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Design of Control Systems
to Meet [,, Specifications

James Stuart McDonald

Abstract

Three control system design problems aimed at meeting specifications given in terms
of the o, norm, or peak magnitude, of disturbances and errors are solved.

The specification in the first problem requires simply that the error satisfy an o
norm constraint for all time provided that the disturbance satisfies a corresponding
constraint. This is the standard /; problem, and the results here include generaliza-
tions of many known results on this problem: existence of optimal compensators, FIR
sub-optimal approximation, and super-optimal approximation.

The specifications in the remaining two problems are based on I, measures of
weighted disturbances and errors; these weights can be chosen such that constraining
a weighted signal constrains, for example, its peak rate and/or acceleration.

One is an incremental weighted specification, requiring that the weighted error
satisfy an o, norm constraint up until any given time provided that the weighted dis-
turbance satisfies a corresponding constraint up until the same time. The other is a
weighted specification which requires that the weighted error satisfy an {,, norm con-
straint for all time provided that the weighted disturbance satisfies a corresponding
constraint for all time. The associated design problems turn out to be distinct.

For each of the two weighted specifications an appropriate system norm (or gain
with respect to the given weights) is defined and it is shown that it can be computed
by solving a standard /; problem (in the incremental weighted case) or a very similar
problem (in the weighted case). Results for each weighted design problem parallel
those for the unweighted, or standard [, case: existence of optimal compensators,

FIR sub-optimal approximation, and super-optimal approximation.
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Chapter 1

Introduction

1.1 Background and Motivation

Control system design is concerned with modifying the behavior of a given system
(the plant) in such a way as to make it more desirable in some sense. This is generally
done by interconnecting the plant with a system (the compensator) specified by the
designer; the aim is that the interconnection of plant and compensator have more
desirable behavior than the plant alone.

A feedback interconnection is one in which some of the plant outputs (the measured
outputs) are “fed back” through the compensator which, in turn, manipulates some
of the plant inputs (the control inputs). It has long been known that if a feedback
interconnection is used the compensator can be chosen such that the resulting closed
loop system has many desirable properties; for this reason the study of control system
design has been concerned mainly with the design of feedback compensators.

Even in this narrower meaning, many considerations are involved in control system
design. The designer may or may not be free to choose which of the plant outputs
to measure or which of the plant inputs to control; this choice, if available, can be
the dominant consideration in the design process. Whatever the choice, physical
considerations such as distance (a plant can be a physically large system such as an
electrical power grid) may impose constraints on the structure of the compensator
itself; it may necessarily be “distributed” or “de-cgzntralizec ",

A particularly problematic aspect of the design process involves specifying “de-
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sirable” or even “optimal” behavior. This requires first determining the significant
sources of the plant’s undesirable behavior. These are often modelled as a set of exo-
geneous signals entering through a set of plant inputs (the disturbance inputs). Next,
acceptable properties of the closed loop system must be described; this is often done
in terms of a set of plant outputs (the regulated outputs or error outputs). If these
things are done, a specification, or statement of desirable behavior, can be formulated.

One possible class of specifications has the form

o The disturbance inputs belong to some class (of possible disturbances)

implies that the error outputs belong to some class (of acceptable errors).

If this statement is true for the closed loop system then the compensator satisfies (or
meets) the specification. Given such a specification, the associated design problem is
to find, if possible, a compensator which satisfies it.

If it is assumed that the available measured outputs and control inputs have
been chosen, that the structure of the compensator is otherwise unconstrained, and
that significant disturbance inputs and error outputs have been prespecified then the
feedback interconnection of plant G and compensator C in Figure 1.1 is the most
general model of the situation. w and w are the disturbance and control inputs,
respectively, to G, and z and y are its error and measured outputs, respectively. The
setting of Figure 1.1 has become, over the last decade or so, the standard problem
setting for many design problems because of its generality. (As drawn in the figure,
g is actually more often called the generalized plant since, historically, disturbance
inputs and error outputs have not been considered a part of the “plant” model)

Formulating precise specifications and solving the associated design problems re-
quires mathematical models of the signals and systems of Figure 1.1. If, for example,
the possible disturbances can be modelled as a ball in a normed space W with norm
-l and the acceptable errors as a ball in another space Z with norm ||-||, then a

precise specification can be formulated:
o we W and ||w|y, <1 implies z € Z and ||2]|, < 1.

If, in addition, G and C can be modelled as linear operators between appropriate
spaces then C satisfies the specification if and only if the closed loop operator 7,,(G,C)

from w to z is a bounded linear operator from W into Z and its induced norm is




Figure 1.1: Standard Problem Setting

sufficiently small, i.e., ||7T.4(G,C)|l < 1. In this setting, a given C can be said to
achieve a performance level of ||T;,(G,C)||, and C can properly be called optimal
(with respect to a given class of compensators under consideration) if it achieves the

minimal performance level (over all compensators in that class).

Design problems associated with specifications of this type are called disturbance
rejection problems, and were first formulated by Zames in [1]. He observed in partic-
ular that if W = Z = L, (the Lebesgue space) then, for a large class of continuous
time linear time invariant G and C, ||T2uw(G,C)ll = |T2u(G,C) |5, (Here T.,,(G,C)
denotes the transfer function of the closed loop system from w to z and ||||,;_ is
the norm on the Hardy space H,.) Simply stated, a compensator satisfies an L,
disturbance rejection specification if and only if the peak of its frequency response

magnitude does not exceed 1.

The L, disturbance rejection problem is usually called the H ., problem for obvi-
ous reasons, and has been widely studied since its formulation in 1981. It has been
largely solved [2], including the multivariable case in which all signals are vectors;
it is known when optimal compensators exist, parametrizations of all compensators
achieving performance no greater than some given level are available, bounds have
been established on the necessary complexity of optimal compensators, etc. More-
over, extensive computational tools are widely available for its solution (available

commercially, for example, as part of MatLab) and it has been applied in a number

of practical settings.
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W = Z = [, (the classical sequence space) then the corresponding specification
is
I, Disturbance Rejection Specification ({,, DRS):
e w €l and |jw]|; < 1implies z € [ and ||z]|, < 1.

Vidyasagar made an observation in [3] similar to that of Zames; for a large class
of discrete time linear time invariant G and C, ||T;w(G,C)|| = || T=w(G,C)|;,- (Here
T.,(G,C) denotes the impulse response of the closed loop system from w to z and
||-ll;, the norm on the classical sequence space /;.) Hence a compensator satisfies an
l., disturbance rejection specification if and only if the sum of the absolute values of
the closed loop impulse response coeflicients does not exceed 1.

The [, disturbance rejection problem is, again for obvious reasons, usually called
the I; problem. As it was formulated only in 1986, it has received less study and is
less well understood. The key elements of its solution, however, were given by Dahleh
and Pearson in a series of papers [4] [5] [6].

There has been an enormous amount of research into the H,, problem; only two
landmark papers have been cited here. There has also been a significant amount
of research into associated problems in which various system norms are minimized.
Even for the two principal signal norms discussed here, there are many variations
depending upon the classes of systems considered. There has been work, for example,
on H, for discrete time systems [7], continuous time L; [8], disturbance rejection
with time-varying plants and/or compensators [9][10] or in hybrid systems (consisting
of continuous time plant and discrete time compensator) [11] [12].

Any norm-based disturbance rejection problem can be thought of as a “worst-
case” design problem; z is required to be in a certain normed ball no matter what
disturbance w actually occurs, provided that it is also in a specified normed ball.
There is no notion of probability; any possible disturbance is considered as likely to
occur as any other and as a result design to satisfy disturbance rejection specifica-
tions is inherently “conservative”. Nonetheless, the mathematical framework in which
disturbance rejection problems are formulated has allowed sophisticated methods for
analysis of compensator performance and synthesis of optimal compensators to be

developed, and has led to new insights into fundamental limitations on achievable

performance.
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Figure 1.2: Cascade weighting

An appropriate goal for researchers in the area of control system design is thus to
try to alleviate the conservatism of these methods without relinquishing the mathe-
matical framework which makes theoretical results obtainable and, therefore, design
possible. One way in which this can be done is to provide more flexibility in formulat-
ing specifications; some of the conservatism in design results from the fact that actual
classes of possible disturbances and acceptable errors cannot be completely described
in terms appropriate to the theory. If they can be more completely described then the
specification can be made to more accurately reflect reality and the resulting designs
will be less conservative.

There is a particularly simple approach which has been widely taken to broaden
the class of specifications which can be addressed by the H,, and the /; theories.
It involves the selection of weighting systems (weights) W,, and W, and connecting
them in cascade with w and z, respectively, as shown in Figure 1.2. The new signals
w and Z are “fictitious”, as are the weights; the class of possible disturbances w is
simply being modelled as a normed ball in the appropriate space passed through W,,
and the class of acceptable errors as those which, after passing through W,, lie in a
normed ball. The disturbance rejection specification corresponding to this cascade

weighting scheme is

Cascade Weighted DRS:

o w = W, for some % € W with ||@||,, <1 implies W,z € Z and |W,z|; < L.
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Figure 1.3: Equivalent generalized plant for cascade weighting

Under suitable assumptions on the weights, the L, and the [, versions of the
cascade weighted disturbance rejection problem are equivalent to the H,, and [
problems, respectively, for the generalized plant G depicted in Figure 1.3. This is
an obvious advantage from a theoretical standpoint and, in the case of the H,
problem, has an appealing practical interpretation. Because the H o norm is the
maximum of the frequency response, H ., design is often viewed not as aiming to
satisfy disturbance rejection specifications in terms of normed balls, but instead as
direct frequency domain design. That is, specifications can be formulated in terms
of the shape of the closed loop frequency response; in particular, specifying that its
magnitude not exceed a given bound which is a function of frequency. Under this
interpretation, cascade weights can be chosen so that ||T..;,;,(g~ O, < 1is equivalent
to |T55(G,C)| lying under any given curve (as a function of frequency). Hence H o
design can address such specifications precisely using cascade weights.

The situation is more complicated for /. The error weight W, has an appealing
interpretation because of the definition of the /o, norm for vector signals (as the
maximum /., norm of any component signal). In particular, W, can be chosen such
that ||W.z||,_ <1 if and only if |2(k)| < 1 and |z(k) — z(k —1)| <1 for all k. Thus
an error is acceptable if and only if both its magnitude and its rate of change are
bounded by 1 for all time. In fact, bounds on n-th order differences of z for any
desired n can be incorporated into the specification of the acceptable error class;

2nd order difference bounds, for example, specify limited accelerations or forces in a

mechanical system.
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The interpretation of W,, is problematic, however; it is not known how to choose
W,, such that an [, ball of s produces precisely a class of magnitude and rate
bounded disturbances w. Moreover, the frequency domain interpretation which gives
cascade weights their appeal in the H o, case is absent here; there is no simple rela-
tionship between the I, or l, norms and frequency response of a system or frequency

content of a signal.
Motivated by the appealing interpretation of W, in the l, disturbance rejection

problem, a weighted specification can be formulated as follows.
Weighted [, DRS:
o Wyw € Iy and |[W,wl|, <1 implies W,z € I, and |W.z||, < 1.

In this specification both the possible disturbances and the acceptable errors can
be specified in the manner that errors can be in the cascade weighted specification.
In particular, classes of possible disturbances consisting precisely of those satisfying

bounds on magnitude and/or rate and/or additional n-th order differences can be

specified.
A related specification with an appealing interpretation of its own is

Incremental Weighted [, DRS:
o ||P-Wouwl||, <1 implies ||PW. 2|, <1 for all n.

where P, denotes truncation at time n (setting to zero after time n). This is different
from the disturbance rejection specifications above in that it does not define classes
of possible disturbances and acceptable errors a priori, but has a temporal aspect.
It requires that the weighted error satisfy a norm constraint up until any given time
provided that the weighted disturbance satisfies a norm constraint up until the same

time. Specifications similar to these have been considered in [13] and [14].

1.2 Scope

In this thesis the three l, design problems, defined in general terms in Section 1.1,

are considered:

e [, Disturbance Rejection



o Weighted /., Disturbance Rejection
e Incremental Weighted [, Disturbance Rejection

For each, a detailed statement of the specification or class of specifications asso-

ciated with the problem is given and a consistent set of results are obtained under

minimal assumptions:

e The problem is formulated as minimization of a norm of the closed loop system

T.+(G,C) from disturbance to error over a well defined class of compensators.

e It is shown to be equivalent in a strong (though not exact) sense to a minimum

distance problem in an infinite dimensional normed linear space.
e Existence of a minimizer for this problem is established.
e Computable approximate and/or exact solution methods are given, i.e.,

— The minimum distance problem can in some cases be reduced to a finite

dimensional problem and in these cases exact solution methods are given.

— In all other cases, finite dimensional optimization problems which approxi-
mate it (both sub-optimally and, in the incremental case, super-optimally)

are given.

o All optimization problems formulated are shown to be equivalent to (infinite or

finite) linear programs. Detailed formulations are given for each linear program.

In the case of the unweighted [, disturbance rejection problem, it is well known
that the /; norm of the closed loop impulse response is the norm which should be
minimized. In the two weighted problems, however, an appropriate norm is first
defined and it is shown how to compute each.

Because all the problems arise in the same basic setting (that of Figure 1.1) this

setting is also defined and explored in some detail:
e The class of exogeneous signals to be considered is defined.

o A general class of systems is defined to which the generalized plant is assumed

to belong, and from which the compensator is to be chosen.
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e The algebraic properties of such systems and their feedback interconnections

are described.

1.3 Organization

The remainder of the thesis is organized as follows:

Chapter 2 gives a careful definition of the standard problem setting and the basic
results on signals, systems, and feedback interconnections outlined in Section 1.2.
Many of these results are algebraic in nature; the details are supplied in Appendix
A. There notation is introduced, terms briefly defined, and some results on algebraic
properties of sequence spaces given.

Chapters 3, 4, and 5 are each devoted to a separate design problem. Chapter 3
considers the [, disturbance rejection problem, or I; problem. It covers all aspects
of the problem outlined in Section 1.2, in that order: problem statement, equivalence
to a minimum distance problem, existence of a minimizer, approximate and/or exact
solution methods, and linear programming formulations of each. Appendices B and
C contain supporting material used in all of these chapters; the general subject of
each is normed linear spaces, duality, operators, and their adjoints. Appendix B
defines notation, gives some simple duality results, and quotes some crucial facts
concerning minimum distance problems. Appendix C is concerned specifically with
normed spaces of sequences, their duality relations, and several classes of operators
defined on them and their adjoints.

Chapters 4 and 5 consider the incremental weighted and the weighted [, distur-
bance rejection problems, respectively. Each is organized identically to Chapter 3
except that each requires an additional preliminary section in which a system norm
appropriate to the problem is defined and a method given for its computation. A
second additional section follows in each chapter in which the respective problems
are formulated in terms of these norms. The problems are considered in this or-
der (incremental first) for technical reasons; the incremental problem is more similar
mathematically to the unweighted problem, and more results are possible.

Each of chapters 2 through 5 has a brief introductory section which outlines the

chapter in some detail, introduces necessary notation, and states all assumptions in
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effect throughout that chapter. (Some notation required for the appendices may be
defined in the associated chapter(s) and vice versa.) Each concludes with a brief
discussion.

Chapter 6 contains a summary and discussion of the thesis and some suggestions
for future related research.

The remainder of this chapter consists of two sections: Section 1.4, which describes
in general terms the contribution of the thesis, and Section 1.5, which defines some

general notation and terminology.

1.4 Contribution of the Thesis

This section describes in very general terms related work and the contribution of this
thesis; each chapter summary contains a more detailed discussion of related work
with references, and the contribution of that chapter.

The objective of the thesis is to give both comprehensive and detailed solutions
to the three design problems posed. All three problems are solved from specification
through to the formulation of optimization problems which can be readily imple-
mented with the information provided. This is motivated by the desire to resolve
any ambiguity in the practical meaning of the theory, to identify key assumptions
made along the path from specification to solution, and to allow the implementation
of design algorithms where they do not presently exist.

Chapter 2 provides a common setting for all three problems and, while most
results there are known in some form or another, there are some novel aspects to the
approach taken.

The treatment of the [, disturbance rejection problem, or {; problem, in Chapter
3 consists of work published by the author [15] and a large number of considerable
improvements on that work. It represents the first treatment of the general (4 block or
“bad rank”) problem and contains generalized versions of most known design meth-
ods.

Both the incremental weighted and weighted problems of Chapters 4 and 5, respec-
tively, are extremely little studied in spite of their apparent practical appeal. Only

minor portions of the results here, which come close to reproducing those available
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for the standard I, problem, have appeared elsewhere. These chapters represent the

most novel aspect of the thesis, and the most important from a theoretical viewpoint.

1.5 Notation

R the real numbers.
Z,Z. the integers and the non-negative integers, respectively.
C the complex numbers.
Rz,Sz the real and imaginary parts, respectively, of z € C.

D,D the open and closed unit disks in C, respectively.

In the following definitions X is a set and m and n are positive integers.

X™Xn the set of all m x n matrices with entries in X. An element X € X ™*" is a

matriz over X.
X™ the set of all column vectors of dimension n with entries in X, i.e., X "X1.
X;; fori € {1,...,m} and j € {1,...,n}, the ¢j-th entry of X € X™*",

Xi,X,; fori € {1,...,m}and j € {1,...,n}, thei-th row and j-th column, respectively,
of X € X™mxn,

Some notational conventions are observed as closely as possible throughout:
e signals are denoted by lower case letters (e.g., ).
e both systems and maps are denoted by calligraphic letters (e.g., H).

e impulse response matrices of systems are denoted by corresponding upper case

letters (e.g., H).

e transfer function matrices of systems are denoted by corresponding hatted upper

case letters (e.g., H), where the z-transform is defined with z as the delay.
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e Sets or spaces of the above objects are denoted by boldface letters in the corre-
sponding font (e.g., M denotes a set of systems or maps).
The major exception to the above convention is that boldface upper case letters are
used to denote general sets and spaces (e.g., X).

Note: Throughout the thesis a product (GH) of impulse response matrices or any

matrices of sequences means convolution (G * H).
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Chapter 2
Problem Setting

In this chapter, the standard problem setting of Chapter 1 is more carefully defined.
It is the setting in which all the design problems of later chapters are solved. The

main results of the chapter are contained in three sections.

Section 2.1 defines the class of exogeneous signals to be considered; they are
allowed to be completely arbitrary discrete time signals (sequences) except that they
must be suddenly applied. That is, they must be zero prior to some finite time. This is
not an uncommon assumption, but its formulation here differs from the usual. A large
class of systems is defined on such signals; any map from the signal space into the
signal space is considered a system. Linearity, time invariance, and causality are all
defined and the set of linear time invariant systems have convolution representations;
hence they are characterized by their impulse responses. Stability is defined as usual,
in terms of boundedness as an operator.

Section 2.2 contains some results on the algebraic properties of signals and sys-
tems. As defined in Section 2.1, signals and linear time invariant systems (more
precisely, their impulse responses) are identical algebraically; they form a field under
convolution and pointwise addition. The causal linear time invariant systems form a
subdomain of this field and, moreover, the fraction field corresponding to the causal
systems is the field of linear time invariant systems (and of signals). The stable linear

time invariant systems form and its causal subset form distinct subdomains.

Section 2.3 uses the algebraic structure and similarity of signals and systems to

define and characterize well posedness for the feedback interconnection in the stan-
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dard problem setting. Also defined and characterized are internal stability of the
interconnection and stabilizability of the generalized plant. Under a mild assump-
tion, a YJBK-type parametrization of all causal linear time invariant compensators

which stabilize a given stabilizable causal linear time invariant generalized plant is

derived.
The chapter concludes with a discussion in Section 2.4 of related work and some

unique features of the results.
Appendix A is referenced frequently throughout, and Appendix C occasionally.

Notation

If T is any subset of Z, a sequence on T is a map from T into R. If = is a sequence
on T it can be written in terms of its elements as = = {z(k)}, ;. The support of a
sequence z, written supp z, is the subset of T consisting of the indices of all non-zero

elements of . The following are sets of sequences which will be used throughout:

[ the set of all sequences on Z..
Il the subset of [ consisting of all magnitude-bounded sequences.
[, the subset of I consisting of all absolutely summable sequences.
[(Z) the set of all sequences on Z.
I, the subset of I(Z) consisting of all right-supported sequences, i.e.,

I, = {z € l(Z): 3k, € Z such that supp & C {ks, k. +1,...}}

4+ the subset of [y consisting of all magnitude-bounded sequences.

I+ the subset of [ consisting of all absolutely summable sequences.

2.1 Discrete Time Signals and Systems

In this section a class of suddenly applied discrete time signals is defined; they form

a linear space under pointwise scalar multiplication and addition. Both scalar and
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vector signals are considered. The magnitude-bounded signals form a normed linear

space.
Scalar systems are defined as maps from the scalar signal space into itself. Subsets
of the set of systems are identified according to properties of linearity, time invariance,
and causality; the linear time invariant ones have convolution representations.
System stability is defined as boundedness as an operator from the space of
magnitude-bounded sequences into itself, and the linear time invariant stable sys-

tems are identified.

Definition 2.1.1 A signal of dimension n is any element of I7 for some positive

integer n. A scalar signal is a signal of dimension 1.

Under this definition, the set of signals models «all suddenly applied excitations,
regardless of the time at which they occur. The usual model for such signals is [;
Definition 2.1.1 is potentially more general, at least when considering time varying
systems, and it results in a clearer delineation of the system properties of causality
and time invariance. It also results in a convenient algebraic structure encompassing
both signals and systems, described in Section 2.2.

It is easy to check that the set I of all scalar signals is a real linear space with

elementwise addition and scalar multiplication, i.e., given z,,z, € 15,
1 + g = {1(k) + w2(k) }1ez
and, given z € [ and a € R,
ax = {ax(k)} ez -

Hence, for any n, the set of all signals of dimension n is also a linear space, again
with elementwise operations.

The set I, for any n is a subspace of I} which is normed under
llzll,,, = max {sup {|z;(k)| : k € Z} : j € {1,...,n}}.

The set [7,, thus provides a model for the set of all suddenly applied excitations
having finite peak magnitude. For x € 7, ||«||;  is the maximum peak magnitude

of any element z; of z.
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An important scalar signal is the unit impulse denoted by 6 and defined

6(k):={1 k=0

0 otherwise

The following definition of a system allows convenient study of the responses of
systems to such signals as well as cascade, parallel, and feedback interconnections of
systems,

Definition 2.1.2 A system of dimension m x n is ¢ map from the space of signals
of dimension n into the space of signals of dimension m, i.e., H : [} — IT. X™™
denotes the set of systems of dimension m X n.

A scalar system H is a system of dimension 1 x 1. The notation X denotes the
set of all scalar systems.

Definition 2.1.2 ensures that the operations of scalar multiplication, addition, and
multiplication are can be defined on the set of scalar systems (scalar multiplication and
addition as usual for maps between linear spaces, and composition as multiplication).
In practical terms, this means that cascade and parallel connections of systems are
well defined, provided only that their dimensions are compatible. In fact, if H 5 is a
scalar system and H € XY™™ the compositions H H and HH s make sense if we
interpret that 7  is applied to each element of its vector input signal.

The response of every scalar system to the input § is well defined; hence every
system H € X has an associated impulse response denoted by h := Hé € l.. Every
system H € XY™™ has an associated impulse response matriz
Hyy -+ Hy
H = T

Hml cen H"m

where H;; € I} is the response of the i-th output of H when the j-th input is é and

all other inputs are zero.

Since the space of signals of any dimension is linear, linearity for systems has a
natural definition.

Definition 2.1.3 A system H € XY™™ is linear if

H(axy + Bxs) = aH(x1) + fH(x2) Va,B € R and xy,7, € 1.
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Xp-m denotes the set of all linear systems of dimension m x n which have a kernel
representation, i.e., for which there exists a doubly indexed sequence { H(k, l)}(k,l)erZ

of matrices over R such that for every x € [,

n (o]

(Ha)i(k) =) Y. Hi(k,Dei(l), i€{l,...,m}.

j=1l==o00
It is easy to see that every system with a kernel representation is linear, but X
need not contain all linear systems. Two other system properties of interest can be
defined in terms of two special scalar systems (the first is actually a family of systems

indexed by N € Z). The N-th truncation Py is defined, given x € I,

z(k) k<N

and the delay S is defined, given z € I,
Sz = {z(k—1)} ez -

Note that Py,S € X).
Definition 2.1.4 A system H € XY™™ is

e time invariant if it commutes with the delay, i.e.,

SH="HS.

e causal if
PnHPy =PnH VN € Z.

All design problems will be solved given a causal linear time invariant, and com-

pensators will be required to have the same properties. Accordingly we define
Xpom o= {H € Xp™™: H is time invariant}
nem o= {He XLm™: H is causal}

clti

It is easy to check that the binary operation convolution denoted by “*” and

defined, given z1,x; € Iy,

Ty ¥ Xg 1= { i z1(k - l)rvg(l)}
keZ

l=—00
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is well defined since z; and z are right-supported.
The following facts state that systems in X'y; have convolution representations in
terms of their impulse response; they are immediate consequences of standard facts

for scalar systems with kernel representations (see, e.g., [16]).
Fact 2.1.5 If H € X then H € Xy; if and only if

Hr=h*z V.'L'El_’:_

where h € I, denotes the impulse response of M.
Fact 2.1.6 If H € Xy; then H € X ; if and only if supp h C 2.
All design problems are [, design problems, i.e., their specifications are in terms

of I, norms (peak magnitudes) of disturbances and errors. The following is therefore

an appropriate definition of stability.
Definition 2.1.7 A system H € Y™™ is stable if

o He el forallz €1}, and

e there exists ¢ < oo such that

[Hell,, < ellall,, Ve € Ly (2.1)

If H is stable the smallest ¢ satisfying (2.1) is denoted by |[H||,_;.
The next fact follows immediately from well known results; see for example [16].

For the definition of ||-||; see Fact C.2.1.
Fact 2.1.8 H € Xp7™ is stable if and only if H € {™. For a stable system

Iti
He Xirm,
“H”lw-i = ”HI|11 .

2.2 Algebraic Properties of Signals and Systems

Both X} and X have useful and related algebraic structures, as do the subset of
stable systems in each. Most of the algebraic terms used in this section are meant in
their most standard sense; see Section A.1 for definitions in case of uncertainty.
Proposition A.2.1 shows that [, forms a ring under convolution and pointwise
addition. The following proposition shows that the linear time invariant systems form
a ring which is isomorphic to l; each system is identified by its impulse response,

which lies in /4.
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Proposition 2.2.1 When addition is defined as the usual addition for maps on a
linear space and multiplication is defined as composition, Xy; forms a ring which is

isomorphic to I, under the map ¢ : Xy — ly defined, given H € Xy,
oH = h.

Proof: It has already been noted that the linear systems form a natural algebra;
to show that Xy is a ring it suffices to show that it is closed under addition and

multiplication. Accordingly, let H1,H; € Xy be given and note that
S(Hl + Hz) - SH] + SHz = H]S + 7‘(25 = (Hl + Hz)S

since S € X)) and
SH]H2 == Hlst == H1H28

since H; and H, are each time invariant. Hence both H; + H; and H;H; are time
invariant and Xy; is closed.

Next it is shown that this ring is isomorphic under the given map to ;. ¢ is well
defined and, by its definition, maps X; into {;. Next we show it is a bijection. By
Fact 2.1.6, Hx = h* £ = (¢H) + = for all & € I} so that ¢H; = ¢Hy = Hy = H,. To
show that ¢ is onto, let A € I, be given and define H € Xy; by convolution with k,
ie.,

He:=h*x V€l

It is easy to check that H is well defined and that it is in X';. Moreover ¢H := h = 7z,

showing that ¢ is onto. It is also easy to check that ¢ is a homomorphism, i.e., that
$(Hy + Ha) = ¢My + ¢Hy and $(HiHa) = (¢H1)(dHo)

for any two systems H;, Hy € Xy, using the definitions of addition and multiplication

in ;. from Proposition A.2.1. O

As a consequence of Proposition 2.2.1, the ring X,; inherits all of the algebraic
structure of the ring [;. In particular, Proposition A.2.1 shows that it is a field under
convolution and pointwise addition. Moreover, since the set of all scalar signals is
also I, signals and systems can be viewed as identical algebraically if systems are

identified with their impulse responses. Every dimensionally sensible interconnection
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of systems with inputs and arbitrarily defined outputs can hence be described by a
matrix equation over the field {;; all “block diagram algebra” can be performed as
though the signals and systems were vectors and matrices, respectively over R.

Fact A.2.2 states that [ also forms a ring under convolution (defined for sequences
on Z,) and pointwise addition. Proposition A.2.3 shows that [ is isomorphic to a
subring of [;.. The next proposition shows that the causal systems form a ring which
is isomorphic to [.
Proposition 2.2.2 X ; forms a subring of X'y; isomorphic to | under the map ¢, :
i — U defined, given H € Xy,

¢ H = {h(k)}keZ+ .

Proof: To show that X.y; forms a subring of XY, it suffices to show that it is closed
under addition and multiplication in X'y;. Accordingly, let N € Z be given and note
that

Pn(H; + Hz) = PvHi + PvHa = PNHiPn + PvHePn = Pn(Hy + Ha)Pn
since Py € X and
PvH1H2 = PNHiPnH, = PnHiH2 PN

since H; and H; are each causal.
By Fact 2.1.6, H € Xy; is in X¢; if and only if supp & C Z4. Using this, the
proof of Proposition 2.2.1 is easily adapted to show that ¢, is a bijection. That it is

a homomorphism is also easily checked to complete the proof. ]

As a consequence of Proposition 2.2.2, X; inherits all of the algebraic structure
of the ring I. In particular, Proposition A.2.6 shows that I is the field of fractions

F; corresponding to [.

n—m n+—+m

Remark 2.2.3 In view of the preceding propositions, systems in X77™ and X7
can be identified with matrices in I"*™ and F™", respectively, and signals in I} with
vectors in F}.

Among the other consequences of Proposition 2.2.2 are that X; is a proper

Euclidean domain (Proposition A.2.4); hence systems in X2;™ have Smith forms
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and systems in X}™ have Smith-McMillan forms over X q; [17, Appendix B]. Also,
applying Corollary A.2.5 provides a test for invertibility of H € X'ci; H is invertible
if and only if (¢<H)(0) = h(0) # 0.

Fact A.2.7 states that [; is a subring of [. The next proposition shows that the

stable systems in Xy; form a subring of X; which is isomorphic to ;.
Proposition 2.2.4 The set of stable systems in X.y; forms a subring of Xcy; iso-
morphic to l; under the map ¢ defined in Proposition 2.2.2.

Proof: The map ¢. has already been shown to be a bijective homomorphism from
all of X¥y; to I. Fact 2.1.8 states that H € X; is stable if and only if & € l;4. Hence
H € X.; is stable if and only if ¢.H € [;, completing the proof. (W]

As a consequence of Proposition 2.2.4 and Fact A.2.7, the stable systems in Xy

form a Hermite domain.

2.3 A General Feedback System

Figure 2.1 depicts a the general feedback interconnection of Chapter 1 which is the
setting for all the design problems. The only assumptions on G and/or C in effect
throughout the chapter are linearity and causality, although most results require
additional hypotheses. The dimensions of G are arbitrary and are dropped, as this
should cause no confusion.

Although systems are defined in Section 2.1 in such a way that cascade and parallel
interconnections are always well defined, issues of well posedness and internal stability
arise when they are interconnected in feedback {16] [18]. In fact, the additional
disturbance inputs v, and v, are injected at the input and output of C in Figure 2.1
solely for the purpose of defining internal stability.

After well posedness and internal stability for a given pair of systems (G,C) are
defined, simple tests are given for each. For a given G, there need not exist any C €
X1 which internally stabilizes the system, so the notion of stabilizability is defined
and a test for it given. (Stabilizability is defined in terms of existence of a causal
linear time invariant C because all the design problems impose this restriction.) For
a given stabilizable G € ¥.y; a YIBK-type parametrization of all Cs which internally

stabilize the system is derived under a mild assumption.
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u — ——m 2
u y
it ]
vy D c D~ vy

Figure 2.1: Standard problem setting with additional disturbances

The interconnection of Figure 2.1 can be described by the equations

[ z ] c [ w } 22)
Y u

u = v,+Cy (2.3)

and a relation R(G,C) on the inputs and outputs in the figure defined as follows

w z
R(G,C) := e | o] u € 1y x 14 :(2.2), (2.3) satisfied ; . (2.4)
Uy y

In a feedback interconnection as in Figure 2.1 outputs need not exist or be uniquely

specified given the inputs. Moreover, a well defined interconnection of two causal

systems can define a non-causal system.
Definition 2.83.1 The pair (G,C) is well posed if the relation R(G,C) defined in (2.4)

describes a causal system T(G,C) : Iy — Iy as follows:

w z w z
TG,C) || ve || :=|u| suchthat v |,| u || €R(GC). (2.5)
vy ] Uy ]

All design problems require that C be chosen to ensure not only that (G,C) is well
posed but also that 7(G,C) is stable according to Definition 2.1.7.
Definition 2.3.2 The pair (G,C) is stable if it is well posed and T(G,C) defined by
(2.5) is stable. If (G,C) is stable then C stabilizes G.
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All design problems also require that C be chosen from Xcy;, and that it stabilize
G. Such a choice of C need not exist for every G.

Definition 2.3.3 C(G) denotes the set of compensators C € Xy which stabilize G,
i.e., ’

C(G) :={C € i (G,C) is stable}.
G is stabilizable if C(G) # 0.

The remainder of this section consists of results concerning well posedness and
stability. First, there is a simple algebraic test for well posedness of (G,C) when
G,C € X, and when such a pair is well posed, 7(G,C) € Xy (U(I) denotes the
set of units of the ring /; see Corollary A.2.5.)

Note: The dependence of the matrices on the right in (2.7) on G and C has been

dropped.
Proposition 2.3.4 IfG,C € Xy then (G,C) is well posed if and only if

det (I — G,C) = det (I — CGy) € U(1).

If (G,C) is well posed then T(G,C) € Xeyi and

T(G,C) = (2.6)
Cow + GO = GuC) Gy Gou(I — CGp)™t GoC(I = G C)-
(I = GuC) Gy (I-CG,)t C(- GJ,LC
(I = GuC)™ Gy Gpu(I—CGp)™  (I—GuC)"
Tow Towy T,
= | Tww Tuve Tun (2.7)

Tg}w Tﬂvu Tﬂuy
Proof: If G,C € ¥ then, in view of Remark 2.2.3, equations (2.2) and (2.3) defining

the input/output pairs of Figure 2.1 can be rewritten as follows

I -G, O z G,o, 00 w
0 I —Cllul=1]10 T0]|]|uv (2.8)
0 -Gy I ] Gy 0 1 vy

where the impulse response matrices have elements in /, and the vector signals have

elements in [ = FY.
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Recall that, for matrices over any ring, det (I + D1D;) = det (I + D;D;) so that
det (I — G,,C) = det (I — CGy,) =: A, and note that

I -G,u 0
det |0 I —C |=det(I-GunC)=A.
0 -Gy [

If A € U(!) then the matrix on the left in (2.8) is invertible in /. An easy calculation
shows that

-1

I - qu 0 sz 0 0 Tzw Tz'uu TZ'Uy
O I - C 0 I O - T'uw Tzu.vu T‘u‘uy € l
0 - Gyu I Gyw O I 7;7111 fl—;}llu Tg}uy

so that the closed loop system is causal and the unique output given any exogeneous

inputs w, vy, and v, in I} is given by

z Tzw Tzuu Tzuy w
U = T‘um T’uvu fTuvy Uu (2 M 9)
?7 T'gw 713711., T'guy Uy

Thus (G,C) is well posed.
Now suppose A € U(I). If A = 0 then the matrix on the left in (2.8) is singular

and hence there exist sequences z, u, and § in [ such that

I -G, 0 z
0 I -C u | =0.
0 -Gy 1 i

The solution to (2.8) is therefore not unique for «ny exogeneous inputs w, vy, and v,
in I,. If A # 0 then the solution is given uniquely for every set of inputs by (2.9),
but the closed loop system is not causal (for example, Ty, = (I — CGy,) 1 ¢ 1). O

There is also a simple test, which follows immediately from Fact 2.2.4, for stability
of any well posed pair.

Proposition 2.3.5 IfG,C € X and (G,C) is well posed then (G,C) is stable if and
only if T(G,C) € .
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Stabilizability is considered next. General tests are not available even for G,C €
X i but, under a mild assumption, necessary and sufficient conditions for stabiliz-
ability can be established. Three preliminary lemmas facilitate the statement and
proof of these conditions. The first lemma is fairly standard, and is repeated here for

completeness; its proof is only sketched. (See Definition A.1.5 for the definition of a

coprime factorization.)

Lemma 2.3.6 IfG € X and Gy, has either a left or a right coprime factorization
over Iy then it has both left and right coprime fuctorizations Gy, = NM~1 = M-1N

over l; and there egist additional matrices X, Y, X, and Y over 1y satisfying the

Bezout equation

X -y MY I0
.. = (2.10)
-N M N X 0 I

Proof: Suppose first that G, = M-1N is a left coprime factorization over {;. Then
[ N M € I is right-invertible in I; (by Definition A.1.5) and, because [, is Hermite
(Fact A.2.7), it can be complemented (by Definition A.1.1). The right coprime fac-
torization Gy, = NM ! is then guaranteed by [17, Lemma 8.1.45] which states that a
matrix with a left coprime factorization G, = M~1N over any commutative domain
with identity also has a right coprime factorization provided that | —N M]elcan
be complemented. The complete identity (2.10) is constructed in the proof of that
lemma. The preceding argument is easily modified (and [17, Corollary 8.1.53] used)

in case Gy, has instead a right coprime factorization. 0

The second lemma shows that every C € Xy; which stabilizes a given G € X ; has
an impulse response which can be expressed uniquely in terms of a parameter matrix
belonging to a certain subset of /;. The parametrization is very similar to the usual
YJBK parametrization of stabilizing compensators for the system G,,, alone connected
in feedback with C (cf., e.g., [17, Theorem 8.3.12]), but the range of the parameter
matrix is restricted. This restriction results from the restriction of C to the causal

systems, which is not done explicitly in most versions of the YJBK parametrization.

Lemma 2.3.7 Let G satisfy the hypotheses of Lemma 2.3.6 and define sets

Q(G,) = {Q € I : det (X — QN), det (X ~ NQ) e U(1)}
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and Cq(Gy) :=

{e:0=(X-QRN)¥ - QM)=(Y - MQ)(X - NQ)™*, Q € Q(G,)}

where Gy, = M~1N = NM~-" are coprime factorizations of Gy, over I and X, Y,
X, and Y are arbitrary matrices over ly satisfying the Bezout equation (2.10).

IfC € C(G) then there exists a unique Q € Q(Gyu) such that C = (X —QN)~1(V -
QM) = (Y — MQ)(X — NQ)~'. Hence C(G) C Cq(Gyu)-

Proof: Assume C € C(G) and note first that

det (M — NC) = det M det (I — G,,,C) and det (M — CN) = det (I — CGy,) det M.
(2.11)
Gpu = NM™1 = M-IN are coprime factorizations over ! as well as [; since [y
is a subring of [ (Fact A.2.7), and G,, € ! since G € X;. Hence, by Propo-
sition A.1.6, both det M,det M € U(l). Since (G,C) is well posed, Proposition
2.3.4 shows that det (I — G,,C) = det (I — CG,,) € U(I). (2.11) thus implies that
det (M — NC),det (M — CN) € U(1).
In particular, both determinants are non-zero and it is easy to check, using the

identity (2.10), that
(Y - XC)M - NC)' = (M —-CN)™ (Y - CX) = Q. (2.12)
It is also easy to check, again using (2.10), that
(X = NQ)YM —NC)=1and (M —CN)Y(X -QN)=1

and hence det (X — QN), det (X — NQ) € U(l). Moreover, (2.12) can be solved (in

the two obvious ways) to yield
C=(X-QN)'(Y -QM)= (Y - MQ)(X - NQ)™. (2.13)

To show that @@ € l, use the representations (2.13) to compute the lower right-
hand two by two block corner of T(G,C) via (2.6):

(I-CG,)' C(-G,0C)! ]

MX YM M Q[N M]
Gypu(I — CGp)?t (I =GpC)! NX XM N ‘
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Hence
M ..
[N]Q[N M el

Q € I since [N M] is right invertible in I; and [MT NT]T is left invertible in ;.

Finally, to show that the correspondence is unique, suppose that Q1, Q2 € Q(Gyu)
and

C=(X-QN) (¥ - QM) = (Y — MQ,;)(X — NQ2)

and verify using (2.10) that (3 = Q. ]

The third lemma shows, in particular, that Q(G,.) # §. It shows in fact much

more, and is used in subsequent chapters as well.
Lemma 2.3.8 If G satisfies the hypotheses of Lemma 2.3.6 then Q(G,.) defined in
Lemma 2.3.7 is open and dense in ly.

Proof: To prove the claim it is sufficient to show that both
Qr:={Qeh:det(X -QN) e U(I)}

and

Qr:={Qel,:det(X —NQ) eU(l)}
are open and dense in Iy, since then Q(G,.) = QL N Qr is as well. We will show only
the first of these since the proof of the second is entirely similar.

To show that @, is open, the proof of [17, Lemma 5.2.11] carries over precisely. To
show that Qy, is dense the proof of that lemma requires some modification, although
the main idea is the same; given () € I;\QL, a sequence {Q;}iez+ C Qy is constructed
which converges to @ in the /; norm.

In view of Corollary A.2.5, det (X — QN) ¢ U(l) implies that the real matrix
X(0) — Q(0)N(0) is singular. However, [ XT — NT ]T is left invertible in [ because
of (2.10). This implies that the real matrix [ X7(0) — N7(0) ]¥ has full column rank
and hence so does the real matrix M := [ [X(0) — Q(0)N(0)]T — NT(0) ]7, since

M=[I Q(O)H X(0) ]
0 I ~N(0)

Now select a non-zero full-size minor of M containing a minimal number of rows of

—N. Let iy,...,7x denote the indices of the rows of X(0) — Q(0)N(0) omitted and



28

J1,+-+,Jk the indices of the rows of —N(0) replacing them in forming this minor.

Define Rt € R™X" by

R . =...= R . = ¢

151 ik ik

R;; = 0 for all other i,

By following the proof of [17, Lemma 4.4.21], one can verify that if € # 0 then
det [X(0) — (Q(0) + R)N(0)] = =e.

Now let {€:},cz, be any set of non-zero numbers converging to zero and defined for
each 7 a matrix Q; € [ by

Q)+ R k=0

Qulk) = { Q) k>0

Then lim;_, [|@ — Qill;, = 0 and det (X(0) — Q;(0)N(0)) # 0 for each 7. Using
Corollary A.2.5, the second fact implies that det (X — Q;N) € U(!) for each i, and

the proof is complete. (i

Using the preceding lemmas, the following proposition is easy to establish. It
gives necessary and sufficient conditions for stabilizability of G and parametrizes, for
a given stabilizable G, the set of all C € Xcpi which stabilize G. The assumption that
G satisfy the hypotheses of Lemma 2.3.6, i.e., that G, have a coprime factorization

over [ is the standard assumption required for compensator parametrization and has,
in the case of H, been shown to be necessary for stabilizability [19].
Proposition 2.3.9 Let G satisfy the hypotheses of Lemma 2.3.6, let all symbols be

defined as in Lemma 2.3.7, and define matrices
H:= sz + quM?Gyw; U:= quM; V= MGyw .
G is stabilizable if and only if HYU,V € L. If G is stabilizable and Q € Q(Gyu)
then C with C := (X —QN)"Y (Y = QM) = (Y — MQ)(X — NQ)™! is in C(G). Hence

C(G) = Ca(Gy)-
Proof: First note that for any C € Co(Gyu.), (G,C) is well posed since

1
det (I — Gy C) = —— U(l
et =Gnl) = (X —Ng) © (@)
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and

det (I — CG,u) cU(l).

~ det M det (X — QN)
Also, computing T'(G,C) via (2.6), we find that

H Ulx ¥ ] U
TGo=|[v], [M]z [Y]g |~ |M Qv N . (219
X N X N

For the “if” part of the first claim, Lemma 2.3.8 shows that there exists at least
one C € Cq(Gy.); for this C, T(G,C) has the form (2.14). Clearly if H,U,V € I
then so is T'(G,C), and hence (G,C) is stable. C € Xy,; by its definition and, because
Q € Q(Gyu), C € ey (using Proposition A.1.6).

For the “only if” part, Lemma 2.3.7 shows that T(G,C) has the form (2.14) for
every C € C(G). Hence if there exists a C € C(G), it follows that

U[X ¥]ehand [f{}vul.

Thus U € [ since | X v ] is right invertible in [; and V € I since [ YT XT T
is left invertible in /;. Finally, these conclusions and (2.14) combine to show that
H=T,,+UQV €l.

For the second claim, if Q € Q(G,) then C := (X — QN)"1(Y — QM) = (Y -
MQ)(X — NQ)™* € I since det (X — QN),det (X — NQ) € U(l). Hence C € Y.
(G,C) is also well posed since, using (2.10),

det M

det (I — Gyuc) = m

and det M € U(l). T(G,C) is given by (2.14) where stabilizability of G implies that
H, U, and V are in l;. Hence T(G,C) € {}**™ and C € C(G).
Finally, Lemma 2.3.7 establishes that C(G) C Cq(G,u) and the reverse inclusion

has just been established. m]

Thus from every stabilizable G three matrices in {; can be computed. These
matrices are shown below to characterize all closed loop impulse responses from w

to z achievable using some C € C; hence their properties will be important for the



30

solution of all the design problems. It is therefore of interest to know if H, U, and V
computed as in Proposition 2.3.9 have any special properties. The next proposition
shows that they do not; to every triple of matrices of appropriate dimensions in /;
there corresponds some stabilizable G (in the sense of Proposition 2.3.9).
Proposition 2.3.10 Given positive integers m, n, mg, ng and matrices Ty € I7"*",
T, € 7™ and Ts € 197" there exists a stabilizable G satisfying the hypotheses of
Lemma 2.3.6 such that G, + quMf/Gyw =T, G.uM =T, MGW = T5.

Proof: Given Ty, Ty, and T3, the required G is simple to construct. Define

G:= St
5 0

Then Gy, = 1710 = 07! are left and right coprime factorizations over i, and the

=[;g].

sz + quMY/Gyw = Tl, quM = TZ, MGyw =Tz .

Bezout equation 2.10 is satisfied by choosing

X -y MY
-N M

N X
It is easy to check that

so that G is stabilizable. (i}

Next is a parameterization, for stabilizable G, of the set of closed loop impulse
responses achievable using some causal linear time invariant stabilizing compensator.
Proposition 2.3.11 Let G satisfy the hypotheses of Lemma 2.3.6, let all symbols be
defined as in Proposition 2.3.9, and define the set

T..(G) = {T..(G,C): C € C(G)}.
If G is stabilizable then

e given C € C(G), T:u(G,C) = H —UQV, where Q € Q(Gyu) is the unique Q
guaranteed by Lemma 2.3.7.

o given Ty = H — UQoV for some Qo € Q(Gy), let Q € Q(Gy) be any Q
such that H — UQV = Ty. Then C with C = (X = QN)"Y(Y — QM) =
(Y — MQ)(X — NQ)™ is in C(G) and T,.,(G,C) = To.
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Hence T,,(G) = {H - UQV : Q € Q(Gy.)}.
Proof: For the first item, if C € C(G) then C € Cg(Gyu) by Proposition 2.3.7 and
T(G,C) has the form (2.14). In particular, T.,,(G,C) = H —UQV.

For the second item, let To = H — UQyV be given and let Q@ € Q(G,.) be
any @ such that H — UQV = Ty. Then the given C is in Cg(Gy.) and hence, by
Proposition 2.3.9, also C(G). again T(G,C) has the form (2.14) and, in particular,
T:w(G,C)=H -UQV =Tq.

The last claim is a consequence of the two items just established. O

Finally, the next proposition shows that for a large class of generalized plants the
set Q(Gy.) of admissible Qs is all of ;.

Proposition 2.8.12 If G satisfies the hypotheses of Lemma 2.8.6 and Gy, (0) = 0
then Q(Gyu) = 1.

Proof: We will show that, under the hypotheses, det (X — NQ) € U(l) for all
Q € Iy; that det (X — QV) € U(!) for each Q as well can be established similarly. By
Lemma 2.3.6, let G, = NM™! = M-'N and construct the Bezout identity (2.10).
If G, (0) = 0 then N(0) = M(0)Gyu(0) = 0 and N(0) = G,.(0)M(0) = 0. N(0) =0
implies that (X — NQ)(0) = X(0) for all @ and N(0) = 0 implies that X (0) is
non-singular since, from (2.10), —N(0)Y'(0) + M(0)X(0) = I. Thus, for any Q € I,
det [(X — NQ)(0)] = det X(0) # 0 and hence, by Corollary A.2.5, det (X — NQ) €
U(l). m]

2.4 Discussion

The main aim of this chapter has been to provide a common basis for the formulation
and solution of the three design problems considered in the remainder of the thesis,
and not to develop new results per se. However, some aspects of the classes of signals
and systems defined, their algebraic properties, and the parametrizations of stabilizing
compensators and closed loop impulse responses in the standard problem setting are
of interest.

While it is common to consider suddenly applied disturbances, the approach taken
here is unique and has some advantages. The customary approach is to model such

signals as sequences on Z;. When this approach is taken, the natural definition of time
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invariance of systems taken here (i.e. commuting with the delay) is not satisfying;
under it, the notions of causality and time invariance are no longer independent
(time invariance implies causality). When signals are defined as sequences on Z
supported only on the right, all suddenly applied excitations can be considered and
time invariance and causality of systems defined naturally and independently.

The algebraic properties of sequence spaces given in Appendix A are not difficult
to establish and are most likely not new, but their application to the linear time
invariant systems defined here is. As a consequence, signals and linear time invariant
systems become simply vectors and matrices over the same field, with the causal
systems being matrices over a subring with easily characterized units. This makes
well posedness issues particularly clear in feedback interconnections, as they have to
do with causal invertibility of systems.

The general approach taken to the parametrization of stabilizing compensators
and closed loop impulse responses, i.e., the algebraic approach, is not new. It origi-
nated in [20][21] and has been studied extensively (e.g., [22] [23][24]), and an excellent
book [17] has appeared on the subject from which this chapter borrows heavily.

Nonetheless, some aspects of the parametrization obtained here are unique; in
particular the explicit restriction to causal stabilizing compensators and the doubly
coprime factorization (with the same free parameter) of each compensator. The
proof of the denseness of admissible values of the free parameter in /; is also new,
although the ideas are similar to those used in [17] for the case of stable rational
functions. Stabilizability tests of various types exist, but the one established here is
particularly convenient; it is based on quantities that must already be computed to
solve the design problem. Finally, the simple example of Proposition 2.3.10 answers
conclusively the question of whether any special structure can be assumed on the

H, U, and V matrices which determine the parametrization of closed loop impulse

responses.
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Chapter 3
loo Disturbance Rejection

Recall the standard problem setting of Chapter 1, (repeated in Figure 3.1 for refer-
ence), where w and u are the disturbance and control inputs, respectively, and z and
y are the error and measured outputs, respectively, of the generalized plant G. The
respective dimensions of the signals are n,, ny, n., and n,. Given the definitions of

Chapter 2, the I, disturbance rejection specification can be stated precisely.

I DRS:
o C € Yo, (G,C) is stable, and
o we iy and |jw|, <1 implies z € I35 and ||z]|;, < 1.

To satisfy the specification, C must be causal, linear, and time invariant, it must
stabilize G, and all suddenly applied disturbances of peak magnitude less than or
equal to 1 must result in errors of peak magnitude less than or equal to 1. (The

requirement that C € Xy ensures that all Cs satisfying the specification can be

implemented.)
If G € ¥.; then the design problem can be formulated as minimization of a norm

of the closed loop system 7;,,(G,C) from w to z over all C € Xy which stabilize G:

DR(G) : inf {||T2(G,O)l,, : C € C(G)} =: o

If C € C(G) then T.,(G,C) € I3**™* and hence the norm above is always defined.

Since the norm is non-negative whenever it is defined, upg is defined if and only if G
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Figure 3.1: Standard problem setting
is stabilizable. Moreover, if T,,(G,C) € {}**™ then z € [}z, whenever w € I3, and

ITew(G, M, = TG5Ol = sup Iz, : w € 122, and ), < 1}

DR(G) represents the design problem in the following sense. The feasible solutions
for DR(G) are the stabilizing Cs for G in X;; for each C T.,(G,C) € 172X, and the
cost of each, ||T.w(G,C)l|;,, is precisely the worst-case ||z[;  over all w € looy with
lwll, . < 1 when that C is used. Hence the first item of the lc DRS can be met if
and only if DR(G) is feasible. If DR(G) is feasible then ppg is the smallest number
that can be guaranteed to bound ||z||,  over all w € loo4 with |w]|, < 1. Hence the
second specification can be met if and only if DR(G) is feasible and ppr < 1.

The remainder of the chapter is concerned with the solution of DR(G) and is
organized as follows. In Section 3.1 DR(G) is reformulated as a minimum distance
problem OPT in [}**™ using the parametrizations of stabilizing Cs and correspond-
ing T%(G,C)s from Chapter 2. Because it is almost precisely equivalent to DR(G),
the rest of the chapter considers OPT. In Section 3.2 it is shown that under some
assumptions outlined below a minimizer for OPT always exists and, in some cases,
corresponds to a finitely supported T7,,(G,C), i.e., an FIR closed loop system. These
cases are of interest because they guarantee that if G is rational then so is the optimal
C. OPT is in general infinite dimensional, so Sections 3.3 and 3.4 are devoted to its
approximate solution. Section 3.3 gives a sequence of finite dimensional infimization
problems whose costs approach popr(= ppr) from above; its minimizers yield sta-

bilizing Cs whose performance approaches optimal as closely as desired. Section 3.4



35

gives a method for bounding the optimal performance from below by solving finite
dimensional infimization problems. Stabilizing Cs can also be obtained using this
method and, although it is not guaranteed that their performance approaches opti-
mal, it often does in examples. O PT and all the approximating infimization problems
formulated in the chapter are equivalent to (infinite or finite) linear programs. Sec-
tion 3.5 gives detailed formulations of all these linear programs, and Section 3.6 gives
a simple example demonstrating some key aspects of both the FIR and lower bound
computations. The chapter concludes with a discussion in Section 3.7 of the results,

related work, and the main contributions of the chapter.

Notation and Assumptions

In the remainder of this chapter, G is a given system; the following notational con-

ventions and assumptions are in effect unless otherwise noted.

e G € X and satisfies the hypotheses of Lemma 2.3.6 (i.e., Gy, has a left or a

right coprime factorization over ;).
e G is stabilizable (DR(G) is feasible only if this is true).

The first assumption above allows the parametrization of stabilizing Cs and corre-
sponding T, (G,C)s in Propositions 2.3.9 and 2.3.11, respectively, to be used. It is a

standard assumption, and has been shown to be necessary for stabilizability in the

case of H, [19].
H, U, and V denote the matrices over {; derived from G as in Proposition 2.3.9

using arodrirary coprime iactorizations o w ). 1oughn roposition <.Jd. SIIOWS
ing arbit ime factorizations of Gyy). Although Proposition 2.3.10 sh

that H, U, and V have no special structure all results, except where noted, require
the following assumption.

Assumption 3.0.1 U and V have decompositions of the form

U=UXyUr V=VL.2vVr (3.1)

where

e Yy € (VXY By € [[Y*"V are diagonal and nonsingular,
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o Ur, Vi € Iy are left invertible in I, and Ur, Vg € l1 are right invertible in |

Existence of a decomposition of the above form is equivalent to existence of the
Smith form over /; [17, Appendix B]. The Smith form over a Bezout domain is guar-
anteed but /; is only Hermite [25], so the assumption poses some restriction. It is not
a serious practical restriction, however, because if G and hence U/ and V are rational
then U and V have Smith forms over the finitely supported sequences. Since the
finitely supported matrices are in /y, this satisfies the assumption.

Ur, Xu, Ur, Vi, Xv, and Vg denote the factors in arbitrary decompositions of U
and V of the form specified in Assumption 3.0.1. Because [; is Hermite, there exist

additional matrices over [y satisfying the Bezout equations

UL (1 0] [V I0
[ULL*][UL Uﬁ]z_o I _Vg}[v’*_R VRL]:[O I} 3:2)
Ur |t.n 1|1 0] [V 1|10
[U]%J[URR UR]__OI_ -VLL][VL VL]—[O 1] (3.3)

In the remainder of the chapter, the additional symbols above will denote arbitrary
choices satisfying the equations, given Ur, Ug, Vi, and Vg.

For each (3,7) € {1,...,7u} x {1,...,rv} the set of zeros of either (Lp)is or
(Sv);; in the closed unit disk is denoted by Z;, and for each z € Z; the sum of its

multiplicities as a zero of (y )i and (£v);; is denoted by mi;(2). That is,

Zi; = {z e D : [(E0)a(2)[(Ev)ii(2)] = 0}

mij(z0) := multiplicity of the zero zg in ()i (Sv);;-

The set of all zeros of any element of either QU or i)v in the closed unit disk is denoted

by Z, and the total of the multiplicities of all zeros of any element of Sy or Sy is

denoted by my. That is,

Ty Tv

z = UUZ%;
i=1 j=1
Ty TV
my = ZZ Z mi;(20).
i=1j=120€Z;;
The index set

S:={{1,...,n.} x{1,...,nu}}\ {{1,-..,ru} x {1,...,7v}}.
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will be convenient notationally; it contains the indices of all elements of an n, X n,,

matrix ezcept those of the upper left hand corner block of dimension ry X ry.
Finally, the following assumption is crucial; it says that both U and V have only

finitely many zeros in the open unit disk and that neither U nor V has any zeros on

the unit circle.
Assumption 3.0.2 Z C D and my < oo.

3.1 Formulation as a Minimum Distance Problem

The parametrization of stabilizing Cs and corresponding T%.,(G,C)s in Propositions
2.3.9 and 2.3.11 suggest that DR(G) is closely related to the problem of finding points
in a certain subspace of /; which minimize the distance to a given point. In particular,

since H, U, and V are all in [y, an optimization problem
OPT(H,U,V): inf {||[H - K|, : K € K(U,V)} = popr
can be defined, where
K(U,V):={K € l}=*™ :3Q € I}*™ satisfying K = UQV} (3.4)

is easily verified to be a subspace of [}=*"v.
OPT(H,U,V) is essentially equivalent to DR(G), as the next theorem shows, and

the remainder of the chapter is concerned with its solution.
Theorem 3.1.1 DR(G) and OPT(H,U,V) are equivelent in the following sense:

1. IfC € C(G) and Q € Q(G,u) is constructed from it as in Proposition 2.3.11
then K := UQV € K(U,V), H— K = T.,(G,C), and hence |H - K|, =
172 (G: Oy, -

2. If K e K(U,)V) and Q € l; solves K =UQV then

(a) if Q € Q(Gy) and C is constructed from it as in Proposition 2.3.11 then
C € C(G), Tow(G,C) = H — K, and hence ||T,.(G,C)||,, = |H - K||,, -

(b) if @ & Q(Gyu) then, for any € > 0, there exists Q. € Q(Gy.) such that
NUNl;, 1Q — Qell;, IVll,, < e If C is constructed from it as in Proposition
2.8.11 then C. € C(G), T.w(G,C) = H - UQ.V, and ||Tz,,,(£}',C'c)”,1 <
|H - K|, +e.
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3. Upr = llopT-

Proof: For item 1, the first conclusion follows from the definition of K(U,V) and
the second from Proposition 2.3.11.

For items 2a and 2b, the existence of a Q € I[**™ is guaranteed by the definition
of K(U,V). For item 2a, both conclusions follow from Proposition 2.3.11. For item
2b, the first statement follows from Lemma 2.3.8. For the second statement, the first

two conclusions follow from Proposition 2.3.11 and the third from Fact 2.1.8 and the

fact that

H~UQV|,, = |H-UQV+U@Q-Q)VI, <|H-K|, +IU@Q-QIVI,
< N = Ky, + U, 1Q = Qdl, IV,
< |H - K|, +e

Item 3 is immediate from the preceding items. o

Among the consequences of Theorem 3.1.1 are the following:

e To each feasible solution for DR(G) there corresponds a feasible solution for
OPT(H,U,V) of the same cost. From every feasible solution K € K(U,V)
for OPT(H,U,V), one or more corresponding feasible solutions C € C(G) for
DR(G) can be constructed of cost arbitrarily close to the same. However, given
a feasible solution K € K(U,V), a corresponding feasible solution for DR(G)
of the exactly the same cost can be constructed if and only if there exists

@ € Q(Gyu) such that K = UQV.

e To each minimizer for DR(G) there corresponds a minimizer for OPT(H, U, V');
hence all minimizers for DR(G) can be found from minimizers for OPT(H,U, V)
via the constructions of items 2a and 2b. However, given a minimizer K, for
OPT(H,U,V), a corresponding minimizer for DR(G) can be constructed if and
only if there exists ) € Q(G,.) such that Ky = UQV.

Although item 2b of Theorem 3.1.1 does not provide a construction for ). in
the event that Q@ € I{**™ \ Q(G,u) (recall that the construction in the proof of
Lemma 2.3.8 can guarantee only det (X —QN) € U(I) and not necessarily @ €
Q(G,.)), the fact that Q(G,.,) is open and dense in Iy**™ guarantees that in this
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event, given € > 0, Q. := @ + A, where A, is chosen at random from set A :=
{Aa e U, Al IV, < e} will be in @(Gy.) (with probability one under
any probability distribution on A). Hence a construction is not necessary to produce,

given a feasible solution for OPT(H, U, V), feasible solutions for DR(G) of arbitrarily

close to the same cost.
Proposition 2.3.12 gives a condition under which the equivalence between DR(G)

and OPT(H,U,V) is stronger. It shows that if G satisfies the hypotheses of Theorem
3.1.1 above and Gy, (0) = 0 then Q(G,.) = I7**™ and hence item 2b can be deleted
from the theorem statement. In this case, a feasible solution for DR(G) of equal cost
can be constructed from every feasible solution for OPT'(H, U, V); in particular, every
minimizer for OPT(H,U, V) yields a minimizer for DR(G).

The next proposition shows how to compute stabilizing compensators for G given
feasible solutions for OPT(H,U, V). According to Theorem 3.1.1, the set of all sta-

bilizing compensators corresponding to a given a feasible solution K € K(U,V) for
OPT(H,U,V) is parameterized by the set of Q € I7**"™ satisfying K = UQV. Be-

cause of the assumed decompositions of U and V, this set can in turn be parametrized.

Proposition 3.1.2 If K € K(U,V) then the set

Quv(K):={Q el ™ K = UQv}

is given by

SHUGLKVERSTY Qi | | ViR
U_R U'L U veL R |4 L . , : € l
{[ R R ] l: Q2l Q22 VL'L QIZ QZI Q22 1

Proof: If K € K(U,V) then K = UQ,V for some Qo € [7**™. If Q has the claimed

form then Q € I7*™™ since
Q = UsRURQoVLV L + Up QuaVit + UglQu Vit + Ug Q2 Vi
and all matrices on the right are in /,. Moreover,

UQVv =
ULEUUR(UERURQOVLVL_L + UIJiQmVL_L + UERQ21VLJ' + U}Jinva'L)VLEVVR
= UrXyUrQoViEvVR =UQW = K
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using the Bezout equations (3.3). Hence @ € Quv(K).
Conversely, if Q@ € Quv(XK) then Q € I[{**™ and K = UQV. Now
K=UQV
= K = UXyUrQVLEv VR
= SFULPRVERE,! = UrQVg
SPULEKVERSY UrQVe | | Ur
[ UsQVs UsQVs } B [ Ug
SPUSLKVEREY UrQVE | | VER
UrQVL URQVE ] [ Vi
where the first implication follows from (3.1) and the last by reversing (3.3). That @

has the claimed form follows since @), Ugr, U§, Vi, and Vf are matrices over [;. O

}Q[VL Ve |

= Q=[ U5 UH[ ] (3.5)

3.2 Existence of a Minimizer

In this section OPT is shown to have a minimizer under only the assumptions outlined
at the beginning of the chapter. The first step is an alternate characterization of the
feasible subspace K (U, V) (this characterization is also useful in the formulation of
OPT as a linear program in Section 3.5). If U and V have full row and column
rank, respectively (this corresponds to having more independent measurements than
disturbances and more independent controls than errors) then a finitely supported
minimizer is shown to exist.

Much use is made in this section of basic results from functional analysis applied
to the present setting of matrices over sequence spaces. Appendix B contains a list
of notation for standard objects and some basic results on duality and minimum
distance problems. Appendix C contains detailed results on normed linear spaces of

sequences and their duals and on several classes of operators and their adjoints.

Theorem 3.2.1 K € K(U,V) if and only if
1 K € Ixm,

Uit * 0
2. K|VaR vt | =
[ et =[]

where * denotes an irrelevant block, and
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3. [(U5) K(VgR),;1™(20) = 0 for each (3,5) € {1,...,rv} x {1,...,7v}, each
20 € Z;;, and each n € {0,...,m;;(z0) — 1}.

Proof: If K € K(U,V) then by definition condition 1 holds and K = UQV for some
Q € I7**™. Hence

[UUL,-} }K[V,‘{R VRL]=[;]2UURQVLEV[I o]=[; g]
using (3.1) and (3.2). This establishes condition 2. Also, condition 3 is satisfied since
(UL R (Vgh).; = (S0)i(UrQVL)ii(3v);; and UrQVy is an Iy matrix; in particular
its entries are all analytic in D.

Conversely, if conditions 1, 2, and 3 hold then K € [{**™ and, defining Q :=
SHUTLKVE RS, we can compute by condition 3 since

U
(Sv)a(E

éij_ R; )'j" (i’j)e{la---,"'U}x{la'--""V}

Because Z;; C D for each ¢ and j, the numerator above can be factored

02 K(WaR) = I (2 - z0)™i®Q

2€Zij
where Q € l. Hence Q € [v*™, Q := UgRQV; L € I[*™™ and
UQV = UU* KV RVe = (I - UfUF)K(I - Vg VE) = K
where the first equality follows using (3.1) and (3.3), the second by reversing (3.2),

and the last using condition 2. Hence K € K(U,V). 0

Two preliminary lemmas will facilitate the proof of the existence theorem; the first
characterizes all matrices in I7**™ satistying condition 2 of Theorem 3.2.1 as the null
space of a bounded linear operator from I{**™* to a subspace of {{**"*. Moreover,

zXNw

this operator is the adjoint of a bounded linear operator on a subspace of ¢

Lemma 3.2.2 There exists 7o € B(c§, ch**"*) such that

K¢ := {K € If**™ : K satisfies condition 2 of Theorem 3.2. 1} =N ('j'c}') .
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Proof: Begin by defining 7¢ on ¢§ by

'j—c = j-U,VéS (3.6)

where &g is defined, given G € ¢,

Gi; (t,j)€S

. ?
0 otherwise

(ésG),‘j = {

and 'j'u,v is defined, given G € cg#*™,
T

~ UEL i . T

TU,VI(::[UE-:I GI‘D[VR V}%] '

The operations @ and > of left and right matrix correlation are defined in C.1.5. Es
is an embedding operator of the type defined in Proposition C.1.6 and ’j'U_V is a cor-
relation operator of the type defined in Proposition C.1.3. Hence Es € B(c§, cg*™)
and Tyy € B(ch**™), and, as a result, To € B(cS,ci=*™). Moreover, using these

two propositions,
T = &gy = UsTyy = To (3.7)
where Tyy is defined, given K € I72*",
. | Uit R oL
TovK = K [ ViR V4 ]

Ui

l’il-z XTtw

and Ilg is defined, given K € ,

(Hs](),'j = I(ij, (Z,_}) €8S.

It is clear that Ko =N (T¢) = N (’j'c*) |

The second lemma characterizes all matrices in I7**™ satisfying condition 3 of
Theorem 3.2.1 as the null space of a bounded linear operator from [7#*™ to R™t.

Moreover, this operator is the adjoint of bounded linear operator on R™t.

Lemma 3.2.3 There exists T; € B(R™, ch=*™) such that

K:= {K € Ip=*™ : K satisfies condition 3 of Theorem 3.2. 1} =N (’j}*) .
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Proof: Begin by defining 77, given o € R™¢,

. Ty TV mi;(20)-1 mij(z0)—1
=T c.DR S DS g s
7}0 = TU,V Z E Z Z E‘JD'IL,Z() al,],’n,Zo + Z Z gijD'n,Zo ai,],’n,zo
i=1j=1 | 20€Z;; n=0 ZOGZ;"; n=0

(3.8)
where &; : co — ci**™ is defined, given G € cy,
(E::G)mn = Gij m=tandn=
v 0 otherwise

are defined, given o € R,

. 0 k
(DR, 0)(k) : s
ak! %(zo—n) k 2 n

(k—n)!

and D®. and DS

n,20 n,2p

and
. 0 k
(Dr?,zoa)(k) = { ak! o k—n o :
(ETL);J(ZO ) k2n

Note that for each 7 and j E~,-J- is an embedding operator of the type defined in Propo-
sition C.1.6 and that for each z, and n ﬁ?},zo and ’ﬁf’zo are operators of the type
defined on R in Proposition C.1.9. Hence all the &; € B(co,c3**™) and all the
ﬁf,zo,'ﬁ,?,% € B(R,cp). The first item of Proposition B.1.2 shows that an operator
defined as a a finite sum of component operators each of which is bounded (as Tt is
in (3.8)) is itself bounded. Hence 77 € B(R™t,cj**™*). Moreover, by the second item
of Proposition B.1.2, the adjoint of an operator defined in this way can be written
as the cartesian product of the adjoints of the component operators. Using this fact
and using Propositions C.1.6 and C.1.9 to find the adjoints of the components, it is
straightforward to check that

T =T (3.9)

where 77 is defined, given K € I72*",
Ty TV mij(20)—1 mij(z0)—1 N

'TII( = H H H H {D,?ZOH;jTuv](}} X H H {D:'ZOHijTUVI{}
i=1j=1 | 20€Z;; =n=0 zOEz;j} n=0

where Z:;- = {z0 € Z;; : Sz > 0}, Tyv is defined in the proof of Lemma 3.2.2, II;;

is defined, given K € [}=*™v,
H,'jl&’ = I(,‘j
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and D®_ and DS

n,20 n,2g

are defined, given K € [,

nza. EK(k ) R(ze™") and DY, := ZK k' )' I(2Em).

k=n

To see that K; =N (T1) =N (’j}*) note that for each i, j, 29, and n,

DR, M TovK = R{[(T5D) K (V™)™ (z0)}

and
D3, L Tov K = S{[(07): K (VR (20)}

and use the fact that, for any f € 1, n € Z,, and z, € D, f(")(zo) = f(")(fo), where
% denotes the complex conjugate of z € C (this is why we can consider only the zero
with a positive imaginary part in each complex conjugate pair in Z;). ]
Theorem 3.2.4 OPT(H,U,V) has a minimizer.
Proof: If a bounded linear operator 75 can be constructed such that K(U,V) =
N(’j}}) then K(U,V) is weak*-closed since it is the null space of the adjoint of
a bounded linear operator [26, Theorem 4.12]. Corollary B.2.4 states that every
minimum distance problem whose feasible subspace is weak*-closed has a minimizer
and hence OPT'(H,U, V) has a minimizer.

The construction is simple given Lemmas 3.2.2 and 3.2.3; define Tk, given (G, a) €
cs x R™,

T (G, 0)] := TG + Tra (3.10)

where 7o and 7; are the operators guaranteed by Lemma 3.2.2 and Lemma 3.2.3,
respectively. By Fact B.1.1, the space ¢ x R™t is a normed linear space under the
norm |[(G,a)| := ||(||G||,oo,||a|]7,)|p where 1 < p € oo. The choice of p is not
important to this proof; what is of interest is that for any p, again by Fact B.1.1,

(cg X R"%)* = [§ x R™ with the norm ||(||G'le , Ha”q)"q, where the ¢-norm is the

conjugate of the p-norm.
Recall that 75 € B(c, ct**™) and T; € B(R™, cj**™). Hence, by the first item
of Proposition B.1.2, 7 € B(cf x R™t,ci=*"), Using the second item of Proposition

l’n.z XTw

B.1.2 we find that 735 € B(l3=*™ I§ x R™) can be written, given K € [

I

TiK = (TgK, T K). (3.11)
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Cleatly K(U,V) = Ko N K1 = N (T3) n NV (T) = A (), and the proof is

complete. d

As a consequence of Theorem 3.2.4, DR(G) has a minimizer provided that there
exists Q € Q(G,.) satisfying Ko = UQV for some minimizer Ko for OPT(H,U,V).
Proposition 2.3.12 leads to the following corollary.

Corollary 3.2.5 If G,,(0) = 0 then DR(G) has a minimizer.
Theorem 3.2.7 will show that if U and V' have full row rank and full column rank,

respectively, then there exists a minimizer K¢ for OPT(H,U, V) which is such that
H — Ki, is finitely supported; its proof is facilitated by the following lemma.

Lemma 3.2.6 If X € I7"*", M is a subspace of I**", M+ C cg*", and
IX — Moll,, = inf {|IX — M]|,, : M € M}

then at least one row of X — My is finitely supported.

Proof: If Mo is such that ||X — Mol|,, = inf {|X — M||;, : M € M} then, by the
duality theorem B.2.2, there exists Go € M+ with ||Go||, . = 1 such that My and Go
are aligned (Definition B.2.1). If M+ C ¢f**", then Gy € cj**". Moreover, since G #
0 there is a row, say the i-th, such that v; := max{l[(Go)inoo 17 €{1,.. ,n}} > 0.
Since Go € ¢**™, there exists N such that |(Go)i;(k)| < i for each j € {1,...,n}
and all k > N. Alignment of Gy and X — My then implies that (X — Mo);;(k) = 0
for each j € {1,...,n} and all k > N [5, Fact ?], i.e., that the i-th row of X — Mo

consists entirely of finitely supported sequences. a

Theorem 3.2.7 If U and V have full row rank and full column rank, respectively,
then every minimizer Ko for OPT(H,U,V) is such that at least one row of H — Ko
is finitely supported. Moreover, there exists a minimizer Ky, such that all entries of
H — Ki, are finitely supported.

Proof: For the first statement, note that if U and V satisfy the hypotheses of The-
orem 3.2.1 and the stated rank hypotheses, condition 2 in Theorem 3.2.1 is satisfied
vacuously and hence K(U,V) = K|, defined in Lemma 3.2.3. By that lemma,
KUV)=N (’j}*) and hence

~ ~

=R (E)) =R () c g (3.12)

KU,V =N (T7)" = [*R (7))
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where 7; € B(R™t,ci**™) is defined in the proof of Lemma 3.2.3. The second
equality holds because A (7T) =+ R (7*) for every bounded linear operator [26,
Theorem 4.12]. R ('j}*) is closed because it is a subspace of the finite dimensional
space R™ and hence it is also weak*-closed [26, Theorem 4.14]. The third equality
then follows because the weak*-closure of any subspace is the right annihilator of its
left annihilator [26, Theorem 4.7]. The last equality holds by applying Propositions
C.1.9, C.1.6, C.1.5 and B.1.2 to compute (77)*; it is equal to 77. (Although the
adjoint of a map in B(I}**",R™) in general maps R™t into = ™, (77)* maps
R™ into c**™ because Z C D.) Finally, by Lemma 3.2.6, every minimizer K ° for
OPT(H,U,V) is such that H — K° has at least one finitely supported row.

For the second statement, note that Theorem 3.2.4 guarantees the existence of a
minimizer K! for OPT(H,U,V). By the argument above, at least one row of H — K*
is finitely supported. Next we show that, given p € {1,...,n,} and any minimizer K?
such that at least p rows of H — K? are finitely supported, there exists a minimizer
K7+ such that at least p + 1 rows of H — K?*1 are finitely supported. Hence, there
is at least one minimizer K such that H — K, is finitely supported.

Suppose, then, that p € {1,...,n,} and K? is any minimizer for OPT(H,U,V)
such that at least p rows (assumed, without loss of generality, to be the first p) of

H — K7 are finitely supported. Partition after the p-th row,
oo H, K= K? ,
H, K7

and consider the problem

OPT' : inf {||(Hz — K}) — K’ : K' € K'(K?, U,v)}
where
/ ! (nz=p)xnw I{f
K'(K?*,U, V) :={K' eI : e K(U,V)}.
K! + K’

It is easy to check that any minimizer for OPT" is also a minimizer for OPT(H,U, V).

Moreover, K? € K(U,V) implies, together with Theorem 3.2.1 and the rank
assumptions on U and V, that K’ € K'(K?,U,V) if and only if K' € [(re=P)Xnw and
K’ satisfies

[(OE92R (Ve ®).11%)(=20) = 0, k€ {0,...,m(20) — 1}
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for each (3,7) € {1,...,7v} x {1,...,rv} and each z, € Z;;, where (UzE)? denotes
the last n, — p columns of Uz L.

Thus, arguing as in Lemma 3.2.3, there exists 7 € B(lg""'” )Xnw Rmi) such that
K'(K?,U,V) = N (T). Moreover, arguing as in the proof of Theorem 3.2.4, there
exists T € BR™:, c{™ P*™) such that 7* = 7. Hence K'(K?,U,V) is weak*
closed and CorollaryB.2.4 guarantees the existence of a minimizer (K')! for OPT".
Arguing as for the proof of the first statement above, K'(K?,U,V)* C c{™ %™ 5o
that, by Lemma 3.2.6, (K')! is such that at least one row of H — K — (K')! is finitely
supported. Finally, then,

K K| K?
Kt K% + (K')!

is a minimizer for OPT(H,U,V) and at least p + 1 rows of H — K?*! are finitely

supported. 0O

3.3 Suboptimal Solutions via FIR Approximation

OPT(H,U,V) is in general an infinite dimensional problem (it is shown in Section 3.5
to be equivalent to a linear program with infinitely many variables and constraints).
As a result, only approximate solutions can be computed. In this section, a sequence
of finite dimensional minimization problems is formulated which can be used under
certain conditions to compute feasible solutions for OPT(H, U, V) which are arbitrar-
ily close to optimal.

The idea is to consider only feasible solutions K € K (U, V) for which H — K
is finitely supported; this corresponds to conmsidering only Cs for which T%.,(G,C)
is finitely supported, i.e., for which the closed loop system is FIR. Each problem
corresponds to allowing closed loop impulse responses of a fixed length; increasing
the length approximates the optimal solution.

Of course it is not always possible to choose a stabilizing controller which gives
an FIR closed loop system. A test for this is given in Proposition 3.3.2. On the other
hand, Theorem 3.2.7 showed that when U and V have full row rank and full column
rank, respectively, the minimizer for OPT corresponds to an FIR closed loop system.

Hence, the method of this section can be used to find such a minimizer.
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Define for each n € Z, an optimization problem

OPT,(H,U,V) inf {||[H - K|, : K € Ko(H,U,V)} =7,

where .
K,(H,UV):={K e K(U,V):supp (H - K) C {0,...,n}}.

Note that K,(H,U,V) is a subset and not a subspace of [[=*™,

Proposition 3.3.1 If there exists N such that Kn(H,U,V) # § and the finitely
supported matrices are dense in K(U,V) then

{Fu}oon \ opr asn — co.

Proof: Note first that n; > ny, > N implies K, (H,U,V) > K., (H,U,V) D
Kn(H,U,V). Hence, if Kn(H,U,V) # {§ then i, is well defined for every n > N
and {7, }52 v is clearly monotonically non-decreasing.

To show convergence, note first that if Ky € K n(H,U, V) then, by Lemma B.2.5,

popr = inf{|[H - K||, : K € K(U,V)}
= inf{|Hy - K|, : K € K(U,V)} (3.13)

where Hy := H — Ky is finitely supported. Now let ¢ > 0 be given. In view
of (3.13), we can choose K¢ € K(U,V) such that ||Hy — K¢||;, < popr + 5. By
the density hypothesis, there exist N and K5 € K(U,V) such that supp (K§) C
{0,...,N} and ”K‘ - K|, < % Finally, defining N* := max {N,N}, note that
K5 € Kn+(H,U,V) so that

IA

I1Hn = Kll, = |(Hy - K°) + (K = KR,
< |Hn = Ky, + 1K = KR,

(32

< popr te

]

If U and V are rational then the finitely supported matrices are dense in K (U, V);

whether the standing assumptions Z C D and m, < oo are sufficient to guarantee

this is unclear.
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The next proposition gives necessary and sufficient conditions for the existence
of a feasible solution K such that H — K is finitely supported when decompositions
of U and V as in Assumption 3.0.1 exist such that Bezout equations (3.2) can be
constructed entirely with finitely supported matrices. This is possible whenever U

and V are rational; the Smith forms of U and V over the finitely supported matrices

suffice.

Proposition 3.3.2 Suppose there ezists a decomposition of U and V as in Assump-
tion 3.0.1 such that all matrices in the Bezout equations (3.2) can be chosen to have

finite support. There exists n such that K,,(H,U,V) # 0 if and only if

([5% [t ),

is finitely supported for all (i,5) € S, where the matrices satisfying (3.2) have been
chosen to be finitely supported.

Proof: For the “only if” part of the second statement, let K, € K,(H,U,V) for
some n, and let (z,7) € S. Then (H — K, );; is finitely supported. Also

([UUL_LLL]H[ VR v ])ij= ([UUL—;}(H—K”)[VER Vi ])

The latter is finitely supported because all matrices in the expression are, and the

ij

convolution of finitely supported sequences is finitely supported.

For the “if” part, begin by choosing a finitely supported matrix T such that for
eachi€ {1,...,rp} and j € {1,...,7v} (Tt — UrHV®) has all the zeros of (Sv)i
and (3y);; in D (including multiplicities). This is equivalent to finding a matrix
of polynomials satisfying a finite set of interpolation conditions and is hence always

possible. With this choice,
Qg := URREp (T — U PHVERY SV E e |y

and if Ky := UQgV then Ky, € K (U, V) and

T UDRHVE] .,

Uz N
[ ](H_I”“)[VR 1= | v vpavy

Ui
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is finitely supported because the matrices satisfying (3.2) are and because of the
hypothesis on H. Moreover

H-Ky=|Up Ug]Tf;[Z’j}
R

is then finitely supported as well.

3.4 A Converging Lower Bound on pupg

The sequence of FIR approximations defined in Section 3.3 approximates O PT sub-
optimally. As a result, its infimal costs constitute a sequence of upper bounds con-
verging to upp; its minimizers yield stabilizing Cs whose performance approaches
optimal. There is no information on the rate of this convergence, so a corresponding
scheme for super-optimal approximation is needed to determine ppr with certainty.

In this section, a sequence of super-optimal approximating problems is formulated
and their costs shown to converge to yipg from below. They are not finite dimensional
problems, however it is shown that each has a finitely supported minimizer. Hence
each problem in the sequence can in turn be approximated from above by a computable
sequence much like that of Section 3.3, each problem corresponding to a fixed “length”
of the support. It is crucial for the success of this scheme that these finitely supported
minimizers exist; otherwise an individual problem’s cost cannot be guaranteed to
bound upr either above or below. The results allow a double iteration consisting
of finite dimensional problems to be carried out to bound ppg below to any desired
degree of accuracy; the process is described at the end of the section.

An important feature of these problems is that they are always feasible, unlike
the FIR approximations, and, while their feasible solutions are not feasible for OPT,
feasible solutions for OPT can be computed from them. This yields stabilizing com-
pensators for G; the implications of this are shown in Section 3.6 and discussed in
Section 3.7.

Define for each n € Z, an optimization problem

OPT,.(H,U,V) inf {||H - K|, : K € K, (U,V)} =:p,
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where

KeK,(UV) < Kel=>", (3.14)

Tl

K satisfies condition 3 of Theorem 3.2.1, and

Upt * 0
K| Vvgh vt k) =
(L et )= [ 7]
for all k € {0,...,n}
Note that K,(U, V) is a subspace of K(U,V).

The following theorem shows that OPT, (H,U, V) is feasible for every n and that

its infimal costs form a non-decreasing sequence which converges to ppr from below,

and that each problem has a minimizer.
Theorem 3.4.1 {p_}2, /" ppr as n — co. Moreover, for each n, OPT, (H,U,V)
has a minimizer.
Proof: {p_}o2, is well defined because, for any n, 0 € K,(U,V) and, for any
K e K,(U,V), |H- K|, = 0. Also, p < pupr for each n and the sequence is
non-decreasing since n; > n, implies K, (U,V) D K,,, (U, V) D K(U,V).

To show convergence, begin by defining for each n a map 7., given (G,a) €
cg x R™,

7. 1(G,a)] := ToP.G + Tra (3.15)
where 75 € B(c5,ca=*™) is defined in (3.6) and T € B(R™t,c3=*™) in (3.8), in the
proofs of Lemmas 3.2.2 and 3.2.3, respectively. P, is the n-th truncation operator
restricted to ¢5 and is bounded by Proposition C.1.7. Proposition B.1.2 shows that an
operator defined as a finite sum of component operators each of which is bounded (as
7., is in (3.15) above) is itself bounded. Hence 7, € B(c§ x R™, cj**™). Moreover,
Proposition B.1.2 also shows that the adjoint of such an operator can be written as

the cartesian product of the adjoints of the component operators. Hence T : can be

written, given K € [7#*"™,
¥y nd ud Py e
IT.K=(PIsK, T K).
Because {En};’f:o is monotonic and L, < I'DR for every n, the sequence conver-
gences and

=0

lim #, =supp < {DR.
T
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To establish that the supremum is equal to ppr use the fact [26, Theorem 4.12] that
R (in)-L =N (7'*) = K, (U, V) and apply the duality theorem B.2.3 to obtain

=n

po= sup{(G,H} :BR (i:n)}

= sup{(Z.G,H): G e § xR™, |L,G

<1}

= sup {(7”',(@, H):GeR(P) x R™, |Txd],_ < 1} (3.16)

where T is defined in equation (3.10). Hence

supp, = supsup{(’j}(é, H> :GeR (’ﬁn) x R™, l’f}céulm < 1}

j}(é”!m < 1}

= swp {(TkG,H) : G € (@) xR™, |
= sup {<’.7}(C~1', H> : G e cs x R™, “’fké’“lw < 1}
= sup{(G,H): BR ()} =inf {|H - K||,, : K € M (Tt) }

= HKDR

where (co)g denotes the finitely supported matrices in ¢§. The second equality follows
because (co)ff X R™ = Upez, R (75,,) x R™, The third follows from the facts that
(co)S x R™t is dense in ¢§ x R™ and T € B(c§ x R™,cp=*™) (the image under
a bounded operator of a dense subspace is dense). The last equality follows because
K(U,V)=N (Tz).

For the second statement, it is clear that K ,(U,V) =N (i'_:;), hence it is weak*-

closed and OPT, (H,U, V) has a minimizer. (]

As a consequence of this theorem, the solution of a sequence of super-optimal
problems OPT, (H,U,V) for increasing n provides a converging lower bound on ppr.
The next theorem shows that the set of minimizers for QPT, (H, U, V') has properties
similar to that for OPT(H,U,V) when U and V have full row rank and full column

rank, respectively (see Theorem 3.2.7).

Theorem 3.4.2 For every n every minimizer Ko for QPT, (H,U,V) is such that at

least one row of H — Ky is finitely supported. Moreover, there exists ¢ minimizer Kg

such that all entries of H — Ky, are finitely supported.
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Proof: The proof is very similar to that of Theorem 3.2.7. For the first statement, re-
call that K,(U,V) =N (i;) where 7, is defined in (3.15). The results of Appendix
C imply that (Z)* can be written, given (G,a) € IS, x R™,

(j-:z)* [(G’ a)] = ’j'C"ﬁnG + ,j—Ia

where 7o € B(cS, cg=*™) is defined in (3.6) and 77 € B(R™t, c3**™) in (3.8), in the
proofs of Lemmas 3.2.2 and 3.2.3, respectively. P, is the n-th truncation operator
restricted to IS, and is bounded by Proposition C.1.7. The expression for (7. )* makes

sense since clearly R (’73”) C ¢5. Now,
KU,V =N (1) = *R(Z))] =R (L)) =R (£.) C g

The reasoning here is identical to that for (3.12). Finally, by Lemma 3.2.6, every min-
imizer Ko for OPT, (H,U, V) is such that H — K, has at least one finitely supported
row.

For the second statement, note that Theorem 3.4.1 guarantees the existence of a
minimizer I{; for OPT, (H,U,V). By the argument above, at least one row of H — K;
is finitely supported. Next it is shown that, given p € {1,...,n.} and any minimizer
K, such that at least p rows of H — K, are finitely supported, there exists a minimizer
K41 such that at least p + 1 rows of H — K4, are finitely supported. Hence, there
is at least one minimizer Ky, such that H — Kj; is finitely supported.

Suppose, then, that p € {1,...,n,;} and K, is any minimizer for OPT . (H,U,V)
such that at least p rows (assumed, without loss of generality, to be the first p) of

H — K, are finitely supported. Partition after the p-th row,

H= [H‘}, K, = [(K”)‘},
H, (Kp)2

and consider the problem
QPT' : inf {||(H — (I,)2) — K', : K' € K.,(I,,U, V)}

where

(sz)l

(Kp)2 + K’ } € K.(U.V) } '

K,,,L(I(p, U,V) o= {I(’ € lgnz—-p)x"w : [
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It is easy to check that any minimizer for OPT"' is also a minimizer for OPT,,(H, U, V).
Moreover, K, € K(U,V) implies, using Theorem 3.2.1, that K’ € K'(K,,U,V)

if and only if K’ € I{"~P)X™ K’ satisfies

(TR (V) 5)¥)(=20) = 0, k€ {0,...,mij(z0) — 1}

for each (z,5) € {1,...,rb} x {1,...,7v} and each 2o € Z;;, where (U;L)? denotes

the last n, — p columns of U;%, and K’ satisfies

(U—L)z , _ . . 0
([ (Ul':;Jl.)z :II( [VRR Va ]) (k) = [0 0} for all k € {0,...,n}

where (Uj)? denotes the last n, — p columns of U}.

Thus, arguing as in Theorem 3.4.1, there exists T € B(I{**™P*™ ¢§' x R™t) (for
an appropriate choice of index set S') such that K'(K,,U,V) = N (T). More-
over, 3T € B(cS' x R™,c{" "*™) such that 7* = 7 and hence K’ (K,,U,V)
is weak*-closed. This guarantees the existence of a minimizer (K')! for OPT" by
CorollaryB.2.4. Arguing as for the proof of the first statement, K/ (K,,U,V)*+ C

P=PX™w o5 that, by Lemma 3.2.6, (K’)! is such that at least one row of H —

(Kp)2 — (K')! is finitely supported. Finally, then,

(Kp1h } - [ (Kph }

I( 1 =
o [(Kp+1)2 ()2 + (K')!

is a minimizer for OPT, (H,U,V) and at least p + 1 rows of H — K4, are finitely

supported. m]

Theorem 3.4.2 has an important practical consequence which is exploited in the
remainder of this section. A doubly indexed family of optimization problems is defined
each member of which is equivalent to a finite dimensional optimization problem, and
which provides a computable double iteration method for bounding ppr from below
arbitrarily closely.

Given a problem OPT, (H,U,V) for some n define for each m € Z an optimiza-

tion problem

OPT, .(H,U,V) inf {J|[H ~ K|, : K € K, (U,V)}=tp
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where
K, .(HUV)={KeK,(UYV):supp (H—-K)C{0,...,m}} (3.17)

and K, (U, V) is defined in (3.14).
Hence for each problem OPT, (H,U,V) there is a sequence of problems

{QPT, ..(H,U,V)}

m=1"

The following proposition shows that as m is increased each such sequence not
only becomes feasible for all greater m but, for large enough m, a minimizer for
QOPT, ..(H,U,V) yields a minimizer for OPT,(H,U,V). If Z = § the situation is

particularly simple.

Proposition 3.4.3 If m > n and m > m, then OPT, ,.(H,U,V) is feasible and
B 2 B Moreover

1. For each n there exists M, > n such that Ly =M

2. If Z = | then, for each n, QPT, ,(H,U,V) is feasible and p = p_.

Proof: For the first sentence, assume m > n and m > m; and define K := Ky — K,

where Ky := (Z — Pn)H, K,, satisfies
supp K., C {0,...,m} and 71K, = T/ KH,

and 77 is defined in Lemma 3.2.3. Finding K, to satisfy these requirements is equiv-
alent to constructing a polynomial matrix of degree at most m which satisfies m,
interpolation requirements; this is possible since m > m,. Moreover, it is straight-
forward to check that K satisfies all conditions of Theorem 3.2.1 by its construction
since m > n. Hence K, ,(H,U,V) # § and fy 15 well defined. p 2> p since
Ko (H,U,V) C K (U, V).

Item 1: Theorem 3.4.2 shows that there is a finitely supported minimizer Ky, for
OPT,. (H,U,V); just take M,, := max {n,supp K}

Item 2: Under the hypotheses, (Z — P,)H € K, (U, V) and P, K € K, (U,V) for
all K € K,,(U,V). (This is because condition 3 of Theorem 3.2.1 is vacuous in this

—_—T

case.) Thereforeif K € K, (U, V) then K :=P,K+(I-P,)H € K,(U,V). Moreover
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it is easy to check that supp (H — K) € {0,...,n} so that K € I, ,(H,U,V). Also,
(H—K)(k) = (H—K)(k) for k < n so that |[H — K| < ||[H — K]|,,. This shows that

P S I the reverse inequality follows from the first sentence of the proposition. O

Finally, the following proposition gives a method for constructing feasible solutions
for OPT(H,U,V) and hence sub-optimal stabilizing compensators for G from feasible
solutions for any QPT, (H,U,V). Since feasible solutions for OPT, ,.(H,U, V) (for

any m > n) are also feasible for QPT, (H,U, V), sub-optimal compensators can be

obtained from these computable problems.

Proposition 3.4.4 If K € K,(U,V) for any n then K := ULU;*KV7z®Vyp €
K(U,V).

Proof: It is easy to verify using the definition of K (U, V) in (3.14) that if K €
K, (U,V) then K satisfies the three conditions of Theorem 3.2.1 and hence K €
K(U,V). First, K € K,,(U,V) = K € [{**" so that condition 1 is satisfied. Also,

Upt R UTLKVER 0
[ULL]K[VR VRL]=[ ) .

so that condition 2 is satisfied. In particular,
UrPKVghR = UpFKVER

so that condition 3 is also satisfied. 0

Using the results of this section, a double iteration can be carried out to bound
ipr from below for any problem. The procedure is choose a desired initial n. Next
solve OPT, ,.(H,U,V) for increasing m > n until no further change is observed in
JL. hence g has been found. (Although no results have been shown bounding the
required m, an abrupt convergence is generally obvious in examples. Moreover, if
Z = | then no iteration on m is required.) n can then be increased until x  appears
to converge. This convergence can be confirmed when a feasible sequence of FIR

approximations OPT,(H,U,V) exists by solving them in parallel to upper bound

KDR-



57

3.5 Linear Programming Formulations

In this section linear programs are formulated corresponding to all the optimization

problems defined thus far. The linear programs are all equivalent to the original

problems in the following sense.
Definition 3.5.1 Let MIN and MIN be two optimization problems defined

MIN : inf{J(z):z€ X} =7
MIN : inf {J(%): & € X} =%

MIN is equivalent to MTIN under the map ¥ if ¥ : X — X and there exists a map
b X > X such that v = I, J(¢z) < J(z) for all z € X, and J(P&) < J(&) for
al € X.

If MIN is equivalent to MIN under the map % then

e all feasible solutions for MIN can be recovered from feasible solutions for MIN

via the map ; more precisely,
X =¢X

In particular, MIN is feasible (X # §) if and only if MIN is feasible (X # 0).
e all feasible solutions for MIN achieving at most a given cost can be recov-

ered from feasible solutions for MIN achieving at most the same cost via the

map v; more precisely, if v € R, X, := {'T: eX:Jz)< 7}, and X, :=

{z € X : J(z) <4} then

X'v =X,
In particular, the cost for MIN is bounded below if and only if the cost for

MIN is bounded below.

e all optimal solutions for MIN can be recovered from optimal solutions for
MIN via the map 1; more precisely, if the costs are bounded below, Xo:=
{:7: eX:J) = 'yo}, and X¢:={z € X : J(z) = Yo} then

Xo=19Xo
In particular, there exists a minimizer for MIN if and only if there exists a

minimizer for MIN.
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o if either v¢ or 4 is well defined then both are and 45 = .

For each linear program, a map is given under which it is equivalent to the corre-
sponding optimization problem. Proving equivalence is done by showing that the
map satisfies the conditions of Definition 3.5.1.

In order to simplify the statement of the linear programs the notation /i will be

adopted for the positive cone in Iy, i.e.,
IFi={zel:z(k)>0VkeZ;}

The maps used to prove equivalence will be defined partially in terms of the

projection operator Il : If=*" s (If)"=X™w defined, given = € IF=*™,

:B,'j(k) if .”L‘,'j(k) >0

0 otherwise

(T4 2)s;(k) = {

This operator simply sets the negative elements of each sequence in the matrix to

zero. It is also convenient to define

-L
ﬁ:=[((jj_}}H[V§R V,%]

The projection operator I1, has some useful properties which will be exploited in

the proofs in this section.

Remark 3.5.2 If X € [}**™ then
2. | Xii(k)] = (M4 X + I (= X))y; (k) for each i, j, and k and hence

X1, = T X, + 1T (= XM, -

The first linear program corresponds to OPT(H,U,V) itself, defined in Section

3.1. The linear program is

LP(H,U,V): inf g
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subject to:

[ZZ T +T5)i; L)]—;L <0 i=1,...,n, (3.18)

3=1k=0

([ ]( -To) [ VaR v ]) (k)

H;; (k) (3.19)

(17.7) € S, ke Z+

7—1(Tzw - Tz—u) = 7-1H (3‘20)
( Tzw)Tzw) € R+ x (lil-)annw (321)
<y

where 77 is defined in Lemma 3.2.3.
The variables in LP(H,U,V') are 1 € R and

{2k, @o)s(k) i€ (L na}, 5 € {1, omu}, k€ By}

Note that they are infinite in number. Equation (3.18) defines n, inequality con-
straints called cost constraints. The equality constraints in (3.19), called convolution
constraints, are infinite in number. The equality constraints in (3.20), called inter-
polation constraints, are finite in number since 7; : [72*™ — R™t. Equation (3.21)

defines an infinite number of inequality constraints called positivity constraints.

Proposition 3.5.3 LP(H,U,V) is equivalent to OPT(H,U,V) under the map ¢
defined, given a feasible solution (y, T}, T,.,) for LP(H,U,V),

¢( T T"m) =H - (T:t-u - Tz?u)'

7 zw)

Proof: Let (u, T} ,T:) be a feasible solution for LP(H,U,V). We will show that

zZw? ~ zw

Y(p, Tk, To) € K(U,V) by checking the conditions of Theorem 3.2.1. H,T},,T;, €

2w zw

[3=*™ implies Y(p, T}, T;) = H — (T}, — T;,,) € 11**™ and hence satisfies con-

’ zw?) " zw
dition 1. The convolution constraints (3.19) ensure that condition 2 is satisfied,
and the interpolation constraints (3.20) ensure that condition 3 is satisfied. Hence

Y(p, T, T5) € K(U,V). Moreover the cost of ¢(u, 5, T;,,) is

2w+ zw
" zZw

Z‘lU 21U 21U l S lt7

|8 =, T, T2, =
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which is the cost of (i, T, 7). The last inequality is ensured by the cost and

’ zZwr " 2w

positivity constraints (3.18) and (3.21).
Next define a map ¥, given K € K(U,V),

PK = (||H - K|, , Iu(H ~ K), TL.(K — H)).

Item 2 of Remark 3.5.2 ensures that ¢/ satisfies the cost constraints (3.18) (with
equality). Using item 1 of Remark 3.5.2 it is easy to check that conditions 2 and
3 ensure, respectively, that the convolution and interpolation constraints (3.19) and
(3.20) are satisfied. The positivity constraints (3.21) are satisfied since IT : [§**™ —
(I yr=*nw, Moreover the cost of %K is |[H — K| ;, Which equals the cost of K. Finally,

again using item 1 of Remark 3.5.2,

WPk = o (|H - K|, L (H - K), I (K - H))
= H [ (H-K)-T.(K-H))
= K
so that 91 = 7. a

The next linear program corresponds to an FIR sub-optimal approximation prob-

lem OPT,(H,U,V), defined in Section 3.3. The linear program is

LP,(H,UYV): inf p

subject to:

Tzfu + Tzw) (]")} —H S 0 1= 1, N (P (322)

55

Ugt R .
E(TH, —To) [ ViR Vi ] = (k) (3.23)

UL
L ”.

liM:

(:,j) € S, ke{0,...,n}
7}£7L(Tzw—Tz:u) = "TIH (324)

( ’Tzw,Tzw) S R+ X Rizxnwx(n+1) (325)
xRizanx(n+l)
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where the matrices in (3.23) have been chosen to be finitely supported. 7 := n+ny+

ny where ny and ny are integers such that

L
L

-L
supp ([UUL ]) c{0,...,ny} and supp ([ Vel Vi ]) c{0,...,nv}.

£, : REXmeX(HD) |, naXnu §s the natural embedding operator which pads with zeros.
S and 77 are as defined in the formulation of LP above.

There are 2n,n,(n + 1) + 1 variables in LP,(H,U,V): u and
{(T:Iu)ij(k)a (Tz:u)ij(k) i€ {l,... snzt, JEA{L... snwh, k€A{0,... ,TL}} .
Proposition 3.5.4 If there exists it such that K;(H,U,V) # 0 then there exists ny
such that

U—L
supp ([ UL_L }H[ Vik V# ]) c{0,...,ng} V(,5) €S

and if n > ng — ny — ny then LP,(H,U,V) is equivalent to OPT,(H,U,V) under
the map P, defined, given a feasible solution (i, T, Trz)) for LP.(H,U,V),

En(.u’ T, T ) =H — gﬂ(TzTu - Tz:u)‘

zZw) * 2w

Proof: Proceeding as in the proof of Proposition 3.5.3, let (i, T7,,T;;,) be a fea-
sible solution for LP,(H,U,V). H,T:, Tn € =™ implies ¥, (p, T}, Tm) =
H — E,(T+ —Tz,) € I3*™ and hence satisfies condition 1 of Theorem 3.2.1. The

convolution constraints (3.23) ensure that, for each (,7) € S and for k € {0....,7},
U—L
([ b ]K[ VR Vi }) (k) =
Ut g

; up* [ y-
Hij(k) - (l: ] g"(TzTu - Tzw) [ VRR VI% ]) (k)

UJ.

n > nyg —ny — ny implies that # > ny so that for each (z,7) € S and all k > 7 each
term on the right above is zero. Hence condition 2 is satisfied. The interpolation con-

straints (3.24) ensure that condition 3 is satisfied, and it is obvious by the construction
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that supp [H — &,(TF, —T2)] € {0,...,n}. Hence ¥, (1, Tk, T) € K.(H,U,V).
Moreover the cost of ¥, (, T, T,) is

S p

—_ I

+ ”g"T;” !

N

"H "/) Hy zw’Tz_w)”

2‘(U

which is the cost of (x, T}, T,.). The last inequality is ensured by the cost and

positivity constraints (3.22) and (3.25).
Define a map v, given K € K,,(H,U,V),

¥k = (I1H = K|, , WL (H - K), ILIL(K - H)).

where II,, : 7% — R"’x""’x(n“) is the obvious projection operator Item 2 of
Remark 3.5.2 and the fact that supp (H — K) C {0,...,n} ensure that z/)nK satisfies
the cost constraints (3.22) (with equality). Using item 1 of Remark 3.5.2 and the
fact that n > nyg — ny — ny it is easy to check that condition 2 ensures that the
convolution constraints (3.23) are satisfied. Also using item 1 of Remark 3.5.2 is easy
to check that condition 3 ensures that the interpolation constraints (3.23) are satisfied.
The positivity constraints (3.21) are satisfied since IL,II4 : {7**™ — Ri‘x"‘“x("ﬂ).
Moreover the cost of inK is |[H — K ”h which equals the cost of K. Finally, using
item 1 of Remark 3.5.2 and the fact that I, (H — K) = H — K,

;/)-n@-nl( = %, (HH — K|, , LI (H - K), ILIL.(K - H))
= H—[LI(H-K)~-ILIL(K — H)]
= K
so that Enin =17 a

The next linear program corresponds to an infinite dimensional super-optimal

approximation problem OPT (H,U,V), defined in Section 3.4. The linear program

LP.(H,UV): inf g

subject to:

Nw OO

ZET;U—I—TZ‘IU ]”) -} S 0 7:':].,...,712

j=1k=0
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Ut ~
([ - 1) @ = o

Ut y
(i,j)€ S, kefo,...,n}
(T, -T,) = TiH
(1 T T2) € Ry x (If)m x (yrexm

Y zwr Tt zw

where all symbols are as defined in the formulation of LP above.
Note that LP,(H,U,V) is very similar to LP(H,U,V). The variables are p € R

and
{(T)ii(k), (Tz)ii(k) i€ {1, yn2}, 5 € {1, ma}, k€ 2y}

as in LP(H,U,V) and are infinite in number. The constraints are identical as well,
except that only a finite number of the convolution constraints (3.19) are enforced.
Hence, although there are still infinitely many positivity constraints, there are only a
finite number of equality constraints.

Proposition 3.5.5 Foreveryn, LP,(H,U,V) is equivalent to OPT, (H,U,V) under
the map ¢ _ defined, given a feasible solution (u,T},,Ty,) for LP,(H,U,V),

Qn(ﬂ’ T+ T, ) = H — (Tz.lt-u - Tz_;u)'

Y zZwy Tt zw

Proof: For everyn ¢ is defined identically to 1 of Proposition 3.5.3 and if we define,

given K € K, (U,V),
$ K = (|H - K|, , I (H - K), I,(K - H))

identically to z/; then the proof of that proposition is easily adapted to serve here.
We need only note that the only difference between LP(H,U,V) and LP,(H,U,V)
are identical except that only a finite number of convolution constraints have been
enforced in the latter. This this corresponds precisely to the difference between the
characterization of K (U, V') in Theorem 3.2.1 and the definition of K, (U, V) in (3.14).
O

The last linear program corresponds to a finite dimensional super-optimal approx-

imation problem OPT, ..(H,U,V), defined in Section 3.4.

LP, . (H,UYV): inf g

Zinm
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subject to:

[ZZT++T2w 1](’“)]"’” <0 t=1,...,n,
7=1 k=0

([UL }s( ~Tn) [ e v ]) (k) = Hyk)

(i,5) € S, ke{0,...,n}
ﬂg’"(Tzw _Tz-i-u) = 7'1H

(Il zw, zw) c R+ X Rizxnw)((m-l-])
:XnwX(m+1
x RpsXmwx(m+1)

Where &, : R'_f_’x"“’x(mﬂ) — [32*™ is the same embedding operator as in the formu-

lation of LP, above.
There are 2n,n,(m + 1) + 1 variables in LP,, ,,(H,U,V): p and

{@h)u(k), (Tn)i(k) i€ {1,...,n.}, G €{1,..,nu}, k€{0,...,m}}.

Proposition 3.5.6 Foreveryn,m LP, ..(H,U,V) is equivalent to OPT,, ,.(H,U,V)
under the map 3 defined, given a feasible solution (p, T}, T7,) for LP,(H,U,V),

d)n m(:”’) Tzw’ Tzw) =H - g"b( zw Tz—;u)'

—Tl,

Proof: The proof of Proposition 3.5.5 goes through identically if we define the map
¥, given K € K, .(HU,YV),

b, K= (10 - K|, , LJ(H - K), LI (K - H)).

3.6 Example

In this section an [, disturbance rejection example first considered in [27] and later
in [28] is first described and then solved using the results of Sections 3.3 and 3.4
to obtain FIR approximations to the optimal closed loop impulse response and a

converging lower bound on the optimal performance, respectively.
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=
O

1
To+B - wsp

Kg

Figure 3.2: Block diagram of DC motor control problem

The objective is to limit the peak magnitude of the control effort required in con-
trolling the speed of a DC motor near a given setpoint. Both required torque and
compensator output voltage are to be bounded. The situation is pictured in Figure
3.2, where w, 7, and v denote the motor speed, the control torque, and the compen-
sator output voltage, respectively. 74 denotes an unknown but bounded disturbance
torque. If all constants are taken to be one, the system is linearized about the set-
point wgp = 1 rad/sec, Tsp = 1 N-m, vgp = 2 V, the resulting linear model in the

deviation variables discretized at a sampling period of T' = .1 sec, and

)
z:=[ T}, wi= T, wi=dv, yi=dw
bv

then the generalized plant transfer function matrix G is

~(1-a)z 1—crz
1-0= 1-0z
G= 0 1
—(1-a)z | —(1—0)=
1-08z 1-06z

where a ~ .9094 and ( ~ .8187. Note that G,,(0) = éy,t(O) = 0 so that Q(G,.) = L.
éyu has a polynomial coprime factorization (i.e., G, has a coprime factorization
over the finitely supported sequences, and hence /,) so that a Bezout equation as in

Lemma 2.3.6 can be found. In terms of z-transforms it is

1 == 1-8z £ |10
(1-a)z 1~ pz —(1-a)z 1 o1
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n " Fn l ﬁn,n

10 |[ .4398 | .2524
20 i .3488 | .3058
40 [ .3336 | .3295
60 [f .3333 | .3328
80 || .3333 | .3332

Table 3.1: Convergence of upper and lower bounds on gopr in DC motor example.

The z-transforms of H, U, and V of Proposition 2.3.9 are then found to be

ﬁf:[_“], 0:[1“‘“}, V=a-1
- 1- 4z

Hence H, U, and V are all finitely supported, therefore in I;, and therefore G is

stabilizable.

Simple decompositions of U and V of the form in Assumption 3.0.1 are given by

>

UL=U, 2U=(7R=1a,ndVL=V, 2V=VR=1

Note that Z = () and only one of the Bezout equations (3.2), (3.3) is non-trivial; it is

given in terms of z-transforms by

= 25 l—az 5| _[1 0
1-82z -14az 1—0=z ;_ﬁﬁ 01

This is all the data required to solve the problem. Because all factorizations and
Bezout equations have been in terms of finitely supported sequences, Proposition 3.3.2
can be used to show that OPT,(H,U, V) will be feasible for some n (this is trivial
in this case since H is finitely supported, and K = 0 is always a feasible solution).
Moreover, because Z = {), B is a lower bound on popr for every n. Table 3.1 shows
the results of solving OPT,(H,U,V) and QPT, . (H,U,V) for several values of n.

Evidently popr = % so that the [, disturbance rejection specification can be satisfied

with a safety margin of roughly a factor of 3.

3.7 Discussion

In this chapter, a solution to the l, disturbance rejection problem, or Iy problem,

has been obtained. The approach is to formulate the problem first in the standard



67

setting and then as a minimum distance problem in /; using the parametrization
of stabilizing controllers in Chapter 2. In this formulation it is easiest to establish
existence of the minimizer, and insight into the properties of the FIR sub-optimal
and the super-optimal approximation problems is clearest. For actual computation,
the problems are recast as linear programs.

From a practical viewpoint, the results of this chapter allow approximate or exact
solutions to the [, disturbance rejection problem to be found in many cases. For

example:

o If U and V have full row and full column rank, respectively, a sequence of
feasible FIR approximation problems OPT, (H,U,V) is guaranteed and can be
solve for increasing n to yield an optimal solution to O PT and hence an optimal
compensator. Although no bound is given on the n which might be required
to obtain the optimal solution (and it has been shown in [29] that this can be
arbitrarily large), bounds can be computed [5] if desired. Otherwise, experience
shows that simply increasing n until no further improvement is obtained is
satisfactory. Convergence can be checked by solving super-optimal problems
OPT, (H,U,V); they are always feasible and if the infimal costs agree, then an

optimal compensator has been found.

e If U and V do not satisfy the above rank assumptions, approximate solutions
and the value of uppg can be obtained to arbitrary accuracy using sub- and super-
optimal approximations. If there is no feasible sequence of FIR approximations,
one can be obtained by approximating G by an FIR system and a sequence of
sub-optimal compensators obtained. A sequence of super-optimal problems can

be solved as well to bound upg from below.

e Stabilizing compensators can be obtained from feasible or optimal solutions of
QOPT . (H,U,V), and this is another principal attraction of solving them. It has
been noted in examples [30] that optimal compensators can sometimes be dis-
covered in this way which have significantly lower order than those produced by
FIR approximation. Moreover, even if optimal compensators are not found, the

suboptimal ones which can be computed from the solutions of OPT, (H,U,V)

often approach optimal, and are often of lower order than those obtained via



68

FIR approximation, for the same performance level.

As mentioned in Chapter 1, the key elements of the solution to the {; problem are
due to Dahleh and Pearson in [4][5][6]. In these three papers, the results on existence
(Theorem 3.2.4), and the finite support property of the minimizer in case U and V
have full row rank and full column rank, respectively, were obtained and the FIR
approximation methods were described. The problem setting in each of the three
papers was successively more general; only [6] considered the case in which the just
mentioned rank assumptions on U and V were not satisfied, and it did so for a special
case (N, = ny = 2; ny, =n, = 1).

An earlier version of Theorem 3.2.1 characterizing the feasible subspace of OPT in
the general case was first given by the author in [15], along with earlier versions of the
existence theorems 3.2.4 and 3.2.7. An earlier version of Proposition 3.3.2 providing
a test for the applicability of the FIR approximation method also appeared for the
first time in [15].

The super-optimal approximation method was first suggested in [30] in which an
example was solved. The idea of obtaining stabilizing compensators from the solutions
to super-optimal problems was also suggested there, and was used in that example
to discover an optimal compensator of much lower order than the sub-optimal ones
obtained via FIR approximation. The promise of possibly obtaining low order optimal
compensators makes the study of these problems particularly interesting. The results
of [30] have been gradually generalized in [31] and [32].

Although the results reported here overlap those of [30][31][32], the formulations
are sufficiently different that it is unclear whether the results are equivalent. More-
over, the lower bound theorem 3.4.1 of this chapter combined with the details of the
relationship between correlation and convolution operators on ¢g outlined in Appendix
C make the key results (the norm computations) of chapters 4 and 5 possible.

An alternate method for the formulation and solution of converging super-optimal
problems by a “delay augmentation” method has recently been developed [33][34]. Its
properties are similar in many respects to those described here, although the approach

taken is seemingly very different.
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Chapter 4

Incremental Weighted I

Disturbance Rejection

The problem setting is again the general feedback system of Chapters 2 and 3 and the
problem to be considered is the incremental weighted [, design problem described

in Chapter 1. Given the definitions of Chapter 2, the associated specification can be

stated precisely.

Incremental Weighted /., DRS:
o C € XY, (G,C) is stable, and
o |PnWywll, <1 implies |PnW.z2||, < 1.

where the weights W, and W,, are systems in X™#~" and X"w™"¢, respectively.
Note that the above norms are always defined since every truncation of every signal
in I} isin looq4.

To satisfy the specification C must be causal, linear, and time invariant and it
must stabilize G. Moreover, for any time and for any suddenly applied disturbance
whose weighted peak magnitude up until that time is less than or equal to one, the
resulting error’s weighted peak magnitude must not have exceeded one up until that
time.

In Chapter 3, the design problem could be formulated immediately as minimiza-

tion of the {; norm of the closed loop system T,(G,C). For this problem, an appro-



70

priate norm must first be defined and, to solve the problem, a means of computing
the norm is needed.

Hence Section 4.1 will define, under some assumptions on the weights, an appro-
priate notion of stability and corresponding norm on the causal linear time invariant
stable systems. This is followed by the formulation of the design problem in Section
4.2 under the same assumptions on G as were in effect in Chapter 3, and W, and W,,
are assumed to be in Xy;, stable, and to have stable left inverses in X¢y;.

Sections 4.3 through 4.7 mirror Sections 3.1 through 3.5. In Section 4.3 the norm
minimization problem is reformulated as a minimum distance problem in {7#*"?. In
Section 4.4 it is shown that a minimizer exists. The minimum distance problem is
again infinite dimensional as in Chapter 3 and approximate solution methods are
given in Sections 4.5 and 4.6. Section 4.5 gives a sequence of finite dimensional
optimization problems whose solutions converge to the optimal performance from
above, and Section 4.6 gives a method for bounding the optimal performance from
below via finite dimensional optimization problems. Stabilizing compensators can be
obtained using this method as in Chapter 3. Section 4.7 gives linear programming
formulations of all the problems posed in the chapter, and Section 4.8 contains an
example of norm computation for a fixed system (i.e., not a design problem). The
chapter concludes in Section 4.9 with a discussion of the results, related work, and

the main contributions of the chapter.

4.1 Incremental Weighted Stability and Gain

In this section, the symbol G is used to denote some given system in X', and should
not be confused with the generalized plant G. The following notion of stability is
appropriate to the incremental weight design problem.

Definition 4.1.1 A system G € ™™ is incrementally stable w.r.t. W, € X™=™
W, € X" if there exists ¢ < oo such that

IPnWoGall, < cl/PvWiz|l,, Vz€ly and N€Z (4.1)

If G is incrementally stable w.r.t. W,, W,, the smallest ¢ satisfying (4.1) is the incre-
mental gain of G w.r.t. W,, W, and is denoted by p(G; Wo, Wi).



71

Under this definition, a system which is incrementally stable w.r.t. given weights
is guaranteed at every time to produce weighted errors not exceeding some finite
bound, provided that the weighted disturbances are bounded.

The next proposition provides a test for incremental stability w.r.t. a large class
of weights. There is no restriction on the output weights, and the requirement on the
input weight is quite mild.

Proposition 4.1.2 Let G € ™™, W, € X"~ and W; € X™*, and let WF €
XY= be such that Wi'LWi =7 and WiW{'L is stable and causal. G is incrementally
stable w.r.t. W, Wi if and only if W,GW; L is stable and causal.

Proof: (if) Suppose W,GW, "L is stable and causal and let z € I3-and N € Z be
arbitrary. Then

IPxWeGall,, = [PRWGW Wia|,_ = |PaWeW " PuWia,_
< |PeWwE|, [ IPwWiell,,
< Wi, Pl
and (4.1) is satisfied by ¢ := [WogW 2| . Hence G is incrementally stable w.r.t.

loo

Wo, Wi.
(only if) Suppose W,GW,™L is not causal. Then there exist # € Iy and N € Z

such that PyWoGWLE £ PyW,GW L Pri and z := W E(Z — Py)z is such that
[PNWeGal,, = [PNWGWHT - Pu)a|,_
= |PvWgWEE — PAWGW P,
> 0.
On the other hand,
PnWiz = PNWWHT — Py)i = PWWW, L PN (T - Pw)i =0

since WW,™L is causal and Py is a projection. Hence there does not exist ¢ < oo
satisfying (4.1) and G is not incrementally stable w.r.t. W,, W..

Suppose W(,gwi-b 1s unstable. If there exists & € li‘o+ such that WOQVVi'L:E & lf‘o_l_,
define z := W, L&, Then, since WWL is stable, Wiz = WW Lz € I% .. Moreover,

given any ¢ < oo, there exists N € Z such that

IPaWoGall,,, = [PhWGW i, > elWial,, 2 c|[PaWia]], .
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Hence there does not exist ¢ < oo satisfying (4.1) and G is not incrementally stable

w.r.t. W,, Wi
If such an & does not exist then, given any ¢ < oo, there must exist & € I% | such

that
[wegwita], > e _lall..

If 2 := WLz then

sup {|PvWelall,,, : N € Z} = WGl = [WagW 23],

> ¢ ”Wiwi—anwi 121,

Hence there exists N € Z such that
IPxWigall,,, > c[WWE|,_ Iz, 2 cllWiell, = clPvWiell,,

and therefore ¢ does not satisty (4.1). Since ¢ was arbitrary, the proof is complete. O

Assumption 4.1.3 In the remainder of this section G denotes a system in XT™

W, € X2 and W, € Xm=m denote stable systems with stable left inverses in Xp;.
Hence they have impulse response matrices W, € IZ*™ and W; € ™™ which are
left invertible in ;. Because ly is Hermite, there exist additional matrices over [

satisfying the Bezout equations

[I;//-;L:I[W W]=[; 2] H:}[WW]:[; 2] 42

In the remainder of this section, the additional symbols above will denote arbitrary

choices satisfying the equations, given W, and W;.

The next proposition shows that the set of systems in Xy; which are incrementally
stable w.r.t. weights as in Assumption 4.1.3 is precisely the set of stable systems.
Moreover, the incremental weighted gain for any such choice of weights is a norm on
the space of stable systems in X y;.

Proposition 4.1.4 G is incrementally stable w.r.t. W,, W; if and only if G € 1.

i e s N . .
Moreover, ||-Hwo'Wi = pi(+; Wo, W) is a norm on the space of stable systems in Z™:™
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Proof: Because W), satisfies the hypotheses of Proposition 4.1.2 that proposition can
be ‘applied to prove the first statement; it says that G is incrementally stable w.r.t.
W,, W, if and only if W,GW.L is stable and causal, where W% is any stable left
inverse of W, in Y. Now if G € [; then I/V(,GWi'L € [, and WogVVi“L 1s stable
and causal. Conversely, if W,GW,L is stable and causal then W,GW,~L € [;; hence
G = WL (W,GW," )W € 1.

For the second statement, ||- ||';,Vo,Wi is non-negative by definition and is well defined
for every stable system. It is easy to check that for linear W, and W,, ”'”‘Wo:Wi scales
and is subadditive. Moreover, ||g||'wo|wi = 0 implies that PyGz = 0 for all z € [
and all N € Z which implies that G is the zero system. Hence ”'“'W(,,wi is a norm on

the stable systems. 0O

Theorem 4.1.6 will show that ”g“iwo,wi can be computed for any G which is stable
w.r.t. W,, W, by solving a minimum distance problem OPT(H,U,V) as defined in
Section 3.1 for appropriate choices of H, U, and V. Specifically, since W,GW,™% and

W;t are in l; the infimization

inf {”W.,GW;L _K| :KeK(, Wii)} = . (4.3)

I

is precisely OPT(W,GW, "L, I, W), 1t is easy to see that I and W;* have decompo-

sitions as in Assumption 3.0.1; the obvious ones are:
Uy=Sy=Up=1 and Vp =%y =1, Vp=W" (4.4)

Clearly Z = ) and my is finite (= 0). Hence all results of Chapter 3 can be applied
to the problem (4.3).

The Bezout equations (3.2) and (3.3) associated with the decompositions (4.4)
have a particularly simple form. None are defined for Ug or Vi, since Up = I and

Vi = I, and none is defined for Uy, when U, = I. The equations for V when V = W;t

et

have the form

w;L 0 I

The special form of (4.3), in particular the fact that U = I, is used in the next lemma,

which will facilitate the proof of Theorem 4.1.6.
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Lemma 4.1.5 If p; is defined for each i € {1,...,7}

= int {|(WoGW;E — K): |, ¢ K € K(1,WH))

then v = max {p; : t € {1,...,m}}.
Proof: Clearly v > max {u;:¢ € {1,...,7m}} since

|

2 |wewr - k)

A

for all ¢ and all K € K(I,W;1). To show the reverse inequality note that for each 1,
K € K(I,W2!)if and only if K;. = QW+ for some Q € I}X%*~™) Hence, given € > 0,
there exists for each 7 ); € llx(" ") such that " W,GW,~b).. Q,Wl" < pi +e
Defining

Q1
Qﬁz
we have that Ky := QoW;* € K(I,W;*) and
[WeeWi* — K|, = max {”(WOGWi‘L ~ Kol i€ (L, }}
= max{" WoGWE)i — QW Liel,. }}

< max{pi:i€{l,...,7}} +e¢

Since € was arbitrary, the proof is complete. O

Theorem 4.1.6 ||g||"WO,Wi =7.

Proof: ||g||w0w < «4: By Theorem 3.2.4, OPT(W,GW,"L, I, W;*) has a minimizer
and there exists Qo € 17"~ such that ”W GW L —Q, W"'” = v. Moreover, for
al NeZand wel

IPvWagwll,, = [PNWgW = QW Wi,
= |Pn(W.GW, QW-*)’PNW-w”
< PN(WQW - QWh)|,_, IPn Wil
< [WeeWiE - QoW IIPw Wil

Y Hpn)/vi"”“L,c
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Hence (4.1) is satisfied by ¢ := v and ||Q||';,vml,vi <.
||g||wo1 2> v: Given any € > 0 we will find w € I%, and N € Z such
that ”’PNWwH,w < 1 but ||[PvW,Gw||, > 7 — e. Hence, using Definition 4.1.1,

||g||"wo'wi > v — €. Since € was arbitrary, ||g||"wo,wi > .
Accordingly, let € > 0 be given. Lemma 4.1.5 implies that

mf{”WGW) -, Qeli*(ﬁ-n>}27

for some ¢ € {1,...,7}. Let this value of 7 be fixed for the remainder of the proof.
By the lower bound theorem 3.4.1 there exists N € Z, such that pg, > v —§
Moreover, using equation (3.16) from the proof of that theorem, we find that there

exists * € Pnci*™ such that
(Ticw, (WoGW; L)) >y — € (4.6)

and

Tk

(i) :={ z(—-k) k<0

T l’w <1 (4.7)

Now define w € [Z,, by

0 £>0
This is the offending w.
According to the definition of Tk in equation (3.10) Txz = z > WT where v
denotes right correlation (see Definitions C.1.2 and C.1.4) and we have used the

Bezout equation (4.5). Moreover, for each i € {1,...,7} and k € Z,

(Txz)i(k) = (z» W) Z [z; (k)
= éio n)zi(n + k) = Z;Z (n)wj(—n — k)

7
= 5+ w;) (—k)

=

.,
—

and hence, for all k € Z,,

(Ticw) (k) = (Wi x w)T(~k).
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Using (4.7) and the definition of ||-[|, , we conclude that |[PoWuw||, < 1.
On the other hand,

(T, (WoGW ™)) = (a0 WT,(WeGWi ™)) = (o, (WoG):)
= 2 L (WB)i(n)e(n) = 3 2 (WaG)i(n)us(~n)

= (WoG *2)i(0)

where the first line follows using the fact (Proposition C.1.5) that the adjoint of a

correlation operator is a convolution operator and the second using the definitions of

functional evaluation (see Fact C.1.1) and w. Finally, using (4.6), we conclude that

|PoWsGwl|, > v — €, and the proof is complete. 0

As a consequence of this theorem, coinputation of the incremental gain of a system

w.r.t.

given weights or, equivalently, determining if the system satisfies the second

item of the corresponding incremental weighted specification requires the solution of
OPT(W,GW,"L, I, W*). As mentioned above, Assumption 3.0.1 is satisfied so we

can apply the results of Chapter 3 as follows:

Theorem 3.2.4 implies that a minimizer exists for (4.3).
Proposition 3.3.1 implies that if there exists K, € K (I, W;1) such that
WoGW;™F — Kj,

is finitely supported then a sequence of problems OPT, (H,U, V) can be solved

to bound ||g||iwo,wi from above.

If W; is finitely supported and has a finitely supported left inverse then Propo-
sition 3.3.2 implies that Ky, € K (I, Wit) exists if and only if (W,GW,"\)W; =
W,G is finitely supported.

The results of Section 3.4 give a method for computing a converging lower

bound on “g“iwo,wi- In particular, since Z = §), Proposition 3.4.3 implies that

it suffices to solve a sequence of problems QPT, . (H,U, V) for increasing n.

Z = () also implies that there are no interpolation constraints in the linear

programming formulation of (4.3).
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4.2 Problem Statement

Recall the specification:

Incremental Weighted [, DRS:
o C € X, (G,C) is stable, and
o |PnWyuwl||, <1 implies [PyW.z||, < 1.

where the weights W, and W,, are systems in X'™#~" and X"«"™"@, respectively.
If G € X and W,,W,, € X; are stable and have stable left inverses then the

results of Section 4.1 can be used to formulate the design problem as follows.

DRiw(g,Wz,Ww) . inf{“’]—zu/(g,C)”iyvz'ww :C € C(g)} = lIWDR

If C € C(G) then T7,,(G,C) is stable and hence the norm above is always defined;
prwpr is defined if and only if G is stabilizable. Moreover, if 7,,(G,C) is stable then

1T20(G, )l = sup {[[PNW:zlly,, : N € Z and [[PyWywl,, < 1}.

DR™(G,W.,W,,) represents the design problem in the same sense that DR(G)
represents the unweighted I, disturbance rejection design problem. In particular, the
feasible solutions for DR™(G, W,, W,,) are the stabilizing compensators for G and the
cost of each is the worst-case ||PyW.z||,  over all N € Z and all |PxW,wl|, <1
when that C is used. Hence DR¥(G, W, W,,) is feasible if and only if the first item
of the specification is met, and uywpr < 1 if and only if the second item of the

specification can be met.

Notation and Assumptions

In the remainder of this chapter all assumptions on G made in Chapter 3 are in
effect; it is in Xy, Gy has a coprime factorization over [y, it is stabilizable, and the
associated H, U and V matrices have decompositions as in Assumption 3.0.1. All

notation in Chapter 3 has the same meaning here.
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nz+nz Nwng

The weights W, and W,, are assumed to be in ;"% and X7%™"7, respectively.
Both are assumed to be stable, and to have stable left inverses in X.;. Hence W,

and W, are in [; and have left inverses in /; and there exist Bezout equations

w-t | Io0 WL 10
o= o o] [ i =[] s

In the remainder of the chapter the additional symbols on the left hand sides of
equations (4.8) will denote arbitrary matrices over [, satisfying the equations.

The index set which it is convenient to define here (it plays a role similar to that

of S in Chapter 3) is
Sw:={{1,...,n:} x{L,...,nu}}\ {{1,...,7u} x {1,...,7v}},

containing the indices of all elements of an n; x n,, matrix except those of the upper

left hand corner block of dimension ry X ry.

4.3 Formulation as a Minimum Distance Problem

The parametrization of stabilizing compensators allowed DR(G) to be formulated
as a minimum distance problem in [}**™* in Chapter 3. Because computation of
||g||"wz'ww is a minimum distance problem in [}**"?, DR¥(G, W,,W,,) can also be

formulated as one:

OPT : inf {“W,HW,;L ~K| i Ke K"W} e

where
K" = (4.9)

0 -L
{Ke L2 3Qc, Qw € I satisfying K = [ W,U ,] [%C . } [Vp?/ff }}
W w

is easily verified to be a subspace of [}**"?, Note that OPT" depends on H, U,
V, W,, and W,, and K" depends on all of these except H. These dependences are

suppressed for notational convenience.
The following theorem shows that O PT" is equivalent to DR™. Its statement is

simplified somewhat as noted after the theorem.
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Theorem 4.3.1 DR¥(G,W,,W,,) and OPT™ are equivalent in the following sense:

1. IfC € C(G) and Q € Q(Gyu) is constructed from it as in Proposition 2.3.11 then
K = W, UQVW;L + K, € K'Y where K, is a minimizer for OPT(W,(H —
UQVYW L I, Wt). Moreover “WZHVVJL - K"l = ”Zw(g,C)”‘;,vz W *

1 + w

2. If K € K™, Q € Q(G,.) solves K = W, UQVW L + QwW_2 for some Qw €
I, and C is constructed from it as in Proposition 2.3.11 then C € C(G) and
170G llw. w, < |WHWZE - K]

3. w¥ = prwpr.

Proof: For item 1, such a choice of K is possible because a minimizer always exists
for OPT(W,(H — UQV)W_L I,W}). That K € K™ follows because every feasible
solution K for OPT(W,(H — UQV)W:L,I,W1) can be written K = QwWp for
some Qw € [;; hence so can K,. The equality of the norms is immediate using
Theorem 4.1.6 and the fact that, by Proposition 2.3.11 and the definition of K,
W HW: L+ K =W, (H -UQV)W;t + K, = W,T..,(G,C)W;L + K,,.

Ny X7y
h

For item 2, the existence of a () € is guaranteed by the definition of K",

By Proposition 2.3.11 and the choice of @
W. Tl G,CYWE = QuWit = W,(H — UQVIWE + QuWE = W, HW;E — K.

The norm inequality follows from Theorem 4.1.6 which shows that ||7,,,(G ’C)”iwz,w.,,
is the infimum over Qw € [; of the /; norm of the left hand side above.

Item 3 follows from the preceding items. 0

Among the consequences of Theorem 4.3.1 are the following:

o To each feasible solution for DR™(G, W,,W,,) there corresponds a feasible so-
lution for OPT*" of the same cost. From every feasible solution K € K™ for
OPT™, one or more corresponding feasible solutions for DR™(G, W,, W,,) can

be constructed of no greater cost.

e To each minimizer for DR™(G,W,,W,,) there corresponds a minimizer for
OPT!¥; hence all minimizers for DR"W(Q,WZ,W,U) can be found from mini-

mizers for OPT" via the construction of item 2.
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Note that item 2 of the theorem and the above discussion are somewhat simplified.
Item 2 should contain a provision as in the corresponding theorem 3.1.1 of Chapter 3
which addresses the case in which @ € Q(G,.). An argument similar to that in Chap-
ter 3 shows that a random perturbation on () can produce a stabilizing compensator
Ce such that [[Tu(G,Cll, w, < |W-HWZ" ~ K
Gyu(0) = 0 then Proposition 2.3.12 guarantees that this case does not arise.

L Te for any € > 0. Of course if
1

The next proposition is the analog of Proposition 3.1.2; it shows how to com-
pute, given a feasible solution K for OPT", stabilizing compensators for G whose

performance does not exceed |[W,HW L — K “1 .
Proposition 4.3.2 If K € K™ then the set

Q"(K):={Q e 1™ : K = W.UQVW* + QwW} for some Qw € b}

s given by

SHAUTEWERW,L VRS Qi | | ViR
{[UER URL][ vor O R O ‘ZIL tQ12,Q21,Q22 €L .

Proof: If K € K* then K = W, UQVW_ L + QwW_z for some Q,Qw € I1* ™. If
@ has the claimed form then Q € I7**™ since
Q = URRURQVLVE" + UgQuaVi ¥ + URRQu Vi + U QuVi
and all matrices on the right are in [;. Moreover,
W UQVW + QuwWit = W.UQVW, b + QwWy = K
using the Bezout equations (3.3) and (4.8). Hence Q € Q¥ (K).
Conversely, if Q € Q" (K) then Q € I[**™ and K = W, UQVW;L + QwWL for
some Qw € [;. Now
K =W, UQVW;* + QwWy
= K = WU SyUrQVLEyVRW L + QWi
= SPU;IW EEKW,VRRS = UpQVy
SPAUTEW LKW, VR REyt UrQVE Ur
[ UsQVy UsQVe J B [ U
SPUCEW- LKW, VERES UrQVyE Vit
UrQVy URQVE } [ Vi J

Hence () has the claimed form. O

=

]Q[VL Ve |

= Q=[U§R U,%][
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4.4 Existence of a Minimizer

The following lemma shows that the feasible subspace K™ of O PT'¥ is closely related
to the feasible subspace K(U,V) of OPT(H,U,V). This relationship makes it easy
to obtain results for OPT™ similar to those found for OPT in Chapter 3.

Lemma 4.4.1 Kv = {K € [[**"5 : KW, € K(W.U,V)}.

Proof: If K € K™ then K € [}**"® and, performing the matrix multiplication
in the definition (4.9), K = W, UQcVW L + QwW,. Hence, using the Bezout
equation (4.8), KW,, = W, UQc¢V. Since Q¢ € l1, KW,, € K(W,U,V). Conversely,
if KW,, € K(W,U,V) then K € [}**"® and KW,, = W,UQc¢V for some Q¢ € ;.
Using the reverse of (4.8),

K = KW,Wil+ WeWe) = W.UQcVW,E + KWW,
0 Vw-L
[ WU I ] Qc 0
0 Qw W

where Qw := KW¢ € [} since both K and W¢ are. Hence K € K. o
Theorem 4.4.2 K € K if and only if

1. K € Insxno

Uptwrt * 0
2. | Utw L K[ W, Vg® W,V ] =00
wi 00

z

where * denotes an irrelevant block, and

3. [(O7PWL) K (W Ve R) 510 (20) = 0 for each (i,5) € {1,...,ru} x {1,...,7v},

z

each 20 € Z;;, and each n € {0,...,m;j(z) ~ 1}.
Proof: U has a decomposition U = UpXyUpg of the form specified in Assumption
3.0.1. Since W, is left invertible, W,U = (W,UL)EyUr is a decomposition of W,U of
the same form. The Bezout equation for Ug in (3.3) are unchanged, and the Bezout

equation for W, Uy, is

UL_,L W—L

- I
Upwit | [wn woug we] =10
Wi 0

z

0
1
0

-~ O O
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The conclusion is now immediate using the fact (Lemma 4.4.1) that K € K'¥ if and

only if KW,, € K(W,U,V) and applying Theorem 3.2.1 to K(W,U, V). O

The proof of the upcoming existence theorem 4.4.5 is similar to that of its coun-
terpart Theorem 3.2.4 for OPT; two lemmas analogous to Lemmas 3.2.2 and 3.2.3

precede its statement and proof.

Lemma 4.4.3 There exists Ti¥ € B(cg¥, ci**™") such that
.= {K € [**" ;. K satisfies condition 2 of Theorem 4./,.2} =N ((’f'éw)*) .
Proof: Begin by defining 73" on g% by
T8 = Tw, Tw,uvEsy (4.10)
where gsw is defined, given G € c*,

Gij (i,5) € Sw

0 otherwise

(€5 Q)ij = {

Nz XTw

7~—W,U,V is defined, given G € cg ,

Uptwrt
. T
TwuyG = | UtW; L | «Gv [ Vel v ] ,
wi

z

and Ty, is defined, given G € ¢g**™, Ty, G := G > WT.
Arguing as in the proof of Lemma 3.2.2, 73¥ € B(cj¥, ¢3**™?) and

(78 = &5, Tirow T, = Usw Twovy Tw, = T8 (4.11)

where Ty, is defined, given K € I}**"%, Ty, K := KW,, Tw,uyv is defined, given

K e [pexn,
Uptwrt

TwuovK = | UtW; L K[ Vil vi ]
wi

and HSW is defined, given K € l;“"x""', (HSW.K),']' = I{,'j, (Z,]) € Sw.
By the construction of 73, Ki¥ = A/ (TC",“') =N ((’j'é‘")*) ]
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Lemma 4.4.4 There exists 7% € B(R™t, cg**™*) such that
K .= {K € I7¥*™ : K satisfies condition 8 of Theorem 4.4.2} =N ((’j}‘w)*) .

Proof: Begin by defining 7§ := Ty, Tw,uvTjy where T§¥ is defined, given a € R™,

» Ty Ty mij(z0)-1 . mij(z0)-1 .o
pa=3 371 Y Y Gl Ginat D Do E5Dhjnm
i=1 j=1 | 20€Z;; n=0 ZOEZ?_;- n=0
(4.12)
where Ty, is defined in the proof of Lemma 4.4.3, f:',-j : ¢+ ™ is defined
. Giy; m=tandn=7
(gi'G)mn = ’ . 7
0 otherwise
and ﬁf’ 2 and 753'20 are defined, given o € R,
. 0 k<n
(D?fv"'oa)(k) = { ak! R k—-n k>
(k—-n)! (20 ) =7
and
‘e 0 k<n
(D;:yzoa)(k) = { ok! _ouf k-n k>
(—k:-md(zo ) e [

Arguing as in the proof of Lemma 3.2.3, 7f¥ € B(R™, cg:*™®). (7j*)* =: T}* can be
computed straightforwardly (if tediously) to verify that, because of the construction
of Tjw, Ky = N (Tj*) = N ((Fi*)"). o
Theorem 4.4.5 OPT™ has a minimizer.

Proof: The argument is the same as in Theorem 3.2.4; K™ = A/ (( ~,’;»W)*) where T3

is defined, given (G, a) € " x R™t,
TG, a)] = T&G + Ti"a (4.13)

and 74" and 7} are defined in equations (4.10) and (4.12), respectively. Hence K

is weak*-closed and existence is guaranteed by Corollary B.2.4 O
Of course a corollary analogous to Corollary 3.2.5 holds in this case as well.

Corollary 4.4.6 If G,,(0) = 0 then DR™(G,W,,W,,) has a minimizer.
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4.5 Suboptimal Solutions via FIR Approximation

OPT! is in general an infinite dimensional problem as OPT is. In this section, a
sequence of finite dimensional optimization problems is formulated which can be used
under certain conditions to compute feasible solutions for O PT™* which are arbitrarily
close to optimal.

The idea is similar to that of Section 3.3; in that section, the sequence corre-
sponded to allowing finitely supported closed loop impulse responses of a given length.
In this section, OPT™ is approximated by problems which correspond to allowing
finitely supported W,HW,-L — K instead. Similar difficulties arise with respect to
feasibility of such a sequence, but it will be shown that for finitely supported weights
with finitely supported left inverses (i.e., with polynomial transfer functions having
polynomial left inverses) the sequence for OPT'" is feasible if and only if the sequence
for OPT is.

Define for each n € Z,; an optimization problem

OPT" : inf {“ W.HW;E — K”h e T{""’} =R
where

K, = {K € K™ : supp (W.HW;* - K) C {0,...,n}}
Note that K, like K, (H,U,V), is a subset and not a subspace of [**™#, Both
OPT ,:v and ?,:v depend on H, U, V, W,, and W,,; these dependences are suppressed

for notational convenience.

The following proposition shows that the sequence of problems, when feasible,

approximates OPT™ from above. ’
Proposition 4.5.1 If there exists N € Z, such that Ky # 0 and the finitely sup-

ported matrices are dense in K™ then

{7} v \\ ftopPT €5 M~ 00.
Proof: The proof is virtually identical to that of Proposition 3.3.1. ny > ny; > N
implies K, D K, D Kpy. Henceif Ky # 0 then 7" is well defined for every
n > N and {pi%}2 v is monotonically non-decreasing. To show convergence, again
use Lemma B.2.5 to obtain

p =t {|W.HW;E - K|, K e K'""} = int {||Hy - KI|, : K € K™}

I
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where Ky € K" and Hy := W,HW ;L — Ky is finitely supported. Now, given
e > 0, choose K¢ € K™ such that ||Hy — K¢, < pi? 4 £ and use the density
hypothesis to find K € K™ such that “K c - Kg LS £. Then 7¥ < e for n such
that supp (Hy — K§) C {0,...,n}. 0

Note that the hypotheses of the following proposition are equivalent to the rows

of W, and W,, being polynomial and having polynomial left inverses. Hence weights

which bound magnitude and any number of nth order differences satisfy the hypothe-

ses.

Proposition 4.5.2 If W, and W,, are finitely supported and have finitely supported
left inverses then there exists n € Zy such that K # 0 if and only if there exists
n € Zy such that K,(H,U,V) # 0.

Proof: If W, and W,, are finitely supported with finitely supported left inverses
then there exist [; matrices @, and Q,, such that WL + Q, W and WL + QWi
are finitely supported (since all left inverses in /; are parameterized in this form).
Suppose first that there exists K € K (U, V) such that H — K is finitely supported.
Then it is easy to check that K :=W,K WLl +W,(H - K)Q,W;} € K'*. Moreover
W,HW-L — K = W,(H - K)(W;X + Q,W;}) and is hence finitely supported, since
it is a product of finitely supported matrices.

Conversely, suppose there exists K € K™ such that W, HW L — K is finitely
supported. It is easy to check that (W L + QW)W HW;L — YW, = H - K
where K € K(U,V). Moreover, H — K is finitely supported since it is a product of

finitely supported matrices. O

4.6 A Converging Lower Bound on u;wpr

In this section, which parallels Section 3.4, a sequence of super-optimal approximating
problems is formulated whose infimal costs converge to ,uiw from below. The same
key features as found for the corresponding problems OPT, (H,U, V) carry over here;
they are always feasible, they are infinite dimensional, they have finitely supported
minimizers, and stabilizing Cs can be obtained from their feasible solutions. The
proofs of the results here are generally similar to those of the corresponding results in

Section 3.4; they are presented somewhat more briefly and sometimes only sketched.
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Define for each n € Z, an optimization problem

OPT™ int {|W.HW;E - K|, K € Kir} = ui®
1
where
Ke K" K¢l (4.14)
K satisfies Condition 3 of Theorem 4.4.2, and
Uptwrt * 0
UpWL | K[ W Ve® WV [ () ={0 o
Wi 00

for k € {0,...,n}

Note that K" is a subspace of K.

Theorem 4.6.1 {pV}%2, / 1Y as n — oco. Moreover, for each n € Z,, QPT™
has a minimizer.

Proof: The proof is very similar to that of Theorem 3.4.1. {g¥}52, is well defined
because, for any n, 0 € K™ and, for any K € K*, ”WZHI/V;[' - Kl . > 0. Also,
ﬁ';:" < ui¥ for each n and the sequence is non-decreasing since ny > n, implies
K., > K, DK™

To show convergence, begin by defining for each n a map 7. ,:V , given (G,a) €

% x R™t,

(@, )] = TivP.G + Ti*a (4.15)

where 74" € B(cgW, ¢i#*™) is defined in (4.10) and 7}* € B(R™t, c3**"") in (4.12), in
the proofs of Lemmas 4.4.3 and 4.4.4, respectively. P, is the n-th truncation operator
restricted to c5” and is bounded by Proposition C.1.7. Arguing as in the proof of

Theorem 3.4.1, (—fr:v)* € B(ch*™ ¢5W x R™) can be written, given K € IJ*X™3,
(i.iw)*l( — (ﬁ:;(;j'—éw)*j{’ (j}‘w)*j()

ST

~iw\ T ~iw ;
Continuing with the argument, R (LL) =N ((Zﬂ )*) = KV so the duality
theorem B.2.3 gives

ﬁ"n“' = sup {(C;’, WZHW',;L> :BR (i’,:v)}

= sup {<’f1‘\‘”6~¥, WZHI/V,;L> :GeR (75") x R™, ”’j}‘(wé'”lm < 1}
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where 7 is defined in equation (4.13). Hence
sup i = sup {(:?":"é, W.HW;E) : G € ¥ x R™, ||:?,';wc”;||lw < 1}
sup { (G, W.HW;*) : BR (Ti)}
= inf {"WZHW;L K|, K eN(( ”;;W)*)}

= uiv

For the second statement, K" = A/ ((_’1;"l ,:v )*); hence it is weak*-closed and Q PT¥
has a minimizer. O
Theorem 4.6.2 For every n, every minimizer Ko for OPT is such that at least
one row of W, HW L — Ky is finitely supported. Moreover, there exists a minimizer
Kfs such that all entries of W, HW L — K are finitely supported.

Proof: For the first statement, the arguments which prove the first statement of
Theorem 3.4.2 go through with 7., 7¢, and 7} replaced by _’j_'_j,:v, ’]N'(jl“', and ’j}“", respec-
tively. The somewhat long and tedious proof of the second statement of that theorem

can be modified to serve here. m]

Next a doubly indexed family of finite dimensional problems analogous to the
family of problems OPT, ...(H,U, V) of Section 3.4 is defined as follows.

Given a problem QOPT* for some n define for each m € Z, an optimization

problem
OPTY inf {|| 5 — K|, : K € KV} =: pi*
where
K .= {K € K" : supp (W, HW ;L — K) C {0,...,m}} (4.16)

and K" is defined in (4.14).

Hence for each problem OPT!" there is a sequence of problems {_O__P_Z’;L“"m}:ﬂ.
The following proposition corresponds to Proposition 3.4.3 and shows that a finitely
supported minimizer for QPT" can be found by solving OPT, for some finite m.
Proposition 4.6.3 Ifm > n and m > m, then QPT. is feasible and E:fm > piv,

Moreover

1. For each n there exists M,, > n such that ©i¥ = uiv.
£ 2
T, 7
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2. If Z = then, for each n, OPT',;“:'n is feasible and ﬁi:"n = ﬁfn“’.

Proof: As in the proof of Proposition 4.6.3, if m > n and m > m; then there exists
K := Ky — K,, where Ky := (T — P, )W, HW L, K,, satisfies

supp K, C {0,...,m} and T}*K,, = Ti*Ky,

and 7}* is defined in Lemma 4.4.4. Hence En“,'m # 0 so H‘;L“’m is well defined and
iw > En“' since K"nw - _K‘;Lw.

n,m L

Item 1: Theorem 4.6.2 shows that there is a finitely supported minimizer Ky, for

QPT™; just take M, := max {n,supp Kg}.

Item 2: (Z — P,)W,HW;L € K and P, K € K™ for all K € K!*. Thus
Ke K‘;L“' implies K := P, K + (I ~P,)W.HW;L ¢ Ki*, and it is easy to check that
supp (W, HW;L — ) c {0,...,n} so that K € Kiv.. Also, (W, HW;L — K)(k) =
(W.HW;L — K)(k) for k < n so that |W.HW;* —11'““ < |w.mw;t - K|,

Conclude that @™ < ¥, and the reverse inequality follows from the first sentence
Enpn = Ky

of the proposition. O Stabilizing compensators can be computed from feasible

solutions to OPT’;L“,'m in a fashion very similar to the unweighted case.

Proposition 4.6.4 If K € _K_;wm for any n,m then

K := WULUS*W LKW, Vg RVaW st € Kv.,

Proof: If X € K then K € K'Y by definition. Next check using the definition
of K in (4.14) that K satisfies the three conditions of Theorem 4.4.2 and hence
K € K(U,V). First, K € KI¥ = K € [}**™" so that condition 1 is satisfied. Also,

Uptwt UrEW-LEW, Vg 0
ULWSL | K[ W, VgR W,V | = 0 0
Wit 0 0
so that conditions 2 and 3 are satisfied. a

4.7 Linear Programming Formulations

In this section linear programs are formulated corresponding to all the optimization

problems defined thus far. The linear programs are all equivalent to the original
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problems in the sense described in Section 3.5. The notation of that section is also
in effect here: I for the positive cone in I; and a projection operator Il : [[#*"®

(IF)™*mo which sets the negative elements of each sequence in a matrix to zero. For
compactness of notation,
UELWZ—L
U:=| Upwt |, Vi=[W,VzgR W,V |,
Wit
and
H:=UHV
throughout the section. Also recall from Remark 3.5.2 that if X € {[**"? then
LJ X - H+X—' H+(—X)
o |Xij(k)| = [II4 X + I, (=X)];; (k) for each i, j, and k and hence
X1, = T XYy, + IIL (=201, -

The first linear program corresponds to OPT'" defined in Section 4.3. The linear

program is
LP¥ inf
subject to:
S ST+ T )0 = p < 0 i=1,... n;
7=1k=0
[T+ —T“)f/]ij(k) = H;(k) (i,j) € Sw, k€ Zy

T+ -T7) = TH
(ﬂ? T+7T_) S R+ X (li*')"ix"i' X (lii')'n;_an,

where 7}¥ is defined in Lemma 4.4.4.
The variables in LP™" are 1 € R and

{ )s )€ {1,.. nz},je{l,...,nu-,},k€Z+}.

Note that they are infinite in number. There are n; (inequality) cost constraints,
an infinite number of (equality) convolution constraints, a finite number of (equality)

interpolation constraints, and an infinite number of (inequality) positivity constraints.
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Proposition 4.7.1 LP™ is equivalent to OPT™ under the map ¢ defined, given
a feasible solution (u,T*,T~) for LP™,

Y, T, T7) = W, HWE — (T - T7).
Proof: Use 9)* defined, given K € K,
VK = (”W,,H ~ K|, , T (W.HW;® - K), T, (K - WHW‘L))
O

The next linear program corresponds to an FIR approximation problem OP1 ,:V ,

defined in Section 4.5. The linear program is

L_P-‘;Lw: inf p
subject to:
ST+ T )ijk)| = <0 i=1,...,n;
j=1 k=0
[Ea(T - T‘)]ij (k) = Hy;k) (i,7) € Sw, ke{o0,...,n)

TiE(T* - 1) = TiH
(}I,,T+,T_) € R+ % Ri;xu,;,x(n+1) x eran, X(n+1)

where the matrices in the convolution constraints have been chosen to be finitely
supported. 7 :=n + ny + ny where ny and ny are integers such that

supp U C {0,...,ny} and supp V C {0,...,nv}.
£, : Rppxmox(n+l) , mixna g the natural embedding operator which pads with zeros.

There are 2n;ng(n + 1) + 1 variables in LP, : 1 and
{T( Jii€{l,...,ns}, 5 €{L,...,ng}, k€{0,...,n}}.

Proposition 4.7.2 If there exists i such that 'I?i-:v # () then there exists ny such
that

supp H;; C {0,...,nug} VY(,j) € Sw
and ifn > ng—ny—ny then 'L"IS':’ is equivalent to OPT;W under the map J:LW defined,
given « feasible solution (u, T+,T~) for LP,,

B, T, T7) = W, HWE — £,(T* - T7).
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Proof: The first statement follows from Proposition 4.5.2 and the equivalence is

shown using $,:v defined, given K € -I?',:v ,
Bk o= (|WHWSE — K, , MIL(W.HWS® ~ K), TLIL (K ~ W, HW;" )-

where II,, : I[7**"% Riix"“"x("“) is the obvious projection operator. 0

The next linear program corresponds to an infinite dimensional super-optimal

approximation problem QPT®, defined in Section 4.6. The linear program

LP"v . inf p
subject to:
S ST +T )R] —n < 0 i=1,. s
7=1 k=0
[0+ =TV (k) = H(k) ()€ Sw, ke{0,...,n)

T -T7) = TH
(1, T*,T7) € Ry x (If)exms x (Ifymn

Note that LP™ is very similar to LP. The variables are 1 € R and
{TE®), T5(k) i€ {1,003}, € {1, na}, k€ Zy ).

as in LP" and are infinite in number. The constraints are identical as well, except
that only a finite number of the convolution constraints are enforced. Hence, although
there are still infinitely many positivity constraints, there are only a finite number of
equality constraints.

Proposition 4.7.3 LP" is equivalent to QPT under the map _@;“' defined, given
a feasible solution (y,T+,T~) for LP¥,

¥, T, T7) = W.HW, X — (T~ T7).

Proof: g‘n“' is defined identically to 4" of Proposition 4.7.1, so use é‘nw defined, given
K e Ki*,

B = ([WoHWEE - K L WHWGT - K), (K - WoHWSD))
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which is defined identically to 3*. 0
The last linear program corresponds to a finite dimensional super-optimal approx-
imation problem OPTin“:m, defined in Section 4.6.

LP‘;,":'m : inf p

subject to:

S ST+ T (k)| —p < 0 N
j=1k=0
[Ijgm(T+"T_)‘7]ij(k) = f],(k) (:,7) € Sw, keA{0,...,n}

TEn(T* ~T7) = Ti"H
(u,T+,T—) € R+ % R‘;L-E XngX(m+1) « R'r-*l._zxn.z, x(m+1)

Where &, : Riﬁx""’x(mﬂ) — [}**™ is the same embedding operator as in the formu-

lation of WW above.

n

There are 2nzng(m + 1) + 1 variables in LP¥, : p and
{{@)(k), (T7)ii(k) i€ {1,...,ms}, G €{1,...,na}, k€{0,...,m}}.

Proposition 4.7.4 For every n and m, LP¥,  is equivalent to OPT™  under the

LTI

map _z,éibwm defined, given a feasible solution (u, T+, T~) for LP™,

W (4, TH,T7) 1= W.HWGE — €, (TF = T).

Proof: Can be proved identically to Proposition 4.7.3 if _{éilwm is defined, given K €

iw
==n,m?

B, = (|WHWSE — K

w

o TuI (W, HWSE — K), TLIL (K ~ WZHW;L)> :
1

0

4.8 Example

In this section the incremental gain of a simple FIR high pass filter is computed w.r.t.

several input and output weights. The system is given in terms of its z-transform by

. 9

G=.1>(-1)7

1=0
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ai=1 (Li=5 a;=10
a, =1 1 2 1
e =295 5 1 5
a, =10 10 2 1

Table 4.1: Incremental weighted gain of high pass w.r.t. various weights

Note that G € [; so that it is incrementally stable w.r.t. any weights satisfying the

assumptions of Section 4.1.

The input and output weights to be considered are given in terms of their 2-

SEREEN
ao(l—z) ai(l——z)

and the associated Bezout equations (4.2) in terms of z transforms are

1 0 1 0] [1o0
a(l—2) =1 || a(l=2) =1 |0 1

10 1 0] [to
a(l—2) -1 || a(l—2) -1 o1 |

The parameters a, and ¢; can be increased to reflect decreasing bounds on the input

transforms by

and

and output rates, or decreased to reflect increasing bounds on the rates.

G H"WO',,Vi was computed for several values of @, and @; as an [; problem per
Theorem 4.1.6. The FIR approximation scheme of Section 3.3 was used to solve the
problem, and the optimality of the results were confirmed by solving super-optimal
approximation problems as in Section 3.4. The results are given in Table 4.1.

By way of constrast, ||g,,,||"wo'wi was computed for the same weights and values of

As might be expected, increasing «, for fixed ¢; causes the gain to increase. This is
because the specification corresponding to the choice of W, is becoming increasingly
stringent; a smaller and smaller output rate is being required. On the other hand,
increasing a; for fixed a, causes the gain to decrease. This is because the corresponding
specification is becoming less stringent; a smaller and smaller possible input rate is

being assumed.
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ai=1 ai=5 ai=10
a =1 1 1 1
o =9 1 1 1
a, =10 2 2 .2

Table 4.2: Incremental weighted gain of low pass w.r.t. various weights

By way of constrast, ||g,,,||"wo,wi was computed for the same weights and values of

a, and g;, where Gy, is an FIR low pass filter given in terms of its z-transform by

9
é'lp = .1Zzi

i=0
and the results shown in Table 4.2. In this case increasing a, for fixed «; causes the
gain to increase, due to the more stringent requirement on the output rate. However
for fixed a,, the gain is constant. This reflects the fact that although a smaller bound
is guaranteed on the input rate, this is of little use since relatively slowly varying

inputs are the ones which cause large outputs from a low pass system.

4.9 Discussion

In this chapter, the incremental weighted [, disturbance rejection problem has been
formulated and a solution given. The first step was to define a notion of system gain
appropriate to the weighted I, specification, and show how it can be computed by
solving a standard /; optimization problem. Thereafter, results analogous to those of
Chapter 3 for the unweighted problem were obtained.

The approach, following that of Chapter 3, is to formulate the problem first in
the standard problem setting as a norm (i.e., system gain) minimization and then
as a minimum distance problem in /;. This problem is distinct from the standard [4
problem in that the minimization is done with respect to two free parameter matrices
in l;; one representing the choice of stabilizing compensator and one the computation
of the system gain when that compensator is used. Although it is distinct from
the standard [; problem, there is enough similarity to allow analogous methods for
FIR sub-optimal and for super-optimal approximation to be established. For actual

computation, the problems are finally recast as linear programs.



95

The results are not as complete as those of Chapter 3; it has not been established,
for example, when optimal compensators can be computed exactly via finite dimen-
sional optimizations (as is the case for the !; problem when U and V have appropriate
rank). However, the definition and computation of the incremental gain w.r.t. given
weights together with the approximate solution methods provides a basis for trial
design and experimentation. -

The most important aspect of the chapter is the following: the results show that
a wide range of time domain specifications can be reflected by appropriate choices
of weights, and that the corresponding design problems are as tractable theoretically
and computationally as the standard [; problem. This helps to close a serious gap
between the I; and H, theories from this standpoint. Designers have a great deal of
intuition about the frequency domain and the practical meaning of frequency response
based specifications, and such specifications are readily addressed by the H ., theory
through the use of cascade weights as described in Chapter 1. It seems possible that
specifications of the type addressed here are a natural basis for the development of
time domain based design intuition which is compatible with a tractable theory.

As mentioned in Chapter 1, problems similar to this have been addressed in
[13][14]. In those papers similar weighted specifications were formulated, but the
exact meaning of the problem solved remains unclear. In particular, the substantial
example which was the main subject of [14] was solved under the assumption that dis-
turbances were periodic because the theory could guarantee performance only over a
finite time span. The notion of incremental weighted gain, its relation to the standard
l; problem, its computation, and the synthesis of compensators which are optimal in

the sense of this gain all appear here for the first time.
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Chapter 5

Weighted i Disturbance

Rejection

The problem setting is again the general feedback system of Chapters 2, 3, and 4 and
the problem to be considered is the weighted [, design problem described in Chapter

1. The precise statement of the specification is
Weighted [, DRS:
o C € XYuui, (G,C) is stable, and
* Wyw € I8y and |Wywl|, <1 implies W,z € [, and [|[W,z||, < 1.

where the weights W, and W,, are systems in 757" and X7;:7"%, respectively.

As in the previous two problems, a C which satisfies the specification must be
causal, linear, and time invariant, and it must stabilize G. The second item of the
specification differs, however, from the incremental version of the problem in that all
whose weighted peak magnitude is less than or equal to one for all time must result
in a weighted error with peak magnitude less than or equal to one for all time.

Similar results are obtained as for the incremental weighted problem, and the
chapter is organized identically to Chapter 4. In Section 5.1 a notion of stability
and a norm on the causal linear time invariant systems appropriate to the weighted
specification are defined. It is shown here that, unlike the norm for the incremental
problem, this one is in fact an induced norm between weighted versions of [,. The

design problem is formulated in terms of this norm in Section 5.2 and assumptions
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are stated there. Essentially they are the same as those in effect for Chapter 4; the
problem is solved for G, W,, and W,, in X; with W, and W, stable and having
stable left inverses in X ;.

In Section 5.3 the norm minimization problem is reformulated as a minimum
distance problem, not in [7**"?, but in [;(Z)":*"%, (Even though the system under
consideration and the weights are causal and hence have impulse responses in /;, the
feasible subspace must be allowed to include two-sided sequences; Section C.2 contains
the pertinent results analogous to those for the one-sided case.) These technical
differences reduce the similarity to the unweighted problem, hence this problem is
treated last, and fewer results are obtained. Existence of a minimizer is established
in Section 5.4, sub-optimal and super-optimal approximations are treated in Sections
5.5 and 5.6, respectively, and linear program formulations are found in Section 5.7.
In the case of super-optimal approximation, it is not readily apparent that a double
iteration method involving finite dimensional optimizations can work, although this
is a reasonable conjecture. The chapter concludes in Section 5.8 with a discussion of

the results, related work, and the main contributions of the chapter.

5.1 Weighted Stability and Gain

Stability and gain are defined in this section analogously to the way they were in
Section 4.1. For systems in X; and for stable weights in X; with stable left
inverses in Xy, both notions of stability w.r.t. given weights are equivalent (i.e.,
both are equivalent to just stability). However in this case the norm computation is
not equivalent to a standard /; problem, but to one in which the free parameter is
allowed to range over [;(Z). As a consequence the norm defined here is in general

smaller than that defined in Section 4.1.

Note: In this section the operations <« and v denote left and right correlation for
sequences and matrices on Z (as opposed to Z,). See Section C.2 for the definition
and for properties of correlation operators and their adjoints. Impulse responses of
systems in Xy; are to be considered as elements of I, supported on Z,. instead of as
elements of /, as has been the case.

In this section G again denotes a given system in X, and not the generalized plant.
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Definition 5.1.1 A system G € X™™ is stable w.r.t. W, € X™" W, € X1 if

1. WGz €l for all z € W1 (li‘o_l_) and
2. there exists ¢ < oo such that

IWeGall,, < clWiall,, VoW (i,). (5.1)

If G is stable w.r.t. W,, W,, the smallest ¢ satisfying (5.1) is the gain of G w.r.t.
W,, W. and is denoted by p(G; Wo, Wi).

The motivation for this definition is the same as that of Definition 4.1.1; it guar-
antees some bound on weighted error if the weighted disturbance is bounded. There
is a similar stability test provided by the following proposition.

Proposition 5.1.2 Let G € X™™, W, € ™", and W; € ™", and let WL ¢
Xwon be such that WyEW; = T and WL is stable. G is stable w.r.t. W,, W, if
and only if WoGWE is stable.

Proof: (if) Suppose W,GW,™% is stable and consider any x € W.! (lgo+). Then
WGz = WoGW, Wiz € I, so that condition 1 is satisfied. Also, [[WoGz||, <
”WogVVi_L “IWi [Wiz||,, so that condition 2 is satisfied by ¢ := ”WOQVVi'L”IOO_i and G
is stable w.r.t. W,, W..

(only if) Suppose W,GW, L is unstable. If there exists & € I% + such that
WoGW; bz ¢ 172 | then z := W Fs € W (l&+) since Wiz = WW, L& and WW L
is stable, but WoGz = W,GW, L& ¢ I72 . Hence condition 1 is violated and G is not
stable w.r.t. W,, W,. If such an Z does not exist then, given any ¢ < oo, there must

exist # € 1%, such that
uwogw%nlw >c vaiw,--Llllm_i [E
If z := W% then, as above, z € W™ (I£,,) but
IWaGall,,, = [WeGWiH8|, > c[Wiw®| _ liéll,, = clWiall, -

Hence condition 2 is violated and G is not stable w.r.t. W,, W.. (]

The next proposition shows that in general incremental stability w.r.t. given

weights is a stronger requirement than stability w.r.t. the same weights.
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Proposition 5.1.3 Let G € Y™™ W, € ™", and W, € Y™ ", If G is in-
crementally stable w.r.t. W,, W; then G is stable w.r.t. W,, Wi and p(G; Wo, W) <
pi(G; Wo, Wi).

Proof: Consider any z € W,! (l;}°+). Since G is incrementally stable w.r.t. W,, W,,

Pi(g; Wos VV,) “’PNVVI:E”I“,

IPnWoGz|,, <
< pi(Gs Wo, W) Wizl

for all N € Z. Hence WGz € I, and |[W,Gzl||,_ < pi(G; Wo, W) [[Wiz]|,_. Since
z e W (lﬁo_l_) was arbitrary, (5.1) is satisfied by ¢ := pi(G; Ws, W), which implies
that G is stable w.r.t. W,, W, and p(G; Wy, W,) < pi(G; Wa, Wi). O

Assumption 5.1.4 In the remainder of this section G denotes a system in Xn™

W, € Zn2® and W, € Xmr™ denote stable systems with stable left inverses in Xgy;.
Hence they have impulse response matrices W, € 17" and W; € I7*™ which are left

invertible in l. Because l; is Hermite, the Bezout equations

[v;‘/:][w W"c]=[; ” [Wi—L}[Wi Wf]=[(€0] (5.2)

Wit I
can be constructed where all additional matrices on the left hand sides of (5.2) are
in ly. In the remainder of this section, they denote arbitrary choices satisfying the
equations, given W, and W,.

Assumption 5.1.4 is identical to Assumption 4.1.3. The next proposition shows
that stability w.r.t. any weights satisfying this assumption is equivalent to stability
when G € X, and hence to incremental stability (because of Proposition 4.1.4).
Moreover the gain w.r.t. given weights, like the incremental gain, is a norm on the
stable systems.

Proposition 5.1.5 G is stable w.r.t. W,, W; if and only if G € ;. Moreover,
”'”Wo,wi = p(; Wo, W) is a norm on the space of stable systems in X77™

Proof: Because W, satisfies the hypotheses of Proposition 5.1.2 that proposition can
be applied to prove the first statement; it says that G is stable w.r.t. W,, W, if and only
if WoGW,L is stable, where WL is any stable left inverse of W in Xy,;. Now if G € [
then WOGW}'L € l; and VV(,Q)/Vi'L is stable and causal. Conversely, if Wogm"L 1s
stable and causal then W,GW,™% € I;; hence G = W L(W,GW, L)W, € 1.
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For the second statement, “'”Wo.Wi is non-negative by definition and is well defined
for every stable system. It is easy to check that for linear W, and W,, ”'”wo,wi
scales and is subadditive. Moreover, ||G ”Wo.wi = 0 implies that Gz = 0 for all
z € W (l4), which implies that G is the zero system. Hence ||| Wo,W; 1S & norm on

the stable systems. 0

Theorem 5.1.7 will show that ||G ”Wo,W; can be computed for any G which is stable
w.r.t. Wo, Wi by solving a minimum distance problem, as in the case of ||-|[}y_ .-
However in this case the computation is not precisely a version of O PT because the
free parameter must be allowed to range over [;(Z) instead of just {;. This is the only

difference, however; W,GW,™% and W;* are still in /;. Hence the infimization

inf { [wewit ~ K|, K € Ka(l, Wil)} =z, (5.3)

where
Kz(I, W) = {K € h(Z)™*" : 3Q € L(Z)™*" satisfying K = QW*}  (5.4)

can be posed and Bezout equations

[VVV‘_/‘_L}[W w}:[é‘;} (5.5)

exist for W;t.

Before stating and proving Theorem 5.1.7, a lemma is needed to establish that
the key features of OPT needed for the proof of Theorem 4.1.6 for the incremental

weighted case have appropriate analogs for the infimization 5.3.

Lemma 5.1.6 The infimization (5.3) has the following properties:
e there exists Ko € K z(I,W;*) such that ”WOGW}_L - Ko ”I =z, and
1

o given ¢ > 0, there exists N € Z and G € co(Z)™*" such that

(GoWF WHWL) > 77—
Joswi,, <
supp G < {...,N—1,N}
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Proof: (First item): If K € K z(V) then (5.5) implies KW, = 0. Conversely, if
K € [j(Z)™*% and KW, = 0 then, using the reverse of (5.5),

K = K [ We W ] [ ‘/I[//‘./i—lb:l — I(VVicVVi_L

= Qwd
where Q := KW € 1;(Z)"*(*="), Hence K € K z(I,W;*). Thus K € Kz(I,Wt) if
and only if K € §;(Z)™** and KW, = 0.

Define a convolution operator 7y, on l;(Z)™*%, given K € l,(Z)™**,
Tw K = KWi.

Tw, € B(L(Z)™*",,(Z)™*") because Wi € [, and it is clear that Kz(I,W*) =
N (Tw,).
Next define a correlation operator 'f'wi on co(Z)™*", given G € co(Z)™*™,
'f'wi =G> W,

’f'wi € B(co(Z)™*™, co(Z)™*") by Proposition C.2.5. Moreover, by that proposition,
ﬁ{,i = Tw,. Hence K z(I,W*) = N ('f'ﬁ,l) and is weak*-closed by [26, Theorem 4.12].
Since K z(I,W;1) is a subspace and [;(Z)™*" is the dual of ¢o(Z)™*", Corollary B.2.4
applies to show that there exists a minimizer for the infimization (5.3).

(Second item): Consider the following:

vz = inf { |WoHWE - K| : K € Kal, WiJ-)}

i
int {[WoHW; " — K|, : K € N (%)}

= sup {(é, WOHVVi_L> :BR ('f'w')}

= sup {(Go WEWHW ) s G € a@y™™, |G W], <1

= sup {(G» WEWHWE) : G € ()™, |Go W], < 1}

where ¢o(Z)™*™ denotes the matrices in co(Z)"*" each of whose entries is left sup-
ported. The second line follows using the duality theorem B.2.3 and the fact that
R (T)* = N (T*) for any bounded linear operator 7. The third line uses the defini-
tion of ’f'wi and the fourth follows because the left supported sequences are dense in

co(Z) (this is easily shown).
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Hence, given € > 0, there exists G € ¢o(Z)™*" such that <va’[> w7, WOHI/Vi"L> >
vz — €. Take any such (¢; because it is left supported, it is possible to choose N large
enough so that supp G Cc {...,N — 1, N}. O

The proof is very similar to that of Theorem 4.1.6 but the fact that the infimization
(5.3) is set in {;(Z) rather than /; and the consequent fact that Kz(I, W;') is the
annihilator of the range of a correlation operator defined on two-sided sequences allows
construction of an offending disturbance whose weighted /,-norm is bounded by 1 for
all time. In the incremental weighted case the fact that one-sided correlation operators
arose prevented this; the weighted /o, norm bound on the offending disturbance could
be guaranteed only up until some given time.

Theorem 5.1.7 ||Gllyy, w, = 72-

Proof:
191lwe,w; < 7z: By Lemma 5.1.6 there exists (o € 1,(Z)™*(*=") such that

|

WoGW,E — QoWit

w=1%
1
Moreover, for all w € I,

[WeGwll,,,

|WegWiE = QoW Wiau|,

| MW E = QW) Wil
|WGWit — QoW IIWiwll,,

7z |[Wiwl],., -

IA

Hence (5.1) is satisfied by ¢ := vz and ||g||wo,wi < 7z.
G lwo,w, = 7z Given any e > 0 we will find w € I, such that |[Wwl|, <1
but ||W.Gw||, > vz — €. Hence, using Definition 5.1.1, ||g||W0'Wi > vz — €. Since €

was arbitrary, HgHwo'wi 29z
Accordingly, let € > 0 be given. Lemma 4.1.5 can easily be modified for [1(Z) case

to show that
inf { |Gy — QW] Qe 11(2)“(1'1-")} > g

for some ¢ € {1,...,7m}. Let this value of 7 be fixed for the remainder of the proof.

By Lemma 5.1.6, there exists N € Z and & € Pnco(Z)1*™ such that

<m > W, (WOGWi“L),'.> >z —€ (5.6)
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and

zoWT| <1 (5.7)
== w7

Now define w € 1%, by w := {z(~k)},cz; This is the offending w since, for each
i€ {l,...,7i} and k € Z,
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Hence

zo W = {(W, * w)T(—k)}
Using (5.7) and the definition of ||-||,_, we conclude that ||[Wiw]|, < 1.
On the other hand,

<.’c > VViT, (WOGI/V{'L),'.> = (z,(W,Q):.) = z": f: (WoG)ij(n)zi(n)

keZ’

where the first line follows using the fact (Proposition C.2.5) that the adjoint of a
correlation operator is a convolution operator and the second using the definitions of
functional evaluation (see Proposition C.2.1) and w. Finally, using (5.6), we conclude

that ||[WoGuw||, > 7z — ¢, and the proof is complete. O

Proposition 5.1.3 shows that ||-[|y,, . < |[||'Wowl in general; of course, the two
norms could nonetheless be identical. The following simple example shows that this
is not the case. (For ease of notation, the space A of all z-transforms of sequences in
[; with norm "G’”A := [|G|,, is introduced; this prevents us from needing a notation

for sequences. Recall that z is taken as the delay in the definition of the z-transform.)

. 1
W; =
[—1+3z]

Example: Let H =W, =1,



104

and choose i/V;‘L =[1 0]and I/I}ii- =[1—-32 1] to satisfy the Bezout equations (5.2).
IlH”iVVo,Wi and ||M[l,y, w, are computed by solving inf ||[1 0]+ ¢[1—3z 1]||, =:7
where ¢ ranges over Iy and [;(Z), respectively. It is not hard to check that v > 1

when ¢ ranges over [; since
L 0]+4[1—32 1]l,=11+d(1-32)l,+ldll4 = (1~ lgl) + lgol =1

where ¢o is the first element of ¢. On the other hand, if we take § = 227! then

q € (Z) and

Ll

[T 0]+4[1—-32z 1]l,=1+4(1 =32)|l,+ldll4 =

Hence v < 2 if ¢ is allowed to range over l;(Z).

In terms of signals it is not hard to see the difference in the norms. It is not hard to

check that if [w(k)| > £ for any k then ||(Wiw)(k + 1)||, > 1. Hence [[Wiw]|, <1=
llw||,, < 2 so that 19 lwo,w, < 2. On the other hand, if w = § then ||[PoWwl|, =1

and |(W,Gw)(0)| = 1. Hence ||G||} s = 1o

Next it is shown that the gain of a system w.r.t. weights satisfying Assumption
5.1.4 is an induced norm between weighted versions of [. In particular, given any

linear weight a weighted norm can be defined on signals which are mapped into I

by the weight.

Definition 5.1.8 Ifz € I, W € X, and Wz € Iy then pw(z) := ||Wz||, is the
W-weighted l-norm of z.

With no further assumptions on W, pwy(-) is actually only a semi-norm, as it can
have a null space. Moreover, it need not be defined on all of I, (e.g., if W ¢ )
and can be defined for signals not in Iy (e.g., if W not left invertible in /,). Under

Assumption 4.1.3, however, it is defined precisely on [, and is a norm.
Proposition 5.1.9 If W € l; and has a left inverse in [y then Wz € I, if and only
ifx € le, and |||,y := pw(-) is @ norm on .

Proof: Let WL denote any left inverse of W in [;. For the first claim, if z € [
then Wz € I, since W € ;. Conversely, if Wz € I, then z = W-IWz € I,

since WL € [,. For the second claim, the properties of a semi-norm follow from the
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linearity of W and the corresponding properties of ||||.,. Moreover, |z|[,, = 0 =
Wz=0=z=WTIWz=0. m

loo under |||l can be called W-weighted loo. It is clear that |[H]|y,, . is the
induced norm of H viewed as a map from )’Vi-weighted l» to W,-weighted [, since
[Hllwew, = sup{l[WoHzlly, : Wiz € leo, [[Wiz|l,, < 1}
= sup {|[Hell, : © € L, llallw, <1}

using the definition of ”H”Wo,wi for the first equality and Definition 5.1.8 and Propo-

sition 5.1.9 for the second.

5.2 Problem Statement

Recall the specification:

Weighted [, DRS:
e C € Xy, (G,C) is stable, and

e Wyw € I5% and |[Wywl|, <1 implies W,z € 53, and ||W,z||, < 1.

Tz+nz Ty Ng

where the weights W, and W,, are systems in X7;~"* and X", respectively.
If G € X and W,, W,, € X are stable and have stable left inverses then the

results of Section 5.1 can be used to formulate the design problem as follows.

DR¥(G) : inf {1 T2(G,C)lly, s, : € € C(©)} =t pwr

If C € C(G) then T.,(G,C) is stable and hence the norm above is always defined;
itwpr is defined if and only if G is stabilizable. Moreover, if 7,,(G,C) is stable then

ITew(G.C)llw,m, = sup {IWazll, + w € 1254, (Wl < 1}

DRY(G) represents the design problem in the usual sense; the feasible solutions for
DRY¥(G) are the stabilizing compensators for G and the cost of each is the worst-case
[W:z]|, overall [Wyw]|, <1 when that C is used. DR¥(G) is feasible if and only
if the first item of the specification is met, and gwpr < 1 if and only if the second

item of the specification can be met.
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Notation and Assumptions

In the remainder of this chapter all assumptions on G, W,, and W,, made in Chapter
4 are in effect. G € Xy, Gy has a coprime factorization over [y, G stabilizable, and
associated H, U and V matrices have decompositions as in Assumption 3.0.1. W,
and W,, are in X757 and X", respectively, are stable, and have stable left
inverses in X ;. Recall the associated Bezout equations

WL 10 WL I0
2 inewe 1] [ it 3] o

where the additional symbols on the left hand sides denote arbitrary matrices over [y

satisfying the equations.
All other notation in Chapter 4 has the same meaning here.

5.3 Formulation as a Minimum Distance Problem

Because computation of ||g||wzyww is a minimum distance problem in [(Z)"zX"%,

DR"(G) can also be formulated as one:

OPT™ : inf {"WZHW,;L ~K|, iK€ K“’} —_—
where
K" :=
) _ Qe O VWU';L
{K.Hchll, QwEh(Z)s.t.K——[WzU 1][ 0 Ow Wi

is a subspace of lj(Z)**"». OPT" depends on H, U, V, W,, and W,, and K"
depends on all of these except H; these dependences are suppressed.

The following analog of Theorem 4.3.1 (whose statement is simplified somewhat
as well) shows that OPT" is equivalent to DR¥(G,W,, W,,).
Theorem 5.3.1 DR*(G,W.,W,,) and OPT" are equivalent in the following sense:

1. IfC € C(G) and Q € Q(G,.) is constructed from it as in Proposition 2.3.11 then
K :=W,UQVW;L + K, € K¥ where K, is « minimizer for (5.3). Moreover
[W-EWE — K], = 1T, C)lw,
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2. If K € K¥, Q € Q(Gy.) solves K = W, UQVW L + QwWg for some Qw €
[1(Z), and C is constructed from it as in Proposition 2.3.11 then C € C(G) and
17(G, Ol < |W-HWZE - K

n'
3. p¥ = pwpRr-

Proof: For item 1, such a choice of K is possible because, by Lemma 5.1.6, a min-
imizer always exists for (5.3). That K € K" follows because every feasible so-
lution K for the norm computation (5.3) can be written K = QuwW_ for some
@Qw € L(Z); hence so can K,. The equality of the norms is immediate using
Theorem 5.1.7 and the fact that, by Proposition 2.3.11 and the definition of K,
W, HW L + K = W,(H -UQVYW L + K, = W, T,..,(G,C)W;L + K,.

For item 2, the existence of a Q € I**" is guaranteed by the definition of K™.

By Proposition 2.3.11 and the choice of @
W.Tou(G,C)W, " ~ QwWy = Wo(H - UQV)WE + QwWy = W.HW;! — K.

The norm inequality follows from Theorem 5.1.7 which shows that || Z;.,(G,C)lly, w,
is the infimum over Qw € l1(Z) of the ; norm of the left hand side above.

Item 3 follows from the preceding items. a

The consequences of Theorem 5.3.1 are the same as those of Theorem 4.3.1:

e To each feasible solution for DR¥(G, W,, W,,) there corresponds a feasible so-
lution for OPTY of the same cost. From every feasible solution K € K" for
OPT", one or more corresponding feasible solutions for DR¥(G,W,, W,,) can

be constructed of no greater cost.

o To each minimizer for DR¥(G,W,,W,,) there corresponds a minimizer for
OPT"; hence all minimizers for DR¥(G, W,, W,,) can be found from minimizers

for OPTY via the construction of item 2.

Item 2 of the theorem and the above discussion are simplified as for the incremental
case: the provision in item 2 for the case in which the constructed @ is not in Q(G,.)
is omitted. A random perturbation on () can also be used here to produce a stabilizing
Ce such that ||Z..(G,C)llw, w, < “WZHW',;L - K”l1 + e for any € > 0. If G, (0) = 0

then this case does not arise.
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To compute stabilizing Cs whose performance does not exceed ” W, HW;L - K ll
1
given a feasible solution K for OPT", the same parametrization as given in Proposi-

tion 4.3.2 applies, i.e., if K € K% then the set
QY (K):={Q e ™ : K = W,UQVW;* + QwW for some Qw € L(Z)}

is given by

YU EWALKW, VEREDY Q vt
—-R UYL z wYR v 12 L .
{[ Ur" Ug ] [ Qu Qs Vit P Q12, @2, Qa2 €L

The proof of Proposition 4.3.2 goes through to establish this; the fact that Qw is

allowed to be in /1(Z) is immaterial to the parametrization.

5.4 Existence of a Minimizer

The following lemma shows that relationship between the feasible subspace K% of
OPT" and K(W,U,V) is analogous to that between K™ and K (U,,V). The proof
is essentially identical to that of Lemma 4.4.1 but is given to reinforce the similarity
of the situations.

Lemma 5.4.1 K% = {K € [,(Z)"sx™ : KW,, € K(W,U,V)}.

Proof: If K € KY then K € [;(Z)"*" and K = W, UQcVW ;L + QwW.t and
hence, using (5.8), KW,, = W.UQcV. Since Q¢ € l;, KW,, € K(W.U,V). Con-
versely, if K € [;(Z)*=*"s and KW,, € K(W,U,V) then KW,, = W,UQ¢V for some
Qc € 1. Using the reverse of (5.8),

K = KW,W;t+WiWy) =W.UQcVWr + KWWy

= [wu I][%C QOWHVV?,/'EL}

where Qw = KW¢ € 11(Z) since both K and W¢ are. Hence K € K™. 0

As a consequence, a characterization of the same form as that of K™ is possible.
The difference is that the convolution of item 2 is two-sided because K € [y(Z)"=%"s

rather than {[**"®, and an additional requirement (item 4) is needed.
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Theorem 5.4.2 K € KVY if and only if

1. K € y(Z)m%ne,

UELWZ—L *
2. | UtwrE | K[ W ViR WVt | =0
wi 0

where x denotes an irrelevant block, and

oS O O

K4

3. [(UgEWL) K (W Vie ). ;)™(20) = 0 for each (3,5) € {1,...,mu} x {1,...,7v},
each 2o € Z;;, and each n € {0,...,m;;j(z0) — 1}, and :

4. KW, € [pFxm,

Proof: The proof is similar to that of Theorem 4.4.2, but enforcing the requirement
of Lemma 5.4.1 that KW,, € [7**"™ and not just KW,, € l;(Z)":*" requires the
extra item 4 (the point is that the convolution must be zero for negative time so that

the free parameter corresponding to the compensator is ensured to be causal). O

The proof of the existence theorem in this case is similar to previous ones but -

complicated by the need for a mix of two-sided and one-sided spaces. It is presented
as a whole as the requirements of Theorem 5.4.2 do not partition neatly. In spite of

the added complication, there is no essential difficulty in establishing the result.

Theorem 5.4.3 OPTY has a minimizer.

Proof: An operator 73 € B(cg¥ x R™t x ¢§2*™ co(Z)"*") will be constructed
from various previously defined operators such that K¥ = A/ (('j}{”)*), establishing

existence.
” . s ST
Define 73, given (Gg,a,G-) € g% x R™ x ¢§# X",

¥ ((Go, 0, G)] i= Tw, Ex Tw,u v €sy Go + Tw, Ex Twuy Tl + Tw, G- (5.9)

where Tj% € B(R™,cj**™) is defined in the proof of Lemma 4.4.4 and Ty,yy €
B(cy*™) and &g, € B(cz",ca**™®) in the proof of Lemma 4.4.3.

Tw, € B(co(Z)":*™, co(Z)"*™5) is defined

TWIUG = GD uli?:7
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&, € B(cfE™  co(Z)"*™) is defined

(E+G)ij(k) = { Gij(k) ke Z,

0 k<0
and £_ € B(ci*", co(Z)"*") is defined
- Gii(-k-=1) k<0
(E-G)s(h) = FHF
0 keZ,

Computing the adjoint using previous computations for Tiz, ’j'sz,v, and ésw, Propo-
sition C.2.5 for 7y, , and the facts that £ = I, € B(ly(Z) %™, }¥*™) defined,
given K € Ij**™, I K := {K(k)},cz,, and that €2 =1I_ € B(ly(Z)rexna [pEX"0)
defined, given K € I7**"*, I K := {K(—k—1)},cz, we find that (T)* can be

l?zXnm

written, given K € ,

(T2)* K = (s, Tw,uy I Tw, K, T Tw,uy 4 Tw, K, I-Tw, K)

In spite of the complication, it is not hard to check that K¥ = A (('j}{”)*), the last
component ensures item 4 of Theorem 5.4.2, i.e., that KW,, € {**"®. The first two

components combined with the third ensure, respectively, items 2 and 3. o

Of course a corollary analogous to Corollary 3.2.5 holds in this case as well.

Corollary 5.4.4 If G,,(0) =0 then DR¥(G,W,, W,,) has a minimizer.

5.5 Suboptimal Solutions via FIR Approximation

OPT"Y is again infinite dimensional problem as OPT™ is. In this section, an FIR
upper bound approximation method for OPT" is formulated which closely mirrors
that for OPT™. It is also applicable in precisely the cases in which its analog is for
OPT™,

Define for each n € Z, an optimization problem

OPT" . inf {“ W.HW;" ~ K|, - K € F‘”} —
where

K, = {K € KY :supp (W, HW;E - K) C {—n,...,n}}
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Note that K, is a subset but not a subspace of 4(Z)"*"3. Both OPT, and K,
depend on H, U, V, W,, and W,,; these dependences are suppressed.
The following proposition shows that the sequence of problems, when feasible,

approximates O PT" from above under the same assumptions as in the case of OPT',

Proposition 5.5.1 If there exists N € Z,. such that Ky # 0 and the finitely sup-

ported matrices are dense in KY then
{7in }ozn \ oPT @SN — 00.

Proof: The proof is virtually identical to that of Proposition 4.5.1 with a minor

adjustment for the two-sided truncation; the argument is not repeated. o

For finitely supported weights (i.e., W, and W,, polynomial with polynomial left

inverses) the FIR approximation scheme for OPT" can still be used precisely when

it can for OPT.

Proposition 5.5.2 If W, and W,, are finitely supported and have finitely supported
left inverses in ly then there exists n € Zy such that K, # 0 if and only if there
exists n € Zy. such that K,(H,U,V) # 0.

Proof: If there exists K € K(U,V) such that H — K is finitely supported then by
Proposition 4.5.2 there is a feasible solution K for OPT™ such that W,HW ;L — K
is finitely supported; embedding this in {;(Z)"*™® gives a feasible solution for OPT"
such that W,HW-L — K is finitely supported. The converse is established identically

to the proof of Proposition 4.5.2. O

5.6 A Converging Lower Bound on uwpgr

The super-optimal approximation scheme, although only the infinite dimensional ver-
sion, is developed in this section. The additional complication of two-sided sequence
spaces makes it unclear whether or not a finitely supported minimizer exists for each
such problem as it does in the previous problems, although it is a reasonable conjec-
ture. In any event, a double iteration scheme can be formulated as in Section 4.6 and

computational experience may help determine whether this is indeed the case.
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Define for each n € Z, an optimization problem

QPT* inf {||W2HW,;L ~K| i Ke _K_,“[} =
1
where
KeK! < Kel#", (5.10)

K satisfies Conditions 3 and 4 of Theorem 5.4.2, and
Uptwt x 0
ULW L | K[ WuVg® WV || (B)=0 o
Wit 00

for all k € {0,...,n}

K is a subspace of K".

Theorem 5.6.1 {ﬁ:’ ©o ./ 1Y asn — oco. Moreover, for each n € Z,., OPTY has
a minimaizer.

Proof: The proof is very similar to that of Theorem 3.4.1. {p¥}52, is well defined
because, for any n, 0 € K" and, for any K € K, W, HW L — K”I1 > 0. Also,
£ < p¥ for each n and the sequence is non-decreasing since n; > n, implies K, D

K, D K"

—Tl1

. ~iw
To show convergence define for each n a map I, , given (Gg,a,G-) € v x
R™ x cjzx"o,

j;: [(Gc, o, G_] = Twwé.fj-wzyyvésw’ﬁnGc + 'j'w.,,f:'+7~'wzu,v7~'1"§a + j—wwé_.G_ (5.11)

where all operators are defined as in the proof of Theorem 5.4.3 except P,, which
is the n-th truncation operator restricted to ¢g* all operators are bounded, as has

been established previously. Moreover, using previous computations and the fact that

Pt =P,
(T K = (Pulls, Twov Ly Tw, K, T Tw,uv i Tw, K, I_Tw, K).

Continuing with the argument, R (i'_ :) T N ((_7::)*) = K7 so the duality theorem
B.2.3 gives

gy = sup {(G,W.HW;*): BR (L)}
= sup {(’f}?’é, WzHW;L> :GER (7:",,) x R™t x cp2*™e, “'ﬁf’é’”lw < 1}
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where 73 is defined in equation (5.9). Hence
sup ¥ = sup {<’]’,‘”G W.HW;) : G € g% x R™ x g™, |
= s {(wmwst) : BR (7))
= inf {"WZHW,;L K|, K eN ((7,W))}
= ,u,w
For the second statement, K% = A" ((Z,)*); hence it is weak*-closed and QPTY
0

7], <1

has a minimizer.

Although finitely supported minimizers are not guaranteed, if they should exist
they can be used to compute stabilizing compensators as in the previous problems.
Proposition 5.6.2 If K € K for anyn,m then

K .= W UL U YW LKW, Vi RVRW L € K.

Proof: If I € K it is easy to check using the definition in (5.10) that K satisfies
the three conditions of Theorem 5.4.2 and hence K € K(U,V). First, X € K¥ =
K € I1**™ so that condition 1 is satisfied. Also,

Urtwt U tW-LKW,VER o
ULWL | K[ W, Vgh W,V | = 0 0
Wi 0 0

z

so that conditions 2 and 3 are satisfied.

5.7 Linear Programming Formulations

In this section linear programs are formulated corresponding to all the optimization
problems defined thus far. The linear programs are all equivalent to the original
problems in the sense described in Section 3.5. The notation of that section is also
in effect here: [{(Z) for the positive cone in [;(Z) and a projection operator II, :
j(Z)rzxmo — If(Z)":%"s which sets the negative elements of each sequence in a
matrix to zero. For compactness of notation,
Uptwrt
U:=| Utw;r |, V=] WVzP W,V ],
W
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and

H:=UHV
throughout the section. In addition,
T = T"Tw,uvL+ T,

where 77" is defined in the proof of Lemma 4.4.3, Tw,u,v in the proof of Lemma 4.4.3,
and Il and 7w, in the proof of Theorem 5.4.3. (Note that IT; here is a different

projection; there should be no confusion as it does not arise again separately for the

rest of this section.)
The first linear program corresponds to OPT" defined in Section 5.3. The linear

program is

LPY: inf p

DX (TH+T7)yk)| —n < 0 i=1,...,n;
i=1k=-00
[U(T*—T")V]ij(k) = Hi(k) (i,§) € Sw, k€ Z,
Tt -T7) = I'H
(Tt - T7)W, S =0 kef...,-2,-1}  (5.12)
(1, T*, T7) € Ry x IF(Z)=*m x I} (Z)"xmo

The variables in LPY are 1 € R and
{T(k), T5(k) i€ {1,...,ns}, G € {1,...,na}, k€ Z}.

Note that they are infinite in number. There are n; (inequality) cost constraints,
an infinite number of (equality) convolution constraints, a finite number of (equality)
interpolation constraints, and an infinite number of (inequality) positivity constraints
as in the corresponding linear program in the incremental case. The additional infinite

set of constraints (5.12) arise from Condition 4 of Theorem 5.4.2 and are called

causality constraints.
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Proposition 5.7.1 LP"Y is equivalent to OPTY under the map ¥ defined, given a
feasible solution (1, T*,T~) for LP¥,

" (u, TH,T7) := W.HW;E — (Tt - T").
Proof: Use ¢* defined, given K € KV,
VK = (||W,,HW,;L — K|, » W (W.HWS — K), Ty (K - W,HW,;L)) .
0

The next linear program corresponds to an FIR approximation problem OPT,,

defined in Section 5.5. The linear program is

LP, : inf g
subject to:
S 3 (T4 T)k)| —p < 0 i=1,...,n;
j=1k=—n
ETt=T7)] () = Hy(k)  (,5) € Sw, ke{-n,...,A}
TYE(T* —T7) = TPH
[(T+ - T)W, ] (k) = 0 ke{..,—2,-1}
(/‘7T+ T= ) € R+xR:_;xn.;,x(2n+1)erfxnu—,x(2n+1)

where the matrices in the convolution constraints have been chosen to be finitely

supported. 71 := n + ny + ny where ny and ny are integers such that
supp U C {0,...,ny} and supp V C {0,...,nv}.

£, ¢ RoEXmax(@ntl) g (Z)mexna g the natural embedding operator which centers

and pads with zeros on both sides.
There are 2n;ng(2n + 1) + 1 variables in LP ¢ and

{Ti k), )ii€{L,.uns}, § € {1, na}, k€ {=n,...,n}}.
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Proposition 5.7.2 If there exists it such that K5 # 0 then there exists ny such that
supp H;; C {~nu,...,nu} V(i,j) € Sw

and if n > ng —ny —ny then LP, is equivalent to OPT, under the map J,‘:’ defined,
given a feasible solution (u,T*,T~) for LP),

P, T, T7) o= W, HWE — E,(T+ - T7).

Proof: The first statement follows from Proposition 5.5.2 and the equivalence is

shown using fb_: defined, given K € K.,

~

B K = (|| W.HW; — K|, T (W HW,* — K), TLIL (K ~ W,HW,;L)) .

where II,, : [73*™% — fo"""xm"“) is the obvious projection operator. 0

The next linear programn corresponds to an infinite dimensional super-optimal

approximation problem OPTY defined in Section 5.6. The linear program

LPY : inf
subject to:
Zw YT+ T )y(k)f —p <0 i=1,...,n;
j=1k=~o00
0@+ =1)V] (0 = Hi(k) () € Sw, kE€{0,...,n}
T -T7) = T'H
[(T*-—T‘)Ww]ﬁ(k) = 0 ke{..,—2 -1}
(0, T+, T7) € Ry x (If)sxms x (1)<

Note that LP} is very similar to LP". The variables are £ € R and
{T(k), T;(k):i€ {1,...,ns}, j € {1,...,na}, k € Z}.

as in LPY and are infinite in number. The constraints are identical as well, except
that only a finite number of the convolution constraints are enforced. There are still

infinitely many positivity constraints and an infinite set of causality constraints.
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Proposition 5.7.3 LP} is equivalent to OQPT) under the map 3" defined, given a
feasible solution (p,T*,T~) for LPY,

¥ (u, T+, T7) := W, HW;L — (T* ~T").

Proof: " is defined identically to 4™ of Proposition 5.7.1, so use _12)_: defined, given
K € K", |

VK = (WoBWGE - K|, L HWSE - K), (K - W.HWST))

which is defined identically to ™. o

5.8 Discussion

In this chapter the weighted [, disturbance rejection problem has been formulated
and a partial solution given. A system gain appropriate to the specification was first
defined and it was shown that it can be computed via an optimization similar to a
standard /; optimization problem, but with the feasible subspace allowed to range over
all of [;(Z). As a consequence, it is not clear that the norm can be computed via finite
dimensional optimization except in certain cases. In particular, if G is approximated
by an FIR system and finitely supported weights with finitely supported left inverses
are chosen then the norm computation can be approximated finite dimensionally.

The remainder of the results are a subset of those obtained in Chapter 4 for the
incremental problem. It is shown that an FIR sub-optimal approximation scheme can
be applied for precisely the same generalized plants and weights as in the incremental
case. (FIR approximation was the only solution method available in [; optimization
when it was first introduced as well.) The super-optimal approximation scheme is
given in its infinite dimensional form. While it is not shown that such problems
have finitely supported optimal solutions as required for a finite dimensional double
iteration to produce a true lower bound, such a scheme could nonetheless be imple-
mented. Based on computational experience gained in the corresponding method for
the standard /; problem, it seems likely that this would succeed.

As in Chapter 4, the most important aspect of the results obtained here is that

they represent a substantial step in the direction of a tractable theory appropriate to
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a very practically appealing design specification. The same references to related work
as in Chapter 4 ([13][14]) are the only ones available here. As noted in Chapter 4
the problem addressed there is not well defined; in particular no distinction between

weighted and incremental weighted specifications is made.



119

‘Chapter 6

Conclusion

A brief summary of the thesis is given in Section 6.1 followed by a discussion of

possible future related research in Section 6.2.

6.1 Summary

Three discrete time disturbance rejection design problems for linear time invariant
systems aimed at satisfying [, or peak magnitude, specifications have been consid-
ered. All were posed in the very general problem setting which has become standard
in control design. This setting was carefully defined in Chapter 2 such that all sud-
denly applied signals can be considered as potential disturbances, and such that all
compensators obtained by the given design methods are implementable (i.e., causal)
or can be approximated arbitrarily closely in terms of performance by implementable
compensators.

Each design problem was solved through reduction, by turns, to the minimization
of an appropriate norm of the closed loop system over stabilizing compensators, the
solution of a minimum distance problem in [;, and the solution of an infinite linear
program. For each design problem, it was shown, in the minimum distance problem
setting, how to obtain converging upper and lower bounds on the optimal performance
of any stabilizing compensator by solving sequences of optimization problems, and
finite linear programs equivalent to these were formulated (the sole exception is for the

lower bound problems corresponding to the weighted specification of Chapter 5; these
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are left in infinite dimensional form). The upper bound optimizations are not always
feasible but when they are they yield a sequence of stabilizing compensators whose
performances approach the optimum. The lower bound optimizations are always
feasible and a sequence of stabilizing compensators can be obtained from them as
well. Although the performance of this sequence is not guaranteed to converge to
the optimum, it often does in examples and often yields compensators of much lower

order than the upper bound method for the same performance level.

The unweighted [, disturbance rejection problem, or {; problem, considered in
Chapter 3 has been the subject of considerable previous research and the key aspects
of the solution discovered. The results here encompass all major results previously
obtained, presenting them under minimal assumptions. Care has also been taken
to provide complete details of all proofs, problem formulations, and equivalences of
optimization problems. It is hoped that these will both help to give insight into the
solution of unresolved theoretical problems (see Section 6.2 for a few of these) and
facilitate the development of software tools for the problem.

The value of some of these details is evidenced by the solution in Chapters 4 and
5 of the incremental weighted and the weighted [/, disturbance rejection problems.
In each of these problems it was necessary first to define an appropriate norm of the
closed loop system to be minimized. In each case the norm computation is done
via an l; (or l;-like) optimization problem; the key elements in establishing these
computaticns depended in each case on the detailed structure of the feasible subspace
for each and its close relationship to that of the /; problem.

The incremental weighted and weighted problems are important because they pro-
vide the designer the ability to reflect his actual requirements more precisely in their
specifications, which can potentially help to alleviate the problem of conservatism
inherent in norm-based design for disturbance rejection. In particular, the ability to
bound rates and accelerations is practically appealing.

Although the results obtained for these problems were not quite as extensive as
those for the unweighted problem, they were nearly so and provide all the informa-
tion necessary to establish complete design methods. Moreover, they share with the
unweighted problem the fact that the ultimate computations required are finite linear

programs.
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6.2 Suggestions for Further Research

This concluding section enumerates a few possible directions for further research
suggested by the results seen so far. These will be grouped according to the design
problem they concern. Because of the similarity of the motivation, theory and compu-
tational methods of each problem, most questions raised with respect to one problem
apply equally to the subsequent problems. With respect to each of the problems
solved there are both theoretical and more application-oriented investigations which

could be pursued; both will be addressed.

Theory

loo Disturbance Rejection

This is the oldest of the three problems and the most is known about it. Nonetheless,
many gaps remain both in the theory and its practical applicability. The theory seems
to stand at a crossroads, and a fresh approach may be needed in order to advance it
significantly; as it is presently viewed, no general mathematical tools are available. As
a consequence, results are difficult to come by, the proofs tedious, and relatively little
insight gained with respect to broader questions. One potential direction to pursue,
both from the point of view of theory and of computation, is to exploit any available
results concerning semi-infinite linear programs, as the super-optimal approximation
problems are all equivalent to these. In particular, general results concerning finitely
supported minimizers would be invaluable in simplifying the present theory.

More specific near term issues to be resolved include

e When does the performance of a sequence of sub-optimal compensators obtained

from super-optimal approximation problems converge to the optimum?

e When (and precisely how) can exactly optimal compensators be constructed

from super-optimal approximation problems?

e When are optimal compensators unique and, when they are not, how can they

be parametrized (perhaps using results from the theory of linear programming)?
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Incremental Weighted /., Disturbance Rejection

The results here have all the same deficiencies as those for the unweighted problem;

however there are few additional questions concerning the design methodology and

computation due to its similarity to the unweighted case. Of greater interest is to

investigate the properties of weights and to gain experience with the design method,

both from a computational and an applications viewpoint. In particular

Not all choices of weights lead to problems distinct from standard /; problems,
i.e., cascade weights as described in Chapter 1 can sometimes be found which
produce the same class of possible disturbances. (A trivial example is W, =
[1 0]%; it is obviously equivalent to no weight at all.) Since standard /4
problems are more easily solved, it is of interest to obtain a characterization of

weights which can be replaced by cascade equivalents.

There is a dual specification in which both weights are treated as the disturbance
weight is in the cascade approach, i.e., both possible disturbances and acceptable
errors are treated as having resulted from signals in the unit ball of I, and then
passed through a weight. No practical interpretation has been suggested for such

a specification but, if one exists, the results of Chapter 4 are readily dualized

to obtain a solution.

Some weights which are unstable and/or not stably invertible can be treated
in this framework as well; they lead to tracking-type problems with a norm
criterion in addition. The details of the theory and design methods require

further investigation, as does the appropriate interpretation of such problems.

Computational experience with the design methods is necessary both to deter-
mine whether there are any unforeseen difficulties with the computations and

to improve theoretical insight.

Experience in applications is necessary to determine whether weighted spec-
ifications can in fact capture the objectives of designers. In particular, the
incremental nature of the specification is a unique feature which may make it
more or less practically useful; in the final analysis designed compensators must

be implemented and tested to determine this.
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Weighted [, Disturbance Rejection

Additional questions exist concerning the weight problem, in particular:

e Some theoretical issues remain unresolved with respect to super-optimal ap-
proximations. While it is likely that they can be computed in a fashion similar

to the incremental case, this remains to be worked out.

e Just as some incremental weighted specifications are equivalent to cascade spec-
ifications, so are some weighted specifications. Moreover, there is a question
of equivalence between weighted and incremental weighted specifications; they
have shown to be different for certain weights and they are identical for oth-
ers (such as the trivial example cited above). If a useful class of weights can

be found for which they are equivalent then the simpler incremental design

methods can be used.

Robustness

One of the natural advantages shared by theories based on minimization of a system
norm is that certain robustness problems can be easily solved. In particular, if the
nominal generalized plant is poorly known, it is modelled as containing “perturbation”
subsystems which are unknown, but of bounded norm.

For both the H, and the /; norms, necessary and sufficient conditions for robust
stability with respect to a single such perturbation are found in terms of the respective
norms. Moreover, robust performance problems in both settings can be reduced to
robust stability problems for multiple perturbations. Because the methods here are
norm-based and in particular because of their similarity to standard /; problems it is
reasonable to conjecture that similar results can be achieved.

Presently the class of possible perturbations is modelled in terms of a cascade
norm, which has no natural interpretation in the /; setting. A natural interpretation
in terms of weighted or incremental weighted norm is not readily apparent either but,
at a minimum, it would increase the latitude of the designer to specify perturbation
classes.

The same questions arise in this setting as to which weighted specification is more

natural. The answer from a practical standpoint is no more clear, but there may be
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a natural choice from a theoretical standpoint. One or the other norm (or both) may
lead to a nice robustness theory. A possible advantage goes to the weighted norm

because it is an induced norm, a property it shares with the H ., and /; norms.

Continuous Time/Sampled Data

Discrete time systems are necessarily approximations to reality, so it is natural to be
interested in continuous time versions of the problems considered, i.e., L o, specifica-
tions and, in the unweighted case, the L, problem. While continuous and discrete
time is more or less equally tractable in H ,, this is far from the case in L,. Optimal
compensators have been shown to be necessarily infinite dimensional [8], and only re-
cently have finite dimensional approximation schemes begun to become available [35].
It seems unlikely, therefore, that much progress can be made in terms of weighted
continuous time specifications.

The most realistic control system design problem given current technology is prob-
ably the sampled data problem, in which the plant is modelled as continuous time and
the compensator as discrete time (i.e., a digital system). Complete design methods
have recently been obtained for the sampled data L; problem [11], and it is natural
to investigate how weighted specifications can be incorporated in this setting. If this
is possible, it will allow the designer to bound actual velocities and accelerations and

not just discrete time approximations to them.
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Appendix A
Rings and Fields of Sequences

This appendix contains supporting definitions, facts, and results (primarily) for Chap-
ter 2. Algebraic terms not defined are meant in their most standard sense. The
principal source of definitions and facts is [17].

Section A.l defines some terms and some classes of rings which are significant for
algebraic system theory. Coprimeness and coprime factorizations are defined, and
there is a simple proposition concerning them.

Section A.2 establishes that the sequence spaces {4 and [ are related rings under
convolution defined on two-sided and one-sided sequences, respectively.

Throughout the section, R is a ring and F is a field. If R is commutative and
z,y € R, z|y if there exists ¢ € R such that y = gz. If R is a ring with identity,
an element z € R is a unit of R if there is another element z=! € R such that
zz~! = 71z = 1. Theset of all units in R is denoted by U(R). If R is a commutative

domain with identity, F'r denotes the field of fractions corresponding to R.

A.1 Algebraic Preliminaries
Definition A.1.1 A commutative domain with identity R is said to be

o Euclidean if there ezists a degree function deg : R\ {0} — Z, satisfying, for
al z,y € R:

1. z # 0= g € R such that either r := y — qx =0 or deg(r) < deg(z)
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2. zly = deg(z) < deg(y)

and proper Euclidean if, in addition, R is not a field and deg(zy) = deg z+degy
for dl z,y € R.

e principal ideal if every ideal in R is principal.
o Bezout if every finitely generated ideal in R is principal.

e Hermite if every left-invertible matriz over R can be complemented (i.e., M €
R™%" left-invertible in R = IM°® € R™ (™" sych that det [ M MC] €
U(R)).

Fact A.1.2 If M and M are matrices over a Hermite domain R with identity and

are left- and right-invertible, respectively, then Bezout equations

=[] L e e [0]

can be constructed, where all additional symbols denote matrices over R.

Fact A.1.3 The following inclusions hold:
o Fvery Euclidean domain is principal ideal.
o Fvery principal ideal domain is Bezout.
o Every Bezout domain is Hermite.
Definition A.1.4 Let R be a domain with identity.

e Two matrices N and M are right coprime over R if they have the same number

of columns and there exist matrices X and ¥ over R such that XM + VN = 1I.

e Two matrices N and M are left coprime over R if they have the same number

of rows and there exist matrices X and Y over R such that MX + NY = 1.

Definition A.1.5 Let R be ¢« commutative domain with identity and let G € G,

where G is « ring containing R.
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o If N € R™™™ and M € R" "™ are right coprime over R, det M # 0, and
G=NM, then G= NM™! is a right coprime factorization of G over R.

e If N € R™" and M € R™™ are left coprime over R, det M # 0, and
G = M~'N, then G = M~'N is a left coprime factorization of G over R.

An arbitrary matrix over a ring G need not have either a left or a right coprime
factorization. However, every matrix over a Bezout ring has both, and every matrix

over a Hermite domain has both if it has one.
Proposition A.1.6 Let R be a commutative domain with identity and let G € G,

where G is « ring containing R.

o If G = NM™ is a right coprime factorization of G over R then

GeER < M'ecR

o IfG= M-1N is a left coprime factorization of G over R then

GER < M'eR

Proof: Only the first item is proven; the proof of the second is entirely similar. If
M~! € R then clearly G = NM~! € R. For the converse, note that if G = NM~1
is a right coprime factorization over R then by Definition A.1.5 N and M are right
coprime and by Definition A.1.4 there exist matrices X and Y over R such that
XM+YN = 1. M is non-singular and hence, multiplying on the right by its inverse,
X+YNM-1=X+YG =M. Thusif G € R then sois M~!. O

A.2 Rings and Fields of Sequences

Several sequence spaces of interest in Chapter 2 have useful algebraic structures under

pointwise addition and convolution.
Proposition A.2.1 [, is a field when addition and multiplication are defined, given

T1,Z2 € l+;
z1 4z = {ai(k) + 22(k)}yez,
TiTy = { Z z1(n)za(k — n)}
keZ

n=—00
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The additive identity is {O}kez+ and the multiplicative identity is § (defined in Chapter
2). Given z € l;, © # 0, the multiplicative inverse of z, denoted =71, is defined

recursively
0 k< —kg
1 k=—k
-1 — z(kg T
e (k)=
_z_(}'c,_) Yo a7 Mn)z(k—n) k> -k,
n=—kg

where k; is defined
ky :=max{k € Z :supp z C {k,k+1,...}}

Proof: It is easy to check that [, is a commutative ring under the defined operations,
that the additive and multiplicative identities are as claimed, and that the inverse of

every non-zero element is as claimed. There are certainly more than two elements in
[+ so that it is a field. a
Fact A.2.2 [ is a commutative domain with identity when addition and multiplication

are defined, given v,z € I:
g1+ a2 = {z1(k) + z2(k) }yez,
k
T1Ty = {Z z1(n)zo(k — n)}
kEZ+

n=0

The additive identity is {0}z, and the multiplicative identity is 6 (defined on Z.).

Proposition A.2.3 The ring l is isomorphic to a subring of the field I containing

the identity under the map ¢ : l — I defined, given x € I,

0 k<O

wmww={$®)k20

Proof: ¢ is clearly well defined and maps ! into ;4. It is also one-to-one; in fact, its
inverse is given by

¢~y = {y(k)} rez, (A.1)
for all y = ¢z, x € I. Moreover, it is easy to check that ¢ is a homomorphism. Hence,
¢ is an isomorphism mapping ! to the subring ¢! of l,. ! contains the identity since

$~16 = 6 (defined on Z,). O
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Proposition A.2.4 The commutative domain with identity | is proper Euclidean

with degree function A; defined, given x € l:
Ai(z) :=max {k € Z; :supp z C {k,k+1,...}}

Proof: Fact A.2.2 shows that [ is a commutative domain. We first establish that the
degree function meets the conditions required by Definition A.1.1.
Given z,y € [, z # 0, define g € [ as follows:
_ { ¢~ [(dy)(dz)~] Au(z) < Au(y)
- 0 Ai(z) > Au(y)
where ¢ is defined in Proposition A.2.3, ¢~1 in (A.1), and (¢z)~! is the multiplicative
inverse of ¢z in I, defined in Proposition A.2.1. It is easy to check that (¢y)(¢z)~!is
always in @l if A;(z) < A(y) so that the above definition of ¢ makes sense. Moreover,
if a remainder r is defined r := y—qx, Ai(z) < Ai(y) = r =y—¢7(dy)(dz) ez =0
(i.e., z divides y), and Ay(z) > Ai(y) = r =y = A(r) = Ai(y) < Ai(z). Moreover,
Ai(zy) = Ai(z) + Ai(y) Ve, y € [ tor which both sides are defined (this follows easily
from the definition of convolution).
To complete the proof, note that [ is not a field (for this it is sufficient that there
exist elements, e.g. any = # 0 with ©(0) = 0, with non-zero degree). O

Corollary A.2.5 The set U(l) of units in | is given by
U(l)={zel:z(0)#0}.

Proof: It is easy to see that in a Euclidean domain the units are precisely the elements

of zero degree. The conclusion then follows since [ is Euclidean by Proposition A.2.4
with degree function A; and if x € [ then Ay(z) =0 < z(0) #0. 0

The proof of the following proposition is straightforward, and is omitted.
Proposition A.2.6 The field of fractions F'; corresponding to | is isomorphic to 1}
under the map ¢5 : Fy = 1y defined, given n,d € l with d # {0}cz.,

85 (%) = (om)(a)™

where ¢ is defined in Proposition A.2.3 and (¢d)™ is the multiplicative inverse of ¢d

in 1y, defined in Proposition A.2.1.
Fact A.2.7 [, is a subdomain of | containing the identity and is Hermite.
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Appendix B

Duality and Minimum Distance

Problems

This appendix contains supporting notation, facts, and results for Chapters 3 (in
particular), 4, and 5. The facts and results are mainly concerned with duality and

the solution of minimum distance problems in general normed linear spaces; the

principal reference is [36)].
Section B.1 concerns duality and adjoint operators in product spaces, and Section

B.2 contains the basic facts on duality and its relation to minimum distance problems.

First, some standard notation is defined.

Notation

In the following definitions X and Y are real normed linear spaces.
BX the unit ball in X.
X* the dual space of X.
(z,x*) the linear functional z* € X* evaluated on = € X.
M4 the right annihilator of the subspace M of X (a subspace of X*).
LM the left annihilator of the subspace M of X* (a subspace of X).

B(X,Y) the space of bounded linear operators from X into Y.
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B(X) the space of bounded linear operators from X into X.

T* the adjoint of 7 € B(X,Y) (T* € B(Y*, X*)).

B.1 Duality and Adjoints in Product Spaces

Fact B.1.1 Let X and Y be real normed linear spaces with norms |||y and |||y,
respectively, and let ||-||,, 1 < p < oo, denote the usual p-norm on R?,
o With addition and scalar multiplication defined componentwise, X x Y is a real

normed linear space under the norm |||y, defined, given (z,y) € X XY,
(@ D) lxxy = Izl s llylly ),

o (X xY)* = X*xY* with addition and scalar multiplication defined compo-

nentwise, under the norm ||||x..y. defined, given (z*,y*) € X* x Y™,

I(® y™Mxexys = Nz ke s g™ lly ),

where%+-;—=1 ifl<p<oo,q=oc0ifp=1,and q=1if p = oo, and

with linear functional evaluation defined, given (z,y) € X x Y -and (z*,y*) €

X*xY*,

((,0), (&%, 57)) = (2,9) + (27,7

Proposition B.1.2 Let X, Y and Z be real normed linear spaces and define the
real normed linear space X XY as in Fact B.1.1. Define T : X xY — Z, given
(z,y) € X XY, T [(z,y)] :=Txx + Tyy, where Tx € B(X,Z) and Ty € B(Y , Z).

e TeB(X xY,2).
o T* can be written, given z* € Z*, T*z* = (Tyz*, Ty z*).
Proof: For the first item, recall that all norms, in particular the p-norms, on R? are

equivalent. Thus, Ja, > 0 such that ||z||, > o, |||, for all z € R?. For this choice

of a, and for any (z,y) € X x Y,

171z llz _ NTxz+Tryll,
Iz, )l x xy Cllllx s L
[Tl =l + 1Tl ylly o max {1 Zx |l 1 7v ]I}
- ap (lzllx +lwlly)  ~ o

< oo,
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For the second item, note that for all (z,y) € X x Y and z* € Z*,
((z,9), T"z") = (T [(=,9)],2%)
= (Txz + Tyy,z*) = (Txz,2*) + (Tyy, 2*) = (=, Txz") + (v, Ty'2")
= ((z,9),(Tx2", Tyz")) .

where the last equality follows from the definition of linear functional evaluation in

Fact B.1.1. Thus it must be that 7*z* = (T32*, Ty 2*) for every 2* € Z*. O

Proposition B.1.3 Let X, Y and Z be real normed linear spaces and define the
real normed linear space X xY as in Fact B.1.1 above. Define T : Z — X x Y,
given z € Z, Tz := (Txz,Tyy), where Ty € B(X,Z) and Ty € B(Y, Z).

« TeB(Z,X xY).
o T* can be written, given (a*,y*) € X* x Y*, T*[(z*,y*)] = Tgz* + Tyy*).

Proof: For the first item, recall that all norms, in particular the p-norms, on R? are
equivalent. Thus, 38, > 0 such that, for all € R?, |[z]|, < B, ||z|[,. For this choice
of 3, and for any z € Z,

oy NTs20y [Tl
llll 2 =]l 7
Tvzlly + 1Ty 2|l
< BllTxls £1Tv2ly) o 73 4 70

”Z”Z
< ©00.

For the second item, note that for all z € Z and (z*,y*) € X* x Y*,

(2, T*[(«%y"))) = (Tz("y") = ((Tx2,Ty 2), (=", y%))
= (Tae) 4 (Tom’) = (5 Tio) + (5 Toy")
= (5 Tge T,

where the third equality follows from the second item of Fact B.1.1. Thus it must be

that 7* [(z*,y*)] = Tgz* + Tyry* for every (z*,y*) € X* x Y™ a
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B.2 Minimum Distance Problems

Definition B.2.1, Theorem B.2.2, and Theorem B.2.3 can be found, respectively, in
[36, pp. 116, 119, 121].

Definition B.2.1 If X is a real normed linear space then a pair of elements x € X
and z* € X* are aligned if (z,z*) = ||z|| ||=*||. '
Theorem B.2.2 If X is a real normed linear space, M is a subspace of X, and
z € X then

inf {||z —m| : m € M} =sup {(w,z*) rat € BMJ'}

where the supremum on the right is achieved for some zy € BM* with ||zg]| = 1. If
the infimum on the left is achieved for some mo € M then  —mg and z§ are aligned.
Theorem B.2.3 If X is a real normed linear space, M is a subspace of X, and

z* € X* then
inf{”:c* —m*|| :m* € ML} = sup {(z,z*) : x € BM}

where the infimum on the left is achieved for some m* € M*. If the supremum on
the right is achieved for some gy € M then z* — mf and xy are aligned.
Corollary B.2.4 If X is a real normed linear space, M* is weak*-closed a subspace

of X*, and =* € X* then there exists an element mj € M* such that
|z* — my|| = inf {||z* —m*|| : m* € M*}.

Proof: If M* is a weak*-closed, then M* = [tM*]* [26, Theorem 4.7]. Thus

Theorem B.2.3 applies to show existence of m;,. 0

Corollary B.2.4 provides only a sufficient condition for existence of an element in
M* of infimal distance from z, but it is in fact precisely as powerful as Theorem
B.2.3. This is because, for every subspace M of a normed linear space X, Mt is a
weak*-closed subspace of X*[26, p. 91].

Lemma B.2.5 If X is a real normed linear space, M is « subspace of X, z € X,
and mo € M then

inf {|lz —m| : m e M} =inf {||(zx —mo) —m| : m € M}.
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Proof: Let d :=inf {||z — m|| : m € M} and do := inf {||(z — mo) — m|| : m € M }.
If m € M then m — my € M since M is a subspace, and

|(z = mo) = (m — mo)|| = [z —m].
Hence dp < d. Conversely, if m € M then m + my € M and
|z = (m + mo)l| = ||(z — mo) —m| .

Hence d < dg. 0O
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Appendix C

Duality and Adjoints in Sequence

Spaces

This appendix contains supporting notation, facts, and results for Chapters 3, 4, and
5. The facts and results are mainly concerned with duality in spaces of matrices over
sequences, operators on those spaces, and their adjoints. i

Section C.1 considers matrices over sequences on Z., Section C.2 considers se-
quences on Z, as required for the results of Chapter 5. First, some convenient notation
is introduced:

If m and n are positive integers, S is a subset of {1,...,m} x {1,...,n},and X is
any set then X ¥ denotes the set of matrices X whose elements X;; € X for (¢,5) € S

and whose other elements are undefined. S; denotes the set of : € {1,...,m} such

that (¢,7) € S for some j € {1,...,n}.

C.1 Spaces of Sequences on 7

l1, l», and ¢g denote the classical sequence spaces with their usual norms; recall that

co 1s a subspace of [, defined
co:={a €ly: klim z(k) = 0}.

The following is a simple generalization of the usual matrix versions of these spaces

and duality relations among them, which can be found in [5], for example.
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Fact C.1.1 With addition and scalar multiplication defined componentwise,

1. the following all define real normed linear spaces:

(a) I§ with the norm || X||, :=max Y |IXyll,
L ges

(b) 1S with the norm || X||,_ = > max || Xyl
*° i€ES) (ij)es *°

(c) the subspace ¢§ of IS
2. the duality relations

(a) (c§)* =17,
(b) () =13,
hold when linear functional evaluation is defined, given X in « primal space and

X* in its dudl,

(X, X*):= Y (X;,~,X;;>

(id)es
Definition C.1.2 The binary operations < of left correlation and > of right correla-

tion are defined, given f,g € 1,
fagi={S wstn+D] =ger
n=0 keZ,

Proposition C.1.3 Given f € I, define the correlation operator F on lo,, given
T € loo,
Fri=faz=zab>f

and let F denote its restriction to co. Define also the convolution operator F € B(4),

given ¢ € I,
Fz:= fx*z
With these definitions, F € B(ly), F € B(co), and
1. Fr=F
2. F=F

with linear functional evaluation defined as in Fact C.1.1.
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Proof: It is easy to see that if F is well defined on [, then it is also linear. The
following, where = € I, is arbitrary, shows that F is both well defined and bounded

on l.:
|7, = sup|S smatn+ & ‘
k n-—()
< s @ leo + B <lell, 3 11(n)
n=0 n=0
= |l=|l,, I,

F is then immediately well defined, linear, and bounded as a map from ¢ into .
To show that F € B(co) we need only show in addition that if z € co then so is Fz.

Thus, assume = € co and let ¢ > 0 be given. There exists k. such that Vk > k.,

|z(k)| < ml- Hence, Yk > k.,

(Fa)®)| = z_:of n+k.
< L1l "+’“'—||f||,l,§'f

= €

and £z € co.
To show that F* = F, let = € I; and z* € I, be given. Then

00 k
(Fz,z*) = (f*z,a*)=> z*(k Z_% —n)z(n)

k=0
= X_%-’v(n)kZ_:f(k—n) *(k) ZO Z_:f(k “(k +n) = (z, f 42"
- )
so that F* = F.

To show that F* = F note that, given « € ¢p and z* € I,
<]~'-.’13,.’E*> = <m*,.7-':n> = (Fz*,z) = (z,Fz")

using the fact that I; C ¢y C lo, the symmetry of the definition of functional evalua-

tion and the fact that F* = F. 0
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Definition C.1.4 Given positive integers m, n, and p and matrices L € ™*?P and

R € IP*" | define the operation 4 of matrix left correlation by

(LGR ZL:kQRM, iE{l,...,m},jE{l,...,n}
k=1

and the operation > of matrix right correlation by

(Lv> R);; szkDRLJ, ie{l,...,m}, je{1,...,n}

k=1
Proposition C.1.5 Given positive integers m, n, p and q and matrices L € [**?

and R € II*", define the correlation operator F on I™X", given X € Im*",
F=LTaXv>RT

and let F denote its restriction to ¢*™. Define also the convolution operator F €
B(5*9,I17%"), give X € ™,
FX =L*xXx*R

With these definitions, F € B(Ix", [PX9), F € B(cg™*", c§*?), and

1. F*=F
2. Fx=F

with linear functional evaluation defined as in Fuct C.1.1.
Proof: It is easy to see that if F is well defined on I7*™ then it is also linear. The
following, where X € [™X" is arbitrary, shows that F is both well defined and bounded
on [mxm:

P

= _max
i_l Je{ll'“lq}

ZZLTqX”DRT

r=1 s=1

max EL:Z ”LT aX,, > RT

=1 Jellee} 127 S5

Li a Xouv Bl

”}‘ oso”loo

|7x]...

lo

IN

< pgmn max
LS

B

< pgmn “L

o070 $0.jo

Where i, jo, 70, So denote the indices of the maximal scalar norm. F is then imme-

diately well defined, linear, and bounded as a map from ¢g**™ into {2X9. To show that
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F € B(c*", %), we need only show in addition that if X € ¢*™ then FX € &*.
But this is immediate since for each 7 and 7,

ZZLTqXNDR

r=1g=1

where the summands are all in ¢g, and any finite sum of ¢y sequences is again a ¢

sequence.

To show that F* = F, let X € [{*? and X* € I"*" be given. Then

(FX,X*) = i2<ifqﬂ X”*R”"X3'>

n p

-,
i
[
.
il
-t

Il

-
1
-
o,
1]
Pk
~

Xy, Liy < X* > Ry;

il
M=
M-ﬂ

-
1]
-t
1]
Il
3
-,
Il
—
o
1l
-t

X5)
. )
<er, iLW a X7 o R, >

i=1 j=1

I
M=
M-&:

~
1]
A
@
Il
—~

= (X,L7 «X*» BT) = (X, FX*)
To show that F* = F note that, given X € **" and X* € 9,
(FX,X*) = (X*, FX) = (FX*, X) = (X, FX")

using the fact that I} C ¢p C o, the symmetry of the definition of functional evalua-

tion and the fact that F* = F. (i
Proposition C.1.6 Given positive integers m and n and « subset

Sci{l,...,m}x{1,...,n}

define the spatial embedding operator Es on 15, given X € 15,

Xi; (i,j) €S
(€sX)i; { 0 (:,7)€{l,...,m}x{1,...,n}\S

and let Es denote its restriction to ¢S. Define also the spatial projection operator Ilg

on I7*", given X € [**7,
(HSX)zj = X'] fOT all (Z,]) € S

With these definitions, Es € B(I5,,1mx™), £ € B(cS, cp*™), s € B(IF*™, I5), and
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1. % = &g,
2. & =1lg,

with linear functional evaluation defined as in Fact C.1.1.

Proof: It is easy to see that &, Es, and IIg are all bounded linear operators as
claimed. To show that I} = &, let X € I7**™ and X* € IS be given. Then

(MsX,X*) = > <(HSX)=';',XE§> = EZ<Xij’(£SX*)ij>
(i,7)eS i=1 j=1
= (X,€X")
To show that £ = Il note that, given X € ¢f and X* € I*",

(EsX,X*) = (X, EsX) = (IsX*, X) = (X, TsX")

using the fact that [} C ¢y C o, the symmetry of the definition of functional evalua-

tion and the fact that IT% = £s. O

Proposition C.1.7 Given positive integers m and n, a subset
Sc{l,...,m}x{1,...,n}

and N € Z,, define the truncation operator Py on IS, given X € I3,

X; k<N

0 ko N forall (i,5) € S

(PnX)ij(k) := {

and let Py, Py denote its restrictions to ¢S, I¥ respectively. With these definitions,
Py € B(15), Py € B(cS), Py € B(If), and

1. Py = Pn,
2, ~f{, = Pn,

with linear functional evaluation defined as in Fact C.1.1.
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Proof: It is easy to see that Py, Py, and Py are all bounded linear operators as
claimed. To show that P} = Py, let X € I§ and X* € I5 be given. Then
(PvX, X" = ¥ (X X5) = ¥ ZA BX5(k) = 3 (Xu, (PnX*)y)
(ij)es (:,7)€S k=0 (i.7)es
- (rmc)

To show that P} = Py note that, given X € ¢§ and X* € 5,
(PnX,X*) = (X*,PyX) = (PnX*,X) = (X, PnX")

using the fact that I; C ¢y C I, the symmetry of the definition of functional evalua-
tion and the fact that P} = Ps. a
Lemma C.1.8 Given a positive integer n and a compler number zp € D, the two

sequences dy and dg defined

0 k<n
dn(k) = { k! S)?(z‘[’ "y k>n
e=my1 ¥t \ %0 =z

and

0 k
ds(k) = { <"

(k_’f;)!%(z(’,"") k>n

are in ly.

Proof: We will prove only dg € I;; the proof for dg is analogous.

& e k! > 1 (k + n)
d = In(k) = Y [—=R(5)
lisll, = 3= 1ds)l = 3= |t 5 (=)
Sz(k-i-n ,I<Z|I‘+n |
k=0
= .13 ( ) k™" z('fl < (n+1)nln™ > k" lz(’;'l
k=0 lr=0 r k=0
< o0
where the last line follows since z¢ € D. a

Proposition C.1.9 Given « positive integer n and a complex number z € D, define

two operators Dy and Dg on ly, given © € [y,

o0

Dypz = Z c(k)dp(k) and Dgz := Z x(k)d
k=0 k=0
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where dy and dg are defined as in Lemma C.1.8. Define also two operators Dy and

Ds on R, given z € R,
Dyz := zdp and Dgz = vdg
With these definitions, Dy, Dg € B(R,lw), Dg, Ds € B(R, ), Dg,Ds € B(l,R),
1. Dy = Dy, and D% = Dg,
2. Dy = Dy, and D% = Dg,

with linear functional evaluation defined as in Fact C.1.1.

Proof: We will prove all facts concerning Dy and Dg; the corresponding proofs for
Dg and Dy, are analogous. The fact that Dy € B(R, ) follows since dg € l; C I
and, given z € R, “2_?32.71”100 = ||lzdnl,, = |=|lldz]l, . Dz € B(R,co) because also
dp €l Cco=> R (’D_sg) C ¢o. The fact that Dy € B(l;,R) follows since, given
z €1,

'Dge.'l.' = Z 'l(k)(]ge(k) = (.’E, (Im)
k=0

where we have used the facts that dg € I; (Lemma C.1.8), l; C lw, and I} = I, (Fact

C.1.1).
To show that Dj = Dy, let € [; and 2* € R be given. Then

* _ * = . k' k—ny __ o ol 1 % k' k—-n
(Dpz,z*) = = E’c(k)(k — 'n)!?R(zo ) = ké;.z:(k) [:1, = n)!%(zo )
To show that D§ = Dy note that, given = € R and z* € [,

<’§g¢w,m*> = <w*,@3¢m> = (Dpa*,z) = (x, Dpz™)

using the fact that l; C ¢y C lo, the symmetry of the definition of functional evalua-

tion and the fact that D} = Dy. O
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C.2 Spaces of Sequences on Z

1,(Z), lo(Z), and co(Z) denote the counterparts of the classical sequence spaces with

norms defined analogously; ¢y(Z) is a subspace of I,(Z) defined
co(Z) := {z € lo(Z) : klil;l z(k) = 0}.

Matrix versions and duality relations analogous to those of the preceding section also
hold for these spaces.

Fact C.2.1 With addition and scalar multiplication defined componentwise,

1. the following all define real normed linear spaces:
(a) L(Z)3 with the norm || X||,, := max (;%es”Xij“h

(b) 1o(Z) with the norm || X}, := > max || Xl|,
* ies; (h)€S ”

(¢) the subspace co(Z)* of lon(Z)®
2. the duality relations

(a) (co(Z)°)" = h(2Z)*,
(b) (h(Z)°) = l(Z)*,

hold when linear functional evaluation is defined, given X in a primal space and

X* in its dual,
(X, X7) = 3 (Xij, X5

(i4)es
Definition C.2.2 The binary operations < of left correlation and > of right correla-
tion are defined, given f,g € I(Z),

ragi={ 3 Joisto+ k)}kez —igof

n=—0o0

Proposition C.2.3 Given f € l1(Z), define the correlation operator F on lo(Z),

given z € l(Z),
Fo:=faz=xaof
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and let F denote its restriction to co(Z). Define also the convolution operator F €
B(li(Z)), given z € L(Z),
Fa:= fx*xz

With these definitions, F € B(lew(Z)), F € B(co(Z)), and
1. F*=F
2. Fr=F

with linear functional evaluation defined as in Fact C.1.1.

Proof: It is easy to see that if F is well defined on I (Z) then it is also linear.

The following, where & € l,(Z) is arbitrary, shows that F is both well defined and
bounded on I (Z):

el = ] S st
< sup z [f(n)||e(n + k)| < |lz||,_ Z 1f(n
=l I1F1l,

F is then immediately well defined, linear, and bounded as a map from co(Z) into
lo(Z). To show that F € B(co(Z)) we need only show in addition that if 2 € ¢o(Z)
then so is Fz. Given z € co(Z) we will show that limy_..o(Fz)(k) = 0; to show that
limg—oo(Fz)(k) = 0 is entirely similar and the conclusion follows. Accordingly, let
€ > 0 be given. Because f € [1(Z), there exists k; € Z such that Sk l[f(k)] < 2”30“‘
and, because z € co(Z), there exists k, € Z such that sup {|z(k)|: k> &k} < 2“f“
Hence, for k > k; + &,

|(Fa)(k)| = Zf #(n + k)

—k!—l
< Y U@k +RI+ Y 1f0) fa(n+ k)]
n=-00 n=—k;y
—kj -1
< el Z £+ ILFI, sup {Je(k)| : kb > Ko}

< €
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To show that F* = F, let = € [;(Z) and z* € I..(Z) be given. Then

(Fz,z*) = (f*z,a") =k§: z*(k) g: f(k —n)z(n)
SDECHWEDECES ECH W CEC
= (:l:,f<1 .’L‘*) = <.'1:,,7-—':1:*>

so that F* = F.
To show that #* = F note that, given z € ¢o(Z) and z* € l;(Z),

<.7:':1:,:1:*> = <:v*,.7:':v> = (Fz*,z) = (z,Fz")
using the fact that [1(Z) C co(Z) C l(Z), the symmetry of the definition of functional

evaluation and the fact that F* = F. 0
Definition C.2.4 Given positive integers m, n, and p and matrices L € [™*? and

R € IP*™, define the operation < of matrix left correlation by
P
(L« R);; := LiaRy;, i€{l,...,m}, je{l,...,n}
k=1
and the operation > of matrix right correlation by

»
(LDR)i]':= L > Ry, ie{l,...,m},jé{l,...,n}
k=1

Proposition C.2.5 Given positive integers m, n, p and q and matrices L € Li(Z)™*?
and R € L(Z)7*", define the correlation operator F on lo(Z)™*", given X €
loo(z)mxn,

F:=LTaX>RT
and let F denote its restriction to co(Z)™*". Define also the convolution operator
F € B(L(Z)P*1,[,(Z)™ "), give X € L(Z)*9,

FX: =L+ X*R
With these definitions, F € B(lo(Z)"*", lo(Z)P*), F € B(co(Z)™*", co(Z)P*9), and

1. F*=F
2. Fr=F

with linear functional evaluation defined as in Fact C.2.1.
Proof: The proof of Proposition C.1.5 carries over exactly to the present case. O
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