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Finite Memory-Length Linear Multiuser Detection
for Asynchronous CDMA Communications
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Abstract— Decorrelating, linear, minimum mean-squared the number of users, in their signature waveforms (e.g., due to
error (LMMSE), and noise-whitening multiuser detectors for g handover in a cellular system), or in their delays change the
code-division multiple-access systems (CDMA) are ideally infinite correlations. In such a case, the multiuser detectors must be

memory-length (referred to as IIR) detectors. To obtain practical . . . .
detectors, which have low implementation complexity and are updated accordingly to match the new received signal. This

suitable for CDMA systems with time-variant system parameters IS & computationally intensive operation if the memory length

(e.g., the number of users, the delays of users, and the signatureof the detectors is very large.

waveforms), linear finite-memory-length (referred to as FIR)  Several ways to obtain finite memory-length multiuser de-

multiuser d_etectors are studied in this paper. _They are obtained tectors have been proposed. The most natural way is to
by truncating the IIR detectors or by finding optimal FIR | | bol i Is with L This will

detectors. The signature waveforms are not restricted to be time- eave r_EQl_“' ar symbol intervals V_V't out transmission. _'S wi

invariant (periodic over symbol interval). Thus, linear multiuser ~ result in finite blocks of transmitted symbols, and obviously,
detection is generalized to systems with spreading sequencethe detectors would then have finite memory length [7],
longer than the symbol interval. Conditions for the stability of [8]; in [7], such such an approach was called “isolation bit
the truncated detectors are dlsgusseq. Stable trgncated detectorsinsertion_u This, however, degrades the bandwidth efficiency
are shown to be near—far resistant if the received powers are . .

upper bounded, and if the memory length is large enough (but and requires some 'forrn.of synchronism betwegn users. Other
finite). Numerical examples demonstrate that moderate memory @pproaches to obtain finite-memory-length multiuser detectors
lengths are sufficient to obtain the performance of the IR include nonlinear subtraction of estimated multiple-access

detectors even with a severe near—far problem. interference (MAI) (“edge correction”) [9], and hard decision
Index Terms—Code-division multiaccess, linear multiuser de- @pproximation of the decorrelator [5], which ends up in
tector, spread-spectrum communication. the decision-directed, nonlinear MAI canceler. The methods

yield nonlinear detectors. The infinite memory length also has
been one motivation to introduce adaptive, decentralized, one-
shot multiuser detectotd10]-[16]. The drawbacks of these
HE optimal multiuser detector [1] for code-divisiondetectors are that they may require long adaptation times, and
multiple-access (CDMA) systems has high computationge adaptation must possibly be repeated frequently [17]. The
complexity. For that reason, several suboptimal multiusgaining sequences required in most adaptive detectors degrade
detectors have been proposed; see e.g., [2] and referengeshandwith efficiency, especially if the adaptation must occur
therein. In the class of linear multiuser detectors, th%quenﬂy_ Furthermore, the one-shot approach is inherenﬂy
decorrelating [3], [4], linear, minimum mean-squared err@yboptimal, even in the class of linear detectors.
(LMMSE) [5], and the noise-whitening detectérfS] have  |n this paper, we show that the infinite-memory-length
received the most interest due to their good performance afstectors can be accurately approximated by detectors with
simple mathematical formulation. The above detectors c@Rite and also relatively short memory length. In particular,
be characterized as an inverse of some form of correlatig® show that near—far resistance to a high degree can be
matrix. In an ideal implementation, their memory lengtlybtained by moderate memory lengths. This result provides
equals the number of users times the data packet lenghmechanism to implement near—far resistant linear multiuser
which often can be assumed to approach infinity. Variations igtectors in systems in which the number of users or their

propagation delays change over time. A related problem has
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interval. The signature waveforms in these systems are usuallyrhe received signal will be processedimcessing windows
carefully designed to have good correlation properties [19, paftlength’N = 2P + 1, where P is a positive integer and the
1, sect. 5.7]; such CDMA systems have been referred to wsdow length NV is also called the detectanemory length
D-CDMA or deterministic CDMA systems [20] since the sigmeasured in symbol duratiofis Note that we are not making
nature waveforms appear as periodic, deterministic signals. ey assumptions about the data packet ledgthThe symbol
also demonstrate in this paper that linear finite-memory-lengthctor for time intervalt € [n7,(n + 1)T) is defined to
multiuser detection can be generalized to CDMA systemyg b(®) — (b§">,b§">7...7b§?))T e =K. A concatenation of
where the signature waveforms vary from symbol interval i@ceived symbols over a processing window is denotéld by
symbol interval. This allows one to use spreading sequences _ (bT(n_P) T bT(n+P))T ¢ =NK.
longer than symbol duration, for example. In these systems, T R =
e sgraure Wavelors are usualy et of 8 g s ke he sampied ouput of el mlched flr s =
. y VT H7 n
to as R-CDMA or random CDMA [20] since the signatur ’%Jﬁf)k . T(t)sg“ )(t — T =) dt.' The. sample(rz/)ector
waveforms appear as random-like signals. Long spreadi ént)'m?n)mterval(ﬁ)i [”T’IE,” T 1)T)_'S defined agy -
sequences are used, e.g., in the 1S-95 standard for CDN#A +¥2 > *»¥ic’) € €7, and their concatenation
systems [21]. The generalization of linear multiuser detection y= (yT(n—P)’ . _7yT(n)7 L 7yT(n+P))T c CNK
to systems with time-variant signature waveforms provides
new possibilities to improve the performance of systems witfhe former vector has expression [3]

R-CDMA. A pra(?tical algorithm for implementa_tion_ of finite_z- ™ :R(")(l)Ab("_l) n R(")(O)Ab(")
memory-length linear detectors for systems with time-variant P (nt1) ()
signature waveforms has been introduced in [22] and [23]. +R"™(-1Ab +w (2)

The outline of the paper is as follows. The CDMA SySte’WhereR(">(i) € [-1,1]X*X is a correlation matrix witfklth
model and linear multiuser detectors are defined in Sectig[é ()N _ oo (n)r, (=) (4 i _
IIl. The results of the stability analysis of finite-memory- iag‘(jl@fz' (21(_) fe_?&fsxklf(its ;kgzgon ;m;rixngfdrtéi -

length detectors are presented in Section Ill. The eﬁeca?nplitudes, ando™ € CX is the output vector due to noise.

of the finite-memory length on the bit-error probability, theA X g : . o
. . = . in the case of time-invariant signature waveforms, it is
asymptotic multiuser efficiency, and the near—far resistance g

; . . gasy to show thaR(™ (i) = 0, V|i|>1, andR™(-1) =
the detectors are analyzed in Section IV. In Section V, t T(X“fl)(l) The concegténation ve|c|tor of the magche?d filter
results are illustrated by numerical examples. :

outputs has expressions
Il. PRELIMINARIES y =RAb+R.Ab. +w (3)
=RAb+w 4
A. CDMA System Model where the vectob, = (bT("—P—1) pT(H+P+INT ¢ _EQK
The complex envelope of the received CDMA signal ithcludes the symbols outside the processing-windéws=
assumed to be (bT(n—P—l)J,T’bT(n+P+1))T € EIN4)K
A=diag(A,---,A)T € CVONE
-Ae :diag(A, A)T c CNKXNK
A :dlag(A,A, A)T c q:(N—I—Q)Kx(N-{—Q)K
R(»-D) (0) RT(n—P+1) (1) . 05

-1 K
r(t) = Z Z bé")Aksén)(t—nT—Tk)—i-z(t) (1)

n=0 k=1

where IV, is the number of symbols in the data packkt,is

the number of usersﬁé") € =Zis tEe_ data symbol of uset R(=P+1)(1)  RO—P+(0) 0%

at the intervalt € [nT, (n + 1)T),Z is the symbol alphabet, R — ) i

A = /2E,¢7? is the received complex amplituti@ssumed . : 1

to be constant over the transmissiot), is the energy per Ok Ok R("+P)(0)
symbol, ¢ is the carrier phase]’ is the symbol duration, c RVEXNK (5)

T, € [0,7T) is the delay of thekth signal, z(¢) is complex

zero-mean additive white Gaussian noise process with twe = (¢1,¢2)
. . (n) . N
sided power spectral density?, and s, (t) is the_kth. _ ¢ =RTO=P=D(1), 0, -+, 0) T € RVEXE
user’s signature waveform (assumed to be real for simplicity, (b P T NEXK
but the analysis can be straightforwardly generalized to the €2 =0k, 0, R 1)’ eR

complex case) with properties’” (t) = 0, if ¢ ¢ [0,7), and Ox is a K x K zero matrix, andR = ((;,R,¢,) €
ST 1M @) dt = 1. If the signature waveforms are periodicR VX *(N+DK n (3), the first term is the response due to
Wlth perl_od T, they will be calledtime invariant otherwise, . “For notational convenience, the time indess left out from the definition
time variant Constant envelope modulation (e.9., MPSK) igf b and also from a few other expressions, when it is possible without
assumed, thereforégh| = 1,¥b € E. confusion. Furthermore, a boldface, lower case, Roman ifalit) symbol

(e.g.,b(")) denotes a vector ofC variables (e.g.bg"):) over one symbol
3The factor 2 in front ofE}, is included due to the complex envelopeinterval. A boldface, lower casétalic symbol (e.g.b) denotes a vector of
model; see, e.g., [24, Sect. 4-1]. N K variables concatenated ovatr symbol intervals.

c IRJ\ K ><2[s’
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symbolsb inside the processing window, and the second is
the response due to symbalsoutside the processing window.
The third termw € complez™ ¥ is the response due to noise,
which is a zero-mean Gaussian random vector with covariance
matrix o?R. Expression (4) is obtained by writing the first
two terms in (3) as one matrix—vector product. We assume that
matrix R is positive definite, which is the case with probability
one [3].

B. Linear Multiuser Detectors

Linear multiuser detectors process the matched filter output
vector ¢ by a linear operation. In other words, the detector
outputﬁ ish = TTy. If N = N, we have ideal detectors
for packetized transmission. The decorrelating detector is
7 = R™! [3], and the noise-whitening detector & =
L7, where £ is the lower triangular Cholesky factor of
R such thatR = L£TL [6].5 If the information symbols
bé") are independent and uniformly distributed, the LMMSE
detector isT = (R + 02671~ [27], where€ = A" A =
diag(E,E,---,E) € RN**M¥and

E = diag(2E1,2E,,---,2Ek) € REXE Fig. 1. FIR linear multiuser detector.

If the size of the data packet is very large, the ideqli, covariance matrixo?D RD. In systems with time-

detectors described above may not be feasible. To obtain MoLeiant signature waveforms, the above formulation should
practical detectors, we define a geneffalte-memory-length o interpreted as a snapshot of the time-variant detector on

linear multiuser detector (referred to as an FIR detector fgr particular symbol interval. Filtering interpretation of an

brevity) a8 arbitrary multichannel linear FIR detector is illustrated in
D =(D(P),--,D(1),D(0),D(~1),---,D(-P))"  Fg:- L. . o
c RNVE XK (6) To design FIR detectors, or in other words, to find in

some sense goo& K x K matricesD, we first consider

where the blocksD(i) € R¥*X i € {—P,---, P} define truncation of the_IIR detectors, vyhich was_suggested in [3]

a partition of the detectoP. We define thenfinite-memory- for.the. decorrelating detector. A linear multiuser deted@@yr

lengthlinear multiuser detector (referred to as an IIR detectopftisfying

corresponding to an FIR detector to be the limiting detector RD,=U )

obtained by letting the memory length of the FIR detector

approach infinity. In other words, the IIR detector is the limitvhere

of DasN — ooc. —(0. ... i i L N\T NEXK
The linear multiuser FIR detector outpht™ = D'y € U =0x O Tie O 0rc) 0.1}

CX provides a decision statistic for the symb(bl(é”). The Will be called thetruncated decorrelating detectolt is clear

output can be expressed as that Dy is the NK x K middle block columrof the inverse
of R. A linear multiuser detectoD,,,, satisfying

R+ D, =U (10)

will be called thetruncated LMMSE detectdrA linear mul-
tiuser detecto®,,,, satisfying£D,,., = U will be called the
truncated noise-whitening detector
p(b.) =D(P)RM=P=D(1)Ap I~ An aIt.er.native to tr.uncation is to optimize detectors based
+D(_P)RT(n-I—P-I—l)(1)Ab(n+P+1) ®) on the flnlte-proces_smg window length mod_el (4). To gener-
alize the decorrelating detector we should find a zero-forcing
is the response of the symbols outside the processing windélgtector, Dy satisfying
i.e., the edge Teffe_ctdue to flnlte-detector_ memory length, R™D,=U (11)
and »™ = DTw is a zero-mean Gaussian random vector
SThe definit ¢ Cholesky factorizati din thi ) which does not have a unique solution. A unique detector can
e aernition o olesky factorization used In this paper isuaper . . .
triangular matrix times dower triangular matrix [25], [6] as opposed to the be found by selecting the pseudoinverse (i.e., Moore—Penrose
usual lower triangular times the upper triangular matrix [26]. "Note that at high signal-to-noise rati¢s> — 0)or at high interference

6Note that the time index is again left out for notational convenience,levels (E;, — oc), the LMMSE detector approaches the decorrelating
although the detectd® and the convolution matri# depend one. detector.

B = FTAb+ p™(b,) +v® = F Ab -+ (7)

where F = RD andF = R' D are the convolutions of the
multiuser channel impulse respon® or R and multiuser
detectorD:
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generalized inverse), which yields the best least squares soluFor systems with time-invariant signature waveforms, it was
tion to (11). SinceR is positive definiteR has full rank with shown in [3] that the truncated decorrelating detector is stable
more columns than rows. Thus, the pseudoinverse solutibrand only if°

defines theoptimal FIR decorrelating detector T L L
det[R' (1)e’* + R(0) + R(1)e™7*] # 0, Yw € [0, 27].
Dy = mbc{(RRT)™'R} (12) (14)

where mbc denotes “middle block column of.” It should bét is clear that (14) is hard to evaluate for all possible delay
noted that the above detector is the optimal FIR decorrelamymbinations. Therefore, the most practical solution is to
in the sense that it minimizes the least squares error in thempute numerical examples to determine whether or not a
solution of (11). However, there is no guarantee that thietector is stablé This is particularly true for systems with
detectorD, would yield lower bit-error probability than the time-variant signature waveforms, as will be discussed below.
truncated decorrelating detect®,. Since the optimal FIR  The condition in (14) was derived viazadomain approach,
detector forces the MAI due to edge symbalsto minimum, which is not applicable in systems with time-variant signature
it cannot force the MAI anymore due to symbdigo zero; waveforms. For that reason a time-domain analysis is ne€ded.
this tradeoff can introduce performance penalty in some cas@éfe first add the dimension symbi to R in (5) to yieldR .

The optimal FIR LMMSE detectois, by (4) and [27, sect. To simplify the notation, we denote the nonzero blockstin

12.5]8 block column of Ry by R, (1), R;(1), and R;1(0).!* Let
_ o _ _ the inverse ofRy be
D, = mbe{RTIR(RTRIR + 026711 (13) . .
Tu(N)  Ty(N) - Ty (V)
where€ = diag(E, £, E) € RWHIEXIVEDE |t 5] diago- . Ta(N)  Tn(N) - T,d)
nal values o-2£~! are nonzero, matrigR 'R~ R+02E~1) Ty =Ry = - ; :
is nonsingular and (13) has a unique solutionsff — 0, Tyi(N) TyoN) - Txn(d)

there is no noise term in the model in (4), and the problem NEXNI
can be viewed to be deterministic and underdetermined. In €eR (15)

that case, there is no LMMSE detector. Obviously, it i§, . e eachT;;(N) € R*X. The dependence oW is
(] .

computationally simpler to update the truncated detect Rtluded in the argument since the blocks are different for
than the optimal ones. What is more, computation of thae -+ Note thatDy(—P) = Tn,py1(N). Thus, the
_truncated FIR detectors is numerically more stable in practicg bility of the truncated decorrelatingi detector is equivalent
implementations. However, we choose to study both clas§851,1\ p+1(N) — 0, as N — oo. The following recursive

r7 y .
of FIR detectors for completeness. E;(pressions (16) and (17), which are proved in the Appendix,

It is clear that the use of FIR detectors instead of the Il avide us with the tools to study the stability of the detectors.
ones causes some performance loss. The performance ana 3}Sanyz‘ je 1,2, ,N -1}
) ) ) ) )

of the FIR detectors will be shown in Section IV. However,
to be able to quantify the performance loss, we analyze the T, ;(N)=T, (N —1) +TI,_M(N — 1)}{},(1)
stability of linear multiuser detectors in the next section. Ty v (NRy(1)Tx_1 (N — 1) (16)

Ty (N) =TnNN)Ry(1)TN_1;(N - 1). a7
I1l. STABILITY OF DETECTORS

In this section, we first discuss the conditions for the stabilit';z/Or anyl < i<V, we obtain by induction from (17) that

of the multiuser detectors. Although it proves to be impossible N
to find an easy test for the detector stability, the analysis Trn:i(N) = H [T, (R (DT (). (18)
gives insight into the problem. What is more, the analysis j=itl

provides us with tools to derive two interesting results f
stable detectors.

A multiuser detectofD is defined to be stable if and only
if the impulse response of the IIR detector is decaying, i.e., Tn,i(N)— Ok, as N — oo, (19)
D(-P),andD(P) — 0x,asN — oo (or, equivalently P —
o). The above definition is the standard stability definition df Amax[R] (DT (R (D] <1,Vj € {i+1,i+2,---, N}
a digital IR filter [28, pp. 81-82]. It is intuitive that if a [29, P. 69], where\,..(A) denotes the eigenvalue of a
multiuser detector is stable, the IIR detector can be truncaf@gtrix A with largest absolute value. The above condition,
to an FIR detector with little performance degradation if thBowever, is often overly stringent. It was not satisfied in
memory lengthV is large enough. This can be predicted from 9Time indexn is not needed iMR(i) since signature waveforms are time
(8), where the response of the symbols outside the processingriant.

window satisfiesu™ — 0, asN — oo. 0n  the second column, for example, R} (1) =
RT(=P+1(1) Ry (0) = RO—PHD(0), R3(1) = RO —P+2)(1), etc.
8The same result in a different form has been derived in [5]; the expressiont'The analysis we perform also applies to systems with time-invariant
in (13) is more appropriate for further derivations in subsequent sections ttegnature waveforms since the time-invariant case can be viewed as a special
the expression given in [5, eq. (4.3)]. case of a system with time-variant signature waveforms.

A sufficient condition for the stability of the detector, that is,
for
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most of the numerical examples, but still the detectors weitecan be expressed in the forms
stable in all cases. In other words, it is very difficult to 1
provide necessary conditions to the detector stability. Thus,P;, = SNFRR-T Z
the numerical examples are often the only practical way to be (1,1} VK
verify the stability of the detectors. b§:”>=o

For systems with time-invariant signature waveforms, it has B
been shown via the-domain approach that the stability of the V2E(F)(p+1yic+he — T Ab

decorrelating detector implies the uniqueness of the limiting Q \/W (22)
IIR detector [3]. The corresponding result for systems with o’ Jik
time-variant signature waveforms is posed in the following _ 1 Z
proposition and is proved in the Appendix. 2ANTDE-1
Proposition 1: If the truncated decorrelating, LMMSE, or bE{—l(f)}(N“)K
noise-whitening detectors are stable, the limiting IR detectors, b =0
obtained asV — oo, are unique. AE e — FT A — ™
The truncated detectors neglect the edge effect caused by the Q 2B F)wsnmik — fe Ab = 1y (be)
symbols outside the observation window, while the optimal o2 [DTRD]sy,
FIR detectors take it into consideration. On the other hand, (23)

the stability of the detectors implies that the edge effect at

the detector output approaches zero/ss large. Thus, it Where Q(z) = (1/v/2x) [ ¢ *'/2 dt, and f,, and f, are
is expected that the truncated and the optimal FIR detecttie kth columns of F and F defined in (7), respectively.
should approach the same limiting IIR detector if they arehe termv/2E,(F)py1)k+k.x IS the desired signal compo-

stable. This is indeed the case under mild conditions, as Sta%t,TZAb — fkTAb + ué")(be) is the remaining MAI, and
below and proved in the Appendix. _ ~ 02[DTRD];, is the Gaussian noise variance at the detector
Proposition 2:Assume that the rec§|ve2d energiegytput. The expression for error probability of an IR detector
£y and , flose  power spectral - density®  satisty s a5 in (23) withu{” (b.) = 0. It is easy to see from (8)
0<(Ep/0”)<oco,Vk € {1,2,..-,K}. Assume also that 5, (23) that in the case of a stable detector, the effect of
the decorrelating and LMMSE detectors are stable. Th‘%?mbols p(=P=1) and b**+P+1) can be made arbitrarily
both the truncated LMMSE detectdD;,; (10) and the gma by selecting large enough memory lengthin the case

optimal FIR LMMSE detectorD,,, (13) converge to the o he decorrelating detector, this becomes even more clear.
same IR LMMSE detector as the detector memory lengty,ce by (9), we haVeF) pyykirs = 1, fr = O (except

' approaches infinty. 1€., ()i = 1), and [DTRDlis = [Da(0)]s, then the
lim D,.= lim D,.. (20) error probability of the truncated decorrelator simplifies from
N—oo N—oo (23) to

The corresponding result for the decorrelating detectors, as__ 1 V2E;, — ufi",Z(be)

in 20, does not have as simple a formulation. However, both Pay = 92K Z Q D ((’))] - (24
the truncated decorrelating detectdy; (9) and the optimal boe{—1,1}2K A lkk

FIR decorrelating detectoD, (12) converge to the same
IIR decorrelating detector as the processing-window lergth
approaches infinity, i.e.,

If IV is large enough|[D(0)]x: approaches the value of the
IIR detector by Proposition 1, ar;aff,z approaches zero if the
decorrelator is stable. Thus, the stable decorrelator approaches
the performance of the IIR detector with large enough memory
length V.

. . . . n the following, the asymptotic multiuser efficiency (AME)
under mild conditions. The conditions are discussed at the €0 the near—far resistance (NFR) of linear FIR detectors will

of the Appendix. : ,
It was noted in Section II-B that the truncated detectors a?g analyzed. The AME of usdris defined as [3]

easier to compute than the optimal FIR detectors. Moreover,
the above results justify the use of the truncated detectors with
large enough memory length. M =sup 0< o< 1: lim

N, Pa= i, P @)

Py
k <0

020 02E;,
02
IV. PERFORMANCE ANALYSIS

In the performance analysis, we assume BPSK data mddie near—far resistance has been defined Hy =
ulation, and that the carrier phasg¢g = 0. However, the infg>0,:2r 7. The detector is said to be near—far resistant
extension to more general cases is straightforward. The del#ys;,, > 0. With large argument values, we can approximate
are assumed to be fixed. Theh users’ average bit-error Q(z) ~ (exp(—x2/2)/2x). At high signal-to-noise ratios, the
probability of a linear FIR detector is obtained by averagingorst case symbol combination dominates the value of the
over all possible interfering symbol combinations [30]. By (7)sum in the numerator of (22) or (23) [3]. Thus, using (23),
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the AME of an arbitrary linear FIR multiuser detector is From (25), it is seen that the power-limited NFR for the FIR
detectors can be computed by substitutilg= Fy.x VI #
k. Thus, the power-limited NFR is solely a function of

" :L max 0, min the ratio £,/ Fr. Let E.;, be the minimum received
2By be(—1,1} (VDK energy a user needs to have to be served by the CDMA
5™ =0 system. The worst case power-limited near—far resistapce
can be computed by substituting;, = FE..;, and E; =
\/ﬁk(f)(l’—l—l)ls’—l—k,k_f;—-Ab_/iggn)(be) Eoax VI # k in (25). In practice, Epax, Frmin, and N
) = . are design parameters of the CDMA system, and a tradeoff
\ [D RDix between them must be considered. The lariyerthe more

(25) complicated the implementation of the detector is. On the
other hand, largeV poses milder requirements for the power

The minimum above is obtained by the worst possibeontrol of the system. In a DSP implementation, larye

interfering symbol combination, i.e., with symbo(#); = introduces more roundoff errors and implementation noise so
sen[(f)i, Vi € {1,2,---,(P+ 1)K + k- 1,(P+ 1)K + that, in practice, there is a finite optimal value fir given
kE+1,---,NK}. the ratio £ax / Emin @and the implementation constraints (filter

After evaluating the square in (25), the AME for thestructure, floating-point number word length, etc.).
truncated decorrelating detector becomes

0, if pgs™ > V2Ex V. NUMERICAL EXAMPLES
=% 1l=par . . . .
M,k Pk i P <V2Ex (26) The stability of the detectors was studied by numerical

Di(0) examples. Direct-sequence spread-spectrum waveforms and
where pg . = (2v2E,pisx — (ur2x)2 /2Fy) describes the BPSK data and spreading modulation with coherent detection

degradation due to edge eﬁect,d;ﬁnd were considered. The number of users was 33 with spreading
o ) gain of 31, i.e., the chip duratiof. = T/31. The error
Hdjg = b max frg1,(be) probabilities were estimated for low signal-to-noise ratio by
ei=11) (22). Data-aided (DA) detection was assumed for the noise-
= Z {IDa(P)R(1)]al whitening detector, which may not be practical. However,
I#k the effect of finite memory length can be well illustrated by
+ |[Dd(—P)RT(1)]kI|}\/2—El examples assuming data-aided detection. The performance at

high signal-to-noise ratios is evaluated by computing AME'’s

is the maximum absolute value pfi",z The AME of the IIR using expression (25). The results are represented as a function
decorrelator is as in (26) with, ; = 0 since the edge effect of the paramete. All of the interfering users were assumed
has reduced to zero. to have the same energy, which is denotedByy., in the

It can be verified from (26) that, s >0 if and only if figures; correspondingly, the energy of the desired user is
(g% < /2Ey. In other words, the truncated decorrelatinglenoted byFE.,;,. The performance of the ideal IIR detector
detector has positive AME if and only if the maximum valuavas estimated with the assumption that the edge symbols are
of the remaining MAI component at the detector output igero, and the detector has large enough block éR2e= 8
smaller than the desired users’ amplitude. If any interferirgroved to be sufficient).
amplitude approaches infinity,;3* at the output of an FIR A length-31 Gold code family was used in a system
detector also approaches infinity. Thus, it is clear that the FIAth time-invariant signature waveforms; the power-limited
detectors cannot be near—far resistant in a strict sense. For tiegtr—far resistances and error probabilities are depicted in

reason, we definpower-limited near—far resistandey Figs. 2 and 3. A random code family of length 6200 was
_ . used in a system with time-variant signature waveforms so
e = OSEISIE‘EMJ# Ik (27) " that the results were averaged 06800/31 = 200 symbols;

o . L the power-limited near—far resistances and error probabilities
where E.,,»« is finite. In wireless communication systems, foﬁre depicted in Figs. 4 and 5, where only the truncated
example, By is determined by the accuracy of the POWEecorrelating and the LMMSE detectors are considered
control of the CDM_A system. If an FIRdet_ector is stabig, since the analysis of the optimal FIR and noise-whitening
can be made arbitrarily small by selectidg large enough qyetectors would be computationally intensive. For clarity,

for any Ev... This implies that the truncated decorrelatingye it error probabilities of the ideal LMMSE detector have
detector (and also LMMSE and data-aitfedoise-whitening not been plotted for the casdy,/E — _10 dB and

detectors) with large enough (but finite) memory length cap . JE — _20 dB in Figs. 3 and 5 since they are very

t.)e. made nearfar resistant g?ven an arbitrarily 'Iarge (_bHI se to the bit-error probability of the decorrelating detector.
finite) upper bound for the received powers of the interfering It can be seen from Fig. 2 that the asymptotic loss in
users. By (21), we note that, witN' large enough, the above gjgna|.6-noise ratio converges relatively fast. With= 6,

discussion applies to the optimal FIR decorrelator as well. the performance is the same as with an ideal IIR detector,

12pata-aided (DA) stands for ideal decision feedback [6]. even in the cas& i/ Fmax = —20 dB. With perfect power
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Fig. 2. Power-limited near—far resistances [dB] as a function of paranitteith time-invariant signature waveforms. (a)

detector. (b) Truncated and optimal FIR decorrelating detector.

DA truncated noise-whitening

control (Euin/Fmax = 0 dB), value P = 4 is required. loosening the power-control requirements significantly calls
We also can see that a 10 dB increase in the MAI lev@r only a very minor increase in the required detector memory
implies that the value ofP must be roughly incrementedlength. We see from Fig. 3 that, at lower signal-to-noise ratios,
by one to maintain the same performance. In other wordhe value P = 4 yields the same performance as the ideal
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IIR detector in all cases. We see from Figs. 4 and 5 thahown to be stable under relatively mild conditions. The
similar conclusions can be drawn for a system with timestability was shown to imply asymptotic uniqueness of the
variant signature waveforms. However, the performance of thmiting IIR detector. The truncated and the optimal FIR
ideal IR detector is slightly better with the time-invariant thamletectors asymptotically approach the same IIR detector under
with time-variant signature waveforms; this is understandahteild conditions. The performance of the finite memory-length
due to the small cross correlations of Gold codes. On tletectors was analyzed. It was shown that the truncated
other hand, a system with time-variant signature waveforrdecorrelating, LMMSE, and data-aided noise-whitening de-
requires slightly smaller FIR detector memory lengths than tiectors can be made near—far resistant under a given ratio
system with time-invariant signature waveforms, particularlyetween maximum and minimum received power of users by
at high signal-to-noise ratios. In [18], a similar behavior waselecting an appropriate memory length. Numerical examples
observed and discussed for the noise-whitening detector. d@monstrate the fact that moderate memory lengths of either
intuitive explanation can be seen from (18). In systems withuncated or optimal FIR detectors are sufficient to gain the
time-variant signature waveforms, the elements in the matgerformance of the ideal IR detectors, even under a severe
R, (1) are (at least approximately) random variables with mearear—far problem. If the memory lengths are short, the optimal
zero and are independent for different valuesjpthus, the FIR detectors outperform the truncated ones at low signal-
elements of the matrix produd; ;(j)R;(1) also have zero to-noise ratios. However, at high signal-to-noise ratios, the
mean. In systems with time-invariant signature waveforms, ¢nuncated detectors have better performance. The required
the other hand, the matrices dRg (1), the same for different memory lengths tend to be smaller with time-variant than with
values of j, and there is “less randomness” in the elementsne-invariant signature waveforms.
of T; ;(7)R;(1). Therefore, time-variant signature waveforms The use of FIR detectors instead of the IIR detectors makes
introduce more averaging out into the product in (18), arlshear multiuser detection possible in CDMA systems in which
result in faster convergence of the detector to a zero matrixthg number of users, their propagation delays, or the signature
the detector memory lengthh — oc. waveforms change over time; an example of the time-variant
From Figs. 3 and 5, it is seen that the optimal FIR deignature waveforms is a CDMA system using spreading
tectors perform slightly better at low signal-to-noise ratiosequences longer than one symbol interval (an R-CDMA
than truncated ones with small values Bf However, with system). The truncated FIR detectors are easier to update to
moderate values of’, both are equivalent to the ideal [IRthe changes in a communication system than the optimal FIR
detectors, as is expected by Proposition 2. From Figs. 2 ashetectors. Because the optimal FIR detectors do not yield any
4, we see that at high signal-to-noise ratios, on the other handjversal performance improvement, the truncated detectors
the truncated decorrelating detector slightly outperforms thdth appropriate memory length are clearly the detectors of
optimal FIR decorrelator. The reason can be understood fraimoice in practice. The required memory length depends on
the expressions for AME. Although the contribution due tother system parameters, especially on the ratio of maximum
the symbols outside the processing windgw/” (b, )) for the and minimum received powers.
optimal FIR decorrelating detector in (25) is smaller than for

the truncated FIR decorrelating detector in (26), the MAI due APPENDIX
to other symbolsfkTAb in (25) is larger. Furthermore, the STABILITY ANALYSIS
desired signal's energy’2Ey.(F)(p+1)ic+r,x May be lower,  pyoq¢ of Equalities (16) and (17)We define partitions

and the enhanced additive white Gaussian nv{m R
) .. . N—-1 TN-1 NKXNK
in (25) may be larger than the corresponding quantities in Ry = < T R r(0)> eR
(26), yielding lower asymptotic multiuser efficiency. Thus, the Ty—1 AN
optimal FIR detectors do not yield any universal performangghereR y_; € RV -DEXN-DK
improvement in comparison to the truncated detectors. PN

The numerical examples show that moderate memory  Yn—1 = (Ox - OxRy(1))T S
lengths (roughlyV < 13) give performance close to ideal ”Rand
detectors in the cases studied. Even under a severe near—far
problem (E.in/Emax = —20 dB), we obtain the optimal Ty IRXfl _ <C1¥—1 aN-1 ) e RVEXNE
near—far resistance with detector memory length= 13. ay_y Tnn(N)
The use of FIR detectors loosens the required accuracyworqereCN L€ ROV-DEX(N-DK gngq o ¢ ROV-DEXK
the power control significantly with very moderate detector — - )

memory lengths, By applying the matrix inversion formulas [27, pp.

571-572], shown at the bottom of the page, and the fact

that Ry and 7 n are symmetric, we obtain the recursion
VI. CONCLUSIONS formulas:

Linear multiuser detectors in asynchronous multiuser sys- ¢y_; =7 n_; —|—TN_l'yN_lTN,N(N)’YIf—lTN—l
tems, whose signature waveforms are allowed to be time - — Ty N () T .
invariant or time variant, have been discussed. Two classes *V-1 NNUYN 12 N1
of linear FIR multiuser detectors, namely, the truncated andNow, (16) and (17) follow by the definitions of
the optimal FIR detectors, were defined. The detectors wefe;_1,v,_;, anday_;. o
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Fig. 3. Probabilities of bit error as a function of parameferwith time-invariant waveforms. (a) Equal received energigs:,/Emax = 0 dB. (b)
Near—far problemE i,/ Emax = —10 dB.

Proof of Proposition 1: Assume that the decorrelating dedecorrelating detectoffx_; ;(N — 1) — 0x asN — oo.
tector is stable, and assume that integéer such thatV — oo Assume that bott andj are such thatV — oo implies (N —
implies (N — j) — 0.1 Then, we have by the stability of thei) — oc and (N — j) — oo. Then the increment part in (16)

13The condition states that is such that its distance t&V approaches wherec is an arbitrary constant. For example, sifée= 2P + 1, it follows
infinity as N approaches infinity. The condition is satisfied, e.gXNif= ¢j,

that NV — oo = P — oo.
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approaches zero matrix & — oo since bothT'y_; ;(N—1) follows. Since the decorrelating detect®r consists of the
andTxy_1 ;(V — 1) — Ox as N — oo. This guarantees the blocks T; p1 (N — 1),i = —P,---, P the uniqueness of the
existence of a unique asymptotic limit fr; ;(V —1). Thus, IIR decorrelating detector has been shown. The uniqueness of
the uniqueness of the blockB,; py1(N —1),s = —P,---,P the LMMSE detector follows with exactly similar arguments.
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The uniqueness of the noise-whitening detector follows easdgfinitions thatR™'R = (R7Y¢;, Inx R '¢,). Matrix
from the uniqueness of the decorrelating detector by analyziR 'R is now identity, except for the first and last block

the Cholesky factor o y as N — . o

columns. By the stability assumptions, the first and last blocks

Proof of Proposition 2: The result follows by manipulation of the middle block column off * approach zero, so that the

of (13). By the definition ofR, i.e., by R = (¢{,R,¢{,) €
RNEX(NEDE \ve can write
o [HRTG  RTG
RTR™IR = ¢, R ¢y
GRM G GRTG

effect of the first and last blocks of matriR 'R vanishes
asymptotically. Proposition 2 is now proved by the above and
(28). o
The Appendix is concluded by deriving conditions for (21)
to be valid. First, note that by the definition &, we have
RRT = R? 4+ (¢, + ¢,¢q. The structure of the matrix

Thus, except for the edges (the first and I&stolumns and RRT is similar to that ofR. Furthermore, the matrix is the
rows), the matrixH = (ﬁTR—lﬁ + 023—1) is the same sanle aRR?, e_xcept for the perturbations causedgt_p(_lT and
asH = (R + 02671). If the assumptions of Proposition 2(>C, to the first and last dlz?\gonal _bI(_)cks. Now, it is easy to
are valid, Ty1(N) — 0 as N — oo, and CITR—:LCQ _ ur_lderstand that, undercondltlons_smiar to (19) being true, the
R(n—P—l)(l)T}lRT(n-i—P-l—l)(l) . 0 as N — oo, By Middle block row (or column) of RR')~! approaches the

s H -2
utilizing the fact that the mathematical structures of the decdpiddle block row (or column) oR™". If, on the other hand,
relating and the LMMSE detectors are similar, it can be sedfft iS the case, it is easy to see from (12) Bat— Dq as
from (16) that the effect of the first and last diagonal blockd — ©© because the zero blocks & remove the effect of

. T T .
of 7 on the middle block column of{ ' goes to zero as s_erturbaltlglns kcau;_g%%(INand C2§_2_t0tlth6|> first and last
N — . Thus, we have shown that iagonal blocks o as N is sufficiently large.

mbc{ﬁ_l} — mbe{H ™1}, as N — oo. (28) ACKNOWLEDGMENT
The authors acknowledge M. Latva-aho of the University of
Recall that the optimal FIR LMMSE detector is the middl@©ulu and Dr. J. Lilleberg of Nokia Mobile Phones for many

block column of R~'RH by (13). It is easy to verify by useful discussions.

(8 B) = (el o
(A +BCD)™

—(A -BD-!C)"!BD!
(D - CA—1B)~1
=A-l - A-'B(DA"!B+C!)~!DA!
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