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CHAPTER Is*

1, Description of Surfaces and Statement of Problem.

The symmetric "semi-cosinic" surface Z covering the

w-plane is determined by the sequence of real numbers

RplKetz, ) ,with &K%, & >X,, .

527 is composed of the sheets :S,,:EZ"”_I:Z<)_.,, H

:S, is a replica of the w-plane cut along the positive
real axis from W=&, to W= 2 ; 5K<K>1) 1s
a replica of the w-plane cut along the real axis except
for the interval between 52&4 and cZ;K . ;j; and
A:Sz_ are joined along their cuts from £, to e s
forming a first order branch point over W= @, 3 :ig
and Sp,, are joined along their cuts from =2,  to
(1) )*'.s . Note that in the particular case Cﬁ;;’ 1)

2;7 is the Riemann surface of the function = =
(évﬂﬂﬁoﬁ‘w)i‘ s therefore, any symmetric semi-cosinic sur-
face, being topologically equivalent to this one, is open
and 31mp1y~connected

Maclane, [37 -w?proves the following theorem:

% The author wishes to express his appreciatlon to Professor

G. R. Maclane for the suggestion of the problem treated in
this paper.

#* The numbers in brackets refer to the references listed at

the end of this paper.
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Theorem II: The symmetric seml-cosinic surface 32?

is always parabolic; it i1s the (1-1) image of the

z-plane by an entire function 2
we Fe2)= fo-F(é)df

Sz 22 | .
where -ﬁ@)‘éz T(l-i) lo<é‘<bz<~- 'Z_b;“qb’;%o/

the branch polnt over \V= @k corresponding to

Z=be ,amd_Fel=ceS .

We shall be concerned with properties of (&) for
some suitably chosen functlons 'f'C:‘:“') 3 1in particular, we
‘are interested in the relation between the distribution of
the zeros of (2] and the distribution of the branch
points of (@) , In each case to be treated D =&

and, thus, -FG‘":) reduces to the canonical product.

2, Preliminary Theorems, It i1s convenient to list here

several theoréms which will be valuable in the sequel, They

will be referred to by the number given here,

Theorem 1). Given an entire function <7(2) of order </5 ,
lneorem an ., oL

‘we can find a sequence of circles of indefinitely increasing

radii described about the origin as center on which the mini-

gn_a_n} modulus of G¢Z] tends to infinity. (/5 , p. 12:3])
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We say that the zeros of ?(i‘) accumulate in a direction

CP if the - angle <P*-'-€ < ARG 2 < cp‘l'é con=-
tains an infinity of zeros of jé‘:’) , however small €>o .

Then, we have

Theorem 2). If <[@ is entirve and of finite order, the zeros

of 4’(&) may accumulate only in those directlons which are

directions of accumulation of the zeros of <{=) . (Biernacki,

[2 , pp. 530-538).

Theorem 3). Let ) be an analytic function of Z< i.e‘é,
regular in the region ,{) between two straight lines making

T
an angle ' at the origin, and on the lines themselves,

Suppose that [fc@l[< M on the lines, and that, as
S =90 @C-E-) :@Cg,’r‘ﬁ) ’ < o , uniformly }_1_1_ the
angle, Then, )-ﬁ(@)'él\/] holds throughout the region D,

(Phragmén-Lindeldf, [4 , p. 177).

Ve shall also need an extension of Picard's theorem due
to Bieberbach, ({1.2 , pp. 175-17§); as this theorem is not
as well known as the preceding ones, an outline of its proof
will be given below. First, we must obtain an extension of

Schottky's theorem due to Bohr and Landau.

Theorem 4). If —F(-:«z) = Rt AL d e is regular in [2/=<I2

and in this domain does not take the values zero and one, then




I&EI-F-C%)” = O( Ilflé—l ) , were K= K@&).

Proof
1 2
[l = _=
1
o { 20
Z-plane w-plane

Let W=F@ = e, a2+
Denote by '?:79&) the modular function which maps the

universal covering surface of the w-plane with the points
o, | , and 64 removed onto |’§’I<I such th:it cP(aQ]:g .
et F(2) = PEHE) wmm  Fel=o . By the
monodromy theorem, F(E) is defined, single-valued, and holo-
morphic for I2/<]| . Since Fl)=e and “:(i-”<'.[ ,
we have by Schwarz's lemma, - )

|IF| = 2

~
Hence, the circle ilz‘i-jc: ]—ég is mapped onto a subset of



fglsl-e3 -
As ‘F’CE\: CPICF(?)) , for |2]<|-6 ,
M=) < /mwlc?'(g)(,

Isisl-e
Now, there are many triangles in the circle l?[«{ which

cut the region §l*§ls l—©§ . However, it will be suf-
ficient to consider the one triangle containing the origin:

To show this, it will be sufficient to show that any
point of this triangle will be carried further from the ori-
gin by any of the inversions which are used to generate the
modular function.

Map the circle l;ls[ onto the half-plane v{d 20!

(h) =

A
(o) / r
7] '
S‘” 2 ‘C‘..;_n,_C,
%

§
°

ol | B

S - PLANE.



Now, the point 'j%‘-;og goes into the conjugate of
the point into which ?—.O'is transformed; hence, the
circles 1‘%[: constant pass into ecircles orthogonal to
AB » all of the cir_cles having finilte radiusa except that
fory 1%]:! « Consider the point C,belonging to the tri-
angle and its three nearest inverse points, C,/, C,”, and
Cw; it is obvious that these points are outside the
circle [ through C_ orthogonal to AB . Further reflec-
tions carry the homographs farther away from r-' s thus,
on the ‘%‘-plane,‘ farther from the center,
: qg.e.d.
So, let us consider the intersection of —{: and
%lg(s l~$§ . By the nature of the mapping, it is appar-
ent that ANy ,‘{)((?)‘ is assumed for some ? belonging
' figlsl-e¥ ATz
to the arcg Thus, we need be concerned only with the portion

of 7], between !'glt I-& and Igl={ :.
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Mapping the exterior of the two circular regions bounded

by ﬁ and ¥ onto the strip O Sv(ﬁ T
w

Ts=1¢ )////
=0 ? /

S - PLANE.

This transformation is given by
| L(E) _\ _
\; - '?6
Then, mapping this region on a half-plane such that
SO <Poss H=>0, and—E"f——?‘ [ :

Then, again onto a half plane, preserving o , o ,
and 1 :
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W 2

| P R Y
A e - -

\V - TPULANE .
The real axis must be preserved; hence, by the reflection

principle, this last transformation is}about infinity, of

i

W= ofee + 2 + —t--

the form

- dpe_ + OCI) ,
We have, by this series of mappings, developed the form

of the inverse of the modular function about ”z

Thus,

VvV = a/a. + OU)

= 2> + O
, Lol
= 2, 3-3e —3- O(l)
L)
= 2 T +Ob)



As ?“l’ 3e) ]
sl = [ PG|
Ki
= O(z—'—f:}:’)

(275
—_ =4
=2 T®) here  Ki= Kilo).

K

Hence, for |2/< [-& , [‘FGE)! = O(Z l—e}

Now, is regular and does not take the values O or -

|
f=)
| for IRI<| . Thus, for IZ[/< |- |,

=] = @(Z—,’%) | Kas Kold)

. %[‘F‘(&)‘l = @(*—,l__sg\ ) K=K,

g.e.d.
A more explicit estimate on K may be obtained; for
this, see Bieberbach, [}.1 s Do 22§L However, this estimate
is sufficient for our purposes,
Oniy that part of Bieberbach's theorem that shall prove
useful later will be given here; actually the theorem is

somewhat more general,

Theorem 5). There exists no entire function of finite order



©~> /o such that all the roots of ‘Fé?)‘@‘—b (=)

»

and ‘flf?) = é = , %#b__, accumulate in a single
direction. (The theorem is not true for F‘- Yo ).

Proof

It is obviously sufficient to take X=o and b= | .

-lr
<3 ’\Ji.t
E 12 o)
2 -PLANE. Lo~ PLANE 3T PANE
—_— —_— %
" el _ 2 -/
L= Z ?' Let| 24y

First, let us consider g@) » regular in ?.1Azs,-2]< o(g‘?
and # O, ( in this region. |

' Ya_ |
et PG = C]DC ;‘L.'a.,_: ) = ?(*J

Then, affg) is regular for I§I<[ , and £ , [ there,

Now, €C§.) _ aa'l" @Icg_}_...‘-- g 1§’< , -
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By the Schottky-Landau-Bohr theorem,

| Gyl 03] < ——;%,—
o 1%‘?(2)” ""J?l ) 37 =%y

But, I,
/ 2%_|
| [—1Isl= | = | zax
gt | - 1251
I o - |2% 1]
ey = 2%y
7z S C

R

For. lz|>2, |ARG 2| = wrf®-<) .

For. & FIXED,
]Z%+’l "12'%("’/ (v aw_4

a= 2 o E-o)
., FoR. &S I-¢,a= 2Cll>o

: ’ X _
Therefore, for |2 sufficiently large, JAt?-&Z-I < "f(z é)}

2 < 'ez ’ AQ
1@&12(&-)1/ r&,) - 21"
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Now consider 7({7‘_2) s 8 funection such that the roots
of 4(=)=0o and f@)<1 = accumulate in s
single direction, It is sufficient to consider this direc-

tion as the negative real axis.

</,///—@///// | Consider the domain D
W// lprc 2| < X, et<2.

As all of the roots of &)=

and 4{2}-1‘;0 accumulate about ARG2Z=TI, for [/
sufficlently large, there exists A"‘A(d) such that

]—ﬁ(—z)i <e
if ﬁ, is "the order of -ﬁé} 1nj}", (%é '/o( .

As this is true for all &<2Z , (p$ /2

It remains to show that the order of 'Fé‘:'”‘) < Ji . This
may be shown in generaly; however, for all cases considered
in this thesis, the maximum modulus is assumed in the portion

of the plane already considered; so the proof will be omitted.
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CHAPTER II

1. Order of F&E) . Consider the sequence

dm: _(jm#X)d{x = ,C—(‘é') . The problem to be con-

sidered is this: what is the relation between the distri-

bution of the %’,@ and the order of F‘Zg/ ? The re-

sults obtained are the following:

Theorem 6). If z/n = 5)[/) , then ¥ 2 //2.. .
|

Proof

X '
Consider (%)= };‘FCX)&&. . If EK$X5 EK;H,

K even, then =, < Fx) S Ay - Thus, F-_’(-“Z) is

/
bounded on the positive real axis, By theorem 1), ]03 7 .

q.e.d.

Theorem 7). If é"__'éz»o'-[-@ézm =& |, then f’f'?z.
| N

Proof

Let us consider the fundamental reglons of the mapping;

MacLane' ( [;5 s Do 112] ) has shown them to be as shown below:
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Ao~

2-PLANE

The curve < , »#=1,2,--- , is symmetric about the
) ’ )
xfaxis. The real axis plus the curves th form the real

paths of 7:(-2-) , with Cm being mapped into the interval

o
between &£, and (=) o5

Consider the interval (mﬁzy,ﬂ Yy 42 ) =T .

-4
The only direction of accumulation of zeros of F(iz)-zr
o, rvreTl s 1s the positive real axis., Hence,

by theorem 5) s -fs é . 5
qe.e.d,

Corollary: If @/n:@(d » and ____é_:n;dzw-/‘/&%%z«»)Q
~+
P

then =
|

2., Estimate on the Minimum Size of [@m-’-l = a-« ’ .

*

Only functions of order less than one will be considered

here, The Paley-Wiener theorem will be used to obtain some
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rough estimates,

Let ftz)= TF(/" ) f< [ .
et Q&)= 1‘(2)79(«25 . The order of 6(@/ is also

f.. ‘Therefore, for S e 5 there exists Eé_>¢> such that
izl
Iéiéz)i“ < ) /'3‘>725.

First, é,(zl é L, L)L s where Lp denotes the class of

functions ﬁ (X) such that ![3@)‘%‘&. exists in the sense
~so

of Lebesgue and is finite. For, if &) < L,ol, ,
then the Fourier transform S(An-/ 6) would exist, But,

by the Paley-Wiener theorem,
Slee; @) =0 mlzé"
As this is true for all JSve |

| Slee, &) =0 |
Therefore, 6(@]50 . But 6@):{ , by hypothesis,

Thus, we have a contradiction.

-

. : g.c.d.
Since G(=]= é@%) , &SC&) does not belong to L‘G:,oo)

or L_,_CC‘-‘;"O) as well; i.e.,

/ :ﬁx#’ex) [t = 0.



™

Hence, if A,,, ’ 'RX)I
| Xé):b )mH
Z_A f"’*’ s = ) A |2 g |0
[foalets = L/, 1404 1%
Now, as our functlons have real positive zeros, the maximum

- modulus is assumed along the negative axis; thus, for X>Xe,

[£6x0 < 2"#

The refore, g Af/i < Zb’”*'
00 Pte ‘
so, Z_; 2 |la —< l =0 .
- % _
‘Hence, there exist infinitely many ,47< such that
_ b‘Pf’é‘(
!Q/n-ﬂ l = ,Q G ) é'i>é.

..-?Stating this result in theorem form, we have

Theorem 8). If ‘Fé) —Trcl- —m y o< b ?“d s 1s of

order -F<l and GTou = L, Jofx__, then, fbf any _€>0 ,

there exist infinitel’z many /7)5_ for which

e
]>zb"“’ .

%7
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CHAPTER III

1l, In this chapter ggtual numerical calculations will

be made for asymptotic valueg for I - dml when
K
0= o(>l'bm=_e”: K=o AND/O |2

It will prove convenient to introduce a function hé‘) which
is equivalent to the inverse ofthe counting function /)7(2'}

fdr the zeros of 'IE('?‘) . Consider
£(a) = Tr(:--;,;))oq,jw, L.

- Let })(é) be a non-decreasing function with continuous first
derivative such that }764:)-_ L’m . It is obvious that ")(‘é)
the inverse of h(z‘j , is equél to /m‘e‘) when ZL‘[o Rl A I

 and AW&)‘?N i, such a way that h(‘t‘)<m for /a ‘2‘ b

™
hence, it is asymptotically equivalent to /hé‘} » Now,

as }9 is positive, z ——’ < 0 implies

1) méz‘-) —_s cm as F—>od
f ’”Zf} LA < o
Analogously,  Neo o N+6
N _/ ot N / ]})(@a[f
v e /')(N) Io
od

. | |
Now, "L"' <o , and both terms on the right are positive,
l v |



<D =z

Also, m —2 © . This gives ,m) —FT O gs

Now, let Iah_‘s X € L
H—O‘-)l = ("—-_-l [I—- j(x)jzé() , where |
g = ﬁ?ﬁ—:) -l Tl‘(l--;;—"). :
| =2 : =240 v
o gol= 2 el ) = f%(_gz)-,)dw
246

- E]%(h‘%r' ]/- * x/ & wfﬁzﬁ;

= (m-2) éj('éf:") “[ “ AZ%;

g g = I %(/_ - /L %(/uf@/a/g]
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Aj?m ZtM?( /“héé] ﬁ]wz%j

-0
- y YA
- ‘”’42( "‘7»,; f w bR

As 'ﬁj&]%(/“ fz@) =¥,

Therefore,

7

l%)l-————z)(l )————1) (/«“j., |

T Wk )ttt
3 E&P{ IZ*] Méfx"}')&i f[‘ ]65‘/%44-)@

o | Y
Nelther of the 1ntegralskabove can be integrated in a finite
number of steps for non-rational q? , but we can obtain esti-

mates which differ from them by a bounded factor,
| 5y . 1 _d
as 1= f-(ﬁ—&]-- =

Wt
f 1 e ST "Zf ZH

) /)g-.)—

- c([ X4 z‘(x—:“"} /é([d )ﬂm“}



A (2] !
et [Fa
= ¢ [ (-2t
! x_zlq’ X X3
(2 * / L X et
i X =/ X, L
P~
X g /- o
] - / ‘§Z
-~ X =2 / ]
Now x L “<c lee “Ze""’
’ Jo sl %L) = o [—ec = /- _’% 0
! )
x L T
..5('- - f /(,(;" z < O(XJ
=X o [—-<« 1=
ot
: B g
et F(BE) = L 1—er <2 ost<| The
properties of F%Z‘} will be discussed later, Then,
2 -y
éﬁ‘ — )(.“ / (»4-2)‘{} /4
f X‘"LL« - o F(_p?-/) = +0/}q)
! '
2. /):;2 of '
& _ | T e ) (£%= zex)
] {[X"y) N ! ,a,(p“)
X
X A
_ 1 R=Zal ) ('“': v )
X Ix =



-] -

/
We wish to show that the remaining term is C:?(;”q) ZC%G{)

f{z‘Zf—] )z éq,) §j f+ - §(fzeaz)£ﬁ).

- 371_

Note that the sign of the integrand alternates and that

the magnitude of the integral varies as shown below:

o2

Ma
Nt
3

ple)

Thus,

f(é-zd ){("f‘/‘:ﬁ/ < I+I+I0

l
But each of these is Cf? :;;;) by the mean value theorem;

((z-zﬂ o f,,? 0( =) = (%)

Combininﬁ the results,

<t - (mr2)* o i
f Ez‘? 7 f") = - P S )~z 6
4.5;;%(2%5—/) +O0%).

therefore,




e

Hence, %j(x 647- EZ %(szf +X f"(’ '_”_Zf)
-x496c) +00)

24

20 |
hth)ett é{zz o ] . Ii‘]w
= o 7 ~
,,{,f,” TS R b f i
” T
(ot o X[ aA | (e
el —
?'v"' Zrri Oy
< XL (T (e )
-
= Xo( ﬁ‘"”(mwﬂ)
X

Corp) X
2 f - e
f z‘é“’i)() - oC)( (m,'/),:‘&

gl

l

= - ‘?}’(/"‘mﬁ)

. i ) A
L{ ‘- K-35 T G

21(/ ey m+7,_
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A

N T ( | [: 2
™ Iiiﬂlﬁ-:i);gfﬂ < LH 0(/»:*}
Substituting,

gm0
Now, to study F%%)f= /%

Flog)~ | #Ler~ [ 25 - 422

l-v- R
< ~zyd) - [ T + [l

| )
As ;éy.. -/—-'219-: 3 /é%z @(/"2()

,d‘_P/ J"",t)-

I .
-
Setting — /o —,:—A?Z)” - C/ s W have

Fet) = C,- 63(/.1&) + O(-2)
Letting C,= Cé__,,‘ , Ca= C~,/°( , and noting that

X:l(l" ..C_’:?'Z.YJ = ’OZ/] and X‘/‘(/—Q—%y’): oK)

by quii= (o 2) g t) ~ R (1= 5
+C)”” ‘%%(Xﬁ) + ).

,42 jz(x)z -—[?mi-;'f) “X&J%(/* f,,%,fr) — CZ""” +O0).



of
Since (Ay—:)"rs X$ ¥, X= (7-8) 0sOs | .

n~ 374«43(@" (”"é%j[(iﬁiz 1]
= (7% 4}[5”—“3—@ +O05) |

= — (- E) g + 626 yt2-0) +0()}

_xﬁzg(/ 2] __,_(mg - (=) --
= - e)%m Cr-b)g'lzel +oh)
<x*-m~%)z7(/ ) = —(@+d) by [ v OLL)]

= (o+i )zdww (evtéléa/@/)v‘@/z/

Substituting and adding,

477»*)0%@ (¢-Glm - ~Z;(x -1) +2éjm +00]

Using the symbol —< as follows:
A= B if and only if there KP'] such that

"'EA“B < KA » ve have
gl = |
1"‘ f ( 'F(X)!”& f ((4:-1/” /)(/ - g 6‘76)6)&&

)%

-+ 2 ’Q(G*Ffi)m

/h <

= 45‘%“? Gl f (@.w )i 2l



......

b
ke L(ﬁ-—:)('-—"gm (L {
~ _ la))* 3
f ((ﬂw)"(_ﬂ(l 5{34 = _[\'44 - /Lz_
(-1)% € 6,;,,_,)

= [t pmif] § £ (2 + £( 21T - “)?
[ (1] L 5+ OGE)S

£ s w™ 1+ OGS

s

(!

(

= ;.(-%,4«)0(-3[ /+O;‘,’.‘£)7

<

Therefore,

'f-(-l K/m »
— > “ where
u o £ ,
-z | =
‘ _'__ -_'_
L& — tl®

We may write Z" in terms of the beta function:

£, = é{:@%B(;t,é) ‘-B(F;")é)§

I



Collecting the results,
Theorem 9). Let -f(a)- —”_(f ), é,,, m“/ <>

Let f ‘féd&@x « Then,

K

2z | = e

wore K, = Lon (BEEI =B

From the general theorem of Chapter IT, we can determine
only the existence of an infinite sequence of indices 77,

€
such that I ”‘t }> =% F . As f: Ze—- 5

(+s
— r?7:

-, | > <™

It is apparent that this result is not so exact as the one

obtained above.

» Ko
3. Let Lm_' o = 2 ) K=o. . Take

“)éé}—:QK{_ and consider ,@kc'”") < % < zKrn . .
U -1 ,ena [£]= 4 -(¢-H]-4)-1

) | ’
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. ¢ — G2 2
-EJZ’-‘%ZJ;)WQ“ j,f——? M&

P o S T

| [ FHE

— —

P i x-eK'é

And,

g f*hﬁ»% X3 /J %F f({ I*J-— [ e

nty
Now, 3% 2 Y
?Zizf]-é)xf& = f(*f +[ (-1 i w

3, a7

But the terms on the right form an increasing sequence of

alternating sign; therefore, s
jZ{ [éJ--) 0/ . } @( )

by the mean vaiue theorem.

In like manner, w3
T

(a2 = [+ ] +o -4

1) P i),

- O]



Kén-2) C7-2)
-2 k
xX-e
ol 1 HT ——',—<- CM-B)K~4Z — ]
X‘Z“ = K‘ X_QT s x <
|
7 AT ! é”*ﬂl’ﬂ )
r = _ - = T[C””‘"’)K‘ ( 'x/]
N
oy ) K<
od o |
f L 1 AT
23 - KT 2’-x 7
7 ermx 1R,
7 A / . Z‘o ™ _é(mwé)r
7 = T - =
£2'-x =2 / e7 e
 Integrating, | v
[=£ ot = o xmf - e =T
G~% P ort| P
= ‘Ii X772 xT
& Gontl) 2
T - X 2P x>
= X zj(/ ,e"') X ;—W:zfmr
Thus,



—20.

d : 1..

| I
Since L ARGk, < Z =

Slmilarly ’ 6* z/k.
2, o i
g, -LL x-gkt = ( 2) m '%(/
-+ 0(
Thus, N - | _
b Wit Kol | L)
f . ]héé)fx-ht‘”? f E ]W/{b&)-xg - = |
B (m_z)% (}- GwZ)ILJ + (,;,.,.t)%(/ ,,,_,,/.K)
— k(3] + 3 éj ”“i; ___42(@")&
+O0.
Simplyf ying R | . |
bt WA g (2 )
f : ]/)ééifhé#}- xg j e LShess ( =

- (7 £ g (-2 - G ) opx.

+(m+ 3 ég( ém')k +0(’) AS %{X-z



Substituting,

43 j’ (w)jz(ﬂ C/"J-Z)%( R "/’7 43 (l - <«n+ma

—K(~+4m)+(”"/1

_(/x-%/z},(x- ")+t é?( B

= i) o BMox v 1 - 57N
+ L é((ﬁ&l)k K) '1"'0(/)

2 - < -
s Z@)‘I}K S X .stmA) X = Z(m 9) ; OS@SL
n-&')k
x— Ak el Gmak = K(m-8-m12)€
- |
— K(Z—e)»ecm K lé’l<2

ihus, %(X— é,'m~z)K) = 2R +@(1)
Similarly; ,ég(émm—x ) = 2K 4+ O)

This gives 4? ?@)3106‘ = - K('%:)‘L"z””) + (”’""?2)'%7" + 0(/)

- Y
-gﬁ(x) gzac) = Xm " Z -

—‘5/ mﬁzl-m)
= X7z 4 (

or,



. . 0714.
S Z@K .E.(
Hence, . TN < _ (_, -
j [£6) Ig{x = Z j X o a)kl /
: C7-0 R C”HIK
FZa -
K, | - ,
4 s ({ % A — Ko™ Z(»H-/)A
K| U ”" )
A
@K
2 sy —x . o
_ 7 2 Z

@er(rt2) +(m+/)(m+?-) o Crt2)on3)

Now the first two terms in the parenthesls are asymptoti-

K
cally equal to (Z_—/),@ and the last two are
e =
O(/h“'J ’ . !
_ S e ‘egknv(mi-l)
Therefore, /@,’-ﬂ l f l‘F(’C)l X = o=

h= (m—c)&

Theorem 10), If _+(&)= | r(l" Ye..) . b= | ko,
ba,
and __ “%n= L )b, then

o | é—l(m(mﬁ)
fd - &L, , { ~ ik :

’

We would have discovered only that there are infinitely
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many 'ém— ﬁ/)’_'l greater than .2 from

Theorem ‘g‘) .

4, Let b_= Lﬂ_’)_ , and consider @”_'SX SIQM

-Fég)l = (-—-——- —1 (/" 'é")g,(x)jz(x\ )\Vi-tEEE_
?,64)= 1(‘ (é" ) jz(x‘p: j:l:(l-—- —x—l&)

Consider j,&)

. L%
X -1 = e (15 '3:")
Now, : Py i«
(' m:)( Cm-t)(w:-Z)) (' ~em-i)- 7.5 —';I—(‘—TB s

Sas———

s ("nm)(,‘,m)""(l-mmz )

M3 s
R b RS P

Vi aadl

- 2+ 0(%) s TU-E)s -4 0G)

Therefore, s

. X
ﬁ"“ T(?_') ™

}




Also, (" i‘)('-i;.) < g{x)< |
Hence, % ) | ; giving, ]-Qx l A <l:h__ (l--——) %),4
f\ (S (- & ) RO (@—f ()= (v

/31-2

=" @*')m &4__ m&’:_
(o))"= (o]™ (122"~ ()™

22 s
_ ’”‘/ e o =2m-] \ ..._.___/’” ) _
- (‘ﬁ " rymlortl) (M_ G )i lont)

(f
PN
>

A
Therefore, ld/n- é/),_,! = kn—-ll-'ﬁ(x)laé( A -—,:ﬁ_;_-—LZ——

A 2
Theorem 11). If '('{'3)= T(‘- /bm) s Is’m:y_”’, , and

b .
z,= [ {6t - then

I e v s Where

Am is given immediately above.
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Again, the general theorem would not have led to a

very accurate estimate,
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