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Finite Memory-Length Linear Multiuser Detection
for Asynchronous CDMA Communications
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Abstract— Decorrelating, linear, minimum mean-squared
error (LMMSE), and noise-whitening multiuser detectors for
code-division multiple-access systems (CDMA) are ideally infinite
memory-length (referred to as IIR) detectors. To obtain practical
detectors, which have low implementation complexity and are
suitable for CDMA systems with time-variant system parameters
(e.g., the number of users, the delays of users, and the signature
waveforms), linear finite-memory-length (referred to as FIR)
multiuser detectors are studied in this paper. They are obtained
by truncating the IIR detectors or by finding optimal FIR
detectors. The signature waveforms are not restricted to be time-
invariant (periodic over symbol interval). Thus, linear multiuser
detection is generalized to systems with spreading sequences
longer than the symbol interval. Conditions for the stability of
the truncated detectors are discussed. Stable truncated detectors
are shown to be near–far resistant if the received powers are
upper bounded, and if the memory length is large enough (but
finite). Numerical examples demonstrate that moderate memory
lengths are sufficient to obtain the performance of the IIR
detectors even with a severe near–far problem.

Index Terms—Code-division multiaccess, linear multiuser de-
tector, spread-spectrum communication.

I. INTRODUCTION

T HE optimal multiuser detector [1] for code-division
multiple-access (CDMA) systems has high computational

complexity. For that reason, several suboptimal multiuser
detectors have been proposed; see e.g., [2] and references
therein. In the class of linear multiuser detectors, the
decorrelating [3], [4], linear, minimum mean-squared error
(LMMSE) [5], and the noise-whitening detectors1 [6] have
received the most interest due to their good performance and
simple mathematical formulation. The above detectors can
be characterized as an inverse of some form of correlation
matrix. In an ideal implementation, their memory length
equals the number of users times the data packet length,
which often can be assumed to approach infinity. Variations in
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utilizes decision feedback or some tree-search algorithm.

the number of users, in their signature waveforms (e.g., due to
a handover in a cellular system), or in their delays change the
correlations. In such a case, the multiuser detectors must be
updated accordingly to match the new received signal. This
is a computationally intensive operation if the memory length
of the detectors is very large.

Several ways to obtain finite memory-length multiuser de-
tectors have been proposed. The most natural way is to
leave regular symbol intervals without transmission. This will
result in finite blocks of transmitted symbols, and obviously,
the detectors would then have finite memory length [7],
[8]; in [7], such such an approach was called “isolation bit
insertion.” This, however, degrades the bandwidth efficiency
and requires some form of synchronism between users. Other
approaches to obtain finite-memory-length multiuser detectors
include nonlinear subtraction of estimated multiple-access
interference (MAI) (“edge correction”) [9], and hard decision
approximation of the decorrelator [5], which ends up in
the decision-directed, nonlinear MAI canceler. The methods
yield nonlinear detectors. The infinite memory length also has
been one motivation to introduce adaptive, decentralized, one-
shot multiuser detectors2 [10]–[16]. The drawbacks of these
detectors are that they may require long adaptation times, and
the adaptation must possibly be repeated frequently [17]. The
training sequences required in most adaptive detectors degrade
the bandwith efficiency, especially if the adaptation must occur
frequently. Furthermore, the one-shot approach is inherently
suboptimal, even in the class of linear detectors.

In this paper, we show that the infinite-memory-length
detectors can be accurately approximated by detectors with
finite and also relatively short memory length. In particular,
we show that near–far resistance to a high degree can be
obtained by moderate memory lengths. This result provides
a mechanism to implement near–far resistant linear multiuser
detectors in systems in which the number of users or their
propagation delays change over time. A related problem has
been discussed in [5] and in [18], but only the special
cases of the LMMSE and noise-whitening detectors were
considered. Furthermore, the emphasis in [5], [18] is on
algorithm derivations; the stability and performance analysis
of linear finite-memory-length detectors were not presented.

With only few exceptions [7], [8], [18], the multiuser
detection has been considered for systems where the signature
waveforms are periodic with period equaling the symbol

2Centralizedmultiuser detectors make a joint detection of the symbols
of different users.Decentralizedmultiuser detectors (sometimes also called
single-user detectors) demodulate a signal of one desired user only.
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interval. The signature waveforms in these systems are usually
carefully designed to have good correlation properties [19, part
1, sect. 5.7]; such CDMA systems have been referred to as
D-CDMA or deterministic CDMA systems [20] since the sig-
nature waveforms appear as periodic, deterministic signals. We
also demonstrate in this paper that linear finite-memory-length
multiuser detection can be generalized to CDMA systems
where the signature waveforms vary from symbol interval to
symbol interval. This allows one to use spreading sequences
longer than symbol duration, for example. In these systems,
the signature waveforms are usually part of a long noise-like
pseudorandom sequence. Therefore, they have been referred
to as R-CDMA or random CDMA [20] since the signature
waveforms appear as random-like signals. Long spreading
sequences are used, e.g., in the IS-95 standard for CDMA
systems [21]. The generalization of linear multiuser detection
to systems with time-variant signature waveforms provides
new possibilities to improve the performance of systems with
R-CDMA. A practical algorithm for implementation of finite-
memory-length linear detectors for systems with time-variant
signature waveforms has been introduced in [22] and [23].

The outline of the paper is as follows. The CDMA system
model and linear multiuser detectors are defined in Section
II. The results of the stability analysis of finite-memory-
length detectors are presented in Section III. The effects
of the finite-memory length on the bit-error probability, the
asymptotic multiuser efficiency, and the near–far resistance of
the detectors are analyzed in Section IV. In Section V, the
results are illustrated by numerical examples.

II. PRELIMINARIES

A. CDMA System Model

The complex envelope of the received CDMA signal is
assumed to be

(1)

where is the number of symbols in the data packet,is
the number of users, is the data symbol of user
at the interval is the symbol alphabet,

is the received complex amplitude3 (assumed
to be constant over the transmission), is the energy per
symbol, is the carrier phase, is the symbol duration,

is the delay of the signal, is complex
zero-mean additive white Gaussian noise process with two-
sided power spectral density and is the
user’s signature waveform (assumed to be real for simplicity,
but the analysis can be straightforwardly generalized to the
complex case) with properties if and

If the signature waveforms are periodic
with period they will be calledtime invariant; otherwise,
time variant. Constant envelope modulation (e.g., MPSK) is
assumed, therefore,

3The factor 2 in front ofEk is included due to the complex envelope
model; see, e.g., [24, Sect. 4-1].

The received signal will be processed inprocessing windows
of length where is a positive integer and the
window length is also called the detectormemory length
measured in symbol durations Note that we are not making
any assumptions about the data packet lengthThe symbol
vector for time interval is defined to
be A concatenation of
received symbols over a processing window is denoted by4

The sampled output of the matched filter is
The sample vector

for time interval is defined as
C and their concatenation

C

The former vector has expression [3]

(2)

where is a correlation matrix with
element

C is a diagonal matrix of received
amplitudes, and C is the output vector due to noise.
As in the case of time-invariant signature waveforms, it is
easy to show that and

The concatenation vector of the matched filter
outputs has expressions

(3)

(4)

where the vector
includes the symbols outside the processing-window,

C

C

C

...
...

...

(5)

is a zero matrix, and
In (3), the first term is the response due to

4For notational convenience, the time indexn is left out from the definition
of bbb and also from a few other expressions, when it is possible without
confusion. Furthermore, a boldface, lower case, Roman (notitalic) symbol
(e.g.,b(n)) denotes a vector ofK variables (e.g.,b(n)

k
) over one symbol

interval. A boldface, lower case,italic symbol (e.g.,bbb) denotes a vector of
NK variables concatenated overN symbol intervals.
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symbols inside the processing window, and the second is
the response due to symbolsoutside the processing window.
The third term is the response due to noise,
which is a zero-mean Gaussian random vector with covariance
matrix Expression (4) is obtained by writing the first
two terms in (3) as one matrix–vector product. We assume that
matrix is positive definite, which is the case with probability
one [3].

B. Linear Multiuser Detectors

Linear multiuser detectors process the matched filter output
vector by a linear operation. In other words, the detector
output is If we have ideal detectors
for packetized transmission. The decorrelating detector is

[3], and the noise-whitening detector is
where is the lower triangular Cholesky factor of

such that [6].5 If the information symbols
are independent and uniformly distributed, the LMMSE

detector is [27], where

If the size of the data packet is very large, the ideal
detectors described above may not be feasible. To obtain more
practical detectors, we define a generalfinite-memory-length
linear multiuser detector (referred to as an FIR detector for
brevity) as6

(6)

where the blocks define
a partition of the detector We define theinfinite-memory-
lengthlinear multiuser detector (referred to as an IIR detector)
corresponding to an FIR detector to be the limiting detector
obtained by letting the memory length of the FIR detector
approach infinity. In other words, the IIR detector is the limit
of as

The linear multiuser FIR detector output
C provides a decision statistic for the symbols The
output can be expressed as

(7)

where and are the convolutions of the
multiuser channel impulse response or and multiuser
detector

(8)

is the response of the symbols outside the processing window,
i.e., the edge effectdue to finite-detector memory length,
and is a zero-mean Gaussian random vector

5The definition of Cholesky factorization used in this paper is anupper
triangular matrix times alower triangular matrix [25], [6] as opposed to the
usual lower triangular times the upper triangular matrix [26].

6Note that the time indexn is again left out for notational convenience,
although the detectorDDD and the convolution matrixFFF depend onn:

Fig. 1. FIR linear multiuser detector.

with covariance matrix In systems with time-
variant signature waveforms, the above formulation should
be interpreted as a snapshot of the time-variant detector on
a particular symbol interval. Filtering interpretation of an
arbitrary multichannel linear FIR detector is illustrated in
Fig. 1.

To design FIR detectors, or in other words, to find in
some sense good matrices we first consider
truncation of the IIR detectors, which was suggested in [3]
for the decorrelating detector. A linear multiuser detector
satisfying

(9)

where

will be called thetruncated decorrelating detector. It is clear
that is the middle block columnof the inverse
of A linear multiuser detector satisfying

(10)

will be called thetruncated LMMSE detector.7 A linear mul-
tiuser detector satisfying will be called the
truncated noise-whitening detector.

An alternative to truncation is to optimize detectors based
on the finite-processing window length model (4). To gener-
alize the decorrelating detector we should find a zero-forcing
detector, satisfying

(11)

which does not have a unique solution. A unique detector can
be found by selecting the pseudoinverse (i.e., Moore–Penrose

7Note that at high signal-to-noise ratios(�2 ! 0)or at high interference
levels (Ek ! 1); the LMMSE detector approaches the decorrelating
detector.
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generalized inverse), which yields the best least squares solu-
tion to (11). Since is positive definite, has full rank with
more columns than rows. Thus, the pseudoinverse solution
defines theoptimal FIR decorrelating detector

(12)

where mbc denotes “middle block column of.” It should be
noted that the above detector is the optimal FIR decorrelator
in the sense that it minimizes the least squares error in the
solution of (11). However, there is no guarantee that the
detector would yield lower bit-error probability than the
truncated decorrelating detector Since the optimal FIR
detector forces the MAI due to edge symbolsto minimum,
it cannot force the MAI anymore due to symbolsto zero;
this tradeoff can introduce performance penalty in some cases.

The optimal FIR LMMSE detectoris, by (4) and [27, sect.
12.5],8

(13)

where If all diago-
nal values of are nonzero, matrix
is nonsingular and (13) has a unique solution. If
there is no noise term in the model in (4), and the problem
can be viewed to be deterministic and underdetermined. In
that case, there is no LMMSE detector. Obviously, it is
computationally simpler to update the truncated detectors
than the optimal ones. What is more, computation of the
truncated FIR detectors is numerically more stable in practical
implementations. However, we choose to study both classes
of FIR detectors for completeness.

It is clear that the use of FIR detectors instead of the IIR
ones causes some performance loss. The performance analysis
of the FIR detectors will be shown in Section IV. However,
to be able to quantify the performance loss, we analyze the
stability of linear multiuser detectors in the next section.

III. STABILITY OF DETECTORS

In this section, we first discuss the conditions for the stability
of the multiuser detectors. Although it proves to be impossible
to find an easy test for the detector stability, the analysis
gives insight into the problem. What is more, the analysis
provides us with tools to derive two interesting results for
stable detectors.

A multiuser detector is defined to be stable if and only
if the impulse response of the IIR detector is decaying, i.e.,

and as (or, equivalently,
The above definition is the standard stability definition of

a digital IIR filter [28, pp. 81–82]. It is intuitive that if a
multiuser detector is stable, the IIR detector can be truncated
to an FIR detector with little performance degradation if the
memory length is large enough. This can be predicted from
(8), where the response of the symbols outside the processing
window satisfies as

8The same result in a different form has been derived in [5]; the expression
in (13) is more appropriate for further derivations in subsequent sections than
the expression given in [5, eq. (4.3)].

For systems with time-invariant signature waveforms, it was
shown in [3] that the truncated decorrelating detector is stable
if and only if9

(14)

It is clear that (14) is hard to evaluate for all possible delay
combinations. Therefore, the most practical solution is to
compute numerical examples to determine whether or not a
detector is stable.10 This is particularly true for systems with
time-variant signature waveforms, as will be discussed below.

The condition in (14) was derived via a-domain approach,
which is not applicable in systems with time-variant signature
waveforms. For that reason a time-domain analysis is needed.11

We first add the dimension symbol to in (5) to yield
To simplify the notation, we denote the nonzero blocks in
block column of by and Let
the inverse of be

...
...

...

(15)

where each The dependence on is
included in the argument since the blocks are different for
different Note that Thus, the
stability of the truncated decorrelating detector is equivalent
to as The following recursive
expressions (16) and (17), which are proved in the Appendix,
provide us with the tools to study the stability of the detectors.
For any

(16)

(17)

For any we obtain by induction from (17) that

(18)

A sufficient condition for the stability of the detector, that is,
for

(19)

is
[29, p. 69], where denotes the eigenvalue of a
matrix with largest absolute value. The above condition,
however, is often overly stringent. It was not satisfied in

9Time indexn is not needed inRRR(i) since signature waveforms are time
invariant.

10In the second column, for example, R>2 (1) =
R
>(n�P+1)(1);R2(0) = R(n�P+1)(0);R3(1) = R(n�P+2)(1); etc.
11The analysis we perform also applies to systems with time-invariant

signature waveforms since the time-invariant case can be viewed as a special
case of a system with time-variant signature waveforms.
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most of the numerical examples, but still the detectors were
stable in all cases. In other words, it is very difficult to
provide necessary conditions to the detector stability. Thus,
the numerical examples are often the only practical way to
verify the stability of the detectors.

For systems with time-invariant signature waveforms, it has
been shown via the-domain approach that the stability of the
decorrelating detector implies the uniqueness of the limiting
IIR detector [3]. The corresponding result for systems with
time-variant signature waveforms is posed in the following
proposition and is proved in the Appendix.

Proposition 1: If the truncated decorrelating, LMMSE, or
noise-whitening detectors are stable, the limiting IIR detectors,
obtained as are unique.

The truncated detectors neglect the edge effect caused by the
symbols outside the observation window, while the optimal
FIR detectors take it into consideration. On the other hand,
the stability of the detectors implies that the edge effect at
the detector output approaches zero asis large. Thus, it
is expected that the truncated and the optimal FIR detectors
should approach the same limiting IIR detector if they are
stable. This is indeed the case under mild conditions, as stated
below and proved in the Appendix.

Proposition 2: Assume that the received energies
and noise power spectral density satisfy

Assume also that
the decorrelating and LMMSE detectors are stable. Then
both the truncated LMMSE detector (10) and the
optimal FIR LMMSE detector (13) converge to the
same IIR LMMSE detector as the detector memory length

approaches infinity, i.e.,

(20)

The corresponding result for the decorrelating detectors, as
in 20, does not have as simple a formulation. However, both
the truncated decorrelating detector (9) and the optimal
FIR decorrelating detector (12) converge to the same
IIR decorrelating detector as the processing-window length
approaches infinity, i.e.,

(21)

under mild conditions. The conditions are discussed at the end
of the Appendix.

It was noted in Section II-B that the truncated detectors are
easier to compute than the optimal FIR detectors. Moreover,
the above results justify the use of the truncated detectors with
large enough memory length.

IV. PERFORMANCE ANALYSIS

In the performance analysis, we assume BPSK data mod-
ulation, and that the carrier phases However, the
extension to more general cases is straightforward. The delays
are assumed to be fixed. The users’ average bit-error
probability of a linear FIR detector is obtained by averaging
over all possible interfering symbol combinations [30]. By (7),

it can be expressed in the forms

(22)

(23)

where and and are
the columns of and defined in (7), respectively.
The term is the desired signal compo-

nent, is the remaining MAI, and
is the Gaussian noise variance at the detector

output. The expression for error probability of an IIR detector
is as in (23) with It is easy to see from (8)
and (23) that in the case of a stable detector, the effect of
symbols and can be made arbitrarily
small by selecting large enough memory lengthIn the case
of the decorrelating detector, this becomes even more clear.
Since, by (9), we have (except

and then the
error probability of the truncated decorrelator simplifies from
(23) to

(24)

If is large enough, approaches the value of the
IIR detector by Proposition 1, and approaches zero if the
decorrelator is stable. Thus, the stable decorrelator approaches
the performance of the IIR detector with large enough memory
length

In the following, the asymptotic multiuser efficiency (AME)
and the near–far resistance (NFR) of linear FIR detectors will
be analyzed. The AME of user is defined as [3]

The near–far resistance has been defined by
The detector is said to be near–far resistant

if With large argument values, we can approximate
At high signal-to-noise ratios, the

worst case symbol combination dominates the value of the
sum in the numerator of (22) or (23) [3]. Thus, using (23),
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the AME of an arbitrary linear FIR multiuser detector is

(25)

The minimum above is obtained by the worst possible
interfering symbol combination, i.e., with symbols

After evaluating the square in (25), the AME for the
truncated decorrelating detector becomes

if

if
(26)

where describes the
degradation due to edge effect, and

is the maximum absolute value of The AME of the IIR
decorrelator is as in (26) with since the edge effect
has reduced to zero.

It can be verified from (26) that if and only if
In other words, the truncated decorrelating

detector has positive AME if and only if the maximum value
of the remaining MAI component at the detector output is
smaller than the desired users’ amplitude. If any interfering
amplitude approaches infinity, at the output of an FIR
detector also approaches infinity. Thus, it is clear that the FIR
detectors cannot be near–far resistant in a strict sense. For that
reason, we definepower-limited near–far resistanceby

(27)

where is finite. In wireless communication systems, for
example, is determined by the accuracy of the power
control of the CDMA system. If an FIR detector is stable,
can be made arbitrarily small by selecting large enough
for any This implies that the truncated decorrelating
detector (and also LMMSE and data-aided12 noise-whitening
detectors) with large enough (but finite) memory length can
be made near–far resistant given an arbitrarily large (but
finite) upper bound for the received powers of the interfering
users. By (21), we note that, with large enough, the above
discussion applies to the optimal FIR decorrelator as well.

12Data-aided (DA) stands for ideal decision feedback [6].

From (25), it is seen that the power-limited NFR for the FIR
detectors can be computed by substituting

Thus, the power-limited NFR is solely a function of
the ratio Let be the minimum received
energy a user needs to have to be served by the CDMA
system. The worst case power-limited near–far resistance
can be computed by substituting and

in (25). In practice, and
are design parameters of the CDMA system, and a tradeoff
between them must be considered. The largerthe more
complicated the implementation of the detector is. On the
other hand, large poses milder requirements for the power
control of the system. In a DSP implementation, large
introduces more roundoff errors and implementation noise so
that, in practice, there is a finite optimal value for given
the ratio and the implementation constraints (filter
structure, floating-point number word length, etc.).

V. NUMERICAL EXAMPLES

The stability of the detectors was studied by numerical
examples. Direct-sequence spread-spectrum waveforms and
BPSK data and spreading modulation with coherent detection
were considered. The number of users was 33 with spreading
gain of 31, i.e., the chip duration The error
probabilities were estimated for low signal-to-noise ratio by
(22). Data-aided (DA) detection was assumed for the noise-
whitening detector, which may not be practical. However,
the effect of finite memory length can be well illustrated by
examples assuming data-aided detection. The performance at
high signal-to-noise ratios is evaluated by computing AME’s
using expression (25). The results are represented as a function
of the parameter All of the interfering users were assumed
to have the same energy, which is denoted by in the
figures; correspondingly, the energy of the desired user is
denoted by The performance of the ideal IIR detector
was estimated with the assumption that the edge symbols are
zero, and the detector has large enough block size
proved to be sufficient).

A length-31 Gold code family was used in a system
with time-invariant signature waveforms; the power-limited
near–far resistances and error probabilities are depicted in
Figs. 2 and 3. A random code family of length 6200 was
used in a system with time-variant signature waveforms so
that the results were averaged over symbols;
the power-limited near–far resistances and error probabilities
are depicted in Figs. 4 and 5, where only the truncated
decorrelating and the LMMSE detectors are considered
since the analysis of the optimal FIR and noise-whitening
detectors would be computationally intensive. For clarity,
the bit error probabilities of the ideal LMMSE detector have
not been plotted for the cases dB and

dB in Figs. 3 and 5 since they are very
close to the bit-error probability of the decorrelating detector.

It can be seen from Fig. 2 that the asymptotic loss in
signal-to-noise ratio converges relatively fast. With
the performance is the same as with an ideal IIR detector,
even in the case dB. With perfect power
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(a)

(b)

Fig. 2. Power-limited near–far resistances [dB] as a function of parameterP with time-invariant signature waveforms. (a) DA truncated noise-whitening
detector. (b) Truncated and optimal FIR decorrelating detector.

control dB), value is required.

We also can see that a 10 dB increase in the MAI level

implies that the value of must be roughly incremented

by one to maintain the same performance. In other words,

loosening the power-control requirements significantly calls

for only a very minor increase in the required detector memory

length. We see from Fig. 3 that, at lower signal-to-noise ratios,

the value yields the same performance as the ideal
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IIR detector in all cases. We see from Figs. 4 and 5 that
similar conclusions can be drawn for a system with time-
variant signature waveforms. However, the performance of the
ideal IIR detector is slightly better with the time-invariant than
with time-variant signature waveforms; this is understandable
due to the small cross correlations of Gold codes. On the
other hand, a system with time-variant signature waveforms
requires slightly smaller FIR detector memory lengths than the
system with time-invariant signature waveforms, particularly
at high signal-to-noise ratios. In [18], a similar behavior was
observed and discussed for the noise-whitening detector. An
intuitive explanation can be seen from (18). In systems with
time-variant signature waveforms, the elements in the matrix

are (at least approximately) random variables with mean
zero and are independent for different values ofthus, the
elements of the matrix product also have zero
mean. In systems with time-invariant signature waveforms, on
the other hand, the matrices are the same for different
values of and there is “less randomness” in the elements
of Therefore, time-variant signature waveforms
introduce more averaging out into the product in (18), and
result in faster convergence of the detector to a zero matrix as
the detector memory length

From Figs. 3 and 5, it is seen that the optimal FIR de-
tectors perform slightly better at low signal-to-noise ratios
than truncated ones with small values of However, with
moderate values of both are equivalent to the ideal IIR
detectors, as is expected by Proposition 2. From Figs. 2 and
4, we see that at high signal-to-noise ratios, on the other hand,
the truncated decorrelating detector slightly outperforms the
optimal FIR decorrelator. The reason can be understood from
the expressions for AME. Although the contribution due to
the symbols outside the processing window for the
optimal FIR decorrelating detector in (25) is smaller than for
the truncated FIR decorrelating detector in (26), the MAI due
to other symbols in (25) is larger. Furthermore, the
desired signal’s energy may be lower,

and the enhanced additive white Gaussian noise
in (25) may be larger than the corresponding quantities in
(26), yielding lower asymptotic multiuser efficiency. Thus, the
optimal FIR detectors do not yield any universal performance
improvement in comparison to the truncated detectors.

The numerical examples show that moderate memory
lengths (roughly give performance close to ideal IIR
detectors in the cases studied. Even under a severe near–far
problem dB), we obtain the optimal
near–far resistance with detector memory length
The use of FIR detectors loosens the required accuracy of
the power control significantly with very moderate detector
memory lengths.

VI. CONCLUSIONS

Linear multiuser detectors in asynchronous multiuser sys-
tems, whose signature waveforms are allowed to be time
invariant or time variant, have been discussed. Two classes
of linear FIR multiuser detectors, namely, the truncated and
the optimal FIR detectors, were defined. The detectors were

shown to be stable under relatively mild conditions. The
stability was shown to imply asymptotic uniqueness of the
limiting IIR detector. The truncated and the optimal FIR
detectors asymptotically approach the same IIR detector under
mild conditions. The performance of the finite memory-length
detectors was analyzed. It was shown that the truncated
decorrelating, LMMSE, and data-aided noise-whitening de-
tectors can be made near–far resistant under a given ratio
between maximum and minimum received power of users by
selecting an appropriate memory length. Numerical examples
demonstrate the fact that moderate memory lengths of either
truncated or optimal FIR detectors are sufficient to gain the
performance of the ideal IIR detectors, even under a severe
near–far problem. If the memory lengths are short, the optimal
FIR detectors outperform the truncated ones at low signal-
to-noise ratios. However, at high signal-to-noise ratios, the
truncated detectors have better performance. The required
memory lengths tend to be smaller with time-variant than with
time-invariant signature waveforms.

The use of FIR detectors instead of the IIR detectors makes
linear multiuser detection possible in CDMA systems in which
the number of users, their propagation delays, or the signature
waveforms change over time; an example of the time-variant
signature waveforms is a CDMA system using spreading
sequences longer than one symbol interval (an R-CDMA
system). The truncated FIR detectors are easier to update to
the changes in a communication system than the optimal FIR
detectors. Because the optimal FIR detectors do not yield any
universal performance improvement, the truncated detectors
with appropriate memory length are clearly the detectors of
choice in practice. The required memory length depends on
other system parameters, especially on the ratio of maximum
and minimum received powers.

APPENDIX

STABILITY ANALYSIS

Proof of Equalities (16) and (17):We define partitions

where

and

where and
By applying the matrix inversion formulas [27, pp.

571–572], shown at the bottom of the page, and the fact
that and are symmetric, we obtain the recursion
formulas:

Now, (16) and (17) follow by the definitions of
and
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(a)

(b)

Fig. 3. Probabilities of bit error as a function of parameterP with time-invariant waveforms. (a) Equal received energiesE
min

=Emax = 0 dB. (b)
Near–far problemE

min
=Emax = �10 dB.

Proof of Proposition 1: Assume that the decorrelating de-
tector is stable, and assume that integeris such that
implies 13 Then, we have by the stability of the

13The condition states thatj is such that its distance toN approaches
infinity asN approaches infinity. The condition is satisfied, e.g., ifN = cj;

decorrelating detector, as
Assume that both and are such that implies

and Then the increment part in (16)

wherec is an arbitrary constant. For example, sinceN = 2P +1; it follows
thatN !1) P !1:
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(c)

Fig. 3. (Continued.) Probabilities of bit error as a function of parameterP with time-invariant signature waveforms. (c) Near–far problem
E
min

=Emax = �20 dB.

Fig. 4. Power-limited near–far resistances [dB] of truncated decorrelating detector as a function of parameterP with time-variant signature waveforms.

approaches zero matrix as since both
and as This guarantees the
existence of a unique asymptotic limit for Thus,
the uniqueness of the blocks

follows. Since the decorrelating detector consists of the
blocks the uniqueness of the
IIR decorrelating detector has been shown. The uniqueness of
the LMMSE detector follows with exactly similar arguments.
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Fig. 5. Probabilities of bit error of truncated decorrelating detector as a function of parameterP with time-variant signature waveforms.

The uniqueness of the noise-whitening detector follows easily
from the uniqueness of the decorrelating detector by analyzing
the Cholesky factor of as

Proof of Proposition 2: The result follows by manipulation
of (13). By the definition of i.e., by

we can write

Thus, except for the edges (the first and lastcolumns and
rows), the matrix is the same
as If the assumptions of Proposition 2
are valid, as and

as By
utilizing the fact that the mathematical structures of the decor-
relating and the LMMSE detectors are similar, it can be seen
from (16) that the effect of the first and last diagonal blocks
of on the middle block column of goes to zero as

Thus, we have shown that

(28)

Recall that the optimal FIR LMMSE detector is the middle
block column of by (13). It is easy to verify by

definitions that Matrix
is now identity, except for the first and last block

columns. By the stability assumptions, the first and last blocks
of the middle block column of approach zero, so that the
effect of the first and last blocks of matrix vanishes
asymptotically. Proposition 2 is now proved by the above and
(28).

The Appendix is concluded by deriving conditions for (21)
to be valid. First, note that by the definition of we have

The structure of the matrix
is similar to that of Furthermore, the matrix is the

same as except for the perturbations caused by and
to the first and last diagonal blocks. Now, it is easy to

understand that, under conditions similar to (19) being true, the
middle block row (or column) of approaches the
middle block row (or column) of If, on the other hand,
that is the case, it is easy to see from (12) that as

because the zero blocks of remove the effect of
perturbations caused by and to the first and last
diagonal blocks of as is sufficiently large.
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