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ABSTRACT

Financial time series forecasting via RNNs and Wavelet Analysis

by

Michael Demone Jackson

Recent successes in both Artificial Neural Networks (ANN) and wavelets

have placed these two methods in the spotlight of quantitative traders seek-

ing the best tool to forecast financial time series. The Wavelet Neural Net-

work (W-NN), a prediction model which combines wavelet-based denoising

and ANN, has successfully combined the two strategies in order to make ac-

curate predictions of financial time series. We explore how the most recent

formulation of the W-NN model, with the Nonlinear Autoregressive Neu-

ral Network with Exogenous variables (NARX), is affected by the choice of

wavelet thresholding technique when predicting daily returns of American

index futures contracts. We explore how the choice of thresholding tech-

nique affects the profitability of two technical trading models based on daily

return predictions from a NARX-based W-NN. The purpose of this research

is twofold: it compares the effect of different wavelet thresholding techniques

on a NARX-based W-NN’s forecasting ability on 1-day returns of American

index futures contracts and offers two easy-to-implement trading strategies.



In the second part of the thesis, we formulate a hybrid NARX-based sea-

sonal predictive model, Seasonal Nonlinear Autoregressive Neural Network

with Exogenous Variables (S-NARX ), for end-of-day volume, where end-of-

day volume is directly driven by the end of the day auctions. The S-NARX

model will seek to take advantage of the information found in the data up

until the auction time and high-frequency intraday trading volume’s diurnal

seasonal pattern to predict end-of-day volume. Volume is well known to be

a leading indicator of price changes and the two metrics are simultaneously

positively correlated. Algorithmic traders rely on accurate volume predic-

tions to deploy algorithmic trading algorithms, especially when utilizing a

Volume Weighted Average Price (VWAP) algorithm, that allows the execu-

tion of large orders with minimal slippage. Fundamental and quantitative

investors are also interested in trading volume because it is a measure of

trading intensity and an indicator of market liquidity. The S-NARX aug-

ments the NARX with the feature set from a seasonal ARMA(P,Q)[s] and

offers quantitative traders a flexible machine learning model for forecasting

time series with both longer dependencies and seasonality.

Finally, we develop an R package that provides the traditional NARX

network, first introduced in (46), along with the novel seasonal version of

the CoFES S-NARX that augments the NARX feature set with the features

from an ARMA(P,0)[s] described in (73). The networks are built using

the Keras, (4), framework in R and utilize the sequential model from this

package.
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Chapter 1

Background

This chapter covers the background for this dissertation work.

1.1 Momentum Trading

Momentum trading consists of a set of popular trading strategies that at-

tempt to detect and exploit changes in an asset’s price. Some summarize the

momentum strategy as ’buying winners and selling losers’. The momentum

effect was discovered in the late 1980s, when traders realized that stocks with

above-average recent returns outperformed stocks with below-average recent

returns but with the same market risk (18). Momentum trading strategies

are very popular and also range in sophistication. For instance, simple mo-

mentum strategies can be employed by anyone with access to past financial

returns. More complex strategies can incorporate momentum technical in-

dicators and prediction algorithms. Interestingly, finance literature suggests

that returns over a short horizon exhibit autocorrelation and link momen-

tum effect with longer periods, short to intermediate, of serial correlation

(12).

Machine learning strategies, including the strategy employed in the first

study, incorporate technical analysis by introducing technical indicators into
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a feature set. Technical indicators, signals produced by calculations that in-

volve volume, price, and/or open interest of an asset, are used by technical

analysts to make decisions about different aspects of the investment process.

There are three major types of technical indicators: trend, momentum, and

sentiment. Trend technical indicators, the most popular category, attempt

to quantify the direction, up, down, or sideways, of price movement. Mo-

mentum technical indicators attempt to quantify the price velocity or ac-

celeration. Momentum is a leading indicator of change in trend. Sentiment

technical indicators attempt to quantify an investor’s attitude toward secu-

rities and attempt to highlight instances when a security is either oversold

or overbought (18). The first study employs the following momentum tech-

nical indicators into our neural network’s feature set: the Relative Strength

Index (RSI), Moving Average Convergence Divergence (MACD), MACD

Signal Line, MACD Histogram, Stochastic fast %K, Stochastic slow %K,

Stochastic %D, and the Ultimate Oscillator.

Generally speaking, the Hurst exponent, first introduced in (35), is used

in time series literature to both measure long memory and to gauge the

predictability of a series. This method of detecting long memory is based on

making estimates of the range that a variable changes over time and was first

introduced in the context of long-range dependence in hydrology. According

to the original paper, a Hurst Exponent (H) = .5 indicates a series where the

current value does not depend on lagged values of the series. Mean reverting

series have Hurst exponent’s in the range of 0 < H < .5 and the closer H is
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Figure 1.1 : Hurst exponent value distributions for the SP 400 Mini Futures

contracts, SP 500 mini futures contracts, Dow Jones mini futures contracts,

and NASDAQ mini futures contracts between 2011-2020.

to 0 the stronger the mean-reverting behavior. Hurst exponents in the range

.5 < H < 1 display trend reinforcing behavior which is stronger the closer H

is to 1. Peters,(61) and (62), introduced the Hurst exponent to financial time

series via Fractal Markets Hypothesis (FMH). Since then, several methods

have been developed to estimate the Hurst exponent of a time series. The

second study employs the rescaled range analysis (R/S analysis) method

for calculating the Hurst exponent of time series Xt = X1, X2, ... with a

sample size of 10,000. The Hurst Exponent in the first study was downloaded

from Bloomberg with the original data set. The (R/S analysis) method for
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Figure 1.2 : Hurst exponent distribution for Volume(top), log volume (bot-

tom), Apple (left), and Microsoft (right) using samples of size 10,000 between

9/1/2020 and 9/1/2021.

calculating the Hurst exponent is described in Algorithm 1.

Algorithm 1 R/S estimation of Hurst Exponent

Calculate mean value m = 1
n

∑n
i=1Xi

Calculate the mean adjust series Yt = Xt −M

Calculate the cumulative deviate series Zt =
∑t

i=1, for t = 1, 2, ..., n

Calculate range Series RT = max(Z1, Z2, ..., Zt)−min(Z1, Z2, ..., Zt) for

t = 1, 2, ..., n

Calculate Standard deviation series St =
√

1
t

∑t
i=1(Xi − µ)2t = 1, 2, ..., n

where µ = 1
t

∑t
i=1Xi

Calculate Rescaled range series (R/S)t =
Rt

St
for t = 1, 2, ..., n
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According to Hurst, as time increases (R/S) scales by power-law, which

suggests

(R/S)t = d · tH (1.1)

where d is a constant and H is the Hurst Exponent which is estimated by

plotting log(R/S) versus log (t). The slope of the calculated regression line

represents an approximation to the Hurst exponent (66). There are several

empirical studies that suggest that time series with larger Hurst exponents

are more predictable than time series with Hurst exponent closer to .5,

[(42),(47),(64)]. All of the American index futures contract time series had

Hurst values that averaged well above .5 for the time period of our experi-

ment. The distribution of their Hurst exponent can be found in Figure 1.1.

Similarly, in the second project, we attempt to predict transformations of

high-frequency intraday volume and also use the Hurst exponent the detect

long memory and gauge the predictability of the two series. As with the

first project, these time series also have an average Hurst exponent larger

than .5 over the entire data sample, see Figure 1.2.

Denoising is one of the most frequently used properties of wavelets anal-

ysis. Most wavelet denoising schemes are based on a thresholding technique

applied to the wavelet coefficient that results from the wavelet transforma-

tion. A wavelet thresholding method can be distinguished by the choice of

transformation, either discreet or continuous, the mother wavelet, which is

strongly influenced by the transformation decision, and finally the threshold

technique. Market noise can be thought of as the opposite of information
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and consist of activities that distort the truth which leads to small insignif-

icant price movements. Noise exists, to some extent, in all financial mar-

kets. Furthermore, machine learning-focused methods are less effective in

the presence of noise.

RNNs are a class of neural networks that are designed to analyze time

series and sequential data. RNNs are made of several sequential recur-

rent layers that form a directed or undirected graph along a temporal se-

quence, which enables the network to exhibit temporal dynamic behavior

(11). However, analyzing time series with longer dependencies, 5-10 time

steps (75), introduces issues with vanishing gradients for RNNs with gra-

dient descent-based training methods. As a result, RNNs were designed to

address this shortcoming. There are two popular RNNs, Long short-term

memory (LSTM) and Gated Recurrent Unit (GRU), that are designed to

mitigate the vanishing gradient issue and allow the network to learn longer

dependencies. Of the two, the LSTM, first introduced in (30), has been the

more popular of the two networks for analyzing financial time series with

longer dependencies due to its superior performance of accurately model-

ing long and short-term dependencies in financial data (11). However, the

LSTM doesn’t completely eliminate the vanishing gradient issue and the

network is known to be computationally expensive (23).

This thesis first proposes two successful momentum-based quantitative

trading methods that either individual investors or large institutions can

easily employ. The system deviates from the current literature by employ-
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ing the Nonlinear autoregressive neural network with exogenous variables

(NARX) instead of the field favorite LSTM. This choice is based on wanting

to keep things simple. The memory gate mechanism employed by the LSTM

is more difficult to explain than the autoregressive nature of the NARX.

Similarly, the NARX is computationally more efficient and more suitable

for individual investors with limited computational power. This system first

denoises the American Index futures contracts via wavelet denoising tech-

niques then feeds the denoised series into the NARX which then makes a

series of one-day-ahead return predictions. Those predictions are used to

make investment decisions for the next day with positive returns signaling

a buy and negative returns giving a sell signal.

1.2 Intraday Trading Volume

Algorithmic trading involves using algorithms to systematically break larger

orders into smaller orders to reduce transaction costs due to slippage. Often

the two terms, Quantitative and Algorithmic trading, are used interchange-

ably but in this instance, this study refers to those defensive strategies. For

example, percentage of volume (POV) is an algorithmic trading method that

breaks down large orders based on a percentage of the volume traded. This

strategy requires accurate volume predictions along with a user-defined par-

ticipation ratio. Additionally, the volume-weighted average price (VWAP)

algorithmic trading method attempts to use a market’s volume profile to

release smaller orders with the goal of executing as close to possible to the
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volume-weighted average price. The VWAP is defined as:

VWAP =

∑
Price · Volume∑

Volume
(1.2)

Accurate intraday volume predictions are critical to many aspects of the

investment process, not just Algorithmic trading. Volume, the cumulative

trading activity over a given period of time, is considered to be a technical

indicator and can be used on its own to make an investment decision or

it can be used to calculate other technical indicators. The daily seasonal

patterns in intraday volume data are well documented. (59) highlights that

high-frequency volume data may take an M-pattern, W-pattern, J-patter,

U-pattern, or inverted U-pattern. In this data set, a majority of the se-

curities displayed either the U pattern where wither the open or close had

either slightly or drastically higher daily averages. The seasonal patterns

were strongest in the non-transformed intraday volume data but it was still

present in log trading volume as well.

The second project proposes an innovative method of predicting intra-

day high-frequency trading volume with the goal of improving volume-based

algorithmic trading strategies. The method uses the novel CoFES S-NARX

which augments the NARX feature set with the seasonal components from

an ARMA(P,0)[s] model without adding any of the assumptions associated

with the ARMA(P,Q)[s] model. Seasonality can be thought of as variations

that occur at regular intervals of less than a year, like hourly or monthly.

Seasonality is a well-covered topic in time series and there are several stud-

ies that suggest that seasonal analysis improves the prediction of time series
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with strong seasonal patterns ((22),(50),(82)). This study uses minute level

intraday data which results in a seasonality of 390, given there are 390 min-

utes in a trading day for U.S. equities. This can be verified in the PACF

graphs of both Apple and Microsoft, where spikes are followed by exponen-

tial decay at intervals of 390, see Figure B.2 and Figure 3.1.

Volume is a major indicator of market activity; as a result, there are

too many volume-based technical indicators to list them all. Volume tech-

nical indicators are of particular importance to technical analysis because

volume can be used to confirm several hypotheses about the market. On

Balance Volume (OBV), Volume Relative Strength Index (V.RSI), Money

Flow Index (MFI), Chaikin Money Flow (CMF), Chaikin Accumulation /

Distribution (chaikinAD), and Arms’ Ease of Movement Value (EMC) are

common volume technical indicators used by quants looking to take advan-

tage of the signals in trading volume. Most of the time these technical

indicators are used to determine some actionable insight into the state of

the market but we want to see if they aid our models’ ability to predict log

volume for American technology stocks. Efficient market proponents would

argue that historical price data is useless in predicting future trading volume

levels (86). However, there are too many counterexamples that suggest that

financial time series are in someways predictable [(41), (71)].
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Chapter 2

Forecasting Daily Returns of American Index

Future Contracts via Wavelets Denoising

2.1 Introduction

The ability to establish highly leveraged positions, ample liquidity, lower

transaction cost, and volatility are just a few of the reasons why the U.S.

Futures market is attractive to quantitative investors. In particular, U.S.

index futures, futures contracts are written on a U.S. stock index like the

S&P 500 or NASDAQ 100, are popular with quantitative investors because

they are settled in cash which simplifies investment strategies by eliminating

the risk of taking delivery of unwanted assets. Many would agree that the

U.S. futures market is more efficient than the U.S. equity market because

is it harder to trade in the futures market in a way that takes advantage of

inside information. However, the U.S. futures market still exhibits momen-

tum, a common market inefficiency [(55),(63)], and long memory in closing

prices (78). As a result, momentum-based methods are popular quantita-

tive trading strategies within the asset class (9), (53), (80). Many machine

learning quantitative trading strategies incorporate momentum by including

momentum technical indicators as predictors (10), (20), (83).
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At the same time, changes in the market microstructure, the development

of risk-factor exposure investment strategies, improvements in computing

power, the increased availability of large data sets, and the initial success of

pioneers are all partially responsible for machine learning techniques being

used more frequently in quantitative trading (39). Individual investors have

to employ more brainpower to remain competitive in an investing landscape

that is starting to be dominated by machine learning techniques that often

remove individual decision-making from the investment process. Like tradi-

tional stock market prediction, machine learning techniques can be broken

down into either a fundamental analysis approach, using a company’s funda-

mental information like earnings and dividends to attempt to predict stock

prices, or a technical analysis approach, attempting to identify mispriced

securities based on recurrent and predictable stock price patterns without

considering a company’s fundamentals (12).

Moreover, a major driver of this emergence of machine learning within

financial time series analysis has been the success of machine learning tech-

niques in predicting financial time series when compared to traditional meth-

ods like the ARIMA model and linear regression that rely on rigid assump-

tions like stationary or independence. Empirical studies suggest that a ma-

jority of real-world time series are not only non-stationary but are also non-

linear (76). Also, it has been well documented that a majority of financial

time series deviate from normality via fat tails, which according to (81) is

evidence of nonlinear dynamics. Additionally, as a result of high-frequency
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trading, the amount of long-term dependencies within the American equity

market times series, which is evidenced by Hurst exponent > 0.5, has in-

creased steadily since 2005 (1). The Hurst exponent is used to measure

the long memory in financial time series. Interestingly, by 2016 high fre-

quency accounted for approximately 80% of foreign exchange futures vol-

ume and 66.6̄% of both interest rate futures and Treasury 10-year futures

volumes (54). These facts suggest that methods that rely on the assump-

tion of independence may be ignoring valuable information that U.S. futures

market traders can use to make more accurate predictions. Deep Learning

techniques, which allow practitioners to avoid all of the before mentioned

assumptions, may be an appropriate alternative to forecasting U.S. index

futures time series.

In particular, the W-NN, which first denoises a time series using a

wavelet-based technique and then uses Artificial Neural networks to make

a series of predictions, has been used to predict financial time series for

over two decades. The W-NN model has been used with several different

neural networks. For example, (84) used the W-NN model to predict an Ex-

change Traded Fund (ETF) based on the S&P 500 utilizing the Feed-forward

Back Propagation Neural Network [FBNN]. However, the Long Short Term

Memory (LSTM) neural network, designed to model both short-term and

long-term nonlinear dependencies, became the dominating recurrent neural

network in both financial time series prediction and within the W-NN when

applied to financial time series. In fact, (71) highlights how LSTM networks
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have dominated research on predicting financial time series using deep learn-

ing techniques between 2005-2019, being the network of choice in over 60%

of the research. Similarly, a majority of the studies that used the W-NN

model on financial data used the LSTM network as the NN (43), (67), and

(89). Furthermore, the LSTM has also been a popular method to analyze

the long memory patterns found in futures markets (32), (77),(87).

Recently, the Nonlinear Autoregressive Neural Network with Exogenous

variables (NARX) has proven to be one of the best recurrent neural net-

works (RNN) for analyzing time series with persistent long memory patterns.

Specifically, (23) found the NARX to be superior to the LSTM in terms of

vanishing-gradient properties, improving performance with time series with

long-term dependencies, and requiring fewer parameters and computation.

Indeed the NARX has begun to appear in Financial Time Series forecasting

research. For example, (16) successfully used the NARX to forecast Real-

ized Volatility of the daily return of the Standard & Poor’s index, whereas,

(28) successfully employed the NARX to forecast the volatility of the crude

oil price in Nigeria. Also, (38) successfully employed the NARX within the

W-NN to build a trading strategy that predicted the price series of East

Asian Futures.

Wavelet analysis has successfully been applied in several applications

such as signal filtering and denoising, data compression, image processing,

and pattern recognition (27). There are several reasons why wavelets are

becoming more popular in financial time series analysis. Namely, wavelets
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have the ability to sparsely represent a wide range of functions and are able

to detect and represent localized features of a time series. Wavelets have

the ability to analyze data in the time and frequency domain, overcoming

the stationary limitation of the Fourier transform. Also, wavelets are more

efficient than other methods in terms of computation speed and storage

requirements (56).

Additionally, wavelet denoising applications have shown to be a success-

ful technique to improve forecasts of financial time series. For instance,(31)

used wavelet denoising, via the Haar wavelet along with a user-defined

threshold, to improve prediction from a recurrent neural network (RNN)

based on the artificial bee colony (ABC) algorithm (called ABC-RNN).

This study forecast the Dow Jones Industrial Index, London FTSE-100

Index (FTSE), Tokyo Nikkei-225 Index (Nikkei), and Taiwan Stock Ex-

change Capitalization Weighted Stock Index (TAIEX). In addition, (88)

used wavelet decomposition to improve the forecast from the LSTM on the

Shanghai Stock index’s next-day closing price between 2012-2017. Similarly,

(44) used wavelet denoising to improve the forecast from LSTM that uses

index data, volume, and technical indicators to predict the HSI, SSE, SZSE,

TAIEX, NIKKEI, and KOSPI indexes between 2010-2016. Further, (21)

used Wavelet denoising to improve the forecast from a Convolutional Neural

Networks (CNN) on the price movements of EUR/USD between 1950–2016.

However, there has not been a consensus as to the most effective wavelet

thresholding technique for improving the forecast of financial time series. A
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recent study, (2) suggests that the three most popular wavelet thresholding

techniques for financial time series are the universal hard, universal soft,

and the empirical Bayesian thresholding technique. Further, (2) introduces

two innovative wavelet thresholding techniques for analyzing financial time

series, namely the Wave L2E and the Wave L2Eχ2 which are based on the

L2E method, proposed by (70) and known for its robustness.

In this study, we explore how the novel Wave L2E and the Wave L2Eχ2

thresholding techniques affect the forecasting ability of a NARX based W-

NN and the profitability of our long/short and long-only momentum trading

model based on the predicted daily returns for 4 U.S. index futures contracts.

We compare the results of the two novel thresholding techniques against the

3 gold standard thresholding techniques for financial time series: the univer-

sal hard, universal soft, and empirical Bayesian. Also, trading profitability

is compared against the traditional buy and hold strategy, which goes long

the asset over the 10-year period, in the asset over the same time period

and prediction success is measured with traditional classification metrics,

accuracy, precision, and recall. Classification metrics are used because our

trading algorithm will be based on the sign of the predicted return and we

are interested in the W-NN ability to correctly predict the correct direction

as opposed to the accuracy of the predicted return.

The remainder of this chapter is organized as follows: Section 2 describes

the methods used in the future daily return prediction model used in this

study. Section 3 presents the results and compares them to other wavelet
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thresholding techniques. Section 4 summarizes the prediction and trading

results from the 5 W-NN models on 4 American index future contracts.

2.2 Methods

2.2.1 RNN: NARX

Figure 2.1 : Artificial Neural Network

Artificial Neural Networks (ANNs), powerful machine learning techniques

that mimic learning mechanisms found in brains, have become popular

within the quantitative trading community. ANN offers quantitative in-

vestors a set of powerful prediction tools and alternative methods to analyze

the non-stationarity and non-linearity often found in financial time series.

Similarly, ANN offers versatility which has allowed quantitative investors to
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utilize ANNs in algorithmic trading, risk management, fraud detection, port-

folio management, asset pricing, financial sentiment analysis, and behavioral

finance (71). For example, (60) used a fusion approach involving ANN, Ran-

dom Forest, and Support Vector Regression to predict Indian Stock market

indices. Similarly, (90) used a hybrid ARIMA-ANN model to forecast the

Canadian lynx and BP/USD exchange rate series. Additionally, (41) used

a hybrid ARIMA-ANN-Fuzzy logic model to forecast US dollars/Iran Rials,

Gold price, and Euro/Iran Rials. As well, (57) used Feed Forward Neural

Networks to predict SPY ETF and 10 stocks from S&P 500.

ANNs include an input layer, one or more hidden layers, and an out-

put layer. Adjacent layers are connected by a series of weights, which scale

the input signal from the previous layer. Each layer has the potential to

have multiple nodes and each node in the hidden and output layers has an

activation function and a potential bias term which reduces variance and

introduces flexibility to the neural network. Fitting an ANN involves using

optimization methods to arrive at the optimal weights and bias for the sys-

tem based on an appropriate loss function. ANN often uses backpropagation

and gradient descent to systematically redistribute the error calculated in

the output layer to the previous layers and to arrive at the optimal layer

weights and bias values.

For example, Multilayer perceptrons (MLP) are a class of feed-forward

ANNs that consist of multiple connected perceptrons. Perceptrons, also

called McCulloch–Pitts neurons or linear threshold gates, are the oldest



21

and simplest form of neural networks. Perceptrons consist of a single input

layer and the output node (25). MLPs have a minimum of three layers an

input layer, an output layer, and one or more hidden layers. The non-input

nodes typically employ nonlinear activation functions in an MLP. MLPs

often employs the backpropagation algorithm to learn network weights and

biases. MLPs can be used for either regression or classification problems

depending on the function used in the output layer (25).

Recurrent Neural Networks (RNNs) are a class of ANNs that specialize

in processing sequential data, which often have sequential dependencies.

RNNs encode temporal information into feedback connections, which are

capable of capturing the time-varying dynamics of the underlying system

(11). Memory is introduced into RNN by adding a time window over the

data via time delays. The unit time delay H(z) = z−1, is the simplest form

of memory, and Tapped Delay Lines (TDL), which consist of a series of unit

time delays, are the simplest memory architecture. RNN’s memory is one

of the major distinctions between traditional ANN which assumes all inputs

are independent. The learning process for RNN involves ’unfolding’ the

RNN, writing an equivalent acyclic graph representation, in order to have

a closed-form for the network training. The transformed network can then

be trained via traditional methods used on feed-forward neural networks.

This process is called Backpropagation Through Time (BPTT). However,

RNNs are known for having a short memory due to vanishing gradient issues

that are introduced when attempting to learn longer memory relationships
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with gradient-based learning algorithms. Different RNN models have been

formulated, like the LSTM and Gated Recurrent Unit (GRU), to circumvent

the short memory limitations in standard RNNs.

Notably, the Nonlinear autoregressive neural network with exogenous

variables (NARX), first introduced in (46), is a class of RNN that was for-

mulated to model long dependencies in sequential data. The NARX, which

has a recurrent dynamic architecture with several hidden layers, was in-

spired by the nonlinear autoregressive with exogenous inputs, a discrete-time

nonlinear model found in advanced non-linear time series applications (11).

However, unlike traditional RNNs, the recurrence in the NARX model is

given only by the feedback on the output, rather than from the entire inter-

nal state. Fortunately, (46) suggest that this design allows for the NARX to

be implement via a MLP where the target yt is regressed against dy lagged

values, {y(t−dy), ..., y(t−1)}, and dx lagged values of an exogenous input signal

{x(t−dx), ..., x(t−1)}.

The NARX inputs, it, consist of two Tapped Delays Lines.

it = (xt−dx , ..., xt−1, yt−dy , ..., yt−1) (2.1)

The NARX output equation is given by:

yt = f(xt−dx , ..., xt−1, xt, yt−dy , ..., yt−l,Θ) (2.2)

where f(·) is a nonlinear mapping function performed by a MLP, Θ are the

parameters (weights & bias), dx is the input delay, and dy represent the
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((a)) Operational mode

((b)) Training mode

Figure 2.2 : During training, the unit transfer is disconnected and y* is input

directly into the network. After training, y* is removed and the output from

the network y is connected to the input via a feedback loop.
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output delay (11). The input to the NARX, it, has dxNx + dyNy terms.

Where Nx and Ny are the number of inputs and output variables.

The MLP used to model the NARX has a single input layer, Nl ≥ 1

hidden nodes, and an output layer. The following equations dictate the

output for the network.

h1[t] = t(it, θi) (2.3)

hl[t] = t(hl−1[t− 1], θhl) (2.4)

y[t] = l(hNl
[t− 1], θ0) (2.5)

where hl[t] ∈ RNhl is the output of the lth hidden later at time t, l(·)

is the identity function, and t(·) is an activation function, which is ei-

ther tahn or sigmoid for the NARX. The weights of the network are Θ =

{θi, θo, θh1 , ..., θhNl
}, where θi = {W h1

i ∈ RdxNx+dyNy×Nh1 bh1 ∈ RNh1}, θo =

{W o
hNl

∈ RNl×Ny bo ∈ RNy}, and θhl
= {W hl

hl−1 ∈ RNhl−1×Nhl bhl
∈ RNhl}.

During training the time series relative to the desired output y* is fed

into the network along with the input time series x, see Figure 2.2. Then

the output feedback, the recurrence that connects the output of the network

with the input target node, is disconnected and the resulting network has

a purely feed-forward architecture, which parameters can be trained using

well-established backpropagation techniques(11). The NARX employs the
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following loss function in the gradient descent.

L(y, y∗; Θ) = MSE(y, y∗) + λ2||Θ||2 (2.6)

where MSE = Mean Square Error, λ2 a hyperparameter that weights the

importance of the L2 regularization term in the loss function. The initial

phase of λ2 is transient, the first prediction of y is initially fed back into the

network as input and disregarded. The NARX network has 5 hyperparam-

eters: the input and output TDL, the number of hidden layers, the number

of neurons in each layer, the regularization hyperparameter λ2 in the loss

function, and the learning rate (11).

2.2.2 Wavelet Denoising

Denoising is one of the most frequently used properties of wavelets analy-

sis. Most wavelet denoising schemes are based on a thresholding technique

applied to the wavelet coefficient that results from the wavelet transforma-

tion. A wavelet thresholding method can be distinguished by the choice of

transformation, either discreet or continuous, the wavelet, which is strongly

influenced by the transformation decision, and finally the threshold tech-

nique.

The traditional 3 step approach to wavelet denoising:

1. Apply either the discrete wavelet transform (DWT) or the con-

tinuous wavelet transform (CWT) to transform the original time

series which results in a set of wavelet coefficients. Wavelet coeffi-
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cients can be thought of as the information, or details contained in the

original time series at different frequency components.

2. A threshold is applied to the coefficients which set all coefficients that

are below the ”threshold” equal to zero. The idea is to consider the

wavelet coefficients that are smaller than a certain threshold to be

noise. The thresholding process removes this noise from the original

data set by setting small coefficients equal to 0.

3. The remaining coefficients are used to reconstruct the ”denoised series”

via an inverse wavelet transform.

Universal Soft and Hard

The universal soft and universal hard thresholding techniques are two of

the most popular discreet wavelet threshold techniques. The two thresh-

olding techniques are based on methods of magnitude thresholding, which

partitions the original signal into components and then reduces or removes

certain wavelet coefficients in order to isolate a desired behavior from the

signal. Unlike thresholding methods that depend on the scale, these two

methods remove or reduce the smallest amplitudes coefficients without tak-

ing into consideration the scale. In the hard thresholding scheme, a threshold

λ, is set and those coefficients below this threshold are considered to repre-

sent a random or noisy part of the signal. The hard threshold removes the

entire coefficients if it falls below the threshold. In both cases, we used the
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W hard
i =


0, |Wi| < λ

Wi, |Wi| ≥ λ

(2.7)

The soft threshold on the other hand considered coefficients to be a mixture

of signal and noise. In soft thresholding, all of the wavelet coefficients less

than λ are set to zero and all of the coefficients above shrink towards zero

by subtracting λ.

W Soft
i =



0, |Wi| < λ

(Wi − λ), Wi > λ

(λ−Wi), Wi < −λ

(2.8)

In both of the formulations of the hard and soft we use one of the most

popular thresholds for λ, the universal threshold λu = (2·ln(N))
1
2σ, where σ

is the standard deviation of the noise within the signal and (2·ln(N))
1
2 is the

expected maximum value of a white noise sequence of length N (Addison).

Empirical Bayes

The Empirical Bayes is another discreet wavelet transform-based threshold-

ing technique where the threshold is estimated from the data. The wavelet

coefficients, djk, are assumed to be independently distributed with prior

(1− πj)δ(0)+ πjN(o, τ 2j ), which is a mixture with an atom of probability at

zero and a normal distribution with variance τ 2j .
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Suppose that Z=(Z1, ..., Zn) are observations satisfying

Zi = µi + ϵi (2.9)

where ϵi ∼ N(0, 1). µi is assumed to have an independent prior distribution

given by

fprior(µ) = (1− w)δ0 + wγ(µ) (2.10)

where γ, the nonzero part of the prior, is assumed to be a fixed unimodal

symmetric density. Usually this density, γ , is normally distributed but can

be replaced with distributions like double exponential. The marginal density

of Zi is assumed to have to form

(1− w)ϕ(z) + wg(z) (2.11)

where g = γ ⋆ ϕ, ⋆ denotes convolution, and γ represents the standard

normal density. The marginal maximum likelihood estimator ŵ of w to be

the maximizer of the marginal log-likelihood

l(w) =
n∑

i=1

log{(1− w)ϕ(Zi) + wg(Zi)} (2.12)

This marginal log-likelihood has the following constraint on w, t(w) ≤√
2 · log(n) .

The basic approach to calculate the Bayesian threshold is to substitute

ŵ into the prior in order to estimate the µi. Suppose µ has prior described

by equation 4 and we observe Z N(µ,1). If the posterior median is used then

µi is estimated by µ̂(Zi; ŵ) if the posterior mean is used then the estimate is
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µ̃(Zi; ŵ). For fixed w<1, the function µ(z;w) will be monotonic function of

z with threshold properties, in that there exist t(w)>0 such that µ̂(z;w) = 0

if and only if |z| ≤ t(w). The estimated weight ŵ results in an estimated

threshold t(ŵ) = t̂. The posterior median threshold is defined to be the

value of t(w) such

P (µ > 0|X = t(w)) = .5 (2.13)

Under this formulation, t(w) is the largest observed value for which µ̂(Zi; ŵ)

will be zero (74).

WaveL2E & WaveL2Eχ2

TheWaveL2E thresholding technique deviates from traditional wavelet thresh-

olding techniques found in financial applications, which rely on the DWT,

and instead utilize the CWT. WaveL2E’s choice of transformation allows this

technique to employ the Morlet Wavelet, which is a popular wavelet in fi-

nancial and economic applications. The Morlet wavelet, a complex wavelet,

is characterized by the ability to provide information on both amplitude and

phase (27). The Morlet Wavelet is also an analytic wavelet, which guaran-

tees our ability to recover the original series x(t) with an inverse transform

(2).

WaveL2E thresholding is based on the L2Emethod, known for its robust-

ness, first proposed by (70) . The L2E, a minimum distance estimator, is a

substitute for traditional density estimators like histograms or kernel-based

methods. In essence, (70) showed that for mixture distribution that the
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L2E does a good job at identifying outliers in large data sets. The WaveL2E

and WaveL2Eχ2 assume that outliers in the data are the true signal, with

noise coefficients being close to zero in magnitude, and take advantage of the

L2E’s ability to find groups of outliers in data sets. The steps to implement

these two methods are as follows.

1. Apply the Morlet wavelet, a continuous wavelet transform (CWT), to

the original time series and calculate the squared wavelet coefficients.

2. Apply the WaveL2E and WaveL2Eχ2 at each time point solving for

estimates of (σt and wt) of the L2E criterion.

L2E(ωt, σt) =
ω2
t

(2σt

√
π)d

− 2ωt

n

n∑
i=1

ϕ(xi|0, σ2
t Id) (2.14)

3. Threshold the wavelet coefficients based on the estimates where the

λWaveL2E = the largest of the smallest ωtM wavelet coefficients, where

M is the number of wavelet coefficients, pairs, or triples, depend-

ing upon the step chosen. The λWaveL2Eχ2= 95 critical value of the

squared wavelet coefficient distribution. Both are hard thresholds

where wavelet coefficients below the threshold are set to zero.

4. Calculate the inverse transform of the denoised time series or solve for

the pure signal using the recovered estimates.
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2.2.3 Research Methodology

Data

The sample data in this study was collected from Bloomberg L.P. and con-

sists of historical open, high, low, and close (OHLC), volume, Hurst ex-

ponent, along with the 8 momentum-based technical indicators: Relative

Strength Index (RSI), Moving Average Convergence Divergence (MACD),

MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and

Ultimate Oscillator. Daily data were collected for S&P 400 mini continu-

ous futures contracts, S&P 500 mini continuous futures contracts, NASDAQ

mini continuous futures contracts, and Dow Jones mini continuous futures

contracts between 1/1/2008 to 12/31/2020.

We looked at the Hurst exponent, introduced by (36), to measure the

long-term memory in each of the index futures price series. The value of

Hurst exponents ranges between 0 and 1 and effectively classifies a time

series into 3 categories. If H=.05, the time series is categorized as random,

0 < H < .5 indicates a persistent, mean-reverting, series, and H > .5

indicates a persistent series, which are trend reinforcing (64). The average

Hurst exponent over this time period was .594 for the S&P 400 mini Futures

Contract, .582 for the S&P 500 mini futures contract, .601 for the NASDAQ

mini futures contract, and .598 for the Dow Jones mini futures contract

over this time period. The distribution of the 4 futures contract’s Hurst

exponent is displayed in the Appendix. Missing data points are replaced
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using the 5-day moving average.

Model Inputs

There are hundreds of momentum-based technical indicators that techni-

cal analysis can employ. Momentum-based technical indicators quantify the

rate of change of price movement and are a leading indicator of a change in

trend(18). Both (7) and (8) suggest that the Relative Strength Index (RSI),

Moving Average Convergence Divergence (MACD), MACD Signal Line,

MACD Histogram, Stochastic fast %K, Stochastic slow %K, Stochastic %D,

and the Ultimate Oscillator are the most frequently used momentum tech-

nical indicators when forecasting financial time series. These momentum-

based technical indicators are all derived from the future’s trading volume,

open, high, low, and close.

• MACD = 12 period average closing price - 26 period average closing

price

• MACD Signal = 8 period average of MACD

• MACD Histogram = MACD - MACD Signal

• Stochastic Fast%K = 100· Ct−Lowest low over last 14 periods
Highest high over last 14 periods−Lowest Low over last 14 periods

• Stochastic Slow %K = 3 period average of Stochastic Fast %k

• Stochastic Slow %D = 3 period average of Stochastic Slow

• RSI = 100− 100

1+
∑

Gains over past 14 periods∑
Losses over past 14 Periods
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• Ultimate Oscillator = 100 · (A7·4)+(A14·2)+(A28)
4+2+1

where:

• Buying Pressure (BP) = close - Min(low, prior close)

• True Range (TR) = Max(high, prior close) - Min(low, prior close)

• A7 =
∑7

p=1 BP∑7
p=1 TR

• A14 =
∑14

p=1 BP∑14
p=1 TR

• A28 =
∑28

p=1 BP∑28
p=1 TR

The Architecture of the Models

This study compares five different thresholding techniques which result in

five different W-NN models. First, The model starts with 3 years of training

data and then takes the 1-day return series of the close series, resulting in

Cr. Next, each model denoises the training set’s OHLCr series via their

different wavelet thresholding techniques. Model 1 uses the universal hard

threshold technique, model 2 uses the universal soft threshold technique,

model 3 uses the empirical Bayesian threshold technique, model 4 uses the

WaveL2E threshold technique, and model 5 uses the WaveL2Eχ2 threshold-

ing technique. Next, the denoised OHL and the 8 technical indicators are

grouped as the exogenous inputs, and the denoised Cr is used as the target

input for the NARX neural network.
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Figure 2.3 : Model architecture
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Next, the model uses the trained network to make 3 months of 1 day

ahead Ĉr predictions. The model takes the next 3 months of OHLC and

calculates Cr. Each model next denoises 3 months of the OHLCr series via

their different wavelet thresholding techniques. The denoising is done with

a 3-month sliding window to avoid introducing forward-looking bias. The

3 months of denoised OHLCr and 8 technical indicators are used with the

trained network to make 3 months of Ĉr predictions. At the end of the 3

month period, the window slides 3 months forward and the training process

repeats. This process continues until the end of our 10-year backtesting

window.

Last, the predictions are passed to the two trading algorithms where

buy/sell signals are generated for the open and the position is held until

close. The buy and sell signal for the first model, and the buy signal for

the second are based on the sign of Ĉr. Both algorithms long the open

when the sign of the predicted 1-day return is positive and the long/short

algorithm shorts the open when the sign of the predicted return is negative.

Our model’s architecture is represented in Figure 2.3.

Forecasting Performance

Accuracy, precision, and recall are used to compare the predictive accuracy

of the resulting models. Accuracy is not a good measure if the classes are

unequally distributed. Because each of the return series in this study has

more positive 1-day returns than negative so we also include precision and
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recall. The definition of accuracy is

Accuracy(y, ŷ) =
1

n

n−1∑
i=0

1{ŷi=yi} (2.15)

where yt is the target value and ŷ is the predicted value. A higher accu-

racy value indicates better performance for the network. The definition of

precision is

Precision =
TP

TP + FP
(2.16)

where TP (true positives) is the number of points correctly assigned as

positive and FP (false positive) is the number of points that were negative

but classified as positive. The definition of recall is

Recall =
TP

TP + FN
(2.17)

where FN (false negative) is the number of points that were positive but

labeled negative. Precision attempts to quantify the proportion of positives

classifications that were labeled correctly. Recall attempts to quantify the

proportion of actual positives that were correctly identified.

Algorithm Profitability

This study compares the 10-year average annual return of the trading algo-

rithm versus a basic buy and holds strategy over the same time period. The

two trading algorithms are based on the sign of the predicted future price

1-day return. If the predicted 1-day return is positive then the long/short

and long-only algorithm produces a buy signal and if the predicted 1-day
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return is negative then only the long/short trading algorithm produces a sell

signal.

Ĉr > 0 : buy

Ĉr < 0 : sell

where Ĉr is the predicted value for the next day’s return. The cumulative

profit or loss is calculated on a yearly basis. The cumulative returns of this

trading strategy are calculated by multiplying the 1 plus returns from all

of the buy and sell signals 1-day returns and then subtracting 1 from the

product.

Return = (
∏

t:rlt∈RL

(1 + rlt) ∗
∏

t:rst∈RS

(1 + rst ))− 1 (2.18)

where rlt is the 1-day return from a long signal on day t, RL is the set of all

long returns days, rst is the 1-day return from a short signal on day t, and

RS is the set of all short returns.

2.3 Results

The study measured the forecast ability using accuracy, precision, and recall

and measure profitability via the average 10-year annual returns of the two

trading algorithms. The results are compared from the five different wavelet

thresholding techniques: the novel WaveL2E and WaveL2Eχ2 , the universal

hard, universal soft, and empirical Bayesian. The long/short algorithm al-

lows both long and short positions and the long-only algorithm ignores sale

signals and only employs long positions. Each model’s NARX consisted of
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1 hidden layer with 5 nodes, 6 delays, and was trained on 3 years of data.

Performance is based on the highest accuracy, precision, recall, and highest

10-year average annual returns.

2.3.1 S&P 400 mini futures contracts

Table 2.1 : S&P 400 mini futures contract 10-year average accuracy, preci-

sion, and recall

Model Accuracy Precision Recall

WaveL2E 0.535 0.548 0.877

WaveL2Eχ2 0.533 0.545 0.912*

Universal Hard 0.516 0.538 0.824

Universal Soft 0.543* 0.551* 0.904

EBayes 0.517 0.540 0.816

The S&P 400 mini futures contracts results show that all of the threshold-

ing techniques had a 10-year average accuracy rate above .5. From the results

presented in Table 2.1, we see that the universal soft threshold outperforms

the other models with the highest 10-year average accuracy, .543, where a

higher accuracy rate indicates a more accurate forecasting ability. However,

the WaveL2E and WaveL2Eχ2 are not far away with a 10-year average ac-

curacy of .535 and .533 respectively. The WaveL2Eχ2has the second-highest

10-year recall average, .548, which is behind the universal softś 10-year recall
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average of .551. The WaveL2E has the highest average 10-year precision,

.912, which is followed by the universal soft and the WaveL2E, with 10 years

average precision of .904 and .877 respectively.

Table 2.2 : S&P 400 futures contract yearly returns long/short

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 6.57 15.00 37.88 0.93 −0.23 −1.14 6.97 −9.33 19.48 49.47* 12.56

WaveL2Eχ2 −23.44 9.79 18.96 6.89 2.44 20.28 12.54 −14.04 20.47 47.70 10.16

Universal Hard −15.85 29.75* 38.66* 6.53 −4.41 22.65* 11.80 −21.08 −0.35 −15.03 5.27

Universal Soft 6.27 16.68 21.85 1.60 25.65* 18.11 18.78* −3.53 27.16* 15.75 14.83*

EBayes 7.01* 6.49 15.42 20.87* 15.29 6.47 0.34 −0.1 * 19.37 −36.6 5.46

Buy& Hold −3.09 16.05 31.56 8.15 −3.80 19.06 14.66 −12.63 24.22 11.56 10.57

For the long/short strategy, the universal soft threshold had the highest

10 year average annual return, 14.83. The WaveL2E, with a 10 year average

annual return of 12.56, was the only other score to also beat buy and hold

over the same period.

The universal soft threshold also leads the long only strategy with a

10 year average annual return of 12.7 with the both WaveL2E and the

WaveL2Eχ210 year annual return, of 11.62 and 10.58 respectively, being the

only other thresholding techniques that beat buy and hold over the same 10

year period.
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Table 2.3 : S&P 400 futures contract yearly returns long only

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 2.48 15.69 34.84 4.63 −1.93 8.67 10.79 −10.92 21.97 29.95 11.62

WaveL2Eχ2 −13.66 13.01 25.13 7.62 −0.65 19.73 13.70 −13.15 22.53 31.56* 10.58

Universal Hard −9.41 23.00* 35.50* 7.41 −3.81 21.21* 13.37 −16.86 11.45 −1.00 8.09

Universal Soft 1.56 16.40 26.84 4.90 10.46* 18.63 16.74* −8.14 25.86* 13.70 12.70*

EBayes 3.27* 11.56 23.42 14.45* 5.50 12.94 7.33 −6.44 * 22.03 −15.23 7.88

Buy & Hold −3.09 16.05 31.56 8.15 −3.80 19.06 14.66 −12.63 24.22 11.56 10.57

2.3.2 S&P 500 mini futures contracts

Table 2.4 : S&P 500 mini futures contract 10 year average accuracy, preci-

sion, and recall

Model Accuracy Precision Recall

WaveL2E 0.538 0.556 0.879

WaveL2Eχ2 0.535 0.552 0.916*

Universal Hard 0.519 0.548 0.828

Universal Soft 0.542* 0.557* 0.909

EBayes 0.524 0.55* 0.815

Similar to the S&P 400 results, the S&P 500 mini futures also resulted in

10 year accuracy rates above .5. The universal soft thresholding technique

had the highest accuracy, .542, followed by WaveL2E and WaveL2Eχ2 with
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Table 2.5 : S&P 500 mini yearly returns long/short

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 11.76 15.40 30.74 8.31 −0.98 −5.79 11.58 −4.21 18.23 40.76* 12.58

WaveL2Eχ2 −21.06 6.93 19.70 10.42 3.63 10.33 14.95 −11.13 15.28 36.67 8.57

Universal Hard −10.23 21.48* 33.72* 11.55 0.78 15.53* 12.30 −16.23 1.54 12.29 8.27

Universal Soft 8.10 12.09 24.77 9.00 26.73* 9.04 21.90* 3.46 28.46 16.36 15.99*

EBayes 12.59* 9.87 16.44 23.55* 10.49 8.34 10.69 9.27* 19.09 −6.95 11.34

Buy & Hold −0.04 13.37 29.65 11.49 −0.83 9.86 19.66 −6.38 28.97* 16.02 12.18

.538 and .535 respectively. The universal soft has the highest 10 year av-

erage precision, .557, followed by WaveL2E and WaveL2Eχ2 , .556 and .552

respectively.

Table 2.6 : S&P 500 mini yearly returns long only

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 6.25 14.48 30.29 9.99 −0.79 1.87 15.57 −5.23 23.59 28.21* 12.42

WaveL2Eχ2 −11.00 10.20 24.60 11.06 1.46 10.13 17.33 −8.54 22.07 27.51 10.48

Universal Hard −5.05 17.56* 31.96* 11.58 0.28 12.89* 15.99 −11.35 14.55 15.29 10.37

Universal Soft 4.01 12.76 27.30 10.28 12.61* 9.47 20.80* −1.53 28.85 16.28 14.08*

EBayes 7.08* 11.93 23.00 17.45* 4.84 9.32 15.12 1.29* 24.13 4.37 11.85

Buy& Hold −0.04 13.37 29.65 11.49 −0.83 9.86 19.66 −6.38 28.97* 16.02 12.18

For the long/short strategy, the universal soft resulted in the highest 10

year annual average return, 15.99. Again, the result from the WaveL2E,

12.58, is the only other strategy to beat buy and hold. For the long only
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strategy, the universal soft also resulted in the highest 10 year annual average

return, 14.08. The WaveL2E thresholding technique had the only other 10

year annual average return, 12.42, which is higher than buy and hold over

the same time period.

2.3.3 Dow Jones mini futures contracts

Table 2.7 : Dow Jones mini futures contract 10-year average accuracy, pre-

cision, and recall

Model Accuracy Precision Recall

WaveL2E 0.541 0.554 0.877

WaveL2Eχ2 0.537 0.549 0.914*

Universal Hard 0.529 0.550 0.821

Universal Soft 0.547* 0.556* 0.906

EBayes 0.536 0.556* 0.809

The Dow Jones mini future contract also resulted in 10 year average

accuracy rates above .5 for all thresholding types. The Dow futures 10 year

average accuracy results were also lead by the universal soft thresholding

technique, .547, closely followed by the WaveL2E and WaveL2Eχ2 , .541 and

.537 respectively. The universal soft lead the long/short strategy with a

12.61 ten year average annual return. Both the WaveL2E and the empirical

Bayesian thresholding technique 10 year average return, 10.95 and 10.89
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Table 2.8 : Dow Jones mini futures contract yearly returns long/short

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 11.23 8.19 26.01 5.72 −2.11 7.43 19.06 −5.08 16.69 21.75* 10.89

WaveL2Eχ2 −6.54 5.67 22.85 7.65 −0.03 12.96 20.77 −7.14 18.22 18.22 9.26

Universal Hard −0.84 10.74* 27.95* 7.12 0.91 15.73* 22.60 −10.19 11.99 10.17 9.62

Universal Soft 8.87 7.64 25.53 7.77 11.41* 11.48 26.26* −1.87 21.91 7.10 12.61*

EBayes 12.83* 8.69 21.88 14.34* 3.86 10.81 22.32 0.30* 19.10 −4.64 10.95

Buy & Hold 5.53 7.22 26.61 7.63 −2.32 13.72 25.43 −5.93 22.52* 6.98 10.74

respectively, beat buy and hold over the same time period. The results are

similar for the long only strategy with the universal soft leading with an 14.5

ten year average annual return followed by the WaveL2E and the empirical

Bayesian, 11.03 and 11.01 respectively.

Table 2.9 : Dow Jones mini futures contract yearly returns long only

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 16.36 9.01 25.25 3.67 −2.08 1.25 12.96 −4.36 10.90 37.30* 11.03

WaveL2Eχ2 −17.45 4.00 19.14 7.48 2.12 12.16 16.19 −8.89 13.85 27.20 7.58

Universal Hard −7.21 14.04* 28.84* 6.49 3.62 17.33* 19.72 −14.44 2.19 10.98 8.15

Universal Soft 12.20 8.03 24.26 7.82 26.06* 9.24 27.05* 2.24 21.05 7.10 14.50*

EBayes 18.89* 9.66 17.11 21.32* 10.08 7.58 19.24 6.60* 15.43 −15.77 11.01

Buy & Hold 5.53 7.22 26.61 7.63 −2.32 13.72 25.43 −5.93 22.52* 6.98 10.74
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Table 2.10 : NASDAQ mini futures contract 10 year average accuracy, pre-

cision, and recall

Model Accuracy Precision Recall

WaveL2E 0.540 0.562 0.894

WaveL2Eχ2 0.545 0.560 0.949*

Universal Hard 0.541 0.566 0.857

Universal Soft 0.559* 0.567* 0.947

EBayes 0.533 0.565 0.825

2.3.4 NASDAQ mini futures contracts

The NASDAQ mini futures had the worst performance in terms of the trad-

ing algorithms. None of the models resulted in average 10 year annual re-

turns that that were higher than buy and hold over the same period, which

was 20.29. Both the long/short and the long only strategy were lead again

by the Universal Soft thresholding technique with 10 year annual average

returns of 19.26 and 19.40 respectively. The WaveL2E had the second high-

est 10 year average annual return for both the long/short and long-only

strategies, 12.43 and 15.98 respectively. However, all of the average 10 year

accuracy values are above .5, which is similar to the previous results. Uni-

versal soft had the highest accuracy rate, .559, but the WaveL2E and Uni-

versal Hard results were not far behind, with accuracy rates of .545 and .541
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respectively. The Universal soft, universal hard, and empirical Bayesian

threshold had the top three precision scores, .567, .566, .567 respectively.

The WaveL2Eχ2 had the highest recall score, .949, followed closely by the

Universal Soft and the WaveL2E, with a precision score of .947 and .894

respectively.

Table 2.11 : NASDAQ mini futures contract yearly returns long/short

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 8.57* 24.83* 14.38 −3.16 3.17 5.84 24.94 7.86* 36.03 1.84 12.43

WaveL2Eχ2 −0.08 10.96 23.66 13.74 9.37 1.39 16.36 0.93 20.60 −3.52 9.34

Universal Hard −1.10 15.87 20.50 7.81 6.31 4.91 6.75 −7.84 30.59 38.81 12.26

Universal Soft 6.43 19.05 21.73 14.92 21.90* 5.89 18.88 1.66 35.06 47.09* 19.26

EBayes −31.67 10.93 7.79 5.37 16.64 0.74 17.98 6.48 51.02* 28.79 11.41

Buy & Hold 2.64 16.74 34.97* 18.11* 8.39 6.02* 31.76* −1.18 38.20 47.22* 20.29*

Table 2.12 : NASDAQ mini futures contract yearly returns long only

Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 CAGR

WaveL2E 6.98* 20.77* 22.56 7.22 6.39 6.49* 26.53 4.64* 34.90 23.36 15.98

WaveL2Eχ2 2.66 13.83 27.20 15.67 9.50 4.26 22.23 1.17 27.18 20.68 14.44

Universal Hard 2.15 16.29 25.62 12.71 7.96 6.02 17.43 −3.22 32.18 41.85 15.90

Universal Soft 5.91 17.88 26.24 16.26 15.76 6.51 23.50 1.54 34.41 45.99 19.40

EBayes −13.10 13.82 19.27 11.48 13.13* 3.94 23.05 3.95 42.39* 36.84 15.47

PBuy & Hold 2.64 16.74 34.97* 18.11* 8.39 6.02 31.76* −1.18 38.20 47.22* 20.29*
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2.4 Conclusion

Innovations in machine learning and statistics have further facilitated the

mass adoption of the ML techniques in trading. With all of the options for

methods available it is often difficult to decide which method works best

in different scenarios. This study investigated how the choice of a wavelet

thresholding technique affected the performance of a well established predic-

tion model, the Wavelet Neural Network, when predicting non-stationary,

financial return series. This research also investigated the effect on prof-

itability when the results from the prediction model is used in a trading

strategy. The strategy first denoised the futures closing price’s return series

along with the original OHL series. The denoised OHL series were then

combined the 8 momentum focused technical indicators as the inputs to the

NARX network with the denoised close return series as the target. The

NARX is trained on 3 years of data and makes 3 months of one day ahead

return predictions. The sliding window is then moved 3 months forward

and the process is repeated until the end data stream. The predictions are

fed into a long/short and a long only trading algorithm that either take

long/short positions on the open based on the sign of the predicted return

and then closes out the position at the end of the trading day. The long only

strategy ignores short signals and just take long positions similar to several

mutual funds, which have more trading restrictions than hedge funds.

The success of the trading system and the accuracy of the prediction

model, W-NN, is compared using the WaveL2E , WaveL2Eχ2 , universal
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soft, universal hard, or empirical Bayesian thresholding technique on S&P

400 mini future contracts, S&P 500 mini future contracts, Dow Jones mini

futures contracts, and NASDAQ mini future contracts from (2011-2020).

The results of the two trading algorithms, the long/short and the long-only

strategy, are also compared against buy and hold over the same time period.

Although the universal soft consistently had the highest 10-year average an-

nual return for both the long/short and long-only strategies, the WaveL2E

threshold technique was also able to outperform buy and hold over the same

time period for both trading strategies with the S&P 500 mini futures, S&P

400 mini futures, and the Dow Jones mini futures contracts. Both the novel

WaveL2E and the WaveL2Eχ2 results were also very close to the leader’s

results in accuracy and precision while the WaveL2Eχ2 outperformed in re-

call for all of the futures contracts. On average the long-only strategy had

higher returns than the long/short strategy which is because the fact all

strategies had higher average true positive rates when than true negative

rates. The results seem consistent with the prediction results from previ-

ous studies (91) and (24) also attempt to use classification machine learning

methods on daily returns.

SUPPLEMENTARY MATERIAL

Forecasting Code The code used to fit the NARX Model and make pre-

dictions from the trained networks (.R file)

Back Test Code The code that implements the trading algorithm and
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checks the accuracy, precision, recall, and profitability. (.R file)

S&P 500 Raw Data The open, high, low, close, volume, and 8 technical

indicators for S&P 500 mini futures contract from (2005-2021). (.cvs

file)

S&P 400 Raw Data The open, high, low, close, volume, and 8 technical

indicators for S&P 400 mini futures contract from (2005-to 2021). (.cvs

file)

Dow Jones Raw Data The open, high, low, close, volume, and 8 techni-

cal indicators for Dow Jones mini futures contract from (2005-2021).

(.cvs file)

NASDAQ Raw Data The open, high, low, close, volume, and 8 technical

indicators for NASDAQ mini futures contract from (2005-2021). (.cvs

file)
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Chapter 3

Forecasting intraday volume via CoFES

S-NARX

3.1 Introduction

Given the importance of trading volume to market analysis, there is no

surprise that there have been several studies focused on predicting intraday

volume. Intraday volume data is known to be heteroskedastic, non-normally

distributed, and to exhibit strong autocorrelation and diurnal seasonality.

These statistical characteristics vary based on several other features, like the

type of financial asset and geographic region, introducing more complexity

to the task of modeling intraday volume. A large portion of the litera-

ture on intraday volume forecasting falls into either traditional time series

approaches, Bayesian approaches or machine learning approaches. Other

noteworthy approaches include those (68) that used a functional analysis

approach to develop a Time-Varying Coefficient Model to predict the intra-

day volume of Forex Futures traded on the Chicago Mercantile Exchange.

Another study of note uses the model employed in FactSet’s Trading Solu-

tions, (19) which incorporates events when predicting intraday Volume via

a coarse-grained Hawkes model. There were also two spline approaches to
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forecasting intraday time series, (79) using discount weighted regression and

discount weighted splines to model intraday time series that contain both in-

traweek and intraday seasonal cycles. Further, (37) implemented a dynamic

cubic spline model, Spline-DCS, to forecast high-frequency trade volume for

equities and foreign currency exchange rates.

A bulk of the literature on predicting intraday volume originates from

time series methods, which is logical given that intraday volume data sets are

in fact time series. For example, (17) used a state space approach to predict

intraday trading volume making use of the Kalman Filter for likelihood eval-

uation coupled with the EM algorithm for parameter estimation. For exten-

sions to multiple state-space models see (49), and (17). In the latter paper,

cross-validation is used to determine the best number of states. Also, there

were traditional basic time series models used to predict intraday volume,

such as (58) who used moving average, exponentially weighted moving aver-

age, and ensemble approaches that combined classic time series models. For

example, (69) and (52) propose 4 and 5-component autoregressive-moving-

average (ARMA) models, respectively, to model intraday volume. The most

effective time-series approach appears to be the Component Multiplicative

Error Model, a form of the GARCH Model, which was first introduced in

(26). The component GARCH model is extended in (14) by introducing a

new loss function for the evaluation of proportion forecasts. A paper within

the machine learning literature, (45), on the subject of intraday volume pre-

diction, suggests that the Component Multiplicative Error model is the most
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effective model and uses this model as its benchmark.

There were also Bayesian time series approaches used to predict intra-

day volume but this literature is not as voluminous as the traditional time

series literature. Updating the end-of-day volume forecast over the course

of the day as new data/information arrives fits nicely with the Bayesian

framework. Bayesian inference to model the intraday traded volume of Pol-

ish stocks was the focus in (33) which the linear Autoregressive conditional

volume (ACV) model was combined with a Weibull distribution for the er-

ror term for intraday volume. This work was extended, (34), to include an

exponential and generalized gamma distribution for the error term of the

intraday volume. Finally in the Bayesian time series literature, (15) bring

forward the mixed autoregressive conditional duration (Mixed ACD) model,

to model daily duration time series, where duration is defined as the waiting

time between market events.

Similarly, numerous machine learning approaches have been employed

to forecast intraday volume. The backpropagation neural network is the

machine learning method of choice for (40) where they forecast monthly

futures trading volume at the Winnipeg Commodity Exchange (WCE). The

dynamic support vector machine (DSVM) is presented in (48) with a focus

on forecasting intraday volume percentages of gold futures and S&P 500

futures. Combining machine learning and time series, (45) used the LSTM

network in conjunction with SVM and AR models to forecast the log volume

of the S&P 500 ETF (SPY). Similarly, two regression methods, namely
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support vector regression (SVR) and partial least squares (PLS) were used

to forecast the daily volume of Bovespa traded stocks using high-frequency

predictors (5).

Recently, the Nonlinear Autoregressive Neural Network with Exogenous

variables (NARX) has proven to be a suitable alternative to the LSTM for

analyzing financial time series. Specifically, (23) found the NARX to be

superior to the LSTM in terms of vanishing-gradient properties, improving

performance with time series with long-term dependencies, and requiring

fewer parameters and less computation. Indeed the NARX has begun to

appear in financial time series forecasting research. For example, (16) suc-

cessfully used the NARX to forecast Realized Volatility of the daily return

of the Standard & Poor’s index, whereas, (28) successfully employed the

NARX to forecast the volatility of the crude oil price in Nigeria. Also,

(38) successfully employed the NARX within the W-NN to build a trading

strategy that predicted the price series of East Asian Futures.

With the success of the NARX model, there is no surprise that there

have been several versions of this RNN formulated to handle different sce-

narios. For example, (13) formulates the Neural NARXs (NNARXs), which

uses Feed-Forward Neural Networks (FFNNs) as regression functions for the

Nonlinear Autoregressive exogenous (NARX) model. Similarly, (65) pro-

posed a NARX based dual-stage attention-based recurrent neural network

(DA-RNN) where in the first stage, an input attention mechanism is intro-

duced to adaptively extract relevant driving series (a.k.a., input features)



53

at each time step by referring to the previous encoder hidden state and in

the second stage, a temporal attention mechanism is employed to select rel-

evant encoder hidden states across all time steps. Also, (6) formulated an

ELMAN-NARX hybrid to analyze and predict chaotic time series. However,

there hasn’t been any consensus on which NARX model to use to deal with

non-linear time series with strong seasonality. For example, (29) formulated

a ”seasonal-NARX” where separate NARX models are fit for each of the

four seasons of the year and compared against a model over the entire year.

However, this method is limited by seasonal patterns that do not fit in one

of the four seasons of the year. Four different NARX models are already

computationally expensive when compared to traditional seasonal models.

In this formulation, the number of required models grows linearly with the

number of seasons modeled. So, for monthly seasonality, this formulation

would require 12 different NARX models and approximately 390 separate

NARX models for a minute-by-minute diurnal seasonal pattern.

Similarly, (85) introduced a slightly more sophisticated model with the

SARIMA-NARX to predict Scarlet fever incidence using data between Jan-

uary 2004 and July 2018. The model first uses a SARIMA model to an-

alyze/predict the seasonal patterns within a time series and then uses the

standard errors from this model, which in theory contains the non-linear

portion of the signal, as inputs for a NARX model to make a prediction

on nonlinear information found in scarlet fever data. The two predictions,

from the SARIMA and the NARX, are then combined to give the overall
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SARIMA-NARX prediction. This method assumes that the seasonal pattern

is linear and assumes there will be little to no seasonal information remaining

within the residual errors for the NARX model to analyze which indicated

that this model may fail to analyze any non-linear seasonal information.

Likewise, (51), maybe the most sophisticated method to date, uses the

inputs from the novel Seasonal Component Autoregressive (SCAR) model

as inputs for the NARX models to create a seasonal version (SCARX) to

make a day-ahead electricity price forecast. First, the algorithm decom-

poses the original log-price series and the exogenous variables series into a

long-term seasonal component and a stochastic component with short-term

periodicities. Then, computes persistent forecast of long-term seasonal com-

ponents independently for each of the 24 of the next day. They calibrate

the NARX model and compute the forecast of the stochastic component

with short-term periodicities for the 24 hours of the next day. Further, they

combine the persistent forecast and NARX forecast. Finally, they take the

exponents of the log-price forecasts from step 3 in order to convert them

into price forecasts. (51)

In this paper, we introduce an ARMA(P,0)[s] inspired seasonal formu-

lation of the NARX, the CoFES S-NARX, and use it to forecast the high

frequency, minute by minute, log(trading volume) of American technology

stocks found on the NASDAQ 100. This study focuses on the model’s abil-

ity to forecast the last 15 minutes of the trading day given the heightened

importance this period plays in volume-based algorithmic trading strategies.
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This study shows that the model captures the diurnal periodic information,

the autocorrelation, and the nonlinearity of the high-frequency intraday vol-

ume data of American technology stocks on the NASDAQ 100. This study

adds volume technical indicators as exogenous variables that improve the

model’s ability to predict the different transformations of volume. Many

machine learning quantitative strategies incorporate technical analysis by

including technical indicators in the feature set (10), (20), (83).

Volume is a major indicator of market activity, as a result, there are too

many volume-based technical indicators to list them all. Volume technical

indicators are of particular importance to technical analysis because volume

can be used to confirm several hypotheses about the market. On Balance

Volume (OBV), Volume Relative Strength Index (V.RSI), Money Flow Index

(MFI), Chaikin Money Flow (CMF), Chaikin Accumulation / Distribution

(chaikinAD), Arms’ Ease of Movement Value (EMC), and volume-based

Simple Moving Averages (SMAs) are common volume technical indicators

used by quants looking to take advantage of the signals in trading volume.

Most of the time these technical indicators are used to determine some ac-

tionable insight into the state of the market but we want to see if they aid

our models’ ability to predict log volume for American technology stocks.

Efficient market proponents would argue that historical price data is use-

less in predicting future trading volume levels (86). However, there are too

many counterexamples that suggest that financial time series are somewhat

predictable [(41), (71)].
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The remainder of this paper is organized as follows: Section 2 gives

an initial examination of the volume and log(volume) data sets. Section 3

describes the methods used in the high-frequency intraday trading volume

prediction model used in this study. Section 4 presents the results and com-

pares them to other machine learning-based prediction techniques. Section

5 summarizes the prediction results on select securities from the NASDAQ

100.

3.2 Data Analysis

First, we present some of the empirical properties of the high-frequency

intraday volume and log volume data used in this study. We choose to

study Apple and Microsoft, which are American technology stocks found

in the QQQ, a NASDAQ 100 ETF, to ensure a healthy trading volume.

The data sets consisted of regularly spaced, minute level, intra-daily open,

high, low, close, and volume (OHLCV) data points for Apple and Microsoft

stocks between 9/1/2020 to 9/1/2021. The data set contained two half days

around the Thanksgiving and Christmas holidays which were included in

the analysis.

The daily seasonal patterns in intraday volume data are well documented.

For example, (59) highlights that high-frequency volume data may take an

M-pattern, W-pattern, J-patter, U-pattern, or inverted U-pattern. To in-

vestigate the intraday patterns in our data sets, the average and standard

deviation is calculated for hourly trading volume and log trading volume for
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H1 H2 H3 H4 H5 H6 H7

Volume

AAPL
462,328 240,864 173,440 144,438 131,591 141,838 232,661

(481,953) (124,662) (106,841) (98,445) (104,588) (102,358) (210,886)

MSFT
96,205 50,952 37,071 30,268 27,272 29,347 60,876

(179,655) (33,694) (26,011) (23,100) (22,922) (20,640) (73,892)

Log Vol

AAPL
12.886 12.306 11.951 11.738 11.627 11.705 12.137

(0.553) (0.493) (0.540) (0.580) (0.606) (0.607) (0.678)

MSFT
11.177 10.685 10.360 10.125 10.03 10.115 10.687

(0.634) (0.538) (0.553) (0.603) (0.589) (0.569) (0.741)

Table 3.1 : The average hourly trading volume and log volume over the

entire sample period September 2021 to September 2022. H1 9:30-10:00;

H2 10:00-11:00; H3 11:00-12:00; H5 1:00-2:00: H6 2:00-3::00; H7 3:00-4:00.

Standard deviations are reported in brackets().

the entire sample and are displayed in Table 3.1. Average hourly volume was

one of the initial prediction methods used for predicting intraday volume and

serves as the base case in many studies in the field. Table 3.1 displays the

U-shaped diurnal patterns from both Apple and Microsoft’s hourly trading

volume. Both securities have higher trading volumes at the open compared

to the end of the day. It should also be noted that the standard deviation

of the trading volume of both tickers also exhibits a U-shaped pattern with

spikes at the beginning and end of the trading day, see Figure B.3. Similarly,

log volume, also exhibit the U-shaped daily pattern for both securities.
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Figure 3.1 : Apple acf (left), pacf (right), of volume (top) and log vol-

ume(bottom) binned at the 1-minute intervals.

To further investigated the seasonality of the target data sets, the auto-

correlation function (ACF) and partial autocorrelation function (PACF) are

calculated for the entire sample for volume and log volume for both Apple

and Microsoft. The ACF/PACF analysis for Apple can be found in Fig-

ure 3.1 and Figure B.2 contains the analysis for Microsoft. Both appear to

have exponentially decaying spikes around multiples of 390. According to

traditional time series analysis, this is a sign of daily seasonality and would
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normally point to an ARMA(P,Q)[390] model given that neither the ACF

nor PACF values cut off after a certain lag and rather tail off at lags that

are multiples of 390 minutes. For example, AR(P)[s] models have PACF

values that cut off after lag Ps and MA(Q)[s] models have ACF values that

cut off after lag Qs. This daily pattern is most obvious in the ACF/PACF

graphs of 1-minute volume for both securities but the pattern also appears

in the acf/pacf graph of log 1-minute volume. Given the seasonal pattern in

the ACF/PACF and the apparent seasonality visible in the graphs of aver-

age hourly trading volume and log trading volume, it seems appropriate to

employ methods suited to analyze seasonality within time series.

Figure 3.2 : Hurst exponent distribution for Apple using samples of size

10,000.
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Similarly, the ACF and Hurst Exponent of both securities were calculated

to investigate long memory within the volume and log volume time series.

The sample autocorrelation functions, which are not large but tend to persist

for a long time, exhibit what traditionally time series analysts refer to as

long memory (73). This pattern is visible in the ACF of both securities,

Figure 3.1 and Figure B.2, and is strongest for volume but also present for log

volume. Similarly, the Hurst exponent, which is used as a measure of the long

memory in a time series, was also calculated for both securities and for all 3

time series using the ’hurstexp()’ function in the ’pracma’ R package, which

returns a re-scaled range analysis based method, a corrected re-scaled range

analysis based method, an empirical method, a corrected empirical method,

and a theoretical method. The Hurst exponent, introduced by (36), ranges

between 0 and 1 and effectively classifies a-time series into 3 categories. If

H=.05, the time series is categorized as random, 0 < H < .5 indicates a

persistent, mean-reverting, series, and H > .5 indicates a persistent series,

which are trend reinforcing (64). The Hurst exponent analysis is reported in

Figure 3.2 and B.4. The distributions of Hurst exponent values are all larger

than .5 for volume and log volume for both Apple and Microsoft. Given

both of these facts, it seems apparent that neural networks that handle long

memory, like the LSTM and NARX, would be appropriate to predict these

financial time series.
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3.3 Methods

The CoFES Seasonal NARX augments the Non-Linear Autoregressive Neu-

ral Network with Exogenous Variables (NARX), first introduced in (46),

which is a class of RNN that was formulated to model long dependencies

in sequential data. The NARX, which has a recurrent dynamic architecture

with several hidden layers, was inspired by the nonlinear autoregressive with

exogenous inputs, a discrete-time nonlinear model found in advanced non-

linear time series applications (11). However, unlike traditional RNNs, the

recurrence in the NARX model only occurs in the feedback on the output,

rather than from the hidden states, see Figure 3.3. Fortunately, (46) suggest

that this design allows for the NARX to be implement via a multilayer per-

ceptron (MLP) where the target y[t] is regressed against dy lagged values,

{y[t− dy], ..., y[t− 1]}, and dx lagged values of values of an exogenous input

signal {x[t− dx], ..., x[t− 1]}.

The NARX inputs, it, consist of two Tapped Delays Lines.

it = (xt−dx , ..., xt−1, yt−dy , ..., yt−1) (3.1)

The NARX output equation is given by:

yt = f(xt−dx , ..., xt−1, xt, yt−dy , ..., yt−l,Θ) (3.2)

where f(·) is a nonlinear mapping function performed by a MLP, Θ are

the parameters (weights & bias), dx is the input delay, and dy represent

the output delay (11). The input to the NARX, it, has dxNx + dyNyterms.
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Figure 3.3 : NARX

Where Nx and Ny are the number of inputs and output variables.

The MLP used to model the NARX has a single input layer, Nl ≥ 1

hidden layers each with its own number of hidden nodes (h1, ..., hl), and

a single output layer. The following equations dictate the output for the

network.

h1[t] = t(it, θi) (3.3)

hl[t] = t(hl−1[t− 1], θhl) (3.4)

yt = l(hNl
[t− 1], θ0) (3.5)

where hl[t] ∈ RNhl is the output of the lth hidden later at time t, l(·)

is the identity function, and t(·) is an activation function, which is ei-
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ther tahn or sigmoid for the NARX. The weights of the network are Θ =

{θi, θo, θh1 , ..., θhNl
}, where θi = {W h1

i ∈ R(dxNx+dyNy)×Nh1 bh1 ∈ RNh1}, θo =

{W o
hNl

∈ RNl×Ny bo ∈ RNy}, and θhl
= {W hl

hl−1 ∈ RN(hl−1)
×Nhl bhl

∈ RNhl} for

l = 1, .., Nl.

During training, the time series relative to the desired output y* is fed

into the network along with the input time series x. Then the output feed-

back, the recurrence that connects the output of the network with the in-

put target node, is disconnected and the resulting network has a purely

feed-forward architecture, in which parameters can be trained using well-

established backpropagation techniques(11). The NARX employs the fol-

lowing loss function in the gradient descent.

L(y, y∗; Θ) = MSE(y, y∗) + λ2||Θ||2 (3.6)

where MSE = Mean Square Error, λ2 a hyperparameter that weights the

importance of the L2 regularization term in the loss function. The initial

phase of λ2 is transient, the first prediction of y is initially fed back into the

network as input and disregarded. The NARX network has 5 hyperparam-

eters: the input and output TDL, the number of hidden layers, the number

of neurons in each layer, the regularization hyperparameter λ2 in the loss

function, and the learning rate (11).

The CoFES S-NARX extends the NARX by introducing a seasonally

lagged version of the target series, yt−ds , to the feature set of the network

without adding any of the rigid assumptions, like linearity and stationar-

ity, associated with the ARMA(P,Q)[s] model, see Figure 3.4. The season-
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Figure 3.4 : CoFES S-NARX when P=1

ally lagged version of the original series represents the key feature in the

ARMA(1,0)[s], which is a pure seasonal autoregressive version of (72)’s sea-

sonal autoregressive moving average model ARMA(P,Q)[s] given by:

ΦP (B
S)yt = ΘQ(B

S)wt (3.7)

where ΦP (B
S) is the seasonal autoregressive back shift operators given

by

ΦP (B
S) = 1− Φ1B

S − Φ2B
(2S) − ...− ΦpB

(PS) (3.8)

and ΘQ(B
S) is the seasonal moving average operator given by

ΘQ(B
S) = 1 + Θ1B

S −Θ2B
(2S) − ...−ΘpB

(QS) (3.9)

where B is the backshift operator defined by

Bnxt = xt−n (3.10)
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ARMA(P,0)[s] model is are given by

(1− Φ1B
S − Φ2B

(2S) − ...− ΦpB
(PS))yt = wt (3.11)

Which simplifies to

yt = Φ1yt−s + Φ2yt−2s + ...+ Φpyt−ps + wt (3.12)

The CoFES S-NARX augments the NARX feature set with the features

from ARMA(P,0)[s] model because this model’s feature set represents pure

seasonal inputs unlike other multiplicative seasonal time series methods in

(72) that result in additional nonseasonal terms due to the difference and

seasonal difference components. This study uses P=1. ARMA(1,0)[s] is

given by:

yt = Φ1yt−s + wt (3.13)

The study attempt to forecast time t+n given information at time t, so the

ARMA(1,0)[s] becomes

yt+n = Φ1yt+n−s + wt+n for s ≥ 0 (3.14)

The CoFES S-NARX output equation is given by:

y[t+n] = f(x[t−dx], ..., x[t−1], x[t], y[t+n−ds], y[t−dy], ..., y[t−l],Θ) (3.15)

where f(·) is a nonlinear mapping function performed by a MLP, Θ are

the parameters (weights & bias), dx is the input delay, dy represent the
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output delay, ds represent the seasonal lag and ds ≥ 0, and n is the fore-

cast window which describes the number of time steps forward that the

network predicts. This augments the NARX inputs it, has dxNx + (dy +

P )Ny terms which changes the weights of the input layer to θi = {W h1
i ∈

R(dxNx+(dy+P )Ny)×Nh1 bh1 ∈ RNh1}. A higher order ARMA(P,0)[s] is possible

but machine learning algorithms attempt to balance the number of features

with the potential problem of over fitting and we must be careful not to

add too many variables to a the feature set. We investigate the results from

P=1,2 and ds = 390, which was motivated by the diurnal seasonal pattern in

high frequency intraday volume data and the fact that the data was reported

at the minute level.

3.4 Research Methodology

The exogenous variables consisted of open, high, low, and close price data

and seven traditional volume-based technical indicators, On Balance Vol-

ume (OBV), Volume Relative Strength Index (V.RSI), Money Flow Index

(MFI), Chaikin Money Flow (CMF), Chaikin Accumulation / Distribution

(chaikinAD), Arms’ Ease of Movement Value (EMC), and a 10 period sim-

ple moving average (SMA) of log volume. The models make minute-by-

minute log(volume) predictions with a prediction window that varies from

n=[1,5,10,15] minutes in the future. This study also considers variations

that include a quantitative variable for minute of the trading day(m), a

minute of the hour (M), and hour of the day (H) in the feature set of the



67

NARX based models, which are designated (HmM). Forecasting accuracy is

measured by mean absolute percentage error (MAPE), mean absolute error

(MAE), and root mean square error (RMSE). The CoFES S-NARX and the

NARX are programmed in R and are based on the sequential model found

in the Keras package.

Data

The sample data in this study was supplied by Vanguard L.P. and consists

of high frequency open, high, low, and close (OHLC), volume, VWAP, and

a number of trades. Minute level data was collected for all 100 companies in

the NASDAQ 100 between 09/01/2020 to 09/01/2021. Missing data points

are replaced using the 5-minute moving average. The technical indicators

were calculated using the TTR package in R. The models are trained on

63 days of minute level data, or 24,750 data points, and then makes 15

days or 5850-minute level predictions into the future. The training phase

uses 20% of the data, or 4950 data points, for validation and the metrics

from validation are used to select hyperparameters during hyperparameter

tuning. Hyperparameter tuning was completed using the Tfruns package in

R and all neural networks were built and executed using Keras in R. This

study tested a total of six strategies to predict the log(volume) of Apple and

Microsoft shares over a 15 trading day window.
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Model Inputs

There are several volume technical indicators to choose from given the fact

that there is useful information on the level of volume and how the level has

changed recently. This study employs the technical indicator On Balance

Volume (OBV), a measure of an asset’s buying/selling pressure, Volume

Relative Strength Index (V.RSI), a measure of price trend change, Money

Flow Index (MFI), an oscillator that attempts to quantify when an asset is

either overbought or oversold, Chaikin Money Flow (CMF), which quantifies

money flow volume over a given period, Chaikin Accumulation / Distribution

(chaikinAD), which quantifies the cumulative flow of money in and out of an

asset, Arms’ Ease of Movement Value (EMC), which quantifies how easily a

price can increase or decrease based on the relationship between price and

volume, and a 10 period simple moving average (SMA) of log volume(18).

OBV =
c− p

|c− p|
× V

where c is the current period’s closing price, p is the previous period’s closing

price, and v is the current period’s volume.

V.RSI = 100− 100

1 +
∑

Gains over past 14 periods∑
Losses over past 14 Periods

.

Money Flow Index = 100− 100

1 + 14 Period Positive Money Flow
14 Period Negative Money Flow

where Raw Money Flow = Volume * high+low+close
3

. If price increases, Raw

Money Flow is positive and it is added to Positive Money Flow and if price
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decreases, Raw money Flow is added to Negative Money Flow.

CMF =
21-day EMA of MFV

21-day EMA of Volume

where Money Flow Volume (MFV) = (Close - Low)-(High - Close)
High-Low

∗Volume for the Period

chaikinAD = Volume*
(c− l)− (h− c)

h− l

where c= close, h=high, and l=low.

EMC =
(h+ l)

2
=

(hp + lp)

2
/

v

(h− l)

where h=current period’s high, l=current periods low, hp previous period’s

high, lp=previous period’s low, and v=current periods volume. The 10 pe-

riod simple moving average (SMAk) of log volume log(v) at period k is given

by

SMAk =
1

n

k∑
k=−n+1

log(vi)

where n is the number of periods included in the moving average. This

study also adds 3 quantitative variables, HR represents the hour of the

trading day [9-15], MIN represents the minute of the hour [0-59], and min

represents the minute of the trading day [1-390], to the feature set to attempt

to improve the networks ability to model seasonality.

The Architecture of the Models

This study compares the predictive performance of the CoFES S-NARX,

CoFES S-NARX-(HmM), the NARX, NARX-(HmM), LSTM, and LSTM-

AR-HR, the best model from(45), on log(volume). Each network in this
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study contained 3 hidden layers with 100 nodes in the first hidden layer,

50 nodes in the second hidden layer, and 25 nodes in the last hidden layer.

Models are trained on 3 months of daily high-frequency data and then make

3 weeks of predictions for n=1,5,10,15 minutes into the future. The training

window is then slid 1 day and the process repeats 100 times to get a good

idea of the model’s predictability within the year’s worth of daily data. The

S-NARX P2 and S NARX-HmM P2 use P=2 in the S-NARX framework

and introduce two seasonally lagged to the S-NARX feature set, s and 2s.

Figure 3.5 : CoFES S-NARX model configuration

Figure 3.6 : CoFES S-NARX-HmM models configuration

The CoFES S-NARX models were fit with ds=390, and the value dx and
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dy were both determine via hyperparameter tuning for each model, where dx

and dy ranged between [1-3] and [5-10] respectively. The feature set consists

of the open, high, low, close, OBV, MFI, ,CMF, (chaikinAD),(EMC),(SMA),

{yt−1, yt−2, ..., yt−dy} and yt−ds . The NARX models were trained on the ex-

act same parameters and feature set as the CoFES S-NARX excluding yt−ds .

The CoFES S-NARX-(HmM) and NARX-(HmM) augment the feature set

of the CoFES S-NARX and the NARX with HR, MIN, and min variables

calculated from the intraday data. The S-NARX and S NARX-HmM mod-

els are represented in Figure 3.5 and Figure 3.6 respectively. The NARX

and NARX-HmM models are represented in Figure 3.7 and Figure 3.8 re-

spectively.

Figure 3.7 : NARX models configuration

Figure 3.8 : NARX-HmM model configuration
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LSTM models were trained with the following feature set: open, high,

low, close, OBV, MFI, CMF, (chaikinAD),(EMC), (SMA) and were given

a 5-minute window which was equal to the maximum dx value used in the

CoFES S-NARX and NARX models. The LSTM-AR-HR augments the

feature set of the LSTM with the HR variable and the results from separate

AR(1) models fit on the target and price variables. The LSTM and LSTM-

AR-HR models are represented in Figure 3.9 and Figure 3.10 respectively.

Figure 3.9 : LSTM model configuration

Figure 3.10 : LSTM-AR-HR model configuration

Forecast Accuracy

To focus analysis on the last 15 minutes of trading, which is of great impor-

tance to algorithmic traders, the MAPE, MAE, and RMSE are also calcu-

lated for just this subset of the forecast results for just the last 15 minutes
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of each trading day in this study’s prediction window. We will refer to

these calculations as MAPE15, MAE15, and RMSE15 in our results section.

MAPE15 is defined as

MAPE15(ŷ15, y15) =
1

n

n∑
i=1

|y15 − ŷ15|
y15

(3.16)

MAE15 is defined as

MAE15(ŷ15, y15) =
1

n

n∑
i=1

|y15 − ŷ15| (3.17)

RMSE15 is defined as

RMSE15(ŷ15, y15) =

√√√√ 1

n

n∑
i=1

(y15 − ŷ15)2 (3.18)

where y15 represents the actual values in the last 15 minutes of the trading

day and ŷ15 the predicted values in the last 15 minutes of the trading day.

3.5 Experimental Results

Figure 3.11 : A result from the S-NARX (left) and from the S-NARX-HmM

(right) when predicting Apple’s log trading volume.
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The study measured the model’s forecast ability using MAPE15, MAE15,

and RMSE15. The results are compared for the six different RNN-based

techniques: CoFES S-NARX, CoFES S-NARX-HmM, LSTM, LSTM-AR-

HR, NARX, and NARX-HmM. Each model’s network consisted of 3 hidden

layers(100,50,25). The models are trained on training data set, 63 days

of minute level intraday data, and make 15 days worth of n={1,5,10,15}

minutes predictions into the future from the testing data set. Performance

is judged based on the lowest average MAPE15, MAE15, and RMSE15.

3.5.1 Apple

n=1 n=5 n=10 n=15

Model MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15

LSTM 6.29% 0.837 1.057 7.40% 0.989 1.152 8.04% 1.075 1.202 7.63% 1.019 1.162

LSTM AR HR 6.23% 0.829 1.049 7.39% 0.988 1.151 8.08% 1.081 1.207 7.66% 1.022 1.165

NARXHmM 4.71% 0.617 0.761 5.47% 0.726 0.876 5.87% 0.782 0.946 5.49% 0.732 0.932

S-NARX-HmM 4.47% 0.585 0.723 5.39% 0.715 0.861 5.92% 0.789 0.955 5.61% 0.744 0.936

S-NARX-HmM P2 4.35% 0.568 0.708 5.86% 0.776 0.921 5.71% 0.762 0.935 5.45%* 0.726* 0.931*

S-NARX 4.24% 0.553 0.686 5.59% 0.741 0.886 5.59%* 0.746* 0.912* 5.76% 0.767 0.964

NARX 4.15%* 0.540* 0.675* 5.16%* 0.685* 0.837* 6.42% 0.857 1.022 5.68% 0.757 0.957

Table 3.2 : Average MAPE15, MAE15, RMSE15 results from 100 training

runs for n={1,5,10,15} for Apple’s log volume predictions over the last 15

minutes of the trading day.

Overall, the NARX-based models outperformed the LSTM-based model

over the last 15 minutes of the trading day in terms of the average MAPE15,
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Figure 3.12 : MAE15 results for Apple’s log (vol) prediction, n = 1(upper

left), n = 5(upper right), n = 10 (lower left), and n = 15 (lower right).

MAE15, and RMSE15. Both LSTM models, LSTM and LSTM-HR-AR,

when predicting log volume for Apple resulted in lines that look approx-

imately horizontal, see Figure 3.13. On the other hand, the NARX-based

models successfully modeled the seasonal pattern in the data, see Figure B.5.

The NARX model had the lowest average metrics for n=1 and n=5. The
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Figure 3.13 : The result from the LSTM (left) and LSTM-AR-HR (right)

model’s prediction of AAPL’s log intraday trading volume.

S-NARX had the lowest metrics for n=10 and the S-NARX-HmM P2 had

the lowest metrics for n=15. Overall the NARX, S-NARX, and S-NARX-

HmM P2 seem to consistently have the lowest average MAPE15, MAE15,

and RMSE15 for minute-by-minute prediction of Apple’s log trading volume.

The NARX-based model, NARX and S-NARX, appear to outperform the

LSTM at all values of n, and as n increases the level of outperformance in-

creases as well. From the box plots of Apples MAE15 scores for n=1,5,10,15,

see Figure 3.12, it appears that as n increases the S-NARX based models

have lower variability, as evidenced by the range and interquartile range,

than the NARX based models. This is more apparent in the Microsoft re-

sults.

3.5.2 Microsoft

Similar to Apple’s results, the NARX based models outperform the LSTM

based models when predicting intraday volume. The LSTM models were

not able to pick up on the diurnal pattern in the Microsoft log volume data
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n=1 n=5 n=10 n=15

Model MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15 MAPE15 MAE15 RMSE15

LSTM AR HR 9.36% 1.129 1.369 10.39% 1.254 1.439 10.25% 1.237 1.433 8.50% 1.018 1.267

LSTM 9.35% 1.129 1.369 10.41% 1.257 1.442 10.24% 1.237 1.432 8.54% 1.022 1.271

NARX 7.28% 0.852 0.988 7.50% 0.894 1.062 8.95% 1.067 1.284 7.57% 0.886 1.139

S-NARX 6.64% 0.780 0.917 7.71% 0.922 1.089 8.10% 0.970 1.194 7.56% 0.886 1.144

S-NARX P2 6.63% 0.779 0.913 7.79% 0.928 1.095 8.49% 1.008 1.212 7.65% 0.897 1.155

S-NARX-HmM P2 6.13% 0.719* 0.859 7.10%* 0.844* 1.011* 7.60%* 0.899* 1.099* 7.35% 0.853 1.087*

S-NARX-HmM 6.11% 0.719* 0.857* 7.51% 0.890 1.055 7.72% 0.914 1.115 7.12%* 0.836* 1.088

NARXHmM 6.10%* 0.720 0.865 7.82% 0.932 1.099 8.59% 1.025 1.239 8.06% 0.941 1.193

Table 3.3 : Average MAPE15, MAE15, RMSE15 results from 100 training

runs for n={1,5,10,15} for Microsoft’s log daily trading volume over the last

15 minutes of the trading day.

and instead predicted close to the same value for the entire 15 day, minute-

by-minute, prediction window. For n=1, the NARX-HmM had the lowest

MAPE15 and the S-NARX-HmM had the lowest MAE15 and RMSE15. For

n=5, the S-NARX-HmM P2 had the lowest metrics with S-NARX-HmM not

far behind. For n=10, the S-NARX-HmM P2 had the lowest metrics again

with the S-NARX-HmM not far behind. For n=15, the S-NARX-HmM had

the lowest MAPE15 and S-NARX-HmM P2 had the lowest MAE15 AND

RMSE15. The S-NARX-HmM and S-NARX-HmM P2 appear to consis-

tently have the lowest metrics for the tasks of predicting the last 15 minutes

of Microsoft’s log trading volume. The box plots from the MAE15 results for

Microsoft, see Figure 3.14, suggest that like Apple the S-NARX based mod-
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Figure 3.14 : MAE15 results for Microsoft’s log (vol) prediction, n = 1(upper

left), n = 5(upper right), n = 10 (lower left), and n = 15 (lower right) .

els appear to have lover variability in the prediction results as n increases

which separates it from the NARX and NARX-HmM. This suggests that the

prediction results from the S-NARX-based models may be more consistent

than the NARX-based models as n increase.
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3.6 Conclusion

In this study, we investigate the predictive performance of the CoFES S-

NARX network and an altered version of this model, the S-NARX-HmM,

that includes three time-related quantitative trend variables, on intraday log

volume from two of the most heavily traded American technology stocks.

The CoFES S-NARX’s results are compared against LSTM, the state of the

art time series recurrent neural network, the LSTM-AR-HR which combines

with the results from an AR(1) and a quantitative variable for the hour

of the day to the LSTM feature set, the NARX, and the NARX-HmM.

The study trains the networks on 3 months of data using an 80/20 testing

validation split and then makes 15 days, or 3 weeks, of n=1,5,10,15 minute(s)

ahead predictions of log volume. Then the window slides one day and the

process is repeated 100 times. The mean is then taken from the 3 prediction

performance metrics MAPE15, MAE15, and RMSE15.

Predicting intraday volume is important to a variety of trading scenar-

ios yet surprisingly there are not many studies done on predicting intraday

volume using machine learning techniques. This makes it is difficult to find

apple to apple comparisons to determine if these results are on par with

the field. In particular, we focused on our model’s ability to predict the

transformation of intraday trading volume over the last 15 minutes of the

trading day. For example, (45) used the LSTM to predict intraday volume

but binned the data into 10-minute bins and used the past five 10 minute

bins to predict the log change in volume over the next 10-minute bin, where
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the bin volume was calculated as the sum of the volume over the 10-minute

window. Our strategy is more comparable to other high-frequency strate-

gies that also produce minute-level predictions of intraday volume using

machine learning methods. From the results, the CoFES S-NARX seems to

be a strong alternative for individuals looking to use machine learning-based

predictions of time series with seasonality. The CoFES S-NARX didn’t com-

pletely separate itself from the NARX models when comparing the average

metrics from prediction of log volume, but it does a more consistent job, re-

sulting in less variability in the predictions as n increases. Ultimately, this is

a desirable property given these are minute by minute predictions and larger

prediction windows will increases the number of applications with which this

strategy can be paired.
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Chapter 4

Conclusion

In this work, we developed two momentum-based quantitative trading algo-

rithms that first use wavelet techniques to denoises the OHLC price series

and then use the NARX to make a series of 1 day ahead predictions for the

return of American Index future contracts. The results of this prediction

are fed into a trading algorithm that goes long the open if the sign of the

predicted return is positive and takes the opposite position if the sign of the

predicted return is negative. Given the choice of the neural network and the

accessibility of the wavelet denoising techniques in R, these two strategies

can be implemented by someone in the industry or a retail investor with

limited computational power. We have also formulated a seasonal version of

the NARX based on the ARMA(P,0)[s] that is also straightforward enough

for retail investors to understand and employ. The LSTM will forever be

the best in the show for time series with longer dependencies, but the net-

work is computationally expensive and the NARX and CoFES S-NARX are

alternatives for instances where the underlying dynamics of the data are

not modeled well with the LSTM, like intraday volume at the minute level.

The S-NARX-based models were able to capture the ”U” diurnal pattern

in high-frequency trading volume data and produced accurate predictions
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for the future. Similarly, the NARX and S-NARX models did well in the

last 15 minutes of the trading day. The S-NARX-based models separated

themselves from the NARX-based models as n increased and were able to

provide less variability in the predictions and lower average metrics.

Still many open questions remain. In particular, can the two trading

algorithms be generalized to other asset classes or investment horizons like

intraday or monthly return predictions? How will the algorithm perform

with a larger network as this study limited the analysis to a single hid-

den layer with 5 nodes? The paper compared wavelet techniques, so the

networks were not individually optimized to allow appropriate comparison

between methods. How can optimizing the network, with appropriate hyper-

parameter tuning, improve the performance of these strategies? From the

second study, can splines improve predictions of seasonal intraday data in

this high-frequency framework? How will these methods perform in simula-

tion or paper trading in terms of their ability to improve VWAP algorithmic

trading strategies? How well do these methods work on small and mid-cap

stocks that have more volatility and lower average intraday trading volume?
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Chapter 5

R-Package

5.1 Introductions

Finally, we develop an R package, the CoFESSNARX. We recommend refer-

encing the CoFES S-NARX R package that is available at https://github.

com/demonejackson/CofesSNARX after the thesis is submitted. The package

provides the traditional NARX network, first introduced in (46), along with

the novel seasonal version the CoFES S-NARX that augments the NARX

feature set with the features from an ARMA(P,0)[s] described in (73). The

networks are built using the Keras, (4), framework in R and utilizes the

sequential model from this package.

5.2 CoFESNARX Function

#’ CoFESNARX

#’

#’ \code{CoFESNARX} returns a combiled NARX model via Keras

#’

#’ This function takes target variable series , exogenous variables series ,

#’ and the number of desired lags for each group respectively and then returns the

#’ requested lag series for each in a single data set. Ydelay/Xdelay are vectors

#’ that hold the consecutive delays required for the target variable series

#’ (ex 1:3 or 4:5)

https://github.com/demonejackson/CofesSNARX
https://github.com/demonejackson/CofesSNARX
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#’

#’ @param y,x numeric vectors for the target and exogenous variables

#’ @param dim numeric vector for the dimension of the desired network

#’ @param dr_o drop out rate used between hidden layers

#’ @param KL2 the L2 kernel_regularizerregularization factor for hidden

#’ layer kernel regularization

#’ @param BL2 the L2 bias_regularizer regularization factor for hidden layer

#’ bias regularization

#’ @param act activation function used , if not specified ’relu ’ used

#’ @return returns the target combined with the original and lagged exogenous

#’ variables in one database.

#’

#’

#’

################################################################################

CoFESNARX <- function(x, y, dim , KL2 = .01, BL2 = .01, dr_o = 0, act = ’relu’){

# This function determine the size of the model and builds the same model with

# different number of requested nodes. Dim should be entered using c() i.e.

# c(10,5) for a two hidden layers with 10 nodes in the first layer and 5

# nodes in the second.

model <- keras_model_sequential ()

if (length(dim)==1) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==2) {

model %>%
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layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==3) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==4) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%
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layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==5) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,
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kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==6) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))
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} else if (length(dim )==7) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==8) {
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model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,



90

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==9) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==10) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,
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kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==11) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))
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} else if (length(dim )==12) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation =

act , kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==13) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==14) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,
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kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==15) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==16) {
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model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,
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kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[16], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==17) {
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model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%
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layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[16], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[17], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==18) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[16], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[17], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[18], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim )==19) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%
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layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[16], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[17], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[18], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[19], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2))

} else if (length(dim)==20) {

model %>%

layer_dense(units = dim[1], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2),

input_shape = ncol(x) ) %>%
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layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[2], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[3], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[4], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[5], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[6], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[7], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[8], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[9], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[10], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),
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bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[11], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[12], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[13], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[14], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[15], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[16], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[17], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[18], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[19], activation = act ,
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kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = dim[20], activation = act ,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2)) %>%

layer_dropout(rate = dr_o) %>%

layer_dense(units = 1, activation = ’linear ’,

kernel_regularizer= regularizer_l2(l = KL2),

bias_regularizer = regularizer_l2(l = BL2))

} else {

print("Your␣specification␣is␣too␣large")}

summary(model)

return(model)

}

5.3 CoFESNARXdata

CoFESNARXdata and CoFESSNARXdata are utility functions that tran-

form your target and feature data into the appropriate lags for the NARX

and S-NARX usage respectively. The user can set the xdelay/ydelay which

represent the AR order for the feature set for the target and exogenous vari-

ables. The user may also set n using the delay parameter which sets how

many time steps in the future the network will predict. CoFESSNARXdata

prepares your data for analysis with the S-NARX and allows the user to also

set s as either an integer or a vector for seasonal lags and P is set by the

length of s. For example, c(12,24) would represent P=2 and s=12.

#’ CoFESNARXdata
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#’

#’ \code{CoFESNARXdata} returns the lead/lag series necessary to run the CoFESNARX

#’

#’ This function transforms the target and exegenous series variables for the

#’ CoFESNARX model. variables series , and the number of desired lags for each

#’ group respectively and then returns the requested lag series for each in a

#’ single data set. Ydelay/Xdelay are vectors that holds the consecutive

#’ delays required for the target variable series (ex 1:3 or 4:5).

#’

#’ @param yy numeric vectors containing target data

#’ @param xx numeric vectors containing feature data

#’ @param ydelay integer representing the desired AR order for y

#’ @param xdelay integer representing the desired AR order for x

#’ @param delay integers representing n, the size of the prediction

#’ window into the future

#’ @return returns the target combined with the original and lagged exegenous

#’ variables in one database.

#’

#’

#’

CoFESNARXdata <-function(yy , xx , ydelay , xdelay , delay=1, date=T){

# create a sequence up to the number of delays for the target

lags <- seq(ydelay)

# create column names for the lags create in the previous line.

lag_names <- paste("lag", formatC(lags , width = nchar(max(lags)), flag = "0")

, sep = "_")

# A function to create target.

lag_functions <- stats:: setNames(paste("dplyr::lag(.,␣", lags , ")"), lag_names)

# A function to create lead series for target.

lead_functions <- stats:: setNames(paste("dplyr::lead(.,␣", delay , ")"), ’target ’)

ifelse(date ,

# Apply lag function to the target series and create lags

y<-yy %>% dplyr:: mutate_at(vars( colnames(yy)[2] )

, funs_(c(lead_functions ,lag_functions ))),
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y<-yy %>% dplyr:: mutate_at(vars( colnames(yy)[1] )

, funs_(c(lead_functions ,lag_functions ))))

# Remove NA’s

y<-stats::na.omit(y)

# create a sequence up to the number of delays for the exegenous series

lagsx <- seq(xdelay+1)

# create column names for the lags create in the previous line.

lag_namesx <- paste("lag", formatC(lagsx , width = nchar(max(lagsx))

, flag = "0"), sep = "_")

# A function to create lags and adds their names.

lag_functionsx <- stats :: setNames(paste("dplyr ::lag(.,␣", lagsx , ")"), lag_namesx)

# Apply lag function to the target series and create lags

x<-xx %>% dplyr:: mutate_at(vars(colnames(xx)[2:ncol(xx)] ), funs_(lag_functionsx ))

# Remove NA’s

x<-stats::na.omit(x)

# Merge X and Y series

abc <-merge(y, x)

# remove NA’s

abc <- stats::na.omit(abc)

# return boty X and Y

return(abc)

}

#’ CoFESSNARXdata

#’

#’ \code{CoFESSNARXdata} returns the lead/lag series necessary to run the CoFESSNARX

#’

#’ This function transforms the target and exegenous series variables for the

#’ CoFESSNARX model. Variables series , and the number of desired lags for each

#’ group respectively and then returns the requested lag series arlong with the

#’ seasonally lagged verson of teh original series for each in a single data set.

#’

#’ @param yy numeric vectors containing target data

#’ @param xx numeric vectors containing feature data

#’ @param ydelay integer representing the desired AR order for y
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#’ @param xdelay integer representing the desired AR order for x

#’ @param delay integers representing n, the size of the prediction window

#’ into the future

#’ @param s integers representing the seasonality desired. Can be expressed as a

#’ list for P>1.

#’ @param date boolean value to indicate if your data includes dates

#’ @return returns the target combined with the seasonally lagged target variable ,

#’ and the original and lagged exogenous variables in one database.

#’

#’

################################################################################

CoFESSNARXdata <-function(yy, xx, ydelay , xdelay , delay=1, s=NULL , date=T){

# If s=Null , then ignore the seasonal portion and boils down to prepareNARXdata.

if(is.null(s)){

# Traditional series lags.

lags <- seq(ydelay)

}

else {

# Add S to the end of the traditional series.

lags <- c(seq(ydelay),s)

}

# create column names for the lags create in the previous line.

lag_names <- paste("lag", formatC(lags , width = nchar(max(lags)), flag = "0")

, sep = "_")

# A function to create target.

lag_functions <- stats:: setNames(paste("dplyr::lag(.,␣", lags , ")"), lag_names)

# A function to create lead series for target.

lead_functions <- stats:: setNames(paste("dplyr::lead(.,␣", delay , ")"), ’target ’)

ifelse(date ,

# Apply lag function to the target series and create lags

y<-yy %>% dplyr:: mutate_at(vars( colnames(yy)[2] )

, funs_(c(lead_functions ,lag_functions ))),

y<-yy %>% dplyr:: mutate_at(vars( colnames(yy)[1] )

, funs_(c(lead_functions ,lag_functions ))))
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# Remove NA’s

y<-stats::na.omit(y)

# create a sequence up to the number of delays for the exegenous series

lagsx <- seq(xdelay+1)

# create column names for the lags create in the previous line.

lag_namesx <- paste("lag", formatC(lagsx , width = nchar(max(lagsx))

, flag = "0"),

sep = "_")

# A function to create lags and adds their names.

lag_functionsx <- stats :: setNames(paste("dplyr ::lag(.,␣", lagsx , ")"), lag_namesx)

# Apply lag function to the target series and create lags

x<-xx %>% dplyr:: mutate_at(vars(colnames(xx)[2:ncol(xx)] ), funs_(lag_functionsx ))

# Remove NA’s

x <- stats ::na.omit(x)

# Merge X and Y series

abc <- merge(y, x)

# remove NA’s

abc <- stats::na.omit(abc)

# return both X and Y

return(abc)

}
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Appendix A

A.0.1 R-Code: Prediction

This code snippet represents the prediction model where we denoise the data

and then feed it into the NARX.

# This file is used to process the training data set and generate the

# predicted close price.

################################################################################

library("R.matlab")

library("lubridate")

library("CoFESWave")

library("EbayesThresh")

library("waveslim")

library("wmtsa")

library("phonTools")

library("tidyverse")

library("ggplot2")

library("xts")

### Repeat Entire Process Loop

pdf(NULL)

i<-5

Matlab$startServer(port = 9999)

matlab <- Matlab(port = 9999)

setOption(matlab , "readResult/interval", 900000000000) # Default is 1 second

setOption(matlab , "readResult/maxTries", 90000000000 * (60 / 10))
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################################################################################

## check if the matlab connection is open

isOpen <- open(matlab)

# Set name variables to aid in downloading data

ch <-c( ’s&p500_rawdata.csv’,’nasdaq_rawdata.csv’,’dowjones2_rawdata.csv’,

’sp4002_rawdata.csv’, ’crude.csv’)

nam <-c( ’s&p500’,’nasdaq ’,’dowjones ’,’400mini’, ’crudeoil ’)

###########################################################################

#### 0. Load data

data.raw <- read.csv(file = ch[i])

chr_secrity_name <- nam[i]

## Get Column Names

vec_colname <- colnames(data.raw)

## Get Number of rows and colunns of data.raw

nrow_raw <- nrow(data.raw)

ncol_raw <- ncol(data.raw)

## date processing

# 1 Change Format of date

# 2 Add Year Column

# 3 Add Quarter Column

# 4 Add Month Column

# 5 Add yyyyqq column to the Data

data.raw <- data.raw %>%

mutate(Date =as.Date(Date ,format = "%m/%d/%Y"),

yr = lubridate ::year(Date),

qtr = lubridate :: quarter(Date),

mo = lubridate :: month(Date)) %>%

mutate(yyyyqq = yr * 100 + qtr)
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# Process the number of quarters

######################################################################

# 1. Set parameters and prepare data

## 1.1. Basic parameters

N = 62; # number of last data of the target series to be tested by trained net

M = 739; # quantity of first part and second part of data

L = 40; # the period to retrain before getting signal

FF = 204; # this is to bring the testing period F records back to validate

# future prediction more accurate

qfrom = 1;# this is the quantity of multiperiods we are analysing

#qto = nqtr_raw; #calculated above

n_rebuild = 10; # number of time to rebuild the whole thing

## Net related variables

delay = 5;

hid = 6;

repeat_net = 1; # number of times trains the network

vratio = 10;

tratio = 10; # ratio of validation and test

################################################################################

## 1.2. Miscellaneous items

draw = 0; # 125, desired performance of trained net on last N number of

# data on target

processstep = 0;

spread = 0; # spread is set according to the broker policy

################################################################################

## 1.3. Matlab setup

## Set Variables in matlab
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setVariable(matlab ,

repeat_net = repeat_net ,

delay = delay , hid = hid ,

vratio = vratio , tratio = tratio)

################################################################################

## 1.4. Basic processing

# Takes a slice of original data Set (3627 X 27) and add return data.

data.original <- data.raw %>%

mutate( ropen = open ,

rhigh = high ,

rlow = low ,

rclose = close/ lag(close) - 1,

rRSI = RSI ,

rMACD = MACD ,

rSIG = SIG ,

rFS = FS ,

rSS = SS ,

rS = S ,

rULT = ULT ,

rVol = Vol ) %>%

mutate(rVol = replace(rVol , is.infinite(rVol), NA),

rVol = replace(rVol , is.na(rVol), 0),

rFS = replace(rFS , is.infinite(rFS), NA),

rFS = replace(rFS , is.na(rFS), 0),

rULT = replace(rULT , is.infinite(rULT), NA),

rULT = replace(rULT , is.na(rULT), 0)

)

data.original <-data.original %>% tidyr ::fill(ropen , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rhigh , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rlow , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rclose , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rRSI , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rMACD , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rSIG , .direction="downup")
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data.original <-data.original %>% tidyr ::fill(rFS , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rSS , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rS , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rULT , .direction="downup")

data.original <-data.original %>% tidyr ::fill(rVol , .direction="downup")

################################################################################

# Create Vectors of yyyyqq and calculate lengths of vector

Vec_yyyyqq <- sort(unique(data.original$yyyyqq ))

# drop the 1st and last quarter.

Vec_yyyyqq <- Vec_yyyyqq[2:( length(Vec_yyyyqq)-1)]

# count # of qtrs

n_qtr <- length(Vec_yyyyqq)

# final step in preparation

df.result <- data.original %>%

select(Date , yyyyqq) %>%

mutate(Close_pd_L2E = NA,

Close_pd_chi = NA,

Close_pd_soft = NA,

Close_pd_hard = NA,

Close_pd_bye = NA

)

#### 2. main ####===============================================================

q_start = 13

for (q in c(q_start:n_qtr)) {

#### 2.1. Preparation for quarter training: loop q ####

# Isolate the quarter and year in question

loop.qtr <- Vec_yyyyqq[q]

# Isolate data for the quarter and year in question
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data.q <- data.original %>%

filter(yyyyqq == loop.qtr) %>%

mutate(index_day = 1:n())

# Number of rows in the Quarter Data Frame.

loop.nday <- nrow(data.q)

# (747 x 28)

data.qtrain <- data.original %>% filter(is.element(yyyyqq ,

Vec_yyyyqq [(q-12):(q-1)]))

#(125 x 28)

data.qretrain <- data.original %>% filter(is.element(yyyyqq ,

Vec_yyyyqq [(q-1):q]) )

#### 2.2. Denoise for quarter training: loop q #################################

df.qtrain.L2E <- data.qtrain

df.qtrain.chi <- data.qtrain

df.qtrain.soft <- data.qtrain

df.qtrain.hard <- data.qtrain

df.qtrain.byes <- data.qtrain

#### 2.2.1. L2E Threshold ######################################################

temp.open <- CoFESWave ::WaveL2E(data.qtrain$ropen , base_plot = FALSE)

temp.high <- CoFESWave ::WaveL2E(data.qtrain$rhigh , base_plot = FALSE)

temp.low <- CoFESWave ::WaveL2E(data.qtrain$rlow , base_plot = FALSE)

temp.close <- CoFESWave :: WaveL2E(data.qtrain$rclose , base_plot = FALSE)

temp.RSI <- data.qtrain$rRSI

temp.MACD <- data.qtrain$rMACD

temp.SIG <- data.qtrain$rSIG

temp.FS <- data.qtrain$rFS

temp.SS <- data.qtrain$rSS

temp.S <- data.qtrain$rS

temp.ULT <- data.qtrain$rULT

temp.Vol <- data.qtrain$rVol
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df.qtrain.L2E$ropen <- temp.open$recon_L2E$series$x.r

df.qtrain.L2E$rhigh <- temp.high$recon_L2E$series$x.r

df.qtrain.L2E$rlow <- temp.low$recon_L2E$series$x.r

df.qtrain.L2E$rclose <- temp.close$recon_L2E$series$x.r

df.qtrain.L2E$rRSI <- temp.RSI

df.qtrain.L2E$rMACD <- temp.MACD

df.qtrain.L2E$rSIG <- temp.SIG

df.qtrain.L2E$rFS <- temp.FS

df.qtrain.L2E$rSS <- temp.SS

df.qtrain.L2E$rS <- temp.S

df.qtrain.L2E$rULT <- temp.ULT

df.qtrain.L2E$rVol <- temp.Vol

#### 2.2.2. L2E Chi -Squared Threshold ###########################

df.qtrain.chi$ropen <- temp.open$recon_Chi_square$series$x.r

df.qtrain.chi$rhigh <- temp.high$recon_Chi_square$series$x.r

df.qtrain.chi$rlow <- temp.low$recon_Chi_square$series$x.r

df.qtrain.chi$rclose <- temp.close$recon_Chi_square$series$x.r

df.qtrain.chi$rRSI <- temp.RSI

df.qtrain.chi$rMACD <- temp.MACD

df.qtrain.chi$rSIG <- temp.SIG

df.qtrain.chi$rFS <- temp.FS

df.qtrain.chi$rSS <- temp.SS

df.qtrain.chi$rS <- temp.S

df.qtrain.chi$rULT <- temp.ULT

df.qtrain.chi$rVol <- temp.Vol

#### 2.2.3. Universal Hard Thershold ###########################################

df.qtrain.hard$ropen <- wavShrink(data.qtrain$ropen ,

wavelet="s8",

shrink.fun="hard",

thresh.fun="universal",

threshold=NULL ,

thresh.scale=1,
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xform="dwt",

noise.variance=-1.0,

reflect=TRUE)

df.qtrain.hard$rhigh <- wavShrink(data.qtrain$rhigh ,

wavelet="s8",

shrink.fun="hard",

thresh.fun="universal",

threshold=NULL ,

thresh.scale=1,

xform="dwt",

noise.variance=-1.0,

reflect=TRUE)

df.qtrain.hard$rlow <- wavShrink(data.qtrain$rlow ,

wavelet="s8",

shrink.fun="hard",

thresh.fun="universal",

threshold=NULL ,

thresh.scale=1,

xform="dwt",

noise.variance=-1.0,

reflect=TRUE)

df.qtrain.hard$rclose <- wavShrink(data.qtrain$rclose , wavelet="s8",

shrink.fun="hard", thresh.fun="universal", threshold=NULL ,thresh.scale=1,

xform="dwt", noise.variance=-1.0, reflect=TRUE)

df.qtrain.hard$rRSI <- data.qtrain$rRSI

df.qtrain.hard$rMACD <- data.qtrain$rMACD

df.qtrain.hard$rSIG <- data.qtrain$rSIG

df.qtrain.hard$rFS <- data.qtrain$rFS

df.qtrain.hard$rSS <- data.qtrain$rSS

df.qtrain.hard$rS <- data.qtrain$rS

df.qtrain.hard$rULT <- data.qtrain$rULT

df.qtrain.hard$rVol <- data.qtrain$rVol
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#### 2.2.4. Universal Soft Threshold ###########################################

df.qtrain.soft$ropen <- wavShrink(data.qtrain$ropen , wavelet="s8",

shrink.fun="soft",thresh.fun="universal", threshold=NULL ,thresh.scale=1,

xform="dwt", noise.variance=-1.0, reflect=TRUE)

df.qtrain.soft$rhigh <- wavShrink(data.qtrain$rhigh , wavelet="s8",

shrink.fun="soft", thresh.fun="universal", threshold=NULL ,

thresh.scale=1,xform="dwt", noise.variance=-1.0, reflect=TRUE)

df.qtrain.soft$rlow <- wavShrink(data.qtrain$rlow , wavelet="s8",

shrink.fun="soft",thresh.fun="universal", threshold=NULL ,

thresh.scale=1, xform="dwt", noise.variance=-1.0, reflect=TRUE)

df.qtrain.soft$rclose <- wavShrink(data.qtrain$rclose , wavelet="s8",

shrink.fun="soft", thresh.fun="universal", threshold=NULL ,thresh.scale=1,

xform="dwt", noise.variance=-1.0, reflect=TRUE)

df.qtrain.soft$rRSI <- data.qtrain$rRSI

df.qtrain.soft$rMACD <- data.qtrain$rMACD

df.qtrain.soft$rSIG <- data.qtrain$rSIG

df.qtrain.soft$rFS <- data.qtrain$rFS

df.qtrain.soft$rSS <- data.qtrain$rSS

df.qtrain.soft$rS <- data.qtrain$rS

df.qtrain.soft$rULT <- data.qtrain$rULT

df.qtrain.soft$rVol <- data.qtrain$rVol

#### 2.2.5. Emperical Bayesian Threshold #####################################

#Wavelet Transform

a =1024-length(data.qtrain$ropen)

b=1+a

z = zeros(1024-length(data.qtrain$ropen))

bayes.dwto <- dwt( c(z,data.qtrain$ropen), wf="la8")

#Emperical Bayesian Threshold

bayes_impo <- ebayesthresh.wavelet(bayes.dwto)

#nverse Transform

df.qtrain.byes$ropen <- idwt(bayes_impo)[b:1024]

#Wavelet Transform



126

bayes.dwth <- dwt(c(z,data.qtrain$rhigh), wf="la8")

#Emperical Bayesian Threshold

bayes_imph <- ebayesthresh.wavelet(bayes.dwth)

#nverse Transform

df.qtrain.byes$rhigh <- idwt(bayes_imph)[b:1024]

#Wavelet Transform

bayes.dwtl <- dwt(c(z,data.qtrain$rlow), wf="la8")

#Emperical Bayesian Threshold

bayes_impl <- ebayesthresh.wavelet(bayes.dwtl)

#nverse Transform

df.qtrain.byes$rlow <- idwt(bayes_impl)[b:1024]

#Wavelet Transform

bayes.dwtcl <- dwt(c(z,data.qtrain$rclose), wf="la8")

#Emperical Bayesian Threshold

bayes_impcl <- ebayesthresh.wavelet(bayes.dwtcl)

#nverse Transform

df.qtrain.byes$rclose <- idwt(bayes_impcl)[b:1024]

df.qtrain.byes$rRSI <- data.qtrain$rRSI

df.qtrain.byes$rMACD <- data.qtrain$rMACD

df.qtrain.byes$rSIG <- data.qtrain$rSIG

df.qtrain.byes$rFS <- data.qtrain$rFS

df.qtrain.byes$rSS <- data.qtrain$rSS

df.qtrain.byes$rS <- data.qtrain$rS

df.qtrain.byes$rULT <- data.qtrain$rULT

df.qtrain.byes$rVol <- data.qtrain$rVol

##########################################################################

#### 2.3. training ####

#### 2.3.1. Rearrangement before training ####

# Seperate Target and Exogenous Variables:
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df.target.L2E <- df.qtrain.L2E %>% select(rclose)

df.input.L2E <- df.qtrain.L2E %>% select(ropen , rhigh , rlow , rRSI ,

rMACD , rSIG , rFS , rSS , rS , rULT , rVol)

df.target.chi <- df.qtrain.chi %>% select(rclose)

df.input.chi <- df.qtrain.chi %>% select(ropen , rhigh , rlow , rRSI ,

rMACD , rSIG , rFS , rSS , rS , rULT , rVol)

df.target.hard <- df.qtrain.hard %>% select(rclose)

df.input.hard <- df.qtrain.hard %>% select(ropen , rhigh , rlow , rRSI ,

rMACD , rSIG , rFS , rSS , rS , rULT , rVol)

df.target.soft <- df.qtrain.soft %>% select(rclose)

df.input.soft <- df.qtrain.soft %>% select(ropen , rhigh , rlow , rRSI ,

rMACD , rSIG , rFS , rSS , rS , rULT , rVol)

df.target.byes <- df.qtrain.byes %>% select(rclose)

df.input.byes <- df.qtrain.byes %>% select(ropen , rhigh , rlow ,

rRSI , rMACD , rSIG , rFS , rSS , rS, rULT , rVol)

# Create Matrix of NA’s (61 x 10)

matrix.rclose.pd.L2E <- matrix(NA, nrow = loop.nday , ncol = n_rebuild)

matrix.rclose.pd.chi <- matrix(NA, nrow = loop.nday , ncol = n_rebuild)

matrix.rclose.pd.hard <- matrix(NA, nrow = loop.nday , ncol = n_rebuild)

matrix.rclose.pd.soft <- matrix(NA, nrow = loop.nday , ncol = n_rebuild)

matrix.rclose.pd.byes <- matrix(NA, nrow = loop.nday , ncol = n_rebuild)

#############################################################################

# From 1 to 10

for (i in c(1:n_rebuild )) {

# for (i in c(1:1)) {

#### 2.3.2. training for quarter training: loop q ####

for (ii in c(1:repeat_net)) {

# Set variables

setVariable(matlab , ii = ii, input_L2E = as.matrix(df.input.L2E),

input_chi = as.matrix(df.input.chi), input_hard = as.matrix(df.input.hard),
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input_soft = as.matrix(df.input.soft),input_byes = as.matrix(df.input.byes),

target_L2E = as.matrix(df.target.L2E),target_chi = as.matrix(df.target.chi),

target_hard = as.matrix(df.target.hard),target_soft = as.matrix(df.target.soft),

target_byes = as.matrix(df.target.byes))

## train

temp.expression = paste0("[net_L2E_", ii , ",performance]␣=␣WNN_network(input_L2E,

target_L2E(:,␣1),␣delay ,␣hid ,␣vratio ,␣tratio );","[net_chi_",

ii, ",performance]␣=␣WNN_network(input_chi ,target_chi(:,␣1),

delay ,␣hid ,␣vratio ,␣tratio );","[net_hard_", ii,

",performance]␣=␣WNN_network(input_hard ,␣target_hard(:,␣1),

delay ,␣hid ,␣vratio ,␣tratio );","[net_soft_", ii, ",

performance]␣=␣WNN_network(input_soft ,␣target_soft(:,␣1),␣delay ,

hid ,␣vratio ,␣tratio );","[net_byes_", ii, ",

performance]␣=␣WNN_network(input_byes ,␣target_byes(:,␣1),

delay ,␣hid ,␣vratio ,␣tratio );"

)

evaluate(matlab , temp.expression)

}

################################################################################

#### 2.4. Preparation for day training: loop d ####

# for 1 to 61 (vary according to quarters)

for (d in c(1:loop.nday)) {

ind_d <- which(data.qretrain$Date == data.q$Date[d]) -1

## adjust for the last day (the day we are forecasting)

data.qretrain.d <- data.qretrain %>%

dplyr:: slice(c((ind_d-L):ind_d)+1) %>%

mutate(ind_retrain = 1:n(),

max_ind = max(ind_retrain , na.rm = TRUE),

signal_last = (ind_retrain == (max_ind -1)),

signal_pd = (ind_retrain == max_ind)) %>%

mutate(rhigh = replace(rhigh , signal_pd, ropen[signal_pd ]),
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rlow = replace(rlow , signal_pd , ropen[signal_pd ]),

rclose = replace(rclose , signal_pd, ropen[signal_pd ]),

rRSI = replace(rRSI , signal_pd , rRSI[ signal_last]),

rMACD = replace(rMACD , signal_pd, rMACD[signal_last]),

rSIG = replace(rSIG , signal_pd , rSIG[ signal_last]),

rFS = replace(rFS , signal_pd, rFS[ signal_last]),

rSS = replace(rSS , signal_pd, rSS[ signal_last]),

rS = replace(rS, signal_pd, rS[ signal_last]),

rULT = replace(rULT , signal_pd , rULT[ signal_last]),

rVol = replace(rVol , signal_pd , rVol[ signal_last])

)

nday_retrain <- nrow(data.qretrain.d)

#### 2.5. Denoise for day training: loop d ####

# we can add more denoising variables later

df.qretrain.L2E <- data.qretrain.d

df.qretrain.chi <- data.qretrain.d

df.qretrain.soft <- data.qretrain.d

df.qretrain.hard <- data.qretrain.d

df.qretrain.byes <- data.qretrain.d

#### 2.5.1. L2E ###############################################################

temp.open <- CoFESWave :: WaveL2E(data.qretrain.d$ropen , base_plot = FALSE)

temp.high <- CoFESWave :: WaveL2E(data.qretrain.d$rhigh , base_plot = FALSE)

temp.low <- CoFESWave ::WaveL2E(data.qretrain.d$rlow , base_plot = FALSE)

temp.close <- CoFESWave ::WaveL2E(data.qretrain.d$rclose , base_plot = FALSE)

temp.RSI <- data.qretrain.d$rRSI

temp.MACD <- data.qretrain.d$rMACD

temp.SIG <- data.qretrain.d$rSIG

temp.FS <- data.qretrain.d$rFS

temp.SS <- data.qretrain.d$rSS

temp.S <- data.qretrain.d$rS

temp.ULT <- data.qretrain.d$rULT

temp.Vol <- data.qretrain.d$rVol
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df.qretrain.L2E$ropen <- temp.open$recon_L2E$series$x.r

df.qretrain.L2E$rhigh <- temp.high$recon_L2E$series$x.r

df.qretrain.L2E$rlow <- temp.low$recon_L2E$series$x.r

df.qretrain.L2E$rclose <- temp.close$recon_L2E$series$x.r

df.qretrain.L2E$rRSI <- temp.RSI

df.qretrain.L2E$rMACD <- temp.MACD

df.qretrain.L2E$rSIG <- temp.SIG

df.qretrain.L2E$rFS <- temp.FS

df.qretrain.L2E$rSS <- temp.SS

df.qretrain.L2E$rS <- temp.S

df.qretrain.L2E$rULT <- temp.ULT

df.qretrain.L2E$rVol <- temp.Vol

#### 2.5.2. L2E Chi Squared Threshold #################################

df.qretrain.chi$ropen <- temp.open$recon_Chi_square$series$x.r

df.qretrain.chi$rhigh <- temp.high$recon_Chi_square$series$x.r

df.qretrain.chi$rlow <- temp.low$recon_Chi_square$series$x.r

df.qretrain.chi$rclose <- temp.close$recon_Chi_square$series$x.r

df.qretrain.chi$rRSI <- temp.RSI

df.qretrain.chi$rMACD <- temp.MACD

df.qretrain.chi$rSIG <- temp.SIG

df.qretrain.chi$rFS <- temp.FS

df.qretrain.chi$rSS <- temp.SS

df.qretrain.chi$rS <- temp.S

df.qretrain.chi$rULT <- temp.ULT

df.qretrain.chi$rVol <- temp.Vol

#### 2.5.3. Universal Hard Thershold ###################################

df.qretrain.hard$ropen <- wavShrink(data.qretrain.d$ropen ,

wavelet="s8", shrink.fun="hard", thresh.fun="universal",

threshold=NULL ,thresh.scale=1,xform="dwt", noise.variance=-1.0,

reflect=TRUE)

df.qretrain.hard$rhigh <- wavShrink(data.qretrain.d$rhigh ,

wavelet="s8", shrink.fun="hard",thresh.fun="universal",

threshold=NULL ,thresh.scale=1, xform="dwt", noise.variance=-1.0,



131

reflect=TRUE)

df.qretrain.hard$rlow <- wavShrink(data.qretrain.d$rlow ,

wavelet="s8", shrink.fun="hard",thresh.fun="universal",

threshold=NULL ,thresh.scale=1,xform="dwt", noise.variance=-1.0,

reflect=TRUE)

df.qretrain.hard$rclose <- wavShrink(data.qretrain.d$rclose ,

wavelet="s8", shrink.fun="hard", thresh.fun="universal",

threshold=NULL ,thresh.scale=1,xform="dwt", noise.variance=-1.0,

reflect=TRUE)

df.qretrain.hard$rRSI <- data.qretrain.d$rRSI

df.qretrain.hard$rMACD <- data.qretrain.d$rMACD

df.qretrain.hard$rSIG <- data.qretrain.d$rSIG

df.qretrain.hard$rFS <- data.qretrain.d$rFS

df.qretrain.hard$rSS <- data.qretrain.d$rSS

df.qretrain.hard$rS <- data.qretrain.d$rS

df.qretrain.hard$rULT <- data.qretrain.d$rULT

df.qretrain.hard$rVol <- data.qretrain.d$rVol

#### 2.5.4. Universal Soft Threshold #####################################

df.qretrain.soft$ropen <- wavShrink(data.qretrain.d$ropen ,

wavelet="s8", shrink.fun="soft", thresh.fun="universal",

threshold=NULL ,thresh.scale=1, xform="dwt",

noise.variance=-1.0, reflect=TRUE)

df.qretrain.soft$rhigh <- wavShrink(data.qretrain.d$rhigh ,

wavelet="s8", shrink.fun="soft", thresh.fun="universal",

threshold=NULL ,thresh.scale=1, xform="dwt",

noise.variance=-1.0, reflect=TRUE)

df.qretrain.soft$rlow <- wavShrink(data.qretrain.d$rlow ,

wavelet="s8", shrink.fun="soft", thresh.fun="universal",

threshold=NULL ,thresh.scale=1, xform="dwt",

noise.variance=-1.0, reflect=TRUE)

df.qretrain.soft$rclose <- wavShrink(data.qretrain.d$rclose ,

wavelet="s8", shrink.fun="soft",thresh.fun="universal",

threshold=NULL ,thresh.scale=1,xform="dwt",
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noise.variance=-1.0, reflect=TRUE)

df.qretrain.soft$rRSI <- data.qretrain.d$rRSI

df.qretrain.soft$rMACD <- data.qretrain.d$rMACD

df.qretrain.soft$rSIG <- data.qretrain.d$rSIG

df.qretrain.soft$rFS <- data.qretrain.d$rFS

df.qretrain.soft$rSS <- data.qretrain.d$rSS

df.qretrain.soft$rS <- data.qretrain.d$rS

df.qretrain.soft$rULT <- data.qretrain.d$rULT

df.qretrain.soft$rVol <- data.qretrain.d$rVol

#### 2.5.5. Emperical Bayesian Threshold #########################

a= 64 - length(data.qretrain.d$ropen)

b= a + 1

z = zeros(a)

#Wavelet Transform

bayes.dwto <- dwt(c(z,data.qretrain.d$ropen), wf="la8")

#Emperical Bayesian Threshold

bayes_impo <- ebayesthresh.wavelet(bayes.dwto)

#nverse Transform

df.qretrain.byes$ropen <- idwt(bayes_impo)[b:64]

#Wavelet Transform

bayes.dwth <- dwt(c(z,data.qretrain.d$rhigh), wf="la8")

#Emperical Bayesian Threshold

bayes_imph <- ebayesthresh.wavelet(bayes.dwth)

#nverse Transform

df.qretrain.byes$rhigh <- idwt(bayes_imph)[b:64]

#Wavelet Transform

bayes.dwtl <- dwt(c(z,data.qretrain.d$rlow), wf="la8")

#Emperical Bayesian Threshold

bayes_impl <- ebayesthresh.wavelet(bayes.dwtl)
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#nverse Transform

df.qretrain.byes$rlow <- idwt(bayes_impl)[b:64]

#Wavelet Transform

bayes.dwtcl <- dwt(c(z,data.qretrain.d$rclose), wf="la8")

#Emperical Bayesian Threshold

bayes_impcl <- ebayesthresh.wavelet(bayes.dwtcl)

#nverse Transform

df.qretrain.byes$rclose <- idwt(bayes_impcl)[b:64]

df.qretrain.byes$rRSI <- data.qretrain.d$rRSI

df.qretrain.byes$rMACD <- data.qretrain.d$rMACD

df.qretrain.byes$rSIG <- data.qretrain.d$rSIG

df.qretrain.byes$rFS <- data.qretrain.d$rFS

df.qretrain.byes$rSS <- data.qretrain.d$rSS

df.qretrain.byes$rS <- data.qretrain.d$rS

df.qretrain.byes$rULT <- data.qretrain.d$rULT

df.qretrain.byes$rVol <- data.qretrain.d$rVol

#########################################################

#### 2.6. training ####

#### 2.6.1. Rearrangement before training ####

df.pd.target.L2E <- df.qretrain.L2E %>% select(rclose)

df.pd.input.L2E <- df.qretrain.L2E %>% select(ropen , rhigh , rlow ,

rRSI , rMACD , rSIG , rFS , rSS , rS, rULT , rVol)

df.pd.target.chi <- df.qretrain.chi %>% select(rclose)

df.pd.input.chi <- df.qretrain.chi %>% select(ropen , rhigh ,

rlow , rRSI , rMACD ,rSIG , rFS , rSS , rS, rULT , rVol)

df.pd.target.hard <- df.qretrain.hard %>% select(rclose)

df.pd.input.hard <- df.qretrain.hard %>% select(ropen , rhigh ,

rlow , rRSI , rMACD ,rSIG , rFS , rSS , rS, rULT , rVol)

df.pd.target.soft <- df.qretrain.soft %>% select(rclose)

df.pd.input.soft <- df.qretrain.soft %>% select(ropen , rhigh ,
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rlow , rRSI , rMACD , rSIG , rFS , rSS , rS, rULT , rVol)

df.pd.target.byes <- df.qretrain.byes %>% select(rclose)

df.pd.input.byes <- df.qretrain.byes %>% select(ropen , rhigh ,

rlow , rRSI , rMACD ,rSIG , rFS , rSS , rS, rULT , rVol)

## retrain result matrix

Vec_i_d_k_pd_L2E = rep(0, repeat_net)

Vec_i_d_k_pd_chi = rep(0, repeat_net)

Vec_i_d_k_pd_hard = rep(0, repeat_net)

Vec_i_d_k_pd_soft = rep(0, repeat_net)

Vec_i_d_k_pd_byes = rep(0, repeat_net)

#### 2.6.2. training for quarter training: loop q ####

for (k in c(1:repeat_net)) {

setVariable(matlab ,

input_retrain_L2E = as.matrix(df.pd.input.L2E),

input_retrain_chi = as.matrix(df.pd.input.chi),

input_retrain_hard = as.matrix(df.pd.input.hard),

input_retrain_soft = as.matrix(df.pd.input.soft),

input_retrain_byes = as.matrix(df.pd.input.byes),

target_retrain_L2E = as.matrix(df.pd.target.L2E),

target_retrain_chi = as.matrix(df.pd.target.chi),

target_retrain_hard = as.matrix(df.pd.target.hard),

target_retrain_soft = as.matrix(df.pd.target.soft),

target_retrain_byes = as.matrix(df.pd.target.byes))

####################################################################

temp.expression <- paste0("xtc␣=␣zeros(1,5);","[xtc(1),␣~,␣~,␣~]

=␣WNN_network_retrain(input_retrain_L2E,

target_retrain_L2E(:,1),␣net_L2E_", k, ");",

"[xtc(2),␣~,␣~,␣~]␣=␣WNN_network_retrain(input_retrain_chi ,

target_retrain_chi(:,1),␣net_chi_", k, ");",

"[xtc(3),␣~,␣~,␣~]␣=␣WNN_network_retrain(input_retrain_hard ,

target_retrain_hard(:,1),␣net_hard_", k, ");",

"[xtc(4),␣~,␣~,␣~]␣=␣WNN_network_retrain(input_retrain_soft ,
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target_retrain_soft(:,1),␣net_soft_", k, ");",

"[xtc(5),␣~,␣~,␣~]␣=␣WNN_network_retrain(input_retrain_byes ,

target_retrain_byes(:,1),␣net_byes_", k, ");"

)

evaluate(matlab , temp.expression)

pd.close <- getVariable(matlab , "xtc")

Vec_i_d_k_pd_L2E[k] <- pd.close$xtc[1]

Vec_i_d_k_pd_chi[k] <- pd.close$xtc[2]

Vec_i_d_k_pd_hard[k] <- pd.close$xtc[3]

Vec_i_d_k_pd_soft[k] <- pd.close$xtc[4]

Vec_i_d_k_pd_byes[k] <- pd.close$xtc[5]

}

matrix.rclose.pd.L2E[ d,i] = mean(Vec_i_d_k_pd_L2E)

matrix.rclose.pd.chi[ d,i] = mean(Vec_i_d_k_pd_chi)

matrix.rclose.pd.hard[d,i] = mean(Vec_i_d_k_pd_hard)

matrix.rclose.pd.soft[d,i] = mean(Vec_i_d_k_pd_soft)

matrix.rclose.pd.byes[d,i] = mean(Vec_i_d_k_pd_byes)

}

} # loop by n_rebuild

#### 2.7. rearrangement of prediction ####

## calculate

Vec_pd_L2E = rowMeans(matrix.rclose.pd.L2E)

Vec_pd_chi = rowMeans(matrix.rclose.pd.chi)

Vec_pd_hard = rowMeans(matrix.rclose.pd.hard)

Vec_pd_soft = rowMeans(matrix.rclose.pd.soft)

Vec_pd_byes = rowMeans(matrix.rclose.pd.byes)

## put them in the result dataframe

ind_date <- df.result$yyyyqq == loop.qtr

df.result$Close_pd_L2E[ ind_date] = Vec_pd_L2E

df.result$Close_pd_chi[ ind_date] = Vec_pd_chi

df.result$Close_pd_hard[ind_date] = Vec_pd_hard

df.result$Close_pd_soft[ind_date] = Vec_pd_soft

df.result$Close_pd_byes[ind_date] = Vec_pd_byes
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#### 2.8. save ####

df.result.save <- df.result %>%

mutate(q_now = q)

save(df.result.save , file = paste0(chr_secrity_name ,

delay , hid , "RResult_save.Rdata"))

} # loop by quarter

close(matlab)

A.0.2 R-Code: Trading Algorithm Back Test

library(tictoc)

library(tidyverse)

library(stringr)

library(ggplot2)

#### 0. Load data ####====================================================

## load Data as data.raw

ch1 <-c( ’sp4002_rawdata.csv’,’sp4002_rawdata.csv’,’dowjones2_rawdata.csv’,

’dowjones2_rawdata.csv’,’sp5002_rawdata.csv’,’sp4002_rawdata.csv’,

’dowjones2_rawdata.csv’, ’nasdaq2_rawdata.csv’)

nam1 <-c( ’spCHI4002’,’spL2E4002’,’dowjonesCHI2’,’dowjonesL2E2’,’sp5002’,

’sp4002’,’dowjones2’, ’nasdaq2’)

res1 <-c(’sp4002CHIResult_save.Rdata’,’sp4002L2EResult_save.Rdata’,

’dowjones2CHIResult_save.Rdata’,’dowjones2L2EResult_save.Rdata’,

’sp5002Result_save.Rdata’,’sp4002Result_save.Rdata ’,

’dowjones2Result_save.Rdata ’,’nasdaq2Result_save.Rdata ’)

i=8

data.raw <- read.csv2(file = ch1[i])

chr_secrity_name <- nam1[i]

result <-res1[i]

data.raw <-data.raw %>%

mutate(Date_raw = stringr ::str_pad(Date , 9 , side = "left", pad = 0),

Date_str = stringr ::str_pad(Date_raw , 10 , side = "left", pad = 2),

Date = as.Date(Date_str))
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## load result

load(result)

data.forecast <- df.result.save %>%

mutate(Date_raw = stringr ::str_pad(Date , 9 , side = "left", pad = 0),

Date_str = stringr ::str_pad(Date_raw , 10 , side = "left", pad = 2),

Date = as.Date(Date_str))%>%

select(Date ,

Close_pd_L2E, Close_pd_chi , Close_pd_hard ,

Close_pd_soft , Close_pd_byes)

rm(df.result.save)

#### 1. Process data ####

data.raw <- data.raw %>% select(-X)

#### 1.1. Variable Name Adjustment ####

# Get Column Names

vec_colname <- colnames(data.raw)

# Set First Column Name to Date

vec_colname[1] <- "Date"

colnames(data.raw) <- vec_colname

#### 1.3. Return preparation ####

data.backtest <- data.raw %>%

# Date

mutate(Date = as.Date(Date ,format = "%m/%d/%Y"),

year = lubridate ::year(Date)) %>%

select(Date , year , close) %>%

# returns

mutate(return_raw = close / lag(close , 1) - 1) %>%

# merge with predictions
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left_join(data.forecast , by = "Date")

#### 2. backtest ####

#### 2.1. longshort and longonly signals ####

## data: base

data.base <- data.backtest %>%

# signal to buy or sell at each day

mutate(signal_long_L2E = Close_pd_L2E > 0,

signal_long_chi = Close_pd_chi > 0,

signal_long_hard = Close_pd_hard > 0,

signal_long_soft = Close_pd_soft > 0,

signal_long_byes = Close_pd_byes > 0) %>%

# drop NA forecasts

drop_na(signal_long_L2E, signal_long_chi ,

signal_long_hard , signal_long_soft , signal_long_byes) %>%

# longshort and longonly returns

mutate(sign_return = sign(return_raw),

multiplier_longonly_L2E = as.numeric(signal_long_L2E),

multiplier_longonly_chi = as.numeric(signal_long_chi),

multiplier_longonly_hard = as.numeric(signal_long_hard),

multiplier_longonly_soft = as.numeric(signal_long_soft),

multiplier_longonly_byes = as.numeric(signal_long_byes),

multiplier_longshort_L2E = replace(multiplier_longonly_L2E,

multiplier_longonly_L2E < 1,

-1),

multiplier_longshort_chi = replace(multiplier_longonly_chi ,

multiplier_longonly_chi < 1,

-1),

multiplier_longshort_hard = replace(multiplier_longonly_hard ,

multiplier_longonly_hard < 1,

-1),
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multiplier_longshort_soft = replace(multiplier_longonly_soft ,

multiplier_longonly_soft < 1,

-1),

multiplier_longshort_byes = replace(multiplier_longonly_byes ,

multiplier_longonly_byes < 1,

-1)) %>%

# return calculation

mutate(return_longshort_L2E = return_raw * multiplier_longshort_L2E,

return_longshort_chi = return_raw * multiplier_longshort_chi ,

return_longshort_hard = return_raw * multiplier_longshort_hard ,

return_longshort_soft = return_raw * multiplier_longshort_soft ,

return_longshort_byes = return_raw * multiplier_longshort_byes ,

return_longonly_L2E = return_raw * multiplier_longonly_L2E,

return_longonly_chi = return_raw * multiplier_longonly_chi ,

return_longonly_hard = return_raw * multiplier_longonly_hard ,

return_longonly_soft = return_raw * multiplier_longonly_soft ,

return_longonly_byes = return_raw * multiplier_longonly_byes)

#### 2.1. Signal analysis: accuracy ####

df.backtest.accuracy <- data.base %>%

# prediction accuracy

mutate(accuracy_longshort_L2E = sign_return == multiplier_longshort_L2E,

accuracy_longshort_chi = sign_return == multiplier_longshort_chi ,

accuracy_longshort_hard = sign_return == multiplier_longshort_hard ,

accuracy_longshort_soft = sign_return == multiplier_longshort_soft ,

accuracy_longshort_byes = sign_return == multiplier_longshort_byes) %>%

group_by(year) %>%

summarise(count = n(),

accuracy_rate_L2E = mean(accuracy_longshort_L2E),

accuracy_rate_chi = mean(accuracy_longshort_chi),

accuracy_rate_hard = mean(accuracy_longshort_hard),

accuracy_rate_soft = mean(accuracy_longshort_soft),
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accuracy_rate_byes = mean(accuracy_longshort_byes)) %>%

ungroup ()

#### 2.2. Signal analysis: confusion matrix ####

data.base.confusion <- data.base %>%

# category signal

mutate(signal_TP_L2E = (sign_return == 1)

& (multiplier_longshort_L2E == 1),

signal_TN_L2E = (sign_return == 1)

& (multiplier_longshort_L2E == -1),

signal_FP_L2E = (sign_return == -1)

& (multiplier_longshort_L2E == 1),

signal_FN_L2E = (sign_return == -1)

& (multiplier_longshort_L2E == -1),

signal_TP_chi = (sign_return == 1)

& (multiplier_longshort_chi == 1),

signal_TN_chi = (sign_return == 1)

& (multiplier_longshort_chi == -1),

signal_FP_chi = (sign_return == -1)

& (multiplier_longshort_chi == 1),

signal_FN_chi = (sign_return == -1)

& (multiplier_longshort_chi == -1),

signal_TP_hard = (sign_return == 1)

& (multiplier_longshort_hard == 1),

signal_TN_hard = (sign_return == 1)

& (multiplier_longshort_hard == -1),

signal_FP_hard = (sign_return == -1)

& (multiplier_longshort_hard == 1),

signal_FN_hard = (sign_return == -1)

& (multiplier_longshort_hard == -1),

signal_TP_soft = (sign_return == 1)

& (multiplier_longshort_soft == 1),
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signal_TN_soft = (sign_return == 1)

& (multiplier_longshort_soft == -1),

signal_FP_soft = (sign_return == -1)

& (multiplier_longshort_soft == 1),

signal_FN_soft = (sign_return == -1)

& (multiplier_longshort_soft == -1),

signal_TP_byes = (sign_return == 1)

& (multiplier_longshort_byes == 1),

signal_TN_byes = (sign_return == 1)

& (multiplier_longshort_byes == -1),

signal_FP_byes = (sign_return == -1)

& (multiplier_longshort_byes == 1),

signal_FN_byes = (sign_return == -1)

& (multiplier_longshort_byes == -1))

df.backtest.confusion <- data.base.confusion %>%

group_by(year) %>%

summarise(TP_L2E = mean(signal_TP_L2E),

TN_L2E = mean(signal_TN_L2E),

FP_L2E = mean(signal_FP_L2E),

FN_L2E = mean(signal_FN_L2E),

TP_chi = mean(signal_TP_chi),

TN_chi = mean(signal_TN_chi),

FP_chi = mean(signal_FP_chi),

FN_chi = mean(signal_FN_chi),

TP_hard = mean(signal_TP_hard),

TN_hard = mean(signal_TN_hard),

FP_hard = mean(signal_FP_hard),

FN_hard = mean(signal_FN_hard),

TP_soft = mean(signal_TP_soft),

TN_soft = mean(signal_TN_soft),

FP_soft = mean(signal_FP_soft),

FN_soft = mean(signal_FN_soft),

TP_byes = mean(signal_TP_byes),
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TN_byes = mean(signal_TN_byes),

FP_byes = mean(signal_FP_byes),

FN_byes = mean(signal_FN_byes)) %>%

ungroup ()

#### 2.3. Signal analysis: precision ####

df.backtest.precision <- df.backtest.confusion %>%

transmute(year = year ,

precision_L2E = TP_L2E / (TP_L2E + FP_L2E),

precision_chi = TP_chi / (TP_chi + FP_chi),

precision_hard = TP_hard / (TP_hard + FP_hard),

precision_soft = TP_soft / (TP_soft + FP_soft),

precision_byes = TP_byes / (TP_byes + FP_byes),

recall_L2E = TP_L2E / (TP_L2E + FN_L2E),

recall_chi = TP_chi / (TP_chi + FN_chi),

recall_hard = TP_hard / (TP_hard + FN_hard),

recall_soft = TP_soft / (TP_soft + FN_soft),

recall_byes = TP_byes / (TP_byes + FN_byes))

#### 2.4. Return analysis: cumulative return ####

df.backtest.cumreturn <- data.base %>%

group_by(year) %>%

summarise(cumret_longshort_L2E = prod(1 + return_longshort_L2E),

cumret_longshort_chi = prod(1 + return_longshort_chi),

cumret_longshort_hard = prod(1 + return_longshort_hard),

cumret_longshort_soft = prod(1 + return_longshort_soft),

cumret_longshort_byes = prod(1 + return_longshort_byes),

cumret_longonly_L2E = prod(1 + return_longonly_L2E),

cumret_longonly_chi = prod(1 + return_longonly_chi),

cumret_longonly_hard = prod(1 + return_longonly_hard),

cumret_longonly_soft = prod(1 + return_longonly_soft),

cumret_longonly_byes = prod(1 + return_longonly_byes)) %>%

ungroup ()

#### 3. save ####
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save(df.backtest.accuracy ,

df.backtest.confusion ,

df.backtest.precision ,

df.backtest.cumreturn ,

file = paste0("Analysis_", chr_secrity_name , upd , ".Rdata"))

# end of this file

A.0.3 Figures

Figure A.1 : MLP architecture
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Figure A.2 : Simple RNN architecture. The circles represent input x, hidden,

h, and output nodes, y, respectively. The solid squares W h
i ,W

h
h ,W

0
h are the

matrices for input layer, hidden layer, and output layer weights respectively.

The polygon represents the nonlinear activation function and z−1 is the time

shift operator

Figure A.3 : SP 400 Long Only Cumulative Return
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Figure A.4 : Dow Jones Long Only Cumulative Return

Figure A.5 : Dow Jones Long/Short Cumulative Return
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Figure A.6 : SP 500 Long Only Cumulative Return

Figure A.7 : NASDAQ Long Only Cumulative Return
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Figure A.8 : NASDAQ Long/Short Cumulative Return

Figure A.9 : SP 500 Long/Short Cumulative Return
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Appendix B
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Figure B.1 : Microsoft ACF/PACF for volume

Figure B.2 : Microsoft acf (left), pacf (right), volume (top) and log vol-

ume(bottom) binned at the 1-minute intervals.
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Figure B.3 : Density plots for hourly log volume and for Apple (top) and

Microsoft (bottom).

Figure B.4 : Hurst exponent distribution for Microsoft(right) using samples

of size 10,000.
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Figure B.5 : Results from the SNARX (left) and from the S-NARX-HmM

(right) models’ prediction of Microsoft’s log intraday trading volume.

Figure B.6 : MAE15 results for Microsoft’s log (vol), n = 1

Figure B.7 : MAE15 results for Apple’s log (vol), n = 5
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