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Abstract 

Although it has many flaws by comparison with more modern programming 
languages, Fortran remains the standard language for numerical programming­
partly because there is a large body of important software coded in it, partly 
because good optimizing compilers can be v.Titten for it, and partly because it is 
reasonably easy to transport Fortran programs from one machine to another. 
The numerical analysis community has developed reliable packages of subrou­
tines to solve various kinds of problems (e.g., UNPACK. EISPACK and MINPACK) and 
these packages are widely distributed. 

Yet, in spite of its popularity, most of the sophisticated new tools for pro­
gram development have not been extended to support it. As a part of the 1Rn pro­
ject at Rice University, we are building a retargetable interactive programming 
environment for Fortran. At the heart of the environment is project manage­
ment software that maintains a data base on all the program modules. The data 
base contains not only the source for each module in the system but also related 
information such as the composition of programs, cross-module procedure call 
information, interprocedural data flow information, and specifications for calls to 
existing procedures. The data base is used by all the other tools in the environ­
ment: an intelligent editor that knows enough Fortran to assist the user in 
preparing programs, an interactive source-level debugging system, and an optim-
izing compiler ·with extensive interprocedural analysis. -

Of particular interest, because of our previous work on compiler optimiza­
tion, is the assistance such a system can give to in terprocedural data flow 
analysis and optimization. Because all the modules of a program -are saved in•the 
data base, the information needed to analyze data flow effects and improve code 
across procedure boundaries is conveniently available to the optimizing com­
piler. Thus, the environment will permit us to build compilation systems which 
optimize the program as a whole rather than module by module-something 
which has not been possible with conventional compilation techniques. 
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It is well known that progress in software has not kept pace VY;th the 

dramatic advances in hardware technology. In a period when the power of 

machines has advanced by a factor of more than 100, the average productivity of 

the programmer has increased by less than a factor of 2. We must find ways to 

increase programmer effectiveness if we are to have sufficient manpower to real­

ize the promise of the computer age. 

To attack this problem, we must first understand why programming is so 

difficult, especially in large programming projects. The observations that follow 

are derived from our experiences in managing the development of a large 

language··translation system produced by a team of approxi-mately five students 

and faculty members over a period of three years [Alle82a). 

First, there seem to be natural limits to the complexity that a single pro­

grammer can deal with. The implication is that if programmers can work at a 

higher level of abstraction they ·will be more productive. Certainly programmer 

effectiveness has improved through the use of high level languages. We could see 

even more progress if very high level languages were used. The problem with this 

approach is that current implementations of very high level languages are too 

inefficient to come into widespread practical use. Dramatic advances in tech­

niques for compiler optimization would help overcome this problem. 

In large systems a second problem arises because important information 

needed by the programmer is not conveniently available. How many times, while 

programming, have you found yourself knov.ing exactly what you want to do but 

not quite sure of the syntax required or how a key variable is declared? The ensu­

ing search for information can break an important train of thought and 

significantly interfere with your productivity. Programmers new to a project face 

1Support for this work was provided by the National Science Foundation under 
grants MCS-8104006 and MCS-8121884. 



this problem compounded several times. They usually suffer a long learning 

period before making contributions. Automatic aids to provide programmers 

"With information such as variable declarations and subprogram specifications 

would ease this difficulty. 

There are also a number of pro bl ems that arise from the sheer size of a sys­

tem. In a program of tens or hundreds of thousand lines of code, implemented by 

several programmers, no one person is completely familiar with the whole pro­

gram. Each must rely on others for information, which means that a good deal of 

effort must be spent on communication. Interfaces must be carefully designed 

and documented if the final system is to work well and be available on time. 

Testing a large system also poses problems. Although we teach the doctrine 

of independent testing in our programming classes, it is sometimes difficult to 

follow in practice. This happens because a module that we might wish to test 

operates on a complex data structure that is very difficult to build. In these 

cases, running the program in which the module is to be incorporated can be the 

simplest way to build the data structure and hence to lest the module. But what 

if the module to be debugged is executed only after a long execution time in other 

parts of the program? The programmer must then choose between two unsatis­

f actor-y options: either run the whole program using the slow, high level debugger 

or insert debugging statements in line and run a compiled version. Some system 

that permits the testing of modules in the context of a compiled program must 

be found. • 

The management of a project requiring more than one programmer poses a 

number of problems. One of the most important is making sure that program­
mers don't "shoot each other in the foot". It is common for one programmer to 

make a small change to a working system that "breaks" the whole program. The 

rest of the team arrive the next morning to discover that things which worked 

the day before no longer do. Some method to manage system modification is 

needed so that changed modules can be debugged in a test environment before 

being integrated into the working system. 

The same method should also solve a related problem, that of making sure 

that the whole system is carefully remade after a change invalidates a portion of 

the program. ·when a data structure is changed, every module that uses that data 

structure (but not every module that includes its declarations) needs to be 

recompiled. We shall refer to this as the problem of maintaining consistency in a 

. system. 
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Any system for managing a large project should also provide aids for both 

testing and documentation. During the maintenance phase, small changes 

in tended to fix a particular bug often inadverten lly ere a le new unforseen bugs. 

The system should provide semiautomatic assistance for detecting such bugs. 

The production of clear consistent documentation can be encouraged by the pro­

gramming system-it should make the entering of such documentation con­

venient and its dissemination automatic. A hierarchical approach might be very 

helpful here. 

Habermann has identified three approaches to t.he solution of these 

problems[Habe82a]. In the disciplinary approach, programmers would exercise 

enormous self-control in follovring manual procedures designed to prevent the 

insertion of bad code. While this met.hod, often ref erred to as structured pro­

gramming has been quite helpful over the past ten years, it can sufier from t.he 

programmer's natural humanity. Under pressure, a programmer will tend to 

take shortcuts, some of which bypass the formal procedures designed to inhibit 

errors. Some mechanism to automatically assist. the programmer in maintaining 

this discipline is needed. 

The toolkit approach would provide a collection of simple but powerful tools 

that can be interconnected in various ways to suit the programmer's needs. 

Unix2 and Programmers Work Bench (PV{B) are examples ;f this strategy. The 

main difficulty wit.h this approach is that the tools are usually not fashioned to 

the task at hand so each programmer will adapt the tools to his or her ov.'11 needs. 

Oft.en the programmers on a single project will each have a difierent collection of 

favorite tools-this hardly enhances the level of communication on the project.. 

The toolkit method does not take advantage of any knowledge of the language 

being used or the problem being addressed. 

The environment approach, is characterized by a collection of tools explicitly 

tailored to the task at hand. Typically, these tools include a language-oriented 

editor, facilities for management of the program source, debugging tools tailored 

to the programming language being used, and facilities for making consistent 

executable modules. Examples of environments abound in the literature. The 

Cornell Program Synthesizer is an environment to support development of small 

PL/I programs by introductory programming students [Teit8la]. Mentor, one of 

the earliest environment projects, supports programming in Pascal [Donz75a]. 

The Interlisp system contains many Lisp-specific tools to assist the programmer 

[Teit77a). Systems of macros, tailored to editing a particular language can make 

2Unix is a trademark of Western Electric. 
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the extendible editor Emacs into a programming environment for that language 

[ Gos183a]. The C a.ndalf project at CMU is building an environment-generating sys­

tem that can be used for any of a number of languages [Habe82b]. Finally, a 

group at GTE is working on a programming environment for the Chill language. 

For the most part, the modern numerical programmer is unable to benefit 
from the current work on programming environments. The reason for this is 
twofold. First, Fortran is the common language of numerical discourse-an enor­
mous inventory of software and many useful packages (such as UNPACK, EISPACK, 
and the IMSL library) have been written in it. Second, Fortran is not popular 
among non-numeric computer scientists. Hence most of the major environment 
projects have ignored it. (An exception is the Toolpack project [Oste81a).) 
Nevertheless, the numerical programmer has begun to use a few modern tools 
such as screen editors and interactive debuggers. These have provided them with 
an enormous increase in productivity and a similarly large appetite for more 

advanced tools. 

In this paper we discuss a project underway at Rice University to provide a 
system of tools for developing, testing, and maintaining Fortran programs that 
makes effective use of the programmer's time without sacrificing run-time 
efficiency. This system represents a natural evolution of our previous work on 
automatic program analysis . 

• 

2. Overview of the Environment 

The Fortran Programming Environment is a major component of the lRn pro­
ject at Rice University, which is building a network of high performance worksta­
tions designed to provide the modern scientist, engineer, or numerical analyst 
v..-ith a computational resource tailored to his needs. The specifications for such a 
workstation are summarized in Table l. Thus the environment is designed from 

o 1-2 rnip CPU 
o high speed floating point 
o large virtual address space 
o 1-2 megabytes real memory . 
o 890 x 1000 pixel bit-mapped display 
o graphic input device (mouse or tablet) 
o network interface 

- file servers 
- print servers 
- compute servers 
- gateways to other networks 

o Unix software base 
o Reasonable cost ($5K-15K) 

Table 1. Workstation Specifications. 
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lhe outset lo run on such a workstation and to take advantage of lhe high resolu­
tion graphics, lhe graphical input device, and the local computational power. The 
environment may also run on simpler graphics devices, such as dumb terminals, 
bu l we have not compromised the design to accommodate such devices. We envi­
sion that the network v,ill have other resources connected to il such as a compu­
lalion server, a long-haul network gateway, and a file server. 

The programming environment will be partitioned between the file server and 

the workstation as depicted in Figure 1. At the heart of lhe environment is the 

project data base which resides on the file server. It records all information 

about the programs and modules in a project, including source, specifications, 

test data, documentation, interprocedural information, and much more. Resid­

ing on the workstation itself is a command processing program that will provide a 

uniform interface for all the user-invoked operations. This program integrates 

the major environment tools: 

Intelligent 
Editor 

, 

User Interface 

Execution 
Monitor 

' 

Project 
Manager 

t 
data base 
manager 

, 

t-

Optimizing 
Compiler 

l w net ork 

Figure 1. The IRn Programming Environment for Fortran. 
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( 1) An intelligent Fortran editor which not only helps the programmer build syn­

lactically correct programs, bul also warns of possible run-time anomalies 

lhat can be delecled at compile time. In addition, lhe edilor will be able lo 

query the data base, thus providing a mechanism for the user to call up 

documentation, declarations, or specifications while editing or browsing pro­

gram text. 

(2) An execution monitor which can step through parts of the program allov.-ing 

the programmer to interrupt and perform debugging operations. With the 

help of the project manager, the monitor would be able to handle a hybrid 

program consisting of some compiled and some interpreted modules. Thus 

control could be made to pass quickly through most of the program to the 

module under development which could then be interpreted. 

(3) A project manager which provides the sole data base access mechanism for 

all other environment utilities. It stores and retrieves the source files in the 

data base,. answers questions about the programs and modules, insures that 

project rules are obeyed, and makes consist.en t versions of lhe programs for 

execution. 

(4) An optimizing compiler that converts the partially compiled version of the 

p'rogram maintained by the editor to an optimized form suitable for integra­

tion with the rest of the system. With the help of the project manager, it uses 

the system data base to do a thorough job of interprocedural analysis and 

optimization. It should be noted that the compiler will not be directly invoked 

by the user. Instead, it will be invoked by the project manager when recompi­

lation of a module is necessary. 

These tools work together to assist the programmer in preparing, document­

ing, and testing the program. They also cooperate to make the final programs as 

efficient as possible. We wi.11 discuss each of them in more detail, but first we 

describe the underlying data base. 

3. The Data Base 

The project data base organizes all information known to the programming 

environment. Its basic framework is depicted in Figure 2. In this scheme, the 

largest entity is the project, which may be thought of as a collection of programs 

that are being worked on by a common pool of programmers and that may make 

use of a common group of subprogram modules. A project might contain one 

program that is the central focus of the work, along with a collection of lest ver­

sions, or it might include several central programs. 
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Project Management 

Program A 

Module X 

Entry E 

specifications 

annotations 

Source IL 

Object IL 

Figure 2. A conceptual framework for project management. 

A progra,m is simply a collection of modules that, when integrated into a 

whole, may be executed. Several programs in a project may share the same 

modules, so the system must support some mechanism for sharing. A program 

may have several named versions, each using a different set of modules. A pro­

gram may be viewed as nothing more than a recipe indicating how to compose the 

modules (with versions specified) that it incorporates. Indeed, this is how pro­

grams are implemented in our preliminary system. 

A module is a collection of entry points that is always edited and compiled as 

a whole. Modules may also have named versions. For example, there will usually 

be both an "official" and a "lest" version of any module that is being modified. 

Presumably, the programmer will be working on the lest version. 
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Associated with modules are various kinds of information, including source 

and compiled intermediate language. Each module also contains some number of 

entry points, ·which are the externally knovm names by which the module is 

accessed. These v.ill include all the callable entry point names. 

Associated with each entry point will be two kinds of information. 

Specifications are properties of the entry point that are entered by the program­

mer. In the first system, the specifications will consist only of the number and 

types of parameters. Later this may include other information about the 

intended behavior of the entry. Annotations are facts about the behavior of the 

entry that are gleaned by any of the tools in the environment. For example, the 

editor might add an annotation that indicates which other entries might be called 

as a result of a call to an en try point. 

To conveniently provide the facilities of standard groups of modules, such as 

UNPACK or IMSL, the system will need to understand the concept of a library, 

which is an external project in which some modules have been declared to be 

"public." Single modules may be incorporated into a project from any of a 

number of specified libraries for the project. 

Finally, any system that supports versions of its basic components must also 

support defaults. The environment we are developing would always have a stan--
dard version of every object for which versions are supported. 

4. User In.terf ace Program 

The user inter face program will serve as the programmer's home environ­

ment from which all activities are invoked. It will permit the programmer to 

navigate through projects and programs; it will acquire modules and other inf or­

mation from the data base; and it will make extensive use of a sophisticated 

graphics interface featuring multiple windows, highlighting, and the use of a 

pointing device such as a mouse. 

The user interface p_rogram is really an operating system that provides util­

ity services, such as graphics and query processing, to a variety of command pro­

cessors, including a family of similar editors. These editors are designed to make 

the various functions of the environment look similar to the user. Hence, users 

can browse through various displays and, with the appropriate permissions, 

modify them in an editor-like setting. Such diverse operations as correcting a 

bug in a program and releasing a module to "the public" are both editing opera-

tions. The first is a traditional function for an editor. The second can be seen as 

editing when viewed from the perspective of modifying a list of properties associ­

ated with a module. 
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The existence of high resolution graphics and a mouse-like device allow for a 

menu-oriented milieu that is very easy to use. The display always has a list of 

legal operations. The programmer selects one of the actions by positioning the 

pointing device and then "clicking" one of its buttons. In the process of perform­

ing various actions, the menu of legal operations may, of course, change. In addi­

tion, when an operation requiring an object is invoked, a window of the possible 

objects will pop up. For example, if the user selects the operation "run", the sys­

tem ·will respond ·with a list. of programs. 

In addition to using the mouse to select menu items, it can be used to scroll 

around a display or to select an element. of the display for further examination. 

The latter action allows an object to be specified in advance of an operation. For 

example, the user can run a program by first selecting the program name, if it is 

on the screen, and then selecting the action "run". An example of an environ­

ment session follows. 

Wben the user first enters the programming environment he 'Vlill be at the 

root of the data base. The display vn.11 have a list of projects as shov.'Tl in Figure 3. 

Using the mouse, the programmer can select a project, say the "Fortran Pro­

gramming En-vironment" and be shown the list of programs that it comprises. At 

that point he could select one of the programs, say the "user interface", and do 

any of a number of things with it. For example, he could debug it by clicking the 

mouse while positioned on "run". At that point a window would pop up v.ith a list 

• 

!Rn : The Rice numerical network (project list) 

Formal Testing 

Fortran Programming Environment 

Numerical Analyst's Workbench 

Portable Unix Interface 

Vector Processor 

insert delete info print export import exit 

Figure 3. The root of the data base 
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of possible data sets (Figure 4). Suppose that he did not know the contents of one 

of them; he could, after selecting it with the mouse, get a brief description by 

clicking "info", or see it displayed in another v,indow by clicking "show". He could 

also enter a new data set by clicking "insert". 

5. Project Management 

It is the role of the project manager to control access to all programs and 

modules within the project and maintain a data base of semantic information 

about them that can be used by other tools in the project. In addition, it must 

maintain the consistency of programs ·within the project, and provide informa­

tion about the project or any of the programs and modules within it. For exam­

ple, the manager must keep track of which programmers are working on which 

versions of a given module. Also, the manager v.ill provide tools by which new 

programs can be constructed from modules in the data base. Finally, the project 

manager will provide the interface through which all queries about the project 

must pass. 

To understand the role of the project manager, it is helpful to consider a 

selection of the functions we envision it performing. There are essentially three 

main, functions performed by project management. 

(1) Query Answering-in this category, we include any operation that provides 

information about the project in a non-destructive fashion. In other words 

any operation that does not cause a change in the current project state . . 

Project: Fortran environment (program list) 

Compiler 

Data base manager 

Program exporter 

Program importer 

User inter ja,ce 

insert delete info run print export import exit 

Figure 4. Choosing a data set 
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Examples are requests to browse source I7lodules, questions about 

specifications or annotations for a given entry point, and questions about the 

structure of a given program, such as a request to display the call graph. 

(2) Module Creation and Modification-in this category are all operations on 

modules in the project that lead to new or changed modules being stored in 

the data base. Examples are requests to edit a given module or to create a 

new one. 

(3) Program Creation-in this category we find the function of program composi­

tion. In the system, programs are created by specifying a collection of 

modules to be incorporated in the composition. The project manager then 

adds enough modules to make a complete program or until it must report 

that the program is incomplete. 

An issue related to program composition is the current context program. In the 

process of working on a project, we envision that the programmer ·will establish a 

program as the one in which he or she is currently working. The current context 

program establishes the default for many operations of the project manager. For 

example, when a query asks for information about a given entry point name, the 

project manager v.ill assume that the query refers to the version of that en try 

point in the current context program. Similarly, in performing a composition, 

the program is completed by adding modules·rrom the current context program. 

The project manager will also be responsible for maintaining the project 

privilege rules. We use a very simple mechanism for deciding the authority of 

project programmers to perform certain functions. Each module and program 

has a creator, a status (public or private) and a reference count. A private pro­

gram or module belongs to its creator and may be modified or released by that 

programmer. A program may be made public by its creator. By doing so, the 

creator relinquishes his or her authority over the program and every module 

contained in it. The creator may not modify a public module or program. He or 

she must create a new version of the module and build a whole new program com­

position in order lo make such a change. Presumably, this composition will be 

private. 

This mechanism insures the stability of public programs. Only the chief pro­

ject programmer may release a public program; it then reverts to private status. 

Modules released by the chief project programmer revert to private status only 

when all references lo il are by programs ov.'Tled by lhe creator of lhe module. 
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6. Intelligent Editor 

As we have seen, the user interface program provides a powerful browsing 

and editing environment. The intelligent Fortran editor is a subset of that inter­

face that combines a knowledge of Fortran together with access to the data base 

in order to simplify the programming process. 

The editor ·will assist the programmer in entering Fortran by providing com­

mands that generate templates for the major language constructs. For example, 

to insert a do-loop, the programmer need only invoke the do-loop command and 

the cursor -will be replaced by a do-loop template ·with place markers in the posi­

tions where further text should be entered. 

do <iterator> i 
<body> 

The syntax displayed above is taken from Ratfor [Kern78a] which illustrates 

another strength of the environment paradigm-the ability to tailor the display 

format to the tastes of the user. 

Not only does the editor help a programmer enter syntactically correct pro­

grams, it also obviates the need for a parser by directly constructing the abstract 

synta,x tree for the program. All components of the environment can then use 

the abstract syntax tree as the standard program representation. The display is 

constructed by unparsing the abstract syntax tree. The existence of a map from 

screen position into the tree facilitates the use of a pointing device to move.the 

cursor around the program. 

The high-resolution display on the workstation permits a particularly con­

venient view of the program to be presented. Typically, the display will have two 

-windows. In addition, there will be a menu showing the legal operations at the 

current cursor position (Figure 5). The main window will display the current 

region on the screen, -with region hiding as appropriate. A parallel -window -will 

always display the current declarations for each -v·ariable used in the region of 

program on the screen., For example, in Figure 5, the cursor, whose position is 

indicated by Italics, is at a statement location, so any statement may be inserted. 

An option may be selected using the mouse or by explicitly entering the com­

mand. 

In our system the editor will also be able to detect and report many subtle 

semantic errors such as uninitialized variables. It v.ill make use of information 

stored in the project data base to help construct subprograms that are con­

sistent with the program being developed. For example, when a programmer 

1vishes to insert a call to an external subroutine, the editor will query the data 
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Module: band-solve Program: reservoir pde's 
subroutine bandsl ( matrix, neq, -width) i 

iwidth = ·width/ 2 
nqm = neq - 1 
off= neq + 1 
do i = 1 , nqm i 

i 

do j = iplus 1 , irange i 

if ( temp ¢ 0.0 ) i 
nojj= i 
do k = iplus 1 , irange l 

noff = noff + off 
loff = noff + icount 
if ( matrix[noff) ;= 0.0 ) i 

return 

insert d~lete info mark paste exit 

variables 

i : integer 
icount : integer 
iplus 1 : integer 
irange : integer 
ivddth : integer 
j : integer 
k : integer 
loff : integer 
matrix[neq] 

neq 
noff 
nqm 
off 
temp 
width 

: double 
: integer 
: integer 
: integer 
: integer 
: double 
: integer 

Figure 5. A typical editor display. 

base to provide a template for the parameters that are required. 
CALL bandsl( <matrix[neq] : double>, <neq : integer>, <width : integer>) 

In this statement, the programmer inserted "CALL bands!" and the system pro­

vided the parameter template. 

There are several documentation functions that the editor will perform, 

including prompting the programmer for certain kinds of specifications, and 

maintaining a modification history. The editor will also compute and record sum­

mary data flow information for each module that it creates or modifies; such 

information can be used in both optimization and error detection. 

In advanced versions of the editor, we will experiment \\ith incremental data 

flow analysis. New results by Reps [Reps82a], Wegman (Wegm82a], and Zadeck 

[Zade83a], lead us to believe that use-definition chains (pointers from statements 

that use variables to the statements that might create the value used) can be 
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efficiently created by the editor in an incremental fashion. If this is true it will be 

possible to provide some powerful diagnostic features. 

For example, it ,,ill be possible to have a function that scrolls back from a 

usage point to successive points of definition for the value used (see Figure 6). 
This facility would be extremely useful in debugging because most errors are 

detected when a bad value causes some fault to occur. The point of fault is easily 

located. However, the real error probably occurred where the bad value was 

created. Use definition chains can help us quickly find all possible creation 

points. 

7. Execution Monitor 

The execution monitor v.ill enable the programmer to step through parts of a 

given program allowing him to interrupt and observe the progress of his program 

during its execution. Like the editor, it v.ill also make effective use of the high 

resolution grei:phics. As we envision it, the programmer will be able to monitor 

execution using a display similar to the one depicted in Figure 7. ,~bile highlight­

ing the statement being executed in one window, the debugger will simultaneously 

display the changed values of variables in a second and the program output in a 

third. window. 

An important design goal is to support hybrid execution, in which compiled 

and interpreted modules are intermixed. This will permit interpretive testing of a 

Def 

Use 

Def Variable: iwidth 

read (5, 1000) nobs 
read (5, 1001) istart, iend 
read (5, 1002) a 
iwidth == iend - istart 
sum= 0.0 
doi=l,nobsl 

! 
sum = sum + a[i] 

Use Variable: iwidth 

do i = 1, nobs l 
sum= 0.0 
doj=l,nobs{ 

sum = sum + x[i]"a[j] 
i 
b[ i] = sum/ iwidth 

Figure 6. Scrolling back to definition points. 
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Module: fib Program: fib 
program fi bonacci { 

read n 
i = 0 
current = 0 
next= 1 
print 'i', 'fib(i)' 
while ( i ~ n ) { 

i = i + 1 
print i, current 
next = next + current 
current= next - current 

! 
! 

insert delete info mark paste exit 

variables 

Bl current 
l====' 

7li 
lO!n 
13lnext 

Figure 7. Execu lion monitoring. 

output 

i fib(i) 
1 0 
2 1 
3 1 
4 2 
5 3 
6 5 
7 8 

module that may not be executed until the whole program has run for many 

minutes. To support this feature, it is absolutely critical tha..t. compiled and inter­

preted prograi;ns maintain a consistent layout of data in the program. This stra­

tegy will also make it more likely that the compiled and interpreted versions of 

the same module will behave identically. 

Another important debugging feature we intend to support is reversible exe­

cution. There is no special difficulty to this. Since the abstract tree is doubly 

linked, we can easily move backward in it. A problem arises at three main points 

of ambiguity: assignments, gotos, and calls to compiled code. Traditionally, 

these are handled by saving on some file the value of the changed variable or the 

location from which control came. The main problem is pre sen led by calls to 

compiled code. At these, the interpreter must save the values of every variable 

that might be changed before control returns. In the absence of better informa­

tion, this means every variable in COMMON and every parameter. 

In the lRn environment, the burden will be much smaller because the inter­

procedural analysis will provide the interpreter ·with a much more precise esti­

mate of what might be changed by a call. Thus many fewer variable values ·will 

need to be saved. 

Debugging is an extremely important programming activity that has received 

too little attention from Fortran implementors. Here the graphic capabilities of 
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the personal workstation v..-ill be especially valuable. One aspect of numerical 

debugging is common to non-numeric debugging: the elimination of semantic 

errors in the program, errors that cause the program to behave in an incorrect 

manner. But another type of debugging is also common in numerical 

programs-elimination of the errors of precision and accuracy that make the 

answers incorrect or the algorithm fail to converge rapidly enough. lt is here 

that debugging truly takes on the flavor of experimentation and the ability to 

interactively follow execution while monitoring the output may permit an enor­

mous saving of research time. 

8. Optimizing Compiler 

The optimizing compiler, which is really an optimizing code generator, will 

convert the partially compiled version of a module maintained by the editor to an 

optimized form suitable for integration into the program of which it is a part. 

The main advance in this tool over previous optimizing compilers for Fortran is 

its use of inter.procedural analysis and optimization. 

Compiler optimization researchers have long believed that the interpro­

cedural effects are the last remaining major source of inefficiency in languages 

v.-ith 9ptimizing compilers. \'{by then are there so few compilers with any inter­

procedural analysis and optimization? The answer is t.haL the compiler would 

need access to all the code in a program in order to do a good job. It is unreason­

able to expect to compile whole programs at once-the cost in C(?mpu tation iime 

would be too great. It would be almost as impractical to perform data flow 

analysis on the whole program at each module compilation. 

The solution is to save the interprocedural information needed for optimiza­

tion bet.ween compilations in the project data base.' This requires that the inter­

procedural information be updated each time a module is edited. 

We intend to use the environment to at.tack two problems. First, we ,vill 

investigate the use of interprocedural information to do linkage tailoring-the 

construction of efficient 'subroutine linkages tailored to the actual caller and cal­

lee. An example of linkage tailoring is inline substitution, but there are many less 

dramatic forms. 

A second area is to compute the pat.terns of data usage and definitions as a 

result of procedure invocations. An example is the computation of mod(s), the 

set of variables that might be changed as a resull of the procedure invocation at 

call sites. There are two components to this information. 
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( 1) First there are the immediate efiects of the procedure being invoked. These 

can be recorded in the data base by the editor. On pulling a module away, 

the editor need only store the list of variables that are changed in some 

statement in the program. 

(2) To this list must be added the secondary efiects due to calls to other routines 

from within the called routine. These must be handled by solving a data flow 

problem on the call graph 

[Alle74a,Alle74b,Bann 79a,Bart78a,Myer8 l a,Rose79a,Spil72a,Weih80a). A 

recent dissertation by Cooper [Coop83a] describes fast algorithms to solve 

this problem in an incremental fashion. The basic idea is that whenever the 

editor puts away a module that is incorporated in a program, a ·demon is 

invoked to update the interprocedural information. This demon makes use 

of comparisons of old information with new information to keep from doing 

redundant work. 

As a result of the actions of the demon described above, several modules may 

need to be recompiled in the light of new interprocedural information. 

By using an integrated approach to interprocedural analysis involving the 

editor, the project manager, and the complier, we can use the n:zn environment to 

mount a concerted attack on interprocedural optimization and analysis. 

9. Conclusion·s 

The four components of the IRn programming environment fit together ni-cely 

to provide a rich background for Fortran programming. Most of the ideas behind 

this system are not new, but until now we have not had the equipment and 

resources to explore them. With the advent of the personal numerical worksta­

tion, we will acquire the ability to make enormous advances in the quality of tools 

to aid the individual scientific or numerical researcher. 

10. Implementation Status 

We are currently working on a preliminary version of the environment that 

will include a simple structure editor and the basic project management software 

(including querying for call parameters). The structure of the preliminary imple­

mentation is depicted in Figure 8. 

Within the project, there are three major directories: 

(1) the program directory, which maps program names to the locations of 

descriptors for those programs. 
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(2) the module directory which maps module names and enlry point names to 

the locations of descriptors for those modules and also indicates the default 

for each module. 

(3) the entry point directory which maps entry point names to the modules that 

provide them and also contains the default mapping for entry points. 

Thus, if a query asks about a particular program, the manager will use the pro­

gram directory to find the information about that program. If a query asks about 

a particular enlry point ·within a particular program, the manager ·will find the 

program descriptor to find out which version of the entry point in question is 

incorporated into the program and then use that information to find a module 

descriptor via the module directory. 

On a standard Unix system, the project will occupy an entire subtree of the 

tree-structured directory. Al the root of that subtree Viill be the privileges file, 

the enlry point directory, and subdirectories programs and modules. Within the 

programs su b"directory, there Viill be a single subdirectory for each program. 

Within each program subdirectory there will be a subdirectory for each version. 

Each of these subdirectories will con lain 

(1) 

(2) 

(3) 

a program composition map comp . 
a location map location which gives· the module and ver-sion for ea.ch entry 

point in the program, 

an automatically-generated file which can serve as input to-the Unix utility 

maJce [Feld77a], which will generate the sequence of operations needed to 

make a consistent object module for the program, and 

(4) any other information that needs to be associated ·with the program. 

In the modules subdirectory, one will find a separate subdirectory for each 

named module. Each of these will contain a separate subdirectory for each ver­

sion of the module. The version subdirectory will contain several files: 

( 1) the source file, 

(2) the compiled code, 

(3) a list of entry point names, 

(4) a list of programs into which this module is incorporated, and 

(5) a subdirectory entries. 
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The entries subdirectory will contain a descriptor for each entry point in the 

module. Each entry point descriptor v.ill contain 

(1) specifications for the entry (e.g., parameter documentation), 

(2) annotations (e.g., summary data flow information), 

(3) a list of the entries called from within, and 

(4) a list of entries and modules from which this entry is called. 

In a program that is being optimized (a later implementation), we will need to 

recognize that the compiled code may be dependent on the context program in 

which the module is being compiled. We plan to place such program-dependent 

code modules in subdirectories of the program in which they are incorporated. 

To see how this works, let us see how the system responds to a common 

query. Suppose the editor generates a query asking for specifications about entry 

point e in the current context program p. First the system manager looks at the 

composition map 
programs/p/loca tion 

to find the module rn/v that contains e within· p. Next, it looks in the entry 

descriptor 
modules/m/v / entries/ e 

to fetch the desired information. 

We expect this to be finished by Decern ber 1983. In the year between . . 
December 1983 and December 1984, we will add the execution monitor and optim-

izing code generator, employing simple interprocedural analysis. Linkage tailor­

ing and other sophisticated features will be put ofi until the basic functions are in 

place. 
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