
� Introduction

An important problem in linear algebra and optimization is the Trust�Region
Subroblem � Minimize a quadratic function subject to an ellipsoidal con�
straint� A mathematical statement of the problem is

min
�

�
xTAx� gTx subject to kCxk � �

where A is an n � n symmetric matrix 	 g an n vector	 x is the unknown n

vector 	 C is a nonsingular matrix	 � is given positive number� The norm
is the standard ��norm	 T denotes transpose	 and all quantities are real�

This basic problem has many applications� The regularization or smooth�
ing of discrete forms of ill�posed problems such as those arising in seismic
inversion and the trust�region mechanism used to force convergence in opti�
mization methods are two examples of signi
cant computational importance�
Discussions of the problem of minimizing a quadratic function subject to a
quadratic constraint may be found in ��
	 ��
	 ��
� Applications to uncon�
strained optimization algorithms are given in ��
 	 ��
 	 ���
	 and applications
to constrained optimization algorithms are discussed in ��
	 ��
	 ��
	 ���
� For
applications to seismic inversion	 see ��
 	 ���
�

A solution x to the problem must satisfy a relation of the form

�A� �CTC�x � �g
with kCxk � �� The parameter � is the regularization parameter for ill�
posed problems	 and it is the Levenberg�Marquardt parameter in optimiza�
tion� C is often constructed to impose a smoothness condition on the so�
lution x for ill�posed problems and it is used to incorporate scaling of the
variables in optimization� With a change of variables one can assume C � I

and this will be the case considered in the following discussion�
If positive de
nite matrices of the form A� �I can be decomposed into

a Cholesky factorization then the method proposed by More� and Sorensen
��
 can be used to solve the problem� In some important applications 	 e�g�
seismic inversion and large scale constrained optimization	 factoring or even
forming these matrices is out of the question� A conjugate�gradient style
method for the large scale trust�region subproblem requiring only matrix�
vector products w � Av would be highly desirable�

The purpose of this paper is to present an algorithm for solving the large
scale trust�region subproblem that requires a 
xed�size limited storage pro�
portional to n and relies only upon matrix�vector products� The algorithm

�

-



recasts the trust�region subproblem in terms of a parameterized eigenvalue
problem and adjusts the parameter with a superlinearly convergent itera�
tion to 
nd the optimal vector x from the eigenvector of the parameterized
problem� Only the smallest eigenvalue and corresponding eigenvector of the
parameterized problem needs to be computed� The Implicitly Restarted
Lanczos Method as implemented in the ARPACK ���
 software is one tech�
nique that meets the requirements of limited storage and reliance only on
matrix�vector products� An algorithm that is designed to solve the related
large scale quadratically constrained least�squares problem is presented in
��
� The author is not aware of another algorithm that is suitable for the
general �inde
nite� large scale case�

� The Trust�Region Subproblem

The trust�region subproblem has a very interesting mathematical structure
that lends itself to e�cient computational techniques once the subtlety of
the structure is exposed� In this section and throughout the remainder of
the paper C � I is assumed and the problem to be considered is

min
�

�
xTAx� gTx subject to kxk � ������

The optimality conditions for this problem are interesting and computa�
tionally attractive since they are both necessary and su�cient and provide
a means to reduce the given n dimensional constrained optimization prob�
lem to a zero 
nding problem in a single scalar variable� The conditions are
given in the following lemma�

Lemma ��� The vector x is a solution to ����� if and only if x is a solution
to an equation of the form

�A� �I�x � �g�

with A� �I positive semide�nite	 � � � and ���� kxk� � ��

The statement of these conditions is slightly nonstandard in the use of a
negative rather than a positive �� The reason for this will be made clear
shortly� A simple proof of this lemma is given in ���
�
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The method developed by More� and Sorensen ��
 relies upon the ability
to compute a Cholesky factorization

RT
�R� � A� �I

whenever this matrix is positive de
nite� For any such � one can solve

RT
�R�x� � �g and then RT

�q� � x�

to evaluate the function

���� � �

�
� �

kx�k
and its derivative

����� �
kq�k�
kx�k�

and thus apply Newton�s method to 
nd a solution to the equation

���� � ��

This method will rapidly 
nd solutions that are on the boundary of the trust
region but it is not appropriate for large�scale problems which do not a�ord
a Cholesky decomposition�

It is possible to re�parameterize the trust�region subproblem to obtain
a scalar problem that is tractable in the large scale setting� A motivating
observation is that for a given real number �

�

�
�� ��x� �

�

�
��� xT �

�
� gT

g A

��
�
x

�
�

where ��x� � �
�x

TAx� gTx�
For a 
xed � the goal is to minize a vertical translation of the function

��x� over the set fx � � � xTx � � � ��g� This suggests the solution may
be found in terms of an eigen�pair of the bordered matrix� An eigenvalue �
and corresponding normalized eigenvector ��� xT�T of the bordered matrix
will satisfy �

� gT

g A

��
�
x

�
�

�
�
x

�
������

and it follows that

� � � � �gTx and �A� �I�x � �g������

�



Hence	

�� � � gT�A� �I���g �
nX

j��

	�j

j � �

�����

where f
jg are the eigenvalues of A and f	jg are the expansion coe�cients
of g in the eigenvector basis�

The bordered matrix appearing on the left in ����� will play a key role and
for future reference this matrix will be denoted as B�� A moments re�ection
on the consequences of ����� will reveal some very useful information� This
equation shows the eigenvalues of the matrix A interlace the eigenvalues of
the bordered matrix B� �This is also a consequence of the Cauchy interlace
theorem�� � Hence	 the smallest eigenvalue � of B� satis
es � � 
� where 
�
is the smallest eigenvalue of A� This assures the matrix A � �I is positive
semi�de
nite regardless of the value of �� Moreover	 this eigenvalue is well
separated from the rest of the spectrum of B� for smaller values of � and
it is expected that a Lanzos type algorithm will be successful in computing
this eigenvalue and the corresponding eigenvector�

Equations ����� de
ne � and hence x implicitly as a functions of �� Let
the function � be de
ned by

���� � gT�A� �I���g � �gTx
then

����� � gT �A� �I���g � xTx�

where di�erentiation is with respect to � and �A� �I�x � �g�
Finding the smallest eigenvalue and corresponding eigenvector of the

bordered matrix B� for a given value of � and then normalizing the eigen�
vector to have its 
rst component equal to one provides a means to evaluate
the rational function � and its derivative at values of � � 
� the small�
est eigenvalue of A� If � can be adjusted so the corresponding x satis
es
����� � xTx � �� with �� � � ����	 then

�A� �I�x � �g� ���� kxk� � �

with A� �I positive semide
nite� If � � � then x is optimal and solves the
trust�region subproblem� If � � � is found with kxk � � during the course
of adjusting � 	 then A is positive de
nite and the solution to the trust�
region subproblem is the unconstrained minimizer �A��g� The only other

�
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possibility is the eigenvector of the bordered matrix has 
rst component
zero and thus cannot be normalized to have its 
rst component equal to
one� This is equivalent to the so called hard case analyzed in ��
� The hard
case is discussed at length here in Section � �

This development has lead to a reformulation of the trust�region subprob�
lem in terms of a parameterized eigenvalue problem� In fact	 a sequence of
eigenvalue problems will have to be solved in order to iteratively adjust the
parameter � to produce the optimal � and x� Therefore	 if this observation
is to be helpful	 a rapidly convergent method must be devised to adjust �
to the optimal value and an e�cient method for computing the smallest
eigenvalue and corresponding eigenvector of the bordered matrix must be
available� Keeping in mind the assumption that only matrix�vector prod�
ucts w � Av are available	 a Lanczos method seems to be a natural choice
for an eigenvalue method � A well�suited variant of the Lanczos method is
presented in the next section� This will be followed with the development
of a rapidly convergent iteration to adjust ��

� The Implicitly Restarted Lanczos Process

Lanczos methods have been used extensively to solve large	 sparse symmetric
eigenvalue problems Ax � �x� In exact arithmetic	 the Lanczos process is
a scheme to tridiagonalize a symmetric A � Rn�n� After j�steps of the
Lanczos process	 an orthonormal n�j matrix Vj and a symmetric tridiagonal
matrix Tj are produced such that

AV j � VjTj � fje
T
j�����

where fj is a vector of length n with V T
j fj � � and ej is the jth co�ordinate

vector of length j � This is easily shown to be a truncation of the complete
orthogonal reduction of A to tridiagonal form that typically precedes the
implicitly shifted tridiagonal QR iteration�

The eigenvalues of Tj approximate a subset of eigenvalues of A� If �� y
is an eigen�pair for Tj �i�e� Tjy � y�� then �� x � Vjy is an approximate
eigen�pair for A and the error of approximation is given by

kAx� x�k � kfjkjeTj yj ������

In particular	 the approximation is exact when fj � �� Eigenvalues and
eigenvectors of the symmetric tridiagonal matrix Tj may be determined by
symmetric QR method or some other suitable technique�

�



There are a number of numerical di�culties with the original Lanczos
process and these di�culties have been addressed extensively in the litera�
ture ���
� The method developed in ���
 provides an alternate approach to
the classic numerical di�culties associated with the Lanczos process� The
underlying idea in ���
 is to recognize the residual vector fj is a function
of the initial starting vector �i�e� the 
rst column of Vj� and to then adjust
this starting vector to make the residual vector vanish� The total number
of Lanczos steps is limited to a 
xed prescribed value k and the starting
vector is iteratively updated in a way that forces the norm of the residual
vector fk to converge to zero� This limits storage requirements and allows
full numerical orthogonality of the Lanczos basis vectors to be enforced due
to the limited computational costs�

The iteration involves repeated application of polynomial filters to the
starting vector and an in�place updating of the k�step Lanczos factorization �
The iteration repeatedly updates the starting vector� v� � 
�A�v� where the
polynomial 
 is applied implicitly through a mechanism directly related to
the implicitly shifted QR technique� The polynomial is constructed to damp
undesirable eigenvector components from the starting vector forcing it into
an invariant subspace� This leads to termination of the Lanczos sequence
which begins with this starting vector in precisely k steps with fk � �� The
k eigenvalues of the associated Tk will be the eigenvalues of interest� The
construction and application of these polynomials	 how to update in�place	
and other related details are explained in ���
� The technique is analogous
to the implicitly shifted QR iteration for dense matrices and shares a number
of important numerical properties associated with that process�

With respect to the subject of this paper	 the major advantage of this
implicit restart approach is

� Fixed space� In this scheme	 the number of Lanczos basis vectors
never exceeds a pre�speci
ed bound that is proportional to the number
of eigenvalues sought� Moreover	 as in the basic Lanczos process	 only
matrix�vectors products are required with A� Peripheral storage of
basis vectors for eigenvector construction is not required�

By virtue of the 
xed modest number of Lanczos basis vectors	 it is
computationally feasible to maintain full numerical orthogonality among
the basis vectors� The maintenance of orthogonality ensures no spurious
eigenvalues are computed�

The standard Lanczos process provides a partial solution to the trust�
region subproblem� If Vk is the Lanczos basis obtained through k steps of

�



����� and Tk is the resulting tridiagonal matrix then Tk � V T
k AVk and the

change of variables x � Vky in ����� gives

�k�y� � ��Vky� �
�

�
yTTky � gTk y

where gk � V T
k g� If k is relatively small then the method described in ��


can be used to solve

min
�

�
yTTky � gTk y subject to kyk � ��

If y� is the solution to this problem then the invariance of the ��norm under
orthogonal transformation implies x� � Vky� solves

min
�

�
xTAx� gTx subject to kxk � � and x � Span�Vk��

In fact	 this approach is completely equivalent to the approach of Steihaug
���
 �also see ���
 � until the 
rst index k for which the solution to the reduced
problem is on the trust�region boundary instead of in the interior� This
approach naturally extends that technique to include directions of negative
curvature in the solution to the trust�region subproblem� However	 unlike
the Steihaug approach this will require storage of the Lanczos basis� Since
there is no apriori limit on the number of Lanczos steps �basis vectors�
required for the reduced problem to produce a near optimal solution to the
original problem	 this does not provide a practical means to iteratively solve
general large�scale trust�region subproblems�

� Adjusting Alpha

Recasting the trust region problem as a parameterized eigenvalue problem
together with the Implicitly Restarted Lanczos method provides a viable
approach to large scale problems if the optimal parameter � can be computed
rapidly� Recall that the goal is to adjust � so that

�� � � ���� � ����� � ���

where
���� � �gTx� ����� � xTx�

�



with �A��I�x � �g� One possibility would be to apply a standard iteration
such as the Secant Method to the problem

�

�
� �

kx����k
� ��

The approach adopted here is to develop a special interpolation�based it�
eration that takes advantage of the structure of the problem� This interpolation�
based iterative method will take the following form� Let ����� interpolate �
and �� at some previous iterate�s��
Algorithm �

While �
���kxk���

��� � tol�

�� Construct the interpolant �� based on the the current and perhaps
previous iterates�

�� Let �� satisfy ������� � �� �

�� Put �� � ��� ������ �

�� Compute the smallest eigenvalue and corresponding normalized
eigenvector of B�� to get the new iterates x� and �� �

End
Two iterations of this type will be developed� One is based on just

the previous iterate and the other on the previous two iterates� The 
rst is
linearly convergent and the second will prove to be superlinearly convergent�

To construct the single point method	 consider an interpolant of the form

����� �
	�


 � �
�

Let x� and �� denote the current iterates corresponding to � so that

�� �� � �gTx� with �A� ��I�x� � �g�
The interpolant must satisfy

	�


 � ��
� �gTx� and

	�

�
 � ����
� xT� x��

and from this it is straightforward to derive


 � �� � gTx�

xT� x�
and 	� �

�gTx���

xT� x�
�

�



It is easy to show 
 �
xT
�
Ax�

xT
�
x�

	 and this is a nice feature since it implies 
� � 


where 
� is the smallest eigenvalue of A� The formula for �� in Step � of
Algorithm � is given by

�� � 
 �
gTx�
kx�k�

and the updating formula to obtain �� at Step � is shown to be

�� � ���
	�


 � ��
� ��

��� ���

kx�k
�
�� kx�k

�

� �
��

�

kx�k
�

after a little algebraic manipulation� This method is linearly convergent
and may be slow in some cases so it will not su�ce to solve the entire
problem� However	 it may be used to obtain a second iterate from an initial
guess to provide the starting values needed to initiate a method based upon
interpolating two previous iterates at each step�

The two�point method is based upon an interpolant of the form

����� �
	�


 � �
� ��
 � �� � ��

Let x� and �� denote the current iterates and let x� and �� denote the
previous ones� The pole 
 is de
ned by


 � min�
min�
xT�Ax�
xT� x�

� if kx�k � � or kx�k � ��

or


 � max�
xT�Ax�

xT� x�
�
xT�Ax�

xT� x�
� if kx�k � � and kx�k � ��

and then 
min � min�
min� 
�� The remaining three coe�cients are deter�
mined to satisfy

������ � �gTx�� ������� � xT� x��
������� � xT� x��

Satisfying the derivative conditions requires

	�

�
 � ����
� � � xT� x��

	�

�
 � ����
� � � xT� x�������

and it follows that

	� �
�xT� x� � xT� x�
��
 � ����
 � ���


�

��� � �����
 � ��� � ���

������

�



� �
	�

�
 � ����
� xT� x� �

xT� x��
 � ���
� � xT� x��
 � ���

�

��� � �����
 � ��� � ���

������

and

� � �gTx� � ��
 � ���� 	�

�
 � ���
�

The formula for �� in Step � is derived from the condition

	�

�
 � ����
� � � ��

and yields

�� � 
 �
s

	�

�� � �
������

Finally	 the formula for �� is

�� � ��� � � ��
 � ��� �
	�


 � ��
�

�����

The formula ����� is	 unfortunately	 plagued with numerical cancellation
problems and computational experience has shown this will prevent super�

linear convergence when the quantity
���kxk���

��� falls below the square root

of working precision �i�e� below ���	 when working in double precision on
a Sun workstation�� After considerable manipulation one may arrive at
a mathematically equivalent update formula that does achieve superlinear
convergence to the level of working precision� This formula is

�� � ��
�
 � ����

�� �
p
� � ��

p
� � �

�
�� � xT� x�

� �
p
� � �

� xT� x� � �

�
������

where

� �

�
�� � xT� x�
xT� x� � xT� x�

� ��

 � ��

 � ��

	�
� �

�
�

Considering the branch of the function � that is supposed to be ap�
proximated by these formulas	 it is desirable that the formula ����� yields a
positive number and that the number � � �� appearing under the square

��



root sign in ���� � is also positive so that the iteration will be well de
ned�
These conditions are indeed satis
ed and this will be established in Section
�� In Section � it will also be established that the iteration based upon the
two point formula is locally and superlinearly convergent� However	 both
iterations can break down when faced with the so�called hard case�

� The Hard Case

There is one particularly di�cult situation that may arise in trust region
problems� This is referred to in ��
 as the hard case� It can only occur
when the vector g is orthogonal to the eigenspace S� � fq � Aq � q
�g
corresponding to the smallest eigenvalue 
� of A� The precise statement is

Lemma ��� Let p � ��A � 
�I�yg� If 
� � � and kpk � � then the
solutions to ����� consist of the set

So � fx � x � p� z� z � S�� kxk � �g�

In the statement of Lemma ����� the symbol y denotes the Moore�Penrose
generalized inverse� This lemma is proved in ���
 and its computational
implications are discussed in ��
� The following lemma is a restatement of a
result given in ��
 that is useful in dealing with the hard case�

Lemma ��� Let � � � � � be given and suppose

�A� �I�p � �g� � � ��

with �A� �I� positive semide�nite� If

kp� zk � �� and zT �A� �I�z � ���gTp� ����

then

�� � ��p� z� � �

�
��� ���gTp� ���� � ��� �����

where �� � � is the optimal value of � ��� � �

More� and Sorensen used this lemma to detect near hard�case behavior
and terminate the iterative solution to ����� early� In that setting 	 explicit
eigen�information was not available and deemed too expensive to obtain�
Instead	 a suitable point z was obtained from the LINPACK condition esti�
mator ��
 applied to the Cholesky factor of �A��I�� In the present setting	

��
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the Cholesky factor is not computed but the necessary eigen�information
will be readily available�

The reformulation leading to the key relation ����� depends upon the
ability to normalize the selected eigenvector of the bordered matrix to have
its 
rst component set to one� This is of course impossible when the 
rst
component of this eigenvector vanishes� Interestingly enough	 the hard case
occurs precisely when this happens�

Lemma ��� Every vector of the form ��� qT�T with q � S� is an eigenvector
of the bordered matrix �

� gT

g A

�

if and only if g is orthogonal to S� �
The proof of this lemma is very straightforward and will be omitted�

Generally	 a near hard�case condition is painfully obvious in practice� If
the search for the optimal � discussed in Section � is initiated with � � �
then the 
rst iterate or its successor given by the one point interpolation
formula typically will have an extremely small 
rst component in the eigen�
vector corresponding to the smallest eigenvalue of the bordered matrix B��
If the vector ��� qT �T is an eigenvector of length one for the bordered matrix
corresponding to the smallest eigenvalue � then satisfying a test of the formp

�� �� � ��j�j
with � �� � detects the hard case� Moreover	 since �A � �I�q � �g� it
follows that

k�A� �I�qk
kqk �

kgkj�jp
�� ��

� kgk
��

�����

and choosing � � kgk
�� assures k�A��I�qk

kqk � � and hence that � 	 q are an
approximate eigen�pair for A�

If a hard�case condition has been detected	 set �U � � 	 z � q�kqk� Put
� � zTAz � �U � ��gTq���qTq�

and enter the following iteration with x�	 �� the most recent iterates ob�
tained before detection of the hard case�
Algorithm �

Let � � ��� �� and �� � �� � �U �
Repeat �

��



�� �� ��� ���U � ��� � gTx� � ��� ����U � ����x
T
� x���

�� Compute � and ��� qT �T the smallest eigenvalue and correspond�
ing vector of B��

�� Put x� � q�� 	 �� � � and let � satisfy kx� � z�k � ��

�� If ����� ��� � ���gTx� � ���
�� then stop with x� x� z� �

�� If kx�k � � then �U � �� 	 � � min�� 	 �U � � � j�j� else
x� � x� 	 �� � ���

End
Note that on entering this hard�case iteration �U will be a good under�

estimate to 
� the smallest eigenvalue of A� The update at Step � is derived
from linear interpolation of � and its 
rst derivative at �� and then solving
for the � that would produce a new �� � ��� ���U � �� if � were linear� In
other words	 � satis
es

�� �� � ����� � ���������� ��� � �gTx� � xT� x��
��� ���

with �� � ��� � ��� ���U �
Since � is convex on the interval ��
� 
�� the new �� obtained by solving

the bordered problem with this � will satisfy �� � �� � ��� Moreover	 the
length of the interval ���� �U� will always shrink�

Lemma ��� Assume � � �

� Let �

�
� and ��U be the updated values of �� and

�U obtained from one pass through the hard�case iteration� Then

j��U � ��� j � ��� ��j�U � ��j�

Proof 
 By its construction	 �� will satisfy ����� � ����� Substituting the
de
ned value of � gives

����� � ��� ���U � ��� � ����� � ��� ����U � ����x
T
� x��� ���

Rearranging terms will give

������ ����� � �� � �� � ��� ���� � xT� x�
��U � ���������

It is straightforward to show

������ ����� � ��� � ���x
T
� x��

��
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and substituting this into ����� and rearranging terms will give

��� � ����� � xT� x�� � ��� ���� � xT� x����U � ����

If kx�k � � then ��� � �� and ��U � �U � Hence	

��U � ��� � �U � ��

� �U � �� � ��� � ���

�

�
�� ��� ��

�� � xT� x��

�� � xT� x��

�
��U � ���

�

�
�x� � x��Tx�
�� � xT� x��

� �
�� � xT� x��

�� � xT� x��

�
��U � ���������

Now	 if �� � �� �
�

��U � ��� then

�x� � x��Tx�
�� � xT� x��

�
��� � ���xT�A

��
� x�

�� � xT� x��

� ��� � ���

�
� � ���

xT� x�

�� � xT� x��

�
�

�

��U � ���

�
� � ���� ��� � ���

�
xT� x�

�� � xT� x��

�
�

��U � ���
�

��U � ���

�
�

�

where A� � A� ��I � Thus

��U � ��� � �
�

�
� ����U � ��� �

�

�
��U � ���

follows from ������ If �� � �� � �

��U � ��� then

��U � ��� � �U � �� � ��U � ���� ��� � ��� � �

�
��U � ���

and in both cases the desired result holds since �

 � ��� ��� Now suppose

kx�k � �� Then ��U � �� and ��� � �� and it follows that

��U � ��� � ��� ��
�� � xT� x��

�� � xT� x��
��U � ��� � ��� ����U � ����

��



This establishes the result� �

This result establishes convergence but is far from indicative of what
will occur in practice� A value � � ���� works well in practice even though
this Lemma would indicate a potentially slow rate of convergence with this
value� This is because the point �� almost always satis
es kx�k � � �

Satisfaction of the stopping rule at Step � assures the conditions of
Lemma ����� are satis
ed so the accepted point x� satis
es

��x�� � ��x�� � ��� ����x��

In many applications including the two mentioned previously	 a value of
� � ��� is used and this is generally satis
ed very rapidly indeed�

� Safeguarding and Convergence

In this section the issues of forcing convergence and determining the rate of
local convergence will be discussed� It will be shown that the iterates based
upon the two point rational interpolation formulas are well de
ned and are
locally convergent at a superlinear rate� This may be of considerable interest
computationally since evaluating the function � and its derivative requires
the computation of the smallest eigenvalue and corresponding eigenvector
of the bordered matrix B� and this is potentially very expensive� Note	
however	 in practice one is often interested in just a few digits of accuracy
and then superlinear convergence is of little consequence� Nevertheless	 it
is reassuring to know this rapid convergence can be expected when higher
accuracy is needed�

There is very little to say about safeguarding� Perhaps in the future
with more computational experience this will become an important issue� In
the computational results presented here a fairly standard simple safeguard
was used to obtain an interval of uncertainty and then to assure that
this interval is updated on each iteration and required to decrease � This
safeguard rarely forced a modi
cation of the step given by the two point
formula in Algorithm ��

In order to present the local convergence result as simply as possible	 it
shall be useful to introduce some notation� The subscript � shall indicate
the most recent iterate	 and the subscript � shall denote the previous iterate�
Thus �� and �� are the current and previous approximations to the optimal
��	 and �� is the smallest eigenvalue of the borderd matrix B�� The updated
�� is the smallest eigenvalue of the updated B�� 	 and �� will denote the

��



value of � that gives the optimal parameter �� and corresponding solution
vector x�� The notation Aj � A � �jI for j � �� � and A� � A � ��I will
be used� Thus xj � �A��

j g for j � �� � and x� � �A��
� g� At a general

point � the notation A� � A � �I and x� � A��
� will be used� Finally	 the

notation O���� � ���
j� will be used to denote a quantity whose absolute

value is bounded by a 
xed positive constant times the quantity j�� � ��jj
for any value of �� in a su�ciently small neighborhood of �� �j � �� �� ���

First	 the fact that the iterates are well de
ned shall be established� In
this development it is useful to note

xT� x� � xT� x� � gT�A��
� �A��

� �g

� gTA��
� �A� � A���A� �A��A

��
� g

� ��� � ����x
T
�A

��
� x� � xT�A

��
� x�
������

From this it follows that

	� �
�xT� x� � xT� x�
��
 � ����
 � ���


�

��� � �����
 � ��� � ���


�
�xT�A

��
� x� � xT�A

��
� x�
��
 � ����
 � ���
�

�
 � ��� � ���
������

Now	 with the exception of the hard case	 the smallest eigenvalue of the
bordered matrix B� is always less than the smallest eigenvalue 
� of A and

 � 
�� Hence	 xT�A

��
� x� � �	 xT�A

��
� x� � � and �
 � ��� � ��� � ��

Therefore	 the formula � ���� for 	� does indeed yield a positive number�
Moreover	 the number �� � � appearing under the square root sign in

����� is always nonnegative�

Lemma 	�� The quantity �� � � in ����� is always nonnegative�

Proof 
 If either xT� x� � �� or xT� x� � �� then �� � � � � since

�� � � �
	�

�
 � ����
� ��� � xT� x��

�
	�

�
 � ����
� ��� � xT� x��

is implied by ������ Otherwise	 it may be assumed without loss of generality
that xT� x� � �� � xT� x� � xT� x� and hence that �� � �� � ��� In this case

��



the pole 
 satis
es 
 � max�
xT
�
Ax�

xT
�
x�

�
xT
�
Ax�

xT
�
x�

� � Observe that the function

���� � xT�Ax�
xT�x�

is decreasing on the interval ���� 
�� since the Cauchy�Schwarz inequality
implies

�xT�A�x���x
T
�A

��
� x�� � �xT�A

���
� A

����
� x��

� � �xT�x��
������

and hence

�
�

��� � �

�
�� �xT�A�x���x

T
�A

��
� x��

�xT�x��
�

�
� ��

for all � � ���� 
��� It follows that

�xT�A�x��

xT�x�
� ����� � � 
 � � � �

for all � � ���� 
��� From ����� it may be found that

�� � � �
�xT� x� � xT� x���
 � ���� � �xT� x� � xT� x���
 � ����

�
 � ���� � �
 � ����
������

Now	 �� � �� � �� � 
 implies 
 � �� � 
 � �� � 
 � �� � � so the
denominator in ����� is positive and the result will be established if it is
shown that the function

���� � �xT�x� � xT� x����
 � ���

is strictly increasing on the interval ���� 
�� Di�erentiating � with respect
to � gives

�
�

��� � ��
 � ���xT�A
��
� x��
 � ��� �xT�x� � xT� x��
�����

� ��
 � ���xT�x��

�
�xT�A�x���x

T
�A

��
� x��

�xT�x��
�

� � �
xT� x�

xT�x�

�

� �

which again follows from ������ This implies ���� is increasing on the interval
� � ���� 
�� and since

�� � � �
������ �����

�
 � ���� � �
 � ����
�

��



it follows that �� � � � � when �� � �� � �� � 
 and the result is
established� �

It has just been demonstrated that the iterates are well de
ned and it
is now necessary to establish the local rate of convergence� To this end it
is useful to establish a technical lemma that will facilitate the proof of the

nal desired result

Lemma 	�� The intermediate point �� given by ����� satis�es

��� �� �

�

 � ��

�

	�
�� � xT� x�

� � xT� x�

�
�O���� � ���

��������

Proof 
 The result is established using a Taylor expansion of the square root
function near �� The formulas of Algorithm � give

�� � 
 �
s

	�

�� � �

� 
 � �
 � ���

vuut 	�

��

�������
� ��� � xT� x��

� 
 � �
 � ���

vuut �

� �
���xT

�
x�

��xT
�
x�

� 
 � �
 � ���

�
�� �

�

�
�� � xT� x�
� � xT� x�

��
� O���� � ���

���

Simplifying this last term yields the desired formula ������ �

The updating formula for � will now be used to establish a result to
relate �� � �� to �� � ���

Lemma 	�� There is a neighborhood N of �� such that the iterate �� pro�
duced at Steps � and � of Algorithm � using formula ���
� to compute ��
based upon points ��� �� � �N � will satisfy

��� � ��� � ��� � �������� ���O��� �O���� � ���
��������

where
����� ���� � as ��� �� � ��

��



Proof 
 The proof begins with the formula

�� � ��� � � ��
 � ��� �
	�


 � ��
�

Using the de
nition

� � �gTx� � ��
 � ���� 	�

�
 � ���
�

and the fact that

��
 � ��� �
	�


 � ��
� ���
 � ��� � �
 � ������

and substituting into the above formula gives

�� � ��� gTx� � ����� � ��� � �
 � ����� � �
 � ���x
T
� x��

Since �gTx� � � � �� it follows after substitution and simpli
cation that

�� � �� ��� � ������ ��� � �
 � �
 � �����
� � xT� x��������

Now utilize the relation �� � �� � gTx� and �� � �� � gTx� to see that

�� � �� � �� � �� � gT �x� � x��

� �� � �� � gT �A��
� � A��

� �g

� �� � �� � gTA��
� �A� �A��A

��
� g

� ��� � ����� � xT�x��������

Similarly 	
�� �� � ��� � ����� � xT� x���

Subtracting �� from both sides of ����� above and substituting for �� � ��
using ����� gives

��� � ����� � xT�x��

� ��� � ����� � xT� x��� �
 � �����
� � xT� x��

�
�� � �� � �

�� � �xT� x�
� �

�
� O���� � ���

��

� ��� � ����� � xT� x��� ��� � xT� x���
 � ���

�
��� � xT� x��� �� � xT� x��

�� � �xT� x�

�

�O���� � ���
���

��



Since

�� � xT� x� � xT� x� � xT� x�

� ��� � ����x
T
�A

��
� x� � xT�A

��
� x�


and since

��� � xT� x�� � �
	�

�
 � ����

�
�xT�A

��
� x� � xT�A

��
� x�
��
 � ���


�


 � �
���� � ���

� O����

it follows that

������

��� � ����� � xT�x��

� � �� � ����� � xT� x��

� ��� � ����� � xT� x��

�
xT�A

��
� x� � xT�A

��
� x�

xT�A
��
� x� � xT�A

��
� x�

��
�
 � �

���� � �����
 � ���

�
 � ����
 � ���

�

�O���� � ���
��

� � �� � ����x
T
�x� � xT� x��

� ��� � ����� � xT� x��

��
xT�A

��
� x� � xT�A

��
� x�

xT�A
��
� x� � xT�A

��
� x�

��
�
 � �

���� � �����
 � ���

�
 � ����
 � ���

�
� �

�

�O���� � ���
���

Noting that

��� � ����x
T
�x� � xT� x�� � ���� � ���

�xT�A�x��

and that
�� � xT� x��

�� � xT�x��
� O����

and substituting into ������ establishes

��� � ��� � ��� � �������� ���O��� �O���� � ���
���������

��



where

����� ��� �
�
xT�A

��
� x� � xT�A

��
� x�

xT�A
��
� x� � xT�A

��
� x�

��
�
 � �

���� � �����
 � ���

�
 � ����
 � ���

�
� ��

Since
����� ���� � as ��� �� � ���

the proof is complete� �

The previous discussion together with Lemmas ����� � ����� establishes
the following

Theorem 	�� Suppose the solution to � ��� � is on the boundary of the
trust region� Then there is a neighborhood N of �� such that a sequence of
iterates produced by Algorithm � using the two point scheme beginning with
x� x� corresponding to ��� �� � �N � will be well de�ned	 remain in N and
converge superlinearly to x� and ��

� Computational Results and Conclusions

In this 
nal section	 a limited set of computational results shall be presented
to illustrate the viability of the approach presented here� These results are
not meant to be exhaustive� They should be regarded as preliminary re�
sults intended to illustrate selected aspects of the behavior of this approach�
A comparison with the corresponding cost of solving the requisite linear
systems via conjugate gradients is provided �

The methods described in Sections ��� were implemented in in MATLAB	
Version ���� All experiments were carried out on a SUN SPARC station
IPX� The �oating point arithmetic is IEEE standard double precision with
machine precision of �M � ���� 
 ������ � ������ In all cases the Implicitly
Restarted Lanczos technique described in Section � was used to solve the
eigenproblems� The number of Lanczos basis vectors was limited to nine�
Six shifts �i�e six matrix vector products� were applied on each implicit
restart� The iteration was halted as soon as the smallest Ritz value had a
Ritz estimate ����� below the speci
ed tolerance�

The 
rst experiment presents the performance on the problem ���� � with
the matrix A � L��	I where L is set to the standard ��D discrete Laplacian
on the unit square based upon a ��point stencil with equally�spaced mesh
points� The shift of �� was introduced to make the matrix inde
nite� A
sequence of �� related problems were solved� The order of A was n � ����

��



in all cases� The trust�region radius was 
xed at � � ��� for all of the
problems� For each problem a random vector g was constructed with entries
uniformly distributed on ���� 	 ��� and the problem was solved three times
with a tolerance of ���
 	 ���� and ���	� In Table � the average number of
trust�region iterations and average number of matrix vector products w �
Av per trust�region iteration are reported� In addition	 the average number
of matrix�vector products required to solve the system �A��I�x � �g using
the conjugate�gradient method is given� These tests indicate that a trust�
region solution requires fewer than twice as many matrix�vector products on
average than the number needed to solve a single linear system to the same
accuracy using the conjugate�gradient method� The accuracy requirement
of the eigenvalue solution computed by IRAM at each step was relaxed and
made proportional to the relative accuracy of the computed solution� More

speci
cally 	 kB�q � q�k � ������� where �� � min������
���kxk���

����� In

addition to this	 the inner IRAM iteration was initialized with the solution
from the previous outer trust�region iteration�

Trust Mvecs iters Cg Mvecs Ratio

tol � ����� ���� ��� ���� ����

tol � ������� ���� ��� ���� ����

tol � ��������� ����� ���� ���� ����

Table �� Average behavior for di�erent tolerances

The second experiment illustrates how the size of the trust�region pa�
rameter � may e�ect the solution process� In these problems the matrices
were distributed in the form A � UDUT with D a diagonal matrix with
diagonal elements selected randomly from a uniform distribution on ����	����
The matrix U � I � �uuT with the vector u and the vector g constructed
with randomly distributed elements and then normalized to have unit length�
The matrix A was of order n � ���� � The trust�region radius � was varied
by a factor of �� through the values ���� ��� ���� ����� and each problem was

solved to the level
�����kxk�

��� � ����� By way of comparison	 the conjugate�

gradient method was used to solve the same linear systems �A��jI�x � �g
using the parameter �j provided by the eigen�solution of B�j at the jth
step of the trust�region iteration � Each system was solved by conjugate
gradients to the same level of accuracy as the solution provided from the
eigenvalue solution� The total number of matrix�vector products required
by the eigenvalue method is to be compared to the number required by the

��

I I I I 



conjugate�gradient method� These results are presented in Table ��

� ��� �� � �� ��� ���� �����

Trust Iters �� � � � � � �

Matvecs ��� ��� �� �� �� �� ��

CG�Matvecs ���� ��� �� �� �� �� ��

kg � �A� �I�xk ���� ���� ����� ����� ����� ����� ����������kxk�

��� ���� ���� ����� ���� ����� ����� �����

Table �� Behavior for di�erent trust�region radii

The entries in parentheses in Table � represent powers of �� �i�e� ����
represents ���
�� The row labeled Trust Iters gives the number of itera�
tions required in Algorithm �� The row labeled Matvecs gives the number
of matrix�vector products required to solve the resulting eigenvalue prob�
lems and the row labeled CG�Matvecs gives the number of matrix�vector
products required by the conjugate�gradient iteration to solve the same lin�
ear systems� Note that for small trust�region radii there is not a signi
�
cant di�erence in the required number of matrix�vector products but the
conjugate�gradient method has a much easier time for smaller values of �
than for larger values� This is because the matrix A � �I will have a very
large value of � and hence will act as though there are essentially two dis�
tinct eigenvalues when the value of � is small� Just the opposite situation
occurs when the value of the trust�region radius gets larger� The eigenvalue
problems do get more di�cult to solve but the conjugate�gradient method
has more trouble with these systems than the eigenvalue method� This phe�
nomena is partially explained in ���
� When the spectrum is not clustered
it is often more di�cult to solve the linear system by conjugate gradients
than it is to 
nd an extreme eigenvalue�

The next results verify the superlinear rate of convergence for the two
point iteration� In this case the matrix A is again set to A � L � ��I with
L the ��D discrete Laplacian on the unit square but the order of A was
n � ��� in this case� The trust�region radius was set at � � �� for all of the
problems� Again	 a random vector g was constructed with entries uniformly
distributed on ���� 	 ��� and the problem was solved with a tolerance of ������

In Table � the progressive decrease in the magnitude of ��kxk
� is charted

as the iteration proceeds� The required number of iterations was � and it
took ��� matrix�vector products to solve the associated eigenvalue problems�
Each eigenproblem was solved to the accuracy level kB�v � v�k � ���


��



Iter ��kxk
�

� ������

� �������

� ������

� ������e���

� �������e���

� ������e���

Table �� Veri
cation of superlinear convergence

To study the behavior of the algorithm in the hard case	 the same ma�
trix A � L � ��I of order ��� was used� In order to generate the hard
case the vector g was randomly generated as before and then the operation
g � g � q�qTg� was performed to orthogonalize g to the eigenvector q cor�
responding to the smallest eigenvalue of A� Then a �noise� vector of norm
���	 was added to g� In this test the trust�region radius was � � ���� A
number of di�erent problems were solved and the following behavior of one
of the problems was typical of all of them� In every problem the hard case
was detected on the second regular iteration of Algorithm � and then the
iteration of Algorithm � was entered� Table � displays the ratio�����z

T �A� �I�z

�gTp� ����

�����
and the iteration was halted when this ratio was less than � � ������� where
� is the tolerance introduced in Lemma ����� �see Step � of Algorithm � ��

Iter
��� zT �A��I�z�gT p�����

���
� ������

� ������

� ������

� ������

� ������

� ������e���

� ������e���

� ������e���

Table �� The Hard Case

The 
nal solution was on the trust�region boundary to within working

��



precision and it required a total of �� eigenvalue problems which required
��� matrix�vector products � One of these was done between the transition
from Algorithm � to Algorithm � in order to assure a lower bound on � had
been obtained� This step is not reported in the Table �� The behavior of
this iteration seemed to be more sensitive to level of accuracy required by
the eigen�solution then in the standard case� A rational approximation was
tried instead of the linear interplation and this performed poorly� However	
more testing is needed and perhaps a modi
cation of the scheme for the hard
case will lead to improvements� No testing was done on large matrices since
it was desirable to have complete control over which eigenvectors the vector
g would be orthogonalized against� Moreover	 no testing was done with
higher dimensional eigenspaces corresponding to the smallest eigenvalue�
Finally	 special consideration may be called for in the case of least squares
problems arising from the discretization of ill�posed continuous problems �
These problems will be of the form minfkMx� bk � kxk � �g and for ill
posed problems the matrix A � MTM will be singular or nearly singular
and the vector g � MT b will be orthogonal or nearly orthogonal to the
corresponding null space of A� The method described by Golub and von
Matt ��
 may be better suited to this situation and this comparison should
be made�

Although a direct comparison to the Secant method has not been made
here	 the results that have been compiled with respect to the performance
of the conjugate�gradient iteration may be used to draw some conclusions�
Two possibilities for a Secant iteration come to mind� The 
rst would be to
apply the Secant Method directly to the problem of adjusting � to obtain

�

�
� �

kx�k � ��

using the conjugate�gradient method to solve the resulting linear systems of
the form �A� �I�x � �g� An immediate problem with this approach is to
discover the range of � for which �A � �I� is positive de
nite� Moreover	
the systems that would have to be solved would be as computationally de�
manding for the conjugate�gradient iteration as the ones arising within the
iteration presented here� The computational results indicate this approach
would be inferior to the eigenvalue approach for modest to large trust�region
radii and roughly comparable for small radii�

A second possibility would be to use the eigenvalue formulation ����� to

��



obtain points x���� but to apply the Secant Method to the problem

�

�
� �

kx����k
� �

in order to adjust the parameter � instead of using the specialized itera�
tion derived in Section �� This method was coded and computational tests
showed it to be inferior to the method presented here� It took many more
iterations in general than the specialized iteration based upon rational in�
terpolation�

These results indicate promise for this approach to solving the large scale
trust�region subproblem� The examples given here were solved to tolerances
which are unlikely in to arise in most applications� This was done to get some
indication of the asymptotic behavior and to verify the convergence results
presented in Section �� While these preliminary tests are very encouraging	
further experience with testing and with actual application will be necessary�
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