
!"#$%&"'()**+,-&$+.(/%$.#(0$1-'&$&"(2$3"."%%(4'-15%((

Rajkishore Barik, Intel Corporation, Santa Clara, California
Jisheng Zhao, Rice University, Houston, Texas

Vivek Sarkar, Rice University, Houston, Texas

Technical Report TR 10-10

Department of Computer Science

Rice University

November 2010(

!

!

1

Abstract
Register allocation is an essential optimization for all compilers. A number of sophisticated register allocation algorithms
have been developed based on Graph Coloring (GC) over the years. However, these algorithms pose three major limitations
in practice. First, construction of a full interference graph can be a major source of space and time overhead in the compiler.
Second, the interference graph lacks information on the program points at which two variables may interfere. Third, integration
of coloring and coalescing leads to a coupling between register allocation and register assignment, which can further
compromise the effectiveness of the solution. This paper addresses these limitations by making a clean separation between the
register allocation and register assignment phases. Allocation is modeled as an optimization problem on a new data structure
called the Bipartite Liveness Graph (BLG). We model the register assignment phase as a separate optimization problem that
avoids some spill instructions by generating register-to-register moves and exchange instructions and at the same time, performs
move coalescing and handles register class constraints.

We implemented our BLG allocator in both the LLVM static compiler infrastructure and the Jikes RVM dynamic compiler
infrastructure. In the LLVM evaluation, our BLG register allocator results in a performance improvement of up to 7.8%
for SpecCPU 2006 benchmarks and a significantly lower compile-time overhead compared to a Chaitin-Briggs GC register
allocator with both allocators using the same spill-code generator. The BLG allocator delivers performance comparable to
the existing LLVM 2.7 Linear Scan register allocator that includes additional optimizations such as live-range splitting and
backtracking techniques that are currently not present in the BLG allocator. In the Jikes RVM evaluation, the BLG register
allocator delivers runtime performance improvements of up to 30.7% for Java Grande Forum benchmarks and up to 9% for
Dacapo benchmarks relative to Linear Scan (LS) with a modest increase in compile-time.

1. Introduction
Register allocation is an essential compiler optimization that has received much attention from the research community during
the last five decades. Its relevance continues to increase with current trends towards energy-efficient processors in which some
of the burden of memory hierarchy management is shifting back from hardware to software. Three key metrics for the quality
of a register allocator are compile-time, compile-space, and execution time. Past work has explored different trade-offs across
these metrics in many different ways.

The primary goal of this paper is to explore algorithms with polynomial compile-time and linear compile-space that deliver
the best execution time performance possible. The motivation for polynomially bounded compile-times is that large compile-
times can have a major impact on overall programmer productivity in scenarios such as programmer-directed performance
tuning and automatic adaptive and dynamic optimization. This rules out the use of register allocation algorithms with worst-
case exponential compile-times such as [Appel and George 2001, Hames and Scholz 2006, Grund and Hack 2007] to achieve
our goal. The motivation for the linear compile-space constraint is that memory is a critical resource for all applications,
including compilers, and that non-linear space leads to the creation of large data structures that don’t fit in lower levels of
cache when compiling large procedures, thereby further contributing to compile-time increases. Register allocation algorithms
based on Graph Coloring (GC) [Chaitin et al. 1981, Briggs et al. 1994, George and Appel 1996, Park and Moon 1998, Smith
et al. 2004], including more recent variants based on Static Single Assignment (SSA) form [Hack and Goos 2006, Pereira and
Palsberg 2009] all use the Interference Graph (IG) as a primary data structure which is often super-linear in size. Register
allocation algorithms based on Linear Scan (LS) e.g., [Traub et al. 1998, Poletto and Sarkar 1999, Wimmer and Mössenböck
2005, Sarkar and Barik 2007, Wimmer and Franz 2010] overcome the compile-time and compile-space overheads of GC
algorithms, but do so at the expense of achieving poorer execution times than GC.

A secondary goal of this paper is to simplify the implementation of the register allocator by decoupling the register allocation
and register assignment phases in an optimizing back-end. This will allow the allocation phase to focus on spilling decisions
and the assignment phase can focus on coalescing and physical register assignment decisions. While this form of decoupling
has been performed for other register allocation algorithms in the past [Appel and George 2001], our approach is unique
in its use of the Bipartite Liveness Graph (BLG) for the allocation phase and the Coalesce Graph (CG) for the assignment
phase. The CG consists of both IR move instructions and register-to-register moves that arise from our BLG based allocation
phase. In GC algorithms, the coupling between these phases is manifest in the integration of coloring and coalescing decisions,
which can further compromise the effectiveness of the final solution and complicate the implementation of the allocator.
These complications arise from non-trivial problems that must be addressed by the implementer in dealing with coalescing in
traditional GC allocators and with optimization of φ-function copy statements in SSA-based GC allocators. Further, register
allocation for today’s architectures includes new challenges due to hardware features such as register classes, register aliases,
pre-coloring, and register pairs. To produce high quality machine code, a register allocator must consider these hardware
features in both the allocation and assignment phases.

2

This paper addresses these challenges by starting with a clean separation between the register allocation and register
assignment phases. Allocation is modeled as an optimization problem on a new data structure called the Bipartite Liveness
Graph (BLG). As we will see, the BLG is a more compact data structure than the IG, and it achieves linear compile-space in
practice even though its worst-case compile-space is quadratic1. Assignment is modeled as a separate optimization problem
that incorporates register-to-register moves and exchanges as alternatives to spilling, and handles move coalescing and register
class constraints.

Specifically, we make the following contributions towards the above goals:

1. We introduce a novel Bipartite Liveness Graph (BLG) representation as an alternative to the interference graph (IG)
representation. Interestingly, the BLG is both more compact and more precise than the IG in practice.

2. We formulate the allocation problem for BLGs as a simple optimization problem and present a greedy heuristic to solve it.
The allocation phase is performed independently of coalescing optimizations.

3. We formulate spill-free register assignment with move coalescing as a combined optimization problem that maximizes the
benefits of move coalescing while finding an assignment for every symbolic register. Move coalescing is performed on a
Coalesce Graph (CG). A local greedy heuristic is presented to address the assignment optimization problem.

4. We extend the register assignment approach from 3. above to handle register classes. An optimized version of the assignment
problem is presented that minimizes the additional spilled symbolic registers and, at the same, time maximizes the benefits
of move coalescing. A prioritized bucket based greedy heuristic is presented to address this problem.

5. We present experimental results for implementations of BLG register allocation in both the LLVM static compiler infras-
tructure for C programs and the Jikes RVM dynamic compiler infrastructure for Java programs. For the LLVM comparison,
we use ten SpecCPU 2006 benchmarks and compare our register allocator with that of an LLVM implementation of a
Chaitin-Briggs GC register allocator. Our BLG register allocator results in a performance improvement of up to 7.87%,
while incurring a significantly lower compile-time overhead than GC. We use the serial version of the Java Grande bench-
mark suite and Dacapo benchmark suite to compare our BLG based register allocation with that of existing Linear Scan
(LS) register allocation in Jikes RVM. The results show that a BLG based register allocation can achieve runtime benefits of
up to 30.7% for Java Grande and of up to 9% for Dacapo compared to LS.

2. Bipartite Liveness Graph (BLG)
A program point can be split into two program points based on the values read and written at that program point [Sarkar and
Barik 2007]:

DEFINITION 2.1. Each program point p is split into p− and p+, where p− consists of the variables that are read at p and p+

consists of the variables that are written at p.

[x, y] is called a basic interval for variable v (denoted as BI(v)) if and only if for every program point, p, such that p ≥ x
and p ≤ y imply v is live at p. Note that BI(v) does not include any hole. x and y denote the start and end points of BI(v)
respectively. A compound interval for a variable v (denoted as CI(v)) consists of a set of basic intervals for v. CI(v) can have
holes. Let B denote the set of all basic intervals and C denote the set of all compound intervals in the program. Let L denote
the set of start points and H denote the set of end points of all the basic intervals.

The number of simultaneously live symbolic registers at a program point p is denoted by numlive(p). MAXLIVE represents
the maximum number of simultaneously live symbolic registers in any program point. A program point p is said to be
constrained if numlive(p) > k, where k is the total number of machine registers. In the presence of register classes, we
call a program point p constrained if it violates any of the register requirements of any of the register classes of the symbolic
registers that are live at p.

Now we present a new representation, known as Bipartite Liveness Graph (BLG), that captures program point specific
liveness information as an alternative to the interference graph. Formally,

DEFINITION 2.2. Bipartite Liveness Graph: A bipartite liveness graph (BLG) is a undirected weighted bipartite2 graph
G = 〈U ∪ V,E〉, where V denotes all the basic interval end points3 in H, U denotes all the compound intervals in C and an
edge e = (u, v) ∈ E indicates that the compound interval u ∈ U is live at the interval end point v ∈ V . Each u ∈ U has an
associated non-negative weight SPILL(u) that denotes the spill cost of u. Similarly, each v ∈ V has an associated non-negative
weight FREQ(v) that denotes the execution frequency of the IR instruction associated with basic interval end point v.

1 This is analogous to SSA form, which has worst-case quadratic compile-space, but is observed to exhibit linear compile-space in practice.
2 A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that each edge connects a vertex in U to one in V .
3 The choice of interval end points is arbitrary. We could have used interval start points instead.

3

a) Code fragment with basic and compound intervals:

1 a = ...

2 b = ...

3 c = a

4 d = b

5 if (...) {

6 e = ...

7 ... = c

8 d = ...

9 f = e

10 ... = f

11 c = ...

12 }

13 ... = d

14 ... = c

C(a) (b)C C(c) C C C(d) (e) (f)

b) Interference Graph (dashed lines show move instructions):

a

b d f

ec

c) Bipartite Liveness Graph (BLG) (with unconstrained end
points):

a

3
-

4
-

5
-

7
-

9
-

10
-

13
-

14
-

b

c

d

e

f

U

V

Figure 1. a) Example code fragment with basic and compound intervals; the dotted lines represent end-points of basic intervals.
b) Interference Graph (IG); the solid lines in IG represent interference and the dashed lines represent move instructions. c)
Bipartite Liveness Graph (BLG) with unconstrained interval end-points; the vertices on the left of the graph represent compound
intervals, and the vertices on the right represent basic interval end-points. With two physical registers, the BLG representing
constrained end-points is empty in this case.

It is obviously a waste of space to capture liveness information at every program point in V of BLG. From a register
allocation perspective, it suffices to consider only constrained program points corresponding to either the basic interval start
points alone or end points alone but not both in V . This is because spilling/assignment decisions only need to be taken at those
points. Additional optimizations are also possible, e.g., if two interval end points have the same liveness information (i.e., same
set of variables live), only one of them (but not both) needs to be added to the BLG for spilling decisions.

Figure 1 presents an example code fragment with its basic and compound intervals in Figure 1a) and the interference graph
(IG) in Figure 1b). We observe that IG has a clique of size 3 due to the cycle comprising nodes c, d, and e. Now consider a Graph
Coloring register allocator that performs coalescing along with register allocation. Both aggressive [Chaitin et al. 1981] and
conservative [Briggs et al. 1994] coalescing will be able to eliminate the move edges (a, c), (b, d), and (e, f) without increasing
the colorability of the original interference graph. If we have two physical registers, we have to spill one of the coalesced nodes
ac, bd, and ef . The un-coalescing approach used in an optimistic coalescing technique [Park and Moon 1998] will be able to
just spill one of the nodes involved in the cycle as it tries all possible combinations of assigning colors to individual nodes of a
potentially spilled coalesced node. The points to note here are that we can not color the IG using 2 physical registers and that
opportunities for coalescing can be missed due to the inability to color certain nodes.

A closer look at the code reveals the fact that none of the program points have more than two variables live simultaneously.
If this is the case, two questions come to mind: 1) Can we generate spill-free code with two physical registers that does not give
up any coalescing of symbolic registers? 2) If the answer to the first question is yes, then why did Graph Coloring generate
spill code and also miss the coalescing opportunity?

The answer to the first question is yes. The BLG with unconstrained interval end points for the example code is shown
in Figure 1(c). This captures the fact that every basic interval end point in V has degree less than or equal to 2 indicating
no more than two compound intervals are simultaneously live. (The BLG with contrained interval end points is empty in this
case.) Let us name the two physical registers as r1 and r2. The following register assignment is possible: reg([1+, 3−]) = r1,
reg([2+, 4−]) = r2, reg([4+, 5−]) = r2, reg([3+, 7−]) = r1, reg([6+, 9−]) = r2, reg([9+, 10−]) = r2, reg([8+, 13−]) = r1,
and reg([11+, 14−]) = r2. This register assignment requires an additional register exchange operation since the register
assignment for the basic intervals of both CI(c) and CI(d) were exchanged when the code after the if condition was executed.

4

Build

(BI, CI, BLG)
Potential Spill Actual Spill

SelectCoalesce

Moves/

Exchange

Insertion

Spill code

Figure 2. Register Allocation using BLG

We need to insert an exchg r1, r2 instruction on the control flow edge between 4 and 13. As a result none of the coalescing
opportunities in lines 3, 4, and 9 were given up during such an assignment.

Now let us try to answer the second question. Looking at the code fragment, we observe that at the program point 13−, d
interferes with two values of c that are assigned on lines 3 and 11. Similarly, c interferes with two values of d that are assigned
on lines 4 and 8. During runtime, if the if branch is taken then assignments on lines 8 and 11 will be visible to the code
following the if condition, otherwise assignments on lines 3 and 4 will be visible. This notion can not be precisely captured
using the definition of live-ranges in an interference graph unless we convert the program to SSA form or perform live-range
splitting [Appel and George 2001]. Each of these approaches require additional complexities, e.g., the SSA-based approach
needs to handle out-of-SSA translation by inserting extra copy statements.

The above example raises a question about the general approach of stating the global register allocation problem as the
graph coloring problem on the IG. Even though the interference graph using live-ranges provides a global view of the program,
it is less precise than a BLG with intervals. Additionally, the interference graph (in terms of size and building it) is known to
be a major compile-time bottleneck [Cooper and Dasgupta 2006, Sarkar and Barik 2007].

3. Overall Approach
The overall register allocator presented in this paper is depicted in Figure 2. The first step in the allocator is to build data
structures for basic intervals, compound intervals, and the Bipartite Liveness Graph (BLG). Then, the allocation is performed
on the BLG to determine a set of compound intervals that need to be spilled everywhere as shown in the blocks for potential
spill and actual spill. A combined phase of assignment and coalescing is then performed until all the symbolic registers are
assigned physical registers or spilled. Next, register move and exchange instructions are added to the IR to produce correct
code. Finally, spill code is added to the IR. Our approach of separating register allocation and register assignment phases has
also been done in past work [Appel and George 2001].

4. Allocation using Bipartite Liveness Graphs
As in Linear Scan and other simple register allocation algorithms, we take an all-or-nothing approach for spills in this paper:
if a symbolic register is selected for spilling, every access of the symbolic register in the program will be replaced by a load or
store instruction.4

DEFINITION 4.1. Allocation Optimization Problem: Given a BLG with constrained end-points, G, and k uniform physical
registers, find a spill set S ⊆ U and G′ ⊆ G induced by S such that: (1) ∀v ∈ V , v is unconstrained, i.e., DEGREE(v) ≤ k;
and (2)

∑
s∈S SPILL(s) is minimized. For each compound interval s ∈ S and basic interval b ∈ s, set spilled(b) := true.

Given a BLG, the register allocation problem now reduces to an optimization problem whose solution ensures that no more
than k physical registers are needed at every interval end point, and at the same time, spills as few compound intervals as
possible. Algorithm 3 provides a greedy heuristic that solves the allocation optimization problem. Steps 3-11 choose Potential
Spill candidates (as shown in Figure 2) using a max-min heuristic. Each iteration of the loop alternates between largest
frequency interval end point and smallest spill cost symbolic register. The alternating approach allows the option of completely
unconstraining a high pressure region of program points before moving onto another. Steps 12-15 unspill some of the potential
spill candidates resulting Actual Spill (as shown in Figure 2) candidates. The unspilling step reverts a potential spill candidate
and its edges back onto the BLG and verifies if the BLG becomes constrained after adding the potential spill candidate. If the
BLG does not get constrained, then the symbolic register can be unspilled. Depending on the quality of potential spill candidate
selection, the unspilling of spill candidates provides a way of rectifying the obvious spilling mistakes (akin to unspilling in
Graph Coloring).

THEOREM 4.1. Algorithm 3 ensures that every program point has k or fewer number of symbolic registers simultaneously live.

4 Extending the BLG approach to partial spills is a topic for future research.

5

function GreedyAlloc()1
Input : Weighted Bipartite Liveness Graph G = 〈U ∪ V, E〉 and k uniform physical registers
Output: Set T ⊆ U which needs to be spilled to ensure all interval end points v ∈ V be unconstrained i.e., ∀b ∈ T, spilled(b) = true
Stack S := φ;2
//Potential spill selection

n := Choose a constrained node n ∈ V with largest FREQ(n);3
while n != null do4

s := Choose a compound interval s ∈ U having an edge to n and has smallest SPILL(s);5
Push s on to S; Delete edge (s, n);6
n := Choose a constrained node n ∈ V having an edge to s and has largest FREQ(n);7
if n == null then8

n := Choose a constrained node n ∈ V with largest FREQ(n);9

Delete all edges incident on s;10
Remove s from G;11

//Actual spill selection

while S is not empty do12
s := pop(S);13
if ∀n ∈ V , n becomes constrained by reverting s and its edges in G then14

spilled(s) := true; T := T ∪ {s};15

return T16

Figure 3. Greedy heuristic to perform allocation

Proof: This is trivial as the algorithm continues to execute the while loop in Steps 4-11 until there are constrained nodes v ∈ V
in the BLG. This is guaranteed by steps 3, 7, and 9. !
THEOREM 4.2. Given the bipartite liveness graph, the Algorithm 3 requires O(|H| ∗max(0, (MAXLIVE− k)) ∗ |C|) time.

Proof: Every interval end point in H is traversed at most MAXLIVE − k number of times to make it unconstrained. To make
an interval end point unconstrained, we need to visit all its neighbor and choose a minimum spill cost compound interval. This
requires, at most, |C| edge visits. !

One of the advantages of Algorithm 3 is that if a spill-free allocation exists, the algorithm is guaranteed to find an allocation
without spills. On the other hand, if one works with an allocator based on graph coloring, it is an NP-hard problem to determine
if a spill-free allocation exists. This seeming contradiction arises because BLG may require the insertion of register-copy
instructions (described in Section 5), whereas the standard graph coloring algorithm does not allow for this possibility. Prior
work on SSA-based register allocation [Hack and Goos 2006, Brisk et al. 2005, Bouchez 2009] and on Extended Linear
Scan [Sarkar and Barik 2007] independently established that the existence of a spill-free allocation can be determined in
polynomial time, provided that extra register-copy instructions can be inserted. In the case of SSA-based register allocation,
the extra copies arise from φ-functions; in the case of Extended Linear Scan, they arise from the need to map from the register
assignment for a symbolic register to another on a control flow edge. In both cases, the task of optimizing the additional copy
instructions is a non-trivial problem.

5. Assignment using Register Moves and Exchanges
The allocation phase ensures that every program point needs k or fewer physical registers. In this section, we first describe how
assignment for basic intervals can be performed by possibly adding extra register moves/exchanges to the IR without spilling
any symbolic registers.

5.1 Spill-Free Assignment
DEFINITION 5.1. Spill-free Assignment: Given a set of basic intervals b ∈ B with spilled(b) = false, and k uniform
physical registers, find register assignment reg(b) for every basic interval, b ∈ B, including any register-to-register copy or
exchange instructions that need to be inserted in the IR.

The algorithm to perform register assignment for basic intervals is provided in Algorithm 4. The algorithm sorts the basic
intervals in increasing start points. Steps 4-11 perform assignment to basic intervals using an avail list of physical registers.
The assignment to a basic interval first prefers getting the physical register that was previously assigned to another basic interval
of the same compound interval (as shown in Step 7). This avoids the need for additional move/exchange instructions. However,

6

in cases where the already assigned physical register is unavailable, we assign a new available physical register (as shown in
Step 10). Assigning such a new physical register may produce incorrect code without additional move/exchange instructions
on certain control flow paths.

Steps 12-20 of Algorithm 4 create a list of move instructions that need to be inserted on a control flow edge. These
move instructions form the nodes of a directed anti-dependence graph D in Algorithm 5. The edges in D represent the anti-
dependence between a pair of move instructions. Steps 5-10 of Algorithm 5 add the anti-dependence edges to D. A strongly
connected component (SCC) search is performed on D to generate efficient code using exchange instructions for SCC’s of size
2 or more (a shown in Steps 11-18). The nodes in a SCC are collapsed to a single node with exchange instructions. Finally, a
topological sort order of D produces the correct code for a control flow edge e.

function RegMoveAssignment()1
Input : IR, Set of basic intervals b ∈ B with spilled(b) = false and k uniform physical registers
Output: ∀b ∈ B, return the register assignment reg(b) and any register moves and exchange instructions
M := φ;2
avail := set of physical registers;3
for each basic interval b := [x, y], in increasing start points i.e., L do4

for each basic interval b′ := [x′, y′] such that y′ < x do5
avail := avail ∪ reg(b′);6

r := find a physical register p ∈ avail that was assigned to another basic interval of the same compound interval;7
if r == null then8

Assert avail is not empty;9
r := find a physical register p ∈ avail ;10

reg(b) := r; avail := avail - {r};11

for each control flow edge, e do12
for each compound interval c ∈ C that is live at both end points of e do13

b1 := basic interval of c at the source of e;14
b2 := basic interval of c at the destination of e;15
if b1 != null and b2 != null then16

r1 := reg(b1); r2 := reg(b2);17
if r1 != r2 then18

m := generate a new move instruction that moves r1 to r2 i.e., mov r2, r1;19
M := M ∪ {m};20

GenerateMoves(IR, M ,e);21

return T and IR22

Figure 4. Assignment using register moves and exchange instructions

LEMMA 5.1. The assertion on line 9 of Algorithm 4 never fails.

Proof: Follows from the fact that every interval end point has no more than k symbolic registers simultaneously live.!

THEOREM 5.2. Spill-free assignment takes O(|E|∗ (|C|+ |K|2)) space where E represents the control flow edges in a program
and K represents the available physical registers.

Proof: Additional space requirement in assignment phase is due to the anti-dependence graph D. For every control flow edge
e ∈ E , in the worst case we need to insert |C| number of register-to-register move instructions. These are the number of nodes in
D. The number of edges in D are bounded by the square of physical registersK, i.e., it represents all possible anti-dependences
between all possible pairs of physical registers. Hence the overall space complexity is O(|E| ∗ (|C|+ |K|2)).!

THEOREM 5.3. Spill-free assignment takes O(|B|+ (|E| ∗ (|C|+ |K|2))) time.

Proof: Similar in nature to the proof for Theorem 5.2.!

5.2 Assignment with Move Coalescing and Register Moves
Move coalescing is an important optimization in register allocation algorithms that assigns the same physical registers to the
source and destination of an IR move instruction when possible to do so. The register assignment phase must try to coalesce as
many moves as possible so as to get rid of the move instructions from the IR. As we saw in the preceding section, additional
register moves may be inserted in the assignment phase instead of spilling. Note that move coalescing approaches using

7

function GenerateMoves()1
Input : IR, Set of move instructions M and a control flow edge e
Output: Modified IR with register move and exchange instructions added
D := φ; //D is the anti-dependence graph2
for m1 ∈ M do3

Add a node for m1 in D;4

for m1 ∈ D do5
for m2 ∈ D and m2! = m1 do6

s1 := source of the move instruction in m1;7
d2 := destination of the move instruction in m2;8
if s1 == d2 then9

Add a a directed edge (m1, m2) to D;10

S := Find strongly connected components in D;11
for each s ∈ S do12

Collapse all the nodes in s to a single node n in D;13
while number of move instructions in s > 1 do14

m1 := Remove first move instruction from s;15
m2 := First move instruction in s;16
x := Generate an exchange instruction between the destinations of m1 and m2;17
Append x to the instructions of n;18

for each node n in D in topological sort order do19
Add the move or exchange instructions of the node n to the IR along the control flow edge e;20

return Modified IR21

Figure 5. Insertion of move and exchange operations on a control flow edge

aggressive [Chaitin et al. 1981], conservative [Briggs et al. 1994], and optimistic [Park and Moon 1998] techniques are shown
to be NP-complete by Bouchez et al [Bouchez et al. 2007]. In this section, we first present a coalesce graph that models both the
IR move instructions and register-to-register moves. Then, the register assignment phase on the coalesce graph is formulated
as an optimization problem that tries to maximize the number of move instructions removed after assignment. We provide a
greedy heuristic to solve it.

DEFINITION 5.2. A Coalesce Graph (CG) is an undirected weighted graph G = 〈V,Em ∪ Er〉 where V represents the basic
intervals in B and an edge e ⊆ V × V corresponds to the following two types of move instructions between a pair of basic
intervals:

1. Em: the move instructions already present in the IR. The weight of such an edge W(e) is the estimated frequency of the
corresponding move instruction.

2. Er: the move instructions that need to be added on control flow edges for which the two interval end points have different
register assignments for the same compound interval. The weight of such an edge W(e) is the estimated frequency of the
control-flow edge on which the move instruction is added.

DEFINITION 5.3. Assignment Optimization Problem: Given a set of basic intervals b ∈ B with spilled(b) = false,
CG = 〈V,E = {Em ∪ Er}〉, IR, and k uniform physical registers, find register assignment reg(b) for every basic interval b
such that the following objective function is minimized:

∑

∀e∈E, e=(b1,b2) ∧ reg(b1)!=reg(b2)

W(e)

The assignment guides which additional register-to-register copy or exchange instructions need to be inserted in the IR.

Algorithm 6 presents a greedy heuristic to select a physical register for a basic interval b given the coalesce graph and the
available set of physical register avail . avail is updated as basic intervals expire. Map is a data structure that maps a physical
register to a cost. Steps 3-7 find the physical registers and their associated costs that are already assigned to the neighbors of
b in the coalesce graph (similar to the idea of biased coloring [Briggs et al. 1992]). Our approach takes into account the edges
in Er due to register-to-register moves. The greedy heuristics chooses a physical register reg(b) with maximum cost, i.e., the
benefit of assigning the physical register to basic interval b.

8

function GetPreferredPhysical ()1
Input : A basic interval b ∈ B, coalesce graph G = 〈V, E = {Em ∪ Er}〉 and a set avail currently available uniform physical registers
Output: Find the assignment reg(b)
Map := φ;2
//Maximize the IR moves that can be removed

for each edge e = (b1, b) ∈ Em ∪ Er do3
if b1 and b do not intersect then4

p := reg(b1);5
if p != null and p ∈ avail then6

Map(p) := Map(p) + W(e);7

ret := Find p with maximum cost in Map;8
if ret == null then9

ret := Find any free physical register from R;10

Remove ret from avail ; reg(b) := ret ; return reg(b);11

Figure 6. Greedy heuristic to choose a physical register that maximizes copy removal

THEOREM 5.4. Register assignment using Algorithm 6 requires O(|B|+ |IR|+ (|C| ∗maxc)) space where maxc denotes the
maximum number of basic intervals in a compound interval.

Proof: The additional space requirement is due to the coalesce graph CG containing |B| number of nodes. Em in the worst case
ends up creating |IR| edges. Er adds edges between basic intervals of the same compound interval and hence needs |C| ∗maxc

number of edges.!

THEOREM 5.5. Register assignment using Algorithm 6 takes O((|B| ∗maxc) + |IR|+ (|E| ∗ (|C|+ |K|2))) time.

Proof: In addition to Theorem 5.3, before deciding a physical register for each basic interval b it is required to traverse each of
the neighbors in CG. For all basic intervals, this adds over all 2 ∗ |IR| time complexity for IR move instructions and |B| ∗maxc

time complexity for Er edges in CG.!

6. Allocation and Assignment with Register Classes
In the preceding sections, we have described register allocation and assignment for k physical registers that are uniform, i.e.,
they are independent and interchangeable [Smith et al. 2004]. However, modern systems such as x86, HP RA-RISC, Sun
SPARC, and MIPS come with physical registers which may not necessarily be interchangeable. For example, the Intel 32-bit
x86 architecture provides eight integer physical registers, of which six are usable by Jikes RVM. These six physical registers
are further divided into four high level overlapping register classes based on calling conventions and 8-bit operand accesses.
Since the register classes may not necessarily be disjoint, a register allocator must take into account register classes during
allocation and assignment to produce high quality machine code. In this section, we describe how allocation and assignment
can be performed in the presence of register classes. We assume calling conventions related constraints are also expressed in
additional register classes with infinite spill cost.

6.1 Constrained Allocation using BLG
Allocation in the presence of register classes can be achieved using the following two approaches:

1. Build BLG for each register class and apply Algorithm 3 to each BLG in a particular order starting with the most constrained
register class that has fewer physical registers in a class. For example, in the 32-bit x86 architecture, we need to build four
BLGs for four register classes in Jikes RVM and apply Algorithm 3 in the order 8 bit non-volatile (EBX), non-volatile
(EBX, EBP, and EDI), 8 bit volatile (EAX, EBX, ECX, and EDX), and then for the complete integer register class. If a
compound interval is spilled in a BLG for a register class, that decision need to be propagated to the other BLGs of other
classes.

2. An alternative approach is to build a single BLG. During every visit of an interval end point in Algorithm 3, we make it
unconstrained with respect to all register classes before another end point is visited. This approach is space-efficient as it
builds only one BLG but can eagerly generate more spills than (1).

Our experimental results in Section 7 were obtained using Approach (1).

9

function ConstrainedAssignment ()1
Input : Set of basic intervals b ∈ B, ∀b ∈ B regclass(b), a set of physical register classes K, a compile-time constant num bucket
Output: Find the assignment reg(b) and spill decision spilled(b)
//Find total number of elements per regclass
for b ∈ B do2

cid := getClassId (regclass(b));3
perClass[cid] + +;4

//Decide per bucket number of elements

for i := 0; i < |K|; i + + do5
perBucket [i] := 'perClass[i]/|K|(+ 1;6
availBucket [i] := 0;7

//assignOrder is a 2-d array of basic intervals;

//Determine the bucket for b;
for b ∈ B in decreasing order of SPILL(b) do8

cid := getClassId (regclass(b));9
bucket := availBucket [cid];10
Append b to assignOrder [bucket][cid];11
if |assignOrder [bucket][cid]| > perBucket [cid] then12

availBucket [cid] + +;13

//Assign physical registers

for i := 0; i < |K|; i + + do14
for j := 0; j < num bucket ; j + + do15

for b ∈ assignOrder [i][j] do16
findAssignment (b);17

Figure 7. Bucket-based greedy heuristic to perform assignment in the presence of register classes.

6.2 Constrained Assignment and Move Coalescing
Given a coalesce graph (as defined in Section 5), when we try to find an assignment for a basic interval b, the register classes of
the neighbors of b in the coalesce graph along with the register class of b, play a key role in selecting a physical register for b.
An IR move instruction can be coalesced if source and destination basic intervals have a non-null intersection in their register
classes.

Another key point in register assignment is that we no longer can rely on the increasing start point order for assignment of
basic intervals since an early decision of physical register assignment of a register class may result in more symbolic registers
being spilled later on or giving up other opportunities for coalescing. We define the register assignment problem in the presence
of register classes as an optimization problem that may incur additional spills.

DEFINITION 6.1. Constrained Assignment Optimization Problem: Given a set of basic intervals b ∈ B with spilled(b) =
false, regclass(b) indicating physical registers that can be assigned to each b, CG = 〈V,E = {Em ∪ Er}〉, and IR, find a
register assignment reg(b) for a subset of basic intervals S ⊆ B such that the following objective function is minimized:

∑

∀b∈B−S

SPILL(b) +
∑

∀e∈E, e=(b1,b2) ∧ reg(b1)!=reg(b2)

W(e)

Insert additional register-to-register copy or exchange instructions in the IR.

Algorithm 7 presents a bucket-based approach to register assignment that tries to strike a balance between register classes
and spill cost. The assignOrder data structure holds sorted basic intervals according to register classes in a two dimensional
array. Each register class is represented as a unique integer id. Steps 2-4 compute the total number of basic intervals per register
class. Steps 5-7 compute the number of elements per bucket. Steps 8-13 decide the appropriate bucket in assignOrder where
a basic interval should reside (based on next availability). Steps 14-17 find an assignment for basic intervals by traversing the
assignOrder array in a row major order. The heuristic for assigning a physical register to a basic interval follows a similar
approach described in Section 5 except additional care must be taken to account for register class constraints. The details are
provided in Algorithm 8.

10

function findAssignment ()1

Input : A basic interval b ∈ B, ∀b ∈ B regclass(b), coalesce graph G = 〈V,E = {Em ∪ Er}〉, a set of available
physical registers avail

Output: Find the assignment reg(b)
Compute Map using Steps 3-7 of Algorithm 6;2

RMap := Map;3

for each edge e = (b1, b) ∈ Em ∪ Er do4

if b1 and b intersect then5

for each p in Map do6

if p can be assigned to b1, i.e., p ∈ regclass(b1) then7

RMap(p) := RMap(p) + W(e);8

ret := Find p with maximum cost in RMap;9

Follow Steps 7-11 of Algorithm 6;10

Figure 8. Greedy heuristic to choose a physical register that maximizes copy removal in the presence of register classes

7. Experimental Results
We present an experimental evaluation of the BLG register allocation and assignment algorithms presented in this paper. The
experimental setup consists of two compiler infrastructures, LLVM 2.7 [llv] and Jikes RVM 3.0.0 [jik]. The evaluations were
performed on an Intel Xeon 2.4GHz system with 30GB of memory and running RedHat Linux (RHEL 5).

7.1 LLVM 2.7 (64-bit) evaluation
Benchmarks: We used ten benchmarks from the SPECCPU 2006 benchmark suite. The integer benchmarks used are
401.bzip2, 429.mcf, 458.sjeng, 464.h264ref, and 473.astar. The floating-point benchmarks used are 410.bwaves,
434.zeusmp, 435. gromacs, 444.namd, and 470.lbm. All the benchmarks were executed under the optimization level -O2
of LLVM. Since we invoked LLVM in static compilation mode, we ran each benchmark five times and reported the best of the
5 runs as the runtime performance measurement.

Comparison approaches: Experimental results are reported for the following cases:

1. LLVMLS – Baseline measurement using the default Linear Scan register allocator in LLVM; This allocator implements live-
range splitting and differs from the standard linear scan algorithm [Poletto and Sarkar 1999] by introducing backtracking.
These extensions are described in Wimmer et al. [Wimmer and Mössenböck 2005]. This algorithm also performs aggressive
coalescing prior to register allocation.

2. GC – the Chaitin-Briggs [Chaitin et al. 1981, Briggs et al. 1994] register allocator. This implementation uses the same code
base of Chaitin-Briggs allocator with aggressive coalescing that was used in [Cooper and Dasgupta 2006]. Details of the
Chaitin-Briggs allocator can be found in [Briggs et al. 1994].

3. BLG+LS – the register allocation and assignment algorithm presented in Section 6 with the spill code generation algorithm
from 1) above i.e., after the allocation and assignment passes are completed using BLG, the IR is rewritten using the physical
registers for the non-spilled variables and move code is inserted. The IR is then passed to the Linear Scan register allocator
of LLVM to generate spill code)

4. BLG+GS – the register allocation and assignment algorithm presented in Section 6 with the spill code generation algorithm
from 2) above i.e., after allocation and assignment are completed using BLG, the IR is rewritten using the physical registers
for the non-spilled variables and move code is inserted. The IR is then passed to the Chaitin-Briggs register allocator to
generate spill code). For the BLG allocator, we set the compile-time constant num bucket to 4.

Compile-time Comparison: Table 1 compares the compile-time overheads of BLG vs. GC. The measurements were
obtained for functions with the largest interference graphs (in terms of number of nodes) in the SPECCPU 2006 benchmarks.
Column 3 reports the total number of LLVM IR instructions for the max function. Column 4 and 5 report the total number
of nodes and edges in the IG respectively. (We only report these numbers for the first iteration of the Chaitin-Briggs allocator
– subsequent iterations require additional smaller interference graphs.) Column 5 and 6 report the total number of nodes and
edges in BLG that only considers constrained interval end points (i.e., those end points with MAXLIVE > k; unconstrained
interval end points are not necessary, as described in Section 4). We define Space Usage Ratio metric as the ratio of the

11

Benchmark max |IR| IG IG BLG BLG Space BLG BLG
function #nodes #edges #nodes #edges Usage #nodes #edges

Ratio opt opt
401.bzip2 sendMTFValues 3545 2693 53562 1844 9819 3.9 1721 8823
410.bwaves bi cgstab block 2083 1025 5430 134 269 3.4 134 269
429.mcf read min 440 279 3376 47 49 7.6 47 49
434.zeusmp setup 5147 3030 33138 387 1750 5.6 79 210
435.gromacs do inputrec 3519 1941 36606 64 142 11.3 39 67
444.namd ZN20ComputeNonbondedUtil30calc self en- 2244 907 6156 4 3 4.1 4 3

ergy fullelect fepEP9nonbonded
458.sjeng std eval 1316 812 7908 0 0 7.63 0 0
464.h264ref SubPelBlockSearchBiPred 5787 4757 86092 356 921 13.7 53 55
470.lbm LBM handleInOutFlow 1162 643 5380 189 270 4.4 189 270
473.astar ZN6wayobj18makeobstaclebound2EPiiS0 382 295 438 0 0 2.9 0 0

Table 1. Comparison of compile-time statistics between BLG+LS and GC for SPECCPU 2006 benchmarks. The number of
compound intervals (i.e., variables) for BLG is same as column 4. The Space Usage Ratio in column 8 is the ratio of the
following two quantities: (1) sum of |IR|, IG nodes, and IG edges; (2) |IR|, BLG nodes, and BLG edges. Column 9 and 10
report the BLG nodes and edges after optimizing BLG for space.

Benchmark GC (in sec) BLG+LS (in sec)
401.bzip 938 10.9
410.bwaves 151.5 7.8
429.mcf 225.1 1.9
434.zeusmp 732.0 39.1
435.gromacs 9886.2 82.9
444.namd 1633.5 48.2
458.sjeng 1230.7 12.9
464.h264ref 5433.2 66.8
470.lbm 245.2 5.2
473.astar 1125.2 5.1

Table 2. Comparison of compile-times between BLG+LS and GC for SPECCPU 2006 benchmarks using LLVM static compiler.
Clearly, BLG+LS achieves a significant reduction in compile-time relative to GC. The Interference Graph as a major compile-time
bottleneck has also been observed in [Sarkar and Barik 2007, Cooper and Dasgupta 2006].

following two quantities: (1) sum of columns 3-5 (|IG|); (2) sum of columns 3, 6, and 7 (|BLG|). This metric varies from 2.9×
to 13.7× in our case, indicating the lower space usage of BLG compared to GC. While theoretically both IG and BLG can be
quadratic, in practice, we observe BLG to be much smaller than IG. We introduced an additional optimization for reducing
the size of the BLG based on the simple observation that the constrained interval end points having the same set of variables
live can be merged into a single merged interval end point. This optimization is applied on-the-fly as new interval end points
are added to BLG using an efficient hashing mechanism for the end points. Column 9 and 10 report the total number of nodes
and edges in BLG after applying the above optimization. The optimization reduces the BLG size for 401.bzip2, 434.zeusmp,
435.gromacs, and 464.h264ref.

Table 2 compares the total compilation time of each benchmark using BLG vs. GC. While compilation time can depend
heavily on the algorithmic implementation, we observe a significant reduction in compile-time for BLG for all the benchmarks.
Note that we did not implement GC ourselves but used it is as it is from [Cooper and Dasgupta 2006]. We expected GC to be
slower than BLG but not by such large factors. One major source of compile-time inefficiency that we identified is the way
register classes are handled in their implementation. Nonetheless, past work by Poletto and Sarkar [Poletto and Sarkar 1999]
has shown a slowdown of factor 2 and also, Traub et al. [Traub et al. 1998] report a slowdown of factor 3.5 for large programs
using IG vs. intervals. Further, IG being a compile-time bottleneck has also been observed in [Cooper and Dasgupta 2006,
Sarkar and Barik 2007].

Runtime comparison: Figure 9 reports the relative performance improvement of the register allocation algorithm presented
in this paper along with Chaitin-Briggs spill code generator, BLG+GS, compared to the original Chaitin-Briggs allocator,
i.e., GC. We observe a performance improvement of up to 7.87% in 464.h264ref benchmark and we do not observe any
degradation in any of the benchmarks. While comparing our BLG allocator with Linear Scan spill code generator, i.e., BLG+LS,
with that of LLVM’s default register allocator LLVMLS (as shown in Table 3), we did not observe any noticeable performance
difference. Note that the default LLVM register allocator uses live-range splitting and backtracking advanced techniques to

12

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,
-
./
-
0
12
3
-
"4
5
6
.7
8
-
5
-
0
1"
.-
9:
"1
7
";
<
"

=,><"<,?"$!!("@-0/A52.B"=C41-"

Figure 9. Percentage Improvement of execution times obtained by BLG+GS, (i.e., BLG+Chaitin-Briggs spiller) compared to
GC in the LLVM static compiler infrastructure for SPECCPU 2006 benchmarks.

Benchmark BLG+LS LLVM+LS
execution time (in sec) execution time (in sec)

401.bzip 9.9 10.0
410.bwaves 2856.4 2853.1
429.mcf 6.7 6.8
434.zeusmp 40.4 40.5
435.gromacs 2079.1 2076.7
444.namd 38.1 38.1
458.sjeng 11.0 11.1
464.h264ref 1806.4 1806.4
470.lbm 1.6 1.6
473.astar 23.5 23.5

Table 3. Comparison of execution times obtained by BLG+LS, (i.e., BLG+Linear Scan Spiller) compared to the default
LLVM Linear Scan for SPEC CPU 2006 benchmarks using LLVM static compiler. Note that LLVMLS performs additional
optimizations, such as live-range splitting and backtracking compared to BLG+LS.

help moderate register pressure during allocation and assignment. Live-range splitting for BLG can exploit the structure of the
program as in [Lueh et al. 2000, Appel and George 2001] and is left for future work.

7.2 Jikes RVM 3.0.0 (32-bit) dynamic compiler evaluation
Benchmarks: We used the serial benchmarks in v2.0 of the Java Grande Forum (JGF) benchmark suite [Java Grande Forum]
and Dacapo 2006 benchmark suite [Blackburn et al. 2006] to evaluate the performance of our register allocator. The JGF
benchmarks consist of three sections. Section 1 contains microbenchmarks that are not relevant to a register allocation
evaluation. Section 2 contains seven benchmarks (Crypt, Heapsort, Sparsematmult, Sor, Series, LUFact, and FFT) and
Section 3 contains five large benchmarks (Raytracer, Moldyn, Montecarlo, Euler, and Search). For Dacapo benchmark
suite, we report performance evaluation of nine benchmarks out of total eleven benchmarks. These include antlr, bloat, fop,
hsqldb, jython, luindex, pmd, xalan, and lusearch.

Compiler: The boot image for Jikes RVM used a production configuration. Since the Jikes RVM release did not support
generation of Intel exchange instruction, we modified its assembler to add this support. Jikes RVM uses SSE registers for
storing double/floating point values. However, to the best of our knowledge, there does not exist a direct exchange instruction
to swap values in SSE registers, so we generate three xor instructions to exchange a pair of float/double values. The exchange
instructions are generated judiciously, i.e., if there is a free physical register available for swapping the values, an exchange
instruction is not generated [Boissinot et al. 2009]. For all Java runs, the execution times are reported for dynamic compilation
(both runtime and compile-time) and use the methodology described in [Georges et al. 2007], i.e., we report the average runtime
performance of 30-runs within a single VM invocation along with the execution variance that uses a 95% confidence interval.5

Comparison approaches: Experimental results in Jikes RVM evaluation are reported for the following cases: 1) LS –
Baseline measurement with Linear Scan register allocator in Jikes RVM that uses the algorithm from [Poletto and Sarkar 1999]
with extensions for live-range “holes”; 2) BLG – the constrained register allocation algorithm presented in Section 6. The
compile-time constant num bucket in Figure 7 is set to 4 for all runs. Increasing this number to a higher value does not impact
the runtime performance greatly.

5 Due to lack of space, we omit all data for 95% confidence interval.

13

!"#

$#

"#

%$#

%"#

&$#

&"#

'$#

'"#

(
)
*+
)
,
-.
/
)
#0
1
2
*3
4
)
1
)
,
-#
*)
56
#-
3
#7
8
#

9.4.#:*.,;)#<3*=1#>),+?1.*@#8=0-)#

Figure 10. Percentage improvement of BLG compared to LS in Jikes RVM dynamic compiler for Java Grande

Runtime comparison: Figure 10 reports the relative performance improvements for all the benchmarks in JGF benchmark
suite relative to the Linear Scan algorithm implemented in Jikes RVM 3.0.0. The BLG register allocator resulted in a
performance improvement in the range of -0.1% to 30.7% (for Moldyn) in comparison with LS. For Moldyn benchmark, the
absolute average execution time for LS is 43.9s with 95% confidence interval in the range 42.6s-43.7s. The absolute average
execution time for BLG is 30.5s with 95% confidence interval in the range 30.4s-30.5s. For this benchmark, the most-frequently
executed function is force. MAXLIVE for this function is >7. (Jikes RVM uses 8 SSE registers for storing double/float
values, and one out of them, XMM7, is used for scratch register.) Spilling decisions for this method impact the performance
of the benchmark significantly. BLG for this method coalesces more moves than LS and is able to spill 14 symbolic registers
compared to 16 symbolic registers in LS. This is not surprising because BLG performs global spill decisions on the bipartite
graph compared to the local decisions made by LS on active list.

!"#

$#

"#

%#

&#

'#

($#

)*+,-# .,/)+# 0/1# 234,5.# 67+2/*# ,89*5:;# 1<5# ;),)*# ,83:)-=2#

>
:
-=
:
*
+)
?
:
#@
<
1
-/
A
:
<
:
*
+#
-:
,B
#+
/
#C
D
#

E)=)1/#F:*=2<)-G#D89+:#

Figure 11. Percentage improvement of BLG compared to LS in Jikes RVM dynamic compiler for Dacapo

For Dacapo 2006 benchmark suite, we observe a performance improvement in the range of -0.2% to 9% (for hsqldb)
for BLG register allocator compared to LS using the largest data set. The individual performance improvements are shown in
Figure 11. For hsqldb, the absolute average execution time for LS is 8.5s with 95% confidence interval in the range 7.5s-10.5s.
The absolute average execution time for BLG is 7.7s with 95% confidence interval in the range 7.5s-9.3s. Apart from hsqldb,
we also observe performance improvements for antlr, bloat, and lusearch.

Compile-time: In a separate execution of all the Java Grande benchmarks to filter out the sole overhead of compile-time,
we observe that our current Jikes RVM BLG implementation increases the overall compilation-time in the range of 4.1% to
18.5%. This modest increase in compile-time is acceptable given the runtime performance we achieve.

8. Related Work
Spill-free register allocation of general programs is NP-complete [Chaitin et al. 1981]. There exist a plethora of past works in
using graph coloring-based approaches to spill-free register allocation [Chaitin et al. 1981, Briggs et al. 1994, Park and Moon
1998, George and Appel 1996]. The key data structures of a Graph Coloring based algorithm are live-ranges and the interference
graph. One of the key limitations of graph coloring based register allocation is that the live-ranges introduce imprecision that
may lead to making the interference graph uncolorable (like the one seen in Figure 3). In contrast, our approach builds on the
simple foundations of Linear Scan register allocation like intervals and precisely captures liveness information using a novel
BLG data structure, which is used for spill-free register allocation [Sarkar and Barik 2007].

14

Recently, the focus in graph coloring-based register allocation has shifted to SSA-based register allocation [Hack and Goos
2006, Brisk et al. 2005, Bouchez 2009, Pereira and Palsberg 2005, 2009, Braun et al. 2010]. In SSA representation, the
interference graph is chordal and can be colored optimally in linear time. Like our approach and others in the literature [Appel
and George 2001], current approaches to SSA register allocation separate between allocation and assignment phases in
register allocation. However, an SSA register allocation requires the interference graph for allocation and assignment (thereby,
incurs compile-time overhead) with an additional complexity of dealing with parallel-copy statements during out-of-ssa
translation [Hack and Goos 2008]. Our BLG allocator does not need an interference graph for allocation and efficiently inserts
a few register-to-register moves and exchange operations during assignment as opposed to expensive backtracking approaches
to eliminate a large number of parallel-copy instructions in SSA-based register allocation.

Linear Scan [Poletto and Sarkar 1999, Traub et al. 1998, Wimmer and Mössenböck 2005, Thammanur and Pande
2004, Wimmer and Franz 2010] register allocation algorithms have been preferred for JIT-compilers such as Jikes [jik],
HotSpot [Kotzmann et al. 2008], and LLVM [llv] due to their low compilation-time and space complexity. Compared to ex-
isting linear scan algorithms, our approach separates allocation and assignment phases. This leads to a much better global
spilling decision using a novel bipartite graph. Traditional linear scan algorithms often combine allocation and assignment for
efficiency reasons and hence end up making local spill decisions that lead to performance lag.

The graph coloring-based register allocation algorithm was first extended to handle register classes and aliasing by Smith
et al [Smith et al. 2004]. The problem of spill-free register allocation is NP-complete even in the presence of register classes
and aliasing [Lee et al. 2007]. The approach taken by Smith et al is to handle register classes and aliasing by exploiting the
coloring constraints on each node of the interference graph. This approach is elegant and can be easily integrated into any
graph coloring register allocation algorithm. More recently, a new approach based on puzzle solving was introduced by Pereira
and Palsberg [Pereira and Palsberg 2008] to handle precoloring and aliasing issues in register allocation. Their approach views
the register file as a puzzle and the program variables as puzzle pieces. For many common architectures, the register allocation
using puzzles can be solved in polynomial time. Our BLG register allocator handles these architectural constraints without
building the interference graph. For allocation phase, we construct BLG for each register class and propagate spill information
across BLG’s of other register classes. For assignment phase, we use a bucket-based approach that strikes a balance between
spill cost and move code optimization.

A bipartite graph-based register assignment phase was proposed by Zhang et al. [Zhang et al. 2004] that is performed on
hot paths of already register allocated code, i.e., as a post register allocation pass. The spilled variables on the hot path form
one set of vertices of the bipartite graph where as the other set of vertices consists of the set of dead physical registers. An edge
is added to their bipartite graph if both the spilled variable and dead physical register are alive in the same basic block. The
weight of such an edge is the spill cost of the spilled variable in the basic block. Dead register assignment is then performed
using weighted bipartite graph matching. This approach differs from our BLG allocator in many ways: 1) the nodes, edges, and
weights of the bipartite graph are all different; 2) our bipartite liveness graph represents liveness information and solves the
allocation phase of register allocation.

9. Conclusions
In this paper, we addressed the problem of developing a register allocation algorithm that builds on the simplicity of Linear
Scan while improving its runtime performance. It does so by separating the allocation and assignment phases. The allocation
phase is modeled as an optimization problem on Bipartite Liveness Graphs (BLG’s), a new data structure introduced in this
paper. In the allocation and assignment phase, we focus on reducing the number of spill instructions by using register-to-
register move and exchange instructions wherever possible to maximize the use of registers. We model register assignment
as a second optimization problem that includes move coalescing, as well as register class constraints, and provide a heuristic
solution to this problem as well. Compared to past work, our BLG register allocator incurs low compile-time overhead and
results in high quality code. A prototype implementation of our BLG-based register allocation phase combined with the
constrained assignment in Jikes RVM demonstrates runtime performances improvements in the range of -0.96% to 30.7% for
Java Grande Forum and in the range of -0.16% to 9.013% for Dacapo benchmark suite. Additionally, we observe a performance
improvement of up to 7.87% for SPECCPU 2006 benchmarks using our BLG register allocator that uses a graph coloring based
spill code generator when compared to Chaitin-Briggs register allocator.

These results show that BLG register allocation algorithm is a promising alternate to the large body of register allocators
existing today. Possible directions for future work include support for live-range splitting, and studying the impact of move
and exchange instructions on code size compared to spill load/store instructions. Further, we would like to study the combined
effect of BLG with instruction scheduling.

15

References
Jikes RVM. http://jikesrvm.org/.

The LLVM compiler infrastructure. http://llvm.org/.

Andrew W. Appel and Lal George. Optimal spilling for CISC machines with few registers. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, PLDI ’01, pages 243–253, New York, NY, USA, 2001. ACM. ISBN
1-58113-414-2. doi: http://doi.acm.org/10.1145/378795.378854. URL http://doi.acm.org/10.1145/378795.378854.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo benchmarks: Java benchmarking development and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and Applications, pages 169–190, New York, NY, USA,
October 2006. ACM Press. doi: http://doi.acm.org/10.1145/1167473.1167488.

Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and Christophe Guillon. Revisiting out-of-ssa translation for
correctness, code quality and efficiency. In Proceedings of the 7th annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’09, pages 114–125, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3576-0. doi:
http://dx.doi.org/10.1109/CGO.2009.19. URL http://dx.doi.org/10.1109/CGO.2009.19.

Florent Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two Separate Phases. PhD thesis, April 2009.

Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of register coalescing. In CGO ’07, pages 102–114, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2764-7. doi: http://dx.doi.org/10.1109/CGO.2007.26.

Matthias Braun, Christoph Mallon, and Sebastian Hack. Preference-Guided Register Assignment. In Compiler Construction 2010, volume
6011 of Lecture Notes In Computer Science, pages 205–223. Springer, 2010. ISBN 978-3-642-11969-9. doi: 10.1007/978-3-642-11970-5.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In PLDI ’92, volume 27, pages 311–321, New York, NY, 1992.
ACM Press. ISBN 0-89791-475-9. URL citeseer.ist.psu.edu/briggs92rematerialization.html.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register allocation. ACM Transactions on Programming
Languages and Systems, 16(3):428–455, May 1994. URL citeseer.ist.psu.edu/briggs94improvements.html.

P. Brisk, Dabiri F., Macbeth J., and Sarrafzadeh M. Polynomial time graph coloring register allocation. 14th International Workshop on
Logic and Synthesis, 2005.

G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register allocation via coloring. Computer Languages 6,
pages 47–57, January 1981.

Keith D. Cooper and Anshuman Dasgupta. Tailoring graph-coloring register allocation for runtime compilation. In CGO ’06, pages 39–49,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2499-0. doi: http://dx.doi.org/10.1109/CGO.2006.35.

Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions on Programming Languages and Systems, 18(3):300–324,
May 1996. URL citeseer.ist.psu.edu/george96iterated.html.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java performance evaluation. In OOPSLA ’07: Proceedings of the
22nd annual ACM SIGPLAN conference on Object oriented programming systems and applications, pages 57–76, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-786-5. doi: http://doi.acm.org/10.1145/1297027.1297033.

Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for optimal coalescing. In Shriram Krishnamurthi and Martin Odersky,
editors, Compiler Construction, volume 4420 of Lecture Notes in Computer Science, pages 111–125. Springer Berlin / Heidelberg, 2007.

Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form programs in polynomial time. Inf. Process. Lett., 98(4):
150–155, 2006. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/j.ipl.2006.01.008.

Sebastian Hack and Gerhard Goos. Copy coalescing by graph recoloring. In PLDI ’08, pages 227–237, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375610.

Lang Hames and Bernhard Scholz. Nearly optimal register allocation with pbqp. In David Lightfoot and Clemens Szyperski, editors,
Modular Programming Languages, volume 4228 of Lecture Notes in Computer Science, pages 346–361. Springer Berlin / Heidelberg,
2006.

Java Grande Forum. The Java Grande Forum benchmark suite. http://www.epcc.ed.ac.uk/javagrande/javag.html.

Thomas Kotzmann, Christian Wimmer, Hansp eter Mössenböck, Thomas Rodriguez, Kenneth Russell, and David Cox. Design of
the Java HotSpotTMclient compiler for Java 6. ACM Trans. Archit. Code Optim., 5(1):1–32, 2008. ISSN 1544-3566. doi:
http://doi.acm.org/10.1145/1369396.1370017.

Jonathan Lee, K., Jens Palsberg, and Fernando Magno Pereira. Aliased register allocation for straight-line programs is NP-complete. In
Automata, Languages and Programming, pages 680–691, 2007. doi: 10.1007/978-3-540-73420-8 59.

Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-based register allocation. ACM Trans. Program. Lang. Syst., 22:
431–470, May 2000. ISSN 0164-0925.

16

Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In Jean-Luc Gaudiot, editor, PACT ’98, pages 196–204, Paris, October
1998. IFIP,ACM,IEEE.

Fernando Magno Pereira and Jens Palsberg. SSA elimination after register allocation. In CC ’09, pages 158–173, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-00721-7.

Fernando Magno Pereira and Jens Palsberg. Register allocation via coloring of chordal graphs. In APLAS’05, pages 315–329, November
2005.

Fernando Magno Pereira and Jens Palsberg. Register allocation by puzzle solving. In PLDI ’08, pages 216–226, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375609.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transactions on Programming Languages and Systems, 21(5):
895–913, 1999. URL citeseer.ist.psu.edu/poletto99linear.html.

Vivek Sarkar and Rajkishore Barik. Extended Linear Scan: an Alternate Foundation for Global Register Allocation. In CC ’07, 2007.
Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for graph-coloring register allocation. In PLDI ’04, pages

277–288, New York, NY, 2004. ACM. ISBN 1-58113-807-5. doi: http://doi.acm.org/10.1145/996841.996875.
Sathyanarayanan Thammanur and Santosh Pande. A fast, memory-efficient register allocation framework for embedded systems. ACM

Trans. Program. Lang. Syst., 26(6):938–974, 2004. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/1034774.1034776.
Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and speed in linear-scan register allocation. In SIGPLAN PLDI’98, pages

142–151, 1998. URL citeseer.ist.psu.edu/article/traub98quality.html.
Christian Wimmer and Michael Franz. Linear scan register allocation on SSA form. In CGO ’10, pages 170–179, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-635-9. doi: http://doi.acm.org/10.1145/1772954.1772979.
Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting in a linear scan register allocator. In VEE ’05, pages 132–141,

New York, NY, USA, 2005. ACM. ISBN 1-59593-047-7. doi: http://doi.acm.org/10.1145/1064979.1064998.
Kun Zhang, Tao Zhang, and Santosh Pande. Binary translation to improve energy efficiency through post-pass register re-allocation. In

EMSOFT ’04, pages 74–85, New York, NY, USA, 2004. ACM. ISBN 1-58113-860-1. doi: http://doi.acm.org/10.1145/1017753.1017769.

17

