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Antenna Arrays for Wireless CDMA

Communication Systems

Raghavendra K. Madyastha

Abstract

The estimation of code delays along with amplitudes and phases of di�erent users

constitutes the �rst stage in the demodulation process in a CDMA communication

system. The delay estimation stage is termed the acquisition stage and forms the

bottleneck for the detection of users' bitstreams; accurate detection necessitates ac-

curate acquisition. Most existing schemes incorporate a single sensor at the receiver,

which leads to an inherent limit in the acquisition based capacity, which is the number

of users that can be simultaneously acquired. In this thesis we combine the bene�ts

of spatial processing in the form of an antenna array at the receiver along with code

diversity to gain an increase in the capacity of the system. An additional parameter

to be estimated now is the direction of arrival (DOA) of each user. We demonstrate

the gains in parameter estimation with the incorporation of spatial diversity. We

propose two classes of delay-DOA estimation algorithms | a maximum likelihood

algorithm and a subspace based algorithm (MUSIC). With reasonable assumptions

on the system we are able to derive computationally e�cient estimation algorithms

and demonstrate the gains achieved in exploiting multiple sensors at the receiver.

In addition, we also investigate the bene�ts of spatial diversity in linear multiuser

detection. We consider two linear multiuser detectors, the decorrelating detector and

the linear MMSE detector (chosen for their near-far properties) and characterize the

performance increase in the multisensor case. We observe that in many cases, the

gain can be directly captured in terms of the number of sensors in the array.
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Chapter 1

Introduction

The concept of conveying information by successive choices from a �nite alphabet is

the essence of data communications. The rapid increase in the demand for information

transfer in recent years necessitates increasingly reliable data transmission at ever

increasing rates. An example of an emerging communications network is the mobile

cellular phone or wireless communications network. Such a system is called a multiple

access system because typically more than one user or subscriber is accessing the

network at a given time. An immediate issue is the e�cient distribution of available

resources, typically bandwidth, amongst the di�erent users [1,2].

In a typical cellular communication system a geographical region is divided into

a number of cells, the coverage of each cell depending on the average tra�c in the

cell (based on experimental measurements). Figure 1.1(a) depicts a schematic of one

such \honeycomb" of idealized hexagonal cells, with Figure 1.1(b) representing an in-

dividual cell. The mobiles in each cell (whether vehicle or human) communicate with

a central processing unit called the base station. The base station in turn processes

all incoming calls from the cell and redirects them to a mobile trunk swtiching unit

(MTSN) which redirects the calls to other base stations or to the terrestrial wired

network. The base station is also responsible for directing incoming calls from the

MTSN to the individual mobiles as well as tracking the signal of a mobile in hand-o�

mode. In the realm of voice communications, a typical cell might be required to

support 40 users at 9600 baud, each incurring a bit error rate of 10�3.

There are three extant multiple access schemes: frequency division multiple access

(FDMA), time division multiple access (TDMA) and code division multiple access
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(a)

(b)

Figure 1.1 : (a) Idealized schematic of a cellular system depicting hexagonal cells
with base stations. (b) Close-up of a particular cell in the above system. Each user

communicates with the base station in its cell.
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(CDMA). FDMA is the oldest method to date and uses the intuitively obvious ap-

proach of dividing the available bandwidth into frequency bins, one for each user.

TDMA is a more recent scheme wherein each user has the entire bandwidth at its

disposal, but is restricted to transmitting in �xed time slots. The number of users that

can be supported is determined by the number of slots available, either in frequency

or time. Both the above systems are inherently inexible in that the number of fre-

quency or time slots (or channels) allocated is �xed a priori ; this leads to wastage of

resources when the number of users is less than the number of channels.

CDMA is the most recent multiple access strategy and falls under a class of tech-

niques called spread spectrum techniques [3, 4]. The term spread spectrum is used

to signify the fact that the data stream is modulated or coded so that the overall

transmission rate is much higher than what is needed to transmit the actual data.

The basic idea is to replace a single data bit by a coded waveform that can only be

detected when this code is known to the receiver. By utilizing intelligent encoding of

the users' signals, each user is allowed the entire use of the time-frequency plane. We

would ideally like to ensure that all the codes assigned are mutually orthogonal in

order to be able to maximally di�erentiate amongst them. In practice however, this is

not realistic due to the asynchronous manner of operation that CDMA supports, i.e.,

the users are not constrained to transmit at any particular times. This also allows

for a larger number of possible codes with the overall system performance degrading

gracefully as the number of users increases.

The two common modulation techniques for spread spectrum are direct sequence

(DS) and frequency hopping (FH). Frequency hopping is an extension of the idea that

a good way to prevent interference from unwanted signals is to move the desired signal

around as much as possible in the frequency domain so that the operating frequency

cannot be estimated. The desired user's signal is subjected to a predetermined pat-

tern of \hopping" among certain frequencies. Direct sequence CDMA (DS-CDMA)

signals are generated by multiplying the desired signal by a larger-bandwidth spread-
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ing sequence. These spreading sequences, also called spreading codes, are also called

pseudonoise sequences due to their resemblance to stochastic uncorrelated noise se-

quences. DS-CDMA schemes allow all the users in a system to transmit over the

entire available bandwidth, achieving inter-user distinction through distinct spread-

ing codes assigned to individual users. A feature of direct sequence techniques is

the �ne resolution in time that they o�er, thereby allowing di�erentiation of multi-

ple copies of signals that may arrive at di�erent times at a receiver due to reections

from large objects nearby, also called multipath [5,6]. In addition, these sequences are

designed to have low cross correlations amongst themselves so that the interference

due to the other users, also termed multiple access interference (MAI), is kept as low

as possible. The above reasons, along with reasonable costs of implementation, have

led to direct sequence code division multiple access gaining considerable ground in

the recent past as a viable protocol for commercial digital cellular communications.

The emergence of the IS-95 standard for commercial cellular communications, has

focused interest in deploying CDMA systems both in the cellular as well as personal

communications arenas. Henceforth we will restrict our discussion of CDMA to direct

sequence CDMA.

1.1 Motivation: The acquisition problem

The �rst stage in the demodulation of a CDMA signal is the so-called acquisition

stage wherein the receiver attempts to lock onto the phase of the desired user's code.

The communication link originating at the mobile and terminating at the base sta-

tion, also called the uplink or reverse link, in a general wireless CDMA system is

inherently asynchronous in nature, i.e., di�erent signals arrive at the receiver with

di�erent relative time-o�sets (for example, see Figure 1.2). The detection of a par-

ticular user's transmitted bits involves the correlation of the received waveform with

a copy of the corresponding code at the receiver. Accurate correlation necessitates

an accurate estimate of the user's timing o�set. In the presence of multiple access
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User 1

User 2

User 3

User 4

τ1

2τ

3τ

4τ
Figure 1.2 : A schematic of 2 successive bits each of four asynchronous users, with
delays �1; �2; �3 and �4, arriving at a base station. The vertical dashed lines represent

the base station's initial estimate of the bit boundaries.

interference (MAI) acquiring this timing or delay information is not a trivial task,

especially since preferred codes have a very narrow and peaky autocorrelation struc-

ture (see Figure 1.3). Once an initial estimate of each user's delay is calculated, the

next task is to track these delays over the subsequent incoming bits. The two stage

process of acquiring the users' timings and tracking them as they change is called

synchronization. In this paper we focus on the �rst stage, i.e, the acquisition phase.

We must emphasize at this point that the tracking phase of the overall synchroniza-

tion is an important problem in its own right and merits a separate study. This is

because the channel impulse from the mobile to the base station is in constant ux

due to the relative motion of the mobile and its surroundings | this contributes to

constantly changing delays as well as occasionally varying numbers of delays.

Conventional CDMA systems treat the MAI as noise and therefore use single-
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0 31
−2

−1

0

1

2

 Only 1 user
0 31

0 31
−5

0

5

4 users: MAI = 0dB
0 31

0 31
−15

0

15

4 users: MAI = 10dB
0 31

Figure 1.3 : The plot depicts the e�ects of MAI on the output of the correlator
corresponding to the desired user's code. The left hand plots depict the received

signal; the right hand plots depict the output of the sliding correlator corresponding

to user 1, with the maximum denoted by a '�'. The delay of user 1 corresponds to
the argument of the maximum value. In the top plate we see only the desired user
present and hence the timing is easy to estimate. In the middle plate we see that with

mild interference it might still be possible to estimate the user's delay. The plates

at the bottom represent 4 users with 10dB MAI and we see that the timing estimate
is wrong. The dashed curve in the left-hand middle and bottom plots represents the

desired user's code.
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user schemes such as sliding correlators with sequential searching for acquisition pur-

poses [7{10]. Therefore, they are subject to degradations incurred due to widely dif-

ferent power levels of di�erent users | this is termed the near-far problem. Stringent

power control is therefore required to avoid a deterioration in acquisition and track-

ing capabilities. Several joint parameter maximum likelihood techniques have been

proposed to overcome the de�ciencies of conventional schemes, but while these yield

good results, they are computationally intensive [11{14]. An e�ective compromise

was achieved in [15{17] by taking into account the structure of the signals arriving

at the receiver. The common thread to these di�erent approaches is the exploiting

of the fact that the transmitted signals lie in a structured subspace. Estimating this

subspace is crucial to the estimation of the desired parameters. A key drawback to

all the above mentioned techniques which employ a single sensor at the base station

receiver is that they are limited in the number of users' whose delays can be simul-

taneously estimated. We would like to be able to design receivers that alleviate this

limitation while retaining good near-far propertes and involving a low computational

complexity.

1.2 Focus of the Thesis

A main focus of this thesis is to increase the acquisition-based capacity [18], which is

de�ned as the number of users whose delays can be simultaneously estimated. This is

accomplished by incorporating spatial diversity into the acquisition algorithm through

the means of an antenna array at the receiver. An antenna array [19] is a collection of

antennas or sensors in a particular geometry, each receiving correlated versions of the

same signal. This reception of correlated versions of the received signal at di�erent

sensors across the array increases the e�ective signal to noise ratio and gives rise to

the spatial diversity that increases the acquisition-based capacity. The use of antenna

arrays also enables the estimation of the angles of arrival, also referred to with some

abuse of terminology as directions of arrival (DOAs), of the di�erent users.
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The estimation of the user's DOAs a�ords many immediate advantages [4,20,21].

In the context of cellular communications, direction of arrival information can be

used for emergency call location and to aid soft hando�, where multiple base stations

keep track of a particular mobile as it makes transitions across cell boundaries. The

ability to \direction �nd" also leads to potential reduction in transmit power as the

transmitters can direct their signals more accurately toward the intended receiver.

This information can also be exploited through beamforming techniques to limit the

MAI. In this thesis we develop a uni�ed framework for simultaneously estimating

the delays and DOAs of all transmitting users under radically di�erent algorithms.

This information is then incorporated in detector structures to limit the MAI, as

in Chapter 5 (see also [22]), where we see that increasing the number of sensors

dramatically improves detection performance.

1.3 Overview of the Thesis

Techniques exploiting the multidimensional bene�ts of antenna arrays for acqui-

sition of spread spectrum signals have not received much attention in the litera-

ture; [21,23,24] are three papers that discuss such techniques. The studies in [21,23]

introduce a reference based (involving training sequences) least squares technique for

antenna array based synchronization. The multiple sensors are employedmerely to in-

crease the e�ective SNR and no attempt is made to estimate the DOA simultaneously.

In addition, the spreading codes are assumed orthogonal and the arriving signals are

assumed chip synchronous. This assumption, in the face of typical chip asynchronic-

ity, can lead to a maximum loss of 3dB and an average loss of about 1.3dB. The

structure of the interference is not exploited either. The technique proposed in [24] is

an interesting maximum likelihood technique involving the transmission of training

sequences, with no a priori assumption on the array structure or noise covariance

matrix. As in the above mentioned techniques, only code delay estimation is dealt

with (no DOA estimation), the interference structure is not exploited and the delays
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are assumed chip synchronous (which is not generally the case).

In this dissertation we in turn �rst focus on a maximum likelihood approach that

decouples the multiuser problem to a set of single user ones. The algorithm draws

upon certain computationally elegant features of a maximum likelihood algorithm

for DOA estimation presented in [25]. Our presentation generalizes the algorithm to

the simultaneous estimation of DOA as well as code delay. The algorithm described

here also assumes the transmission of training sequences by all the users that are

being acquired. We are not constrained by any particular array structure and we

make no assumption of chip synchronicity. The additive noise is assumed to be a

circularly complex zero mean Gaussian random vector, but no a priori assumption

is made on its covariance. We represent the additive noise component at each sensor

as a sum of two components: one that is uncorrelated across the array (this could

model receiver noise plus uncorrelated contributions due to background/other-cell

propagation), and the other that is completely correlated across the array (this could

model the contributions from the other-cell interference that are essentially seen as

the same, sensor to sensor). With this noise model, we can express the theoretical

noise covariance matrix as a Kronecker product of two smaller covariance matrices.

In fact, this particular noise structure falls under a broader class of spatiotemporal

correlations known as separable correlations [19]. This disjunction of space and time

leads to a further decomposition of the joint DOA-delay estimation; we are now able

to estimate all the users' DOAs and delays individually and separately. If we consider

a widely used model for the array geometry, the uniform linear array (ULA), it can

be shown [25{27] that DOA estimation can be reduced to a 2�2 eigenvalue problem.

Estimating the code delay, as we will demonstrate, can be reduced to rooting N

quadratic equations and determining the maximum of 3N values, where N is the

length of each spreading code. It can be shown that the estimates of delays, DOAs

and amplitudes are asymptotically unbiased [28]. We also derive Cram�er-Rao bounds

on the various mean-squared estimation errors. In the development of the algorithm
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we will impose an uncorrelated assumption on the received signals, thereby limiting

our discussion to single path channels. Multipath channels need to be handled via a

modi�cation in the algorithm which is not discussed here. The maximum likelihood

algorithm is presented in Chapter 3.

The maximum likelihood algorithm described above requires the transmission of

preambles or training sequences to facilitate the estimation process. In situations of

high tra�c the transmission of training sequences limits the data rate and hence there

is a need to design blind estimation algorithms. These algorithms perform parameter

estimation with no prior knowledge of the transmitted bits. In Chapter 4 we present

a blind algorithm that only requires knowledge of the users' spreading codes. The

algorithm is based on a subspace decomposition technique �rst introduced in [16,17]

for a single sensor receiver; we generalize this to a multisensor case. The received

signal at the antenna-array is modeled as a linear combination of certain elementary

signal vectors. These vectors that span a signal subspace are parameterized by a set

of unknown parameters that we are trying to estimate, in this case, the timing and

DOA. Generic subspace based methods estimate these parameters in either of two

ways: by maximizing the projection of the signal vectors into the signal subspace, or

by minimizing the projection of the signal vectors into the orthogonal noise subspace.

These subspaces are in turn estimated using the eigenvalue decomposition (EVD)

of the correlation matrix of the received signal (or the singular value decomposition

(SVD) of the data matrix). In Chapter 4 of this thesis we use the MUSIC algorithm

[19, 26, 27, 29, 30] to estimate the timing and DOA. We again assume a slowly fading

single path model for each user; an understanding of this case is essential to the

generalization to the multipath case, which is not treated here.

Once the transmitting users in a cell are synchronized, various detection strategies

can be employed to estimate their transmitted bits. Receiver structures that take into

account the interference structure are termed multiuser receivers. Many multiuser

receivers have been designed, additionally, to combat the egregious e�ects of the
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near-far problem [31{36]. In this context we investigate a class of multiuser detectors

called linear multiuser detectors and examine the e�ects of multiple sensors on their

performance. In particular, we focus on two members of the class of linear multiuser

detectors, the decorrelating detector [33, 34] and the MMSE detector [37, 35]. Both

of these suboptimal detectors have been shown to possess good near-far resistant

properties, which make them attractive choices for cellular CDMA systems. It can

be shown in these cases that the performance in terms of near-far resistance and

probability of error is enhanced with the use of multiple sensors over a single sensor

and this enhancement is proportional to the number of sensors in the antenna array.

This is the focus of Chapter 5.
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Chapter 2

Direct Sequence CDMA System Model

We assume a K-user narrow band direct sequence CDMA system with BPSK (Binary

Phase Shift Keying) modulation with each transmitted signal selected from a binary

alphabet and limited to [0; T ], where T is the symbol period. In general, each user

transmits a zero mean stationary bit sequence with i.i.d components, and di�erent

users are independent of each other. In this development we will assume a single path

channel and hence, all bitstreams are uncorrelated with each other.

The baseband representation of the kth user's transmitted signal is given by

sk(t) =
p
2Pk

X
i

bk;ick(t� iT ) ; (2.1)

where Pk is the transmitted power, bk;i 2 f+1; �1g is the ith transmitted bit and

ck(t) is the spreading waveform. The spreading or code waveform is composed of N

chips and if we assume BPSK for the spreading modulation we have

ck(t) =

N�1X
n=0

ck;n�(t� nTc) ; (2.2)

where ck;n 2 f+1; �1g and the chip pulse waveform �(t) is a rectangular pulse of

duration Tc. We will assume that the extent of the spreading code is one bit period

and hence we have T = NTc. An example of a length-7 spreading code is given in

Figure 2.1 with the chip pulse waveform �(t) shown also. Practical communication

systems use more bandwidth e�cient pulse shapes, such as raised cosines [1], for the

code generation.

The front end of the receiver consists of an antenna array consisting of M sensors

arranged in a speci�c geometry. We assume that all the transmitting sources are in
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t

Π
Tc
(t)

1

Tc

t

(t)
k

1

TcT= 7

Spreading  Waveformc

Chip pulse

Figure 2.1 : A typical length-7 spreading code.

the array's far �eld [19], i.e., the wavefront emitted by a source has little curvature

with respect to the arrays dimensions. In other words, the direction of propagation

is approximately the same at each sensor. The array response vector, which is the

response to a plane wave propagating from such a source and impinging on the array

at an angle �k with the vertical, is

p(�k) = [p(1)(�k); : : : ; p
(m)(�k); : : : ; p

(M)(�k)]
> (2.3)

and is determined solely by the geometry of the array. For instance, in Figure 2.2 we

see two array geometries depicted. The schematic on the left is a 5-element uniform

linear array with intersensor spacing d. The array has one signal impinging on it from

an angle �. Since the transmitted signals are assumed narrowband, the signals at the

di�erent sensors are just phase-shifted versions of each other, with the phase shift

depending on the di�erences in times of arrival of the signal at the di�erent sensors.

We designate the rightmost sensor to be the reference sensor. Then we see that the

di�erence in times of arrival of the signal at the mth and the reference sensors is given

by � (m) = (m� 1)d sin �=c, where c is the speed of light in free space. Now the array
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θ

d sinθ
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Figure 2.2 : Plot (a) depicts a 5-element uniform linear array (ULA) with intersensor
spacing d. The reference sensor for the ULA is taken to be the extreme right one.
Plot (b) depicts a 5-element uniform circular array (UCA) where the radius of the
circle is r. The reference sensor in this case is taken to be a �ctitious sensor located

at the center of the array.

response vector from (2.3) can be written as

p(�k) = [1; : : : ; ej2�fc(m�1)� sin �k ; : : : ; ej2�fc(M�1)� sin �
k ]>; (2.4)

where � = d=c and fc represents the carrier frequency of the propagating wave. We

typically assume that d = �c=2, with �c being the wavelength of the propagating

wave, to avoid \spatial aliasing" [19], whence the mth element of p(�k) now becomes

exp(j� sin �k) (in a broadband application we would require d � �min=2). If d > �c=2

we su�er from undersampling and if d < �c=2 we get oversampling. We note from

(2.4) that p(�k) = p(� � �k) leading to the so called left-right ambiguity. Schematic

(b) in Figure 2.2 depicts a uniform circular array of radius r with 5 sensors. The

reference is an imaginary sensor at the center of the array. It can be shown that the

array response vector in this case is given by

p(�k) = [ej2�fc� cos �k ; : : : ; ej2�fc� cos(2�(m�1)=M��
k
); : : : ; ej2�fc� cos(2�(M�1)=M��

k
)]>;

(2.5)
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where � = r=c. We see that there are no two angles ��=2 � �i; �j � �=2 such that

p(�i) = p(�j); however, we note that p(�k) = p�(�+�k) leading to indistinguishability

between two opposing wavefronts. In addition, [38] demonstrate that the intersensor

spacing can be several multiples of �min=2 without spatial aliasing. In the context

of broadband array processing the use of a circular array over a ULA a�ords many

advantages [38].

An a priori assumption on array geometry is not crucial to the development of the

algorithms in this paper; however, given the narrowband realm of our system, we will

consider a uniform linear array (ULA) to derive an elegant DOA estimation algorithm

in Chapter 3 [26]. The narrow band assumption imposed on the transmitted signals

seems to contradict their spread spectrum nature. However, we stress that it is only

in the context of the antenna array that they are considered narrow band. This

implies that the carrier frequency is much larger than the message bandwidth and

for most reasonably sized antenna arrays, this also implies that the time taken to

traverse physical array is much smaller than the inverse of the message bandwidth.

Hence, the envelope characteristics of the signal do not vary across the array. For

example, in a typical cellular CDMA communication system, the carrier frequency is

1GHz and the chip rate (message bandwidth) is 1MHz and we see that treating the

system as narrowband is valid.

Each of the users transmits through a di�erent time varying channel whose param-

eters we will assume are constant in the time taken to estimate them. Accordingly,

the received signal at the mth sensor is a superposition of attenuated and delayed

signals transmitted by all the K users and is given by

r(m)(t) =

KX
k=1

wks(t� �k) p
(m)(�k) + �(m)(t): (2.6)

In the above equation the symbols have the following signi�cance :

� wk: Complex amplitude with which the kth signal is received and includes con-

tributions from the channel attenuation and the local oscillator phase o�set



16

with respect to the transmitter.

� �k: Relative delay with respect to the transmitter, modulo T the bit period.

� �k: Direction of arrival (DOA) at the array with respect to an axis in the plane

of the array (see Fig. 2.2 for an example).

� �(t): Additive white Gaussian noise assumed to have some correlation across the

array. We ascribe the following model to the noise �(t) = ��(t)+(1��)�(m)(t).

The component �(t) is completely correlated across the array and can arise from

other-cell interference | this component is taken to be the same at each sensor;

�(m)(t) is the noise element independent from sensor to sensor, arising from a

combination of receiver noise and the uncorrelated contributions from other-cell

transmissions (� 2 [0; 1)).

The noise components �(t) and �(m)(t) are uncorrelated random processes and each is

assumed to be white and Gaussian with zero-mean and double-sided spectral density

of N0=2. In a typical cellular environment, the number of other-cell interferers at

a base station is much larger than the number of users within the cell. Since these

interferers are independent and bounded, we can invoke the central limit theorem [39]

to model the other-cell interference as Gaussian.

The continuous time signal at the mth sensor is discretized by sampling the output

of a chip-matched �lter, which is a simple integrate and dump operation due to the

rectangular chip pulse, at the chip rate

r(m)[n] =
1

Tc

(n+1)TcZ
nTc

r(m)(t)dt (2.7)

Since each spreading vector is periodic with period N , r(m)[n] is wide sense cyclo-

stationary and observation vectors r
(m)

i formed by blocking together N successive

outputs r(m)[n] are wide sense stationary. The observation vector, r
(m)

i 2 C N , at time
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i is formed as

r
(m)

i =
�
r(m)[iN ] ; r(m)[iN + 1] ; : : : ; r(m)[iN +N � 1]

�>
: (2.8)

Since the system is asynchronous, each observation vector can be viewed as a linear

combination of 2K signal vectors | 2 components from each user due to the past

and current bits. We can now write r
(m)

i as

r
(m)

i =

KX
k=1

wk

�
bk;i�1c

R
k + bk;ic

L
k

�
p
(m)

k + �
(m)

i

= A(� )Wbi � p(m)

k + ��i + (1� �)�
(m)

i ;

(2.9)

where

� The diagonal matrixW 2 C 2K�2K of the formW = diag([w1; w1; : : : ; wK; wK]),

using Matlab notation.

� The N -dimensional complex circular gaussian noise vector �
(m)

i = ��i + (1 �

�)�
(m)

i , where �i ;�
(m)

i 2 C N and are distributed as N(0; �2I) where �2 = N0

2Tc
.

� We use the notation p
(m)

k to denote p(m)(�k)
�.

� The vectors cRk and cLk represent the right and left signal vectors for the kth

user and depend only on the delay �k and the spreading code.

� The N � 2K matrix A(� ) =
�
cR1 c

L
1 : : : cRK c

L
K

�
where the parameter vector

� = (�1; �2; : : : �K).

� The bit vector bi = [b1;i�1; b1;i ; : : : bK;i�1; bK;i]
>.

Given that the kth user's delay �k 2 [0; NTc), we can decompose it as follows:

�k=Tc = q +  where q 2 f0; 1; : : : ; N � 1g and  2 [0; 1). The signal vectors

�
Henceforth we will abbreviate pk � p(�k).
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cRk and cLk can then be written as [15,16]

cRk (�k) = (1� ) cRk [q] +  cRk [q + 1]

cLk (�k) = (1� ) cLk [q] +  cLk [q + 1] ; (2.10)

where

cRk [q] = [ck;N�q : : : ck;N�1 0 : : : 0]
>

cLk [q] = [0 : : : 0 ck;0 : : : ck;N�q�1]
>
: (2.11)

An example of the left and right signal vectors at a given sensor for a code length

t

Spreading code

1   -1   -1    1    1   -1    1

1 11 1 -1 1 1-1 -1 -11 -11-1

right
half

left
half

1 -1 0 0

-10 0

right
half

left
half

1 -1 0 0

+

+

-1 1 00

-10 0

1-10γ

( − γ)
γ

( − γ)

γ

Chip  Synchronous Chip  Asynchronous

γ1 -

Figure 2.3 : Typical left and right signal vectors at one sensor for a length-7 spreading
code. The left plot depicts the chip-synchronous case and the right plot depicts the

chip-asynchronous case where the variable  is used to denote the chip-asynchronism.

of N = 7 is shown in Figure 2.3. We use the notation cRk (�); cLk (�) to denote contin-

uous arguments and cRk [�]; cLk [�] to denote discrete arguments. Where an argument is

omitted, it will be understood to be continuous.
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The observation vector across the array, ri 2 C
MN , is now formed as a concate-

nation of individual sensor observation vectors as

ri =
h
r
(1)

i

>

; r
(2)

i

>

; : : : ; r
(M)

i

>
i>

: (2.12)

The signal model for ri in (2.12) can now be written as

ri = A(� ; �)W bi + �i ; (2.13)

where � = (�1; �2; : : : �K),

A =
�
aR1 aL1 ; : : : ;a

R
K aLK

�
=

0
BBBBBB@

A�(1)

A�(2)

...

A�(M)

1
CCCCCCA
; �(m) =

0
BBBBBB@

p
(m)

1 I2 0

p
(m)

2 I2
. . .

0 p
(m)

K I2

1
CCCCCCA

(2.14)

and

�i =

0
BBB@
��i + (1 � �)�

(1)

i

...

��i + (1 � �)�
(M)

i

1
CCCA : (2.15)

The (2k � 1)
th
and 2kth columns of A, given by aRk and aLk , are termed the kth user's

multisensor signal vectors and from (2.14) it is easy to see that

aRk (�; �) = pk(�)
 cRk (� ) ; aLk (�; �) = pk(�) 
 cLk (� ) ; (2.16)

where the symbol \
" represents the Kronecker product de�ned as

Cmp�nq = Am�n 
Bp�q =

0
BBBBBB@

A1;1B A1;2B � � � A1;nB

A2;1B A2;2B � � � A2;nB

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Am;1B Am;2B � � � Am;nB

1
CCCCCCA

: (2.17)
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Thus, aRk and aLk depend on the unknown parameters �k and �k as well as on the

known code and array structures.

The covariance matrix of the circular complex Gaussian noise vector, �i 2 CMN ,

can be written as

K = E[�i �
H
i ] = K1 
K2 ;

where

KM�M
1 =

0
BBBBBBB@

�2 + (1� �)2 �2 � � � �2

�2 �2 + (1 � �)2 � � � �2

...
...

...
...

�2 �2 � � � �2 + (1 � �)2

1
CCCCCCCA

and KN�N
2 = �2I :

(2.18)

We make particular note of the fact that the closer � is to 1, the more ill-conditioned

K1 is, with � = 1 resulting in non-invertibility.

The estimation process involves obtaining estimates for the kth user's delay (�k),

direction of arrival (�k) as well as amplitude (wk). This requires a knowledge of the

codes of the di�erent users as well as the geometry of the array, both of which are

manifest in the signal vectors. In Chapter 3 we will discuss a maximum likelihood

technique that exploits the Kronecker product structure of the signal vectors and the

noise covariance matrix to obtain the required estimates for each user.

In Chapter 4 we adopt a subspace based approach to parameter estimation. The

incoming observations are decomposed into two mutually orthogonal subspaces vis-

a-vis the SVD of a data matrix. The structure of these subspaces is utilized to arrive

at estimates for �k and �k.
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Chapter 3

Maximum Likelihood Estimation of Delay and

DOA

3.1 Maximum Likelihood Algorithm

In this chapter we will develop a maximum likelihood (ML) based technique for delay

(�k), DOA (�k) and amplitude (wk) estimation. The algorithm can be seen to gen-

eralize the ML technique for DOA estimation presented in [25] to the simultaneous

estimation of delays and DOAs for the desired users. In a situation where the ob-

servation vector ri depends on a parameter vector � that is either deterministic but

unknown or whose a priori statistics are unknown, an estimate that is widely used is

the maximum likelihood estimate of �, given by [19]

�̂ML = argmax
�

p(rij�): (3.1)

In our setup, ri is a function of the delays � , the DOAs �, the complex amplitudes

w = (w1; : : : ; wK), the noise covariance matrix K, which is assumed unknown and

the transmitted bits bi. We assume that the bits bi are known since, otherwise, the

maximization of the likelihood function with respect to all the above unknowns is not

a well posed problem. This is accomplished either by requiring that all the users being

acquired transmit training sequences (acquisition phase) or by the receiver operating

in a decision-directed mode (tracking phase).

Given L observations r1 ; r2 ; : : : ; rL we see from (2.9) that they are not indepen-

dent | ri is correlated with ri+1; 8i. This might raise doubts about the tractability

of the joint density of the observations; however, we can see that r1 ; r2 ; : : : ; rL are

conditionally independent given b = [b>0 ;b
>
1 ; : : : ;b

>
L ]
>, the transmitted bits. We
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can now form the joint conditional probability density function of r1; r2; : : : ; rL as

p(r1; : : : ; rL j A;W;b) =
1

�MNLjKjL
exp

(
�

LX
i=1

(ri �AWbi)
HK�1(ri �AWbi)

)

(3.2)

where j � j represents the determinant operator. The log-likelihood function can there-

fore be expressed as

L = �MN ln� � ln jKj � tr

(
1

L

LX
i=1

(ri �AWbi)
HK�1(ri �AWbi)

)

= �MN ln� � ln jKj � tr

(
K�1 � 1

L

LX
i=1

(ri �AWbi)(ri �AWbi)
H

) (3.3)

where tr(�) represents the trace operator. The last equality follows from the following

property of the trace: trfABCg = trfCABg = trfBCAg.

We �rst maximize (3.3) with respect toK by using an easily veri�able fact ( [19]) :

Lemma 3.1

If B is a positive de�nite Hermitian matrix, then f(K) = � ln jKj � trfK�1Bg is

maximized by bK = B.

Proof : The proof of the above Lemma follows from the expressions for the derivative

of ln jKj and trfK�1Bg with respect to the matrix K

rK ln jKj = K�>; rK trfK�1Bg =K�1BK�>:

�

Thus, the maximum likelihood estimate of K is

bK(A;W) =
1

L

LX
i=1

(ri �AWbi)(ri �AWbi)
H ; (3.4)

Substituting this into L, we obtain the e�ective consolidated log likelihood to be

L = � ln jbKj, the maximization of which is equivalent to the minimization of

L1 = jbK(A;W)j =

����� 1L
LX
i=1

(ri �AWbi)(ri �AWbi)
H

����� : (3.5)
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Direct maximization of L1 in (3.5) with respect to f� ;�;wg is rather intractable

and hence we adopt an indirect approach. We notice from (3.5) that L1 is a function

of f� ;�;wg only through the product A(� ;�)W(w). We can therefore very conve-

niently capture the dependence of L1 on all the unknown parameters through a single

matrix Y 2 CMN�2K , where Y = AW. The received observations can now be written

as

ri = Ybi + �i: (3.6)

The ML estimation procedure is now carried out in two steps:

(i) We �rst form the unconstrained ML estimate of Y, given by bY. This is akin to

a minimum mean square estimate of Y.

(ii) Having obtained bY, we obtain the estimates �̂ ; �̂ and ŵ by minimizing the

weighted least squares �t between Y and its unstructured estimate bY.
En route to obtaining bY we de�ne the following sample correlation matrices

bRrr =
1

L

LX
i=1

rir
H
i ; bRrb =

1

L

LX
i=1

rib
H
i ; bRbb =

1

L

LX
i=1

bib
H
i : (3.7)

The problem now reduces to

bY = argmin
Y
L2 = argmin

Y

��� bRrr �Y bRH
rb � bRrbYH + Y bRbbYH

��� : (3.8)

Motivated by [35] we establish the following lemma :

Lemma 3.2

If the matrices P;C 2 CMN�2K and R 2 CMN�MN is a positive de�nite matrix, then

for any positive de�nite Hermitian matrix Q 2 C 2K�2K ,

arg min
C
jF (C)j = arg min

C

��R�PCH �CPH +CQCH
�� = PQ�1: (3.9)
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Proof: For any matrix Z 2 CMN�2K we can see that

F (PQ�1 + Z) = R�PQ�1PH + ZQZH

= F (PQ�1) + ZQZH :

Without loss of generality we can assume that F (C) is a positive de�nite matrix

function of C (this is seen from the fact that F (�) can be thought of as originating

from a form similar to bK(Y) in (3.4)), F (PQ�1) = R�PQ�1PH is a positive de�nite

matrix. Therefore F (PQ�1) can be written as CCH , with C invertible and we have

��F (PQ�1 + Z)
�� = ��CCH + ZQZH

��
=
���jCj���2 � ��I+C�1ZQZHC�H

��
=
��F (PQ�1)

�� � ��I+C�1ZQZHC�H
�� :

(3.10)

It then follows from the positive de�niteness of C�1ZQZHC�H that

arg min
C

��F (PQ�1 + Z)
�� = PQ�1;

because any nonzero Z causes an increase in the product of the eigenvalues of

F (PQ�1 + Z). Hence the Lemma. �

From (3.9) we see that

bY = bRrb
bR�1
bb ; (3.11)

which yields

bK = bRrr � bRrb
bR�1
bb
bRH
rb: (3.12)

From (3.11) and (3.12), we see that the unconstrained estimates are derived com-

pletely from the received observations and a knowledge of the training sequences.

From (3.8) and (3.11) we see that calculating bY amounts to forming a minimum

mean squared estimate of Y with bY being that estimate and bK being the residual

minimum mean squared error.
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By making use of the expressions for bK and bY, (3.5) can be rewritten as

L1 =
��� bRrr � Y bRH

rb � bRrbYH + Y bRbbYH
���

=
��� bRrr � bRrb

bR�1
bb
bRH
rb +

bY bRbb
bYH � Y bRH

rb � bRrbYH + Y bRbbYH
���

=
��� bK��� � ���I+ bK�1(Y � bY)bRbb(Y � bY)H��� :

(3.13)

We note that minimizing
���I+ bK�1(Y � bY)bRbb(Y � bY)H��� is equivalent to minimiz-

ing ln
���I+ bK�1(Y � bY)bRbb(Y � bY)H���. Using properties of eigenvalues and norms of

matrices, we show in Appendix A that

min
� ;�;W

ln
���I+ bK�1(Y � bY)bRbb(Y � bY)H��� �

��! min
� ;�;W

trfbRbb(Y � bY)H bK�1(Y � bY)g;
(3.14)

where the symbol
�

��! denotes \is asymptotically equivalent to". Intuitively, this

is interpreted in the following manner : Since bY is a consistent estimate of Y, the

di�erence (Y� bY) �! 0 in the number of observations L. Invoking a familiar example

from the scalar case, ln(1 + x) � x for small x, we see that the above approximation

is not unreasonable (and this is proved in Appendix A). This greatly simpli�es the

problem since it replaces the nonlinear functional j � j by a linear one trf�g. The

problem now reduces to

f�̂ ; �̂; ŵg = arg min
� ;�;w

tr
nbRbb(Y � bY)H bK�1(Y � bY)o : (3.15)

Since the di�erent users' training sequences are chosen independent of one another

and since we are investigating a single path channel, for large L the sample correlation

matrix bRbb is diagonal in structure. The multidimensional optimization problem in

(3.15) now dramatically reduces to a 3-dimensional problem for each user k,

f�̂k; �̂k; ŵkg = arg min
�
k
;�
k
;w
k

L3 = arg min
�
k
;�
k
;w
k

h
(y2k�1 � ŷ2k�1)H bK�1(y2k�1 � ŷ2k�1) +

(y2k � ŷ2k)H bK�1(y2k � ŷ2k)
i
; (3.16)
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where ym = (Y)m; ŷm = ( bY)m and (H)m represents the mth column of the matrix

H. In (3.16) the two terms account for the right and left portions of the kth user's

spreading code. It should be mentioned that if the channel introduced multipath, bRbb

would be block diagonal and so, while the users would still be decoupled, the function

to be minimized in (3.16) would involve a greater number of terms.

From the de�nition of Y we see that

y2k�1 = wka
R
k (�k; �k); y2k = wka

L
k (�k; �k) : (3.17)

Since y2k�1 and y2k are linear functions of wk, we can obtain calculate ŵk, by sim-

ply setting @L3=@w
�
k = 0, where � represents complex conjugation. With y2k�1;y2k

de�ned in (3.17), ŵk is obtained as

ŵk =
ŷH2k�1

bK�1âRk + ŷH2k
bK�1âLk

âR
H

k
bK�1âRk + âL

H

k
bK�1âLk

; (3.18)

where â
fR=Lg

k

4
= a

fR=Lg

k (�̂k; �̂k).

If we substitute for ŵk from (3.18) in (3.16), it can be shown that �̂k; �̂k can be

calculated as

f�̂k; �̂kg = arg max
�
k
;�
k

L4

= arg max
�
k
;�
k

���ŷH2k�1 bK�1aRk + ŷH2k
bK�1aLk

���2
aR

H

k
bK�1aRk + aL

H

k
bK�1aLk

:

(3.19)

The problem in (3.19) can be interpreted geometrically as a subspace �tting problem.

To see this, let us de�ne

dRk
4
= bK�1=2aRk ; ẑ2k�1

4
= bK�1=2ŷ2k�1

dLk
4
= bK�1=2aLk ; ẑ2k

4
= bK�1=2ŷ2k :

If we further de�ne the (2MN � 1) matrices

Dk =
h
dRk

H
dLk

H
iH

and Zk =
�
ẑ
H
2k�1 ẑ

H
2k

�H
; (3.20)
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the maximization in (3.19) can now be recast as

�̂k; �̂k = argmax
�
k
;�
k

tr
�
�D

k
(�k; �k) ZkZ

H
k

	
� arg min

�
k
;�
k
;c
kZk � cDk(�k; �k)k2F ;

(3.21)

where �D
k
= Dk(D

H
k Dk)

�1DH
k is the projection matrix onto the column space of Dk

and the complex number c = (DH
k Dk)

�1DH
k Zk [29]. We see that (3.21) highlights

the one-dimensional subspace �t between the transformed data, embodied in Zk,

and the transformed signal vector, embodied in Dk (see Figure 3.1 for a geometrical

schematic of the 1-d subspace �t). Speci�cally, we choose those parameters f�k; �kg

so as to maximize the �t between the two one-dimensional subspaces as shown in

(3.21).

Subspace Fitting1-d

k
^σ k *(τ )c

k
( τ )c

(data)

(signal vector)

Figure 3.1 : The �gure depicts a schematic representation of the 1-dimensional sub-

space �t, as a function of � 2 [0; T ) and � 2 [��=3; �=3), that the ML estimation
reduces to. The vector Zk represents the transformed data vector and the vector
Dk(�; �) represents the transformed signal vector as given in (3.20). For di�erent val-

ues of � and �, Dk(�; �) de�nes a two dimensional manifold, simply represented by the

shaded ellipse. The parameters f� �; ��g represent the optimum pair, i.e., Dk(�
�; ��)

represents the point in the ellipse that is closest to Zk.

It is clear that (3.19) describes a 2-dimensional optimization problem which could
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still be computationally burdensome. We would ideally like to be able to decouple the

delay and DOA estimation problems. We recall from (2.18) and (3.17) that K, the

true covariance matrix, and Yk
4
= [y2k�1 y2k] are endowed with a Kronecker product

structure. It can also be shown [40] that bK and bY are consistent estimates (because

they are maximum likelihood estimates), i.e., bK L

��! K ; bY L

��! Y where
L

��!

denotes the asymptotic limit in L, the number of observations. Therefore if we can

approximate bK and bYk = [ŷ2k�1 ŷ2k] as

bK � bK1 
 bK2 and bYk � �k 
 �k ; (3.22)

where bK1 2 CM�M ; bK2 2 C N�N ; �k 2 CM�1 and �k 2 C N�2 with �k = [�k1 �k2];

then we expect that

bK1

L

��! �1K1 �k
L

��! �3pk

bK2

L

��! �2K2 [�k1 �k2]
L

��! �4

�
cRk cLk

�
where �1 ; : : : ; �4 are scalars and don't a�ect the maximization. The approximation

(\�" in (3.22)) is in the Frobenius norm sense, i.e., for example

fbK1 ; bK2g = arg min
Q12C

M�M

Q22C
N�N

bK�Q1
Q2

2
F
: (3.23)

It is shown in Appendix B that the above approximation amounts to calculating the

largest left singular vector and right singular vector of an M2�N2 matrix (the reader

is also referred to [56]).

The function L4 de�ned in (3.19) can now be reduced to

L4 �

���(�k 
 �k1)
H
�bK�1

1 
 bK�1
2

��
pk 
 cRk

�
+ (�k 
 �k2)

H
�bK�1

1 
 bK�1
2

��
pk 
 cLk

����2
(pk 
 cRk )

H
�bK�1

1 
 bK�1
2

�
(pk 
 cRk ) + (pk 
 cLk )

H
�bK�1

1 
 bK�1
2

�
(pk 
 cLk )

=

����Hk bK�1
1 pk

���2
pHk

bK�1
1 pk

�

����H
k1
bK�1

2 cRk + �H
k2
bK�1

2 cLk

���2
cRk

H bK�1
2 cRk + cLk

H bK�1
2 cLk| {z }

L5

(3.24)
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where we have made use of the following properties of the Kronecker product [41] :

Fact 3.1

1. If A ;B are invertible and Y = A 
B then Y�1 = A�1 
B�1.

2. (C 
D) � (G
H) = CG
DH if the matrix dimensions are appropriate.

3. If �1 ; �2 are scalars, �1 
 �2 = �1 � �2.

The delay and DOA subparts thus decouple and we can now deal with the one di-

mensional optimizations separately. If we relabel the two parts of L5 as

F1(�) =

���pHk (�) bK�1
1 �k

���2
pHk (�)

bK�1
1 pk(�)

= �Hk
bK�1=2

1

�
(bK�1=2

1 pk)
�
pHk
bK�1

1 pk

��1
(bK�1=2

1 pk)
H

� bK�1=2
1 �k

F2(� ) =

����H
k1
bK�1

2 cRk (� ) + �H
k2
bK�1

2 cLk (� )
���2

cRk
H
(� )bK�1

2 cRk (� ) + cLk
H
(� )bK�1

2 cLk (� )
; (3.25)

we are faced with the two maximization problems : max� F1, max� F2. We see that

these individual problems have a form similar to that in (3.21) and hence, can be

posed as subspace �tting problems. The maximization of F1(�) in (3.25) in case of

a ULA can be carried out through a non-iterative process as discussed in [25, 26, 42]

and we briey present it here for completeness without delving into great detail.

Estimation of �k

Recall that the array response vector for a M -sensor ULA with half wavelength spac-

ing is given by

p(�k) =
�
1; ej�k ; ej 2�k; : : : ; ej (M�1)�

k

�>
;

where �k = � sin �k. Our main aim is to reparametrize the function F1(�) so as to

avoid a search in the � parameter. This is achieved through the coe�cients of a �rst
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order complex polynomial of the form

bk;0 + bk;1z = bk;1(z � ej�k) : (3.26)

The coe�cients bk;0 and bk;1 are con�gured such that ej�k is a root of the polynomial.

Therefore, given bk;0 and bk;1, �k is easily found as

�k = sin�1
�
1

�
arg

�
�bk;0

bk;1

��
: (3.27)

If we now de�ne an (M �M � 1) Toeplitz matrix by

BH =

0
BBBBBB@

bk;0 bk;1 : : : 0

0 bk;0 bk;1 : : :

. . .
. . .

0 bk;0 bk;1

1
CCCCCCA
; (3.28)

we see that B is of rank M � 1 and BHpk = 0 (because of the way bk;0 and bk;1 are

de�ned). Therefore bK1=2
1 B is also of rank M � 1 and

�bK1=2
1 B

�H �bK�1=2
1 pk

�
= 0;

which together imply that the columns of bK1=2
1 B span the null space of bK�1=2

1 pk, i.e.,�bK�1=2
1 pk

��
pHk
bK�1

1 pk

��1 �bK�1=2
1 pk

�H
= bK1=2

1 B(BH bK1B)
�1BH bK1=2

1 :

Therefore the maximization of F1(�) can be equivalently posed as

max
�

�Hk
bK�1=2

1

�bK�1=2
1 pk

��
pHk
bK�1

1 pk

��1 �bK�1=2
1 pk

�H bK�1=2
1 �k

�min
b

�Hk B(B
H bK1B)

�1BH�k ;

(3.29)

where b = [bk;0 bk;1]
>. It can be shown [25, 42] that the above minimization can be

carried out in two steps:

1. First perform the minimization

min
b

�Hk BB
H�k: (3.30)
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We can ignore the contribution due to (BH bK1B)
�1 to obtain a �rst estimate of

bk;0; bk;1 because �k is a consistent estimate of pk and hence BH�k
L

��! 0. This

implies that the estimate of bk;0; bk;1 obtained in this step is also consistent.

2. Replace the entries of b in (BH bK1B)
�1 by the consistent estimates obtained in

(3.30). Carry out the minimization in (3.29) with (BH bK1B)
�1 replaced by it's

consistent estimate.

The minimization in the above two steps can be further simpli�ed by noting that

BH�k = ~�Hb ;

where the matrix ~� de�ned as

~�H =

0
BBB@
�k;2 �k;1
...

...

�k;M �k;M�1

1
CCCA (3.31)

can be thought of as a \data" matrix. In the above formulation �k;i is the i
th element

of the (M � 1) vector �k. Now the problem in (3.29) can be reduced to the following

equivalent problem

min
b

bH ~� eB ~�Hb; (3.32)

where eB = I or eB = (BH bK1B)
�1 (depending on which of the above two steps are

being carried out) with B obtained from the �rst step in the two-stage minimization

process described above. We impose further constraints on b by taking into account

the form of the solution in (3.26) [42]. These conditions are captured by

bk;1 = b�k;0 and (Refbk;0g)2 + (Imfbk;0g)2 = 1 (3.33)

The two conditions in (3.33) imposed on b reduce the optimization problem in (3.32)

to a 2 � 2 eigenvalue problem in [Refbk;0g; Imfbk;0g]>. Thus we see that �̂k can be

obtained through a non-iterative process and involves the solution to a 2�2 eigenvalue

problem.
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Estimation of �k

We will now inspect the maximization of F2 more carefully. The objective function

F2 is not a continuously di�erentiable function of � [15]; rather, it is piecewise di�er-

entiable over each chip period. If we write �=Tc = q+  where q 2 f0; 1 ; : : : ; N � 1g

and  2 [0; 1), we remember from (2.10) that

cRk (� ) = (1 � ) cRk [q] +  cRk [q + 1]

cLk (� ) = (1 � ) cLk [q] +  cLk [q + 1] :

Therefore, over the chip period [qTc; (q + 1)Tc), we see that

d

d�
c
R=L

k =
d

d
c
R=L

k

4
= �

R=L

k [q] = c
R=L

k [q + 1] � c
R=L

k [q] : (3.34)

The function we are trying to maximize is

F2(� ) =

����H
k1
bK�1

2 cRk + �H
k2
bK�1

2 cLk

���2
cRk

H bK�1
2 cRk + cLk

H bK�1
2 cLk

=
j�1(q)j2 2 + �12(q)  + j�2(q)j2

�1(q) 2 + �2(q)  + �3(q)
;

(3.35)

where �1 ; �12 ; �2 ; �1 ; �2 ; �3 are de�ned as

�1(q)
4
= �H

k1
bK�1

2 �Rk [q] + �H
k2
bK�1

2 �Lk [q]

�2(q)
4
= �H

k1
bK�1

2 cRk [q] + �H
k2
bK�1

2 cLk [q]

�12(q)
4
= 2Re (�1�

�
2)

and

�1(q)
4
= �Rk

H
[q] bK�1

2 �Rk [q] + �Lk
H
[q] bK�1

2 �Lk [q]

�2(q)
4
= 2Re

�
�Rk

H
[q] bK�1

2 cRk [q] + �Lk
H
[q] bK�1

2 cLk [q]
�

�3(q)
4
= cRk

H
[q] bK�1

2 cRk [q] + cLk
H
[q] bK�1

2 cLk [q] (3.36)
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Di�erentiation of (3.35) with respect to  yields the optimum argument, � 2 [0; 1)

as one of the roots of the following quadratic equation

�
j�1j2�2 � �12�1

�
2 + 2

�
j�1j2�3 � j�2j2�1

�
 +

�
�12�3 � j�2j2�2

�
= 0 : (3.37)

We now di�erentiate F2(� ) over N chip periods and calculate the 2N roots. Since

each interval is half-open, the maximum in each [q; (q+1)) can either occur at one of

the two roots in the interval, or at the left end-point. We now select that �̂ = (q̂+̂)Tc

of these 3N candidates that maximizes F2(�̂ ).

Consistency of estimates

It is straightforward to show that the estimates of �k; �k and wk are consistent. Let us

denote the estimates of the true parameters f�k; �k; wkg by f�̂k; �̂k; ŵkg. Since ŷ2k�1
and ŷ2k are consistent estimates, it follows that

ŷ2k�1
L

��! wk a
R
k (�k; �k) and ŷ2k

L

��! wk a
L
k (�k; �k) : (3.38)

The consistency in the estimate of wk now follows directly from (3.38) and (3.18).

Examining (3.19) and using (3.38), we see that for large L we can express L4 as

L4 = jwkj2

����~aHk (�k; �k) ebK�1

~ak(�̂k; �̂k)

����
2

~aHk (�̂k; �̂k)
ebK�1

~ak(�̂k; �̂k)

; (3.39)

where

~ak =

0
@aRk
aLk

1
A and

ebK�1

=

0
@bK�1 0

0 bK�1

1
A :

Applying the Cauchy-Schwartz Lemma to (3.39) we obtain

����~aHk (�k; �k) ebK�1

~ak(�̂k; �̂k)

����
2

~aHk (�̂k; �̂k)
ebK�1

~ak(�̂k; �̂k)

� ~aHk (�k; �k)
ebK�1

~ak(�k; �k); (3.40)
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with equality i� ~ak(�̂k; �̂k) = ~ak(�k; �k). We can easily choose array con�gurations

and spreading codes such that two signal vectors ~ak(�1; �1) = ~ak(�2; �2) i� �1 = �2 and

�1 = �2 (most reasonable array con�gurations p(�) and spreading codes c(� ) satisfy

this property [28]; the reader is also referred to Chapter 4 for a further clari�cation of

the above idea). Since we are interested in maximizing L4, by invoking the above fact

we see from (3.40) that L4 is maximized only when f�̂k; �̂kg = f�k; �kg. This yields

consistency of the delay and DOA estimates as well.

3.2 Analysis of Performance | Cram�er-Rao Bound

In this section we calculate lower bounds on the mean squared errors of the parameters

estimated in Section 3.1 via the Cram�er-Rao bound. Since the estimates are unbiased

[25,30], this amounts to calculating the inverse of the Fisher information matrix.

We can calculate the Cram�er-Rao bound in terms of the following quantities :

�1

4
=
�
ARHK�1AR + ALHK�1AL

�
� bR>

bb (3.41)

�2

4
=
�
�RHK�1�R + �LHK�1�L

�
�
�
WbRbbW

H
�>

(3.42)

�3

4
=
�
�RHK�1�R + �LHK�1�L

�
�
�
WbRbbW

H
�>

(3.43)

�1

4
=
�
�RHK�1AR + �L

H
K�1AL

�
�
�bRbbW

H
�>

(3.44)

�2

4
=
�
�RHK�1AR + �LHK�1AL

�
�
�bRbbW

H
�>

(3.45)

�3

4
=
�
�RHK�1�R + �L

H
K�1�L

�
�
�
WbRbbW

H
�>

(3.46)

where

AR 4
=
�
aR1 ; : : : ;a

R
K

�
=
�
p1
cR1 ; : : : ;pK
cRK

�
�R 4

=

�
@aR1
@1

; : : : ;
@aRK
@K

�
=

�
p1


@cR1
@1

; : : : ;pK

@cRK
@K

�

�R 4
=

�
@aR1
@�1

; : : : ;
@aRK
@�K

�
=

�
@p1

@�1

cR1 ; : : : ;

@pK

@�K

cRK

�
(3.47)
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The de�nitions for AL ;�L ;�L follow along similar lines and �m = (qm+m) �Tc. The

matrixW now represents a K�K diagonal matrix of users' amplitudes. The symbol

\�" represents the Hadamard product of two matrices de�ned by [A�B]ij = Aij �Bij .

Theorem 3.1

The Cram�er-Rao bound CRB(� ;�) is given by

CRB�1(� ;�) = 2L

0
B@ Re

�
�2 ��H

1 �
�1
1 �1

�
Re
�
�3 ��H

1 �
�1
1 �2

�
Re>

�
�3 ��H

1 �
�1
1 �2

�
Re
�
�3 ��H

2 �
�1
1 �2

�
1
CA (3.48)

Proof : The derivation is based on a similar exposition in [25, 28] and is included in

Appendix C. �

The �rst K diagonal terms of the inverse of the matrix speci�ed in (3.48) yield

the CRBs for the K delay estimates and the next K diagonal terms in the above

matrix yield the CRBs for the DOA estimates. The individual calculation of CRB(� )

or CRB(�) is analytically di�cult for a general array and code set. For large number

of observations, L, and uncorrelated signals the CRB for both parameter estimates

reduces to a diagonal matrix each.

Theorem 3.2

For large L and uncorrelated signals and for K of the form K = K1
�2I, CRB(� )

and CRB(�) can be written as

CRB(� ) =
1

2L

�
jWj2
�2

��1
P�1 � Re�1

h
�C � _CHC�1 _C

i
(3.49)

CRB(�) =
1

2L

�
jWj2
�2

��1
C�1 � Re�1

h
�P � _PHP�1 _P

i
(3.50)

where

P = diag
�
pHk K

�1
1 pk

�
C = diag

h
cR

H

k cRk + cL
H

k c
L
k

i
_P = diag

�
@pHk
@�k

K�1
1 pk

�
_C = diag

h
�Rk

H
cRk + �Lk

H
cLk

i
�P = diag

�
@pHk
@�k

K�1
1

@pk

@�k

�
�C = diag

h
�Rk

H
�Rk + �Lk

H
�Lk

i
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Proof : Since bRbb is a consistent estimate, bRbb

L

��! Rbb and hence for large L, we

can replace bRbb with Rbb = I (since the signals are uncorrelated). We now only have

to concern ourselves with the diagonal entries of the matrices �1;�2;�3;�1;�2 and

�3 de�ned in (3.41){(3.46). These quantities can therefore be condensed to diagonal

matrices

�1 =
1

�2
P C ; �1 =

1

�2
P _CWH

�2 =
1

�2
P �C jWj2 ; �2 =

1

�2
_P CWH

�3 =
1

�2
�P C jWj2 ; �3 =

1

�2
_PH _C jWj2

Substituting the above expressions in (3.48) we obtain

CRB�1(� ; �) = 2L

0
@ jWj2

�2
Re
h
P
�
�C � _CHC�1 _C

�i
0

0
jWj2

�2
Re
h
C
�
�P � _PHP�1 _P

�i
1
A ;

(3.51)

and hence the theorem. �

To understand the behavior of the CRBs with M;N;L and SNR, we make a few

simplifying assumptions :

1. A ULA at the receiver with the intersensor spacing being half the carrier wave-

length (to avoid spatial aliasing), where the array response vector is of the form

pk = [1 ej� sin �k � � � ej(M � 1)� sin �k ]>; (3.52)

2. Random codes | ck;n 2 f+1;�1g with equal probability.

With the above assumptions, and de�ning �k
4
= � sin(�k), it can be shown, through
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Figure 3.2 : Plots of g(�) and �1(�) versus �, depicting the trade o� in the simul-
taneous estimation of �̂k and �̂k. The top plots depict �1(�) and the bottom plots

represent g(�). Plots (a) were made for M = 3 and plots (b) for M = 5.

a fair amount of tedious algebra, that

CRB(k) =
(1� �)2

2LMN SNRk

� (M�2 + (1� �)2)

�1(�k)
�
�
2k + (1� k)

2
�

(3.53)

CRB(�k) =
6(1 � �)2

LM(M2 � 1)N SNRk

� 1

(2k + (1 � k)2)
�

0
BB@ 1

1 � 12 �2 �22(�k)

(M2 � 1)�1(�k)

1
CCA ;

(3.54)

where the variables �1(�k) and �2(�k) are de�ned by

�1(�k) =

�
M2 � sin2M�k=2

sin2 �k=2

�
�2 +M(1 � �)2

�2(�k) =
M sin(�k=2) cos(M�k=2) � cos(�k=2) sin(M�k=2)

2 sin2 �k=2
: (3.55)
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We observe that the CRBs decrease with increasing number of observations L,

code length N , array size M , and SNR. In light of the fact that the estimate of

�k is decoupled from the estimate of �k, the dependence of CRB(k) on M might

seem disconcerting initially. However, it must be noted that the decoupling is exact

only asymptotically in L, or equivalently in SNR. For �nite L, increasing the number

of sensors M e�ectively increases the SNR and hence we expect this to inuence

the estimates (especially in low SNR regimes, as we will observe later). Another

interesting observation can be made on closer inspection of (3.53), (3.54) and (3.55)

and Figure 3.2, which graphs g(�) and �1(�), with g(�) de�ned by

g(�) = 1 � 12 �2 �22(�k)

(M2 � 1)�1(�k)
:

We see that the k that minimizes CRB(k), i.e., k = 0:5, actually maximizes

CRB(�k). Furthermore, from Figure 3.2 we note that for nonzero �, the �k that

minimizes CRB(�k), i.e., �k = 0, in turn maximizes CRB(k). Thus there appears

to be a performance trade-o� between estimating �k and �k when both are jointly

estimated.

3.3 Numerical Results

We proceed to describe the numerical simulations that we conducted to evaluate

the performance of the afore-mentioned estimators. A code length of N = 31 was

used in all the simulations. Furthermore, the array structure assumed was a uniform

linear array (ULA). The delays of all the users were assumed uniformly distributed in

[0:1; 31) chips and the DOAs were assumed to be uniformly distributed in [�60; 60]�,

corresponding to one sector of 120� in a cell. The noise covariance structure postulated

was as in (2.18) with �2 being determined by the desired user's SNR and � being

�xed at 0:3. Each point in the subsequent plots was generated using 1000 Monte-Carlo

trials.

Performance .vs. K: In Fig. 3.3(a){(c) we depict the performance of the esti-
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Figure 3.3 : Performance of ML estimators for delay and DOA as a function of

the number of users. Plot(a) portrays the probability of acquisition; plots(b) and
(c) graph the RMS errors of the delay and DOA estimates in chips and degrees

respectively. The training sequence length is 200 bits. The SNR of the desired user

is 6dB per sensor. Length of each spreading code is 31.
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mators in terms of the probability of acquisition and root mean squared errors of

the delay and DOA estimates with increasing number of users (K) in the system.

Since our main goal behind using antenna arrays is to increase the acquisition based

capacity of the system, we compare the performance of the algorithm with 1, 3 and

5 sensors in the array. The performance is measured in terms of the probability of

acquisition and the root mean squared errors of the various estimates. The proba-

bility of acquisition is de�ned to be the probability that j�̂k � �kj < Tc. The SNR of

the desired user at each sensor was �xed at a rather high value of 6dB to highlight

the e�ect of increasing K. The multiple access interference (MAI) for each interferer,

which is the ratio of the interferer's and desired user's received energies, was taken

to be uniformly distributed in [0; 20]dB to simulate users at di�erent distances from

the base station, and the window length used was L = 200 bits. The probability

of acquisition curves in Fig. 3.3(a) show no variation across K. A rather surprising

observation is that there is no gain in increasing the number of array elements (at

this SNR) | as we can see, the probability of acquisition and mean squared error of

the delay estimate are relatively invariant to increasing the number of sensors, while

the DOA estimate is signi�cantly a�ected. Careful deliberation leads us to realize,

however, that since we succeeded in decoupling the delay and DOA estimation prob-

lems, the parameter that directly governs the delay estimate is the code length N

(if we were to change N we would notice a concomitant change in the quality of the

delay estimates). We remark here that the ML estimators are not dimension limited

like subspace-based estimators [27, 29]. This is reected in the fact that even with a

single sensor, we are able to acquire in excess of 31 users, this being the dimension of

the covariance matrix.

Performance .vs. L: In Figs. 3.4(a){(c) we investigate the behavior of the esti-

mates as a function of increasing window size for SNRs of 0 and 6 dB. Once again, we

examine the performance withM = 1; 3 and 5 sensors in the array with K = 25 users

in the system. The MAI was uniformly distributed in [0; 20]dB. It is desirable to have
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Figure 3.4 : Performance of ML estimators for delay and DOA as a function of window

length. Plots (a) portrays the probability of acquisition; plots (b) and (c) graph the
RMS errors of the delay and DOA estimates in chips and degrees respectively. The

number of users in the sector is 25. The performance is depicted for two SNR levels

for the desired user, 0dB on the left and 6dB on the right. Length of each spreading
code is 31.
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acquisition occur in the shortest time possible to minimize the impact on data rates.

Fig. 3.4(a) graphs the probability of acquisition while the root mean squared errors of

the delay and DOA estimates are graphed in Figs. 3.4(b) and (c) respectively. Since

the dimension of the covariance matrix isMN�MN , we observe that its estimate for

L < MN is rank de�cient; hence, in place of the inverse we used the pseudo-inverse

with little performance degradation as can be seen in Fig. 3.4(a). The limiting factor

on the number of observations, it would appear, is actually governed by the invert-

ibility of the sample correlation matrix of the training sequences, bRbb, and not that

of the covariance matrix estimate, bK. Thus, for preamble lengths larger than 2K

the quality of the estimates begin to improve. This imparts a subspace avor to the

algorithm; however, as pointed out earlier, the algorithm is not inherently dimension

limited. We see that a preamble length of 150 bits is su�cient for acquisition in most

SNR regimes. In fact, we observe that acquisition occurs more rapidly with 3 or 5

sensors as opposed to just one sensor.

Performance .vs. SNR: We now depict the behavior of the algorithm as a function

of the SNR of the desired user at each sensor. The number of interfering users in the

system was assumed to be 24, each of whose power level relative to the desired user

was uniformly distributed in [0; 20]dB. The preamble length was chosen to be 200

bits for M = 1; 3 and 5 sensors. Fig. 3.5(a) graphs the probability of acquisition with

increasing SNRs while Figs. 3.5(b) and (c) portray plots of the root mean squared

errors of the delay and DOA estimates. We see that the performance for SNRs as

low as 0dB is uniformly good for all the three array sizes. However, as the SNR is

decreased further, we see a de�nite delineation in performance across the number of

sensors in the array. Thus, there is a de�nite advantage to employing multiple sensors

at the receiver. The inherent trade-o� between SNR and preamble length is shown in

the same �gure where we have graphed the probability of acquisition for a preamble

length of 100 bits for one sensor (the behavior for larger number of sensors can be

inferred from this behavior). The degradation in performance is easily explained:
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Figure 3.5 : Performance of ML algorithm with increasing SNR for di�erent number

of sensors. Plot(a) portrays the probability of acquisition; plots(b) and (c) graph the
RMS errors of the delay and DOA estimates in chips and degrees respectively. The

number of users is 25 and the MAI is uniformly distributed in [0; 20]dB. The preamble
length is 200 bits. Code length = 31.
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Figure 3.6 : Performance of ML algorithm with increasing MAI for di�erent number
of sensors. Plot(a) portrays the probability of acquisition; plots(b) and (c) graph the

RMS errors of the delay and DOA estimates in chips and degrees respectively. The
number of users is 25 and the preamble length is 200 bits. The SNR of the desired

user is 2dB at each sensor. Code length = 31.
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since the estimates are maximum likelihood estimates, consistency decrees that the

larger the preamble size, the more accurate the estimates of the covariance matrix bK
and the matrix bY, which results in improved performance.

Performance .vs. MAI: From the expression in (3.19) we see that the estimates for

�k and �k are independent of the received amplitude and hence, we expect the algo-

rithm to be near-far resistant. This property is captured in the plots in Figs. 3.6(a){

(c). Fig. 3.6(a) graphs the probability of acquisition while (b) and (c) depict root

mean squared error estimates in delay and DOA. The graphs were generated for a

system with 24 interfering users. An MAI level of xdB signi�es that the interferer

powers are all uniformly distributed in [0; x]dB. The SNR of the desired user at each

sensor was 2dB and the preamble length was �xed at 200 bits. Fig. 3.6(a) validates

our claim of near-far resistance; furthermore, we notice that the probability of acqui-

sition is independent of array size. However, the mean squared errors decrease with

increased array size, leading to gains in the performance of any detector that makes

use of these estimates.
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Chapter 4

Subspace Based Techniques for Delay and DOA

Estimation

Subspace based parameter estimation algorithms, also called geometric algorithms,

such as MUSIC [43], ESPRIT [44], Weighted Subspace Fitting [45], et al., exploit

the knowledge of the structure of the transmitted signals and the noise. The aim is

to identify the signal contribution in the received observations that are corrupted by

additive Gaussian noise.

We �rst introduce the concept of an array manifold. The signal vectors

aRk (�; �);a
L
k (�; �) 2 CMN each describe a two dimensional manifold for � and � rang-

ing over the entire parameter space, � 2 [0; NTc); � 2 [��;�), where � can be

conveniently viewed as an angular limit for one sector of a cell in a cellular commu-

nication system. These individual manifolds are called the array manifolds and are

distinct for each user due to the distinct codes assigned (see (2.16) for the de�nition of

aRk (�; �) and a
L
k (�; �)). In conventional array processing terms, this is the equivalent

of di�erent array patterns for di�erent users. Thus we see that the individual spread-

ing codes provide levels of diversity that would not be possible in conventional DOA

estimation | the individual users are now distinguished by their di�erent spread-

ing codes and delays as well as their DOAs. We will assume that the mapping, f ,

from the parameter set f� ;�g to A(� ;�) is invertible (which is not too stringent an

imposition). In other words, given aRk (�; �) and a
L
k (�; �) the parameters � and � are

uniquely determined. Thus, we have

a
R=L

k (�1; �1) = a
R=L

k (�2; �2) =) �1 = �2 and �1 = �2: (4.1)

In the absence of noise, the K received signals across the array lie in a 2K-
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dimensional subspace of CMN , the signal subspace S, spanned by the 2K columns of

A. The array manifolds for user k each intersect the signal subspace at one point

given by aRk (�k; �k) and a
L
k (�k; �k) respectively, where �k and �k are the true values

of the respective parameters [29, 44]. Thus f�k; �kg for each user are found as those

parameters that render the span of the columns of A(� ;�), which we denote by

RfA(� ;�)g, equal to S. In the presence of additive noise the received observations

now span all of CMN , which can be decomposed into a signal subspace and an or-

thogonal subspace, the noise subspace N . If we had perfect knowledge of the signal

subspace we would �nd that the 2K array manifolds still intersect this subspace at

exactly one point each. However, in the presence of noise, it is unreasonable to expect

perfect knowledge of the signal subspace; this must be estimated from the received

observations. Now, the array manifolds no longer intersect this subspace, implying

that RfA(� ;�)g 6= Ŝ, the estimated signal subspace. Instead, the parameters �k and

�k for each user are estimated by maximizing the normalized projection of the signal

vectors onto the observed (or estimated) signal subspace or equivalently, by mini-

mizing their projection onto the estimated noise subspace N̂ . This latter approach,

termed MUSIC, is adopted in this study. The above statements are quanti�ed in the

subsequent paragraphs.

4.1 Subspace Estimation

To decompose the whole space into the constituent signal and noise subspaces we

make use of the correlation matrix of the received observations. An eigenvalue de-

composition of this correlation matrix serves as the vehicle for the above mentioned

decomposition. We can rewrite the received vector in (2.13) as

ri = Axi + � ; (4.2)

where xi = Wbi. With the assumptions made on the noise statistics (zero mean,

identically distributed at each sensor and uncorrelated from sensor to sensor), the
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correlation matrix of the received observations is

Rrr = E[rir
H
i ] = ARxxAH + �2I (4.3)

where the diagonal matrix Rxx = E[xix
H
i ], the power in the received bits. In the

single path case, this matrix is full rank; in the multipath case it is rank de�cient. In

this chapter we will assume a slow fading single path environment. The eigenvector

decomposition of Rrr can be written as Rrr = V�VH where V is a unitary matrix.

If we partition the eigenvector matrix V into two matrices, VS 2 CMN�2K and

VN 2 CMN�(MN�2K) as V = [VS VN ], we can then express Rrr as

Rrr =
[VS VN ]

2
64�S 0

0 �N

3
75
2
64V

H
S

VH
N

3
75 = VS�SV

H
S +VN�NV

H
N : (4.4)

In the above representation the columns of VS and VN span the signal and noise sub-

spaces respectively and the submatrices �S and �N represent the associated eigen-

values. If the matrix product ARxxAH in (4.3) is of full rank 2K, the 2K largest

eigenvalues are just the nonzero eigenvalues of ARxxAH incremented by �2 and the

MN � 2K smallest eigenvalues of Rrr are all equal to �
2, i.e., �2K+1 = � � � = �MN =

�2. Therefore we have �N = �2I and (4.4) can then be written as

Rrr = VS�SV
H
S + �2VNV

H
N = VS

e�SV
H
S + �2I (4.5)

where e�S = �S � �2I.

In a practical situation the correlation matrix Rrr has to be estimated from the

observations and an estimate over a window of L data vectors at the ith time instant

is formulated as

bRrr(i) =
1

L

iX
j=i�L+1

rjr
H
j : (4.6)

Hence we only have estimates for the signal and noise subspaces, bVS and bVN respec-

tively.
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Instead of an eigenvalue decomposition of bRrr, a singular value decomposition

(SVD) of the accumulated (MN � L) data matrix, Y = [ri�L+1; : : : ; ri] can be

performed. The SVD of Y is preferred over the eigenvalue decomposition because

of its superior numerical stability and ease of pipelined implementations [46, 47]. As

before, we partition bV as bV = [bVS
bVN ] where bVS and bVN form bases for the

estimated signal and noise subspaces respectively. The estimate bRrr(i) can be shown

to be the maximum likelihood estimate of Rrr [48] and accordingly, bVS and bVN are

the ML (and hence consistent) estimates of VS and VN .

4.2 Parameter Estimation

A comparison of (4.3) and (4.5) reveals that the columns of VS and A(� ;�) span the

same subspace, the signal subspace, for the true values of parameter vectors � and �.

This suggests a natural method for estimating these parameters: for user k, choose

�k and �k such that the corresponding pair of signal vectors aRk (�k; �k) and a
L
k (�k; �k)

are orthogonal to VN , i.e.,

n
�̂k; �̂k

o
= arg�;�

n �
aRk (�; �) a

L
k (�; �)

�
? VN

o
;

With only �nite sample estimates of the noise subspace at our disposal, signal

vectors aRk and aLk are not completely orthogonal to bVN ; we now choose f�̂k; �̂kg to

minimize the projection of the sum ak(�; �) = aRk + aLk into bVN (if aRk and aLk are

orthogonal to VN then so is their sum, but not the vice-versa; hence we are making an

approximation here but, as we will see, the performance loss is minimal). Accordingly

we have the MUSIC algorithm �rst proposed in [43]

n
�̂k; �̂k

o
= arg min

�;�
e(�; �) = arg min

�;�

ak(�; �)H bVN

2 (4.7)

From (2.10), (2.16) and the de�nition of ak(�; �), we see that it can also be written
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as

ak(�; �) = pk(�)

�
(1 � )ck[q] + ck[q + 1]

�

= pk(�)
 ck(� );
(4.8)

where � is decomposed as �=Tc = q + , q 2 f0; : : : ; N � 1g,  2 [0; 1) and

ck[�] = cRk [�]+ cLk [�]. We therefore see, from the structure of the array response vector

pk(�) and the spreading code vector ck(� ), that the function e(�; �) is a continuously

di�erentiable function of � but only piecewise (over a chip) continuously di�erentiable

in � . From (4.7) and (4.8) we can write e(�; �) as

e(�; �) =
h
pk(�)


�
ck[q] + �k[q]

�iH
�Q �

h
pk(�)


�
ck[q] + �k[q]

�i
; (4.9)

with �k[q] = (ck[q + 1] � ck[q]) and Q = bVN
bVH
N . For a particular DOA, � = �m, we

see from (4.9) that, for � 2 [q; q+ 1), the MUSIC norm e(�; �m) can be written as

e
�
�; �m

�
=
�
uk + vk

�H
Q
�
uk + vk

�
; (4.10)

where the vectors uk;vk 2 CMN�1 and uk = pk(�m) 
 ck[q], vk = pk(�m) 
 �k[q].

Thus, for a �xed �, the function can be minimized over the � variable in closed form.

The optimum  as a function of �m in the chip interval [q; q+ 1) is obtained as

̂(�m) =
�Re

�
uHk Qvk

�
vHk Qvk

; �̂ (q; �m) = (q + ̂(�m))Tc: (4.11)

Since the function e is only piecewise di�erentiable over chip intervals, we obtain the

minimum over  2 [0; 1) in each of the N chip intervals and compare these N function

values to obtain the global minimum for the particular � = �m as

q� = argmin
q
fe (�̂ (q; �m); �m)g ; q = 0; : : : ; N � 1;

and subsequently �̂k(q
�; �m) = (q� + ̂)Tc. We then minimize over � by selecting the

�̂k(q
�; �m);m = 1; : : : ; M� that yields the minimum corresponding function value,

thus obtaining the optimum f�̂k; �̂kg pair for that choice of grid, where M� is the

number of points in the grid.
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The above procedure still requires a one dimensional search over the � parameter.

The computational complexity of the algorithm is directly linked to the accuracy

in the solution via the grid spacing in the � domain; the �ner the grid the more

accurate but more computationally complex the solution. We therefore attempt to

approximate the array response vector, pk(�), in such a way as to lead to a simpler

solution for the � parameter also. The approximation is achieved by expanding pk(�)

in a Taylor series expansion and limiting the expansion to the �rst order term. For

s 2 [��h; �h), the array response vector pk(�m + s) can be expanded about a point

�m as

pk(�m + s) = pk(�m) + s _pk(�m); (4.12)

where _pk(�m) = @pk=@�

����
�=�m

. We are interested in the local properties of the ap-

proximate and hence we focus our attention on the approximate MUSIC norm be in
the region f(�; �) : q � � < q + 1; �m � �h � � < �m + �hg where q = 0; : : : ; N � 1

and m = 1; : : : ;MI . For clarity of exposition we ignore the indices q and m of chip

and angle respectively and write be as
be(; s) = h�pk + s _pk

�


�
ck + �k

�iH
Q
h�
pk + s _pk

�


�
ck + �k

�i
: (4.13)

Direct di�erentiation of be with respect to  and s yields a set of two coupled

nonlinear equations in  and s which proves intractable to solve. Inspecting (4.13), it

can be seen that, due to the non-negative de�nite nature of Q, be(; s) is individually
convex in either variable (though not necessarily jointly so). This suggests an iterative

approach whereby the function is held �xed along one coordinate and minimized along

the other; this process is then repeated interchanging the coordinates until a suitable

neighborhood of the minimum is reached. For instance, if (0) is chosen as the starting

point, it is easily seen from (4.13) that the optimal s is given by

s(1) =
�Re

�
~uHk Q~vk

�
~vHk Q~vk

;
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where ~uk = pk 
 ck(�
(0)), ~v = _pk 
 ck(�

(0)) and � (0) = (q + (0))Tc. Given s(1) and

hence �(1) = �m + s(1), we update value of  to (1) from (4.11), where uk and vk are

now functions of �(1). Obviously, if the number of iterations, j, required for f(j); s(j)g

to fall within a \suitable" neighborhood of the true minimum f�; s�g in the region

is large, the savings in computation over the previous method are negligible. As

described in the next section, we see that a surprisingly small number of iterations

(two) su�ce to fall within a reasonable neighborhood of f�; s�g.

Having obtained a suitable pair f(j); s(j)g in the region speci�ed by f(�; �) :

q � � < q + 1; �m � �h � � < �m + �hg, the global minimum over all the regions,

q = 0; : : : ; N�1; m = 1; : : : ;MI is calculated by comparing the approximateMUSIC

norm at these local optima and selecting the pair corresponding to the minimum.

4.3 Performance of Estimators

In this section we examine the estimates of �k and �k obtained via the MUSIC al-

gorithm described above. The main objective is to demonstrate the superior per-

formance of multisensor estimates over their single sensor counterparts. Subspace

based algorithms in general, and MUSIC in particular, are dimension limited, i.e.,

the number of signals' parameters that can be estimated is limited by the dimension

of the observation correlation matrix. In the current context, this implies that for an

M -sensor antenna array, the number of delay-DOA pairs that can be estimated are

limited by the relation MN � 2K � 0 and therefore, K �MN=2. We see, therefore,

that there is an immediate gain of M for the multisensor receiver over the single

sensor one. This gain is highlighted in the subsequent plots. All the simulations

described in this section were done for code lengths of N = 31; Gold codes were as-

signed to di�erent users. The delay of each user was chosen uniformly distributed in

[0; NTc) and the DOA of each user was taken to be uniformly distributed in a sector

of width ��=3 � � � �=3 radians, corresponding to one sector in a typical 3-sector

cell. Furthermore, the antenna array structure was taken to be uniform linear, with
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the intersensor distance equal to half the carrier wavelength (d = �c=2) to prevent

spatial aliasing. The array response vector is then given by (2.4)

p(�k) = [1; ej� sin �k ; : : : ; ej(M � 1)� sin �k ]>:

It is important to note that the algorithm is not constrained by any speci�c under-

lying array geometry; specifying it to be a uniform linear array just simpli�es some

analysis. One drawback with the ULA, as mentioned in Chapter 2, is the absolute

indistinguishability of two plane waves arriving from directions �0 and � � �0, which

could lead to interference from adjacent sectors. One way to rectify this problem

would be to use a more complicated array geometry. However, it should be noted

that since di�erent users are distinguished by di�erent codes, the signal vectors of

two such sources would still be distinct, allowing their resolution. Thus, although we

\lose" the angle of arrival dimension for resolution, the code diversity remains.

Performance .vs. K: We �rst highlight the increased acquisition-based capacity

with increasing number of sensors M in Figure 4.1 for M = 1 and 3 sensors. This is

most e�caciously done by examining the probability of acquisition (Pacq) as a function

of increasing number of users in the system. Acquisition was deemed to have occurred

if j�̂k � �kj � Tc. The SNR of the desired user at each sensor was �xed at 8dB and

the window length used to form subspace estimates was L = 200 bits. The interferers

and the desired user were chosen to have the same powers (i.e., the multiple access

interference, MAI = 0dB) since we were mainly interested in highlighting the e�ect of

reduced noise-subspace dimension on the estimation. As expected, the performance

with M = 1 drops much sooner than for M = 3; in fact, for K > 10 the single

sensor performance degrades appreciably (since N = 31, the maximum number of

user delays that can be theoretically estimated with 1 sensor is K = bN=2c, which is

15 in this case; but in actuality we see that K has to be considerably less than bN=2c

for acceptable acquisition performance). With just 3 sensors we see that we are able

to simultaneously acquire a substantially increased number of users | the maximum

number of users that can now be theoretically acquired is K = bMN=2c, which is 46.
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Figure 4.1 : Performance of the subspace-based acquisition algorithm (MUSIC) as

a function of increasing number of users (K). The plot graphs the probability of

acquisition for M = 1; 3 sensors. The window length, L = 200 bits; SNR of the

desired user at each sensor = 8dB; code length = 31.
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Figure 4.2 : Performance of the subspace-based acquisition algorithm (MUSIC) as

a function of increasing SNR per sensor of the desired user. Plot (a) graphs the
probability of acquisition for M = 1; 3 and 5 sensors. Plots (b) and (c) graph the

RMSE of the delay and DOA forM = 1; 3 and 5 sensors. The window length, L = 200

bits; number of users in the system, K = 10; MAI = 20dB; code length = 31.
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Figure 4.3 : Performance of the subspace-based acquisition algorithm (MUSIC) as

a function of increasing window size, L, in bits. Plot (a) graphs the probability of
acquisition forM = 1; 3 and 5 sensors. Plots (b) and (c) graph the RMSE of the delay

and DOA for M = 1; 3 and 5 sensors. The number of users in the system K = 10;

MAI = 20dB; SNR of the desired user = 8dB; code length = 31.
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Figure 4.4 : Performance of the MUSIC algorithm as a function of increasing MAI of

the interfering users. Plot (a) graphs the probability of acquisition for M = 1; 3 and
5 sensors. Plots (b) and (c) graph the RMSE of the delay and DOA for M = 1; 3 and

5 sensors. The window length L = 200 bits; number of users in the system K = 10;

SNR of the desired user = 8dB; code length = 31.
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Performance .vs. SNR: Figure 4.2(a) depicts the probability of acquisition as a

function of the desired user's SNR at the receiver, for M = 1; 3; 5. The number of

users was taken to be 10 so as to facilitate comparison across di�erent number of

sensors. The window size L was taken to be 200. Figures 4.2(b) and (c) depict the

associated root mean squared errors (RMSE) of the delay and DOA estimates, given

that acquisition has occurred. The performance is seen to increase with increasedM ;

in fact, there is a signi�cant increase in Pacq in going from 1 to 3 sensors. This is

because as M increases, the dimension of the noise subspace increases, and with it

the associated decrease in RMSE of the estimates [49]. However, we notice that at

high SNRs there is little performance di�erence between M = 3 and M = 5 sensors

as long as the number of users satis�es K � bMN=2c; lower values of SNR, however,

entail an appreciable performance di�erence.

Performance .vs. L: We next depict the performance of the delay and DOA es-

timates with increasing window length (number of observations) L. Since subspace

based techniques depend heavily on the structure of the observation correlation ma-

trix, we expect the accuracy of the estimates to be poor when the correlation matrix

is rank de�cient. This is con�rmed by the plots in Figure 4.3(a), (b) and (c) which

portray Pacq and the RMSE of the delay and DOA estimates respectively. As a re-

sult of the dependence on the dimensionality of the correlation matrix, the more the

number of sensors the larger the required window for forming the correlation matrix

estimate. As concluded earlier, for higher values of SNR we observe that a ULA with

just 3 sensors performs comparably with its 5 sensor sibling.

Performance .vs. MAI: Our next goal is to examine the behavior of the MUSIC

estimates with increasing multiple access interference (MAI). We say an estimation

algorithm is near-far resistant if the accuracy of the estimates is invariant to increasing

interferers' powers. The number of users in this simulation was again �xed at 10 and

the window size L was taken to be 200. Figures 4.4(a), (b) and (c) depict Pacq and the

root mean squared errors of the delay and DOA estimates as a function of increasing
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MAI for M = 1; 3; 5. With just one sensor we observe that the performance degrades

alarmingly with increased interference. Thus, it is only if the number of users is well

within the dimensional limitations of the subspace based algorithms that we observe

the algorithms to be near-far resistant.

Having established the increase in acquisition capacity as well as estimate accuracy

with increasing number of sensors in the receiver, we now compare the performance of

the exact and approximate MUSIC algorithms described in Section 4.2. The primary

di�erence between the two methods is in the number of points in the � coordinate

at which the function is evaluated; the exact method involves minimizing the ideal

MUSIC norm at each point on a �ne grid in the � variable, while the second, more

approximate, method minimizes a bi-quadratic approximation to the MUSIC norm

over a small number of disjoint intervals in the � variable.

The two methods are compared by evaluating their performance in terms of Pacq

and the RMSEs as a function of increasing SNR of the desired user. The number of

observations used to form subspace estimates is �xed at L = 200. We evaluate the

algorithms for di�erent numbers of users, K = 5; 15 and 25 and for a �xed number of

sensors, M = 5. This is summarized in Figure 4.5(a), (b) and (c) which depict Pacq

and the root mean squared errors of the delay and DOA estimates respectively. Each

plot is generated for K = 5; 15 and 25, thereby showing the behavior of the approx-

imate estimate as a function of increasing number of users. As the number of users

increases, we observe the expected decrease in estimate accuracies. We also observed

that as K was increased, the number of intervals, MI , required to get acceptable

performance from the approximate Taylor series technique increased. Speci�cally, for

K = 5; 15 and 25 users, we used MI = 5; 6 and 7 intervals respectively. This can be

explained by noting that as the number of users increases, the cross-correlations with

the desired user increase, causing the MUSIC norm to vary more across the delay and

DOA parameters. The number of intervals required to locally capture the function

behavior therefore increase. As seen from the plots, the performance of the Taylor
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series method is slightly inferior to the exact search method but the degradation is

acceptable in light of the computational savings. It was also observed that the number

of iterations required to fall within a suitably small neighborhood of the minimum in

each region was only two. Therefore, if M� is the number of points in the search grid

for the � variable in the exact MUSIC method, the computational savings obtained

for comparable accuracy in the estimates is on the order of M�=(2MI ). If the grid

re�nement is 0:5 degree with the sector width being 120�, and the number of Taylor

series intervals chosen is MI = 6, the computational savings is on the order of a factor

of 20.
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Figure 4.5 : Comparing the two estimation algorithms (MUSIC and approximate
MUSIC) versus SNR for M = 5 sensors and K = 5; 15 and 25 users. The plots in

column (a) represent the exact MUSIC algorithm while the plots on the right, in

column (b), depict the Taylor series approximation MUSIC algorithm.
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Chapter 5

Linear Detectors with Antenna Arrays

In the previous section we examined the aquisition based capacity of an antenna array

receiver and established that the capacity increases as a function of the number of

sensors. The parameters estimated were the delay �k and direction of arrival (DOA)

�k of each user. In this section we examine the bene�ts of incorporating multiple

sensors in linear multiuser detection. Speci�cally we analyze two detector structures,

the decorrelating detector and the minimum mean squared error (MMSE) detector,

and demonstrate the advantages of added spatial diversity via multiple antennas. The

results obtained here are consistent with those obtained in [22]; we extend their study

to the asynchronous combining of decision statistics. We consider linear multiuser

detectors due to their simplicity and the relative ease of implementation and analysis;

furthermore, we restrict ourselves to the realm of single-shot detectors (the gains

derived from multiple sensors in this case can be extrapolated to sequence detection).

The observation vector at a single sensor (say, at sensor 1) can be given by r
(1)

i =

AWbi + �
(1)

i . Since the matrix A contains the users' codes, we can now de�ne the

single sensor bank of matched �lter outputs by

y
(1)

i = A>r
(1)

i = CWbi +A>�
(1)

i ; (5.1)

where A is the code matrix, C = A>A is the code correlation matrix, W is a

2K � 2K diagonal matrix of received complex amplitudes, the received bit vector

bi = [b1;i�1 b1;i : : : bK;i�1 bK;i]
> and �

(1)

i � N(0; �2I). Now, recall from (2.13) that the

received observation vector across the array can be written as

ri = A(� ; �)Wbi + �i; �i � N(0; �2I);
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For simplicity we assume that the noise is temporally and spatially white (incorporat-

ing a known covariance structure in this case poses no other problem that complicating

the algebra). Because the system is asynchronous, each of the two \halves" of each

user's code, cRk ; c
L
k , can be considered as a virtual user's code. Given the estimates

of the delay and DOA of each user (obtained in the previous sections), we can then

obtain the outputs of a bank of matched �lters matched to the 2K signal vectors

faRk ;aLk gKk=1, which are de�ned in (2.16). If we denote by y
(M)

i (not to be confused

with the output of theM th sensor) the bank of matched �lter outputs of theM -sensor

array at time iT

y
(M)

i = AHri = AHAWbi + AH�i

= CWbi + AH�i;
(5.2)

where C = AHA represents the multi-sensor code correlation matrix. We can then

rewrite y
(M)

i in (5.2), by recalling the de�nition of A from (2.14), as

y
(M)

i = �(1)HA>r
(1)

i +�(2)HA>r
(2)

i + � � �+�(M)HA>r
(M)

i : (5.3)

Since all the delay information is contained in A and all the DOA information

is captured in �, this can be interpreted as a code-matched �lter operation at each

sensor, followed by an \angle-matched" �lter or conventional beamformer (refer to

Figure 5.1). To see this, we recall the structure of �(`) from (2.14) and realize that

successive pairs of entries of the (2K � 1) vector y
(M)

i can be written as (ignoring the

time index i) 0
@�y(M)

�
2k�1�

y(M)
�
2k

1
A =

0
@pHk vRk
pHk v

L
k

1
A ; (5.4)

where the notation (v)k is used to denote the kth element in the vector v. The vectors

vRk ; v
L
k 2 C (M � 1) and contain the right and left code-matched �lter outputs from

the M sensors,

vRk = [cRk
H
r(1); : : : ; cRk

H
r(M)]>

vLk = [cLk
H
r(1); : : : ; cLk

H
r(M)]>:
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Thus, the compound matched �lters at each sensor are matched to the users' delays

as well as directions of arrival, which would be optimum for the multisensor case with

one user in the presence of AWGN only.

5.1 Linear Detectors

Our aim in this section is to quantify the gains obtained from multiple sensors at

the receiver. A single-sensor linear detector, G 2 C K�K , in a synchronous system

operates on the vector of matched �lter outputs at one sensor, say y
(1)

i , to yield a

vector of decision statistics for all the users

z
(1)

i = Gy
(1)

i =GCWbi +GA>�
(1)

i : (5.5)

Under the assumption of BPSK modulation and restricting ourselves to the �rst

user's bit without loss of generality, we then obtain the required bit estimate as

b̂i = sign(z
(1)

i )1. The output signal-to-interference ratio (SIR), which is de�ned as

the ratio of the signal power to the interference power at the detector output, where

the interference includes the additive noise component, can serve as a measure of

detector performance. For large code lengths and number of users, the probability

of error for user 1 at the output of the detector can be closely approximated as

Pe1 = Q(
p
SIR), where Q(�) is de�ned by Q(x) = 1=

p
2�

R1
x

exp(�t2=2)dt. From

(5.5) we can write (z
(1)

i )1 as

(z
(1)

i )1 = (GC)1;1w1b1;i +

KX
k=2

(GC)1;kwkbk;i + (~�i)1 ; (5.6)

where (~�i)1 is the �rst entry of the vector GA
>�

(1)

i with variance �2(GCG>)1;1. The

SIR can now be written as

SIR =
(GC)21;1w

2
1

�2(GCG>)1;1 +
PK

k=2(GC)
2
1;kw

2
k

: (5.7)

In the asynchronous case, the current bit b1;i inuences two successive observation

vectors ri and ri+1 (remember that bi = [b1;i�1; b1;i; : : : ; bK;i�1; bK;i]
> and bi+1 =
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[b1;i; b1;i+1; : : : ; bK;i; bK;i+1]
>). The decision statistic of the �rst user should reect

this dependence and hence is given by

(z
(1)

i )1 = (1� �)
�
Gy

(1)

i

�
2
+ �

�
Gy

(1)

i+1

�
1
: (5.8)

In the above equation G 2 C 2K�2K which reects the additional virtual user for each

of the K actual transmitting users. The real number � 2 [0; 1] and can be chosen

to optimize an appropriate objective function. From the dependence of (5.8) on �

we might be tempted to choose � = �1=T . However, this not entirely unreasonable

choice of � does not optimize any apparent criterion. We choose � to minimize the

SIR at the output of the detector. In the asynchronous case, the SIR at the output

of G, albeit more algebraically cumbersome, can be calculated as in the synchronous

case and is given by

SIR(�) =

�
(1 � �)(GC)2;2 + �(GC)1;1

�2
w2

1

�2

�
(1 � �)2(GCG>)2;2 + �2(GCG>)1;1

�
+ I

: (5.9)

The multiple access interference (MAI) term I is given by

I = �2I1 + (1 � �)2I2 + 2�(1 � �)I3; (5.10)

with the individual components de�ned by

I1 =
2KX
j=2

(GC)21;jW
2
j;j (5.11)

I2 =
2KX
j=1
j 6=2

(GC)22;jW
2
j;j (5.12)

I3 = (GC)1;(3:2K)

�fW2 
E
�
(GC)>2;(3:2K); (5.13)

where fW is a (K � 1 � K � 1) diagonal matrix of all the users' amplitudes except

user 1, E =

0
@0 1

0 0

1
A and the notation (A)i;(j:k) represents a row vector containing
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the elements (Ai;j; : : : ;Ai;k). We can now minimize the SIR in (5.9) as a function of

� as follows. De�ne the following terms

n1 = (GC)21;1 ; n2 = (GC)22;2 ; n3 = (GC)1;1(GC)2;2

d1 = �2(GCG>)1;1 + I1 ; d2 = �2(GCG>)2;2 + I2 ; d3 = I3

Then, the optimum � is given by �� = 1=(1 + t) where t is the root of the quadratic

equation

(d2n3 � d3n2)t
2 + (d2n1 � d1n2)t+ (d3n1 � d1n3) = 0; (5.14)

such that �� 2 [0; 1]. It can be shown that the above quadratic equation has both

real roots and in fact, only one root is positive. Thus there is only one choice for ��.

The multisensor extension of the single sensor linear detector, G, follows quite

naturally (the reader is referred to Figure 5.1 for a schematic of multisensor linear

detector). Analogous to (5.8), the decision statistic for the �rst user can be given by

(z
(M)

i )1 = (1� �)
�
Gy(M)

i

�
2
+ �

�
Gy(M)

i+1

�
1
; (5.15)

where G 2 C 2K�2K is theM -sensor linear detector and y
(M)

i is the vector of multisensor

matched �lter outputs from (5.2). The corresponding SIR, as in the single sensor

asynchronous case, can be written as

SIR(�) =
j(1� �)(GC)2;2 + �(GC)1;1j2w2

1

�2

�
(1 � �)2(GCGH)2;2 + �2(GCGH)1;1

�
+ I

; (5.16)

where the MAI term I = �2I1+(1��)2I2+2�(1��)RefI3g, with each component

de�ned by

I1 =
2KX
j=2

jGCj21;jW2
j;j

I2 =
2KX
j=1
j 6=2

jGCj22;jW2
j;j

I3 = (GC)1;(3:2K)

�fW2 
E
�
(GC)H2;(3:2K):
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The optimum value for � is found exactly as in the single sensor case as the solution

to a quadratic equation of the form (5.14).

In the sequel we will investigate two linear multiuser receivers and demonstrate

the performance enhancement achieved by employing multiple sensors at the base

station receiver. To maintain the near-far resistant properties of the subspace based

estimators, we only consider linear detectors that are also near-far resistant; speci�-

cally, we restrict ourselves to the decorrelating detector [34,50] and the linear MMSE

detector [37,35].

5.1.1 Decorrelating Detector

The decorrelating detector Gdec can be viewed as the unconstrained maximum like-

lihood (or least squares) estimate of G in additive white gaussian noise. From (5.2)

we see that Gdec = C�1, where the multisensor code correlation matrix C = AHA.

Following (5.2) and (5.15), we can write the decision statistic for the ith bit of the

�rst user as

(z
(M)

i )1 = (1� �)
�
Wbi

�
2
+ �

�
Wbi+1

�
1
+ ~�; (5.17)

where the additive gaussian noise term is

~� = (1 � �)(C�1AH�i)2;2 + �(C�1AH�i+1)1;1: (5.18)

The MAI is eliminated at the output of the detector (I = 0) and the individual users'

bits are decorrelated from one another at the cost of noise enhancement [34]. We also

note that the detector does not require amplitude information making it a natural

choice when the amplitude is rapidly varying. From (5.9) the SIR can be given by

SIR(M)(�) =
w2

1

�2
�
(1� �)2C�12;2 + �2C�11;1

� :
From (5.14), the optimum � can be calculated simply as

�� =
C�12;2

C�11;1 + C�12;2

(5.19)
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and the maximum SIR is now given by

SIR(M)
� =

w2
1

�2

 
1

C�11;1

+
1

C�12;2

!
(5.20)

The probability of error in this case is completely speci�ed by the SIR since I = 0.

Another well known measure of detector performance is the asymptotic e�ciency (�1)

for a particular user. If we de�ne the e�ective energy of user 1, e1(�), as the energy

that user 1 would have to transmit, in the absence of interfering users, to achieve the

same bit-error rate as in the multiple access channel, then the asymptotic e�ciency

can be de�ned as [50]

�1 = lim
�!0

e1(�)=w1 : (5.21)

Thus, it is a measure of the loss in e�ciency that user 1 experiences due to the

presence of MAI and very little noise (to emphasize the MAI). From (5.17), (5.18)

and [34] the probability of error in detecting the �rst user's bits, Pe
(M)

1 , and the

asymptotic e�ciency, �
(M)

1 , using M sensors are given by

Pe
(M)

1 = Q
�
SIR(M)

�

�
; �

(M)

1 =
1

C�11;1

+
1

C�12;2

; (5.22)

while the corresponding quantities for a single sensor receiver are

Pe
(1)

1 = Q
�
SIR(1)

�
; �

(1)

1 =
1

C�1
1;1

+
1

C�1
2;2

; (5.23)

where SIR(1) =
w2

1

�2

�
1=C�1

1;1 + 1=C�1
2;2

�
.

In order to obtain more insight into the gain obtained from multiple sensors, let

us examine the structure of C more closely. From (2.14) we can write C as

C =
h
�(1)HA> � � � �(M)HA>

i
�
h
�(1)HA> � � � �(M)HA>

iH
= �(1)HC�(1) + � � �+�(M)HC�(M);

(5.24)

where C represents the single sensor code correlation matrix, C = A>A. We now

establish a few properties of C via the following theorem.



70

Theorem 5.1

Given a correlation matrix C de�ned by (5.24), the following properties hold :

(a) C is symmetric positive semi-de�nite (s.p.d), denoted henceforth, with a little

abuse of notation, by C � 0.

(b) For a uniform linear array (ULA), the diagonal elements of the multisensor and

single sensor correlation matrices are related by (C�1)n;n � (C�1)n;n.

(c) In fact, we can tighten the inequality: (C�1)n;n �
1

M
� (C�1)n;n.

Proof :

1. Proposition (a) follows immediately from the de�nition of C as AHA.

2. To prove Proposition (b), we make note of a few properties of s.p.d matrices

[41]. If X;Y � 0, we have X�1; (X +Y) � 0 and hence (X + Y)�1; (X�1 +

Y�1)�1 � 0. Also, we have Z
4
= X�1(X�1 + Y�1)�1X�1 � 0 (this follows

because AHXA � 0 for any matrix A, and X�1 is symmetric). Hence Zn;n � 0

(diagonal elements of s.p.d matrices are � 0). Therefore, expanding (X+Y)�1

as

(X +Y)�1 = X�1 �X�1(X�1 +Y�1)�1X�1| {z }
Z�0

; (5.25)

we see that (X+Y)�1n;n � X�1
n;n. From (5.24), we have

C�1 =
�
�(1)HC�(1) + � � � +�(M)HC�(M)

��1
:

From (2.4) we see that the mth element of the array response vector pk for

a ULA is given by, pk;m = exp(j(m � 1)� sin �k) = exp(j(m � 1)�k), where

�k
4
= � sin �k. This implies that �(m) = �m�1, where

(�(m))2k�1;2k�1 = (�(m))2k;2k = exp(j(m� 1)�k):
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Therefore �(1) = I and therefore �(1)HC�(1) = C. If we now de�ne X
4
= C

and Y
4
= (�HC� + � � �+�M�1HC�M�1), we see that X;Y � 0. This follows

from the de�nition of C as A>A and the properties of s.p.d matrices discussed

above. Hence, directly applying the result obtained from (5.25), we have that

�
�(1)HC�(1) + � � �+�(M)HC�(M)

��1
n;n

=
�
C+ � � � +�M�1HC�M�1

��1
n;n

� C�1
n;n;

(5.26)

proving (b).

3. To prove (c), we make use of an interesting property of s.p.d matrices [51].

Given an integer q, we denote by Mq the space of all q � q matrices with

complex entries and we denote by Hq(a; b) the space of all hermitian matrices

with spectra in the interval (a; b) � R. It can be shown that Hq(a; b) is a convex

set [51].

De�nition 5.1 A twice continuously di�erentiable function f(�) : (a; b) ! R

is said to be a convex matrix function on Hq(a; b) if f : Hq(a; b)! Hq(�1;1)

satis�es

(1 � �)f(A) + �f(B) � f
�
(1 � �)A+ �B

�
for all A;B 2 Hq(a; b) and all � 2 [0; 1]. The notation A � B signi�es that

A �B � 0.

It can be shown that the function f(t) = 1=t is a convex matrix function on

Hq(0;1); q = 1; 2; : : : , i.e., on the space of Hermitian positive de�nite matri-

ces of all dimensions [51, pp.547{549]. Therefore, since each of the matrices

�(m)HC�(m) 2 H2K(0;1); m = 1; : : : ;M , we can use the convexity of the
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matrix function 1=t on H2K(0;1) to obtain

1

M

�
�(1)HC�(1)

��1
+ � � �+ 1

M

�
�(M�1)HC�(M�1)

��1 ��
1

M
�(1)HC�(1) + � � �+ 1

M
�(M)HC�(M)

��1 (5.27)

=) 1

M2

��
�(1)HC�(1)

��1
+ � � �+

�
�(M)HC�(M)

��1� ��
�(1)HC�(1) + � � �+�(M)HC�(M)

��1
= C�1:

(5.28)

Because the array is a ULA, the complex exponential terms in �(m) yield

�
�(m)HC�(m)

��1
n;n

= C�1
n;n: (5.29)

The relations expressed in (5.29) hold for each diagonal term (n; n). Now com-

paring diagonal terms of the matrices on both sides of the � sign in (5.28), we

obtain

C�1n;n �
1

M2

��
�(1)HC�(1)

��1
+ � � �

�
�(M)HC�(M)

��1�
n;n

=
1

M
C�1

n;n: (5.30)

The �rst inequality above follows from the fact that if A � B, then Bn;n �

An;n; 8n. This proves Proposition (c) and completes the proof. �

From Part (b) of the above theorem and Eqs. (5.22), (5.23) we see that

Pe
(M)

1 � Pe
(1)

1 ; �
(M)

1 � �
(1)

1 :

Therefore, the performance enhancement of an M -sensor antenna array receiver over

a single sensor counterpart is evident in the decreased probability of error and the

superior near-far resistant properties (since the near-far resistance of a detector, � =

mink �k; k = 1; : : : ;K). Part (c) quanti�es the gain more accurately; we now see

that �
(M)

1 � M � �(1)1 with the associated decrease in the probability of error (since

Pe
(�)

1 = Q

�q
w2

1�
(�)

1 =�2

�
), yielding a gain that is directly dependent on the number

of sensors, M .
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Numerical Results

The above analytic results are corroborated by simulations of performance below.

In all the following �gures we assume perfect knowledge of the delays and DOAs of

all the users since the focus is on the gain obtained in using multiple sensors at the

receiver. The delays of the users were generated uniformly in [0; NTc) and the DOAs

were uniformly distributed in [��=3; �=3) radians. Each user was assigned a Gold

code of length N = 31 and the interfering users' powers were distributed uniformly

in [0; 20] dB relative to the power of the desired user.
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Figure 5.2 : Plot of SIR1 at the output of the decorrelating detector as a function of
the number of sensors in the array for di�erent numbers of total users in the system.

The desired user's SNR was 8dB and the MAI was uniformly distributed in [0; 20]dB.

In Figure 5.2 we graph the maximum SIR (from simulations) of user 1 at the

output of the decorrelating detector as a function of M . As expected we observe an

increase in SIR with an increase in array size (in fact, the SIR increases approximately

linearly in M , as predicted by (5.20) and Theorem 5.1.
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Figure 5.3 : Performance of the multisensor decorrelating detector versus SNR of

the desired user for M = 1; 3 and 5 sensors. Plots (a), (b), (c) and (d) depict the

performance for K = 5; 10; 15 and 25 users in the system respectively. The MAI is
20dB. The solid lines represent the theoretical curves obtained from. The `r', `�'
and `�' symbols represent M = 1; 3 and 5 sensors respectively.



75

Since the probability of error in the case of the decorrelating detector is a direct

function of SIR, as captured in (5.22) we see that the performance of a multisen-

sor decorrelating detector improves signi�cantly over the single-sensor case (because

the SIR appears as the argument of a Q-function). This is indeed captured in Fig-

ures 5.3(a), (b), (c) and (d), where we observe the performance of the decorrelating

receiver by graphing the probability of error against increasing SNR for di�erent num-

ber of users in the system. We compare the performance for di�erent number of sen-

sors, 1, 3 and 5, at the receiver. Plots 5.3(a), (b), (c) and (d) represent K = 5; 10; 15

and 25 users in the system respectively. As expected, the performance increases (and

we note, rather dramatically) as a function of the number of sensors. This can be

attributed to the increased dimensionality of the system and hence the corresponding

increase in e�ective SNR; with M sensors, we observe the e�ects of M-diversity. We

also note that the performance decreases as the number of users increases. Since the

single sensor decorrelating detector is given by C�1 = (A>A)�1, where A 2 RN�2K,

its rank is determined by the rank ofA which is minf2K;Ng. Therefore if the number

of users K is such that 2K > N , the detector becomes rank de�cient. In practice, as

2K approaches N , the matrix C�1 becomes ill conditioned and performance drops.

Thus, in Figures 5.3 (c) and (d) where K = 15 and 25 respectively, we notice that

the single sensor receiver performs quite poorly. Geometrically speaking, since the

decorrelating detector attempts to orthogonalize the users, with more than bN=2c

users in the system, they cannot all be orthogonalized and hence the performance

degradation. In the multisensor case, Gdec = (AHA)�1, where A 2 CMN�2K and

hence 2K can get much larger before performance degrades | with a greater number

of dimensions at our disposal we can orthogonalize more users. The gain is a factor

of M , the number of sensors.

It should be remarked that the above results were derived for the case where the

noise is both temporally and spatially white. If the noise has a non-white but known

correlation structure, �i � N(0;K), then this must be factored in the calculation
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of Pe
(M)

1 ; �
(M)

1 ; P e
(1)

1 and �
(1)

1 . Quantitative comparisons in this case become more

di�cult to make.

5.1.2 MMSE Detector

In an M -sensor synchronous system, the linear MMSE detector can be cast as the

solution to the problem [37]

min
G

E[kWbi � Gyik2];

and is given by

Gmmse = (C + �2W�2)�1: (5.31)

The linear MMSE detector can also be shown to maximize the SIR in both syn-

chronous as well as asynchronous cases over the class of linear detectors (thus, it is

the analogue of the minimum variance beamformer in conventional array signal pro-

cessing terms). Unlike the decorrelating detector, the probability of error for user 1 at

the output of the linear MMSE detector, which is the true measure of performance,

is not strictly a function of the SIR [37]. However, for large code lengths and number

of users, the approximation Pe1 � Q(
p
SIR1) is quite accurate. We now proceed

to prove that in the synchronous case, the SIR (de�ned in (5.7)) increases with the

number of sensors.

From (5.31) and (5.7) we can rewrite the SIR of user 1 in the following manner

1� 1

SIR
(M)

1 + 1
=
nh
I� ��1WC

�
C + �2W�2

��1ih
I�

�
C + �2W�2

��1
�
C + ��2CW2C

� �
C + �2W�2

��1i�1 h
I�

�
C + �2W�2

��1
��1CW

i�
1;1

; (5.32)

where \�" represents the Hadamard product de�ned in Chapter 3. We now establish

the following theorem.
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Theorem 5.2

For an M -sensor ULA we have the following inequality

SIR
(M)

1 � SIR
(1)

1 : (5.33)

Proof : To prove the theorem, it is su�cient to show that

1� 1

SIR
(M)

1 + 1
� 1 � 1

SIR
(1)

1 + 1
:

The proof now follows from a few simple manipulations of the matrices in (5.32). We

�rst note that

�
C + �2W�2

��1 �C + ��2CW2C
�
= ��2W2C

and therefore (5.32) reduces to

1� 1

SIR
(M)

1 + 1
=
�
I� C

�
C + �2W�2

��1�
1;1

=
�
I�

�
I+ �2W�2C�1

��1�
1;1

:

Therefore, to prove that SIR
(M)

1 � SIR
(1)

1 , we need to show that

�
I�

�
I+ �2W�2C�1

��1�
1;1
�
�
I�

�
I+ �2W�2C�1

��1�
1;1

i.e.,
�
I+ �2W�2C�1

��1
1;1
�
�
I+ �2W�2C�1

��1
1;1

: (5.34)

But (5.34) follows immediately because C�11;1 � C�1
1;1 (from Theorem 5.1). Hence we

have the theorem. �

In this case, however, we notice that the performance improvement cannot be

directly quanti�ed in terms of the number of sensors M .

Turning our attention to the asynchronous case now, we have the decision statistic

given by

(z
(M)

i )1 = (1 � �)
�
GCWbi

�
2
+ �

�
GCWbi+1

�
1
+ ~�;
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where the additive gaussian noise term is

~� = (1� �)(GAH� i)2;2 + �(GAH�i+1)1;1 :

The optimum � and the resultant SIR can now be given analogous to (5.14) and

(5.16). In this case, the analytical demonstration of the increase in SIR with number of

sensors is a daunting task. However, it is reasonable to expect that the above property

still holds (the asynchronous nature of the system cannot negate basic intuition!) and

we resort to simulations to substantiate our claim.

Numerical Results
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Figure 5.4 : Plot of SIR1 for a linear MMSE detector in an asynchronous system

versus the number of sensors in the array. The SIR is graphed for di�erent number

of users in the system. The desired user's SNR was 8dB and the MAI was uniformly
distributed in [0; 20]dB.

Figure 5.4 demonstrates the bene�ts of increased number of sensors in an asyn-

chronous system in terms of the SIR of user 1 at the output of the MMSE detector.
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We observe that the rate of increase of the SIR with M is also approximately linear,

as in the case of the decorrelator.
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Figure 5.5 : Performance of the multisensor linear MMSE detector versus SNR of
the desired user for M = 1; 3 and 5 sensors. Plots (a), (b), (c) and (d) depict the

performance for K = 5; 10; 15 and 25 users in the system respectively. The MAI is

20dB. The solid lines represent the \theoretical" curves obtained from Q(
p
SIR1).

The r, � and � symbols represent M = 1; 3 and 5 sensors respectively.

The near-far resistance properties of the MMSE detector are identical to those

of the decorrelating detector [50] and hence the gain in near-far resistant properties

from employing M sensors is identical to the decorrelating detector case. However,

since the probability of error is not a direct function of SIR, analytical demonstration
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of the superiority of multiple sensors is not straightforward. However, since we know

from Figure 5.4 that SIR1 increases with M , we expect the same to hold for Pe1,

especially since Pe1 is closely approximated by Q(
p
SIR1) for large code lengths

and number of users. We illustrate the gains via simulations of the probability of

error versus increasing SNR in Figure 5.5 for array sizes of M = 1; 3 and 5 sensors.

Figures 5.5(a), (b), (c) and (d) depict the probabilities of error for user 1 with 4, 9,

14 and 24 interfering users in the system respectively. As we increase the number

of users we notice a degradation in performance across all array sizes, especially for

one sensor. Even though the MMSE detector does not become singular as 2K ! N ,

it does become ill-conditioned. The analogy to the minimum variance beamformer

carries over and we see that we cannot \null out" more than bN=2c interferers. With

increasing array sizes, we have an increased number of dimensions in the system and

hence we can null out an increased number of interferers as seen from the plots of

M = 3and 5 in Figure 5.5. Also plotted in Figure 5.5 are the \theoretical Pe" curves,

i.e., we plot the approximation for Pe1 given by Pe1 � Q(
p
SIR1) for the various

combinations of K and M . We notice a very close agreement between simulation and

this approximation even for small number of users, K = 5. The code length used in

the simulations was N = 31.
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Chapter 6

Conclusions

This thesis investigates the gain achieved in incorporating multiple sensors in the form

of an antenna array at the base station in a CDMA cellular communication system.

Increasing the number of sensors in the array increases the e�ective SNR of each user

and hence, we expect a performance enhancement over single-sensor receivers; this

enhancement is quanti�ed. Multisensor algorithms for acquisition in CDMA systems

have not received much attention in the literature, [21,23,24] featuring the prominent

approaches.

The main contributions of this thesis are twofold: we develop a framework for si-

multaneous estimation of delay and DOA for transmitting users in a cellular CDMA

system; we also demonstrate the advantages of increased number of sensors in both

parameter estimation as well as bit detection scenarios. We �rst develop a maximum

likelihood algorithm to estimate the delays, DOAs and amplitudes of a set of trans-

mitting users in the reverse link of a wireless CDMA communication network. The

algorithm is seen to be a generalization of an algorithm proposed by [25] for DOA esti-

mation. Traditional acquisition schemes employ a single sensor at the receiver and are

therefore limited in the number of delays they can simultaneously estimate. We utilize

multiple sensors via antenna arrays at the receiver to surmount this handicap. The

presence of multiple sensors not only contributes to increased dimensionality through

spatial diversity, but also facilitates important procedures such as source location and

soft hando�. In addition to their delays, we are now able to estimate the direction

of arrival (DOA) of individual signals. The additive complex noise in the system

is assumed to be zero-mean, Gaussian but no assumption is made on its covariance
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structure. We see that by incorporating simplifying assumptions on the signal and

noise structures we obtain an elegant decoupling of the multiuser estimation problem

into the constituent single-user ones and a further decoupling of the joint delay-DOA-

amplitude estimation for each user. The proposed algorithm is seen to possess many

useful properties. Since the delay and DOA estimates are independent of the am-

plitude, these estimators are near-far resistant. The maximum likelihood algorithm

can be cast as a subspace �tting problem; however, we notice that the estimators are

not dimensionally limited as traditional subspace-based estimators that decompose

the correlation matrix of the observations are. This coupled with the relative com-

putational simplicity makes them ideal for acquisition in scenarios where preambles

can be accomodated. We observe the advantage of multiple sensors through the uni-

formly enhanced DOA estimates as well as the improved delay estimates in low SNR

situations. Furthermore, the preamble size is not prohibitively large either | for

the number of antennas considered, i.e., 1, 3 and 5, satisfactory acquisition occurred

with 150 bits. An interesting outcome of the joint delay-DOA estimation, as evinced

by the Cr�amer-Rao bound in (3.53) (3.54), is the trade-o� between the accuracy in

estimating both parameters simultaneously. At present, the only limitation of the

method is the imposition of the single path channel model. Multipath introduces

correlation among the received training signals and the algorithm has to be modi�ed

to account for this e�ect, making it necessarily more complex. It is in this direction

that the authors are currently navigating.

In the next chapter we adopt a blind subspace-based acquisition scheme based

on the well known MUSIC algorithm for the joint delay-DOA estimation problem.

The transmitted signals lie in a structured subspace called the signal subspace. This

subspace along with its orthogonal complement, the noise subspace, is estimated via

an SVD of a data matrix. We notice that the number of data points required for

reasonable estimates is around M � N , the dimension of the observation correlation

matrix. The presence of more than one sensor signi�cantly increases the number of



83

users' delays that can be estimated through an increase in the dimension of the noise

subspace. The gain is proportional to the number of sensors in the array, M ; we

can now estimate the parameters of bMN=2c users. We observe that the estimation

algorithm is near-far resistant since the signal and noise subspaces are independent of

the received amplitude; however, it should be remarked that this property holds only

when the number of impinging signals is well within the dimensionality of the system.

In the context of joint delay-DOA estimation we have proposed a computationally

simpler alternative to the full MUSIC algorithm via the Taylor series expansion of

the array response vector, and we notice that the performance loss, in terms of the

probability of acquisition as well as mean squared estimate errors, is quite small.

The joint delay-DOA information can be exploited to yield lower probabilities of

error in the detection of the transmitted bits of the users. This gain is highlighted

in the thesis through a study of two single-shot linear multiuser detectors, the decor-

relating detector and the linear MMSE detector. Due to the asynchronous reception

of users' bitstreams, we make use of the detector outputs at two successive time in-

stants to form a decision on each bit. We derive the optimal linear combination of

these successive outputs for a general linear detector, based on maximizing the output

signal to interference ratio (SIR). The gain in performance due to multiple sensors,

quanti�ed by the gain in output SIR, is found to depend directly on the number of

sensors in the array.

6.1 Future Work and Issues

The acquisition algorithms described above were derived for the case of a single path

channel. An issue that warrants addressing is the generalization to multipath fading

channels. It is well known that fading dramatically decreases performance [2] and

diversity techniques need to be implemented to mitigate the e�ects of fading. The

presence of multipath introduces correlation among the received signals and hence the

estimation algorithms need to be modi�ed to incorporate this knowledge. A viable
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technique for handling intersignal coherence is through sub-array averaging [19] where

spatial averaging is enhanced at the expense of resolution. More complex subspace

techniques such as weighted subspace �tting (WSF) [52] or probabilistic subspace

techniques [26] can be employed to resolve signal coherence; while these methods are

indeed e�ective, they involve added computational complexity.

In this study we treated the transmitted signals as narrowband. While current

systems can certainly be classi�ed as narrowband from the point of view of the antenna

array, it is doubtful that future generation wireless CDMA systems with chip rates in

excess of 10MHz truly fall under the same umbrella. Therefore the investigation of

broadband techniques assumes importance. In this connection we must mention that

uniform linear arrays are fraught with many disadvantages [38] and it behooves one

to investigate more sophisticated array geometries; one such example is the uniform

circular array of Figure 2.2.

In conclusion we would like to briey touch on an issue not addressed in this thesis:

tracking the estimated parameters and subspaces. The study and incorporation of

algorithms that adaptively track the noise or signal subspaces is of paramount impor-

tance since the SVD in this problem is of complexity O(M2N2). Current techniques

perform K-dimensional subspace tracking in O(NK) complexity, where N is the

overall dimension [47, 53, 54]. Therefore, subspace tracking o�ers a computationally

attractive alternative to the complete SVD with little performance loss. In addition,

with subspace tracking, typical nonstationarities such as slowly varying delays, DOAs

as well as amplitudes can be tracked. Implementing such tracking algorithms on real

time processors is therefore an issue that is rapidly gaining importance in the current

world of dedicated parallel architectures for signal processing applications [55].
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Appendix A

Proof of (3.14)

In this appendix we will show that for large L,

min
�

ln
���I+ bK�1(Y � bY)bRbb(Y � bY)H��� � min

�
trfbRbb(Y � bY)H bK�1(Y � bY)g;

(A.1)

where � = f� ;�;wg. In other words, minimizing the two functions in A.1 is asymp-

totically equivalent. Since the sample correlation matrix bRbb is positive de�nite we

can write it as bRbb = RRH and therefore we can de�ne

ZZH 4
= (Y � bY)bRbb(Y � bY)H :

Since bY is a consistent estimate [40], (Y � bY) L

��! 0 and therefore

Z
4
= (Y � bY)R L

��! 0:

Now, min ln
���I+ bK�1ZZH

��� is equivalent to min ln
���I+ ZH bK�1Z

���, which follows

from the fact that, for any two matrices A 2 C r�s ;B 2 C s�r , we have

jIr +ABj = jIs +BAj:

Let us denote the eigenvalues of ZH bK�1Z as �1; �2; : : : ; �MN . Then

ln
���I+ ZH bK�1Z

��� = MNX
i=1

ln(1 + �i): (A.2)

We now de�ne an appropriate matrix norm kj � jk on CMN�MN and the corre-

sponding vector norm k � k on CMN . The norms we choose to operate under are the
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matrix 2-norm and vector 2-norm, henceforth denoted by kj�jk and k�k respectively,

and de�ned as

kjAjk =
 

MNX
i

MNX
j

A2
i;j

!1=2

kak =
 

MNX
i

a2i

!1=2

:

Then from norm inequalities [41] we have

0 � �j � �
�
ZH bK�1Z

�
�
���ZH bK�1Z

���
�
��� bK�1

��� � ��ZZH
�� = ��� bK�1

��� �

�����
X
i

ziz
H
i

�����
 �

��� bK�1
��� �X

i

kzik2 ; (A.3)

for all j = 1; 2; : : : ;MN , where zi is the i
th column of Z and the spectral radius, �(�)

is de�ned as

�(A) = maxfj�j : � is an eigenvalue of Ag :

The �rst inequality in (A.3) follows because bK�1 is non-negative de�nite and hence,

so is ZH bK�1Z. The second and third inequalities follow from the de�nition of �(�)

and the remaining inequalities are standard matrix norm inequalities.

Since Z
L

��! 0, it follows that kzik
L

��! 0 and therefore, from (A.3), �j
L

��! 0 8j.

We can now rewrite (A.2) as

MNX
i=1

ln(1 + �i) �
MNX
i=1

�i = tr
n
ZH bK�1Z

o
= tr

nbRbb(Y � bY)H bK�1(Y � bY)o (A.4)

and this completes the proof.
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Appendix B

Kronecker Product Approximation of a Matrix

Given a matrix bK 2 CMN�MN ; we describe an algorithm to approximate bK as bK1
 bK2

where bK1 2 CM�M and bK2 2 C N�N ; the approximation is carried out in the Frobenius

norm sense, i.e., nbK1; bK2

o
= arg min

K12C
M�M

K22C
N�N

bK�K1 
K2

2
F
: (B.1)

For a more complete treatise on kronecker product approximations of a given matrix

the reader is referred to [56]. Now de�ne the matrix operation vec(�) as follows :

vec(A) =

0
BBBBBB@

(A)1

(A)2
...

(A)n

1
CCCCCCA

; (B.2)

where f(A)igni=1 are columns ofA. If k1 = vec(K1) and k2 = vec(K2), it is easy to see

that the two matrices k1k
>
2 2 CM2�N2

and K1
K2 2 CMN�MN contain exactly the

same elements, but in di�erent permutations. We de�ne eK 2 CM2�N2

to be simply a

rearrangement of the elements of bK performed to mirror the rearrangement involved

in transforming K1
K2 to k1k
>
2 . Now we have converted the problem in (B.1) ton

k̂1 ; k̂2

o
= arg min

k12C
M

2
�1

k22C
N
2
�1

eK� k1k>2
2
F
: (B.3)

This now reduces to a familiar SVD problem [57] | if the SVD of eK can be written

as eK = U�VH , the vectors k̂1 and k̂2 are calculated as

k̂1 =
p
�1 u1

k̂2 =
p
�1 v1
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The matrices bK1 and bK2 are now obtained as

bK1 = vec�1(k̂1) ; bK2 = vec�1(k̂2) ; (B.4)

where the operation vec�1 has the obvious meaning.
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Appendix C

Derivation of CRB(� ;�)

From (3.3) we have the log-likelihood function of the L observations to be

L = �MNL � ln� � L � ln jKj �
(

LX
i=1

(ri �Axi)HK�1(ri �Axi)
)

(C.1)

Denote the unknown parameter vector by

� = [k1;k2; : : : ;kM2N2 ; w1; ; : : : ; wK ; �1; : : : ; �K ; �1 ; : : : ; �K];

where fk1;k2; : : : ;kM2N2g are the M2N2 entries of the unknown covariance matrix

K. Then, the CRB for � is given by

CRB(�) =
�
E[	 	>]

��1
; 	 =

�
@L
@�1

; : : : ;
@L
@�i

; : : : ;
@L
@�P

�>
; (C.2)

where P = M2N2 + 3K, the number of unknown parameters. Di�erentiating with

respect to km ; m = 1; 2; : : : ;M2N2 we obtain

@L
@km

= �L � tr
�
K�1 @K

@km

�
+

LX
i=1

�H
i K

�1 @K

@km
K�1�i (C.3)

Di�erentiating with respect to �m = qm+ m (piecewise over successive chip peri-

ods), �m; wm; ewm ;m = 1; : : : ;K, where wm
4
= Re(wm) and ewm

4
= Im(wm) yield

@L
@�m

= 2

LX
i=1

Re
�
XH

m(i� 1; i)�H
mK

�1� i

�
(C.4)

@L
@�m

= 2

LX
i=1

Re
�
XH

m(i� 1; i)�H
mK

�1�i

�
(C.5)

@L
@wm

= 2

LX
i=1

Re
�
BH

m(i� 1; i)AH
mK

�1�i

�
(C.6)
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@L
@ ewm

= 2

LX
i=1

Im
�
BH

m(i� 1; i)AH
mK

�1�i

�
(C.7)

wherein we have

Xm(i� 1; i) = [xm;i�1 ; xm;i]
>

Bm(i� 1; i) = [bm;i�1 ; bm;i]
>

Am = [aRm aLm] = [pm
cRm pm
cLm]

�m =

�
@aRm
@m

@aLm
@m

�
=

�
pm


@cRm
@m

pm

@cLm
@m

�

�m =

�
@aRm
@�m

@aLm
@�m

�
=

�
@pm

@�m

cRm

@pm

@�m

cLm

�
(C.8)

From the equations (C.4){(C.7) we can write

@L
@�

= 2

LX
i=1

Re
�
XH(i� 1; i)�HK�1�i

�
(C.9)

@L
@�

= 2

LX
i=1

Re
�
XH(i� 1; i)�HK�1�i

�
(C.10)

@L
@w

= 2

LX
i=1

Re
�
BH(i� 1; i)AHK�1�i

�
(C.11)

@L
@ ew = 2

LX
i=1

Im
�
BH(i� 1; i)AHK�1�i

�
(C.12)

where � and � have their obvious interpretation and X;B are de�ned as

X(i� 1; i) =

0
BBBBBB@

X1 0 � � � 0

0 X2 � � � 0

: : : : : : : : : : : : : : : : : :

0 0 � � � XK

1
CCCCCCA

; B(i� 1; i) =

0
BBBBBB@

B1 0 � � � 0

0 B2 � � � 0

: : : : : : : : : : : : : : : : :

0 0 � � � BK

1
CCCCCCA

Since �i is a zero mean circular complex Gaussian random vector all moments

of the form E[�>j ] and E[�H
i �j�

>
j ] = 0 8i; j [28]. Hence we see from (C.3) that
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@L=@km is uncorrelated with all the other derivatives in (C.9){(C.12) as well as

with @L=@kn ; m 6= n. This implies that the entries in CRB(�) due to km ;m =

1; : : : ;M2N2 do not a�ect CRB(� ) or CRB(�). Exploiting the independence and

correlation properties of �i mentioned above, we now obtain after some calculations

E

"�
@L
@�

��
@L
@�

�>#
= 2 Re

LX
i=1

XH(i� 1; i)�HK�1�X(i� 1; i) (C.13)

E

"�
@L
@�

��
@L
@�

�>#
= 2 Re

LX
i=1

XH(i� 1; i)�HK�1�X(i� 1; i) (C.14)

E

"�
@L
@w

��
@L
@w

�>#
= 2 Re

LX
i=1

BH(i� 1; i)AHK�1AB(i� 1; i) (C.15)

E

"�
@L
@ ew
��

@L
@ ew
�>#

= 2 Re

LX
i=1

BH(i� 1; i)AHK�1AB(i� 1; i) (C.16)

E

"�
@L
@�

��
@L
@�

�>#
= 2 Re

LX
i=1

XH(i� 1; i)�HK�1�X(i� 1; i) (C.17)

E

"�
@L
@�

��
@L
@w

�>#
= 2 Re

LX
i=1

XH(i� 1; i)�HK�1AB(i� 1; i) (C.18)

E

"�
@L
@�

��
@L
@ ew
�>#

= �2 Im
LX
i=1

XH(i� 1; i)�HK�1AB(i� 1; i) (C.19)

E

"�
@L
@�

��
@L
@w

�>#
= 2 Re

LX
i=1

XH(i� 1; i)�HK�1AB(i� 1; i) (C.20)

E

"�
@L
@�

��
@L
@ ew
�>#

= �2 Im
LX
i=1

XH(i� 1; i)�HK�1AB(i� 1; i) (C.21)

E

"�
@L
@w

��
@L
@ ew
�>#

= �2 Im
LX
i=1

BH(i� 1; i)AHK�1AB(i� 1; i) (C.22)

Because of the \almost-diagonal" structure of X and B the expressions in (C.13)
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{ (C.22) can be rewritten. For example,

2 Re

LX
i=1

XH(i� 1; i)�HK�1�X(i� 1; i) = 2 Re

0
@�RHK�1�R �

"
LX
i=1

xi�1x
H
i�1

#>

+ �LHK�1�L �
"

LX
i=1

xix
H
i

#>
+ 2 �RHK�1�L �

"
LX
i=1

xi�1x
H
i

#>1A ; (C.23)

2 Im

LX
i=1

XH(i� 1; i)�HK�1AB(i� 1; i)

= 2 Im

0
@�RHK�1AR �

"
LX
i=1

xi�1b
H
i�1

#>
+ �LHK�1AL �

"
LX
i=1

xib
H
i

#>1A ; (C.24)

where �R;�L;AR;AL are de�ned in (3.47) in Chapter 3, the vector of users' bits

bi = [b1;i; b2;i; : : : ; bK;i]
> and xi = Wbi. Since bi�1 is uncorrelated with bi, for

large L we have

X
i

bi�1b
H
i�1 = L � bRbb;

X
i

bib
H
i = L � bRbb

X
i

xi�1x
H
i�1 = L �WbRbbW

H;
X
i

xix
H
i = L �WbRbbW

H

X
i

xi�1b
H
i�1 = L � bRbbW

H ;
X
i

xib
H
i = L � bRbbW

H

X
i

bi�1b
H
i = 0;

X
i

xi�1b
H
i = 0:

Incorporating the above simpli�cations, the right hand sides of the ten equations

(C.13) { (C.22) can be rewritten as 2L Re�2, 2L Re�3, 2L Re�1, 2L Re�1, 2L Re�3,

2L Re�1, �2L Im�1, 2L Re�2, �2L Im�2 and �2L Im�1 respectively, where the

matrices �1;�2;�3;�1;�2;�3 are de�ned in (3.41){(3.46).

We are now ready to calculate CRB(� ;�). We have established that the entries in

CRB(�) due to km ;m = 1; : : : ;M2N2 do not a�ect CRB(w), CRB(� ) or CRB(�).
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From (C.2) we can now write CRB(w; ew; � ;�) as

CRB�1(w; ew; � ;�) = 2L

0
BBBBBB@

Re�1 Im�1 Re�H
1 Re�H

2

�Im�1 Re�1 Im�H
1 Im�H

2

Re�1 �Im�1 Re�2 Re�3

Re�2 �Im�2 Re�H
3 Re�3

1
CCCCCCA
: (C.25)

We de�ne the matrices H1;H2 and G as follows:

H1 =

0
@ Re�1 Im�1

�Im�1 Re�1

1
A ; H2 =

0
@Re�2 Re�3

Re�H
3 Re�3

1
A ; G =

0
@Re�1 �Im�1

Re�2 �Im�2

1
A :

With the above de�nitions CRB(w; ew; � ;�) now simpli�es to

CRB�1(w; ew; � ;�) = 2L

0
@H1 G>

G H2

1
A : (C.26)

It can be shown [28] with the aid of a standard matrix inversion result that (C.26)

results in an expression for CRB(� ;�) of the form
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Since �1 is hermitian, it is easily seen that
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and subsequently, incorporating (C.28) in (C.27) we obtain the result in Theorem 3.1.


