for this matrix

dimension. The results indicate that with JDQR the accuracy can be maintained for

the smallest eigenvalue if the number of computed eigenvalues is not as important.

3.5 Wind-Driven Barotropic Ocean Model

This example will consider the stability of a single homogeneous layer of fluid driven by

a sinusoidal wind stress. This fluid is enclosed by a rectangular basin of uniform depth

on a mid-latitude β-plane, where the effect of the earth’s sphericity is modeled by a

linear variation of the planetary vorticity [31]. IRA with the GMRES fixed-polynomial

and Jacobi-Davidson (JDQR) will be used to perform the stability analyses on this

wind-driven barotropic ocean model. The model will be introduced first, followed by

the definition of its parameters. Some interesting behavior of the fixed-polynomial

operator is presented before results are discussed.

Consider the potential vorticity/streamfunction formulation of the barotropic cir-

culation problem [25]

∂ψ

∂t
+ J [ψ,∇2ψ] + β

∂ψ

∂x
= ν∇4ψ +

1

ρ0H
∇× τ. (3.10)

Here, ψ is the streamfunction, τ is the wind stress, β is the meridional gradient of

the planetary vorticity, ν is the eddy viscosity, ρ0 is the uniform ocean density, and
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H is the uniform depth of the ocean. J is the Jacobian operator

J [ψ,∇2ψ] = −
∂ψ

∂y

∂∇2ψ

∂x
+
∂ψ

∂x

∂∇2ψ

∂y
.

The boundary conditions for (3.10) are free-slip

∇2ψ = 0 and
∂2∇2ψ

∂n2
= 0 on ∂Ω,

where n is normal to the boundary.

This model idealizes the domain to a closed rectangular ocean basin Ω where the

wind forcing τ is sinusoidal (Figure 3.10). This forcing produces a double-gyre with

an anticyclonic gyre in the northern basin and a cyclonic gyre in the southern basin,

as depicted by the streamfunctions in Figure 3.11.

y

xτ

x=L
y=−L

x=0

y=0

y=+L
Ω

 (b)(a)

Figure 3.10: Layout of (a) domain and (b) wind stress forcing

The barotropic model (3.10) is nondimensionalized using a length scale corre-

sponding to the horizontal extent of the domain L and a velocity scale U given by

the Sverdrup relation [28]

U =
πτ0

ρ0HβL
.
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Figure 3.11: Steady-state streamfunctions depicting double-gyre structure;

(a) Ro = .0001, (b) Ro = .0016, (c) Ro = .0036

A time-scale corresponding to L/U allows (3.10) to be rewritten as

∂q

∂t
+ J [ψ, q] = sin(πy)−

ν

βL3
∇4ψ, (3.11)

where q is the potential vorticity

q = Ro∇2ψ + y,

and Ro = U
βL2 is the Rossby number.

A linear stability analysis of this barotropic flow model requires linearizing (3.11)

about a steady state. This linearized problem is then discretized on the rectangular

domain using the Arakawa discretization [1] for the Jacobian and centered differences

for the other terms. Dirichlet boundary conditions are imposed. The resulting stan-

dard eigenvalue problem is sparse and the spectrum of A is complex. The stability

of this model is determined by the right-most eigenvalues of the discretized operator
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A. An example of the spectrum and sparsity pattern of the linearized model is given

in Figure 3.12.
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Figure 3.12: Sparsity pattern and spectrum of linearized model; dim = 903

The success of this preconditioning scheme depends upon the ability of the fixed-

polynomial operator to approximate the spectral transformation. Restricting the

degree of the polynomial has a definite affect on this. Furthermore, the quality of the

preconditioner can profoundly impact the accuracy of this operator. A comparison of

spectra from a sequence of restricted-degree, fixed-polynomial operators is displayed

for various preconditioners. The base case is to analyze spectra from polynomials

constructed without any preconditioner (Figure 3.13). For this example, it is obvious

that a low-degree polynomial does not contain enough information about the spectrum

of the original matrix.

The quality and availability of a preconditioner is very important in the construc-

tion of a low-degree, fixed-polynomial operator. Previous results have shown that

by using a modest preconditioner, the relative residual tolerance used to construct
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Figure 3.13: Spectra of restricted-degree, fixed-polynomial operators; dim = 903;

no preconditioner

this operator does not have to be very low for the fixed-polynomial operator to have

enough information about the spectrum. A good illustration of this trend is shown in

Figure 3.14, where the same matrix previously used to construct the fixed-polynomial

operator with no preconditioner (Figure 3.13) is now preconditioned using an incom-

plete LU factorization with a drop tolerance of 10−2. This sequence of spectra con-

firms that this preconditioning scheme has the ability to construct a low-dimensional,

fixed-polynomial operator that approximates a spectral transformation very well.

For this example IRA with the GMRES fixed-polynomial is compared to Jacobi-

Davidson (JDQR) for computing the five right-most eigenvalues of the nondimen-

sionalized model (3.11) linearized about a steady state. The discretization of the

linearized equation yields matrices that range in dimension from 700 to 3000. An

incomplete LU factorization was used as a preconditioner for both methods. To de-

termine any dependence on preconditioner quality, two drop tolerances were used:

10−3 and 10−4. The previous discussion used an incomplete LU preconditioner with
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Figure 3.14: Spectra of restricted-degree, fixed-polynomial operators; dim = 903;

M = luinc(Aσ , 10−2)

a drop tolerance of 10−2, which was sufficient for a problem of a smaller dimension.

However, as the matrix dimension increases, a preconditioner constructed using that

drop tolerance is insufficient for the convergence of either JDQR or IRA with the

GMRES fixed-polynomial operator.

Similar to the small-scale Laplacian example, these two methods are to compute

the same number of eigenvalues for the same cost. Then the comparison is in the

accuracy of the computed eigenvalues. Depending upon the quality, each precondi-

tioner is assigned a cost level which is determined by the number of matrix-vector

products. The lower quality incomplete LU preconditioner has a drop tolerance of

10−3 and allows 1000 matrix-vector products (Figure 3.15), while the higher quality

preconditioner has a drop tolerance of 10−4 and allows 500 matrix-vector products

(Figure 3.16).

JDQR computes the five eigenvalues one-at-a-time to the desired tolerance. If the

tolerance is set too high, not all five eigenvalues will be calculated. Thus, the

0 0 
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Figure 3.15: Relative error for the five rightmost eigenvalues; M = luinc(Aσ, 10−3)

(1000 matrix-vector products)
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tolerance for JDQR is different for each matrix dimension so that all five eigenvalues

are calculated to the highest accuracy possible. These problems are then rerun using a

fixed tolerance 10−6 with JDQR to analyze the number of eigenvalues it could compute

at a higher tolerance. The GMRES fixed-polynomial operator is constructed with a

relative tolerance of 10−6.

The results indicate that if five eigenvalues are required, then IRA with the fixed-

polynomial operator computes all the eigenvalues more accurately than JDQR. How-

ever, if accuracy is more important than the number of computed eigenvalues, then

JDQR with a fixed tolerance can compute the two rightmost eigenvalues more accu-

rately. These observations are independent of preconditioner.

3.6 Semiconductor Laser Model

For a 2D dynamic rate equation model of a semiconductor laser, the time dependent

field interaction is crucial. It is necessary to calculate the electric field and confinement

factor with time during the evolution of the pulses. This requires the solution to the

2D scalar wave equation

∂2E(x, y)

∂x2
+
∂2E(x, y)

∂y2
+ (η(x, y)2k2

o − β
2)E(x, y) = 0 (3.12)

on the rectangular domain Ω = [0, Lx]× [0, Ly], subject to Dirichlet boundary condi-

tions, every pico-second. For a time period of 5 nano-seconds, the scalar wave equation

needs to be solved 5000 times. In equation (3.12), E(x, y) is the electric field, η is

the complex refractive index, β is the mode propagation constant, ko = 2π/λ is the

wave number, and λ is the wavelength [51].

The matrix eigenvalue equation is obtained by using Galerkin’s method on the

continuous equation (3.12), expanding the electric field using basis functions which

are the products of sine functions,

φi(x, y) =
2

(LxLy)1/2
sin

(

miπx

Ly

)

sin

(

niπy

Ly

)

. (3.13)
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Here the integers mi and ni are the wave numbers for the basis i in the x and y

direction, respectively. Furthermore, Nx and Ny are the number of waves in the x

and y direction, respectively, and N = NxNy. The basis functions (3.13) vanish at

the boundary of Ω and form an orthonormal set of functions

〈φi(x, y), φj(x, y)〉 =

∫ Ly

0

∫ Lx

0

φi(x, y)φj(x, y) dx dy = δij.

The electric field can be expanded in terms of this orthogonal basis as

E(x, y) =

N
∑

i=1

aiφi(x, y).

This expansion can be substituted into the scalar wave equation (3.12), multiplied on

the left side of by φj(x, y), and integrated over the domain Ω to obtain the matrix

equation

N
∑

i=1

(Aij − βδij)ai = 0 (3.14)

where

Aij = (

(

miπ

Lx

)2

+

(

niπ

Ly

)2

)δij + k2
o〈φi(x, y)η(x, y), φj(x, y)η(x, y)〉.

The matrix equation (3.14) is complex and non-Hermitian due to the refractive index

η in the second term of Aij .

The eigenvalues of the matrix equation (3.14) represent both bound and continuum

modes of the waveguide. Thus, the eigenvalues of interest are those whose real part lie

within a range of values determined by the semiconductor laser. Within that range,

the eigenvalue with largest imaginary part is of interest because it corresponds to the

mode with the largest modal gain. It is this eigenpair that can be used to accelerate

the solution of the 2D dynamic rate equation model.

For this example, 15 waves are used in each of the x and y directions, resulting

in a complex non-Hermitian matrix of dimension 225. Although the dimension of

this matrix is small and computing a direct factorization may be inexpensive, there
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are a couple of reasons to approach this problem with an iterative eigensolver. One

reason is the length of the sequence. It is computationally expensive to compute the

direct factorization of 5000 matrices, even if they are of small dimension. If only a

couple eigenvalues are necessary, then iterative eigensolvers may be more cost effec-

tive. Depending upon the problem, the eigenvalues of interest for a matrix sequence

may be related from one time-step to the next. This information can be exploited

by IRA with the GMRES fixed-polynomial operator or Jacobi-Davidson (JDQR) to

accelerate convergence.

This example originated from a researcher, Canice O’Brien, from the Physics De-

partment at Trinity College Dublin who recognized that direct methods were too com-

putationally expensive. The short sequence of 20 matrix equations provided through

this collaboration depicts an extremely coarse time discretization of a nano-second

time period. The results from this short sequence will allow speculation about the

performance of IRA with the GMRES fixed-polynomial on matrix sequences and how

it compares to JDQR. An example of the spectrum is given in Figure 3.17. The

eigenvalues of interest are well-separated, but not in an easy part of the spectrum for

IRA to compute eigenvalues without a spectral transformation. However, a shift can

be obtained using knowledge about the range where the eigenvalues of interest are

expected to lie.

IRA with the GMRES fixed-polynomial and JDQR are used to track the two

eigenvalues of largest imaginary part whose real parts are in the range of interest.

An LU factorization of the first matrix in the sequence is used to compute the eigen-

values and eigenvectors of interest, then employed as a preconditioner for all of the

subsequent matrices in the sequence. The quality of the LU factorization as a precon-

ditioner for these matrices is tracked to see if it degrades and should be refactored.

The shift for the spectral transformation is held constant throughout the sequence of

matrices (σ = 11.30). Both these methods are accelerated by using the eigenvectors

corresponding to the eigenvalues of interest from one matrix in the sequence as an
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Figure 3.17: Spectrum of complex, non-Hermitian matrix from sequence

initial guess for eigenvectors of the next matrix in the sequence. The tolerance for

JDQR is set at 10−6 and the GMRES fixed-polynomial operator is constructed with

a relative tolerance of 10−4.

First, it should be noted that the eigenvalues of the operators do not vary much

throughout the sequence (Figure 3.18). The eigenvalues change color from dark to

light to show the progression through the sequence of matrices which appears to have

an elliptical path. This periodic behavior is a result of the periodic pulsed light output

from the semiconductor laser [51]. Thus the LU factorization of the initial operator

is a great preconditioner for the later matrices in the sequence.

The relative errors of the computed eigenvalues for both methods are illustrated

in Figure 3.19. These errors are about the same for both methods. The dotted line in

this figure indicates the tolerance used in constructing the GMRES fixed-polynomial.

It is interesting to note that the relative errors of the eigenvalues computed using IRA

with the GMRES fixed-polynomial are more dependent upon the residual reduction
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Figure 3.18: Tracking eigenvalues of interest throughout sequence

of GMRES than the imposed tolerance. JDQR has residuals that are more consistent

with the imposed tolerance.

The periodicity in the quality of the preconditioner is apparent in the top plot

of Figure 3.20. As would be expected, the initial LU factorization becomes a better

preconditioner at the end of the matrix sequence. Refactoring the matrix at the peak

of this period to obtain a better preconditioner might be considered. The cost of

this refactorization should not be ignored, especially when the current preconditioner

improves in quality later in the sequence.

The performance of both methods in computing these two eigenvalues for each

matrix in the sequence is indicated by the bottom plot of Figure 3.20. The computa-

tional cost of JDQR and IRA with the GMRES fixed-polynomial operator is about

the same for all the matrices in the sequence. There are a few instances where JDQR

is less expensive, but overall the two methods are comparable. It is interesting to

note that these instances coincide with the deterioration in the quality of the
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preconditioner, which may indicate that GMRES fixed-polynomial is sensitive to this.

It also is possible that JDQR takes more advantage of the information from the

previous eigenvectors in computing the eigenvectors of the next operator. Either

way, both methods are more efficient than employing a dense method to track the

eigenvalues of interest for a matrix sequence.



Chapter 4

Summary and Future Work

Accelerating a Krylov subspace method with a spectral transformation requires a

linear system solve for each basis vector of the Krylov subspace. It is preferable

to use a direct method for these solves. However, due to storage constraints and

computational cost, large-scale eigenvalue problems require the use of an iterative

method for these linear solves. Unfortunately, unless stringent accuracy is specified,

this results in the application of a different operator φ for every linear solve. Another

option is to compute the operator φ once and apply it instead of using an iterative

solver.

Numerical results presented in this thesis indicate that constructing a GMRES

fixed-polynomial operator to approximate the spectral transformation is promising.

The eigenpairs of the original problem can be easily reconstructed from the Ritz

vectors of the Krylov subspace method. The accuracy of these eigenpairs is dependent

upon the norm of the residual polynomial, ‖p(AσM
−1
σ )‖. If the fixed-polynomial

operator closely approximates the spectral transformation, this norm should be small.

A starting vector that is equally weighted in all eigendirections seems to facilitate the

construction of such an operator.

Numerical results show that IRA with this preconditioning scheme performs better

and is more accurate for large-scale problems than using preconditioned GMRES

57
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started anew for each linear solve. It compares favorably against Jacobi-Davidson

and LOBPCG on small-scale Hermitian problems. However, the accuracy of IRA

with this preconditioning scheme suffers for eigenvalues further away from the shift.

The most important result comes from the linear stability analysis of a wind-driven

barotropic ocean circulation model. If multiple eigenvalues are required, then IRA

applied to a fixed-polynomial operator is more accurate than Jacobi-Davidson for a

fixed computational cost.

Most of the results presented in this thesis are acquired using MATLAB codes be-

cause fully-developed C or Fortran implementations of JDQR and LOBPCG are not

publically available. This limited the dimension of the eigenvalue problems to those

on the order of 104. In research, most large-scale eigenvalue problems of interest have

dimensions on the order of 107. These large problems are solved on supercomput-

ers, using numerical software packages such as parallel ARPACK (PARPACK). This

thesis introduces a preconditioning scheme that extends the domain of applications

for ARPACK. Evidence of this is presented in the discussion of the implementation

and numerical results. Because of the dominance of ARPACK in solving large-scale

eigenvalue problems, extending the domain of applications for this software package

has a significant impact.

These results are encouraging, but many questions about this preconditioning

scheme remain.

• The feasibility of a convergence theory for Krylov subspace methods applied

to this fixed-polynomial operator is uncertain. An attempt to develop a con-

vergence theory will require a subspace approximation theory approach [4] for

IRA. Meerbergen formulates an argument for inexact Möbius transformations

with rational Krylov [26], which may provide some guidance.

• Short-term recurrence methods, like BiCG-stab [48] and QMR [12], build fixed-

polynomial operators that require less storage and computation. These opera-

tors may or may not be as accurate as approximating the spectral transforma-
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tion with a fixed-polynomial operator built from a long-term recurrence method.

An ideal fixed-polynomial operator is one that uses a short-term recurrence and

is as accurate as the one built from GMRES.

• The quality of the fixed-polynomial operator depends heavily upon the precon-

ditioner. The current results only explore some basic preconditioners: block

Jacobi, incomplete LU, and incomplete Cholesky. More advanced precondi-

tioning methods should be studied for building the fixed-polynomial operator:

multigrid, approximate inverse [5], and multilevel ILU [42].

• Restricting the degree of the fixed-polynomial operator impacts its ability to

approximate the spectral transformation. Techniques should be developed to

improve the accuracy of this operators’ approximation, subject to a dimensional

constraint.

• It is uncertain if this preconditioning scheme can aid IRA in computing interior

eigenvalues. The current results are only encouraging for the computation of

the right-most eigenvalues. An error bound should be found for the right-most

eigenvalues of the fixed-polynomial as approximations to those of the spectral

transformation.

• Current heuristics for the accuracy of a computed eigenpair include a bound

that is dependent upon ‖p(AσM
−1
σ )‖. Unfortunately, the iterative method used

to construct p can only offer a bound for ‖p(AσM
−1
σ )v1‖, where v1 is the initial

vector. However, current results show that ‖p(AσM
−1
σ )‖ ≈ ‖p(AσM

−1
σ )v1‖ if v1

is a random starting vector of unit length. This phenomenon may be explainable

using probability theory.

• The linear stability analysis of fluid flow models can be affected by the non-

normality of the linearized problem [46]. Relatively small perturbations of this

problem can result in large perturbations of its eigenvalues. The pseudospec-
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trum [45] of the linearized problem provides information about the behavior

of the eigenvalues when the problem is subject to perturbations. Furthermore,

it even provides information about the transient growth of solutions to the

unperturbed problem. Therefore, pseudospectra will be used to analyze the

non-normality of these fluid flow models.
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inite and nonsymmetric matrices. SIAM J. Sci. Comput., 22:1333–1353, 2000.

[6] E. A. Burroughs, L. A. Romero, R. B. Lehoucq, and A. J. Salinger. Large scale

eigenvalue calculations for computing the stability of buoyancy driven flows.

Technical Report 2001-0113J, Sandia National Laboratories, 2001. Submitted to

the Journal of Computational Physics.

61



62

[7] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization

and stable algorithms for updating the Gram–Schmidt QR factorization. Math.

Comp., 30:772–795, 1976.

[8] E.R. Davidson. The iterative calculation of a few of the lowest eigenvalues and

corresponding eigenvectors of large real symmetric matrices. J. Comp. Phys.,

17:87–94, 1975.

[9] T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for the

numerical solution of large sparse generalized symmetric eigenvalue problems.

Math. Comp., 35(152):1251–1268, 1980.
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