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ABSTRACT 

Gender Specific Neural Correlates of 

Emotion and Cognition 

by 

Heather M. Lugar 

Evidence suggests that regions within the anterior cingulate cortex (ACC) are 

sensitive both to emotional and cognitive task demands. This experiment asked whether 

emotional and cognitive demands are processed separately by ventral and dorsal regions 

within the ACC, respectively. Results revealed significant individual variability between 

changes in anxiety and response times with practice during performance of a verb 

generation task. Correlational analyses of the functional magnetic resonance imaging 

(fMRI) data were inconclusive. However, exploratory analyses suggest that while the 

ventral and dorsal subdivisions of the medial prefrontal cortex, which encompasses the 

ACC, make specialized contributions to the processing of emotion and cognition, 

respectively, the two subdivisions also appear to interact. These analyses also suggest 

that there could be a difference in how women and men balance the competing demands 

of emotion and cognition that might be related to differences in self-concept and neural 

activity in the default mode network. 
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INTRODUCTION 

Everyone has experienced the effects of emotion on cognition. Heightened 

emotion can lead to impulsive decision-making, imprecise problem solving, and ill-

chosen words. Much evidence exists from electrophysiological and functional 

neuroimaging studies, as well as patient studies of lesions and psychopathology, 

implicating activity in the anterior cingulate cortex (ACC) in both emotional and 

cognitive processing (Allman, Hakeem, Erwin, Nimchinsky, & Hof, 2001). In addition, 

an anatomical division exists between ventral and dorsal portions of the ACC, with each 

having unique cell structure and projections (Bush, Luu, & Posner, 2000; Vogt, 2005). 

The ventral ACC is linked to the limbic system, with connections to the amygdala, 

hypothalamus, and hippocampus, areas implicated in emotional processing, with direct 

outputs to the autonomic, visceromotor, and endocrine systems. The dorsal ACC has 

connections with the lateral prefrontal cortex, and the premotor and supplementary motor 

areas, which are often engaged in difficult cognitive tasks requiring response selection. 

It is unclear, however, whether this neuroanatomical distinction extends to a 

functional delineation in which the ventral portion of the ACC is responsible for affective 

processing, and the dorsal ACC is responsible for cognitive processing (Allman et al , 

2001). On one hand, substantial evidence exists supporting the notion that there is a pure 

functional distinction in the ACC in which the ventral subdivision is associated 

specifically with emotional processing, and the dorsal ACC is associated specifically with 

cognitive processing (Bush et al., 2000; Drevets & Raichle, 1998). For example, in a 

study requiring cognitive and emotional inhibition, activity in the ACC was compared 

while the same group of subjects performed two versions of a Stroop-like task—one 



involving emotional interference and the other involving cognitive interference (Bush et 

al., 2000). A double dissociation was revealed in which the emotional interference task 

activated the ventral but not dorsal ACC, and the cognitive interference task activated the 

dorsal but not ventral ACC. Furthermore, experiments requiring affective processing, 

such as recollection of sad memories with simultaneous viewing of sad facial expressions 

(George et al , 1995) and induction of anticipatory anxiety (Drevets, Videen, Snyder, 

MacLeod, & Raichle, 1994), report activity primarily in the ventral portion of the ACC. 

In contrast, studies employing a cognitive task requiring high attentional demands and 

response selection or inhibition, such as verb generation (Petersen, Fox, Posner, Mintun, 

& Raichle, 1989), word stem completion (Buckner & Tulving, 1995), reward based 

decision making (Bush et al., 2002), and visual discrimination (Corbetta, Miezin, 

Dobmeyer, Shulman, & Petersen, 1991), report activity primarily in the dorsal portion of 

the ACC. 

The ventral/dorsal distinction is further supported by reciprocal suppression, in 

which the affective (ventral) subdivision of the ACC exhibits deactivations during the 

performance of demanding cognitive tasks, and the cognitive (dorsal) subdivision 

exhibits deactivations during the experience of induced and pathological emotional states 

(Drevets & Raichle, 1998). Deactivations in the ventral ACC have been associated with 

tasks requiring divided attention and working memory (Coull, Frith, & Grasby, 1995) and 

visuospatial discrimination (Corbetta et al., 1991), while deactivations in the dorsal ACC 

have been associated with anticipation of pain (Drevets et al., 1994), film-induced 

emotion (Lane et al., 1998), and severe depressive episodes (Bench et al., 1992). 
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Alternatively, it is possible that, while the centers of activation/deactivation may 

be separable, the overall activity overlaps, and the ventral and dorsal subdivisions of the 

ACC are functionally interconnected. In an fMRI study exploring the functional 

organization of the ACC, subjects performed a cognitively demanding task in which they 

were asked to discriminate between attentional targets and other stimuli in the presence 

of emotional distracters (Yamasaki, LaBar, & McCarthy, 2002). For analysis, Yamasaki 

and colleagues divided the ACC into four areas from ventral to dorsal and measured the 

activity associated with each condition in those four portions of the ACC. They found 

that the most dorsal slice was only active for targets, supporting the role of the dorsal 

ACC in cognitive processing. Interestingly, however, they found that the two most 

ventral slices were not only active in the presence of the emotional distracters, but they 

also showed an equivalent degree of activation for the targets. 

This suggests that there is no clean separation of emotional and cognitive 

function, at least within the ventral ACC. Evidence also exists suggesting that 

functioning of the dorsal ACC may not be limited only to cognition, either. By varying 

their firing rate, inhibitory and excitatory neurons in the dorsal ACC detect targets, 

identify novel stimuli, recognize conflict, and acknowledge errors, with some of these 

dorsal, rather than ventral, ACC cells responding preferentially to high-conflict, 

emotionally laden words (Davis et al., 2005). 

Further evidence against a pure distinction between ventral and dorsal was 

observed in a study by Wang and colleagues (2005) in which subjects' brain activity was 

compared while they performed a simple number task versus a difficult arithmetic task. 

In support of the functional distinction within the ACC (Bench et al., 1992; Buckner & 
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Tulving, 1995; Bush et al., 2000; Corbetta et al., 1991; Coull et al., 1995; Drevets et al., 

1994, George et al., 1995; Lane et al., 1998; Petersen et al., 1989), they found that 

activation in the dorsal portion of the ACC was associated with the cognitively 

demanding arithmetic task. However, inconsistent with these theories, subjective anxiety 

ratings correlated positively with this dorsal ACC activation. 

Thus, studies examining the functional roles of the ventral and dorsal ACC report 

conflicting results. However, many of the studies supporting a pure functional division 

of the ACC have treated emotional and cognitive processing as relatively discrete 

functions that can be isolated using either emotionally provocative tasks, such as film 

induced emotion (Lane et al., 1998) or anticipation of pain (Drevets et al., 1994) or 

cognitively demanding tasks, such as word stem completion (Buckner & Tulving, 1995) 

or reward based decision making (Bush et al , 2002). The few studies that have examined 

both emotional and cognitive components of the same task (Wang et al., 2005; Yamasaki 

et al., 2002) suggest that the relationship between ventral and dorsal ACC may be more 

complex. 

Furthermore, the participants in nearly all of the aforementioned experiments 

were either mixed sex or same sex groups. Cahill (2005) recently reported that there are 

significant gender differences in neural activity, and there have been multiple reports of 

women exhibiting greater ACC activity than men during negative affect conditions 

(Wager, Phan, Liberzon, & Taylor, 2003). So gender differences could also be a factor 

contributing to inconsistent results with regard to emotional and cognitive processing in 

the ACC. In fact, in a follow-up study Wang and colleagues (2007) reported that 

women's and men's neural responses to psychosocial stress, as measured by performance 
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of a demanding arithmetic task, produced such distinctly different activity patterns that a 

machine classification was able to identify gender with over 94% accuracy. While 

women's stress response was characterized by increased activity in the limbic system, 

including the dorsal ACC, men showed asymmetrical right prefrontal cortex increases 

with corresponding decreases in left orbitofrontal cortex. 

Butler and colleagues (2007) also recently reported that reciprocal suppression 

between ventral and dorsal ACC during performance of a difficult mental rotation task, 

specifically deactivation of the ventral ACC, was observed only in women. They 

proposed that activations and deactivations in ventral ACC so often associated with 

performance of cognitively demanding tasks, could be driven by female participants 

(Butler et al., 2007; Derbyshire, Nichols, Firestone, Townsend, & Jones, 2002; Wager et 

al., 2003). 

However, both studies reporting gender differences in brain function in response 

to psychological stress (Butler et al , 2007; Wang et al., 2007) involved the performance 

of tasks, in particular visuospatial and arithmetic, routinely reported to be more easily and 

more accurately performed by men in comparison to women (Halari et al., 2005). 

Despite both groups performing similarly in these two studies, other factors that could 

have differed between women and men in performance of the tasks, such as mental effort 

or perceived anxiety, might have contributed differently to the accomplishment of a 

similar outcome (Butler et al., 2007; Wang et al., 2007). Indeed, perceived stress 

between low and high stress conditions differed between women and men in the 

experiment conducted by Wang and colleagues (2007). Therefore, it is not known 

whether the differences reported in these studies reflect a fundamental difference in ACC 
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activity between genders, or if it is domain specific (Butler et al., 2007). Assessing 

psychosocial stress in the language domain, in which women are known to have an 

advantage over men (Halari et al., 2005), could help to discriminate between these two 

possibilities. 

Therefore, the original question remains: Do the ventral and dorsal subdivisions 

of the ACC have distinct functional roles in emotional and cognitive processing? 

Subsequent to the design of the study and to data collection, several papers appeared that 

suggested important gender differences in neural activity in these areas. Therefore, 

exploratory analyses were also conducted to address a follow-up question: Are these roles 

between subdivisions of the more expansive, medial prefrontal cortex (mPFC), different 

between women and men? 

The first step is to determine whether emotional and cognitive processing can be 

dissociated. Many studies have shown that subjects become faster and more accurate in a 

wide variety of cognitive tasks with repeated performance of the task (Petersen, van 

Mier, Fiez, & Raichle, 1998; Raichle et al., 1994; Simpson, Snyder, Gusnard, & Raichle, 

2001), and it is likely that familiarization with a difficult task may reduce performance 

anxiety in subjects who have a desire to perform well. Indeed, Simpson and colleagues 

(2001) observed similar changes in anxiety and response time as subjects practiced a verb 

generation task. In the Simpson et al. experiment, anxiety level and reaction times were 

measured during four conditions: (1) single word reading, in which subjects simply read 

aloud a single list of words; (2) naive verb generation, in which subjects were initially 

exposed to the verb generation task and a specific list of words; (3) practiced verb 

generation, in which subjects repeated the verb generation task with the same list of 
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words (from the previous naive run) for nine more blocks; (4) novel verb generation, in 

which subjects performed the verb generation task with a new set of words. Similar 

effects were observed in anxiety and reaction time measures. Both were greater in the 

verb generation than in the read task, and both decreased with practice. Thus, anxiety 

and reaction times were confounded, making it difficult to assess the individual 

contributions of each to the neural activity reported in the ACC. The authors concluded 

that the ACC activity represented a combined effect of participant anxiety levels and the 

attentional demands of the task. 

Although results from Simpson et al. (2001) indicate that anxiety and 

performance are confounded in the cognitively demanding verb generation task, it is 

possible that they might be dissociable in a less demanding task, such as single word 

reading. Indeed, Simpson and colleagues (2001) reported lower anxiety and quicker 

reaction times in the single read run in comparison to verb generation, but they did not 

examine the effects of practice on the read task. Therefore, it is possible that anxiety and 

performance could be dissociated by comparing practice effects across the two tasks, 

with read showing a decrease in reaction time with practice, but not anxiety, and verb 

generation showing a decrease in both. To examine this possibility, changes in anxiety 

and performance with practice were measured during verb generation and single-word 

reading in the following preliminary experiment. 
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Preliminary Experiment 

Method 

Participants 

Forty-eight subjects (24 female mean age 20.43 years, SD = 1.67; male mean age 

20.96 years, SD = 2.86) from the Rice University community participated in the study. 

Subjects reported being neurologically healthy, having normal or corrected-to-normal 

vision, and were native English speakers. Informed consent was obtained from each 

subject in accordance with the guidelines of the Rice University Institutional Review 

Board. 

Design and Materials 

A 2 x 4 repeated measures design was originally employed in which task (verb 

generation vs. read) and run (run 1 vs. run 2 vs. run 3 vs. run 4) were within-subjects 

independent variables. Exploratory analyses were also conducted in which gender was a 

between-subjects variable in a 2 x 4 x 2 design. 

Stimuli were 160 concrete nouns ranging in frequency from 1, least frequent, to 

299, most frequent (Francis & Kucera, 1982), with the number of letters per word 

ranging from 3 to 11. The words were divided into four lists of 40 words that were 

equated for frequency, mean of 46.27, and number of letters, mean of 5.07. Each list 

was counterbalanced across conditions, verb generation and read, and all subjects, male 

and female. White stimuli were presented on a black background in Helvetica font, size 

36, on a Macintosh computer using PsyScope (Cohen, MacWhinney, Flatt, & Provost, 

1993), and each word was presented for 100 milliseconds at an average rate of 1 per 5 

seconds with a fixation cross presented in between the words. A chin rest was used to 
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maintain the subject's distance 30 inches from the computer screen. Words subtended 

approximately 0.72° of visual angle vertically and between 1.43° and 5.20° horizontally. 

Procedure 

All subjects completed four blocks of the read task and four blocks of the verb 

generation task. The read task always preceded the verb generation task because 

previous pilot data indicate that subjects attempt to passively generate verbs during the 

read task if they have performed the verb generation task immediately prior. During the 

first read task, subjects were simply asked to read the words aloud as quickly and 

accurately as they could. Subjects read the same list of words for three runs. During the 

forth run, a novel list of 40 nouns was presented in which subjects were asked to read the 

words aloud. During the verb generation task, subjects were presented with a new set of 

40 nouns, and they were asked to generate verbs associated with the nouns presented to 

them. Subjects generated verbs to the same list of words for three runs. During the forth 

run, subjects were presented with a final, new set of 40 nouns in which they were asked 

to generate verbs. 

Between runs, subjects completed the state portion of the State-Trait Anxiety 

Inventory (STAI; Spielberger, 1983), a widely used self-report measure of anxiety. The 

state portion of the STAI consists of 20 statements, and subjects selected from the 

following four options the degree to which each statement described how they felt during 

the run just completed: 1) Not at all 2) Somewhat 3) Moderately so or 4) Very much so. 

There are 10 anxiety-absent statements, such as "I feel relaxed" and 10 anxiety-present 

statements, such as "I feel nervous", and the range of scores is 20 to 80. An example of 

the behavioral paradigm is shown in Figure 1. 
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End of Run 
Speilberger State 
Anxiety Inventory 

Figure 1. Schematic of the verb generation paradigm. * Spielberger statements that are 

written in present tense were not modified. Participants in our experiment were 

specifically asked to read the statements as they applied to the run just completed. 

Voice response latency was recorded as a measure of performance on the tasks. 

Voice responses were digitally recorded and response times were automatically extracted 

(Nelles, Lugar, Coalson, Meizin, Petersen, & Schlaggar, 2003) and coded as either 

correct or incorrect. Read responses were scored as correct if they were properly 

pronounced and incorrect if mispronounced or omitted. Verb generation responses were 

considered correct if a single verb was produced in present tense and was in some way 

associated with the noun. Responses were scored as incorrect if they were anything other 

than a verb, a verb that was not associated with the noun, or if there was no response at 

all. 
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Results - Original Hypotheses 

Anxiety 

STAI data were analyzed using a 2 x 4 (task x run number) repeated measures 

analysis of variance (ANOVA). Results are shown in Figure 2. 

2 3 

Run Number 

— O — Read • VG 

Figure 2. Mean anxiety level by run on read and verb generation tasks for 48 behavioral 

participants showing a main effect of task, main effect of run, and an interaction of task x 

run. 

As expected, there was a main effect of task for anxiety, F(l, 47) = 31.45,/> < .001, with 

subjects reporting greater anxiety in the verb generation than the read task. Subjects also 

reported differential effects of anxiety between the two tasks, as reflected in the main 

effect of run F(3, 141) = 4.76, p = .003. Finally, there was a significant interaction of 
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task x run, F(3, 141) = 3.49,p = .017, in which the reaction time reduction across runs 

was greater for verb generation than read. 

Performance 

Reaction times for correct responses were analyzed using a 2 x 4 (task x run 

number) repeated measures ANOVA. Results are shown in Figure 3. 

1400 

400 
2 3 

Run Number 

— O — Read » VG 

Figure 3. Mean reaction time by run on read and verb generation tasks for 48 behavioral 

participants showing a main effect of task, main effect of run, and an interaction of task x 

run. 
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There was a main effect of task for reaction time, F(l, 47) = 580.22, p < .001, in which 

subjects' reaction times were longer in verb generation than read, and a main effect of 

run, F(3, 141) = 16.88, p < .001, in which subjects showed a decrease in reaction time 

across runs for both tasks. There was also an interaction of task by run, F(3, 141) = 8.20, 

p < .001, in which the reaction time reduction across runs was greater for verb generation 

than read. 

Results from the analysis of error rates were similar to those observed for 

response times (see Table 1). Main effects of task, F(l, 47) = 52.38,/? < .001, run, F(3, 

141) = 4.52,p = .005, and an interaction of task by run, F(3,141) = 3.41,p = .020 were 

observed. 

Table 1. Mean error rates per run for both tasks in the preliminary study 

Run 
1 
2 
3 
4 

Read 
0.012 
0.014 
0.009 
0.016 

Task 
Verb Generation 

0.053 
0.032 
0.028 
0.023 
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Results - Exploratory (Gender Differences) 

Anxiety 

STAI data were also analyzed using a 2 x 4 x 2 (task x run number x gender) 

repeated measures analysis of variance (ANOVA). Results are shown in Figure 4. 

2 3 
Run Number 

VG_Female — • — V G _ M a l e 
— O — Read Female — C ^ Read Male 

Figure 4. Mean anxiety level by run on read and verb generation tasks for 48 behavioral 

participants (24 female, 24 male) showing a main effect of task, main effect of run, and 

an interaction of task x run but no gender effects. 

As with initial analyses, there was a main effect of task for anxiety, F(\, 46) = 30.98, p < 

.001 and a main effect of run F(3, 138) = 4.70, p = .004. Finally, there was a significant 

interaction of task x run, F(3, 138) = 3.45,/? = .018, in which the effect of run differs 
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between verb generation and read. The simple effects will be examined in a following 

section. No significant effect of gender was observed, F(\, 46) = 0.22, p = .639, nor was 

there an effect of task by gender, F(l, 46) = 0.30, p = .590, run by gender, F(3, 138) = 

0.40, p = .751, or task by run by gender, F(3, 138) = 0.44,p = .723. 

Performance 

Reaction times for correct responses were analyzed using a 2 x 4 x 2 (task x run 

number x gender) repeated measures ANOVA. Results are shown in Figure 5. 

1400 

u 
V 
(A 

E 

1200 

1000 

33 800 j 

2 
n v 600 

400 
2 3 
Run Number 

•VG_Female — • — V G _ M a l e 
• O — Read_Female — D — Read_Male 

Figure 5. Mean reaction time by run on read and verb generation tasks for 48 behavioral 

participants showing a main effect of task, main effect of run, and an interaction of task x 

run but no gender effects. 
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There was a main effect of task for reaction time, F(\, 46) = 601.89,/? < .001, and a main 

effect of run, F(3, 138) = 16.60, p < .001. There was also an interaction of task by run, 

F(3, 138) = 8.1 \,p < .001, in which the effect of run differed between verb generation 

and read. An examination of the simple effects follows. Again, there was no effect of 

gender, F(l, 46) = 0.71, p = .403, nor were there interactions of task by gender, F(l, 46) 

= 2.75, p = .104, run by gender, F(3, 138) = 0.24,/? = .870, or task by run by gender, F(3, 

138) = 0.50,/? = .685. 

Results from the analysis of error rates were similar to those observed for 

response times (see Table 2). Main effects of task, F(l, 46) = 33.10,/? < .001, run, F(3, 

138) = 4.42,/? = .005, and an interaction of task by run, F(3, 138) = 4.052,/? = .009 were 

observed. In this case, women made more errors than men, F(3, 138) = 4.31,/? = .044, 

but there were no significant interactions with gender, task by gender, F(l, 46) = 1.48,/? 

= .230, run by gender, F(3, 138) = 0.37,/? = .779, or task by run by gender, F(3, 138) = 

0.21,/? = .893. 

Table 2. Mean error rates per run for both tasks by gender in the preliminary experiment 

Run 
1 
2 
3 
4 

Read 
0.015 
0.011 
0.016 
0.020 

Females 
Verb Generation 

0.064 
0.037 
0.039 
0.011 

Read 
0.008 
0.016 
0.003 
0.011 

Males 
Verb Generation 

0.041 
0.026 
0.016 
0.034 

Because participants were not instructed about whether or not to provide the same 

verb in response to subsequent presentations of the same noun, it is possible that anxiety 

levels and reaction times might differ between subjects who frequently repeated the same 

verb during practice conditions as compared to those participants who tended to generate 
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a new verb for each subsequent presentation. So, with regard only to the third 

presentation of the nouns, responses were coded 1-3. One represents generation of a verb 

for the first and only time in response to the third presentation of the noun, and 3 

represents the same verb being produced in response to all three presentations of the 

noun. Overall, it seems that providing the same response a second and third time was a 

common strategy used by participants, so there was very little variability. The mean 

repetition rate for women was 2.44 (SD = 0.23) and mean rate for men was 2.49 (SD = 

0.25). The percentage of new verbs provided in response to the third presentation of 

nouns was 15% (SD = 9%) for women and also 15% (SD = 10%) for men. Women and 

men did not differ in verb repetition rate or novel verb generation, and neither variable 

produced was significantly correlated with changes in state anxiety or reaction time with 

practice at the/? = .05 level. 

Absence of Practice Effects in the Read Task 

When more carefully examining potential practice effects in the read task using a 

repeated measures ANOVA, there was no effect of run (run 1 vs. run 2 vs. run 3 vs. run 

4) in the anxiety scores, F(3, 138) = 0.45, p = .718, and there was no effect of run in the 

reaction time data for read when excluding run 4, F(2, 92) = 0.11, p = .896, which 

showed an overall increase in reaction time in comparison to the other three runs. A 

direct comparison of run 1 to 3 failed to reveal a significant difference, /(47) = 0.38,/? = 

.706 (two-tailed). While an increase in reaction time was expected in run 4 (novel words) 

compared to run 3 (practiced words), this difference is difficult to interpret in the absence 

of changes across runs 1-3. Based on these calculations, it was concluded that the read 



18 

task failed to reveal the expected practice effects, so it was excluded from the final 

analysis. 

Relationship Between Anxiety and Performance in the Verb Generation Task 

The similar patterns observed in the anxiety and performance data at the group 

level in the verb generation task suggest that these variables are not dissociable. 

However, it is possible that the two may be dissociated at the individual level. To assess 

the relationship between anxiety and reaction time decreases across individuals, a 

difference score was calculated by subtracting naive scores of run 1 from practiced scores 

of run 3, for both anxiety and reaction time. Run 3, rather than run 4, was chosen as the 

comparison to run 1, so as not to confound the effects of word list with practice effects. 

In addition, anxiety levels were greater in naive (run 1) than novel (run 4) conditions. 

Correlations between changes in anxiety and changes in reaction time were computed 

separately by gender for the verb generation task as well as averaged across gender. 

None of these correlations was significant, rfemaie = .09, p = .832, rmaie = .13,/? = .759, 

raverage= .01,/? = .981. As shown in Figure 6, there was quite a bit of variability among 

individuals. For example, some individuals exhibited a dissociation between anxiety and 

reaction time with practice in which there was a decrease in anxiety but either an increase 

or no change in reaction time. The reverse was also true, with some subjects showing an 

increase in anxiety and a decrease in reaction time. 
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Figure 6. No correlation was revealed in difference scores (practiced minus new) in 48 

behavioral subjects for mean state STAI (x axis) and reaction times (y axis) for verb 

generation, indicating individual variability. 

Discussion 

Thus, behavioral results failed to dissociate anxiety and response time at the 

group level in women or men. Anxiety and reaction times were greater for the verb 

generation than the read task in both females and males, and both measures decreased 

with practice in the verb generation task but not the read task. Difference scores 

calculated to assess the magnitude of change between anxiety scores and reaction times 

in the verb generation task, however, revealed no correlation. Therefore, while changes 
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in anxiety and reaction time may not be dissociable at the group level, they may be 

dissociable at the individual level when additional variables are considered (e.g., fMRI 

data). Ultimately, examining this individual variability using fMRI should allow the 

assessment of specific contributions of the ventral and dorsal subdivisions to ACC 

activity during cognitively demanding tasks that may unintentionally elicit performance 

anxiety. 

Given the great inter-individual variability found between changes in anxiety 

levels and response times in the preliminary experiment, two additional behavioral 

measures, the trait portion of the Spielberger's State Trait Anxiety Inventory scale (1983) 

and the International Personality Item Pool (IPIP) Big 5 Personality Inventory (Goldberg, 

1999), were administered to participants in the fMRI experiment to explore the 

possibility that some of these individual differences may be attributable to more enduring 

differences in individual dispositions. The state portion of the STAI, which was 

administered in the preliminary experiment to measure transient changes in anxiety 

levels, should be complemented by the results of the trait STAI in the fMRI experiment, 

given that trait STAI measures an individual's general tendency to perceive various 

situations as threatening (Spielberger, 1983). 

Personality refers to stable individual differences in disposition, character, habits, 

and reactions (Kumari, ffytche, Williams, & Gray, 2004). Personality traits have been 

shown to account for individual differences in affective responsiveness. More 

specifically, high scores in extraversion are strongly associated with positive affect and 

high scores in neuroticism are strongly associated with negative affect (Costa & McRae, 

1980; Eysenck, 1990). Given the strong affective component to at least these two factors 
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of the Big 5, extraversion and neuroticism, activity within the ventral portion of the ACC 

may reflect this relationship between affect and personality (Gray, Braver, & Raichle, 

2002). Indeed, activity in the ventral ACC has previously been found to correlate with 

extraversion (Johnson et al., 1999), neuroticism (Gray et al., 2005), and stable individual 

differences in negative affect (Zald, Mattson, & Pardo, 2002), which is in line with the 

proposed functional specialization of the ventral and dorsal ACC. 

Finally, anxiety and latency effects may be dissociated by examining different 

types of neural signals that can be measured using fMRI. Using a mixed-blocked/event-

related design (Donaldson, 2004; Donaldson, Petersen, Ollinger, & Buckner, 2001; 

Visscher et al., 2003), two types of neural signals can be measured, and both types have 

been observed in the ACC (Burgund, Lugar, Miezin, & Petersen, 2003; Donaldson et al., 

2001). Transient signals are signals that are time-locked to the presentation of individual 

events. These signals have been shown to decrease with repeated presentation of a 

stimulus (Buckner et al., 1998; Burgund et al., 2003; Koutstaal et al., 2001; van 

Turennout, Ellmore, & Martin, 2000), and thus may underlie decreases in response 

latency with repetition. 

In contrast, sustained signals are signals that endure throughout an entire task 

block and do not depend on the presence or absence of particular events. Because of 

their extended time courses, sustained signals seem likely candidates for reflection of 

underlying emotional states and personality traits, which might also have a prolonged 

duration, relative to event processing. Indeed, it has been suggested that the ventral ACC 

may reflect sustained activity, rather than transient, due to its role in monitoring the 

internal emotional state, viscera, internal milieu, and autonomic responses (Phan, Wager, 
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Taylor, Liberzon, 2002). The proposed fMRI experiment was designed to examine the 

role that these two signals may serve in ventral and dorsal functioning within the ACC. 

It should be noted here that the original proposal was designed to examine the 

functional contributions of the ventral and dorsal subdivisions of the ACC to emotion and 

cognition using the mixed blocked/event-related fMRI design by measuring changes in 

state anxiety and reaction times. However, given aforementioned reports in the literature, 

gender, trait anxiety, and the IPIP Big Five Personality Inventory were later added as 

factors for exploratory purposes. Results of the original proposal are followed by these 

exploratory results. Further review of the relevant literature will be reserved for the 

Discussion section. 

fMRI Experiment 

Method 

Participants 

Sixteen adult subjects (8 female mean age 23.95 years, SD = 2.15; 8 male mean 

age 25.88 years, SD = 4.55) from the Rice University community were asked to 

participate in the study. All subjects reported having normal or corrected-to-normal 

vision, no history of neurological or psychiatric disorders, and were native English 

speakers. Informed consent was obtained from each subject in accordance with the 

guidelines and approval of the Rice University and Baylor College of Medicine 

Institutional Review Boards. 

Behavioral Procedure 

Behavioral Paradigm. The behavioral procedure and materials were similar to 

those used in the preliminary experiment described above with the following exceptions. 
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Because the read task failed to reveal practice effects, it was replaced with additional 

verb generation runs to increase power. In total, ten runs of verb generation were 

completed. Subjects produced verbs to a new set of nouns four times (runs 1, 4, 7, 10), 

performing a second and third practice run (runs 2, 5, 8 and 3, 6, 9, respectively) with 

each of the first three sets of words. A baseline of the state STAI measure was collected 

immediately after subjects were placed into the scanner, but prior to MR data acquisition. 

Thereafter, state STAI was collected after completion of each of the ten BOLD runs, in 

which subjects performed the verb generation task while we collected reaction times. 

Trait STAI and IP IP. After exiting the scanner, subjects completed the trait 

portion of the STAI. Like the state STAI, the trait STAI consists of 20 statements, and 

subjects selected from the following four options the degree to which each statement 

described how they generally felt: 1) Not at all 2) Somewhat 3) Moderately so or 4) 

Very much so. There are 10 anxiety-absent statements, such as "I feel satisfied with 

myself and 10 anxiety-present statements, such as "I feel inadequate," and the range of 

scores is 20 to 80. In contrast to the state STAI, which measures transitory changes in 

anxiety, the trait STAI measures a relatively stable trait that is associated with the 

likelihood that individuals interpret various situations as threatening or dangerous. 

Participants then completed the 50-item, abbreviated IPIP Big Five Personality 

Inventory (Goldberg, 1999). Participants were asked to read each statement, such as "Am 

the life of the party," and rate how accurately they believed it described them: 1) Very 

inaccurate 2) Moderately accurate 3) Neither inaccurate nor accurate 4) Moderately 

Accurate 5) Very accurate. There are ten items per big-five factor: Extraversion (E), 

Agreeableness (A), Conscientiousness (C), Emotional Stability (ES), and Intellect (I). 



Scores range from 0-60 with each factor. Those with high scores in extraversion tend to 

be optimistic, energetic, and sociable. Extraversion is generally associated with positive 

affect. The opposite pole of the extraversion scale is introversion. Introverts tend to be 

quiet, generally requiring little stimulation, with a preference for being alone. People 

who are agreeable tend to be considerate, generous, and cooperative. Those who score 

high in conscientiousness are described as organized, ambitious, and reliable. Emotional 

stability, which is the opposite pole of neuroticism, is the dimension measured in the 

IPIP. Those who are neurotic tend to be emotionally reactive, anxious, and depressed. 

Neuroticism is associated with unstable, negative affect. People high in emotional 

stability, by contrast, are characterized by less negative affect, and tend to be more 

emotionally calm and stable. Finally, people who score high in intellect/imagination are 

imaginative, open to experience, and intellectually curious. 

Calculation of Change with Practice. To assess the magnitude of change with 

practice in individual participants, a single difference score was calculated for reaction 

time, state anxiety, and fMRI signal changes in which the new condition was subtracted 

from the practiced condition. In the behavioral measures, negative scores reflect 

decreases (improvement) in response time and state anxiety with practice, and positive 

scores reflect increases (decrements). In fMRI signal difference scores, two patterns of 

change result in a negative score and two patterns of change result in a positive score, as 

shown in Figure 7. 
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Figure 7. Examples of how difference scores were calculated for both behavioral and 

fMRI data, resulting in either negative or positive values. 

Negative scores (going "down") characterize practice with either a positive activation 

becoming less positive (decreasing in magnitude) or negative (dropping below baseline), 

or a negative (deactivation) signal becoming more negative (greater deflection from 

baseline). Positive scores (going "up") describe the opposite patterns in which, with 

practice, positive activations become even greater in magnitude, negative signals 

(deactivations) become positive, or negative signals (deactivations) become less negative 

(less deflection from baseline). 
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fMRI Procedure 

Data Acquisition. A Siemens 3.0-Tesla Allegra scanner (Erlangen Germany) was 

used to acquire MRI data, and an MP-RAGE Tl weighted scan was collected at the 

beginning of the scan session. Blood Oxygenation Level Dependent (BOLD) data 

collected included 16 contiguous axial images per TR (2.5), parallel to the anterior-

posterior commissure plane. To establish a steady state, functional data collection began 

after the first four frames. 

A mixed blocked/event-related design (Donaldson et al., 2001; Visscher et al., 

2003) was used in which two experimental blocks alternated with three control blocks 

within a single BOLD scan, for a total often functional scans. Stimuli were presented in a 

jittered, event-related fashion with 20 nouns presented in each of the two experimental 

blocks. The onset of the stimuli was time-locked with the onset of the scanner, and 

subjects were given an instructional cue prior to each experimental block. 

A Macintosh computer and PsyScope (Cohen et al., 1993) were used to present a 

stimulus display projected at the end of the bore into the subjects' view via a mirror. To 

control for eye movement, during both control and experimental blocks, participants were 

asked to focus on a fixation cross projected on the screen visible to them and to maintain 

fixation even while stimuli were presented during experimental blocks. Subjects were 

provided with headphones and a microphone to dampen the noise of the scanner and 

allow communication between the experimenter and the participant, and overt responses 

to the verb generation task were recorded for scoring. 

fMRI Data Analysis. Automated software was used to correct for motion artifact 

within and across runs in each participant using a rigid body translation and rotation 
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(Friston, Williams, Howard, Frackowiak, & Turner, 1996; Snyder, 1996). To correct for 

changes in signal intensity introduced by acquisition order, sine interpolation was used to 

temporally realign image slices in time to the midpoint of the first slice to account for 

differences in acquisition time across slices. BOLD data were registered to the MP-

RAGE data for each individual and then transformed into standard stereotactic space 

using 2 mm isotropic voxels (Talairach & Tournoux, 1988). 

fMRI data were based on the general linear model (GLM) implemented with in-

house software (Friston, Jezzard, & Turner, 1994; Josephs, Turner, & Friston, 1997; 

Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000; Worsley & Friston, 1995; 

Zarahn, Aguirre, & D'Esposito, 1997) to produce estimates of the magnitude of effects. 

The GLM was coded for errors (only correct responses were included in the analysis), the 

instructional cues at the beginning and end of task blocks, the effects of a linear trend (to 

account for within-run drift), constant term (to account for run mean), and finally to 

separate transient and sustained signals. For transient effects, no assumptions were made 

regarding the shape of the hemodynamic response. Rather, the hemodynamic response 

function (% BOLD signal change as a function of time) was modeled over the first seven 

time points following the presentation of each stimulus. Sustained effects, by contrast, 

were coded as an assumed square wave shape producing a single magnitude estimate for 

each task block. For the analyses of both transient and sustained activity, signals during 

the verb generation task blocks were compared to signals during fixation-only control 

periods. 

Because the anterior cingulate spans a large portion of the medial surface of the 

brain (Vogt, Finch, & Olson, 1992), we did not define a priori regions. To identify 
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regions exhibiting transient and sustained activity, separate voxel-wise, one-way repeated 

measures ANOVAs were performed, with practice (new vs. practiced) as the within 

subjects factor and gender (female vs. male) as the between subjects factor. The resulting 

sphericity corrected statistical images were then smoothed by a 4 mm radius hard sphere 

kernel, and region coordinates were identified by using a peak-finding and region-finding 

algorithm, in which region peak activation met a statistical threshold of p < .005 

(uncorrected) in transient signals and/? < .025 (uncorrected) in sustained signals 

(Talairach & Tournoux, 1988). Peaks less than 10 mm apart were averaged together, a 

10 mm sphere was placed over the center of each peak, and all voxels within each sphere 

were masked to meet a statistical threshold ofp < .01 (uncorrected) for transient signals 

and/? < .05 (uncorrected) in sustained signals. 

Strict criteria were established in determining whether or not regions were to be 

included in the final analyses. All reported time courses peaked at either time point 3 or 

4, the absolute magnitude of those peaks was 0.1% change or greater, and the "tails" 

(time points 1, 2, 5-7) of the time courses were smaller in magnitude than the peaks. 

Regions whose peaks were in white matter, instead of gray, were excluded from further 

analyses. 

As with the behavioral data, difference scores were also calculated for the 

functional data by subtracting activation values of the new condition from the practiced 

condition. Most positive activation time courses peaked at time point 3, and most 

negative/deactivation time courses peaked at time point 4, 2.5 seconds later, thus 

exhibiting a different pattern between positive and negative time courses that has been 

previously reported by Meltzer and colleagues (2008). Since there were some 
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exceptions, however, the "peak" time point used to compute difference scores for the 

transient regions was chosen on a region-by-region basis by selecting the time point with 

greatest absolute magnitude. Since time is not a factor in sustained activity, only a single 

value per task block is produced and was used in the computation of differences scores 

for sustained activity. 

Results 

Behavioral Results - Original Hypotheses 

Assigning Conditions. Runs 1, 4, 7, and 10 were coded as the "new" condition, in 

which each set of words was presented for the first time. Because there were no 

significant differences in either state anxiety or response time between the second and 

third practice sets, ally's > .60, runs 2, 3, 5, 6, 8, and 9 were collapsed and coded as the 

"practiced" condition. 

Anxiety. State STAI data were analyzed using a 2 level repeated measures 

analysis of variance (ANOVA). Results are shown in Figure 8A. Contrary to the 

preliminary study, the main effect of practice in state anxiety failed to reach significance, 

F(l, 15)= 1.88, p = .190. 

Performance. Reaction times for correct responses were analyzed using a 2 level 

repeated measures ANOVA. Results are shown in Figure 8B. As in the preliminary 

study, there was a main effect of practice for reaction time, F(l, 15) = 7.96, p = .013, in 

which subjects' reaction times were longer in the new condition than in the practiced one. 



30 

.1 
II 
1 

40 

38 

36 

34 

32 

30 

New Practiced 

B. 

m
se

c)
 

« • > 

n 
T

im
e
 

an
 R

e
a
c
ti
o

 

w 
Z 

1550 

1500 

1450 

1400 

1350 

1300 

1250 

1200 

1150 

1100 

New Practiced 

Figure 8. Behavioral results for verb generation in 16 fMRI subjects reflecting A) A 

non-significant downward trend with practice in mean anxiety level. B) A main effect of 

practice in mean reaction time. 
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Results from the analysis of error rates were similar to those observed for 

response times (see Table 3). There was a main effect of practice, F(l, 15) = 9.35, p = 

.008, in which error rates were higher in the new than in the practiced condition. 

Table 3. Mean error rate by practice level for fMRI verb generation task 

Level Mean Error Rate 
New 0.066 
Practiced 0.041 

Relationship Between Anxiety and Performance. As in the preliminary study, the 

fMRI experiment revealed similar patterns observed in the anxiety and performance data 

at the group level, but there was substantial variability at the individual level, r= .12, p = 

.777, as shown in Figure 9. 
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Figure 9. Using difference scores (practiced minus new), for 48 behavioral subjects, 

mean state STAI (x axis) and reaction times (y axis) for verb generation are plotted and 

reveal high individual variability. 

fMRI Results - Original Hypotheses 

Transient Activity. Only three regions showed a main effect of time, in which 

activity was independent of practice effects. These regions are shown in Table 4. 



33 

Table 4. Peak coordinates of significant transient BOLD responses (main effect of time) 

Location 
Frontal 
Temporal 

Region 
R Insula 
R Superior temporal gyrus 
L Transverse temporal gyrus 

BA 
13 
41 
41 

X 

34 
45 

-41 

y 
20 

-26 
-31 

z 
5 

11 
12 

Voxels 
113 
81 
119 

PeakZ 
7.12 
5.82 
6.54 

P(time) 
<0.0001 
<0.0001 
<0.0001 

Note. Approximate Brodmann area (BA) and peak locations (x, y, z in mm) in the Talairach and Tournoux 
(1988) atlas with number of voxels and associated significance (Peak Z score andp-value). R = Right; L = 
Left; time = main effect of time. 

Regions showing an interaction of practice by time are shown in Table 5. All regions 

exhibiting a practice effect revealed greater changes in magnitude, either activations or 

deactivations, for new than for practiced conditions. 
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Table 5. Peak coordinates of significant transient BOLD responses (interaction of 

practice x time) 

Location 
New > Practice 

Frontal 

Med front/Ant cing 

Parietal 

Med par/Post cing 

Med occ 

Sub-lobar 

Reqion 

R Middle frontal gyrus 
R Middle frontal gyrus 
R Middle frontal gyrus 
L Middle frontal gyrus 
R Insula 
L Inferior frontal gyrus 
R Precentral gyrus 
L Precentral gyrus 
R Medial frontal gyrus 
R Anterior cingulate 
R Anterior cingulate 
L Anterior cingulate 
L Cingulate gyrus 
L Medial frontal gyrus 
L Medial frontal gyrus 
L Medial frontal gyrus 
R Precuneus 
L Precuneus 
R Cingulate gyrus 
R Cingulate gyrus 
R Precuneus 
R Precuneus 
L Precuneus 
L Posterior cingulate 
L Lingual gyrus 
L Lingual gyrus 
R Cuneus 
R Cuneus 
R Putamen 
R Putamen 
R Thalamus 
R Thalamus 
L Thalamus 
L Thalamus 

BA 

10 
8 
8 
8 

13 
9 
4 
4 

10 
32 
32 
24 
24 
6 
6 
6 

39 
19 
31 
31 
31 
31 
31 
31 
18 
18 
18 
18 

X 

36 
22 
22 

-26 
42 

-45 
58 

-48 
14 
2 

16 
-6 
-3 
-1 
-2 
-5 
40 

-44 
3 
5 

17 
10 

-13 
-7 
-1 
-8 
1 
5 

15 
14 
10 
11 
-9 

-10 

Y 

46 
33 
23 
29 
11 
5 

-5 
-15 
45 
20 
36 

9 
7 

-2 
-3 

-25 
-64 
-70 
-42 
-55 
-47 
-64 
-68 
-57 
-81 
-72 
-82 
-85 

8 
7 

-4 
-19 
-19 
-21 

z 

14 
40 
41 
38 

2 
27 
20 
38 
13 
33 
14 
42 
45 
57 
57 
72 
37 
40 
39 
27 
31 
26 
25 
26 

7 
1 

25 
16 
2 
5 

11 
7 

10 
9 

Voxels 

81 
78 
87 
114 
148 
110 
50 

314 
55 

242 
92 
388 
96 
252 
436 
77 
162 
58 
79 
280 
358 
169 
288 
204 
269 
223 
57 
160 
143 
187 
41 
155 
52 
206 

PeakZ 

3.16 
2.94 
3.03 
6.50 
6.46 
6.59 
3.01 
4.54 
6.00 
7.23 
3.11 
9.36 
3.27 
4.71 
9.53 
2.98 
3.22 
2.86 
3.02 
7.79 
7.53 
4.10 
4.30 
7.52 
4.54 
3.89 
3.16 
4.02 
3.22 
6.69 
5.77 
8.39 
2.93 
8.47 

P(DXt) 

<0.0001 
<0.0001 
<0.0001 

0.0001 
0.0060 
0.0120 
0.0001 

<0.0001 
0.0016 
0.0043 

<0.0001 
0.0007 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 

0.0240 
<0.0001 
<0.0001 
<0.0001 
<.0001 
0.0006 
0.0310 
0.0021 
0.0092 

<0.0001 
0.0190 

ReqSource 

pxt 
pxt 
pxt 

time 
time 
time 
pxt 
pxt 

time 
time 
pxt 

time 
pxt 
pxt 

time 
pxt 
pxt 
pxt 
pxt 

time 
time 
pxt 
pxt 

time 
pxt 
pxt 
pxt 
pxt 
pxt 

time 
time 
time 
pxt 

time 

Note. See notes for Table 4. Absolute magnitudes are reported. RegSource : 

analysis from which region was defined. Med = medial; front = frontal; ant = 
cing = anterior cingulate; occ = occiptal. 

= Region Source, region based 
anterior; post = posterior; ant 

Three of these regions fell within the boundaries of the ACC, two dorsal and one 

ventral. As expected, the two dorsal ACC regions exhibited positive activation (Figure 

10A and B), and the ventral ACC region displayed a deactivation (Figure 10C). 
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Figure 10. Original experiment revealed three ACC regions showing transient effects: 

two dorsal (Figure 10A and B) and one ventral (Figure IOC). Regions of interest are 

circled and their corresponding time courses are displayed. 
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One of these ventral/dorsal pairs exhibited reciprocal suppression with practice, r = .60, p 

= .014, in which change in positive activation in the dorsal ACC region (coordinates 2, 

20, 33) was inversely correlated with change in deactivation in the ventral ACC region 

(coordinates 16, 36, 14), as is often reported in imaging studies associated with 

performance on a cognitive task (Buckner & Tulving, 1995; Bush et al., 2002; Corbetta et 

al., 1991; Coull et al., 1995; Drevets & Raichle, 1998; Petersen et al., 1989). 

Sustained Activity. Regions exhibiting significant sustained activation with 

practice are listed in Table 6. There were no regions in the ACC exhibiting significant 

sustained activation. 

Table 6. Peak coordinates of significant sustained BOLD responses (effect of practice) 

Location Region BA x y z Voxels Peak Z P(Practice) 
Frontal L Precentral gyrus 
Med front/Ant cing R Cingulate gyrus 

R Subcallosal gyrus 
R Subcallosal gyrus 
L Medial frontal gyrus 

Parietal L Inferior parietal lobule 
Med occ R Lingual gyrus 
Occiptal L Fusiform gyrus 
Cerebellum R Anterior lobe-culmen 

Note. See notes for Tables 4 and 5. 

Relationship Between Behavior and Neural Activity. Brain regions within the 

ACC exhibiting transient activation are shown in Table 7, along with their behavioral 

correlates for state anxiety and reaction time. None of these correlation coefficients 

reached statistical significance at the/? < .05 level. 

4 
32 
25 
47 
8 
40 
18 
18 

-49 
13 
3 
16 
-13 
-52 
9 

-23 
20 

-11 
23 
9 
18 
29 
-28 
-72 
-91 
-54 

45 
30 
-14 
-11 
40 
39 
-4 
-12 
-7 

65 
117 
54 
62 
179 
100 
72 
94 
141 

2.27 
2.30 
2.31 
2.28 
3.13 
2.40 
2.52 
2.39 
2.76 

0.0003 
0.0002 
0.0009 
0.0029 
<0.0001 
<0.0001 
<0.0001 
0.0005 
<0.0001 
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Table 7. Correlations between behavioral measures and BOLD responses in ACC regions 

Coordinates 
x y z 

-6 9 42 
2 20 33 

16 36 14 

Reaction Time 
0.26 
-0.38 
0.37 

State Anxiety 
-0.41 
-0.36 
0.38 

Note. Peak locations (x, y, z in mm) in the Talairach and Tournoux (1988) Atlas, r = .50 atp < .05. 

Conclusion - Original Hypotheses 

While the absence of a statistically significant behavioral correlation with brain 

activity should be interpreted with caution, based on these results, the data did not allow 

us to examine the originally proposed question. Because no significant correlations were 

revealed between changes in activation within regions of the ACC and changes in either 

state anxiety or reaction time, the functional roles of the ventral and dorsal portions of the 

ACC in emotional and cognitive processing could not be assessed. 

Given recently published research regarding gender effects in affective processing 

in the ACC despite similar behavioral performance (Butler et al., 2007, Wang et al., 

2007), exploratory analyses of the fMRI data were conducted in which gender was added 

as a between-subjects factor. To examine potential differences in disposition that might 

help to explain variability between individuals, trait anxiety and the IPIP Big Five 

Personality Inventory were also added as additional behavioral measures in these 

exploratory analyses. 

Behavioral Results - Exploratory (Gender Differences) 

Anxiety. State STAI data were analyzed using a 2 x 2 (practice x gender) repeated 

measures analysis of variance (ANOVA). Results, divided by gender, are shown in 

Figure 11 A. Contrary to the preliminary study, the main effect of practice in state anxiety 
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failed to reach significance, F(l, 14) = 1.76,/? = .206. Furthermore, no effect of gender 

was observed, F(l, 14) = 0.34, p = .571, nor was there an interaction of practice by 

gender for anxiety, F(l, 14) = 0.04, p = .846. J 

Performance. Reaction times for correct responses were analyzed using a 2 x 2 

(practice x gender) repeated measures ANOVA. Results are shown in Figure 1 IB. As 

expected, there was a main effect of practice for reaction time, F(l, 14) = 7.99, p = .013, 

in which subjects' reaction times were longer in the new condition than in the practiced 

one. Again, no main effect of gender was observed, F(\, 14) = 1.65, p = .220, nor was 

there an interaction of practice by gender for reaction times, F(l, 14) = 1.05,p = .324.1 

'Although it appears as though there is a main effect of gender, standard error was high, so the gender 

effect did not reach statistical significance. 



A. 

39 

New Practiced 

Female •Male 

B. 

1600 

1200 
New Practiced 

W Female •Male 

Figure 11. Behavioral results for verb generation in 16 fMRI subjects (8 female and 

8 male), divided by gender, reflecting A) A non-significant downward trend with 

practice in mean anxiety level. B) A main effect of practice in mean reaction time. 

There was no effect of gender. 



Results from the analysis of error rates were similar to those observed for response times 

(see Table 8). There was a main effect of practice, F(l, 14) = 9.18, p = .009, but there 

was no main effect of gender in the errors for these subjects, F(l, 14) = 2.47,/? = .138, 

nor was there an interaction of practice by gender, F(l, 14) = 0.74, p = .405. 

Table 8. Mean error rate by practice level for the verb generation task by gender in fMRI 

experiment 

Level Females Males 
New 0.084 0.048 
Practiced 0.052 0.031 
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Relationship Between Anxiety and Performance. As in the preliminary study, the 

fMRI experiment revealed similar patterns observed in the anxiety and performance data 

at the group level, but there was substantial variability at the individual level, r/emaie = -22, 

p = .601, rmaie = .46,/? = .251, raverage= .12,p = .777, as shown in Figure 12. Individual 

behavior from both the preliminary experiment and the fMRI experiment is shown in 

Figure 13. 

250 

200 

~ 150 
s 
•a « 

I 
e 
IB 
4) 

s 

100 

50 

-50 

-100 

-150 

-200 

-250 

R' = 0.0481 

- 3 - 2 - 1 0 1 2 3 

Mean State Anxiety Difference (practiced-new) 

Female • Male — — Linear (Female) Linear (Male) 

Figure 12. Neither women nor men exhibited a correlation between difference scores 

(practiced minus new) in 16 fMRI subjects for mean state STAI and reaction time in the 

verb generation task. Individual variability was confirmed. 



300 

-15 -10 -5 0 

Mean State Anxiety Difference (practiced - new) 

OFemale_beh DMale_beh • Female_fMRI BMale_fMRI 

10 

Figure 13. Mean difference scores (practiced minus new) of 16 fMRI subjects by gender 

for state STAI and reaction time in verb generation in comparison to 48 behavioral 

subjects by gender, both showing individual variability. 

Trait Anxiety and IP IP. The mean and standard deviation for trait anxiety and the 

Big 5 dimensional scores are shown in Table 9. There were no significant differences 

between genders on any scales. 
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Table 9. Mean score (SD) for trait anxiety and dimensions of the Big 5 Personality 

Inventory 

Measure Females Males 
Trait Anxiety 37.0 (11.6) 30.3 (4.2) 
Extraversion 32.8 (5.8) 34.0 (9.0) 
Agreeableness 44.0 (6.7) 42.8 (3.7) 
Conscientousness 29.8 (8.1) 30.8 (5.9) 
Emotional Stability/neuroticism 31.6 (10.8) 38.1 (1.8) 
Intellect/Imagination 39.9 (4.4) 39.5 (4.6) 

In females but not males, trait anxiety and emotional stability were highly 

negatively correlated rfemale = -.96,p < .001, rmaie = .02,p = .960; x2c(F)(l, JV= 16) = 9.10, 

p = 003. It is not surprising that trait anxiety and emotional stability are correlated in 

women, given that both measures assess general levels of anxiety/negative affect. 

Similarly, correlations were observed in women between the state anxiety difference 

score (change with practice) and emotional stability, rfema\e = -.81,/? = .016, and the 

difference score in state anxiety with trait anxiety rfemaie = .74, p = .034. These results are 

also consistent with Spielberger's (1983) claim that trait and state anxiety are more 

highly correlated in social evaluative situations than when a physical threat exists; 

individuals with high trait anxiety are especially sensitive to increases in state anxiety in 

situations in which they feel that they are being judged by other people. Other behavioral 

measures found to correlate in women include agreeableness and conscientiousness rfemaie 

= .72, p = .046. Marginal correlations in the men were observed with the state anxiety 

difference score and emotional stability, rma/e = .70, p = .053, and extraversion and 

agreeableness, rmaie = .7l,p = .050. 



fMRI Results - Exploratory (Gender Differences) 

Regions of Interest. Based on results from the original analyses, regions of 

interest were broadened from the ACC to include all regions in the medial prefrontal 

cortex (mPFC) exhibiting transient or sustained activation. A schematic of these medial 

prefrontal regions is displayed in Figure 14. 

-100 -80 -60 -40 -20 0 20 40 60 

A Dorsal, transient activation O Dorsal, sustained 

\J Ventral, transient deactivation Q Ventral, sustained 

Change in activity inversely correlated in: females ^S^ males A \ 7 

Note. Brain schematic adapted from " Cognitive and Emotional Influences in Anterior Cingulate Cortex." 
Trends in Cognitive Sciences, 4, p. 217. 

Figure 14. Schematic of medial slice of brain with all medial frontal regions from fMRI 

experiment exhibiting either transient or sustained BOLD activation plotted. 
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Transient Activity. All regions exhibiting interaction effects with gender, including those 

regions generated by the main effect of time and the practice by time analyses, are shown 

in Table 10. The time courses for all regions exhibiting significant transient activation are 

displayed in Figure 15. Although not all regions reached statistical significance, most 

regions exhibited greater changes in magnitude, either activations or deactivations, for 

new than for practiced conditions, with many also reflecting greater activity in women as 

compared to men. Exceptions include a region of the dorsal mPFC in which there was 

greater positive activation in men as compared to women, and bilateral posterior 

cingulate, in which there were greater deactivations in men than in women. 

Table 10. Peak coordinates of significant transient BOLD responses (practice x time, time 

x gender, practice x time x gender 

Location Region 

New > Practice, Female > Male 
Frontal 

Med front/Ant cing 

Med par/Post cing 
Sub-lobar 

New > Practice, Male > 
Med par/Post cing 

Female > Male, New = 
Med front/Ant cing 
Temporal 

R Middle frontal gyrus 
R Middle frontal gyrus 
R Superior frontal gyrus 
L Precentral gyrus 
R Anterior Cingulate 
L Anterior cingulate 
L Medial frontal gyrus 
L Medial frontal gyrus 
R Cingulate gyrus 
R Thalamus 
R Thalamus 
L Thalamus 
L Thalamus 
L Thalamus 

• Female 
L Posterior cingulate 
R Posterior cingulate 

Practice 
L Cingulate gyrus 
L Middle temporal gyrus 

3-Way Interaction of Practice x Time x Gender 
Med front/Ant cing 

Med par/Post cing 
Med occ 

L Medial Frontal Gyrus 
L Cingulate Gyrus 
L Medial frontal gyrus 
L Precuneus 
L Lingual gyrus 

BA 

8 
8 
8 
4 

32 
24 

6 
6 

31 

31 
31 

24 
39 

32 
32 

6 
7 

18 

X 

22 
22 
20 

-48 
2 

-6 
-1 
-2 
5 

10 
11 
-9 
-8 

-10 

-7 
7 

-1 
-47 

-15 
-12 

-9 
-4 
-8 

Y 

33 
23 
21 

-15 
20 

9 
-2 
-3 

-55 
-4 

-19 
-19 
-20 
-21 

-57 
-53 

-3 
-67 

47 
16 

-14 
-63 
-72 

z 

40 
41 
45 
38 
33 
42 
57 
57 
27 
11 
7 

10 
7 
9 

26 
23 

36 
21 

5 
35 
71 
55 

1 

Voxels 

78 
87 
227 
314 
242 
388 
252 
436 
280 
41 
155 
52 
53 

206 

204 
70 

73 
31 

35 
42 
118 
53 
223 

PeakZ 

2.94 
3.03 
4.29 
4.54 
7.23 
9.36 
4.71 
9.53 
7.79 
5.77 
8.39 
2.93 
2.99 
8.47 

7.52 
3.39 

3.59 
2.89 

2.85 
2.86 
3.43 
2.84 
3.89 

P(pxt) 

<0.0001 
<0.0001 

0.0009 
<0.0001 

0.0043 
0.0007 

<0.0001 
<0.0001 
<0.0001 

0.0021 
0.0092 

<0.0001 
0.0008 
0.0190 

0.0240 
0.0036 

-
-

0.0004 

-
0.0180 

-
<0.0001 

P(txq) 

0.0220 
0.0001 

<0.0001 
0.0024 
0.0500 
0.0410 
0.0048 
0.0006 
0.0130 
0.0097 
0.0350 
0.0004 

<0.0001 
0.0040 

0.0320 
<0.0001 

<0.0001 
<0.0001 

-
0.0023 

-
-
-

P(pxtxq) 

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

-
-

<0.0001 
<0.0001 

0.0170 
<0.0001 
0.0200 

ReqSource 

pxt 
pxt 
txg 
pxt 

time 
time 
pxt 

time 
time 
time 
time 
pxt 
txg 

time 

time 
txg 

txg 
txg 

pxtxg 
pxtxg 
txg 

pxtxg 
pxt 

Note. See notes for Table 4 and 5. Regions from Table 5 with gender effects are listed again with relevant 
statistics. Pxt = practice x time; txg = time x gender; pxtxg = practice x time x gender. 
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Med Frontal / Ant Cingulate 

|1 2 3 4 5 6 7| 
Timepoint 
Interaction 

pxf'.txg'" •"•" p x f r B ^ pxt**, txg" 

Female new Female practice Male new Male practice 

Note. Time courses are on different scales to magnify differences, pxt = practice x time; txg = time x gender; 
pxtxg = practice x time x gender. Significance of effect, *p < .05, **p < .005, and ***p < .0005. 

Figure 15. All time courses for regions exhibiting a main effect of time for transient 

BOLD signals, arranged by brain area with coordinates identified per region. Significant 

interactions are noted. 



47 

A significant three-way interaction between time, practice, and gender was observed in 

one region of the ventral mPFC (coordinates -15, 47, 5) just anterior to the ACC, F(6, 78) 

= 11.83,/7 < .001, in which women exhibited a deactivation in the new condition that 

returned to baseline in the practiced condition, but men's activation for this region 

remained flat across practice conditions. However, overall transient activations in the 

dorsal ACC, as well as deactivations in the ventral ACC, provide limited support for the 

concept of reciprocal suppression within the ACC (Buckner & Tulving, 1995; Bush et al., 

2002; Corbetta et al., 1991; Coull et al., 1995; Drevets & Raichle, 1998; Petersen et al , 

1989). Using difference scores, correlation calculations revealed a significant inverse 

correlation between the aforementioned ventral region and two regions within the dorsal 

mPFC in women, />ma/e = .80,/? = .017 and rfemaie = .89,/? = .003 (coordinates -15, 47, 5 

and -1,-2, 57/-6, 9, 42), and between a different ventral/dorsal pair in men, rmaie = Jl,p 

= .048 (14, 45, 13 and -3, 7, 45). No other ventral and dorsal pairs exhibiting reciprocal 

suppression were revealed, as measured by changes with practice. 

Sustained Activity. Regions exhibiting significant sustained activation, with an 

effect of gender, are listed in Table 11. Bar graphs representing the sustained activity per 

region are shown in Figure 16. Women and men exhibited similar activity in bilateral 

regions of the dorsal mPFC, with greater activity in the new than in the practiced 

condition. There is a striking contrast between practice and/or gender conditions in most 

of the other regions, however. Whereas most of the transient regions displayed a similar 

pattern of activity, in which the direction of the signal was most often similar across 

practice conditions and gender, with primary differences being only in magnitude, many 

sustained signals change direction with practice and/or between genders. Interestingly, 



48 

the bilateral dorsal medial prefrontal regions exhibit the most uniform activity across 

gender, whereas the ventral medial prefrontal regions seem to be the most variable. 

Table 11. Peak coordinates of significant sustained BOLD responses (main effect of 

practice, main effect of gender, interaction of practice x gender) 

Location 
Practice 

Med front/Ant 

Gender 
Frontal 

Med front/Ant 

Parietal 
Med occ 

Cerebellum 

Practice x Gender 
Parietal 

cing 

cing 

Region 

R Subcallosal gyrus 

L Paracentral lobule 
L Paracentral lobule 
R Medial frontal gyrus 
R Medial frontal gyrus 
L Anterior cingulate 
L Inferior parietal lobule 
R Lingual gyrus 
R Cuneus 
R Anterior lobe-culmen 

R Inferior parietal lobule 

BA 

25 

31 
5 
9 

25 
32 
40 
18 
19 

40 

X 

3 

0 
-4 
3 
7 

-4 
-47 

7 
10 
21 

44 

y 

9 

-26 
-46 
51 
11 
39 

-47 
-68 
-89 
-46 

-45 

z 

-14 

43 
60 
15 

-16 
-8 
41 

6 
31 
-6 

40 

Voxels 

54 

94 
77 
119 
39 
97 
62 
132 
96 
55 

70 

PeakZ 

2.31 

2.26 
2.43 
2.34 
2.44 
2.28 
2.32 
2.56 
2.42 
2.41 

2.38 

P(Practice) P(Gender) 

0.0009 

-
-
-

0.0057 

-
-
-
-
-

-

0.0270 

0.0022 
0.0023 
0.0003 

<0.0001 
0.0029 
0.0005 
0.0017 
0.0002 
0.0002 

* 

P(PxG) 

-

-
-
-
-
-
-
-
-
-

<0.0001 

Note. See notes for Table 4 and 5. Region from Table 6 that also exhibits a gender effect is listed again 

with relevant statistic. PxG = Practice x Gender. 
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Med Frontal /Ant Cingulate 

Female New Male New 

Test significance 

Female Practice Male Practice 

Note. Graphs are on different scales to magnify differences. P = practice, G = gender; 
P x G = practice x gender. Significance of effect, *p < .05, **p < .005, and ***p < .0005. 

Figure 16. Bar graphs per region reflecting significant sustained BOLD activation, 

arranged by brain area with coordinates identified per region. Significant interactions 

are noted. 
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There is a single ventral ACC region at -4, 39, -8, exhibiting a main effect of 

gender, in which there is a significant deactivation in the women that is far less 

pronounced in the men, F(l,14) = 13.40,/? = .003. This sustained deactivation pattern is 

consistent with the gender differences in the ventral ACC recently reported by Butler and 

colleagues (2007). A similar pattern of gender differences was also revealed by the main 

effect of gender analysis in another medial prefrontal region at 3, 51, 15, F( 1,14) = 23.64, 

p < .001. Both a main effect of practice and a main effect of gender were revealed in two 

other medial frontal regions at 7, 11,-16 and 3, 9, -14 with activity in both regions 

moving in a downwardly direction with practice in both women and men. 

Unlike Butler and colleagues (2007), however, we did not find an inverse 

correlation between difference scores in the ventral and dorsal regions of the mPFC in 

either women or men within the sustained signals. This could simply be a result of 

computational differences, given that they only had a single condition, and therefore used 

a single value directly representing the level of activation, while our calculations were 

based on difference scores between new and practiced conditions. Given, however, that 

we found deactivations in women but positive activations in men in a few ventral medial 

prefrontal regions, and positive activation in the dorsal regions for both sexes, does 

suggest that reciprocal suppression between the ventral and dorsal regions may exist in 

the sustained signals only in women. 

Relationship Between Behavior and Neural Activity. Because there were no 

predictions regarding behavior and neural activity across the whole brain, examination of 

the relationship between behavioral measures and neural activation were limited to 
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regions within the mPFC.2 Interesting patterns between behavior and functional 

activations emerged between genders in the mPFC. Medial prefrontal brain regions 

exhibiting transient activation are shown in Table 12, along with their behavioral 

correlates. There were no regions in the ACC or mPFC that exhibited transient activation 

associated with reaction time differences. However, all three ventral medial prefrontal 

regions in females at 16, 36, 14 and 14, 45, 13 and -15, 47, 5, exhibited very similar 

relationships with behavioral measures. As shown in Table 12, activation in each of 

these three regions in the women exhibited a negative correlation with trait anxiety, all 

/?'s < 0.02, and a positive correlation with emotional stability,/>'s < 0.03. In region 16, 

36, 14, the relationship was significantly different from that in men for trait anxiety, 

r/emaie = -.88,/? = .004, rmale = .06,p = .888, x2c(F)0, N= 16) = 6.06,/? = .014, and 

emotional stability, rfemaie = .85,p = .008, rmaie = .15,/? = .723, X2C(F>(1, N = 16) = 4.04,p 

= .045 (Paul, 1989). Activity in ventral region -15, 47, 5 also correlated with changes in 

state anxiety in females, rfemaie = .78,/? = .02 (as shown in Figure 17), but not males, rmaie 

= -.20, p = .635, x2
C(F) (1, iV= 16) = 4.91, p = .027. There was a positive correlation with 

changes in state anxiety levels in the men, rmaie = .78, p - .022, but it was not 

significantly different from women. The association of negative affect within the ventral 

mPFC is consistent with the proposed ventral/dorsal distinction. 

2 
Correlations between behavioral measures and regions outside the mPFC are available upon request. 
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15,47,5 

Change with Practice in State 
Anxiety and MR Signal in Females D. 

I » 
j ., 

1 " 
B 

Trait Anxiety in Relation to MR 
Signal Change in Females 

/ 
•^v 

• 

E. 

! ' 

Emotional Stability In Relation to 
MR Signal Change in Females 

Difference In Mean State Anxiety 
(Prac -New) 

Trai t Anxiety Score 

10 20 30 49 SO 

Emotional Stability Score 

Figure 17. Ventral mPFC region exhibiting significant interaction of practice x time x 

gender. A) Statistical brain map of transient effects (practice x time x gender) with region 

of interest (-15, 47, 5) circled. B) Temporal profile of region circled in A. C) Significant 

correlation in female participants between difference scores (practiced minus new) of 

region and mean state anxiety. D) Significant correlation in female participants between 

difference of region and trait anxiety. E) Significant correlation in female participants 

between difference scores of region and emotional stability. 

As shown in Figure 18, a dorsal ACC region (2, 20, 33) in women but not men 

exhibited a pattern between transient activation and negative affect that mirrors the 

pattern seen in the ventral mPFC, rfemale = .78, p = .022, rmale = -.18,;? = .700, c2
c(F) (1, 

N= 16) = 4.78, p = .029. Discovery of transient activation in the dorsal ACC associated 

with negative affect challenges the proposed functional division of the ACC. 
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Figure 18. Ventral ACC region (16, 36, 14) and dorsal mPFC region (2, 20, 33) 

showing significant correlations between difference with practice in transient 

percent MR signal change (y-axis) and behavioral measure (x-axis) for males 

and females. 
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Again, no correlations were revealed between reaction times and sustained 

activations in any ACC regions (see Table 13). However, as shown in Figure 19, 

deactivation in a ventral ACC region -4, 39, -8 revealed significant correlations that were 

opposite to the behavioral pattern revealed in the transient ventral ACC region. In 

females, the sustained ventral ACC deactivation was negatively correlated with state 

anxiety, r/emaie = -.85, p = .008 (a relationship that significantly differed from that in men, 

fmaie = .43,/? = .288, x2c(F)0, N = 16) = 7.73,p = .005), and emotional stability, 

r/emaie = --85, p = .008, and positively correlated with trait anxiety, rfemaie = -88, p = .004. 
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Figure 19. Ventral ACC region exhibiting significant effect of gender in sustained signal. 

A) Statistical brain map of sustained effect (gender) with region of interest (-4, 39, -8) 

circled. B) Bar graph of sustained activity for region circled in A. C) Significant 

correlation in female participants between difference scores (practiced minus new) of 

region and mean state anxiety. D) Significant correlation in female participants between 

difference scores of region and trait anxiety. E) Significant correlation in female 

participants between difference scores of region and emotional stability. 

The consistent relationship between trait anxiety, neuroticism and deactivation in 

the ventral mPFC, which is in a number of cases greater in women than men, might help 

to explain women's increased vulnerability to the development of affective disorders, 

such as anxiety and/or depression (Gater et al., 1998). Data from the eight individual 
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female subjects are displayed in Figure 20 for state anxiety (20A), one ventral (Figure 

20B) and one dorsal medial prefrontal region (Figure 20D) exhibiting transient activation 

that mirror one another, and one ventral ACC region (Figure 20C) exhibiting sustained 

activation that also exhibits a unique relationship with the transient ventral medial 

prefrontal regions. This relationship is further described in the discussion section. 

A. Mean State Anxiety 

c. 

3 4 S 6 
Individual Female Subject 

Sustained—Ventral (-4, 39, -8) 

Individual Female Subject 

New 

B. Transient—Dorsal (2 , 20, 33) 

individual Female Subject 

D. 
0.05 

0 
i 
n 
j-0.05 
i 
| -0.1 
b 
1-0.15 

; -0.2 

-0.25 

-0.3 

Transient—Ventral (14, 

36 1 | 52 

49 
30 

29 

45, 13) 

N B 24 
50 

1 
26 | 

Individual Female Subject 

Practiced 

Note. Corresponding trait anxiety scores are displayed at the peak of each individual's pair of bars. 

Figure 20. Individual data across practice for 8 female participants (x-axis) on A) Mean 

state anxiety B) Positive transient BOLD activity for time point 3 in dorsal mPFC region 

2, 20, 33 C) Negative sustained BOLD activity for ventral ACC region -4, 39, -8 D) 

Negative transient BOLD activity for negative peak time point 4 in ventral ACC region 

14,45,13. 
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Correlations between behavioral measures and neural signals were the result of 

two independent analyses (behavioral and fMRI), with mPFC regions defined solely 

based on functionally significant deflections from baseline, independent of behavior. 

Behavioral and fMRI data were not examined together until after these independent 

analyses were complete and difference scores computed. Therefore, these correlations 

are not subject to the primary criticism posed by Vul and colleagues (2009), in which 

regions of interest are defined based on significant correlations with the behavioral 

measure of interest, which can reveal biased results that range from simple inflations to 

completely spurious correlations between behavioral measures and neural signals. Vul 

and colleagues also estimated, based on existing literature, that the maximum possible 

correlation of personality measures with the fMRI BOLD signal should be approximately 

r = .74. This conclusion was based on the reported reliability of the Big Five personality 

measures (ranging from r = .73 to r = .78) and fMRI BOLD signals (approximately 

r = .70). A number of correlations reported in the current experiment are greater than the 

maximum estimated reliability of the measures used, which is difficult to explain. 

Regions were defined based on the same data set ultimately used to calculate 

correlational values, which Vul et al. recommends against, but perhaps comparable to the 

"split half analysis they propose to compensate for this, data in this experiment were 

unique in that difference scores were calculated based on data from different runs. 

Perhaps correlations are inflated due to a small sample size, although some correlations 

of this magnitude were reported in other experiments and were attributed to "normal 

sampling variability of the sort found with any kind of imperfect measurement" (p. 285). 
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Novelty and the ACC 

The design of the current fMRI study differs from the 2001 study by Simpson and 

colleagues in one major respect. The Simpson study began with a "nai've" condition, as 

we did in the preliminary study, in which both the verb generation task and the list of 

nouns presented were novel to the participants. Following the naive run were nine 

practice runs using the same list of nouns, and then finally subjects were presented with a 

"novel" run in which the list, but not the task, was new. While for the novel run both 

anxiety and reaction times increased in comparison to the practice runs, they did not 

increase to the same level as the naive run. 

In the current fMRI study, a new list was presented every third run, and the 

"nai've" run was collapsed into the new condition along with the other three "novel" runs. 

When viewing anxiety levels and reaction times by run, however, as shown in Figure 

21A and B, respectively, the nai've run is prominent. 
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Figure 21. Behavioral results by each of 10 runs for verb generation in 16 fMRI subjects 

reflecting A) Mean anxiety level. B) Mean reaction time. Note especially high scores on 

both for naive (first) run. 
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A direct comparison between the naive run and the first novel run revealed 

marginally significant differences in women's state anxiety, (̂7) = 2.17, p = .067 and 

reaction times, (̂7) = 2.\2,p = .067, and a significant difference in men's reaction times, 

t(l) = 2.43, p = .045, but state anxiety did not differ between the naive and novel runs for 

men, t(l) = .76, p= .472 (all two-tailed). Given these differences between the nai've and 

novel runs, it seems that the novelty, not only of the list, but also of the task itself, should 

be an important consideration. 

By aggregating ten sessions in the current fMRI experiment we likely measured 

the trait stress response, which may include contributions of individual personality and 

coping styles given the extended nature of the exposure to stress (Pruessner et al., 1997). 

However, novelty might be a dominant situational characteristic that has a profound 

effect on the state stress response, performance, and level of activation in the ACC 

(Petersen et al., 1998; Simpson et al., 2001). 

Davidson (1998) suggested that not only is the magnitude of an emotional 

response important to consider when evaluating individual differences, but also the time 

course of the emotional response should be examined. In fact, several studies have 

reported that there are differences in how certain individuals or groups respond to 

emotion, both in reactivity and recovery, based on single or repeated episodes. Certain 

processes that were once effortful could become automatically emotionally regulated 

with practice (Davidson, 1998). For example, an EEG study revealed that error related 

negativity and amplitudes significantly differed between high and low negative affect 

participants early in the experiment, but those differences decreased with time (Luu, 

Collins, & Tucker, 2000). In contrast, two other experiments found that low and high 
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anxiety groups were similar initially but differences emerged with performance on a 

second and third task (Beidel, Turner, & Dancu, 1985; Eckman & Shean, 1997). 

Furthermore, activity in the ACC has been shown to habituate with repeated 

exposure to emotional material (Phan, Liberzon, Welsh, Britton, & Taylor, 2003). Even 

in association with a cognitively demanding task, Milham, Banich, Claus, & Cohen 

(2003) reported that the ventral ACC exhibited a rapid decrease in activity with repetition 

despite continued need for attentional control, and the drop-off was more dramatic than 

that seen in other regions. Finally, Wang and colleagues (2005, 2007) reported that 

activation in certain brain regions, including the ACC, endured beyond completion of the 

stressful conditions. 

While difference scores based on the aggregation of data from all ten runs may 

explain why we were able to reveal high correlations in emotional adaptation/regulation 

and personality traits (Pruessner et al., 1997), emotional reactivity and the practice effects 

in performance could diminish substantially with repeated exposure to the task. This 

could provide an explanation as to why no regions in the ACC, especially within the 

dorsal ACC, were correlated with changes in reaction time as was expected. Therefore, 

correlations computed based only on the first practice "set" (naive through practice run 

2), might reveal different processes in emotion (e.g. reactivity versus 

regulation/adaptation), performance, and personality (Pruessner et al., 1997). 

Using the same procedure outlined above, new regions were defined using data 

from nai've run 1 and practice run 3. All medial prefrontal regions exhibiting transient or 

sustained effects were extracted and are displayed, as a schematic, in Figure 22. Using 

new difference scores calculated by subtracting nai've scores (run 1) from practiced scores 



(run 3), new correlations were computed and are shown in Table 14. As expected, 

correlations between activity in dorsal mPFC (regions 3, 45, 30 and 13, 32, 30) and 

reaction times were revealed, rfemaie = -.88,/? = .004 and rmaie = .78, p = .022, respectively. 

-100 -80 -60 -40 -20 0 20 40 60 

A Dorsal, transient activation O Dorsal, sustained 

O Ventral, sustained 

Note. Brain schematic adapted from " Cognitive and Emotional Influences in Anterior Cingulate 
Cortex." Trends in Cognitive Sciences, 4, p. 217. 

Figure 22. Schematic of medial slice of brain with all medial frontal regions from the 

first practice set (runs 1-3) only, exhibiting either transient or sustained BOLD activation 

plotted. 
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Unexpectedly, however, two of the three dorsal regions exhibited sustained 

deactivations in either females or males, as shown in Figure 23. Deactivations in dorsal 

mPFC regions are rarely reported (Paus, Koski, Caramanos, & Westbury, 1998; Bush et 

al., 2000), with the few exceptions occurring in experiments involving mood induction 

(Drevets & Raichle, 1998) and anticipation of pain (Drevets et al., 1994). This suggests 

possible presence of an emotional response which is supported by correlations in one of 

the dorsal regions exhibiting a deactivation (-2, -3, 60) in women with state anxiety, 

r/emaie = -.91,p = .002, rmale = .05,/? = .906, x2c(F)0> N = 16) = 6.92,/? = .009, trait 

anxiety, rfemah = .78,p = .022, rmah = -.32,p = .440, x2c(F)(l, N= 16) = 5.70,p = .017, 

and emotional stability, rfemaie = -.78,/? = .022, rmaie = .35,p = .395, x2c(F)(l, N= 16) = 

5.91,/? = .015. Absent in the data from the first practice set are correlations between 

affect and ventral medial prefrontal regions, suggesting that the aggregated data set may 

reveal an element of emotional adaptation in women that is masked by novelty. 

However, the absence of effects is more difficult to interpret than their presence, 

especially given the difference in power between the two analyses. 
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Figure 23. Bar graphs of sustained activity for three dorsal mPFC regions from first 

practice set only. Note deactivations in regions -2, -3, 60 and 13, 32, 30 in females and 

males, respectively. 
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General Discussion 

The present study was designed to assess whether or not ventral and dorsal 

subdivisions of the ACC have distinct functional roles in emotional and cognitive 

processes, respectively. Of the three ACC regions examined, the ventral ACC region 

exhibited transient deactivation and the dorsal ACC regions exhibited positive transient 

activation, with the activity of both subdivisions shifting back towards baseline with 

practice, as was expected. However, no significant correlations were observed between 

changes in neural activation and our behavioral measures of emotion and cognition, state 

anxiety and reaction times, when collapsed across gender. Therefore, the experiment, as 

it was originally designed, failed to yield data that could be used to address the original 

question. By contrast, exploratory analyses that examined additional factors such as 

gender, trait anxiety, and the Big 5 IPIP Personality Inventory, proved to be more fruitful 

in addressing the possible specializations of the ventral and dorsal subdivisions of the 

more expansive, medial prefrontal cortex. Although some of these correlations are 

unexpectedly high, as previously discussed, results are not believed to have resulted from 

nonindependence errors (Vul et al , 2009). 

On one hand, the current results are consistent with a ventral/dorsal functional 

division within the mPFC. Albeit in different individual regions, in both women and men 

(regions 3, 45, 30 and 13, 32, 30, respectively), a correlation between cognition, as measured 

by response time, and sustained activation in the dorsal mPFC was revealed in the analysis of 

the first practice set, although the aggregated data set failed to reveal such correlations 

between response time and activity in any mPFC region. In addition, in the aggregated data 

set, a consistent pattern emerged, primarily in women, revealing an association between 
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negative affect, as measured by state and trait anxiety and emotional stability/neuroticism, 

and both transient and sustained deactivation in the ventral mPFC. This correlation was 

significantly greater in women than men between state anxiety and deactivation in transient 

region -15, 47, 5 and sustained region -4, 39, -8, and between both trait anxiety and 

emotional stability and deactivation in transient region 16, 36, 14. 

On the other hand, some results challenge the proposed concept of a ventral/dorsal 

distinction within the mPFC. In women, change in one dorsal ACC region exhibiting 

transient activation in the aggregated data set (region 2, 20, 33), and change in one dorsal 

mPFC region exhibiting sustained deactivation in the first practice set (region -2, -3, 60), 

revealed a correlation with state and trait anxiety and neuroticism. This relationship with 

negative affect in the dorsal portion of the mPFC, which was significantly larger in women 

than men, should not have existed if activity in the dorsal mPFC were specific only to 

cognition. In addition, few ventral/dorsal pairs of regions exhibiting transient activation in 

the mPFC exhibited an inverse correlation, or reciprocal suppression, and no sustained 

regions did, suggesting that activation in a region from one subdivision of the mPFC does not 

necessarily drive inverse activity in another. 

Although results suggest that there might be a great deal of functional specialization 

in ventral and dorsal regions of the mPFC for emotion and cognition, respectively, the 

interaction is likely to be much more complex, especially when concurrently considering 

both transient and sustained signals in the brain between both women and men. Emotion and 

cognition are closely intertwined (Mohanty et al., 2007), and anxiety, in particular, is a 

negative emotion that might involve secondary cognitive processing and evaluation before a 

response is generated (Pruessner et al., 2008). Therefore, it is more likely that there is an 
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integration of emotion and cognition within and between subdivisions of the mPFC and the 

rest of the brain (Mesulam, 1998). This conclusion is supported by recent publications 

examining the brain's default mode network, a concept that will be further explored in the 

following paragraphs. 

Perhaps the most intriguing results of the experiment, however, involved 

differences between the genders that were readily apparent in the fMRI data but not in the 

behavioral data, confirming previous reports (Butler et al , 2005; McRae, Oschner, 

Mauss, Gabriele, & Gross, 2008; Koch et al., 2007; Bell, Wilson, Wilman, Dave, & 

Silverstone, 2006). According to Esposito and colleagues (1996), functional differences 

between women and men are unlikely to be a result of differences in brain size, neuronal 

packing, or other technical differences given that in their study they examined a range of 

cognitive tasks within a single session and functional differences existed only in some. 

Importantly, different emotional or cognitive processes or strategies can produce 

similar behavioral output patterns yet have distinctive underlying neural activation 

patterns (Wilkinson & Halligan, 2004). For example, changes in stimulus information or 

task instruction have been shown to have no effect on task performance yet be associated 

with changes in brain activation. Despite women and men performing equally well on 

average on the verb generation task, reporting similar levels of state and trait anxiety and 

emotional stability, and meeting the same stringent mental health exclusion criteria, the 

fMRI data in the current experiment revealed distinctly different neural patterns between 

genders that could reflect gender differences in emotional or cognitive processes that are 

simply too subtle to be detected overtly. 
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Therefore, the remainder of the discussion will speculate on what possible 

processes could account for the striking neurofunctional differences revealed between 

healthy women and men specifically in the ventral mPFC, in which only women 

consistently exhibited the expected pattern of sustained deactivations. It should be 

emphasized that this subsequent discussion is based on the analyses reported above 

involving gender and on supporting studies in the literature. This discussion is clearly 

meant to be speculative; replication on a larger sample would ideally be required to 

support this speculation. 

The Default Mode, Gender, and the Self 

There are a number of regions in the brain, including the medial prefrontal cortex, 

the posterior cingulate/precuneus, and the inferior parietal cortex that are highly active at 

rest or during passive or low demand tasks (Raichle et al., 2001). This organized network 

of regions, originally only of interest for its role as a baseline condition, has been 

identified as the default mode network. More recently, the function of the default mode 

has drawn attention on its own merit. It is believed that the resting brain engages in 

ongoing, internally cued processes, such as production of a representation of the external 

environment (Vogt et al., 1992), attention to one's visceral and emotional state (Gusnard 

& Raichle, 2001), recollection of the past in preparation for the future (Binder, et al., 

1999), and integration of emotional and cognitive processes (Griecius, Krasnow, Reiss, & 

Menon, 2003). 

Although the function of the default mode network activity is not fully 

understood, activity in these regions consistently decreases during performance of a wide 

array of cognitively demanding tasks (Mazoyer et al., 2001; Binder et al., 1999; Shulman, 
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Fiez, Corbetta, & Buckner, 1997), as was revealed in the current experiment. 

Deactivations are believed to result when self-focused attentional resources are 

suspended, interrupted, or reallocated to other regions of the brain required to meet the 

demands of externally cued cognitive tasks (Gusnard, Akbudak, Shulman, & Raichle, 

2001; Gusnard & Raichle, 2001; Raichle et al., 2001). This explanation is supported by 

evidence that optimal performance and accuracy are correlated with the magnitude of 

task-induced deactivation in these regions, and these deactivations increase in magnitude 

with task difficulty by increasing factors such as stimulus presentation rate or cognitive 

load (McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003). According to Greicius 

and Menon (2004), the degree to which an individual attends to external stimuli over 

default mode processing during performance of a cognitive task is highly variable, but 

generally as a task progresses, participants tend to shift back from task-specific 

processing to default mode processing. 

Fair and colleagues (2007) concluded that activity during the resting state of 

blocked or mixed blocked/event-related fMRI designs is comparable to and can be 

extracted to examine continuous resting state activity. Other studies have also confirmed 

the existence of two anti-correlated networks (Grecious et al., 2003; Fox et al., 2005), a 

default mode network and an attentional network, which are associated with task-induced 

deactivations, and task-induced activations, respectively. Therefore, with regard to the 

present experiment, conclusions have been drawn regarding default mode activity based 

on the theory that deactivations observed, while participants performed the cognitively 

demanding verb generation task, represent suspended or suppressed default mode 

activity. This argument is particularly compelling when considering the fact that the 
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ventral mPFC is one of two major hubs of the default mode network (Buckner et al., 

2008), and the two previously published ventral mPFC nodes of the default mode 

network (regions 1, 54, 21, and -3, 39, -2) (Fair et al., 2007; Fox et al., 2005; Greicius et 

al., 2003) are particularly close to two of the ventral mPFC regions exhibiting 

significantly greater sustained deactivations in women, as compared to men, in the 

current experiment (region 3, 51, 15, as shown in Figure 24A and region -4, 39, -8, as 

shown in Figure 24B). 
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Figure 24. Individual activation in the two regions of the ventral mPFC exhibiting 

striking gender differences in sustained activation/deactivation. 
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While the processes that occur during the unconstrained "rest" period associated 

with default mode activity are the focus of much debate (Raichle & Snyder, 2007), many 

claim that these processes are self-referential or introspective in nature and are associated 

with preferential activation in the mPFC (Buckner & Carroll, 2007; D'Argembau et al., 

2005; Frith & Frith, 1999; Gusnard et al , 2001; Mason et al., 2007; Northoff et al., 

2006). These claims are supported by self-referential and social cognition experiments 

that generally exhibit positive activation in the same ventral mPFC regions during self-

focused processing (Amodio & Frith, 2006), that are deactivated during the performance 

of cognitively demanding tasks (Bush et al., 2000; Drevets & Raichle, 1998). Indeed, the 

mPFC, in particular, might be responsible for integrating all of the information produced 

by the default mode network to create an integrated image of the "self (Ingvar, 1985; 

Damasio, 1999). 

Self-referential thought and emotions are closely intertwined. Given the 

importance of self-referential processing to one's own person, it is inherently more 

affective than non-referential processing (Northoff et al., 2006). Self-referential thought 

allows humans to feel emotions based on past and future self-representations and on their 

own beliefs about themselves and their perceptions of others' beliefs about them (Leary, 

2007). By contrasting detailed, self-relevant mental simulations of imagined scenarios, 

people are better able to interact with others in social settings (Buckner & Carroll, 2007). 

Examples of self-referential or social cognition tasks associated with activity in the 

mPFC, which require self-knowledge, person knowledge, or mentalizing, include the 

following: evaluation of self-related traits (Kelley et al , 2002; Heatherton et al. 2006); 

monitoring or reflecting on one's own emotional state (Gusnard et al., 2001); thinking 
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about the mental states of others (Mitchell, Banaji, & Macrae, 2005); reading about 

communicative as compared to private intentions of others (Walter et al., 2004); and 

judging trust and reciprocity with others (McCabe, Houser, Ryan, Smith & Trouard, 

2001). 

The complex self-system is a significant contributor to motivating and regulating 

thoughts, feelings, perceptions, and behaviors, so that a person can achieve, protect, 

enhance, or simply maintain a positive and accepted social self (Leary, 2007). Self-

conscious emotions, such as guilt, shame, embarrassment, social anxiety, and pride, 

develop from complex cognitions based on a person's inferences about how other people 

evaluate or perceive them. These emotions can be particularly powerful when in 

evaluative situations that can potentially harm a person's social self by questioning his or 

her abilities, character, or social acceptance (Dickerson, 2008; Gruenewald, Kemeny, 

Aziz, & Fahey, 2004). 

What is absent from previous work in social neuroscience and resting state 

experiments is an assessment of the influence of gender in self-referential and/or default 

mode neural activity. This is especially important given that for well over a decade social 

psychologists have reported gender differences in how one defines his or her own self 

(Cross & Madson, 1997). Furthermore, D'Argembeau and colleagues (2005) proposed 

that resting state activity in the ventral mPFC is associated with trait-like representations 

of the self and an individual's ability to infer the mental states of others by imagining his 

or her own mental state in a similar situation. Therefore, gender differences in models of 

the self may account for the neurofunctionl differences in the anterior portion of the 

default mode network, the ventral mPFC, commonly believed to play a significant role in 
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self-referential processing and social navigation (Buckner, Andrews-Hanna, & Schacter, 

2008). 

Given that the self, and the degree to which others are incorporated into it, affects 

emotion, motivation, and cognition, gender differences in many domains may be largely 

accounted for by differences in self-construal (Markus & Oyserman, 1989). Two types 

of self-construals have been defined (Cross & Madson, 1997). The interdependent self-

construal emphasizes the importance of social relationships, harmony, 

interconnectedness, and an obligation and closeness to others (Markus & Kitayama, 

1994). The independent self-construal, by contrast, refers to a self-definition that 

emphasizes individuality and uniqueness, independence and autonomy, and the 

importance of distinguishing and separating oneself from the rest of the world (Markus & 

Kitayama, 1994). Generally in the United States, self-representations are distinctly 

different between women and men, with women more often characterized as having 

interdependent, collective, or communal self-schemas, and men best described as having 

independent, individualist, or autonomous self-schemas (Gilligan, 1982; Markus & 

Oyserman, 1989). 

Potential differences in self-representations between women and men may lead to 

differences in how they attend to, process, and remember stimuli (Markus & Wurf, 

1987). Presumably because of women's greater interest in relationships, women attend 

more to others, have greater nonverbal skills (DePaulo, 1994) and attempt to "mind read" 

or take the perspective of others in an effort to adjust their own behavior (Cross & 

Madson, 1997). Women also think and remember more about others, especially those 

close to them, than men do. Women's self-esteem is far more influenced by both positive 
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and negative feedback from others and from perceived evaluation even in the absence of 

explicit feedback (Roberts & Nolen-Hoeksema, 1994), because it influences their sense 

of belongingness (Cross & Madson, 1997). Men, on the contrary, thrive on being unique 

and independent regardless of feedback (Roberts & Nolen-Hoeksema, 1994). 

Just as perspective taking often requires some degree of self-referential 

processing, self-referential processing may involve a perspective-taking component 

(D'Argembeau et al., 2007). Certainly, people's behavior is driven not only by their own 

values and how they perceive themselves, but also by others' values and how they want 

others to perceive them—their reputations (Amodio & Frith, 2006). Understanding one's 

own reputation requires an understanding about how others think of oneself. Oschner 

and colleagues (2005) refer to this as reflected self-knowledge. Using a repetition 

suppression technique, Jenkins, Macrae and Mitchell (2008) recently confirmed that 

activity in the same ventral medial prefrontal region was associated not only with 

accessing the self, but also with spontaneously accessing the self when inferring the 

mental states of others deemed to be similar to oneself. The intimate connection between 

understanding one's own self, and in understanding others, may help to explain why 

thinking about either one is associated with activity in the same ventral mPFC region. 

Although it is not yet clear how a person assesses the degree of similarity between 

oneself and another, there could be gender differences in the degree to which others are 

perceived to be similar to oneself, especially given that women more frequently than men 

spontaneously take the perspective of another in an attempt to "mind read" and anticipate 

the potential thoughts, feelings, and actions of another (Cross & Madson, 1997). Women 

generally consider themselves in relation to others, while men generally consider 
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themselves in comparison to others. Women, therefore, are especially attuned to their 

social environments, and are naturally driven to attain knowledge and understanding of 

others because acceptance in their relations with others is an integral part of how they 

define themselves. A woman's experience generally revolves around understanding the 

experiences of others because it is considered self-relevant, and she may even be 

responsive to and concerned about others without any explicit intentions (Markus & 

Oyserman, 1989). It should not be surprising, then, that the ongoing neural activity 

proposed to be occurring during the default mode state reflects these fundamental 

differences in individual experiences. 

The anterior medial prefrontal area of the default mode network, which includes 

the ventral mPFC region that exhibited sustained deactivation in women but positive 

activation in men (3, 51, 15), is most frequently cited in social cognition experiments 

(Amodio & Frith, 2006). Activity in this region is associated with experiments 

manipulating communicative intentions and might reflect ones wishes to create with 

others a shared reality, although this intention may be an unconscious one. This region is 

also active when people make moral judgments potentially affecting their reputations and 

when they participate in economic games involving trust and reciprocity. Finally, 

activity in this region has been associated with reflection about participants' own feelings 

and reflections of others feelings about them. 

Perhaps, it is a woman's pervasive tendency to include herself in her 

representation of others, and others in her representation of herself, that renders her more 

vulnerable than men to ruminative styles of thinking (Markus & Oyserman, 1989). The 

object of ruminative thought is often oneself, oneself as evaluated or treated by others, or 
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one's negative mood. Women have a greater tendency to be inquisitive about and wish to 

understand themselves and stay attuned to their emotional states, as well as develop 

expertise in interpersonal domains (Butler & Nolen-Hoeksema, 1994; Markus & 

Oyserman, 1989). So to a certain extent, rumination can facilitate the development and 

maintenance of social bonds with others (Butler & Nolen-Hoeksema, 1994). 

Ray and colleagues (2005) reported that neural activity in the ventral mPFC was 

associated with individual ruminative tendencies. When participants were instructed to 

process emotional stimuli in less emotional terms, surprisingly, high trait ruminators were 

as successful as controls in down-regulating negative affect and activity in the ventral 

mPFC by interrupting their focus on the self and emotions. When distracted by 

performance of a difficult cognitive task, deactivations in the ventral mPFC were also 

associated specifically with decreases in emotional processing (Erk, Abler, & Walter, 

2006). Thus, while ruminators were equally able to down-regulate negative affect when 

explicitly instructed to do so, when unconstrained, ruminators likely return to self-

focused attention and may chronically activate regions in the mPFC associated with 

negative self-referential processing (Ray et al., 2005). 

Although rumination was not measured in the current experiment, it is plausible 

that women were ruminating during passive fixation, but performing the cognitively 

demanding task served as a distraction from their repetitive, self-referential thought. 

Sustained deactivation in the ventral mPFC in the current experiment could reflect 

suppression of women's automatic and ongoing attempts to understand themselves and 

those around them, their need to feel positively evaluated and accepted, their vicarious 

internalization of others' emotions, and subsequent feelings of uncontrollability, 
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processing that very well may be ongoing during the default mode when thoughts are 

unconstrained. 

While not all forms of ruminative thinking are maladaptive (Watkins, 2008), such 

self-reflection as a means of coping with stress or negative mood (Nolen-Hoeksema, 

Morrow, & Fredrickson, 1993), or among individuals with negative self views 

(Sedikides, 1992), could make them more susceptible to negative self-referential 

processing and the development of affective disorders (Simpson & Papageorgiou, 2003). 

Indeed, rumination is a risk factor for depression (Butler & Nolan-Hoeksama, 1994), and 

women are more likely to ruminate than men (Nolen-Hoeksema & Jackson, 2001). This 

tendency to respond to and cope with depressed mood by self-focused attention to 

emotion leads to greater duration and recurrence of depressed mood (Butler & Nolan-

Hoeksama, 1994) and intrusive thoughts (Watkins & Brown, 2002). 

In those suffering from depression, activity in the ventral ACC, specifically, has 

been identified as a possible region in which self-referential processing is "recast" or re­

interpreted in more unfavorable terms (Moran, Macrae, Heatherton, Wyland, & Kelly, 

2006). Indeed, abnormal activation in the ventral ACC has been affiliated with 

dysregulation of emotion and over-activation of self-referential processes, particularly in 

the form of ruminations (Sheline, 2009). Further, in depression, the ventral mPFC has 

been shown to contribute excessively to functional connectivity in the default mode 

network. Given the convergence of correlations between healthy women's state and trait 

anxiety and neuroticism scores in the ventral mPFC, correlations that were in some cases 

significantly greater in women than men, and much greater sustained deactivation in 

women in the ventral ACC region (-4, 39, -8) that is close to the previously identified 
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default mode node (-3, 39, -2) (Fair et al., 2008; Fox et al., 2005; Grecius et al., 2003), 

the current data provide a possible neural mechanism for women's greater vulnerability 

to the development of anxiety or depression (Bar-Haim, Lamy, & Glickman, 2005). 

Because difference scores were calculated based on both changes in deactivations 

and positive activations, interpreting the significance of the direction of the correlations is 

complicated. However, the data suggest opposite roles for sustained versus transient 

signals within the ventral mPFC in women. In looking back at ventral medial prefrontal 

regions in 21 C and D and Tables 12 and 13, both transient and sustained signals are 

deactivated in women, but they seem to reflect uniquely different roles with regard to 

negative affect. Across the three regions in the ventral mPFC exhibiting transient 

deactivation, the smallest difference scores with practice are correlated with the highest 

levels of trait anxiety and neuroticism. Incidentally, the dorsal region, exhibiting a 

positive transient activation, displayed a similar relationship with negative affect. By 

contrast, the ventral ACC region exhibiting sustained deactivation showed an unexpected 

relationship, in which the largest changes in deactivation with practice were associated 

with the highest levels of trait anxiety and neuroticism. 

This complimentary relationship between transient and sustained activation in 

women was echoed in their functional imaging data, with the ventral ACC region 

exhibiting sustained deactivation (-4, 39,-8) inversely correlating with all three regions 

exhibiting transient deactivations in the ventral mPFC (region -15, 47, 5, rfemaie = -.11, p = 

.025; region 14, 45, 13, rfemah = -.19,p = .020; region 16, 36, 14, rfemaie = -.69,p = .058). 

Although men, on average, exhibited transient deactivations in two of the same three 

ventral mPFC regions (14, 45, 13 and 16, 36, 14), with a similar correlation with state 
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anxiety in one of them, and they also exhibited modest sustained deactivations in the 

ventral ACC region (-4, 39 -8), this complimentary relationship between types of neural 

signals was not apparent in men. In fact, in men there was no relationship between 

activation in one of these pairs (14, 45, 13 and -4, 39, -8), rmaie = -.02, p = .963, which 

was marginally different from that in women, x2c(F) (1, N = 16) = 3.72, p = .054, and a 

trend towards a positive relationship in the other pair that was significantly different from 

women (16, 36, 14 and -4, 39, -8, rmale = .64,p = .087, x2c(F)0> iV= 16) = 7.09,p = .008). 

Eysenck and Calvo (1992) proposed that high trait anxious individuals may have 

high performance effectiveness, in that in low cognitive load conditions participants are 

able to compensate with greater mental effort to perform at a level similar to that of low 

anxious participants, but their performance efficiency is noticeably impaired during 

conditions of high cognitive load. A slightly different perspective was recently proposed 

by Fales and colleagues (2008), in which they suggested that the differences between 

transient and sustained neural activation between individuals with high and low trait 

anxiety during the performance of a high load working memory task may simply reflect 

alternate, yet equally efficient, routes to the same behavioral outcome. They revealed 

that trait anxiety is inversely correlated with sustained activation and positively correlated 

with transient activation, results that are consistent with ours, suggesting that the degree 

to which an individual employs sustained versus transient neural activation may vary 

depending on his or her level of trait anxiety. If we presume that sustained activity 

reflects a neural "state" of control, then perhaps participants with higher anxiety levels 

generally require greater control, or greater sustained ventral mPFC deactivation, to 
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achieve the same degree of performance on the task, possibly as compensation for more 

frequent interruptions in transient deactivations. 

However, our data suggest that gender is another important factor associated with 

the balance of transient and sustained activation employed in response to an anxiety-

provoking task. Both transient and sustained task-induced deactivations have been 

associated with the default mode of brain function (Buckner et al., 2008). However, in 

comparing men to women in this experiment, men exhibited a comparable degree of 

transient deactivation in two of the three ventral mPFC regions but minimal sustained 

deactivation in the ventral ACC region (-4, 39, -8). By contrast, the majority of women 

exhibited marked sustained deactivations in the ventral ACC region with magnitudes that 

far exceeded the minimum . 1 % signal change criterion used for this study (Figure 24B). 

If default mode activity is actually a reflection of ongoing, self-referential and/or 

affective processing (Northoff et al., 2006), and deactivations generally represent a 

reduction in that default mode activity during the performance of cognitively demanding 

tasks, maybe there is some distinction to be made between reductions that are associated 

with transient versus sustained deactivations. Perhaps transient deactivation in ventral 

mPFC represents a mere suspension of default mode activity, whereas sustained 

deactivation is an active suppression of the self-referential and ruminative thought of the 

default mode (Grecius & Menon, 2004). The potential cognitive demand from active 

suppression in the ventral mPFC in women, in turn, may also explain the transient 

increases they exhibited in cognitive control regions, such as the dorsal mPFC (Fales et 

al., 2008). Finally, an extension of this notion may help to account for previously 

reported behavioral and neurofunctional gender differences in overall emotional 



85 

responding, which includes both a reactive and a regulatory component (McRae et al., 

2008) and the gender differences in baseline state anxiety revealed in the current 

experiment, prior to the collection of neuroimaging data (Figure 25). 
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Figure 25. Comparison of baseline, new, and practiced state STAI scores showing a 

significant difference between baseline and new in men but not women. 

Differences between self-construals may affect how a person perceives and 

responds to emotional experiences (Cross & Madson, 1997) and social evaluative threat 

(Dickerson, 2008). While the emotions of those with interdependent self-construals, who 

frequently include other people in their self-concept, may be more sensitive to the social 

environment and the emotions of others, those with independent self-construals may be 

more influenced by their own personal experiences (Cross & Madson, 1997). A failure to 

regulate, adapt, or recover from individual negative emotional or cognitive responses can 

render a person vulnerable to various diseases (Dickerson, 2008). One may speculate, 
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therefore, that should the ability to appropriately regulate or suppress default mode 

activity become compromised, especially in those who rely more heavily on sustained 

than transient deactivations of the default mode network, a person may be more 

vulnerable to the development of affective disorders. 

Interpretation and Implications 

Those with an interconnected self-schema automatically incorporate others into 

their self-schemas and likely develop expertise in interpersonal domains (Markus & 

Oyserman, 1989). Just as those with panic disorder engage in extensive processing of 

threat-related words (Maddock, Buonocore, Kile, Garrett, 2003), perhaps when thoughts 

are unconstrained, women engage in more extensive processing of their social 

environment and the meaning of their interpersonal interactions with others. This might 

involve repetitive reframing of the same information in self-relevant and sometimes 

negative terms. Although it seems counterintuitive, Ray and colleagues (2005) proposed 

that, "by repeatedly turning over interpretations of events in their minds, those who tend 

to ruminate may have developed a cognitive skill of representing information flexibly" 

(p. 166). This cognitive flexibility, in turn, could enable a woman to suppress self-

reflection and self-conscious emotions when confronted with a difficult task, and thus 

exhibit significant sustained deactivation in ventral mPFC. Perhaps the greater the extent 

of thought suppression required, the greater the absolute magnitude of sustained 

deactivations in the ventral mPFC during cognitive task performance. As the task 

becomes easier and less stressful with practice, however, participants gradually gravitate 

back to the ruminative thought of the default mode (Mason et al , 2007). 
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As Markus and Oyserman (1989) have argued, "there may be subtle but powerful 

differences in the nature of the self-concepts that are constructed by women and men 

because of the relatively greater tendencies of women to automatically focus on and 

incorporate others into their self structure" (p. 108). These differences in models of the 

self may account not only for gender differences in personality and behavior (Sherif, 

1982), but also for fundamental differences in functional brain activity and vulnerability 

to disease. 

Although developmental experiments of default mode activity have not examined 

gender, these studies reveal that default mode function and connectivity in infants and 

school-age children differ substantially from adults; so default mode function and 

efficiency in skills of introspection and mentalizing about others might develop through 

young adulthood (Fair et al., 2007; Fransson et al., 2007). Therefore, the possibility 

exists that gender differences in default mode activity could be influenced by early 

socialization and the development of individual self-construals. 

Limitations 

Self-Reports and Physiological Measures. Other than functional imaging, no 

physiological measures such as heart rate, Cortisol levels, or skin conductance, were 

collected in the current experiment. There is much inconsistency in the literature 

regarding the association between physiological responses and psychological stress 

(Cacioppo & Tassinary, 1990). Perhaps this is because physiological measures cannot 

distinguish between types of emotions experienced, only overall arousal level, and are 

likely a combination of biological systems that vary in time and magnitude (Wang, et al., 

2007). 
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Mauss, Wilhelm, and Gross (2004) reported that participants high in trait anxiety 

reported greater levels of stress than those with lower anxiety, and they exhibited greater 

anxious behavior, but there were no differences revealed between the two groups in 

physiological measures. There are a few possible explanations. There is likely just as 

much individual variability in physiological reactivity as there is in emotional 

experiences, and these differences may not be simply across individuals, but also across 

different kinds of emotional, behavioral, and physiological responses within individuals 

(Mauss, Levenson, McCarter, Wilhelm, & Gross 2005; Davidson, 2003). Given that 

there was greater correspondence between self-report and behavior than there was 

between self-report and physiological responses also suggests that participants might be 

influenced by socialization, especially with regard to negative emotions because they are 

often more controlled in social situations (Mauss, Evers, Wilhelm, & Gross, 2006). 

Furthermore, some participants may be more willing than others to report 

emotions (Egloff, Wilhelm, Neubauer, Mauss, & Gross, 2002). Self-reports are 

particularly vulnerable to gender stereotypes that may lead women to over report their 

emotions and men to under-report them (Wager & Oschner, 2005). Women might have 

been more willing to disclose their feelings than men, perhaps because to do so facilitates 

intimacy in relationships with others (Cross & Madson, 1997), while men might have 

been less willing to report negative emotions (Snell, Miller, Belk, Garcia-Falconi, & 

Hernandez-Sanchez, 1989) perhaps because it threatens their sense of autonomy (Cross & 

Madson, 1997). Finally, some individuals could be better able to perceive autonomic 

responses than others, and in some cases, because emotions are often automatic and may 
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not be available at a conscious level, they simply do not lend themselves to self-report at 

all (Davidson, 2003). 

Because anxiety is such a complex construct, collecting more than just a 

behavioral measure of anxiety would have provided us with a more comprehensive 

assessment of anxiety within and across individuals. An additional physiological 

measure, in particular, could have provided us with a more objective, unbiased measure 

of anxiety (Egloff et al., 2002). Further, because we used self-report, anxiety was only 

collected retrospectively. Having a physiological measure would have allowed 

continuous data collection that could have been examined along with stimulus 

presentation, as we were able to do with the reaction time data. Another consideration is 

that participants completed the state STAI as soon as they were placed in the scanner, and 

between runs throughout the session, so they might have either been more attuned to any 

anxiety symptoms or anxiety might have even increased as a result of completing the 

inventory (Quirk, Letendre, Ciottone, & Lingley, 1989). 

Finally, degree of perceived social threat could explain why overall levels of 

anxiety were greater for the preliminary experiment (see Figure 4), in which the 

experimenter was in the same room recording the participant's responses, than in the 

fMRI experiment (see Figure 12A), in which the experimenter was in a separate room 

from the participants. In the fMRI experiment, although experimenters did not address 

whether or not participant responses were being listened to and scored in real time, 

spontaneous confessions to the experimenters by some of the participants regarding the 

quality of their responses suggested that many assumed they were. This also suggests 
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that at least some participants were thinking about their performance during the control 

periods. 

Anxiety Manipulation. No explicit attempts were made to increase anxiety levels 

in this experiment, as was our intention. Any anxiety that was experienced was naturally 

occurring as participants performed a difficult cognitive task. However, to increase the 

anxiety manipulation, we might have benefited from at least emphasizing the presence of 

an evaluative audience, especially during the fMRI experiment. In a study by Rohelder, 

Beulen, Chen, Wolf, & Kirschbaum (2007), professional dancers only showed a 

significant increase in Cortisol levels when performing in front of an audience, as 

compared to during practice sessions. Therefore, subtle manipulations, for example 

videotaping the subjects' experimental sessions and informing them that a group of peers 

would score their tapes, or simply providing negative feedback to the participants 

regarding their performance, might have facilitated a stronger anxiety response. 

Controlling Words. This experiment did not control for low versus high 

constraint nouns, nor was the quality of participant responses, as weak or strong 

associates, taken into account. Furthermore, errors were few and were therefore excluded 

from all analyses, so the ACC's role in response selection, conflict monitoring, and error 

detection was not explored in this experiment (Barch, Braver, Sabb, & Noll, 2000). 

Generalizability. Because participants were recruited from the Rice University 

community, participants were primarily undergraduate and graduate students under the 

age of 35 years. Therefore, it is unknown whether or not results are representative of the 

general population. 
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Statistical Thresholding and Corrections for fMRIData. The sample size was 

particularly small, with only 8 females and 8 males, the threshold used to define regions 

was low (0.01 for transient and 0.05 for sustained effects) yet still significant, and while 

fMRI data were sphericity corrected, data were not corrected for multiple comparisons. 

To compensate, strict criteria were set to determine regions exhibiting "true" activation, 

possibly excluding some legitimate regions from further analyses. 

Control Signal. If, indeed, there are gender differences in default mode activity 

(unconstrained rest), using passive fixation as the control signal in the current fMRI 

experiment could be particularly problematic. Because medial frontal regions, in 

particular, exhibit activation that is often associated with social tasks, an additional 

simple comparison task, such as reading words, could have helped to distinguish better 

between task related activity and default mode activity between genders (Meltzer et al., 

2008). In the future, some effort should also be made to discover what individual 

processes are occurring at rest (Oschner et al., 2004). 

Hormones. Information regarding the phase of the female participants' menstrual 

cycles was not collected for the current study. Phase of menstrual cycle has been shown 

to affect emotional responding (Amin, Epperson, Constable, & Canli, 2006), cognitive 

processes (Hampson & Kimura, 1992), magnitude of BOLD signal (Dietrich et al., 2001), 

and location of functional activation (Berman et al., 1997; Shaywitz et al., 1999). 

Future Direction 

Results from the current experiment raise as many questions as they answer. Of 

most interest in future research is to further explore the influence of gender in default 

mode activity, particularly in the ventral mPFC. It will also be important to examine 
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potential factors that could account for gender differences in neural activity, including 

differences in self-construal and self-referential thought during the resting state, innate 

versus socialization effects, and trait versus state factors. This may be accomplished, in 

part, by using the recently developed mixed-blocked event-related fMRI design to 

concurrently examine the contributions of both transient and sustained neural signals to 

default mode and attentional networks. Also, inclusion of additional physiological 

measures of affect could help to remove social bias in self-reports between genders, and 

consideration of hormonal phase may help to further explain variability between 

individual female participants. There are also a lot of interesting prospects worth 

exploring with regard to the neural underpinnings of personality. Finally, correlational 

analyses and manipulations of task difficulty (computation of difference scores) seem to 

be successful methods of assessing individual variability in affective and cognitive 

regulation and adaptability. 

It is important to emphasize that in this experiment, the sample size was small and 

the thresholds were low. Therefore, until future experiments can be conducted with a 

larger sample size and greater statistical power, results should be considered tentative and 

interpretations speculative. 

Conclusions 

Exploratory analyses suggest that while the ventral and dorsal subdivisions of the 

mPFC make highly specialized contributions to the processing of emotion and cognition, 

respectively, there appears to be a complex interaction between the two subdivisions. 

More intriguing, perhaps, are results suggesting that there may be a fundamental, 

neurofunctional difference between the way in which women and men balance the 
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competing demands of emotion and cognition that may be related to differences in self-

concept and neural activity in the default mode. Future research on gender differences in 

self-schemas in relation to neural functioning in the default mode, specifically within the 

ventral mPFC using the mixed-blocked event-related fMRI design, may help to elucidate 

gender differences in affect, cognition, and psychopathology. 
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