INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfiims International
A Bell & Howell information Company
300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA
313:761-4700 800/521-0600






Order Number 1355270

Two-dimensional modeling of low and sedimentation

Srinivas, Chippada, M.S.

Rice University, 1993

U-M-1

300 N.Zecb Rd.
Ann Arbor, MI 48106






RICE UNIVERSITY

TWO-DIMENSIONAL MODELING OF FLOW
AND SEDIMENTATION

by

«

Chippada Srinivas

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

B . Q__ S vV O § o O P
Dr. Ramaswamy, Bala, Chairman
Assistant Professor

Mechanical Engineering and Materials
Science

Db 7 Llitie

I

Dr. Wheele{/,j\/lary F.

Professor
Mathematical Sciences

/ Akin, John E. N
rofessor

Mechanical Engineering and Materials
Science

Houston, Texas

August, 1992



TWO-DIMENSIONAL MODELING OF FLOW
AND SEDIMENTATION

Chippada Srinivas

Abstract

A two-dimensional (vertical) flow model is developed to simulate open channel
flow. The governing equations are solved without any depth averaging. Free surface
movement is handled with the help of Arbitrary Lagrangian Eulerian Method. k — ¢
closure is employed to determine the turbulent eddy viscosity. Spatial discretization is
done using linear 3-noded triangular elements. Galerkin method of weighted residuals
is used to obtain weak form formulation. Navier-Stokes equations are solved by
marching in time using Fractional Step Scheme. Continuity equation is replaced with
a pressure Poisson equation. Supercritical flow and hydraulic jump are simulated to
validate the flow code.

Suspended sediment transport is modeled using an advection-diffusion transport
equation for sediment concentration. Bed load transport is determined with the help
of empirical correlations. The boundary condition at the bed is specified as a reference

concentration. Sample problem involving bed erosion and deposition is solved.
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Symbols
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Nomenclature

Explanation

reference height above the bed

cross-sectional area of the channel

bed height above a datum

width of the free surface

suspended sediment concentration

reference suspended sediment concentration at height a above the bed
constant in Chézy’s equation for uniform flow
diameter of the sediment particle

hydraulic depth of an open channel
non-dimensional particle parameter
gravitational acceleration

height of the free surface

turbulent kinetic energy

mass matrix

lumped mass matrix

consistent mass matrix

Manning’s n occuring in the uniform flow formula

.pressure

hydraulic radius



s specific density of sediment

S-b5 total bed load transport across a cross-section
S—s total suspended load transport across a cross-section
S, So slope of the channel bed in radians

Sy friction slope or resistance at the bed

t time

T non-dimensional transport parameter

At time increment

u velocity component in the z-direction

Un shear velocity at the bed

U er critical shear velocity for threshold motion

U mean velocity in the z-direction

v velocity component in the y-direction

w velocity component in the z-direction

W, suspended sediment particle fall velocity

(z, 9, 2) Cartesian coordinate

VA non-dimensional suspensior parameter

z; Cartesian coordinate in i-th direction

Az, Ay spatial increment in z and y directions

Greek Letters

ar&ap lumping parameters on the LHS and RHS respectively
€ turbulent dissipation rate

K von Karman const.

U coefficient of viscosity

v coefficient of kinematic viscosity



I turbulent kinematic viscosity

Q bounded domain of R?

) porosity of the bed

b, shape function

p fluid density

c surface tension

Oij stress tensor

T tangential direction

Te critical shear stress for threshold motion given by Shields
7 time domain

Subscripts

L7,k directions of Cartesian coordinate
t derivative with time

z derivative w. r. t. z

a, B,y nodal number

.1 partial derivative w. 1. t. z;
Superscripts

n n-th time steps

* refers to dimensional value

intermediate value

Nondimensional Numbers

Fr Froude number, Fr = 7%1«'
Re Reynolds number, Re = £¥
We Weber number, We = L

ﬂ

oL

vi



Note: The symbols defined aboved are subject to alteration on occasion.
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Chapter 1

INTRODUCTION

Open channel flow and sediment transport have applications in many fields of engi-
neering. Hydraulic engineers need thorough understanding of open channel flow for
designing efficient channels, spillways, dams, reservoirs etc. Sedimentation plays no
small role in topographical evolution of earth through its influence on the evolution of
river-beds, estuaries, coast-lines, and stratification of the earth’s surface. Numerous
problems such as soil erosion, irrigation, flood control, navigation, hydraulic struc-
ture safety, environmental quality, etc. are closely related tc sedimentation processes.
The knowledge of sedimentation is also useful in predicting the permeability and
porosity distributions which is useful in oil and gas exploration and production, and
remediation of contaminated aquifiers.

Simulation of open channel flow is not easy. The physical nature of free surface
flow is fairly well understood and the governing mathematical equations are the well
known Navier-Stokes equations. However the difficulty arises in solving these equa-
tions. Flow in most cases is turbulent and there are widely varying length scales.
The channel geometries are complex and extend over hundreds of miles making it
prohibitively expensive to numerically discretize the whole physical domain.

Modeling sedimentation is even more complicated since even the physical laws
governing them are not known. Added to this is the fact that sediment transport
has some elements of stochastics in it. Close to the bed where the concentration of
sediment is considerable the normal flow equations are no longer valid. The sediment

sizes and shapes vary a lot from fine silt to boulder-sized particles. Thus to obtain one



[SV]

set of physical laws which would be applicable in all of these widely varying situations
is very difficult. Progress has also been hampered by the problem of measuring
sediment transport.

In this research an effort is made to overcome some of the above mentioned difficul-
ties. Our strategy towards solving the open-channel flow is to make no simplifications
such as depth or cross-section averaging as has been done in the past, but to solve
the complete 2-D Reynolds averaged Navier Stokes equations. Use would be made
of the powerful numerical algorithms which have been developed in the past few
years. Further, with the advent of massively parallel computing n:achines the day
when Navier-Stokes equations can be solved for real life large scale problems is not far.
Since our flow model would not have some of the constraints which the previous mod-
els had we would be able to determine important parameters such as bed-shear stress
more accurately and this would help in better modeling and understanding of sedi-
ment transport. Qur code can also be used to test some of the sediment transport
models being proposed and hence would help in determining better sedimentation
equations.

In the next few chapters various aspects of open channel flow are discussed and
some sample problems are solved to test the accuracy and robustness of the flow
code. Then this flow code is coupled with a sediment transport model to simulate
sedimentation and bed erosion. Finally we summarize cur efforts and establish future

research directions and goals.



Chapter 2

OPEN CHANNEL FLOW CHARACTERISTICS

In this chapter we discuss open-channel flow and some of its important features.

Only issues important from the point of view of numerical modeling are discussed.
For a more detailed description the excellent texts on this subject by Chow(1959)
and Henderson(1966) are good references.

An open channel is a conduit in which water flows with a free surface. Classified
according to its origin a channel may be either natural or artificial. Although there are

many similarities between open-channel flow and pipe flow one important difference

between the two is the presence of free surface in open-channel flow. Open-channel

flow is more difficult to study than pipe flow and some of the reasons are [Chow,1959]:
® position of the free surface likely to change with time and space.

e depth of the flow, the discharge, and the slope of the channel bottom and of

the free surface are interdependent.
* reliable experimental data more difficult to obtain.

* physical conditions of open channels vary much more widely than pipe flow,

€.g., cross-section can be any shape, surface roughness varies more widely than

in pipe flow.

The state or behaviour of open-channel flow is governed basically by the effects of

viscosity, surface tension and gravity relative to the inertial forces of the flow.



2.1 Effect of Viscosity

The effect of viscosity relative to inertia can be represented by the Reynolds number,

defined as

Re = - (2.1)
where U is the characteristic velocity, L is the characteristic length and v is the
kinematic viscosity of water. It is well known that below a certain critical value of
the Reynolds number the flow will be laminar in nature, while above this value, flow
would be turbulent. For pipe flow this critical Reynolds number for transition to
turbulence has been found to be around 2,000. But unlike in pipe flow, in an open
channel a large part of the total thickness continues to be occupied by the relatively
nonturbulent “laminar sublayer,” even at large flow rates (Re > Re.;). Hence,
the transition from laminar to turbulent flow cannot be expected to be so sharply
marked as in the case of pipe flow. Nevertheless, it is of value to subdivide film
flow into laminar and turbulent regimes depending on whether (Re <> Reqpit). For
practical purposes, the transitional range of Re for open-channel flow may be assumed
to be 500 to 2000 {Chow,1959]. In open-channel flow the characteristic length is made
equal to the hydraulic depth Dg, which is defined as the cross-sectional area of the
water normal to the direction of flow in the channel divided by the width of the free
surface.

Laminar flow occurs very rarely in open channels. The fact that the surface of a
stream appears smooth and glassy to an observer is by no means an indication that
the flow is laminar; most probably, it indicates that the surface velocity is lower than
that required for capillary waves to form. Laminar open-channel flow is known to
exist, however, usually where thin sheets of water flow over ground or where it is

created deliberately in model testing channels.
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2.2 Effect of Gravity

The effect of gravity upon the state of flow is represented by the ratio of inertial forces

to gravity forces. This ratio is given by the Froude number, defined as

Fr= % (2.2)

where U is the mean velocity of flow, g is the acceleration due to gravity, and L is a

characteristic length. There are three states of flow depending on the value of Fr:
e Fr =1, the flow is said to be in a critical state.

e Fr <1, the flow is said to be in a subcritical state. In this state the role played

by gravity forces is more pronounced; so the flow has a low velocity and is often

described as tranquil and streaming.

e Fr > 1, the flow is said to be in a supercritical state. In this state the inertial
forces become dominant; so the flow has a high velocity and is usually described

as rapid, shooting, and torrential.

In the mechanics of water waves, the critical velocity /gL is identified as the
celerity of the small gravity waves that occur in shallow water in channels as a re-
sult of any momentary change in the local depth of the water. Such a change may
be developed by disturbances or obstacles in the channel that cause a displacement
of water above and below the mean water surface level and thus create waves that
exert a weight or gravity force. It should be noted that a gravity wave can be prop-
agated upstream in water of subcritical flow, since the celerity is greater than the
velocity of flow. Therefore, the possibility or impossibility of propagating a gravity
wave upstream can be used as a criterion for distinguishing between subcritical and

supercritical flow.



2.3 Effect of Surface Tension

The effect of surface tension on the flow can be expressed by the ratio of inertial
forces to surface tension forces given by,
|%
We =

e (2.3)
pL

where o is surface tension and p is density of the fluid. Analogous to Froude number,

Weber number(We) also represents the ratio of mean fluid velocity to the celerity
of a capillary wave in shallow channels. The surface tension of water may affect the
behaviour of flow under certain circumstances, but it does not play a significant role

in most open-channel problems encountered in engineering.

- 2.4 Rapid Variations in Flow

Change of the state of flow from subcritical to supercritical or vice versa occur fre-
quently in open channels. Such change is manifested in a corresponding change in the
depth of flow. If the change takes place rapidly over a relatively short distance the
flow is said to be rapidly varied. Rapidly varied flow has very pronounced curvature
of stream lines and is usually in a high state of turbulence resulting in separation
zones, eddies and rollers. The hydraulic drop and hydraulic jump are two types of
local phenomena and are described below.

Hydraulic Drop: A rapid change from a high stage to a low stage (i.e., from subecrit-
ical to supercritical) will result in a steep depression in the water surface. Such a
phenomenon is generally caused by an abrupt change in the channel slope or cross
section and is known as hydraulic drop.

Hydraulic Jump: When the rapid change in the depth of flow is from a low stage to a
high stage (i.e., from supercritical to subcritical), the result is usually an abrupt rise of
water surface. This local phenomenon is known as the hydraulic jump. The hydraulic

jump involves a relatively large amount of energy loss through turbulent dissipation.



Consequently, the energy content in the flow after the jump is appreciably less than

that before the jump.

2.5 Flow Modeling Aspects

In the preceding sections some of the important features of open channel flow have
been discussed. The flow model to be developed should have the capability to sim-
ulate these features. For clarity some of the open-channel features important from

numerical modeling point of view are restated below:
1. Free surface could vary with time and space.
2. In most instances flow is turbulent.

3. The channel bottom roughness varies a lot and has a significant effect on the

flow.

4. The flow could change rapidly as in the case of a hydraulic jump or hydraulic
drop resulting in large gradients in flow height and velocities( similar to shock

waves in compressible flow).

5. The channel geometry in general is very irregular and complex. Also the chan-

nels could be curving and meandering giving rise to secondary currents.

6. In natural river bodies like estuaries and lakes, periodic phenomena such as

tidal currents and waves are of significance.
7. Disturbances propagate as gravity waves on the free surface.

8. Surface tension is not very significant in most open-channel flows and can be

neglected.



9. Sediment transport could lead to bed deformation and formation of bed form
features such as ripples and dunes. Thus not only the free surface but the bed

also changes with time and affects the flow.



Chapter 3

GOVERNING EQUATIONS FOR OPEN
CHANNEL FLOW

3.1 Unsteady Open Channel Flow Equations

The governing equations for the fluid flow are the well known incompressible Navier-
Stokes equations and the continuity equation. The equations in cartesian co-ordinates

for a typical open-channel as shown in Fig.3.1 are given by [Lai,1986):

%+§—;+g—f=0 (3.1)
%+ug—2+vg—;‘+w%=—%g§+vv2u (3.2)
%+u%+vg—;+w%=—%g—§+vv2v (3.3)
aa—?+ug—1;+v§—z:+wg—f=—g—%%+vvzw (3.4)

u,v, and w are the z,y,z components of flow velocity ; Dyv,p, and t stand for fluid

pressure, kinematic viscosity, fluid density, and time: and the symbol 572 signifies the

Laplace operator

2 52 g2
2 _ = = -
V= 522 + By7 + 3.2 (3.5)

The effect of earth’s rotation which gives rise to Coriolis force has been neglected in
the above mathematical system. Coriolis force is however important if the channels

are very wide and should be accounted for in such cases.

3.2 Uniform Flow Formulas

Flow is said to be uniform if the velocity distribution across the channel cross sec-

tion is constant along the channel. This is attained when the boundary layer is fully
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Figure 3.1: Typical open-channel geometry: (a)profile and (b) cross sec-
tion.
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developed and reaches the free surface. However, uniform flow cannot occur at high
velocities as the flow becomes unstable and if the velocity is further increased entrain-
ment of air occurs. The best known and the most widely used uniform flow formulas

are Chézy and Manning formulas. The Chézy formula is expressed as

U=CvVRS (3.6)
and the Manning formula is expressed as
U= %Rg/sSl/z (3.7

where U is the mean velocity, R is the hydraulic radius and S is the slope of the
channel, C is the factor of resistance also called Chézy’s C and n is the roughness
coefficient also called Manning’s n. In metric and inch-pound systems, A assumes
values of 1 and 1.486, respectively. C and n are dependent on various factors such as

channel roughness, geometry, discharge, flow depth, viscosity etc.

3.3 Shallow Water Equations

The momentum and continuity equations are integrated in the vertical direction to
remove the dependency on the vertical coordinate. Thus 3-D equations are converted

into 2-D. Denoting % and @ as the mean values of u and w over the vertical,

_ 1 sk
u= 'h—-_'—b‘/; udz (3.8)
1o

The continuity equation for two-dimensional (x-z plane) shallow water flow is given

by [Lai, 1986]:

ok 0 ,,_ .,
B + a(hu) + E(hw) =0 (3.10)

In the derivation of above equation lateral inflow or outflow due to rain fall, evapo-
ration or seepage has not been considered.
In a nearly horizontal flow, the vertical acceleration of a fluid particle is very

small compared with the acceleration of gravity g and may be neglected. It is further
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assumed that shear stress due to the vertical velocity component is also negligible.
Thus the z-momentum equation reduces to
0= —pg— 2 (3.11)
Integrating and, assuming the atmospheric pressure p, to be zero we obtain,
p=pg(h—y) (3.12)
Above equation tells us that pressure in the vertical direction is hydrostatic, which

is found to be a reasonable approximation if the slope of the channel is not too large

[Henderson, 1966). Thus,

7] oh

a_z = pg5- (3.13)

a Oh

a—lz; = pga (3.14)
Integrating the z and y momentum equations in the vertical directions we obtain

0, 0 o 0 __ Ok

F1 @)+ g7 [B8°(h = B)]+ 5~ [Beao(h — B)) = ~g 0 (=) —g(h—1)S (3.15)

0 0 0 ok

71 (Ph)+ 57 1B=x20(h = B)l+ o [8:0%(h — b)] = ~g5=(h—b)—g(h—)S.(3.16)
where

ﬂz‘zz——l— huzd (3.17)

T T h—bh y .
b
Bz = hL—b/h uw dy (3.18)
h
ﬂzu'zz = h%b' A 'wz dy (3.19)

Syz and Sy are the shear stress at the bed in z and 2 directions, respectively and
are determined using uniform flow formulas such as Manning’s formula or Chézy’s

equation. B, B. and B, are called momentum correction factors and are often

assumed to be unity.

3.4 Saint-Venant Equations

If the above derived 2-D shallow water equations are further integrated in the z

direction we obtain the famous Saint-Venant equations. These are nothiug but the
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cross-section averaged Navier-Stokes and continuity equations. Most of the numerical
study in open-channels is done using these 1-D Saint-Venant equations. 2-D shallow
water equations are used only when the open-channels are very wide as in the case of

large estuaries or lakes.

Bg—’; + a%(UA) =0 (3.20)
0 9, ., oh
E(UA) + g(U A)+ gAa—z + gA(S;—So) =0 (3.21)

where A is the cross-sectional area of the channel, B is the width of the free surface,
U is the average velocity across the cross-section, Sy is the friction slope determined
from any of the empirical formulas and S, is the slope of the channel bed in z-
direction. There have been a number of assumptions and approximations in deriving

these averaged equations which are explained in great detail in Lai( 1986).

3.5 Previous 3-D Unsteady Flow Models

To date not much 3-D modeling has been done in hydrodynamics. However, with the
rapid progress made in the computer hardware and algorithms, in recent years some
3-D modeling work has been done. However these are not complete 3-D models but
contain some approximations to make solution on the computers feasible. Some of

the ideas incorporated in these 3-D models are listed below:

1. Multi-layered type models have been developed in which the the flow is divided
into many layers and 2-D shallow water equations are assumed to be valid in

each layer. This gives a better representation of the shear stresses at each layer

[Su, 1986].

2. Higher degree polynomial bases functions are used to describe the vertical struc-
ture. For instance, the vertical variation of the horizontal velocities could

be taken to be hermite cubic and this can even handle recirculation regions

[McCarty(1986))].
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3. Rigid-lid models are some times used if the free surface doesn’t vary much from
a mean flow height. This is done to overcome the stringent restriction imposed
by surface gravity waves on the maximum time step allowed in time marching

schemes. In this case the gravity waves no longer exist as the free surface cannot

move[Sheng, 1978].

4. Procedures have been developed which divide the computations into a external-
mode calculation and an internal mode calculation. In the external mode calcu-
lations free surface height and average velocities are computed from the depth
averaged equations. Even though the gravity waves limit the time step severely
the calculations are not too expensive since they are only 2-D calculations. Once
in a few time steps full 3-D calculations are done and this is called internal mode
step. This step gives us more accurate shear stresses since it is a full 3-D model

and these shear stresses are used in the external mode step [Sheng, 1978].

3.6 2-D Flow Model Definition

From the preceding paragraphs it can be concluded that flow in an open-channel is
governed by the incompressible 3-D Navier Stokes equations. But, since it is difficult
to solve them numerically or otherwise depth averaged and cross-section averaged
models are being used by the hydraulic engineers. Only recently researchers have
started doing 3-D or pseudo 3-D modeling. It must be recognized that accurate
predictions of velocities and shear stresses are necessary to model sediment transport.
Thus our efforts are going to be towards solving complete 3-D Navier Stokes equations.
But, as a first step 2-D Navier Stokes equations are solved to better understand the
various concepts and difficulties involved in the modeling of open-channel flow and
sedimentation. Use of 2-D equations essentially mean that the variables are assumed

to be invariant in the z-direction (width) and there are no velocities in this direction.
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The physical domain is illustrated in the Fig.3.2. The z-axis is taken to be along
the bed. Thus if the channel is inclined then the body force (gravity) has components

in both z and y directions. The 2-D flow equations are:

Ou Ou Ou . 1 ap 0 u 0 ou

Ov dv ov 6 0 av 0 v

E + ’UE + va—y = —gcos0 - —6— + = ax 63: + 6—y1/a—y (323)
Ou v

E + % =0 (3.24)

An additional equation is needed to determine the free surface height. This is obtained

from the kinematic equation for the free surface:
oh oh
N + Uzo =0 (3.25)

At the chanrel bed no slip and impermeable boundary conditions give us
u =0, and v = 0 at the wall. (3.26)
At the free surface the normal stress equals the atmospheric pressure after neglecting

the surface tension.

p— 2V§ =Pa (3.27)
Usually due to the high Reynolds number the viscous stresses at the free surface can
be neglected and taking p, = 0 we obtain,

p=0, on the free surface. (3.28)

The tangential stress should equal the stresses due to wind but they are generally

neglected. Therefore,

Ou, Ou,
=) - . 2
v ( 5 + 5 ) 0 on the free surface (3.29)

Eqs.3.28 & 3.29 together represent the boundary conditions on the free surface. At

the inlet the velocities are imposed as dirichlet boundary conditions.
u = U, and v = V;, at the inlet. (3.30)

At the exit normally fully developed velocity profile boundary conditions are imposed.

@ =0 and v = 0 at the exit. (3.31)
Or



' free surface
g

Non-erodible
bed

Figure 3.2: Two dimensional physical domain
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At the inlet the free surface height is specified.

h = H;, at the inlet (3.32)
and at the exit we may or may not specify the free surface height, i.e., it depends on
the problem.

Rest of this work concerns itself with solving the four equations 3.22,3.23,3.24
and 3.25 for u,v,p and h with appropriate boundary conditions as explained above.
However the physical modeling is not complete yet. In the next chapter we discuss
turbulence and the inclusion of two more dependent variables, namely, the turbulent

kinetic energy (k) and the turbulent dissipation rate (¢) in our model.



Chapter 4

TURBULENCE

4.1 Reynolds Averaged Equations

As already mentioned, open channel flow as it occurs in nature is almost always
turbulent. Hinze(1975) defines turbulence as “Turbulent fluid motion is an irregular
condition of flow in which the various quantities show a random variation with time
and space coordinates, so that statistically distinct average values can be discerned.”
It is believed that the solution of time-dependent 3-D Navier-Stokes equations can
describe turbulent flows completely. The reason why these equations cannot be solved
as they are is that the length scales occuring in turbulence are very small and would
require a very small grid spacing and consequently small time step to numerically
resolve these scales. This is beyond the reach of the present day computers. The main
thrust of present day research in turbulent flows is through the time-averaged Navier-
Stokes equations. These equations are also referred to as the Reynolds equations of
motion or the Reynolds averaged equations.

The Reynolds equations are derived by decomposing the dependent variables in the
conservation equations into time mean (obtained over an appropriate time interval)
and fluctuating components and then time averaging the entire equation.

u=1u+4+u, v=0+v, w=w+u, p=p+p

The Reynolds averaged continuity and momentum equations are-

du;

5o = (4.1)
O | 0 qay= 08 08 om —— 2
T a—xj(u:ug) = oz T 3,5, uiu;) (4.2)
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Due to the nonlinear advection terms the fluctuating components donot disappear
with Reynolds averaging but reappear as Tug which are called the apparent stresses
or Reynolds stresses. These new quantities (six of them) are to be determined from
the mean flow field and presents us with the classic closure problem. These terms are
modeled using physical and dimensional arguments and the unknown coefficients are
tuned using experimental data.

Some of the most commonly used models for turbulent simulation are discussed

in the next few sections.

4.2 Zero equation model

Prandtl’s mixing length hypothesis which is the first turbulence model ever proposed.
is still among the most widely used models. It employs the eddy viscosity concept
which relates the turbulent transport terms to the local gradient of mean flow quan-
tities. For example, for thin shear layers

—av = Vtg—z (4.3)
where v; = eddy viscosity. The Prandtl’s mixing length hypothesis calculates the
distribution of eddy viscosity by relating it to the mean velocity gradient:

v=C 1 50 | (+4)
This relation involves a single unknown parameter, the mixing length [, whose distri-
bution over the flow field has to be prescribed with the aid of empirical information.
The mixing length model has been used for free shear layers and wall boundary lay-
ers. The main drawback of this model is the evaluation of I,, for different flows. The
incorporation of the effects of curvature, buoyancy or rotation in the model is entirely
empirical. The transport and history effects of turbulence are not accounted in the

mixing length model. The more generally applicable models to be described below

account for these effects by introducing transport equations for turbulent quantities.



4.3 One Equation Models

The one equation model requires the solution of an equation for the turbulent ki-
netic energy, k and, as a result, allows for its transport. The transport equation for
turbulent kinetic energy can be derived from the Navier-Stokes equations.

k= %ﬁ (4.5)
The eddy viscosity is modeled by v, = C.kY. The length scale [ is specified alge-
braically and hence is flow dependent. It is difficult to incorporate the length scale
empirically for complex flows with separation, streamline curvature or rotation. One

equation model is not very popular since it performs only marginally better than the

zero equation model.

4.4 Two equation Models

This class of models is the one widely used in the present day engineering calculations.
In attempts to eliminate the need for specifying the turbulence length scale as a
function of position throughout the flow, a second differential equation which in effect
gives | has been used. Some of the two equation models proposed are k — ki, k — w,
and k — ¢, where ! is the length scale of turbulence, w is the time average square of

the vorticity fluctuations, and ¢ is the dissipation rate of turbulent kinetic energy.
Ou! duj
e=yoil¥ (4.6)
63}: 3:1:k

It is possible to transform & — ¢ into k¥ —w and vice versa. However, the k — € model
has become the most popular because of the practical advantage that the e-equation
requires no extra terms near the walls. Also, e itself appears in the k-equation and

the e-equation requires no secondary source term.
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4.5 Reynolds Stress Models

The main limitations of the two equation models are the assumption of isotropic eddy
viscosity and the need to model buoyancy, rotation and curvature effects separately. In
the models discussed so far the local state of turbulence is assumed to be characterized
by cne velocity scale vk. In actual flows, the scales may develop quite differently.

In order to account for the different development of the individual stresses, transport

equations for 7z; have been introduced. In this model one needs to solve the equation

for the turbulence energy dissipation rate ¢, in addition to those for w7 7 for the length
scale. A particular advantage of the Reynolds stress model is that terms accounting
for buoyancy, rotation and other effects are in principle introduced automatically.
Because of the complexity and the large amount of computational effort required, the

model has not been used much [Nallasamy, 1987).

4.6 Algebraic Stress Model

In Reynolds stress models, there are differential transport equations for each com-
ponent of 7z in addition to the € equation. To reduce the computiational effort,
Rodi(1984) proposed an algebraic relation for calculating the Reynolds stresses. The
convection and diffusion terms in the transport of u;u; are replaced by model approx-
imations, reducing the equations to algebraic equations. The algebraic expressions
together with k and e equations form an extended k — ¢ model. Algebraic stress
models can simulate many of the flow phenomena that were described successfully by

stress-equation models without being too computationally expensive..

4.7 Large Eddy Simulation (LES)

This method calculates the large-scale structures of the turbulence explicitly, while

modeling the small ones. It is three-dimensional and time dependent, and provides
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considerable detail about a flow. This makes it a valuable tool for investigating
both the physics of turbulence and the models used to represent it. Its application
is currently limited to simple flows and relatively low Reynolds numbers. It is too
expensive for direct engineering use at the present time, but may see limited use

In engineering design as the cost of supercomputers comes down and their number

increases [Ferziger,1985).

4.8 Full Turbulence Simulation

In this approach, one solves the unaveraged time dependent Navier-Stokes equations
for a turbulent flow numerically. The set of flows which can be treated in this way
is small, but its accuracy makes it a complement to laboratory experiments for in-
vestigation of both physics and turbulence models. It is also ideal for i.nvestigating
phenomena associated with the small scales of turbulence, especially subgrid scale

models for large-eddy simulation.

4.9 Selection of Turbulence Model : k—¢ Turbulence Model
Chosen

In summary it could be said that the more number of transport equations to calculate
the Reynolds stresses the more accurate is our representation but at the same time
more expensive too. Thus our selection is essentially a compromise between accuracy
and cost effectiveness. According to the ASCE Task Committee(1988) appointed to
look into the use of turbulence models for simulation of hydraulic flows, k— e model is
the one being most widely used. The k — € model predicts the flow fairly accurately.
It has the additional advantage (over mixing length models) that it can simulate

recirculating flows also. Thus k£ — € model has been chosen by us to model turbulence.
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The k—e model employs the eddy viscosity and relates it to k and e. In addition to
the momentum and continuity equations there are two additional transport equation
to be solved, one for turbulent kinetic energy (k) and another for dissipation rate of

turbulence kinetic energy (¢). The most widely used k& — ¢ model is the one proposed

by Launder(1974).

ﬁ_la v ok ” 6U;+8Uk aU,-_e (4.7)

Dt pa:l:k Ok a.’l:k : oz Oz; | Oz )

De 1 8 [v, Oc oU; 0OU\ 8U; €2

= | — Cop— 4.8

Dt pOzi [o, a:ck] Cing (3 Tr + 69:;) Oz C: k (4.8)
= C“kz/e (49)

The constants in these equations are[Launder, 1974]:

C,=009, Ci=14, C,=192, 0r=1.0, 0. =13
The coefficients are constants in the sense that they are not changed in any calculation.
However, these constants need to be changed in order to accomodate the effects such
as curvature, low Reynolds number, near wall, etc. Dropping the bars on top of the

variables, since no ambiguity would result the mathematical system to be solved is:

% + g; 0 (4.10)
-g—z:+ gu+vgy—gs nd — _z_+8 (v +”‘)g 6 ( +ut)a (4.11)
% + ug—z + vg—; = —gcosf — ;g—:: + a(v + vt)% + 53;-(” + Vt)?’:?_;; (4.12)
% * “% =v (4.13)
B = yo o] o (e S2) B2 10
B = 5o )+ O (B 52 G- o e

Thus the number of dependent variables increases to six (u, v, p, &, k, €) and our math-

ematical system comprises of six partial differential equations.



4.10 Boundary Conditions for k£ — ¢ Model

Specifying appropriate boundary conditions for k and ¢ is not as straight forward as
it is for velocities. Close to the wall there exists a small layer where the viscous effects
dominate over the turbulence effects (viscous sublayer). The turbulent equations are
not valid in this region. Modifications have been made to k— ¢ equations to make them
valid over the whole region called low Reynolds number models [Launder, 1974]. But
a more popular way is the use of wall functions in specifying the boundary conditions.
Dirichlet boundary conditions for k and ¢ are not specified on the wall but at one grid
point away from the wall (Fig.4.1). Close to the wall universal velocity distribution

is assumed to be valid and the shear stress is calculated from the velocity at point P.
K

P —
in (B2)
The quantity kp, the value of k at the grid point P, is computed by assuming that

Ue = U

(4.16)

the generation and dissipation of energy are equal in the wall layer where the shear

stress is uniform and the length scale is proportional to the distance from the wall.

u? ul

=
y EP=——
\/Cu KYp

E is a function of wall roughness and is equal to 9.0 for smooth walls. Use of wall

kp = (4.17)

functions helps us jump the layer in which the gradients are very large and hence is

P

-

Ip

Figure 4.1: The near-wall nodes.
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computationally advantageous. Moreover, information pertaining to factors such as
wall roughness, pressure gradient, curvature etc. can be introduced through these
wall functions.

At the free surface the normal gradients of & and ¢ are normally taken to be zero.
Usually at the inlet the state of turbulence of the flow entering the test domain is not
known. Thus imposing boundary conditions for k and € is dificult. One way is to take
the value of k as a percentage of the inlet kinetic energy, ki, = f UZ,. Rahman(1991)
took the value of f to be 0.0045. The value for € can be estimated from the value of
k assuming the mixing length to be 0.09H;,, giving €;, = Cukf’,{"’/ (0.09H;,). At the

exit plane the gradients of k£ and ¢ could be taken to be zero.

4.11 Free Surface Effects on Turbulence Structure in Open
Channel Flow

When the turbulent eddies in a water flow impinge on the water surface, they cause a
slight upward deflection of the surface which, in turn, generates an excess hydrostatic
pressure pushing back the eddies. Hence, the vertical turbulent motion is damped by
the presence of a free surface and, due to continuity, the fluctuations parallel to the
surface are increased. Both the surface damping of the vertical fluctuations and the
reduction of the turbulent length scale inhibit the vertical momentum transport by
the turbulent motion so that the eddy viscosity is reduced near a free surface. In open
channel flow, the eddy viscosity has typically a parabolic distribution while for closed
channel flow the eddy viscosity does not decrease much towards the syrametry plane.
To simulate the free surface effects on turbulence Celik(1984) suggested imposing the
boundary condition for ¢ on the free surface as €, = £~ instead of the symmetry

0.18H
condition, where H is the channel depth.
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4.12 Surface Roughness

The channel bed is usually very irregular and rough. The effective height of the irreg-
ularities forming the roughness elements can be represented in terms of the equivalent
sand roughness height, k,. The ratio ks/R of the roughness height to the hydraulic
radius is known as the relative roughness. If the roughness elements are considerably
small and are submerged within the laminar sublayer then the flow is considered to
be hydraulically smooth and roughness has no effect on the velocity profile. In con-
nection with flow in pipes or on flat plates at zero incidence, Schlichting gives the

following condition for a surface to be hydraulically smooth:

<3 or ky<— (4.18)
where u, is the friction velocity. If the roughness height is greater than the critical
value, the roughness elements will have sufficient magnitude and angularity to extend
their effects beyond the laminar sublayer through and thus to disturb the flow in the
channel. The surface is therefore said to be rough. In rough channels, the velocity
distribution will depend on the form and size of the roughness projections, and a
stable lamirar sublayer can no longer be formed. The universai velocity distribution

can be written as:

ui = -’lzln 9yu,., for smooth surfaces, k’:' <5 (4.19)
L. -l—ln 30y, for rough surfaces, kot >5 (4.20)
Ue Kk, v

Usually there is a range 5 < ksu./v < 70 in which both the laminar viscosity and
surface roughness have an effect on the flow and is called the transition regime. But,
this transition zone has been neglected by us as there is no available formula for

universal velocity distribution in this regime.



Chapter 5

ARBITRARY LAGRANGIAN EULERIAN
METHOD

With the turbulence modeling also complete, the system of equations are ready to
be solved. In this chapter we discuss the method by which we overcome the problem
posed by the changing free surface.

One of the reasons why open channel flow is so difficult to solve is that the free
surface changes with time. Thus the computational domain is not known apriori and
must be computed as part of the solution. Boundary conditions must be applied at a

surface whose location is unknown. This introduces additional nonlinearity into the

already nonlinear Navier Stokes equations.

5.1 Eulerian and Lagrangian view points

Traditionally fluid flow has been described using one of the following view points
namely, Eulerian or Lagrangian. In the Eulerian view point attention is focused on
some point in space and the changes in the fluid are described as functions of time
at this point{Hirt(1974), Kawahara(1984), Ramaswamy(1990)]. In this method the
fluid can undergo arbitrarily great distortions without loss of accuracy and outflow
walls are particularly easy to handle. However, local resolution is difficult to achieve,
and interfaces become blurred.

In the Lagrangian view point attention is focused on an infinitesimal fuid el-
ement and the changes in this fluid element are expressed as functions of time

[Ramaswamy(1987), Hirt(1970)]. Lagrangian methods permit accurate treatment of
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relatively low-amplitude free surface motions. In addition, they are easy to modify for
multimaterial studies and the incorporation of surface-tension effects. Their principal

disadvantage is that accuracy breaks down when distortions are large.

5.2 ALE View Point

A new technique called Arbitrary Lagrangian Eulerian (ALE) method has been de-
veloped which combines the advantages of purely Eulerian and purely Lagrangian
view points without their disadvantages [Ramaswamy(1990), Hirt(1974)]. The nodal
points of the mesh are moved independently of the fluid motion in this procedure.
Because of the Lagrangian aspects of this technique, it is applicable to free surface
flows, but it also retains the ability of Eulerian techniques to overcome undesirable
grid distortions often associated with Lagrangian methods.
Changing the frame of reference changes the time derivatives. In the case of
Eulerian approach acceleration of any quantity is given as:
% +u-V : Eulerian time derivative (5.1)
Whereas in Lagrangian approach since the grid particle move along with fluid particle

the convective terms disappear and the time derivative becomes:

9
ot
In ALE method the grid points move independently of the fluid particles and hence

Lagrangian time derivative (5.2)

the ALE time derivative becomes:

% +{(u—-w)-V : ALE time derivative (5.3)
where w is the velocity of the grid point. In Eulerian approach the grid points are fixed
and hence w = 0 whereas in Lagrangian approach the grid points move along with
fluid particles, i.e., w = u and the convective terms disappear. Thus the Lagrangian

and Eulerian view points can be seen as special cases of ALE view point.
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5.3 Free surface on vertical spines

We are interested in using ALE approach to solving open channel flow problems.
Physical domain generally consists of an inlet or upstream end where the flow enters,
an exit or downstream end through which the fluid flows out, a bed-water interface
at the bottom and a water-air interface at the top. For these type of problems it is
more easier to let the grid points move in the vertical direction but restrict them in
the horizontal direction. That is we could visualize the free surface to be floating on
vertical spines as shown in Fig5.1 This is not a new approach and has already been
used by some investigators previously [Saito(1981), FIDAP(1991)]. Since the velocity
gradients are large near the bed it is desirable to have closer mesh spacing near the
wall. This is incorporated by distributing the grid points in a sigma stretched fashion.
After each update of the free surface the grid points are redistributed on the spines
in a similar manner. Due to this the nodes retain the same aspect ratio as set up by

the initial mesh.

5.4 Governing Equations in ALE Formulation

As already stated the time derivatives in the ALE description are different from

the Eulerian description. Thus the mathematical system to be solved using ALE

description becomes:

du Ov

% T oy = 0 (54)
—66—1; + ug—z + (v — wy)g—z = gsinf — %% +V-(v+1y)Vu (5.5)
Gt - w) =gt~ L2 40 (4w (56)
AN (5.7)
ok ok ok v
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Figure 5.1: Free surface resting on vertical spines
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O¢ 1 u 9 ¢
at Oz k

where P, = utg—;‘: (g—;‘i— + %{_ﬁ). The boundary conditions remain the same. It is to be

+ ('0 — wy)g—; = Pk —_ Cl-;gé + Cgv . %Vﬁ (59)

noted that since the nodes don’t move in the z-direction, w, = 0 and is not shown in

the above equations.



Chapter 6

NUMERICAL METHOD

The next step in our flow modeling process is to solve the nonlinear partial differen-
tial equations governing the flow. Analytical solutions are almost impossible due to
nonlinearities. The only other way they could be solved is through numerical means.
The philosophy behind most numerical methods is to convert the partial differential
equations into a set of algebraic equations which can be solved on the digital comput-
ers. The most common ways of doing this is finite difference method, finite element
method and finite volume method. Finite element method has some very desirable
properties the most important among them being the capability to handle irregular

geometries. Thus we chose to use finite element method to solve our equations.

6.1 Selecting The Dependent Variables

The variables u, v and p are called the primitive variables. However, we can define
other mathematical entities such as stream function, vorticity and velocity potential

in terms of these primitive variables. Prominent among the various formulations for

Navier-Stokes equations are:
e Stream function-vorticity formulation [Cheng(1972), Baker(1973))].
® Velocity-Pressure formulation [Harlow(1965), Chorin(1967)].
e Penalty function formulation (Iga, 1989)].

All the above formulations have their own advantages and disadvantages and are to be

chosen depending on the nature of the problem. Stream function-vorticity formulation

32



33

has the advantage of satisfying continuity equation exactly and of not having to solve
for pressure. But it is not possible to define a stream function in three-dimensions
and hence has not been used by us. The disadvantage with penalty formulation is
choosing the penalty parameter whose selection could prove to be very tricky. Hence
the primitive variable formulation in which the dependent variables are velocity and
pressure has been used in our flow model. The boundary conditions, especially at the

free surface are easier to handle using the primitive variables formulation.

6.2 Solving For Pressure

Apart from the fact that Navier-Stokes equations are nonp-linear, the absence of pres-
sure in the continuity equation in the case of incompressible flow poses the biggest
problem. In compressible flow the time derivative of pressure appears in the continu-
ity equation and evaluation of pressure does not pose as much challenge as it does in
incompressible flows. Direct solution of u, v and p would require that approximating
spaces satisfy the Babuska-Brezzi stability criteria. In order to satisfy the Babuska-
Brezzi stability criteria the approximating spaces for the pressure are chosen to be
of lower order than those used for velocities, i.e., staggered grids(Fig.6.1e) or mixed
formulations need to be used.

However, if u, v and p are solved for in a decoupled manner, then we could ob-
tain stable solution using both staggered(Fig.6.1e) and non-staggered grids(Fig.6.1f)
[Zienkiewicz, 1991]. There are two common formulations for the numerical solution
of the incompressible Navier-Stokes equations in primitive variables, the artificial
compressibility and the pressure Poisson equation methods. The velocity field is
calculated from the time dependent momentum equation using time marching tech-
niques, while each method employs a different equation to compute the pressure. In

the artificial compressibility method, a time derivative of the pressure is added to
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the continuity equation and the incompressible field is treated as compressible dur-
ing transient calculations [Chorin, 1967]. On the other hand, the pressure Poisson
method replaces the continuity equation with a second-order elliptic Poisson equa-
tion for the pressure [Harlow, 1965]. However, if artificial compressibility method is
chosen then equal order approximations for pressure and velocity would require that
a fourth order pressure derivative be added to the continuity equation to stabilize the
solution. But no such stabilizing term need to be added if pressure is obtained using
Poisson equation as the stabilizing term is inherent in the procedure. We chose to use
the pressure Poisson equation since it was felt that artificial compressibility method

may impose a more stringent restriction on the time step.

6.3 Fractional Step Method

Velocities and pressure are decoupled and solved in a sequential manner using Fractional
Step Method (Projection Method) first proposed by Chorin(1968). Starting with the
initjal solution u(z,y,0) = uo, the Navier-Stokes equations are solved successively as
follows:

The intermediate velocities, #;"*! are evaluated neglecting the pressure gradient terms

in the momentum equation.
artl—ur 9 ourt? Ou?

At - axj (V + Vt) 6233- = —(uj —w; )6_273 + fT (61)

The advection terms are treated explicitly using the Euler forward scheme. The vis-

cous terms are treated implicitly. Hence this procedure can be said to be semi-implicit
in time. In this step the dirichlet and Neumann boundary condition for u; are im-
posed. The intermediate velocities (#;"*') however are not divergence free and need
to be corrected.

Step 2:
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Pressure is evaluated using the Poisson equation which is obtained by taking diver-

gence both sides of the Navier-Stokes equations and imposing the divergence free

condition on the new time step velocities, u;"+1.
~n+1
n _ 1 08

TS 2
p,n At al':, (6‘ )
Step 3:

The pressure gradient terms previously omitted in the evaluation of @;**! are added

back.
u?+1 _ ﬁ;{t+1 1 apn+1

= (6.3)

Evalualtion of u?*! and p"*! mark the end of the time step calculation and the

procedure is repeated every time step.

6.4 Spatial Discretization

The previous section dealt with the temporal discretization strategy for the Navier-
Stokes equations. Spatial discretization in finite element method involves the dividing
of the physical domain into small elements which could be of any shape like triangles,
rectangles etc. as shown in Fig.6.1. The unknown function is assumed to have
a polynomial variation within the element and is expressed in terms of the nodal
variables. Depending on the type of polynomial variation desired we need to place
that many nodes in each element. For example as shown in Fig.6.1 we could have
either 3-noded or 6-noded triangles, in the former case the variables are assumed to be
linear within the element, whereas in the latter case they are assumed to be quadratic.
For our discretization we chose 3-noded triangle elements. Finite elements offer a rich
variety of elements that can be used for spatial discretization as explained very well in
Huebner(1982). With this spatial discretization and use of Galerkin weighted residual

formulation we arrive at a system of matrix equations.
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Figure 6.1: Finite element discretization: (a) rectangles,(b) triangles,
(c) 6-noded triangles, (d) 3-noded triangle, (e) staggered grid, (f) non-

staggered grid
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6.5 Satisfying Continuity Equation Exactly

It has been shown that the continuity equation is satisfied to machine accuracy in
the case of staggered grids. But this is not case if equal order approximation for
pressure and velocity is used (non-staggered grid). The error is equal to a source
term proportional to the fourth order spatial derivative of pressure. This mass balance
error has been shown to be equal to [Sotiropoulos, 1991]:
D;; = —%[Azzsme + Ay?8y4,, P + AL?827(ubzzu) + Ay?8,, (v6,,v)
+cross derivative terms] (6.4)
Above result has been derived for finite difference central difference discretizations
in space. It is not unreasonable to expect it to be true for Galerkin finite element
method also.

Equal order approximation or non-staggered grids have been used by us. Due
to this reason careful attention has been paid to mass conservation. For most of our
simulations we didn’t have an error grater than 3% in mass balance. This could partly
be due to the proper selection of time step and mesh spacing. But our formulation
also has some features of staggered grid init. The pressure was spiit into a hydrostatic
part and a non-hydrostatic part.

p=pg(h(z)—y)+p (6.5)
where k(z) is the free surface height from a datum and P is the correction to the
hydrostatic pressure. This is done due to the fact that in open channel flow pressure
is nearly hydrostatic with significant deviations from this only in areas of rapid accel-
eration and recirculation. It is only for p that we solve the pressure Poisson equation
whereas the hydrostatic part being already known from the free surface height is used
in the momentum equations straight away. This procedure of splitting the pressure

and it being close to hydrostatic pressure could have also helped in keeping the mass
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balance errors to a minimum. However, this aspect needs further research before

definite conclusions can been drawn.

6.6 Solvability Conditions for the Navier-Stokes Equations

Let the initial condition be given by

u(z,y,0) = uo(z,y) (6.6)
Then it is required that

n-ug=n-u (6.7)
and

V.y=0 (6.8)

in order that a solution exist. 4 is the dirichlet boundary condition for the velocity.

Navier-Stokes equations are ill-posed if any of the above two conditions are violated

[Gresho, 1987].

6.7 Error Estimates for Fractional Step Method

Deriving error estimates for the fractional step scheme is not straight forward. One of
the reasons is when the intermediate velocity @?t?, is projected onto the divergence
free space H, u}*! only lies in H but does not necessarily satisfv the boundary condi-
tions for velocity[Shen, 1992]. Shen(1992) has been able to show that both #?*1 and
un+Hl

are weakly first order approximations to u(¢,+1) and that p**! is weakly oder :

to p(tnt1).

6.8 Artificial Diffusion

In convection dominated problems Galerkin formulation requires that the mesh be
fine in order to avoid oscillations in the solution. There are various ways this can be

overcome, for eg., using streamline upwind Petrov Galerkin (SUPG) method devel-
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oped by Brooks(1982). We applied artificial diffusion using selective mass lumping.
The approach has features similar to Lax-Friedrichs scheme in the finite difference
context. The Lax-Friedrichs scheme for the one-dimensional linearized convection

equation u; + au; = 0 is given by:

n 1 n n o n n
uptl = 5(":‘4—1 +ul,) - §(ui+1 —ul,) (6.9)
where o = “A—Az‘ is the CFL number. From the truncation error analysis [Hirsch,1988]

it can be shown that the scheme has artificial diffusion « given by:

;;A:z:(l —-0?) = A—‘7:2(1 - %) (6.10)

Comparing with the Galerkin finite element formulation, eqn.6.9 can be viewed as

o =

lumped mass matrix on the LHS and consistent mass matrix on the RHS.
This same idea is used by us, namely selective mass lumping. Let Mz and Mg be
the mass matrices on the LHS and RHS respectively.
My = o Mp + (1 —ar)Mc (6.11)
Mg = apMp + (1 — ap)Mc (6.12)
where Mp and Mc are the lumped and consistent mass matrices respectively. ar and
ap, are the lumping parameters and take values 0 to 1. Choosing different values of az,
and ap we obtain different levels of mass lumping. Through numerical experiments
we choose oz and ap, just enough to achieve stable solution without excessive mass

lumping which causes phase error and large numerical diffusion. Typical values of o,

and ag used are:

e a7 = 0.1 and ag = 0.0 in the calculation of intermediate velocities.

e ar = 1.0, and ar = 0.9 in the calculation of divergence free final time step

velocities.
o o7 = 0.2 and ar = 0.0 in the calculation of k and .

e a7 = 0.1 and ag = 0.0 in the calculation of free surface.
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6.9 Miscellaneous features

The procedure for flow simulation is shown in the form of a flow chart in Fig.6.2.
The system of equations are solved by Cholesky factorization. All the computations
are performed on the NCSC CRAY-YMP machine. The time step is selected auto-
matically by the code based on the previous time step velocities. The criterion for

stability are:

At < maz [ﬂ’ ﬂ] ; CFL constraint (6.13)
lul[v]
At < Az surface gravity waves constraint (6.14)
=l +VeR’ '

It has been observed that the time step limit is imposed by the surface gravity waves.
The mass matrix is lumped in the calculation of final velocities in projection scheme.

This is done for computational convenience.



Physical and geometrical data

including initial and boundary
conditions read

|

~

Free surface height calculated
from the kinematic equation

\i

Grid points redistributed on the
vertical spines and grid point
velocities calculated

\

Eddy viscosity calculated through
K - € model

y

u, v & p calculated using
Fractional Step Method

no

Steady State

Figure 6.2: Procedure for Flow Simulation

41



Chapter 7

RESULTS AND DISCUSSION : OPEN
CHANNEL FLOW SIMULATION

Unfortunately in open channel flow there are no good bench mark problems which
can be used to validate codes and models. This is partly due to the wide variety of
conditions in which they occur in nature. Operating conditions such as wall roughness,
channel geometry etc. are site-specific and hence ready comparison with experimental
data is difficult. Further most of the research in open channel flow simulation has
been done using depth averaged models and hence not much information is available
on the vertical structure of the flow.

In the absence of readily available experimental data and previous numerical re-
sults we had to set up our own model problems. To gain confidence in our results
simple checks have been performed to verify that no physical principles such as con-

servation of mass or momentum is violated.

7.1 Flow over an Inclined Plane

The experimental problem chosen is low over an inclined plane. A steady discharge
of water is sent in at the upstream end of an inclined plane. At the downstream end,
depending on whether the flow is restricted or not two different classes of problems
develop. If no restriction is imposed the flow does not change character and remains
supercritical through out. If a restriction on the flow height is imposed the flow

changes from supercritical to subcritical and hydraulic jump is formed. Both types

of problems have been investigated by us.
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The various parameters governing the flow are: inlet height (H), length of the
plane (L), discharge (Q), slope of the plane () and wall roughness (ks). Selecting Q

and H automatically fixes the inlet Reynolds number(Re;,) and inlet Froude number

(FT‘,‘,,).

N
Re.,.,—;, FT,n—W (71)

In order to reduce the number of variable parameters we chose to fix the inlet flow
height to be 0.2m and length of the plane to be 20.0m. Thus the nature of the flow
is investigated by varying 0, k, and Q.

At the inlet horizontal velocity computed from the logarithmic law is imposed. At
the downstream end fully developed velocity profile condition is imposed. Due to the
Galerkin formulation this boundary condition is taken care of in a natural way. The
inlet turbulent kinetic energy is specified as a percentage of the inlet kinetic energy.
The dissipation rate(e) at the inlet is determined assuming a mixing length equal to

0.09H;,. At the exit fully developed conditions are imposed for k£ and e.

7.2 Numerical Experiments

We identified three numerical aspects of the code which need to be investigated.
e artificial diffusion through selective mass lumping
¢ mass and momentum balance
e mesh independency

For our numerical experimentation the operating conditions have been taken as, Q=
0.50m?/s, k, = 0, implying smooth wall and the inclination (0) to be 0.01. These
operating conditions give us Re;; = 5.0 x 10° and F' Tin = 1.78.

In Fig.7.1 the effect of mass lumping is shown. The free surface profile shown is

that obtained at the end of 50 time steps using a 61 x 21 mesh.. As can be seen the
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numerical scheme without any selective mass lumping is unstable and in fact diverged
after a few more time step calculations. Where as, even 10% differential mass lumping
was enough to stabilize the scheme. 10% selective mass lumping means that the mass
matrix on the LHS is lumped 10% more than the mass matrix on the RHS or that
ar — ar = 0.1. Most of the results presented from here on or those obtained using
10% selective mass lumping.

At steady state the discharge at every cross-section (Q.) must be the same and
equal the inlet discharge (Q) or in other words d—%—”l = 0. This is a good check to
verify if mass is being conserved.

Integrating the steady state z-momentum equation across the cross-section, we

obtain
Mom, = dE; — gh(z)sind + 7, = 0.0 (7.2)
where
A=) 1 2
E, —/0 u’dy + Egcost () (7.3)

E.; can also be seen as the sum of kinetic and potential energies at cross-section z.
Mom, represents the fact that the change in momentum is caused by the external
forces, in this case, gravity and wall shear stress and when properly accounted for
should equal zero. This is a good check to determire if momentum conservation
is obeyed. In Fig.7.2 the mass and momentum conservation errors as percentages
of inlet discharge and energy are plotted. The errors in conservation of mass and
momentum are less than 1% with the maximum errors occuring at the inlet and exit.

The free surface profiles for different mesh spacings in the z-direction are shown
in Fig.7.3. For the mesh size 41 x 21 the solution did not converge and was unstable,

whereas for meshes 61 x 21 and 101 x 21 converged steady state solution could be

obtained. As can be seen there is very little difference in the solution between 61 x 21
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and 101 x 21 mesh. Thus 61 grid points in = direction is sufficieat in the z-direction
to get a stable converged solution.

Fig.7.4 shows the free surface profile for different grid points in y-direction. Unlike
in z direction, in the vertical direction the grid points are distributed in a logarithmic
manner as the velocity gradients are larger near the wall [Anderson, 1984]. The
difference in solution between 61 x 21 and 61 x 31 is very little. For 61 x 11 the
solution did not converge but exhibited oscillations.

Based on these numerical experiments we chose the grid size to be 61 x21 and used
10% selective mass lumping in all mass matrices. These conditions have been used
by us for all the subsequent runs. However in the simulation of hydraulic jump some
of these conditions are changed and these aspects are discussed in the subsequent
section on hydraulic jump. The fact that the mass and momentum are conserved
fairly well is a sort of reassurance that at least no physical principle is being violated
in our model. It has been observed that some of these aspects could become really
important in areas where steep gradients exist. In the hydraulic jump simulation
whose results will be presented in a later section large gradients do occur and these

factors such as mass and momentum conservation become very important.

7.3 Supercritical Flow Simulation

Now that sufficient confidence has been obtained on the numerical procedure we can
get Into investigating the physics of the problem. As already mentioned the three
parameters which are being controlled are Q, k, and 6. Figs.7.5,7.6 and 7.7 show the
effect of these three variables on the free surface profile. On the surface they seem to

make sense qualitatively;

e increasing the slope would decrease the flow height since flow would be faster,
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e increasing the roughness would slow down the flow and consequently flow height

would be more, and
e greater the discharge greater the flow height other conditions remaining same.

However they will need to be compared with experimental values if their quantitative
correctness is to be verified. The velocity profile at z = 10.0m is plotted in Fig.7.8
and compared with the logarithmic distribution and the Coles law. Coles law is the
logarithmic law modified to take into effect the influence of pressure gradient on the
velocity distribution. The agreement with both the laws is not good with Coles law
performing only marginally better. The vertical profiles of &, ¢ and v, are shown
in Fig.7.9. It can be seen that the eddy viscosity is parabolic in the bottom layer
and becomes constant in the upper layers of the flow. However it has been observed
that due to the turbulent fluctuations at the free surface the eddy viscosity decreases
towards the free surface. This is enforced by imposing €, = fg instead of symmetry
boundary condition for e. However, we have not applied this modified boundary
condition for € at the free surface in our simulations.

There are theoretical results and numerical experiments which state that super-
critical flow with Froude number greater than a critical value(F,;) is unstable. This
value has been determined to lie some where between 1.5 and 2.0 depending on the
conditions such as wall roughness, aspect ratio etc. [Sarma, 1991]. In our simula-
tions of supercritical flow solution has been obtained for Froude numbers as high as
4.0. This could partly be due to the numerical damping we are enforcing to obtain
stable solution. Thus our results for the free surface could be seen as the time mean
value, whereas the instantaneous free surface height could be a fluctuating quantity.
Another reason for our obtaining a stable solution could be that our mesh is not fine

enough to capture the ripples. Our mesh spacing in the z-direction is 0.33m whereas



51

ajyoad eoejans a2y ayj uo a8aeydsip Jo 0oy :g°L dandig

(w u)x

02 St 0l [

sjwbs g'9=) ~—
swbs90=p ~.—
sjwbsgo=0 -.-..
s/wbs p o= ——

—— — " e e
e ———— . —
. . e ——
- ——
——— i — -
. —— ———

e
PR
e
—
—

020 sLo 01’0 S0°0 00
w ui yBiay soeuns aay

S0

0g0



3[youd adejans aaJy o3 uo uorjRULPUI Jo J0oyH (9L dInSi

Gl

w U x

ol

$0'0 = adojs
10°0 = edojs
$00'0 = edojs

0c0 sto oi'0 S0°0 00
W ul 6oy aoepns aay

T4

0g0



53

a|yoad aoejans 924y ayj uo ssouyInod aseyans jo 3oaYH :L'L In3ig

urup x

S (o]} S 0

] 1 1 1

1YBjey sseuyBnos pues Juseanbe wwgp —. —
1yBiey sseuybBnol pues jusjeanbe wwp  .....
lem yloows ——

00

L0

4y
w vt ybrey aodepns aay

€0



54

‘wyp] = T je me|
S910D 3y} pue me| druuyjrrelo] yyum paredwod ajyoad A3100[3A :8°L @an3ig

2n

n

op se oe Se 0¢

MBT S8|0)  ~ . —
meqojwyiueBoy ...
eljod Aifoojop parejnojey  ——

0ot

00s

000t

000s

0000L

(==)w



"1 pue 3y jo sa[yold [ed13a9A :¢'L 2anBig

3

000} X ¥ — - —
X 2.e...

00} X} ——

T
oo

00

T
Sto

(VA

wuk



56

in nature the ripples that form are of much shorter wavelength. However numerical

experiments would need to be performed to ascertain this fact.

7.4 Hydraulic Jump Simulation

Hydraulic jump is formed when the supercritical flow changes to subcritical flow.
This normally happens when the flow enters in a supercritical state and encounters
obstacles or downstream control. In our model problem flow enters in a supercritical
state. The flow height is specified at the downstream end. Due to this hvdraulic jump
is formed. The operating conditions are a little different from the one we had earlier.
We had to do this to compare our results with the experimental data presented by
Gharangik(1991). The experimental conditions of Gharangik(1991) are :

Frin =6.65 , Rein =0.078 x 10°,0 = 0.0, L = 14.0m andH;, = 2.4cm. (7.4)
In fig.7.10 the effect of mesh spacing on hydraulic jump is shown. It can be seen that
the computed height of the free surface is slightly lower that the measured profile
and also the location of the jump does not match very well with that presented
by Gharangik(1991). It is difficult to determine the cause. But it must be remarked
that the experimental conditions such as wall roughness, inlet velocity and turbulence
profiles are not known and these could have some effect on the numerical simulation
results.

In Figs.7.11 and 7.12 the effects of wall roughness and channel inclination are
shown. Here again the results agree qualitatively with physical intuition but will
need to be verified quantitatively if complete confidence on the flow model is to be
gained. In Fig.7.13 the time evolution of the hydraulic jump is shown. The steady
state stream line patterns are shown in Fig.7.14. Small zone of recirculation can be

observed just behind the jump. This has also been observed by Rahman(1991).
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Chapter 8

SEDIMENT TRANSPORT MODELING

Water flowing in natural channels often has the ability to scour sand, gravel, or even
large boulders from the bed or banks and sweep them downstream. This phenomenon
is termed sediment transport. Sediment material can be cohesive or noncohesive.
In cohesive sediments there are adhesive forces between particles, e.g, clayey sands
or soils. In noncohesive sediment transport there are no adhesive forces between
particles. Only noncohesive sediments have been considered for our research. The
basic mechanism responsible for sediment motion is the drag force exerted by the

fluid flow on individual grains.

Usually, three modes of particle motion are distinguished:
e Rolling and sliding motion or both;
e saltation motion; and

e suspended particle motion.

When the value of the bed-shear velocity just exceeds the critical value for initiation
of motion, the particles will be rolling and sliding or both, in continuous contact
with the bed. For increasing values of the bed-shear velocity, the particles will be
moving along the bed by more or less regular jumps, which are called saltations.
When the value of the bed-shear velocity exceeds the fall velocity of the particles, the
sediment particles can be lifted to a level at which the upward turbulent forces will

be comparable with or of higher order than the submerged weight of the particles and
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as a result the particles may go in suspension. Usually, the transport of particles by

rolling, sliding and saltating is called bed-load transport.

8.1 The Threshold of Sediment Movement

As the velocity of the flow is steadily increased the shear stress exerted by the fluid
on the bed increases and at a particular value the sediment particles begin to move.
This is called the threshold condition. The most commonly used expression to derive
the critical shear stress for initiation of sediment motion is that derived by Shields
[Naden, 1988]. In this simple model, shown in Fig.8.1, the threshold of sediment
motion is defined in terms of the dimensionless bed shear stress (7./(p; — p)gD where
7c 1s critical shear stress, p, is the density of sediment, p is the density of water, g is
the acceleration due to gravity, and D is particle diameter). This is plotted against
the grain Reynolds number ( Re. = u.D/v = f(D/6) where u. is the bed shear
velocity, v is the kinematic viscosity of water, & is the depth of laminar sublayer)
which is a measure of the type of flow boundary. Under smooth boundary conditions
(Re. < 2), the particles are enclosed in laminar film and their motion is independent
of turbulence. As Reynolds number increases, there is a zone of transition as the
laminar film begins to break up, while for rough boundary conditions (Re. > 400),
the critical dimensionless bed shear stress becomes constant.

In addition to the problem of the initiation of movement, it is important to know
how much sediment moves. As already mentioned moving sediment can be classified
either as bedload or suspended load and is depicted in Fig.8.2. The predominant
mode of transport depends on the size, shape, and density of particles in respect
to the velocity and turbulence field of the water body. Bedload transport is mainly
dependent on the shear stress at the bed whereas the suspended load is affected by

the complete velocity profile.
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8.2 Suspended Load

After the threshold of motion has been passed, and sediment movement is well estab-
lished, some of the sediment will be carried in the form of suspended load; in the case
of strong flows and fine sediment, the amount of suspended load may be substan-
tial. This material is maintained in suspension by the action of turbulence. Due to
turbulence not only momentum transfer but also mixing of scalar properties such as
temperature, color, salt concentration, sediment concentration etc. take place across
adjacent fluid layers. Thus in a turbulent flowing fluid of kinematic eddy viscosity vy
carrying sediment of volume concentration ¢, the volumetric rate of sediment transfer

across the stream lines, per unit area, in the direction of positive y is equal to
de
—v— 8.1
‘dy (8.1)

The sediment particle fall downward due to their weight at a speed w, called the fall
velocity of the sediment particles. Thus the downward flux of sediment due to gravity
1s given by cw,. If the suspended load is in equilibrium then the downward flux due

to gravity equals the upward flux due to fluid turbulence and we have

dc .

Assuming a parabolic distribution for the eddy viscosity based on Prandtl’s mixing

CWy T+ i

length theory and a logarithmic law behaviour for the velocity above eqn.8.2 can be

integrated in the vertical direction.

c a(h—y) ws/Kua
2= 4=y &3

where ¢, is the concentration at a height @ above the bed. Since there is no way of
knowing c, initially, above eqn. 8.3 cannot give absolute values of the concentration,
but can only give their relationship to the unknown ¢,. What this means is that the
total load cannot be predicted by the above theory; to do this it is necessary to know

something of the mechanism of entrainment at the bed.
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The nonequilibrium suspended sediment transport is usually determined by an

advection-diffusion transport equation for sediment concentration.

Oc  0Oc 0c 48, Oc a4, Oc
5 Tug T w’)a_y =55+ 6—y(V‘5§) (8:4)

This would be the equation we would be solving to obtain suspended sediment con-

centration.

8.3 Bed Load

The vertical turbulent fluctuations are suppressed close to the bed. There is there-
fore no turbulent transfer term, v, g—;, to balance the sediment fall term cw,. Upward
movement of sediment across the bedload plane is supplied by the mechanism of en-
trainment. Thus the difference between deposition (cw,) and entrainment determines
whether sediment moves from bedload into suspended load or vice versa.
Determining the bedload transport is very difficult and the problem is compounded
by the statistical nature of the problem of entrainment. Many bed load formulas have
been developed, some purely empirical, others having a back ground of semirational
and semidimensional arguments. The reader is referred to Henderson(1966) for some
important bed load formulas. The one we are going to use is that given by van

Rijn(1984a) and is stated in the next section.

8.4 Sediment Modeling Issues

The mechanism of sediment transport is not very well understood and there are many
issues which are still being researched. Some of the features which make sediment

transport so difficult to understand and predict are:
e Wide variation in sizes and shapes of sediment.

e The effect sediment has on the fluid turbulence is not known.
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Sediment does have some effect on the pressure distribution.

It is not clear if the eddy viscosity of sediment is the same as the eddy viscosity

of momentum.

Clearly the particle fall velocity in a turbulent particle laden flow would be

different from that in a quiescent clear liquid.

entrainment at the bed is a stochastic process.

8.5 Sediment Model Chosen

In this section the sediment transport model chosen by us is discussed. This model

has been proposed by van Rijn(1884a, 1984b, 1984c).

1. Compute the Shields critical bed-shear velocity, u, ..

)

. <4, O, =0.024(D.)?

4< D, <10, O, =0.014(D.)-0&
10< D, <20, O, =0.04(D.)0°

20 < D, £150, 9. =0.013(D.)°*®

D. > 150, Q. = 0.055 (8.5)

2
u
where O, = (O o

2. The three characteristic parameters that determine the sediment transport are

calculated as:

_1)e1M?
D. = Dy, [(37-&] (8.6)
ul —ul, -
Tt (8.7)
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(8.8)

where D, is called the particle parameter, T, the transport parameter and Z ,

the suspension parameter. Dsp is the 50th percentile sediment particle size, s is

the specific density; g is the acceleration of gravity; v is the kinematic viscosity;

u. 1s the shear stress at the bed determined from the flow code; U 1S the

critical bed-shear velocity for bed movement given by Shields, x = von-Karman

constant.

. Compute reference level, a
a =0.54, ork,, with(amin = 0.01A),

where A is the bed-form height.

. Compute reference concentration, ¢,

DSO T1.5

Cq = 0.015-(1—393

. Compute particle size of suspended sediment, D,

D, 4 0.011(c, — 1)(T — 25)
DSO

where o, is the standard deviation of the particle size.

. Compute fall velocity, w,

Ds < 100ﬂm, W, = _11_8!3-1”!9D2=
IOOﬂm <D, < 1000,um, Wy = 1057 [1 + 0.01‘:1’—1291)3]
.D., > 1000/177?., w, = 1.1 [(s — 1)gD,]°'5

0.5

(8.9)

(8.10)

(8.12)
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The fall velocity calculated from the above equation is corrected for the effect
sediment concentration has on the fall velocity of a particle using the expression,

Wem = (1 — ¢)tws,.

7. Compute suspended load from the transport eqn.

dc dc Oc 8, Oc 8, dc
FTIRY " (v— w,);?; = %(Vt(‘?;) + a—y(Vta_y) (8.13)

8. Compute total suspended load from

h
Ss = ucdz (8.14)
bta

9. Bed load transport is computed from

T2.1
Sy = 0.053 [(s — 1)g]°® Dgg"m (8.15)

The bed deformation is computed from the continuity equation for the sediment

concentration.
ab 1 as, 355]
4 + A
ot 1-¢ |0z ' Oz 8.1
where S, and S are the total suspended load and bedload flux respectively, and ¢ is

=0

—~
SN’

the porosity of the bed.



Chapter 9

RESULTS AND DISCUSSION : SEDIMENT
TRANSPORT SIMULATION

With the sediment transport model outlined in the previous chapter we tried to
simulate sedimentation and bed deformation. The time scales associated with hy-
drodynamics and bed movement are different by orders of magnitude. Usually the
flow reaches steady state in a matter of seconds whereas the channel bed deformation
takes place over days or months in hydraulic engineering situations and over hundreds
of years in geomorphological situations. Hence generally the steady state solution of
the fluid flow is determined first and this computed flow field is used to study bed
deformation. The logical structure of determining sediment transport is shown in
the form of a flow chart in Fig.9.1. The calculations are stopped when the channel
bed reaches equilibrium (no change in channel bed with time) or quasi-equilibrium
(bed forms migrate along the channel bed). The flow model developed previously is
combined with the sediment transport model described in the previous section.

A test problem involving bed erosion and deposition is studied and the channel
bed and free surface locations over different times are shown in Figs.9.2-9.9. Some
of the qualitative aspects of the simulation seem to be correct. For instance over
dunes the free surface height reduces in the case of sub-critical flow and this is shown
correctly in our simulations. However, it must be admitted that the simulations need
to be run for a much longer time than what has been shown. Since our aim was only

to get an idea about the workings of the sediment transport code we did not proceed

further.
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Figure 9.1: Sediment transport model problem
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Chapter 10

GENERAL CONCLUSIONS

10.1 Conclusion

[t may be useful to turn back to the chapter on open channel flow where we outlined

the various capabilities our code need to have to successfully simulate open channel

flow and sedimentation. Some of the features of this research are stated her again:

1.

o

2-D Reynolds averaged equations have been solved without any depth averaging.

- The problem posed by the changing free surface has been overcome using the

ALE approach.

Eddy viscosity is determine using k — ¢ model.

- Time marching is done through projection scheme and spatial discretization is

done with the help of 3-noded triangles and Galerkin finite element formulation.

It has been established that the procedure has the ability to handle high gradient

situations such as hydraulic jump.

. The code determines the suspended sediment using an advection-diffusion trans-

port equation and bedload through empirical relationships. The procedure is

simple and can quite easily be modified to include any new developments in

sediment mechanics.

. It has been proved that the code does have the ability to predict the evolution

of bed form features such as dunes and anti-dunes.
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10.2 Future Work

Our ultimate goal is to develop complete 3-D flow and sediment transport model. Asa
next step in achieving this objective we plan to parallelize the code. This parallelized
code would then be used to study some real life large scale problems. After complete
confidence is achieved on the 2-D code attempts would be made to develop a 3-D
procedure.

We recognize the fact that what has been achieved is very small compared what
needs to be done. We believe that a beginning has been made in the right direction
and with the tremendous progress being made in computer hardware and algorithms

our dream of developing a full 3-D procedure is realizable.
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