1 Introduction

An important problem in linear algebra and optimization is the Trust-Region
Subroblem : Minimize a quadratic function subject to an ellipsoidal con-
straint. A mathematical statement of the problem is

1
min §xTAx + g7 subject to ||Cz|| < A

where A is an n X » symmetric matrix , ¢ an n vector, z is the unknown n
vector , C' is a nonsingular matrix, A is given positive number. The norm
is the standard 2-norm, T denotes transpose, and all quantities are real.

This basic problem has many applications. The regularization or smooth-
ing of discrete forms of ill-posed problems such as those arising in seismic
inversion and the trust-region mechanism used to force convergence in opti-
mization methods are two examples of significant computational importance.
Discussions of the problem of minimizing a quadratic function subject to a
quadratic constraint may be found in [5], [6], [9]. Applications to uncon-
strained optimization algorithms are given in [8] , [9] , [13], and applications
to constrained optimization algorithms are discussed in [1], [3], [4], [11]. For
applications to seismic inversion, see [7] , [15].

A solution z to the problem must satisfy a relation of the form

(A+uCTChz = —g

with [|C'z|| = A. The parameter p is the regularization parameter for ill-
posed problems, and it is the Levenberg-Marquardt parameter in optimiza-
tion. (' is often constructed to impose a smoothness condition on the so-
lution z for ill-posed problems and it is used to incorporate scaling of the
variables in optimization. With a change of variables one can assume C' = [
and this will be the case considered in the following discussion.

If positive definite matrices of the form A 4+ pl can be decomposed into
a Cholesky factorization then the method proposed by More’ and Sorensen
[9] can be used to solve the problem. In some important applications , e.g.
seismic inversion and large scale constrained optimization, factoring or even
forming these matrices is out of the question. A conjugate-gradient style
method for the large scale trust-region subproblem requiring only matrix-
vector products w «— Av would be highly desirable.

The purpose of this paper is to present an algorithm for solving the large
scale trust-region subproblem that requires a fixed-size limited storage pro-
portional to n» and relies only upon matrix-vector products. The algorithm



recasts the trust-region subproblem in terms of a parameterized eigenvalue
problem and adjusts the parameter with a superlinearly convergent itera-
tion to find the optimal vector z from the eigenvector of the parameterized
problem. Only the smallest eigenvalue and corresponding eigenvector of the
parameterized problem needs to be computed. The Implicitly Restarted
Lanczos Method as implemented in the ARPACK [14] software is one tech-
nique that meets the requirements of limited storage and reliance only on
matrix-vector products. An algorithm that is designed to solve the related
large scale quadratically constrained least-squares problem is presented in
[6]. The author is not aware of another algorithm that is suitable for the
general (indefinite) large scale case.

2 The Trust-Region Subproblem

The trust-region subproblem has a very interesting mathematical structure
that lends itself to efficient computational techniques once the subtlety of
the structure is exposed. In this section and throughout the remainder of
the paper €' = [ is assumed and the problem to be considered is

1
(2.1) min§xTAac + gTz subject to|lz]] < A

The optimality conditions for this problem are interesting and computa-
tionally attractive since they are both necessary and sufficient and provide
a means to reduce the given n dimensional constrained optimization prob-
lem to a zero finding problem in a single scalar variable. The conditions are
given in the following lemma.

Lemma 2.1 The vector  is a solution to (2.1) if and only if x is a solution
to an equation of the form

(A - AI)x =9
with A — X positive semidefinite, A < 0 and A(A — ||z||) = 0.

The statement of these conditions is slightly nonstandard in the use of a
negative rather than a positive A. The reason for this will be made clear
shortly. A simple proof of this lemma is given in [12].



The method developed by More” and Sorensen [9] relies upon the ability
to compute a Cholesky factorization

RIRy = A—-\I
whenever this matrix is positive definite. For any such A one can solve
R;RA$A = —g and then R;qA =)

to evaluate the function

1 1
TOEES
Azl
and its derivative
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and thus apply Newton’s method to find a solution to the equation

$(\) = 0.

This method will rapidly find solutions that are on the boundary of the trust
region but it is not appropriate for large-scale problems which do not afford
a Cholesky decomposition.

It is possible to re-parameterize the trust-region subproblem to obtain
a scalar problem that is tractable in the large scale setting. A motivating
observation is that for a given real number «

1 1 a g7 1
§a+¢($)—§(1vxT)(g A)(x)’

where ¢(z) = J2T Az + T2

For a fixed a the goal is to minize a vertical translation of the function
P(a) over the set {z : 1+ ale =1+ A%}, This suggests the solution may
be found in terms of an eigen-pair of the bordered matrix. An eigenvalue A
and corresponding normalized eigenvector (1,27)7 of the bordered matrix
will satisfy

T
a g Yy (1
and it follows that

(2.3) a—-A=—gle and (A— Az =—g.



Hence,

_ N
(2.4) a—/\:gT(A—/\I) 19:26‘—/\

i=1 %
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where {6;} are the eigenvalues of A and {v;} are the expansion coefficients
of g in the eigenvector basis.

The bordered matrix appearing on the left in (2.2) will play a key role and
for future reference this matrix will be denoted as B,. A moments reflection
on the consequences of (2.4) will reveal some very useful information. This
equation shows the eigenvalues of the matrix A interlace the eigenvalues of
the bordered matrix B, (This is also a consequence of the Cauchy interlace
theorem.) . Hence, the smallest eigenvalue A of B, satisfies A < ¢; where 6,
is the smallest eigenvalue of A. This assures the matrix A — Al is positive
semi-definite regardless of the value of a. Moreover, this eigenvalue is well
separated from the rest of the spectrum of B, for smaller values of A and
it is expected that a Lanzos type algorithm will be successful in computing
this eigenvalue and the corresponding eigenvector.

Equations (2.3) define A and hence z implicitly as a functions of a. Let

the function ¢ be defined by
oM =g (A=Al = —gla
then
F(N) =g (A= M) g =T,

where differentiation is with respect to A and (A — A)z = —g.

Finding the smallest eigenvalue and corresponding eigenvector of the
bordered matrix B, for a given value of a and then normalizing the eigen-
vector to have its first component equal to one provides a means to evaluate
the rational function ¢ and its derivative at values of A < 6; the small-
est eigenvalue of A. If a can be adjusted so the corresponding a satisfies

#'(N) = 2Te = A? with a — A = ¢()), then
(A=ADz =—g, MA—[z]])=0

with A — Al positive semidefinite. If A < 0 then z is optimal and solves the
trust-region subproblem. If A > 0 is found with [|z|] < A during the course
of adjusting a , then A is positive definite and the solution to the trust-
region subproblem is the unconstrained minimizer —A~'g. The only other



possibility is the eigenvector of the bordered matrix has first component
zero and thus cannot be normalized to have its first component equal to
one. This is equivalent to the so called hard case analyzed in [9]. The hard
case is discussed at length here in Section 5 .

This development has lead to a reformulation of the trust-region subprob-
lem in terms of a parameterized eigenvalue problem. In fact, a sequence of
eigenvalue problems will have to be solved in order to iteratively adjust the
parameter « to produce the optimal A and z. Therefore, if this observation
is to be helpful, a rapidly convergent method must be devised to adjust «
to the optimal value and an efficient method for computing the smallest
eigenvalue and corresponding eigenvector of the bordered matrix must be
available. Keeping in mind the assumption that only matrix-vector prod-
ucts w < Aw are available, a Lanczos method seems to be a natural choice
for an eigenvalue method . A well-suited variant of the Lanczos method is
presented in the next section. This will be followed with the development
of a rapidly convergent iteration to adjust a.

3 The Implicitly Restarted Lanczos Process

Lanczos methods have been used extensively to solve large, sparse symmetric
eigenvalue problems Az = Az. In exact arithmetic, the Lanczos process is
a scheme to tridiagonalize a symmetric A € R™*". After j—steps of the
Lanczos process, an orthonormal n X j matrix V; and a symmetric tridiagonal
matrix 7; are produced such that

(3.1) AV; = ViT; + fief

where f; is a vector of length n with Vijj = 0 and e; is the jth co-ordinate
vector of length j . This is easily shown to be a truncation of the complete
orthogonal reduction of A to tridiagonal form that typically precedes the
implicitly shifted tridiagonal @ R iteration.

The eigenvalues of T); approximate a subset of eigenvalues of A. If u,y
is an eigen-pair for 7 (i.e. T;y = yp) then p,2 = V,y is an approximate
eigen-pair for A and the error of approximation is given by

(3.2) 1Az — xpll = [1fllleful -

In particular, the approximation is exact when f; = 0. Eigenvalues and
eigenvectors of the symmetric tridiagonal matrix 7; may be determined by
symmetric () R method or some other suitable technique.



There are a number of numerical difficulties with the original Lanczos
process and these difficulties have been addressed extensively in the litera-
ture [10]. The method developed in [12] provides an alternate approach to
the classic numerical difficulties associated with the Lanczos process. The
underlying idea in [12] is to recognize the residual vector f; is a function
of the initial starting vector (i.e. the first column of V;) and to then adjust
this starting vector to make the residual vector vanish. The total number
of Lanczos steps is limited to a fixed prescribed value k and the starting
vector is iteratively updated in a way that forces the norm of the residual
vector fi to converge to zero. This limits storage requirements and allows
full numerical orthogonality of the Lanczos basis vectors to be enforced due
to the limited computational costs.

The iteration involves repeated application of polynomial filters to the
starting vector and an in-place updating of the k-step Lanczos factorization .
The iteration repeatedly updates the starting vector: vy «— 7(A)v; where the
polynomial 7 is applied implicitly through a mechanism directly related to
the implicitly shifted ¢) R technique. The polynomial is constructed to damp
undesirable eigenvector components from the starting vector forcing it into
an invariant subspace. This leads to termination of the Lanczos sequence
which begins with this starting vector in precisely k steps with fi, = 0. The
k eigenvalues of the associated T} will be the eigenvalues of interest. The
construction and application of these polynomials, how to update in-place,
and other related details are explained in [12]. The technique is analogous
to the implicitly shifted ¢) R iteration for dense matrices and shares a number
of important numerical properties associated with that process.

With respect to the subject of this paper, the major advantage of this
implicit restart approach is

¢ Fixed space: In this scheme, the number of Lanczos basis vectors
never exceeds a pre-specified bound that is proportional to the number
of eigenvalues sought. Moreover, as in the basic Lanczos process, only
matrix-vectors products are required with A. Peripheral storage of
basis vectors for eigenvector construction is not required.

By virtue of the fixed modest number of Lanczos basis vectors, it is
computationally feasible to maintain full numerical orthogonality among
the basis vectors. The maintenance of orthogonality ensures no spurious
eigenvalues are computed.

The standard Lanczos process provides a partial solution to the trust-
region subproblem. If Vi is the Lanczos basis obtained through k steps of



3.1) and 7}, is the resulting tridiagonal matrix then T}, = VI AV, and the
(3.1) g g s
change of variables = Viy in (2.1) gives

1
Ur(y) = 0(Viy) = 59" Tey + 91y
where g = VkTg. If k is relatively small then the method described in [9]
can be used to solve

1
min§yTTky + gly subject to |ly|| < A.

If 4. is the solution to this problem then the invariance of the 2-norm under
orthogonal transformation implies z, = Viy, solves

1
min§xTAac + g7 subject to||z|| <A and z € Span(Vy).

In fact, this approach is completely equivalent to the approach of Steihaug
[16] (also see [18] ) until the first index k for which the solution to the reduced
problem is on the trust-region boundary instead of in the interior. This
approach naturally extends that technique to include directions of negative
curvature in the solution to the trust-region subproblem. However, unlike
the Steihaug approach this will require storage of the Lanczos basis. Since
there is no apriori limit on the number of Lanczos steps (basis vectors)
required for the reduced problem to produce a near optimal solution to the
original problem, this does not provide a practical means to iteratively solve
general large-scale trust-region subproblems.

4  Adjusting Alpha

Recasting the trust region problem as a parameterized eigenvalue problem
together with the Implicitly Restarted Lanczos method provides a viable
approach to large scale problems if the optimal parameter a can be computed
rapidly. Recall that the goal is to adjust a so that

a=A=6(A), ¢\ =A%

where

¢(A\) = —g"a, ¢'(\)=aTu,



with (A—AI)z = —g. One possibility would be to apply a standard iteration
such as the Secant Method to the problem

1 o
A el
The approach adopted here is to develop a special interpolation-based it-
eration that takes advantage of the structure of the problem. This interpolation-
based iterative method will take the following form: Let ¢(A) interpolate ¢
and ¢ at some previous iterate(s).
Algorithm 1
. z||—-A
White (|12 > o)

1. Construct the interpolant qAﬁ based on the the current and perhaps
previous iterates;

2. Let A satisfy qg’(;\) =A?;

3. Put ap = A+ 6(N) ;

4. Compute the smallest eigenvalue and corresponding normalized
eigenvector of B,, to get the new iterates xy and Ay ;

End

Two iterations of this type will be developed. One is based on just
the previous iterate and the other on the previous two iterates. The first is
linearly convergent and the second will prove to be superlinearly convergent.

To construct the single point method, consider an interpolant of the form

R 2

Let 21 and Ay denote the current iterates corresponding to a so that
a—X\ = —glz, with (A= M1z = —g.

The interpolant must satisfy

2 2

7 T v T
= — d =
T g xp an CESNE xy 21,
and from this it is straightforward to derive
T T 2
0=XM— ngl and 7%= 7(9 T961) .
T1 1 1 21



T
It is easy to show ¢ = x—;;:g—l, and this is a nice feature since it implies 6; < ¢
1+1

where 61 is the smallest eigenvalue of A. The formula for A in Step 2 of
Algorithm 1 is given by

T
5 D!
A=d+
2] A
and the updating formula to obtain a4 at Step 3 is shown to be
2
s (a—A) [A—H%H] [ 1 ]
oy = A+——=a+ A+
§— A [EA A ]

after a little algebraic manipulation. This method is linearly convergent
and may be slow in some cases so it will not suffice to solve the entire
problem. However, it may be used to obtain a second iterate from an initial
guess to provide the starting values needed to initiate a method based upon
interpolating two previous iterates at each step.

The two-point method is based upon an interpolant of the form

2

O(N) = I + (6= A) + .

Let 21 and Ay denote the current iterates and let z9 and Ay denote the
previous ones. The pole ¢ is defined by

et Az,
$¥1$1

6 = min(bmin,

) if JJzi]] < Aor |z < A,

or
el Azy 2 Az

’
$¥1$1 $g$2

6 = max( ) if flz1] > A and [Jzo| > A,

and then &,,;, — min(,in,6). The remaining three coefficients are deter-
mined to satisfy

d(M) = —glar, d(\)=afar, ¢(N\)=afa.

Satisfying the derivative conditions requires

72 72

(4.1) m—ﬁ:wipxl, m—ﬁ:wg@,

and it follows that

o [edwy — el 2[(6 = M)(6 = Ag))?
T (A=A (M Ag)]

(4.2) ¥y



B = P oTay = 23 22(6 = Ag)* —af w1 (8 — M)’
(6= Ap)? ! (A= A28 — (M1 + A9)] 7

_ T 72
1= —gle =B - M) -

The formula for \ in Step 2 is derived from the condition

,}/2
ST

and yields

(4.4) A=6—

Finally, the formula for a4 is

ap = MmN+

(4.5)

The formula (4.5) is, unfortunately, plagued with numerical cancellation
problems and computational experience has shown this will prevent super-
linear convergence when the quantity ‘W‘ falls below the square root
of working precision (i.e. below 107® when working in double precision on
a Sun workstation). After considerable manipulation one may arrive at
a mathematically equivalent update formula that does achieve superlinear
convergence to the level of working precision. This formula is

(46) ap = a+t (6 —A1)b A2_x1Tx1+
(1+V14+6)V14+0 |1 +/1+86

where
9 — A2—$¥1$1 (6—A1)2_1
B $g$2 — xfxl 06— Ay '
Considering the branch of the function ¢ that is supposed to be ap-

proximated by these formulas, it is desirable that the formula (4.2) yields a
positive number and that the number 8 + A? appearing under the square

aTey + 1] )

10



root sign in (4.4 ) is also positive so that the iteration will be well defined.
These conditions are indeed satisfied and this will be established in Section
6. In Section 6 it will also be established that the iteration based upon the
two point formula is locally and superlinearly convergent. However, both
iterations can break down when faced with the so-called hard case.

5 The Hard Case

There is one particularly difficult situation that may arise in trust region
problems. This is referred to in [9] as the hard case. It can only occur
when the vector ¢ is orthogonal to the eigenspace & = {¢ : Aq = ¢é1}
corresponding to the smallest eigenvalue é; of A. The precise statement is

Lemma 5.1 Let p = —(A — 6 0)fg. If & < 0 and ||p|| < A then the
solutions to (2.1) consist of the set

So={z:x=p+z 2€8, |z||=A}

In the statement of Lemma (5.3) the symbol  denotes the Moore-Penrose
generalized inverse. This lemma is proved in [12] and its computational
implications are discussed in [9]. The following lemma is a restatement of a
result given in [9] that is useful in dealing with the hard case.

Lemma 5.2 Let 0 < o < 1 be given and suppose
(A=A)p=—g, A0,
with (A — A1) positive semidefinite. If
lp+ 2zl = A, and zT(A—= Az < —a(gTp+ AA?)

then )
e SP(pt2) < 51 - o) (g p 4+ AA?) < (1 = 0)ibs,

where 1, < 0 is the optimal value of ( 2.1 ) .

More’ and Sorensen used this lemma to detect near hard-case behavior
and terminate the iterative solution to (2.1) early. In that setting , explicit
eigen-information was not available and deemed too expensive to obtain.
Instead, a suitable point z was obtained from the LINPACK condition esti-
mator [2] applied to the Cholesky factor of (A — AI). In the present setting,

11



the Cholesky factor is not computed but the necessary eigen-information
will be readily available.

The reformulation leading to the key relation (2.3) depends upon the
ability to normalize the selected eigenvector of the bordered matrix to have
its first component set to one. This is of course impossible when the first
component of this eigenvector vanishes. Interestingly enough, the hard case
occurs precisely when this happens.

Lemma 5.3 FEvery vector of the form (0,q7)T with ¢ € Sy is an eigenvector
of the bordered matriz

a g7

g A

if and only if g is orthogonal to &7 .

The proof of this lemma is very straightforward and will be omitted.
Generally, a near hard-case condition is painfully obvious in practice. If
the search for the optimal a discussed in Section 4 is initiated with a = 0
then the first iterate or its successor given by the one point interpolation
formula typically will have an extremely small first component in the eigen-
vector corresponding to the smallest eigenvalue of the bordered matrix B,.
If the vector (v, ¢7)7 is an eigenvector of length one for the bordered matrix
corresponding to the smallest eigenvalue A then satisfying a test of the form

V1—0v?> rAly|

with k >> 1 detects the hard case. Moreover, since (A — Al)g = —gv it
follows that

A—Al
o) (4= ADall _ lglled _ llgl
Tl VI A
and choosing k = % assures W < ¢ and hence that A\ , ¢ are an

approximate eigen-pair for A.
If a hard-case condition has been detected, set Ay = A, z = ¢/||¢||. Put

p=:"Az = —v(g"q) /(" q)

and enter the following iteration with zy, Ay the most recent iterates ob-
tained before detection of the hard case:
Algorithm 2

Let 8 € (0,1) and Ay < A < Ap.

Repeat :

12
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ca = (1=NDAg+ 0N —gTar + (1 —0)( Ay — M) (2T 2y);

2. Compute A and (v, ¢7)T the smallest eigenvalue and correspond-
ing vector of B,;

3. Put 3 — q/v , Ay — X and let 7 satisfy [|zy + 27| = A;
4. If 73Hp = X9) < —o(gTag + AyA?) then stop with @ — x + 27;

5. If ngu > A then Ay « Ay, a « min(Q * Ay, — |a|) else
$1H$2,A1HA2;

End

Note that on entering this hard-case iteration Ay will be a good under-
estimate to 6, the smallest eigenvalue of A. The update at Step 1 is derived
from linear interpolation of ¢ and its first derivative at A; and then solving
for the o that would produce a new A = (1 — 0)Ay + 6 if ¢ were linear. In
other words, « satisfies

a—A=¢(A)+¢M)A= M) = —gTar +af21(A = M)

with A = 61 + (1 — 6)Ap.

Since ¢ is convex on the interval (—oo, 61) the new A, obtained by solving
the bordered problem with this a will satisfy Ay < Ay < A Moreover, the
length of the interval (A1, Ayy) will always shrink.

Lemma 5.4 Assume 8 < %. Let AT and /\?} be the updated values of \{ and
Ay obtained from one pass through the hard-case iteration. Then

NG = AT < (1= 0) Ay — Ml

Proof : By its construction, Ay will satisfy ¢(A3) = a — Ag. Substituting the
defined value of a gives

B(A2) = (1= O)Au + 01 + (M) + (1 — )M\ — M)(21 1) — Aa.
Rearranging terms will give
(5.2)  é(A2) = $(A) = At = Az + (1= )1 + 2 1) (Av = A).
It is straightforward to show

B(Az) — d(M1) = (A2 — A)aday,

13



and substituting this into (5.2) and rearranging terms will give
(AQ - Al)(l + $g$1) = (1 - 0)(1 + $?$1)(AU - Al)

If ||z2|| < A then A} = Az and A, = Ay . Hence,

A=A = - A
= Av—A— (A= N\)

- l1_(1_0)

(29 — 1) 2y (1+2T2)

(14 2fa1)

1+ xQTxl)] (Ao =)

(5.3) = [

(1—|—$gx1) (1—|—$gac1)

] (A — A1).

Now,if Ay — A\ < %(AU — A1) then

(902 - 901)T961
(1423 21)

IN

IN

<

where As = A — Aol . Thus

(AQ — A1)$¥1A2_1$1
(1+aj1)

(AQ — Al) $¥1$1
((51 — /\2) (1 + $g$1)
(A = M) af
((51 _Al)_(AQ_Al) (1—|—$¥1$1)

—
>
d
|
>
st
~—

(Av — A1)

(IO NN

1 3
NE= S (5000 - M) < 00— )

follows from (5.3). If Ay — Ay > %(/\U — A1) then

A= AF = — A= v = M) = (A= M) <

(Av — A1)

=] w

and in both cases the desired result holds since 1 < (1 —#6). Now suppose
lzall > A. Then Af; = Ay and Af = A; and it follows that

- M= (1-0)

(14 2fay)
(14 28ay)

(/\U — /\1) < (1 — 0)(/\[] — /\1).

14



This establishes the result. O
This result establishes convergence but is far from indicative of what
will occur in practice. A value = .001 works well in practice even though
this Lemma would indicate a potentially slow rate of convergence with this
value. This is because the point Ay almost always satisfies [|z3|] < A .
Satisfaction of the stopping rule at Step 4 assures the conditions of
Lemma (5.2) are satisfied so the accepted point z; satisfies

) < Blan) < (1 - o)i(e)

In many applications including the two mentioned previously, a value of
o = .01 is used and this is generally satisfied very rapidly indeed.

6 Safeguarding and Convergence

In this section the issues of forcing convergence and determining the rate of
local convergence will be discussed. It will be shown that the iterates based
upon the two point rational interpolation formulas are well defined and are
locally convergent at a superlinear rate. This may be of considerable interest
computationally since evaluating the function ¢ and its derivative requires
the computation of the smallest eigenvalue and corresponding eigenvector
of the bordered matrix B, and this is potentially very expensive. Note,
however, in practice one is often interested in just a few digits of accuracy
and then superlinear convergence is of little consequence. Nevertheless, it
is reassuring to know this rapid convergence can be expected when higher
accuracy is needed.

There is very little to say about safeguarding. Perhaps in the future
with more computational experience this will become an important issue. In
the computational results presented here a fairly standard simple safeguard
was used to obtain an interval of wuncertainty and then to assure that
this interval is updated on each iteration and required to decrease . This
safeguard rarely forced a modification of the step given by the two point
formula in Algorithm 1.

In order to present the local convergence result as simply as possible, it
shall be useful to introduce some notation. The subscript 1 shall indicate
the most recent iterate, and the subscript 2 shall denote the previous iterate.
Thus Ay and A, are the current and previous approximations to the optimal
Ay, and Aq is the smallest eigenvalue of the borderd matrix B,. The updated

A4 is the smallest eigenvalue of the updated B, , and «a, will denote the

o4

15



value of o that gives the optimal parameter A, and corresponding solution
vector z,. The notation A; = A — A\;I for j = 1,2 and A, = A — A\ J will
be used. Thus z; = —Aj_lg for j = 1,2 and z, = —AZ'g. At a general
point A the notation Ay = A — Al and z) = A;l will be used. Finally, the
notation O((Ax — A1)?) will be used to denote a quantity whose absolute
value is bounded by a fixed positive constant times the quantity [A. — A1|’
for any value of A\q in a sufficiently small neighborhood of A, (j =0,1,2).

First, the fact that the iterates are well defined shall be established. In
this development it is useful to note

ziay—afar = gT(A7% - AT%)g
gTA2_2(A1 — Ag)(A + Az)Al_zg
(AQ — Al)[ngl_1$2 —|— $¥1A2_1$1]

(6.1)

From this it follows that

2 = [2322 — 2 21][(6 = A1)(6 — A2)]
(A2 — A1)[26 — (A1 + A2)]

[23 AT g + 2 AT e ][(6 = M)(6 = No)]?
26— (M1 £ Aa) ‘

(6.2) -

Now, with the exception of the hard case, the smallest eigenvalue of the
bordered matrix B, is always less than the smallest eigenvalue 6; of A and
§ > 6. Hence, a3 AT 2y > 0, 2T A 2y > 0 and 26 — (A + Ay) > 0.
Therefore, the formula ( 4.2) for 72 does indeed yield a positive number.

Moreover, the number A% 4+ 3 appearing under the square root sign in
(4.4) is always nonnegative:

Lemma 6.1 The quantity A* + 3 in (4.4) is always nonnegative.

Proof : If either xlTxl < A?or x2T$2 < A? then A? 4+ 3 > 0 since

2

A4 3 = ((S_’yi/\l)Qﬁ—(Az—xipxl)

v’ 2 T
(A
(6 — A2)? * ©272)
is implied by (4.1). Otherwise, it may be assumed without loss of generality
that 27z, = A? < xlTwl < x2T$2 and hence that A, < Ay < Ag. In this case

16



T T
the pole é satisfies § = maw(x—;;:c—l, x—;;y—r‘)) . Observe that the function
1+1 o L2

2T Az
p(A) = /\T

Ty T

is decreasing on the interval (A1, 61) since the Cauchy-Schwarz inequality
implies

(6:3) (i Ae)@iaT ey > (1424720007 = (afe))?

and hence . T
/ (zy Axza)(zy Ay 2)
AN=211- <0
p ( ) (xifm)z -

for all A € (A1, 61). It follows that

(efArzy)

T
Ty T

=p(M)=A>6-X>0

for all A € (Aq,61). From (4.3) it may be found that

(2322 — a2 )(6 = Xo)? = (af @y — el (6 = \y)?
(6 —=A1)2=(6—A2)?

(6.4)A% 4+ 3 =

Now, A, < A1 < Ay < 6 implies 6 — A > 6 — Ay > 6 — Ay > 0 so the
denominator in (6.4) is positive and the result will be established if it is
shown that the function

o(A) = (#fay —afz)(6 = A)?

is strictly increasing on the interval (A, ¢). Differentiating o with respect
to A gives

!

(6.5) 0 (A) = 2(6— N[alAT er(6 = A) = (alay —ala,)]

T T 4—1 T

Ayzy)(zy AL 2y) iz,
> 206 — M(ata, (7 A —14 =
= ( )( A ) (x?\“x/\)z $§$A
> 0

which again follows from (6.3). This implies o(\) is increasing on the interval
A € (Aq,061) and since

o(A2) — (M)

A'+f= (G—A)2— (6= )2’
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it follows that A2 + 3 > 0 when A, < A\ < Xy < § and the result is
established. O

It has just been demonstrated that the iterates are well defined and it
is now necessary to establish the local rate of convergence. To this end it
is useful to establish a technical lemma that will facilitate the proof of the
final desired result

Lemma 6.2 The intermediate point \ given by (4.4) satisfies

. — 2 _aTy
(6.6) A=A = (‘5 ;1) (Aﬂ - xlTlxll) O = M),

Proof : The result is established using a Taylor expansion of the square root
function near 1. The formulas of Algorithm 1 give

P S e
SRR ey

2
= 6_(6_/\1) ~2 72 T
WQ“I‘(A _wlwl)
1
= (0= M) |
I+ ==+
B+zy @1
1 (A% - 2Ty
= 6—(6=-XN)|1-==—1" O((M = )Y,
( n[ Q(ﬁﬂ%)% (= A

Simplifying this last term yields the desired formula (6.6). O
The updating formula for o will now be used to establish a result to
relate Ay — A to Ay — A,

Lemma 6.3 There is a neighborhood N of A, such that the iterate Ay pro-
duced at Steps 3 and 4 of Algorithm 1 using formula (4.5) to compute oy
based upon points Ay, Ay € (N') will satisfy

(67)  (Ar = A = (A1 = Au(An A)O(L) + O((A = A)P).

where
M(Al,Ag) — 0 as Al,AQ - A*
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Proof: The proof begins with the formula

oy = A+p+p-N)+——.

Using the definition

n = —9T901 _ﬂ(é_/\l)_ Y

and the fact that

3 v 3 3VAZ2
30 =3+ 5 = 2000 = ) + (6= a2,

and substituting into the above formula gives
oy =A—gleg + 2800 = A) 4+ (6 = NAZ — (6 — A\)aTay.
Since —gTay = a — Ay it follows after substitution and simplification that
(6.8) ay=a+ (A —N28+A% 1]+ (6 - A )(A? —2Tay).
Now utilize the relation a; = Ay — ¢72y and a. = A, — g7 2. to see that
ap —a, = A —Ao—gl(zp — )
A=A+l (A7 = ATy
= A — A+ gt AN (A - AN ATl
(6.9) = (A = AL+ ata,).
Similarly
a—a, =M — A1+ 2Tz,

Subtracting . from both sides of (6.8) above and substituting for ay — a,
using (6.9) gives
Ay — A0+ xzx*)
28+ A? -1
20 + 296{961
(A2 —2T2y) — (1 + 2Ty

20 + 2961Tx1

(A= A1+ 2T ) = (8= A)(A? = oF ) [ - 1] FO((M - A)?)

= (M= AL+ aie) = (A% —afar)(6 - M) [
+O((A =A%)
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Since

ATy = ala, —aTay

= (A= A)eTAT e, + 2T A7 2]

and since
2
2068+ a{ar) = Qm
[23 AT g + o AT an][(6 = No)]?
§— (A4 X2)

= 0(1)7
it follows that

(6.10)
Ay — /\*)(1—|—x£x*)
= (A1 tale)

- (Al - A*)(l + $¥1$1) [

el AT o 2T AT 2y | [ (6= 20 + M) (6 = Ay)
el AT ey + 2T AT ey (6 = A2)(6 — A2)
+O((M = A7)

= (M —d)le.—afa)
TA_1$ + $TA_1$ ((5 - l(Al + AQ))((S — Al)
— (M=) T Ly Ay Tx 145 21 2 _1
(= AL+ wre) ([x%A;lwz + xlTAz_lam] [ (6 = A2)(é = Az)
FO((M = A)).

Noting that

(M = A)(@ha, —afar) = —(M — M)l Avay,
and that .
1
Qram o,
(1+ 232,

and substituting into (6.10) establishes

(611)  (Ap = A) = (A1 = Au(An A)O(L) + O((A = A)?).
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where

M(Al,Ag) — 1.

el A e+ e AT | (6= 5(A + 2))(6 = M)
el AT ey + 2T AT ey (6 = A2)(6 — Ag)

Since

(A1, A2) =0 as A, A — A,

the proof is complete. O
The previous discussion together with Lemmas (6.1) - (6.3) establishes
the following

Theorem 6.4 Suppose the solution to ( 2.1 ) is on the boundary of the
trust region. Then there is a neighborhood N of A\, such that a sequence of
iterates produced by Algorithm 1 using the two point scheme beginning with
2 vy corresponding to Ay, Ay € (N) will be well defined, remain in N and
converge superlinearly to x, and A,

7 Computational Results and Conclusions

In this final section, a limited set of computational results shall be presented
to illustrate the viability of the approach presented here. These results are
not meant to be exhaustive. They should be regarded as preliminary re-
sults intended to illustrate selected aspects of the behavior of this approach.
A comparison with the corresponding cost of solving the requisite linear
systems via conjugate gradients is provided .

The methods described in Sections 3-5 were implemented in in MATLAB,
Version 4.1. All experiments were carried out on a SUN SPARC station
IPX. The floating point arithmetic is TEEE standard double precision with
machine precision of €3y = 27°? & 2.2204 - 107 '6. In all cases the Implicitly
Restarted Lanczos technique described in Section 3 was used to solve the
eigenproblems. The number of Lanczos basis vectors was limited to nine.
Six shifts (i.e six matrix vector products) were applied on each implicit
restart. The iteration was halted as soon as the smallest Ritz value had a
Ritz estimate (3.2) below the specified tolerance.

The first experiment presents the performance on the problem (2.1 ) with
the matrix A = L—5+1 where L is set to the standard 2-D discrete Laplacian
on the unit square based upon a 5-point stencil with equally-spaced mesh
points. The shift of —5 was introduced to make the matrix indefinite. A
sequence of 20 related problems were solved. The order of A was n = 1024
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in all cases. The trust-region radius was fixed at A = 100 for all of the
problems. For each problem a random vector g was constructed with entries
uniformly distributed on (-.5, .5) and the problem was solved three times
with a tolerance of 107*, 107 and 107®. In Table 1 the average number of
trust-region iterations and average number of matrix vector products w «—
Aw per trust-region iteration are reported. In addition, the average number
of matrix-vector products required to solve the system (A—Al)z = —g using
the conjugate-gradient method is given. These tests indicate that a trust-
region solution requires fewer than twice as many matrix-vector products on
average than the number needed to solve a single linear system to the same
accuracy using the conjugate-gradient method. The accuracy requirement
of the eigenvalue solution computed by IRAM at each step was relaxed and
made proportional to the relative accuracy of the computed solution. More
specifically , ||Bag — ¢A|| < 71/1000 where 71 = min(1075, (W‘) In
addition to this, the inner IRAM iteration was initialized with the solution
from the previous outer trust-region iteration.

Trust Mvecs | iters | C'g Mvecs | Ratio

tol = .0001 59.3 4.2 44.4 1.34
tol = .000001 98.1 8.4 58.0 1.69
tol = .00000001 132.8 12.3 72.2 1.84

Table 1: Average behavior for different tolerances

The second experiment illustrates how the size of the trust-region pa-
rameter A may effect the solution process. In these problems the matrices
were distributed in the form A = UDUT with D a diagonal matrix with
diagonal elements selected randomly from a uniform distribution on (-.5,.5).
The matrix U = I — 2uu’ with the vector u and the vector g constructed
with randomly distributed elements and then normalized to have unit length.
The matrix A was of order n = 1000 . The trust-region radius A was varied
by a factor of 10 through the values 100, 10, ...,.0001 and each problem was
solved to the level ‘%‘ < 1075. By way of comparison, the conjugate-

gradient method was used to solve the same linear systems (A—A;1)z = —g
using the parameter A; provided by the eigen-solution of B, at the jth
step of the trust-region iteration . Each system was solved by conjugate
gradients to the same level of accuracy as the solution provided from the
eigenvalue solution. The total number of matrix-vector products required
by the eigenvalue method is to be compared to the number required by the
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conjugate-gradient method. These results are presented in Table 2.

A 100 10 1 1 .01 .001 | .0001
Trust Iters 13 8 4 4 4 4 4
Matvecs 579 | 240 36 36 36 36 36

CG-Matvecs 1307 | 384 51 39 30 26 24
lg + (A=)l | (-4 [(-6) | (-12) [ (-15) | (-15) | (-15) | (-15)
— () | (D |0y | (o) [ (1) | 13) | (-19)

Table 2: Behavior for different trust-region radii

The entries in parentheses in Table 2 represent powers of 10 (i.e. (-4)
represents 107*). The row labeled Trust [ters gives the number of itera-
tions required in Algorithm 1. The row labeled M atvecs gives the number
of matrix-vector products required to solve the resulting eigenvalue prob-
lems and the row labeled CG — Matvecs gives the number of matrix-vector
products required by the conjugate-gradient iteration to solve the same lin-
ear systems. Note that for small trust-region radii there is not a signifi-
cant difference in the required number of matrix-vector products but the
conjugate-gradient method has a much easier time for smaller values of A
than for larger values. This is because the matrix A — Al will have a very
large value of A and hence will act as though there are essentially two dis-
tinct eigenvalues when the value of A is small. Just the opposite situation
occurs when the value of the trust-region radius gets larger. The eigenvalue
problems do get more difficult to solve but the conjugate-gradient method
has more trouble with these systems than the eigenvalue method. This phe-
nomena is partially explained in [17]. When the spectrum is not clustered
it is often more difficult to solve the linear system by conjugate gradients
than it is to find an extreme eigenvalue.

The next results verify the superlinear rate of convergence for the two
point iteration. In this case the matrix A is again set to A = L — .51 with
L the 2-D discrete Laplacian on the unit square but the order of A was
n = 256 in this case. The trust-region radius was set at A = 10 for all of the
problems. Again, a random vector g was constructed with entries uniformly
distributed on (-.5 , .5) and the problem was solved with a tolerance of 10711
In Table 3 the progressive decrease in the magnitude of % is charted
as the iteration proceeds. The required number of iterations was 6 and it
took 144 matrix-vector products to solve the associated eigenvalue problems.
Each eigenproblem was solved to the accuracy level ||Byv — vA|| < 107
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ITter Al

A
1 0.8730
-0.1028
0.0063
7.1389¢-05
-4.8522e-08
1.2491e-12

O OY = | W N

Table 3: Verification of superlinear convergence

To study the behavior of the algorithm in the hard case, the same ma-
trix A = L — 5] of order 256 was used. In order to generate the hard
case the vector g was randomly generated as before and then the operation
g — g — q(q"g) was performed to orthogonalize g to the eigenvector ¢ cor-
responding to the smallest eigenvalue of A. Then a “noise” vector of norm
1078 was added to ¢g. In this test the trust-region radius was A = 100. A
number of different problems were solved and the following behavior of one
of the problems was typical of all of them. In every problem the hard case
was detected on the second regular iteration of Algorithm 1 and then the
iteration of Algorithm 2 was entered. Table 3 displays the ratio

2T(A— M)z
(97p+AA?)

and the iteration was halted when this ratio was less than ¢ = .000001 where
o is the tolerance introduced in Lemma (5.2) (see Step 4 of Algorithm 2 ).

21 — z
Iter %
1 0.2916
0.1448
0.0631
0.0221
0.0049
3.8942e-04
2.9174e-06
8.5908e-09

O 1| | T = | W[ N

Table 4: The Hard Case

The final solution was on the trust-region boundary to within working
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precision and it required a total of 11 eigenvalue problems which required
291 matrix-vector products . One of these was done between the transition
from Algorithm 1 to Algorithm 2 in order to assure a lower bound on a had
been obtained. This step is not reported in the Table 4. The behavior of
this iteration seemed to be more sensitive to level of accuracy required by
the eigen-solution then in the standard case. A rational approximation was
tried instead of the linear interplation and this performed poorly. However,
more testing is needed and perhaps a modification of the scheme for the hard
case will lead to improvements. No testing was done on large matrices since
it was desirable to have complete control over which eigenvectors the vector
g would be orthogonalized against. Moreover, no testing was done with
higher dimensional eigenspaces corresponding to the smallest eigenvalue.
Finally, special consideration may be called for in the case of least squares
problems arising from the discretization of ill-posed continuous problems .
These problems will be of the form min{||Mz —b|| : ||z]] < A} and for ill
posed problems the matrix A = M7 M will be singular or nearly singular
and the vector ¢ = MTh will be orthogonal or nearly orthogonal to the
corresponding null space of A. The method described by Golub and von
Matt [6] may be better suited to this situation and this comparison should
be made.

Although a direct comparison to the Secant method has not been made
here, the results that have been compiled with respect to the performance
of the conjugate-gradient iteration may be used to draw some conclusions.
Two possibilities for a Secant iteration come to mind. The first would be to
apply the Secant Method directly to the problem of adjusting A to obtain

L1,
A ]l

using the conjugate-gradient method to solve the resulting linear systems of
the form (A — Al)z = —g. An immediate problem with this approach is to
discover the range of A for which (A — AI) is positive definite. Moreover,
the systems that would have to be solved would be as computationally de-
manding for the conjugate-gradient iteration as the ones arising within the
iteration presented here. The computational results indicate this approach
would be inferior to the eigenvalue approach for modest to large trust-region
radii and roughly comparable for small radii.

A second possibility would be to use the eigenvalue formulation (2.2) to
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obtain points () but to apply the Secant Method to the problem

1 1

A el

in order to adjust the parameter a instead of using the specialized itera-
tion derived in Section 4. This method was coded and computational tests
showed it to be inferior to the method presented here. It took many more
iterations in general than the specialized iteration based upon rational in-
terpolation.

These results indicate promise for this approach to solving the large scale
trust-region subproblem. The examples given here were solved to tolerances
which are unlikely in to arise in most applications. This was done to get some
indication of the asymptotic behavior and to verify the convergence results
presented in Section 6. While these preliminary tests are very encouraging,
further experience with testing and with actual application will be necessary.
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