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ABSTRACT 

Positive Lyapunov exponent for ergodic Schrodinger operators 

by 

Helge Kriiger 

The discrete Schrodinger equation describes the behavior of a 1-dimensional 

quantum particle in a disordered medium. The Lyapunov exponent L(E) de­

scribes the exponential behavior of solutions at an energy E. Positivity of 

the Lyapunov exponent in a set of energies is an indication of absence of 

transport for the Schrodinger equation. 

In this thesis, I will discuss methods based on multiscale analysis to prove 

positive Lyapunov exponent for ergodic Schrodinger operators. As an appli­

cation, I prove positive Lyapunov exponent for operators whose potential 

is given by evaluating an analytic sampling function along the orbit of a 

skew-shift on a high dimensional torus. 

The first method is based only on ergodicity, but needs to eliminate a 

small set of energies. The second method uses recurrence properties of the 

skew-shift combined with analyticity to prove a result for all energies. 
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CHAPTER 1 

.Introduction 

The discrete one dimensional Schrodinger equation models the motion of 

a quantum particle in a disordered environment. Here the environment 

is described through a bounded function V : Z —• M called the potential 

The quantum particle is described through its wave function ip e £2(Z) and 

evolves according to 

(i.i) i^m = Hm, 

where H : £2(Z) —> £2(Z) is the Schrodinger operator 

(1.2) (Hu){n) = u(n + 1) + u(n - 1) + V(n)u(n). 
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The interpretation is as follows: if ip is normalized so that 

(1.3) IMIa = S>(n)|2 = l, 

then for A C Z the probability to find the particle in A is given by 

(1.4) X>W| 2 ' 

Since (1.1) is a differential equation on the infinite dimensional space £2(Z), 

understanding its dynamics might seem a hopeless endeavor. However, there 

is at least one situation where it is simple. Suppose I/J G £2(Z) is an eigen-

function of H for the eigenvalue E, that is Hijj = Eip. Then we can write 

down the time evolution as 

(1.5) ij;(t) = e~iEt^j. 

In this thesis, I will try to answer a question related to the existence of 

eigenfunctions for operators of the form (1.2) for the potential V given by 

(1.6) V(n) = g(anK), 

where g : T —* R is an analytic function, a an irrational number, and K > 2 

an integer. 
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1.1 Numerical evidence 

In this section, I will discuss numerical computations, which suggest an an­

swer to whether there should be eigenvalues of H for the potential defined 

in (1.6) or not. Of course the study of H : ^2(Z) —> £2(Z) is impossible 

numerically, since it is defined on an infinite dimensional space. However, it 

is possible to restrict the domain of definition to £2([1, N]) and consider the 

equation there. Denote by i/[i,jv] the restriction of H to £2([1, N]). We have 

that #[I,AT] is given by the matrix 

/ 

(1.7) H[hN] = 

V(l) 1 

1 V(2) 1 

1 V{3) 1 

\ 

V 

1 V(N-l) 1 

1 V(N)J 

Of course concluding statements from the restriction i?[i,jv] to H is non-

trivial. For example, i7[i,jv] always has exactly iV eigenvalues even when H 

may not have any (take V = 0). 

The main problem passing from #[i,./v] to H is that there could be non-

trivial interactions near the boundary points 1 and N. We will thus take for 

now the standpoint, that if the eigenfunctions of î fi.jv] do not vanish near 
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the boundary, then probably H will have no eigenvalues, and if they do, H 

will have eigenvalues. Of course this is only a heuristic statement, and in no 

way rigorous mathematics. 

|u( 
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Figure 1.1: Quasi-periodic 

I will now present the computations for N = 30 and the potential 

(1.8) V{n) = 2A cos(27rcmK) 

where A = 0.9, a = y/2 — 1, and K = 1 or K = 2. One of the resulting 

eigenfunctions is shown for K = 1 in Figure 1.1 and for K — 2 in Figure 1.2. 

I will explain how these numerical computations were done in Appendix A. 

In the quasi-periodic case, that is K — 1, one sees that the eigenfunction 

looks like uniformly distributed noise at the 30 values. This means, that one 

should expect that there are no eigenfunctions. In fact, in the case K = 1 

the potential defined in (1.8) corresponds to the Almost-Mathieu operator. 
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For this operator, it is known that the spectrum is absolutely continuous for 

0 < A < 1, which in particular implies the absence of eigenfunctions. This 

can for example be found in the work of Jitomirskaya [23] and references 

therein. 

Let me also remark here that in the regime of A > 0 large enough and 

K — 1, the operator H has an orthonormal basis of exponentially decaying 

eigenfunctions as was shown by Jitomirskaya [23] and Bourgain and Goldstein 

[10]. 

We will see shortly that the cases K > 2 are very different from the 

quasi-periodic one. For this reason, the quasi-periodic case will not concern 

us any further. 
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Figure 1.2: Skew-shift 

In the case of K = 2, the eigenfunction is shown in Figure 1.2. One sees 

that it looks like a localized bump in 14 < n < 25. By the previously given 

heuristics, one might expect that the operator H has eigenfunctions. One 



might even expect H to have an orthonormal basis of eigenfunctions. By 

taking a closer look at the numerics, one can even expect that the eigen­

functions decay exponentially away from their maximum. In fact trying to 

prove this was my main motivation for the work in this thesis. Let me finally 

remark here that for K > 3, the images of the eigenfunction will look as in 

the case K = 2. The same holds for any A > 0, as long as one chooses N 

large enough. Let me summarize this in 

Problem 1.1. Let K > 2, A > 0, and a irrational. Show that the Schrodinger 

operator with potential (1.8) has an orthonormal basis consisting of exponen­

tially decaying eigenfunctions. 

Let me furthermore point out that the existence of an orthonormal basis 

of eigenfunctions has an interesting consequence for the dynamics of (1.1). 

In fact, if this holds, then by the RAGE Theorem for any normalized initial 

condition ip(0) 6 £2(Z) and any e > 0, there exists an N > 1 such that for 

all t > 0 

N 

(1.9) Yl m,n)\2>l-e. 
n=-N 

This means that the solution stays localized on the sites between — N and 

N. 

Let me now discuss a second observation, which can be obtained through 

numerics, but won't concern us in the main body of this thesis. If one 

computes the spectrum of the operator H, one also sees a transition at K = 2. 
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For K = 1, one sees that o~(H) is a Cantor set and for K > 2 that cr(H) is 

an interval. Again the behavior in the quasi-periodic case K = 1 has been 

extensively studied, and cr(H) is known to be a Cantor set in a sequence of 

cases. The case K > 2 is completely open. So I record 

Problem 1.2. Show that the spectrum of H with potential defined by (1.8) 

is an interval for K > 2. 

1.2 Positive Lyapunov exponent and the ex­

istence of eigenfunctions 

I will now begin to introduce the setting of ergodic Schrodinger operators 

in which I will work. Let (fi, n) be a probability space and T : £1 —> Q 

an invertible ergodic transformation. Given a bounded measurable function 

/ : Q —> R called the sampling function, we introduce for u> G Q the potential 

(1.10) Vu,(n) = f(Tnu). 

We then define a family of Schrodinger operators {H^^eo. by 

Hu : f(Z) - • £2(Z) 
(1.11) 

i/wu(n) = u(n + 1) + u(n — 1) + K;(n)u(n). 
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Introduce the Lyapunov exponent 

(1.12) L{E)=hm 1 / l o g 

For quasi-periodic operators (K = 1 ) , that is Q = T = R / Z , Taui = ui + a 

(mod 1) (a irrational), and a real analytic sampling function, it is known 

that a uniformly positive Lyapunov exponent implies that the operator H 

has an orthonormal basis consisting of exponentially decaying eigenfunctions 

for almost every (a,u). Results of this form were proved by Jitomirskaya 

[23] for the Almost-Mathieu operator and by Bourgain and Goldstein [10] 

for general analytic sampling functions. 

Motivated by this, I will focus instead of Problem 1.1 on 

Prob lem 1.3. Let K > 2, A > 0, and a irrational. Show that the Lyapunov 

exponent L(E) associated with the potential (1.6) is uniformly positive in E. 

Let me now discuss how to study the potential defined in (1.6) in the 

ergodic setting. Let T = M/Z be the unit circle. For K > 1 and an irrational 

a, introduce the skew-shift 

Ta,K : TK 

(1.13) 

(Ta,K<±L)k 

dn{uj). 

f u>i + a, k = 1; 

u>k +Wfc_i, 2 < k < K. 
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One can then show, that 

(1-14) (TZ,K")K = ^nK + ..., 

where . . . stands for a degree K — 1 polynomial in n. For g : T —-> R 

continuous, define f(u/) = g(u>K)- One can check that the potential from 

(1.6) is equal to the ergodic potential 

(1-15) VJn) = f(ThatKu) 

for some LO_ € TK. It is furthermore known that the map TaI< is uniquely 

ergodic and minimal. 

1.3 Results 

I will now present three results towards the solution of Problem 1.3. These 

results will be proved in this thesis. Further results are stated in the next 

section. 

Using that V^_ defined in (1.15) depends on K parameters u\,... ,UIK, 

one can show that these potentials converge to independent identically dis­

tributed random variables as K —> oo. Combining this with a continuity 

result on the Lyapunov exponent of Avila and Damanik [1], one obtains the 

following result. 
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Theorem 1.4. Assume g : T —> K is non-constant and define the potential 

as in (1.15). There exists a constant 7 > 0 such that 

(1.16) \{E: LK{E)<1}\^0 

as K —> 00. 

The details of the proof can be found in Chapter 4. The main problem 

with this result is that it is not quantitative, so we cannot specify a large K 

such that 

(1-17) \{E: LK(E)<1}\<^ 

using these methods. The goal of the next two results is to present methods 

that answer this type of question under additional assumptions. 

In fact, we will work in the large coupling regime. Introduce for g : T —+ 

R, A > 0, K > 2, a irrational, and u_ e TK a family of potentials by 

(1.18) V(n) = Xg((TlKu)K). 

We will now denote the Lyapunov exponent by L\tK,a(E), to emphasize that 

it depends on all three quantities. The first result we will show is a variant 

of one of the results from my work [28] and the proof is based on Ta^K being 

an ergodic transformation. 
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Theorem 1.5. Let g be real analytic and a irrational. For e > 0, there 

exists Xo(K,e) > 0 such that 

(1-19) \{E: LXtK,a(E) < ^ l o g ( A ) } | < e 

for X > X0. 

The assumption on g being real analytic could be considerably weakened 

in this theorem. However, the proof of the last result of this thesis will use 

this in an essential way. We will furthermore need to require a Diophantine 

assumption on a. We will write a € DC(c) if 

1.20) dist(na, Z) > -^ 
n2 

for all integers n ^ 0. The result is 

Theorem 1.6. Let g be a trigonometric polynomial of degree d and a € 

DC(c). Then for X > A0(c, K, d), we have 

:i-21) Lx^a(E) > ^log(X) 

for all E. 

It is clear that this is the strongest statement of the three in terms of 

conclusions, since no energies need to be eliminated. However also the as­

sumptions are stronger and the proof is more complicated. In particular, it 
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takes up around half of this thesis. In the case K = 2, Theorem 1.6 is due 

to Bourgain, Goldstein, and Schlag [12]. 

The proofs of Theorem 1.5 and Theorem 1.6 split into two parts. First 

one can show that the eigenfunctions corresponding to finite sized boxes are 

localized. This is done in Chapter 5. 

Then knowing that the eigenfunctions, or more exactly, the matrix ele­

ments of the resolvent, decay exponentially for ifA, where A is a length iVo 

interval, one extends this to a sequence of larger and larger scales 

(1.22) iVo < Nx < N2 < iV3 « . . . . 

For this reason this process is known as multiscale analysis. The main prob­

lem with this approach is that to pass from information on #[I,JV.] to infor­

mation on H[itN.+1] one needs weak assumptions on i7[i,jv.+1]. 

In the proof of Theorem 1.5, this information is obtained through the 

process of energy elimination. For Theorem 1.6, one uses quantitative recur­

rence results combined with complex analysis methods to do this. For this 

reason, one needs more restrictive assumptions to prove Theorem 1.6. 

1.4 Further results 

In this section, I wish to discuss further results that can be proved about the 

potential (1.15). Both of them concern the region of small coupling. First, I 

12 



will state the following result, which can be shown by combining the methods 

of Bourgain from [3] with my results from [26] and [28]. 

Theorem 1.7. Given 5 > 0 and r > 0, there exists 7 > 0 such that for A 

small enough and some a, we have 

(1.23) \{E e [-2 + 6, -8} U[6,2-S\: Lx^a(E) < 7A 2}| < r. 

It should be noted here that this is the only result available in the case 

K = 2 for small coupling. Second, I will state the other main result from 

[28]. 

Theorem 1.8. Let f be an analytic function. Given A > 0 small enough 

and e > 0, there exists 7 > 0 and K0 > 1 such that for K > K0, we have for 

any irrational a 

(1-24) \{E : LKKia(E) < 7 } | < e. 

The proof of this theorem is similar to the one of Theorem 1.5, except 

that the initial condition is proved differently. See Sections 11 and 12 in [28]. 

1.5 Further questions 

In this section, I wish to mention some related problems to the ones discussed 

previously. 
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Problem 1.9. Assume the conclusion of Problem 1.3. Show the conclusion 

of Problem 1.1. 

It will be necessary to place further restrictions on the sampling function 

/ and on a. This problem is partly solved in the case K — 2 by Bourgain, 

Goldstein, and Schlag [12] and Bourgain [5]. That further assumptions are 

needed follows for example from the work of Boshernitzan and Damanik 

[13]. There are obvious extensions of this problem. For example it would be 

interesting to prove dynamical localization for these models. 

Another question one could ask is, why only consider potentials of the 

form (1.6), and not consider more general potentials 

(1.25) V(n)=g(an"), 

where p > 0 and g : T —> R is continuous? So, we have now replaced the 

integer power if by a real number p. It now follows from my work [27], 

that the study of the Lyapunov exponent reduces to studying the Lyapunov 

exponent for the family of potentials 

(1.26) Vp{n) = g{/3nr), 

where r = [p\ and ft G [0,1]. Hence, it is sufficient to study the Lyapunov 

exponent for the potential defined in (1.6). However, let me take the oppor­

tunity to state the main open problem for the potentials of the form (1.25). 

14 



Problem 1.10. Assume we know that the Lyapunov exponent for the poten­

tial (1.25) is uniformly positive on the spectrum. Can one conclude that H 

has an orthonormal basis of exponentially decaying eigenfunctions? 

In order to tackle this problem, one should probably insert a parameter 9 

into the definition (1.25). Both V(n) = g(anp + 6) and V{n) = g{a(n + 6)p) 

seem natural choices. 

Last I wish to point out the the analogue of Problem 1.2 in the case p 

not an integer was solved in [25]. 
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CHAPTER 2 

Background from Ergodic Theory 

The goal of this chapter is to review some basic results from ergodic theory. 

We will have three main goals: Introduce the notion of ergodicity, discuss 

some properties of the skew-shift, discuss the ergodic theorems and their 

consequences. As an introduction to these matters, I can recommend the 

books by Brin and Stuck [14] and Walters [37]. 

It should be noted that although the ergodic theorems tell us that averages 

converge, they do not tell us how quickly. Obtaining quantitative results is 

a harder problem and will be presented for the skew-shift in Chapter 10 and 

11. 
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2.1 Definitions 

In this section, (Q, JJ) will be a probability space. Associated with it comes 

a cr-algebra, and we will always assume that all functions are measurable 

with respect to it. We furthermore, recall that we have for A C Q that 

n(A) £ [0,1], since (J,(£l) = 1. We will be interested in properties of invertible 

maps T : Q, —> £1. Our first definition is 

Definition 2.1. An invertible map T : Q —-> fi is called measure preserving 

if li(TA) — \i{A) holds for every set ACQ. 

For simplicity, I restrict myself to the case, where T : tt —»• Q is invertible. 

This restriction is not really needed and not common in the literature. We 

now continue with the definition of ergodicity. 

Definition 2.2. A measure preserving transformation T : O —• f2 is called 

ergodic if for any B Q fl, 

(2.1) TB = B 

implies /JL(B) G {0,1}. 

We remark that this is equivalent to the condition that if / : Q —• C 

is measurable, then f o T = f implies that / is almost surely constant. 

Ergodicity will be an important concept in the following, since it will allow 

us to ensure that various uniform distribution properties hold. 

17 



Let us now turn to more topological notions, namely: unique ergodicity 

and minimality. Let us begin by changing the setting. We will now assume 

that Q is a compact metric space, and that T : Q —> Q is a homeomorphism. 

Definition 2.3. T : fl —> Q, is called minimal if, for every to £ fi, its orbit 

(2.2) OT(U) = {Tnuj : neZ} 

is dense in Q. 

This is important, since it implies that various things will be independent 

of u). Let us now turn to unique ergodicity. 

Definition 2.4. T : Cl —>• Cl is called uniquely ergodic if, for every continuous 

function f : Q —> M; the limit 

(2-3) lim 1 ^ /(T»W) 
n=0 

exists uniformly in UJ £ Q. 

One can show that uniquely ergodic transformations are ergodic, and that 

the above average converges to J fdfj, for a unique probability measure ji. 

2.2 T h e Skew-Shift 

We will now discuss the main example in this thesis of an ergodic trans­

formation: the skew-shift. Let K > 2 and Q = TK, where T = R/Z is 
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the circle. As usual, we equip T with the topology induced by the distance 

d(x, y) = dist((x — y), Z). It easily follows that the product Q = T ^ will be 

a compact metric space. For a € K, we introduce the map 

Ta,K • TK ->• TK 

(2-4) L i + a, fc = l; 

Ljt+wjfc-i, 2<k<K. 

One can show that T is a homeomorphism and preserves the Lebesgue mea­

sure on Q. We even have 

Theorem 2.5. Let a G R be irrational. The map Ta^x is uniquely ergodic 

and minimal. 

Let us now make the connection between the skew-shift and degree K 

polynomials, which we already mentioned in the introduction. Consider a 

degree K polynomial 

K 

(2.5) P(n) = J ] a f c n f c , aK ± 0. 
fc=0 

Introduce a sequence of polynomials for 1 < j < K by 

(2.6) PK{n) = P(n), P0{n) = Pj+1(n + 1) - PJ+1(n). 

We observe 
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Lemma 2.6. For 1 < j < K, Pj is a degree j polynomial. 

Proof. The claim is clear for j = K. Let us now show the claim for j 

assuming j + 1. Then we have that Pj+i(n) = Yjk=o@knk f° r some fa- We 

may compute 

3 + 1 

PJ+1(n + 1) - Pj+1(n) = ^{Pkin + if - pkn
k) 

fc=0 

1+1 ^ 'k\„i „* = Yl(5k X J - >n'-n" 
fe=o \;=o 

This implies the claim. D 

Continuing the computation from the proof, one finds 

Pj+1(n + 1) - P3+l{n) = j ^ (J2 (t + l)&+) nl 

for Pj+i(n) = Y^iXo0^• Using the procedure in the other way, we obtain 

that the skew-shift coordinates are given by degree k + 1 polynomials. We 

furthermore remark that the above lemma is known as Weyl differencing. 

We summarize this in 

Lemma 2.7. Given a polynomial P as in (2.5), we have for uk = -Pfc(O) and 

a = px(i) - Px(0) that 

(2-7) (T?K u)k = Pk(n). 
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Through this computation one can show that a = K\OLK. Introduce 

xn(u) = (T2oi)K for 0 < n < K - 1. We then have 

Lemma 2.8. The map 

(2.8) K-\ s- rf T^y^KM^eT 

is mvertible and preserves the Lebesgue measure. 

Proof. One can show that 

( x0(u) ^ 

\XK-I(V)) 

= A 

' ^ 

\UKJ 

where A is a triangular matrix with 1 on the diagonal. This implies the claim 

by the change of variable formula. • 

We will use this to show that the skew-shift converges to independent 

identically distributed random variables as K gets large. We will make this 

precise in Chapter 4. 

2.3 The ergodic theorems 

In this section, we state the ergodic theorems. Their statement can be given 

informally in words as: Time averages are equal to space averages. We begin 
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with the mean ergodic theorem, which talks about convergence in the L2 

norm, and then proceed to the Birkhoff ergodic theorem, which talks about 

pointwise convergence. 

Theorem 2.9. Let f be a function in L2(Q,/i) and T : Vt —> Q, an ergodic 

transformation. The averages 

(2-9) ± Y, /(r^) 
n=0 

converge to Jn f (uj)d/j,(uj) in L2(Q,fi). 

The Birkhoff ergodic theorem tells us 

Theorem 2.10. Let f e L1(J7,//) andT : fi —> Vt an ergodic transformation. 

For almost every ui, we have 

1 " - 1 r 
(2.10) Urn - J2 f(Tn") = / /(w)^M-

Despite their similar nature, the Birkhoff ergodic theorem is somewhat 

deeper than the mean one. We will now use the mean ergodic theorem to 

answer the following question: Given a good set Qg C Q, and an integer 

K > 1, can we choose a large set of ui such that we have 

TIKLJ € Clg 

for a set of I with density close to /i(f2s)? The following lemma does exactly 
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this. 

Lemma 2.11. Let fig C f2, 0 < K < 1, K > 1. TTien t/iere exzsfo fi0 Q ^ 

swc/i £/m£ /or n; £ $10, i/iere is a sequence Lt = Lt(u>) —> oo SMC/I £/ia£ 

(2.11) 
1 

#{0 < Z < Lt - 1 : r K a ; e flg} > K/i(ng) 

and /i(fio) > 0. 

Proof. Letting / = xn0
 m t n e mean ergodic theorem, we find that 

lim — #{0 < n < N - 1 : Tnueng}- fi(Qg) dn{w) = 0. 

Thus, we obtain 

lim (JL({U : T7#{0 < n < iV - 1 : Tnu; G ftj < ^(Q„)}) = 0. 

We thus may find a set f̂  of positive measure, such that for each u G f l i , 

there is a sequence Nt = Nt(u>) going to oo such that 

1 
7Ji 

#{0 < n < Nt - 1 : Tnuj e Qg} > «/x(ns)-

For each w 6 H^ we may find an 0 < s = s(u) < K — 1 such that Nt 

(mod K) = s for infinitely many t. Introduce 

fi0 = { T - S ^ C J : a; E fii}, 
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and choose for u £ f t 0 the sequence Lt = j£, for the Nt with Nt (mod K) — 

s. The claim now follows by construction. • 
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CHAPTER 3 

The Lyapunov Exponent 

The goal of this chapter is to introduce the Lyapunov exponent for ergodic 

Schrodinger operators. As usual, we let (f2,/i) be a probability space, T : 

Q —> Vt an invertible ergodic transformation, and / : Vt —» R a bounded and 

measurable function. For u G Q, we define the potential 

(3.1) Vu{n) = f{Tnu). 

We consider the Schrodinger operator 

HL0:f(Z)^f(Z) 
(3.2) 

Huju(n) = u(n + 1) + u(n — 1) + K;(n)u(n). 
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Here and in the following £2(Z) denotes the Hilbert space of square summable 

sequences u : Z —> C with scalar product 

(3-3) (u,v) = j>u(n)v(n) 

nez 

for u, v G ^2(Z). Let me finally remark that H^ is a bounded and self-adjoint 

operator. In particular, its spectrum c{Hu) is a compact subset of the real 

line. 

Background on the topics of this chapter can be found in the review 

articles by Damanik [17], Jitomirskaya [24], and in Chapter 5 of Teschl's 

book [36]. 

3.1 Definition and basic properties 

Introduce the transfer matrices AU1(E, N) of Hw by 

TV 

(3.4) AUJ(E,N) = H 
n=l 

\ 

E-VUN-n) - 1 

1 0 

If u : Z —• C solves H^u = Eu interpreted as a difference equation, then we 

have that 

(3.5) 
u(N + l) 

= AU(E,N) 
( m\ 

u(l) 
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The Lyapunov exponent L(E) describes the exponential growth of norms of 

Au{E,N). Let ||.|| be a matrix norm that is submultiplicative \\A • B\\ < 

\\A\\ • | | 5 | | . A convenient example is given by the Hilbert-Schmidt norm 

2 

= \a\2 + \b\2 + \c\2 + \d\2. 

Our first lemma is 

Lemma 3.1. For every E, we can define the Lyapunov exponent L{E) by 

(3.7) L(E) = lim -J- / log | | 4 , (£ , N)\\d(ji(u) 

= mj^ flogWAUE^N^d^). 

Proof. Fix E and introduce the sequence 

aN= /"log|K(£,A0II^M-

Since T is measure preserving, one easily shows that a^+M < a^ + aM- The 

claim now follows, since a^ is a subadditive sequence. • 

By the subadditive ergodic theorem, we furthermore obtain 

Lemma 3.2. Let E £ R. There exists a set Vt\ = Q.\{E) C Q such that 

(3.6) 
a o 
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(j,(£li) = 1 and for u G fii 

(3.8) L(E)=Um ^ l o g {{A^E, N)\\. 
N—>oo VV 

Last, I add 

Lemma 3.3. The definition (3.7) is independent of the matrix norm. 

Proof. If ||.||i is another norm on the 2 x 2 matrices, there exists a C\ > 1 

such that 

l-WAh < \\A\\ < dWAh 

for all matrices A, since they form a finite dimensional vector space. Taking 

logarithms and dividing by N, we thus obtain 

^log\\AUE,N)\\ = ^log\\Au}(E:N)\\1 + o(l), 

and independence of the norm follows. • 

3.2 Subharmonic functions and consequences 

In this section, we recall basic properties of subharmonic functions and show 

that the Lyapunov exponent is subharmonic. More information on subhar­

monic functions can be found in Chapter 7 of Levin's book [30]. 

Let G C C be an open set and u : G —>• M. U {—oo} be a function, u is 
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called upper semi-continuous if, for every z^ € G, we have that 

(3.9) lim sup 11(2) < U^ZQQ). 
2~*2oo 

A function u is submean if, for 2; G G and sufficiently small r > 0, we have 

1 /"27r 

(3.10) u{z)<— u(z + reld)dtf. 
2TT JO 

it is called subharmonic if it is both upper semicontinuous and submean. 

u : G —> RU {00} is superharmonic, if — it is subharmonic. A function that is 

both sub- and superharmonic is called harmonic. If / : G —> C is an analytic 

function, then | / | is a harmonic function. If u : G —> E is a harmonic function 

which is bounded away from 0, then log |it| is a harmonic function. 

Lemma 3.4. Let un be a sequence of subharmonic functions, then 

(3.11) u{z) = inf un(z) 
7 1 > 1 

is a subharmonic function. 

We begin by observing 

Lemma 3.5. The function 

(3.12) E^ 1 Aog||A.(£,iV)llHS^M 

is harmonic. 
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Proof. This follows from the entries of AU}(E, N) being analytic functions in 

E, and thus HA^i?, AT)||Hs being a harmonic function. The logarithm takes 

this harmonic function to a harmonic function, since HA^-S, 7V)||Hs — •*-• 

Integration and dividing by TV preserves harmonicity. • 

We next note the following lemma due to Craig and Simon [16]. 

Lemma 3.6. The function L(E) is subharmonic in E. 

Proof. This follows from the infimum of subharmonic functions being a sub-

harmonic function. • 

3.3 Individual Lyapunov exponents 

Introduce for every u> e 0 and E € K. the upper Lyapunov exponent 

(3.13) I(£?,o;) = lim sup —log 11^(^,-^)11 • 

It should be noted that L is no longer necessarily subharmonic. We have al­

ready seen that the limit exists for fixed E and almost every to in Lemma 3.2. 

The following lemma makes a statement for all energies E. 

Lemma 3.7. There exists a set fics Q &> satisfying //(f2cs) = 1 o,nd for 

OJ G f^cs, we have, for every £ e R , 

(3.14) Z(E,u)<L(E). 
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Proof. See Craig and Simon [16]. • 

3.4 The connection to solutions 

In this section, I wish to make the connection between the Lyapunov ex­

ponent and solutions of H^u = Eu and the Green's function. Denote by 

cu(E,n) and su(E,n) the solutions of Huu = Eu satisfying the initial con­

ditions 

(3.15) CiJ(E, 1) = 1 = Su(E, 0), Cu}(E, 0) = 0 = su(E, 1). 

We call Cu the cosine type solution and s^ the sine type solution. An impor­

tant role will be played by the observation 

(3.16) A,(E,n) 
Cu{E,n) s^E.n) 

^ ( . E , n - 1 ) Su{E,n-l) 

which allows us to pass from information on the transfer matrices to infor­

mation on the solutions. 

For a subinterval A C Z, we denote by HUt\ the restriction of Hw to £2(A). 

Through a computation, one can show that 

(3.17) CuiE, n) = det(£ - i^ i .n- i ] ) , su(E, n) = det(£ - /L,[2,„-i]). 

31 



For x,y e A and E e ffi, we introduce the Green's function as 

(3.18) GUtA(E,x,y) = (ex,(HwA-E) ey). 

Here {ex}xez is the standard basis of £2(Z) given by 

(3.19) 

We have 

ex(n) 
1, x = n; 

0, otherwise. 

Lemma 3.8. For a < x < y < b, we have 

(3.20) GUi[aM{E,x,y) = 
det(Hu>[a,x-i] - E) detiHufy+ifi] - E) 

det(f/w,[a,6] - E) 

Proof. This follows from Cramer's rule. • 
Combining this with the previous discussion, we see how to pass from 

information on the transfer matrices to information on the Green's function 

and back. We begin with 

Lemma 3.9. Let 2 < k0 < N and 7 > 0. Assume for A e {[0,7V], [l,N]} 

and k e {k0 — 1, ko} that 

(3.21) \GA(E,k,N)\<e-^N 
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then 

(3.22) >g|W£,iV)||>7-M, 

Proof. We can use the previous discussion to conclude 

\G[0iN](E,x,N)\ = 
c(E,x) 

c(E,N + l) 
\G{1,N](E,x,N)\ = 

s(E,x) 

s(E,N+l) 

By det(A(E, ko)) = 1, we conclude 

min(|c(£, fc0)l. \<E, k0 - 1)|, \s(E, fc0)|, \s(E, k0 - 1)|) > -j=. 

The claim follows through some computations. • 
The following lemma provides a converse to the previous one. For this 

think of KX « e^N and of K2 W e
7max<n" ,v-n). 

Lemma 3.10. Assume that 

(3.23) | | 4 , (£ ,A0 | | > « i , max(| |A,(^,n)| | , | |ATn ( i ;(£;,7V-n)| |)<K2 . 

TTien t/iere exists 

(3.24) AG{[0,7V],[ l , iV],[0, iV-l] , [ l , iV-l]} 

33 



such that for A = [a, b] 

(3.25) sup |GU i A(£,n,x)| < —. 
xg{a,6} K l 

Proof. This is a consequence of Lemma 3.8 and a quick computation, using 

a similar lower bound as used in the last lemma. • 

3.5 The integrated density of states 

In this section, we will introduce another quantity associated with an ergodic 

family of Schrodinger operators Hu : £2(Z) —» £2(Z). We denote by HU,[I,N] 

the restriction of Hu to £2([1, N]). We will write 

(3.26) tviP^E^H^N]) 

for the number of eigenvalues of i/o>,[i,N] which are less or equal to E. The 

integrated density of states is defined as the limit 

(3.27) M{E) = lim -^ / tv(P{_^E](H^[ltN])dfi(u). 

It is known that the limit exists. The relation between the integrated density 

of states and the Lyapunov exponent is given by Thouless formula, which tells 

34 



us 

(3.28) L(E) = f log \t - E\dM[t). 

This formula implies that the integrated density of states is log Holder con­

tinuous 

(3.29) W(E + e) - Af(E)\ <-° 
l°g(r) 

for some constant C > 0 and 0 < e < | . 
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CHAPTER 4 

A continuity result and its consequences 

The goal of this section will be to prove Theorem 1.4 from the introduction. 

The proof will have three essential ingredients: Furstenberg's proof that the 

Lyapunov exponent is positive for random potential, see [21]; the L1 conti­

nuity of the Lyapunov exponent shown by Avila and Damanik [1]; the view 

point of identifying ergodic Schrodinger operators as measures on the space 

of potentials and using weak * convergence as done in [27]. 

4.1 Measures on the space of potentials 

Choose a constant C\ > 0 such that ||/||oo < C\. Let V = [-Ci,Ci] z 

equipped with the topology of pointwise convergence. Then V is a compact 
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metric space. The map 

(4.1) V : f i 9 W H { 7 u ( n ) } B E Z 6 V 

is measurable. We may thus introduce a measure (5 on V by 

(4.2) 0(A) = »({UJ : Vw E A}) 

for all Borel sets A C V. One can show that the measure (5 will be ergodic 

with respect to the shift SV(n) — V(n + 1) on V. 

We have gained two things here: first, that (5 is now a Borel measure on 

a compact metric space, and second, a natural notion of convergence: weak 

* convergence. We recall that j3n —» (5 in the weak * topology, if for every 

continuous function / : V —* C we have 

(4.3) J fd(5n -> J fdp. 

We may define a Lyapunov exponent 

(4.4) lp(E) = lim -j= / log \\AV(E, N)\\d0(V), 
N^oo iV Jv 

which agrees with L(E) if (3 was constructed as above. We denote by M. the 

set of all ergodic measures on V. 

We will be interested in two particular measures. First the measures (5K 
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introduced as the pushforward of the Lebesgue measure on 0 = T^ under 

the map u_ i—> V^, where the potential is given as in (1.15). Second, define a 

measure v on [—C\, C\] by 

(4.5) D{A) = \{xeY: g(x) G A}\. 

We then define a measure v — v®z. This measure corresponds to independent 

identically distributed random variables. 

We will now show that (5K —> v as K —• oo. We follow the strategy used 

to prove Proposition 4.1 in [27]. For this, we first need the following lemma. 

Lemma 4.1. For VK, V probability measures on V', we have 

(4.6) VK-+V 

in the weak * topology if and only if 

(4.7) ^ / fdvK = J fdv 

for every continuous f : V —• R, which only depends on finitely many ele­

ments ofV. 

Proof. One direction is obvious, for the other use that V is compact and thus 

any continuous function g : V —* R is uniformly continuous. • 

We now come to 
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Proposition 4.2. We have that 

(4.8) lim pK = v. 
K-*oa 

Proof. By the previous lemma, it suffices to check that 

Irn^ J fdpK = J fdu 

for functions / which only depend on V(l), • . . , V(N) where N > 1. However, 

by Lemma 2.8 we even obtain that 

/ / % = / }dv 

as long as K > N. This finishes the proof. • 

Furthermore from Furstenberg's result from [21], we understand the Lya-

punov exponent 7„. 

Proposition 4.3. There exists 70 > 0 such that for every £ G l 

(4.9) lv{E) > 70. 

In the next section, we will explain how to exploit continuity of the map 

P l—*• 1(3 to obtain positivity for (5K-
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4.2 The Avila—Damanik continuity result 

The result of Avila and Damanik [1] says in our notation 

Proposition 4.4. The map 

M^L\-Cl-3,Cl + 3) 
(4.10) 

is continuous. 

We note that 

(4.11) aeea(A + V)C(-C1-3,C1 + 3) 

for every V 6 V and that also the Lyapunov exponent is strictly positive 

outside this set. As a consequence, we obtain 

Proof of Theorem 1.4. Let 70 be as in Proposition 4.3. Choose 7 = ^70. The 

result now follows from the previous proposition and that (5K —> V. • 

Let us now discuss the proof of Proposition 4.4. We first note that the 

quantity 

(4.12) ±Jlog\\Av{E,N)\\dP(y) 

depends continuously on j3 and is still harmonic in E. This can be seen in 
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the same way as Lemma 3.5. The argument giving subharmonicity of the 

Lyapunov exponent L(E) in E now gives 

Lemma 4.5. The map (5 H-> 'yp(E) is upper semi-continuous for every S G R . 

Furthermore, extending the map to the upper half plane C+ = {z : Im(z) > 

0}, we have that (5 \—> 7/3(2) is continuous for z € C+ . 

Let now (3n —•» f3 in the weak * topology. The last lemma then tells us 

that 

limsupmax(0, jpn(E) - ip{E)) = 0 
n—>oo 

for every E € R. As a direct consequence, we obtain for a bounded interval 

[-C, C] that 

(4.13) lim sup ! max(0,7^n(^) - ip{E))dE = 0. 
n—>oo 7—C 

Here, we used dominated convergence and that the Lyapunov exponent is 

uniformly bounded on such an interval. 

It now remains to prove the opposite bound. For this, we conclude from 

the fact that 7 is harmonic in E and that •j/3n(z) —> jpiz) for Im(z) > 0 that 

lim / lf3n(E)dE= f lp(E)dE. 
n^ooj_c J_c 

This finishes the proof of Proposition 4.4. For details see [1]. 
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CHAPTER 5 

Large coupling 

In this section, we will discuss how to obtain an initial condition at large 

coupling. The approach is robust and will yield a result, which is good 

enough to be used with both versions of the multiscale analysis we develop. 

The proof essentially splits into two parts. First one shows that if one is 

outside of the specturm, then the assumptions hold. This is accomplished 

by the Combes-Thomas estimate. Second one shows that at large coupling 

the restrictions to a finite interval have no spectrum near any fixed energy 

with high probability. 

5.1 The Combes-Thomas estimate 

We first recall the Combes-Thomas estimate (see [15]) 
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Proposition 5.1. Let A C Z, 1̂  : A -> R 6e a bounded sequence, and 

H : £2(A) —>• £2(A) be defined by its action on u G £2(A) by 

(5.1) Hu(n) = u(n + 1) + u(n - 1) + V(n)u(n) 

forn £ A (where we setu(n) = 0 forn ^ Aj. Assume thatdist(a(H), E) > 5. 

Let 

(5.2) 7 = Ii0g(l + £), A-=Ilog(^). 

TTien for k, I € A, |fc — 2| > K, the estimate 

(5.3) | G ( £ ; , f c , / ) | < ^ l f c - ' l 

Our proof follows the treatment of Teschl (see Lemma 2.5 in [36]). Intro­

duce the operator Pp : £2(A) —• £2(A) by 

(5.4) (P^)(n) = e^nw(n). 

Define Qp = P^lHPp — H. One computes 

(5.5) {Qpu)(n) = {e0 - l)u(n + 1) + {e^ - l)u(n - 1). 
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We furthermore note that Pp = Pp and \\Qp\\ < 2(e'/3' — 1). We now come to 

a preliminary lemma. 

Lemma 5.2. Let (3 > 0. Assume dist(a(#), E) > 2(e^ - 1). Then for I > k 

we have that 

(6.6) |G(^. fc. 01 < e-^-"» d . s t ( g ; g ( g ) )
1 _ 2 (e |3 | _ t ) • 

Proof. We have 

G(E, k, I) = (ek, (H - Ey'et) = e~W-k\ek, P.p(H - E^Ppd), 

where we used ek — e~k/3Ppek in the last equality. A quick computation 

furthermore shows 

P-p(H - E)~lPp = (H-E + Qp)-1. 

Prom the resolvent equation, one obtains 

(H-E + Qp)-1 = {H- E)'1 . ( ! - ( # - E)-lQp)~l. 

By assumption, we have \\(H — E)~1Qp\\ < 1. Thus, the right hand side is 

well defined, and (5.6) follows from a computation. • 

We are now ready for 
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Proof of Proposition 5.1. Choose (3 = log(l + | ) = 27 in (5.6). The claim 

now follows through some computations. • 

5.2 The Lojasiewicz inequality 

The goal of this section is to show that analytic functions on the torus T = 

R/Z satisfy the following nondegeneracy condition. This result is due to 

Lojasiewicz [29]; see also Malgrange [31]. 

Definition 5.3. Let (Q, /i) be a probability space, and f : Q —• R a measur­

able function. We call f non-degenerate if there are F,a>0 such that for 

every E € R and e > 0, we have that 

(5.7) »({»: \f{u)-E\<e})<Fea. 

We begin with the following lemma: 

Lemma 5.4. Let f : T —> R be real analytic. Then there are F > 0 and 

a > 0 such that 

(5.8) \{ueT: \f(io)\<e}\<Fea. 

Proof. Let X\,..., xN be the finitely many zeros of / in [0,1] counted with 

multiplicity. Define 



g will again be analytic and have no zeros in [0,1]. Thus C = minxG[o,i] \g(x) | > 

0. Now 

\f(x)\>C[ min \x — Xj 
N 

which implies the claim with F = 2NC l^N and ct = jj. D 

This is a version of our theorem for a single E. An adaptation of the 

argument using that the maximal number of zeros of u> i—> f(u) — E will be 

bounded, and these depend continuously on E, shows that analytic functions 

are non-degenerate. We conclude 

Theorem 5.5. Let f : T —> R be real analytic. Then f is non-degenerate 

with respect to the Lebesgue measure. 

5.3 The initial condition 

In order to state our result, we need to introduce a bit of notation. 

Definition 5.6. An interval A C Z is called (^,8)-good if 

(5.9) \GA(E,x,y)\<^e-^-y\ 

for E G £ and x, y e A with \x — y\ > ^ . Otherwise, A is called (7, S)-bad. 

We note that this definition is stronger than anything we will require 

later. We have 
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Proposition 5.7. Assume that f is non-degenerate in the sense of Defini­

tion 5.3. Let EQ € K, a > 0, and introduce 

(5.10) 

(5.11) 

(5.12) 

K = 
a\a'2 

7 = - log(A) 

8 = [E0-1,E0 + 1}. 

Assume that A is sufficiently large. Then there exists a set Hi C O such that 

the following properties hold. 

(i) M^i) > l-o-. 

(ii) For u G- Q\ 

(5.13) [0, K — 1] is (7, £) — good for H^. 

(Hi) For wGfi i and E G 8, we have 

(5.14) i i (^ , [o ,* - i ] -£m<^-

We start by observing the following lemma. 

Lemma 5.8. Let f be a non-degenerate function, K > 1, B > 0. Then for 
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E ER, the set 

(5.15) AK,B{E) = {UJ E £1 : \f(Tkuj)-E\>B,k = 0,...,K-l} 

has measure 

(5.16) ti{AKtB(E))>l-BaFK. 

Proof. By (5.7), the set 

AB(E) = {ueQ: \f(u) -E\< B} 

has measure fi(AB(E)) < BaF. Since T is measure preserving, the set 

A = ft\( \jT-kAB(E)) 
\k=o J 

satisfies fi(A) > 1 - BaFK. The claim follows by noting A C AKtB{E). • 

This implies 

Lemma 5.9. Let (f2,//, T , / ) be as above. Let E0 E M and <r > 0. Introduce 

(5.17) K ( A ) = ^ _ . 

TTien i/ierie is a set A of measure /J,(A) > 1 — a such that for u E A, we have 
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that 

(5.18) |A/(T*u;)-£o|> VX, 

fork = 0,...,K(X)- 1. 

Proof. Letting B = -4= in the previous lemma, we obtain that the set 

AK,B(JEO)
 h a s measure fi(AKtB(E)) > l - ^ > - We have fi(AKiB(E)) > \-a 

by (5.17). D 

We reformulate this again as 

Lemma 5.10. Let K be as in the previous lemma and A > 0 large enough. 

There exists a subset Qi C fl of measure /x(f2i) > 1 — cr such that for E € 

£ = [E0 — 1,E0 + 1], we have for w e O i 

(5.19) dist(£,a(ifWi[0,A:-i])) > ^A/X. 

Proof Since | £ - £ 0 | < 1, H = A + Vu with || A|| < 2, we obtain 

dist(S,<7(//a,i[o,K-i])) > dist(E0,a(HUt[oiK-i])) - 1 

> dist(£, {\f(Tku)}%S0
l) - 3 > V\ - 3 

for w g A The claim follows by also assuming A > 36. • 

We are now ready for 

49 



Proof of Proposition 5.7. Let Vt\ be as in the last lemma. The claim now fol­

lows by the Combes-Thomas estimate (Proposition 5.1) and that ||(i/tl;)[o,J<'-i] — 

£)-i=dist(£,a(i^,!0,K-i]))-1. • 
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CHAPTER 6 

A multiscale analysis based on ergodicity 

The goal of this chapter is to discuss parts of the results from [28], which 

provide methods to prove positive Lyapunov exponent only based on ergodic 

properties of the underlying transformation. The main problem here is that 

ergodicity does not provide quantitative recurrence properties. 

Furthermore, for general ergodic operators, there is no available mecha­

nism to prove a priori resolvent estimates e.g., Wegner estimates. So, we will 

have to work without them, and replace them by energy elimination. The 

results of this chapter are of similar flavor as results of Bourgain [3], [4]. 
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6.1 Abstract results that imply positive Lya-

punov exponent 

In this section, we will state a result that is independent of the ergodic setting. 

Let ex be the standard basis of ^2(Z), and denote the Green's function for 

E e l and x,y £ A an interval in Z by 

(6.1) GA(E, x, y) = {ex, (HA - E)-ley). 

We will quantify the decay of the Green's function using the following notion. 

Definition 6.1. For a € Z and K > I, [a — K,a + K] is called (^,S)-good if 

(6.2) \G[a-K,a+K](E,a,a±K)\ < ^ K 

for E € £. Otherwise, [a — K, a + K] is called (7, £)-bad. 

We are now ready to state our first result. 

Theorem 6.2. Given 0 < a < J, K > 1, 7 > 0, L > 1, and £ C R an 

interval, assume that 

(6.3) #{1 < I < L : [{I - \)K + 1, (I + \)K - 1] is (7, K, £) - bad} < aL, 
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and the following inequalities 

(6.4) 

(6.5) 

7 • K > max - , - l n (\S\~l) 
\a a 

K3 
e ^ K > 

217e3 

- a4 

Then, there is £Q C £ swc/i i/iat 

(6.6) |£o| > ( l - e - £ < ^ )l£l 

anrf /or E £ £Q, we have that 

(6.7) 
LK 

log 
L.JC 

n 
n = l 

'E-V(LK-n) - 1 * 

V 1 0 
/ 

s<r„-<k. > e" O C T e"997 -
V2_ 
LK' 

The construction of the set £0 as the spectrum of restrictions of #[I,JV] 

implies that generally £Q will approach a dense set in o~(H) as JV —> oo. The 

proof of this theorem will be given in Sections 6.3 to 6.5. 

6.2 Results for ergodic Schrodinger operators 

We will now pass to the ergodic setting. It follows from the ergodic theorem 

that (6.3) is roughly equivalent to 

(6.8) H({u : [1,2K-1] is (7,£) - bad for Hu}) < a. 
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In particular, this condition is now independent of N. Thus, one can hope 

to obtain the conclusion of the previous theorem for all sufficiently large TV. 

In order to exploit this, we recall that we introduced the Lyapunov exponent 

L{E) in (3.7) by 

(6.9) L{E) = lim 
N->oo N 

log 
" [E-V^N-n) - 1 

n = l 0 
) 

dfi(u). 

We will show 

Theorem 6.3. Given 0 < a < \, K > I, 7 > 0; L > 1, and 8 C an 

interval, assume the inequalities (6.4), (6.5), and the initial condition (6.8). 

Then there is £0 C £ such that 

(6.10) |£o| > (1 - e" ra^K )\e\ 

and for E e £Q, we have that 

(6.11) L(E) > e-8(Te-^7. 

This theorem is in some sense a corollary of Theorem 6.2, since it follows 

by combining it with results from ergodic theory. The proof is given in 

Section 6.6. 
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6.3 The multiscale step 

Let {V(n)}n=o be any real valued sequence of N numbers. Define H as the 

corresponding Schrodinger operator on £2([0, N — 1]) and denote by H\ the 

restrictions to intervals A C [0,iV — 1], This generality is mainly used to 

simplify the notation, and to make clear when ergodicity enters. 

We now start by defining our basic notion of a good sequence {V(n)}^~Q. 

Definition 6.4. Let 6 > 0, 0 < a < ^, £ C R an interval, and L > 1. 

A sequence {V(n)}^~Q is called (5, a, L,£)-critical if there are integers 

(6.12) 0 < ko < h < k2 < k3 < • • • < kL < kL+l < N - 1, 

and a set C C [1, L] such that 

(6.13) ^ < a , 

and for I <£ C, we have that 

(6.14) I G ^ ^ ^ . ^ ^ / c ^ ^ T l ) ! < \e-s 

forEeS. 

In order to state the next theorem, we have to explain a division of 

E = [E0, Ei] into Q intervals of length w e~aS. Introduce Q = \{EX - E0)e
aS], 
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and 

(6.15) Sq = 
Ei — E0 Ei — E0 

Eo + q T\ > E0 + (q + 1) 
Q Q 

for q = 0,...,Q-l. If 

(6.16) Ei-E0> e~a& 

holds, we have that 

(6.17) (Ei - E0)e
ad <Q< 2{Ei - E0)e o5 

and for all q 

(6.18) -<J5 < \Sq\ < e -<rS 

The main result of this section will be 

T h e o r e m 6.5. Assume that {V(n)}n=0 is (5, a, L,£)-critical, M > 3, 

(6.19) 
oh 

> 2 , 

and a < \. Introduce 

(6.20) a = -a 
2 
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and 

(6.21) 5 = (1 - 2a)M6. 

Then there exists a set Q C [ 0 , Q - 1 ] and L > 1 suc/i i/iai 

„ ^ 215 / ( M + l) iV 
(6.22) # Q < — ' V y 

a \ a L 

and 

(6-23) ( l - 2 a ) — ^ - < L < L 

M + l - ~ M + l 

and for q (ji Q, we have that {V(n)}!^~Q is also (6, a, L,£q)-critical. 

We observe that in our case L > N, so (6.19) will be satisfied for all large 

enough N. The rest of this section is spent proving the above theorem. 

We will now describe how we choose the sequence ki given the integer 

M > 1 from Theorem 6.5. This will be the sequence we check Definition 6.4 

with. First pick 

(6.24) k0 = k0. 

Now assume that we are given ks = kis for 0 < s < j , then we choose 
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kj+i = k[.+1 so t h a t 

(6.25) #{liC: kj <h< kj+1} = M. 

This procedure stops once we would have to choose kj+\ > N — 1. We will 

call the maximal I so that fc;+1 is defined L. This means that we have now 

defined 

0 < k0 < ~h < • • • < kL < kL+l < N - 1. 

We have the following 

Lemma 6.6. Assume ajjj > 2, that is (6.19). Then we have that 

(6.26) L> (1-2(7)——-. 

Proof. By (6.13), we have that 

# ( [ 1 , L ] \ £ ) > ( 1 - < 7 ) L . 

We observe now that lj+\ — lj > M + 1, and even 

lj+i -lj = M + 1 + #{1 E C-.kj < kt < kj+i}. 

Hence, we may choose 

~L> ( i - ^ T T ^ - T - 2 ' - v ' M + 1 
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and the claim now follows by 2 < (TJYTI. • 

We furthermore have the following estimate. 

Lemma 6.7. Assume a < | . Let 

~ f, - - 16N(M + 1) 
(6.27) C0=\l: kl+1 - fc,.! > - V ; 

T/ien we have that 

(6.28) * £ < \a. 

Proof. Since 0 < k0 < ki+l < N, we have that 

L 

Y^Ch+i - fcz-i) = ^L+I -~ko + ~k~L-~ki< 2N-

Now, Markov's inequality implies that 

~ f\ a\ { L 
# £ o < 2 27 V2(M + 1) 

By (6.26) and a < | , we have that i < 2^ L
+ . Now, the claim follows from 

a — | and the above equation. • 

Before coming to the next lemma, we will first introduce the notion of 

non-resonance. 
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Definition 6.8. Given an interval I C [0, N — 1], an energy interval E, and 

e > 0, {V(n)}n=o is called (I,E,e) non-resonant if, for every A C / , we 

have that 

(6.29) dist(E,a(HA))>e 

for all E e E. Otherwise, {V(n)}^T0
1 is called (I,E,e) resonant. 

Introduce the set £q for 0 < q < Q by 

(6.30) £9 = {1 < I < L : { ^ ( n ) } ^ 1 is ([*:,_!, fc/+1], 5„ 2e~aS) resonant}. 

We will now discuss the size of this set. 

Lemma 6.9. There is a set Q such that 

„„ 215 / M M + 1 ) N 3 

(6.31) # Q < ^ l
 T

 ! 

and for q £ Q, we have that 

(6.32) S ^ < a. 

Proof. For / introduce 

9(1) = 4{q : {V(n)}^ is ([kt-u k+i], £q, 2e^5) resonant}. 
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We will now derive an upper bound on g(l). First note that a(H\) consists 

of #A elements, so 

U <HA) 
AC[fc,_1,fc,+1J 

consists of at most (ki+i — A;/_i)3 elements. For each E in the above set, we 

have that its 2e~aS neighborhood can intersect at most 8 of the Sq intervals. 

Thus, we have that 

9(1) < 8(kl+i ~ k-i)3-

In particular for / ^ Co, we have by (6.27) that 

Let h(q) = # £ g , so that 

h(q) < # { / i Co : {V(n)}%-£ is {[h-uh+x],Sq,2<raS) resonant}. 

We obtain 

£>)<E,(0<2»£(my. 
Let Q be the set 

Q = {q : h(q) > dl}. 

Now the claim follows from Markov's inequality. • 
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We observe that (6.29) implies that 

(6.33) \\(HA-E)-l\\< V . 

Lemma 6.10. Assume for (l,q) that {V(n)}^=Q is ([fc/_i,/c/+1], £9, 2e a5) 

non-resonant. Then 

(6.34) \G[kl_1+l)-kl+1^(E, kh h±i T 1)1 < \e-~5 

forEeSQ. 

Proof. Let x = ki±x (one of the two). Since (6.29), we have that 

l % _ 1 + a ( + 1 - i ] ( ^ ^ ^ ) l < ^ . 

By construction of ki, we have sets J± such that for j E J± we have 

[kj-\, kj+\] C [k[, ki±i] U [ki±i,k[\. Furthermore, for j e J7+ U J71, we have 

that 
1 _, 

|G[fej._1+i,fcj.+1_i](£;, fcj,fcj±i T 1)1 < 2 e 

for E £ £q C £. 

By the resolvent equation, we find that 

l%_1 +am-i](£.Ml < l^s{\G[,l_1+irkl+1^(E,kJ_,x)\ 

+ l<^[fc,_1+i,fci+i-i](£''^+'x)l J ' 
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where j + = max(l7+) and j _ = min(t7_). Now, by the decay of the Green's 

function, we know that 

,x 

,x + \G[kl-i+h~kl+1-i}(
E'kj-+i ~ ! . : 

+ l<3fo_1+aI+1_i](£,fcj+-i + M ) ! 

+ lG'[fci_1+i,fc;+1-i](
£;'^++i - l»a:)lj-

We may iterate this procedure M = #̂ 7"+ = #J71 many times, proving the 

proposition by our choice of 5. • 

Proof of Theorem 6.5. We are essentially done. We observe, that for q <£ Q, 

we can choose £ = £9, which satisfies 

by (6.32). Furthermore, we then have the estimate on the Green's function 

on [ki_i,ki+i] by the last lemma for / £ £. This finishes the proof that 

{V(n)}%-J is (6, a, L, £g)-critical. D 

6.4 Inductive use of the multiscale step 

In this section, we develop an inductive way to apply Theorem 6.5. This will 

lead in the following section to the proof of Theorem 6.2. A major part of 
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this section is taken up by checking inequalities between various numerical 

quantities, necessary to show that everything converges. 

Given numbers S > 0 and 0 < a < | , we will first introduce Sj, aj, and 

My Introduce 5Q = 5 and 

(6.35) Mj = 100j+1 

1 
(6.36) aj = —^ 

(6.37) 5j+l = (1 - 2aj)Mj5j 

This choice is motivated by (6.20) and (6.21). We first observe 

Lemma 6.11. We have that 

(6.38) n Mfc = 10 ( j+1) ( i+2) = If/ • KXXP • 100 
fc=0 

(6.39) 5j > e-
4CT10(i+1)(i+2)5 

(6.40) ajSj > e-^lO^SOWlOOaS. 

Proof. For (6.38), observe that 

f lM f c = 100^=°(*+D 
fc=0 

andELo(^ + l) = l2±^±H1-

For (6.39), we have that 8j+i = Yli=i(^ ~ ~§z)Mk • 8, and since nL=i(l 
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2 £ ) > n ^ i ( l - 2 | f ) , we have that 

ri(l-2^)>exp(]Tlog(l-2|-) 
fc=i \fc=i 

Now using that log(l — x) > —2x for 0 < x < 1/2, we have that Yl^jLi l°g(l~~ 

2^-) > —4a X^fcli ^ = —4cr and thus the inequalities follow. • 

We let Lj be a sequence of numbers that satisfies 

(6.4D {1_2ai)h.<Lm<h. 

This is motivated by (6.23). 

L e m m a 6.12. The Lj satisfy 

)0+2) (6.42) e - 4 f f e-^Ll (T ( j + 1 ) ( j ' + 2 ) < Lj+1 < LlCT ( i + 1 

Proof. Recall from the last lemma that n i = i ( l ~~ 2<7fc) > e 4<T. An iteration 

of (6.41) shows 

f] l-Z2^U < L,+1 < f[ -J—L0. 
A l Mfc + 1 ° - J + 1 - J-J-Mfc + 1 

Since 

fc=i fc=i 

^n^-(-£>4+^)) > e x p ( - ^ ) , 
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we have that (6.38) implies the claim. • 

We define j m a x to be the maximal j such that 

(6-43) Ojma*Ljmax > 2Mjmax 

holds. This is needed in order to satisfy (6.19) in Theorem 6.5. We have that 

Lemma 6.13. If a stays fixed, then b~jmax —> oo as L —• oo. Furthermore, 

(6.44) Si Li > e~8ae~^L5 

Proof. We observe that (6.43) only depends on a and L. Furthermore, if L 

becomes large, the restriction becomes less and less restrictive. 

The second claim follows by (6.39) and (6.42) D 

We will now start by exploiting the multiscale step stated in Theorem 6.5. 

We will show 

Theorem 6.14. Assume that 

(6-45) °± > 2 

(6.46) | 5 | > e - ^ 

(6.47) _ _ f _ J < e- e " 
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hold and that {V(n)}^_0
1 is (S, a, L, S)-critical, then there is £Q C £ satisfying 

N / 25 e-Aa<5 \ 

<6-48> w -exp (-T^m)) 
such that {V(n)}%-J is (Sjmax,ajmax,Ljmax,£0)-critical. 

We will now start the proof of this theorem. The proof is based on induc­

tion. First, observe that by the assumption that {V(n)}^~Q is (S,a,L,£)-

critical, we have that {V(n)}^Z0
l is (So, <TO, LQ, £)-critical. This means that 

the base case is taken care of. The main problem with applying induction is 

that the interval £ will shrink with the induction procedure; that is why we 

will need to do something slightly more sophisticated. This motivates the 

following 

Definition 6.15. Given {V(n)}^~Q . A collection of intervals {£q}®=0 is 

called (a, S, L)-acceptable if 

(i) For each q, we have that {^(n)}^, 1 is (a, S, L, £q)-critical 

(ii) For q,q, we have that \£q\ = \£q\. 

(Hi) We have that 

(6.49) \£q\ > e~^aS 

for each q. 
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We first observe that {£} is (a0,50, L0)-acceptable, since we assume crit­

ically and (6.46). This implies the following consequence of Theorem 6.5. 

Lemma 6.16. Given {V(n)}^~Q and a collection of (aj, 8j, Lj)-acceptable 

intervals {£%}ql0, then there exists a collection of intervals {£i+1}g=^1 that 

is (c^+i, <5j+i, Lj+i)-acceptable. 

Proof. All but condition (iii) of Definition 6.15 are direct consequences of 

Theorem 6.5. For (iii) observe that (6.18) implies that 

\£i+1\ >e-
a^ 

for any q. Now, observe that since 0 < o~j < \ and Mj > 100, we have that 

<7j+lSj+l = If A1 ~ 2(Jj)Mi5i < 25(TJSJ-

So the claim follows. • 

It remains to compare the size of 

Qj Qj+i 

\j£> and (J^+ 1-
9=0 q=0 

For this, we will first need the following lemma. 
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Lemma 6.17. Assume (6.47). Then we have that 

(6.50) 

(6.51) 

1 0
3O'+1)( i+2) < e^jSj 

17„12<T 21 7e 

a* 

N < oh"!8) 

Proof. Since (j 4- l ) ( j + 2) < 50-7, these inequalities follow from 

103 < e^ e" 4 C T and ̂ J ^ ^ - - e " 4 ^ 
er 

By JV > L and 0 < a < \, we have that 

103 < 225 < 
217 e12a / J Y 

L a'1 

so both of the above equations follow from (6.47). 

The next lemma will allow us to compare the size of an interval 

size of the intervals S^+1 contained in 8]
q. 

L e m m a 6.18. We have that 

(6.52) 
\F3 U £i+l 

&p ,&q 

> 1 - e ~ 5 5 ^ ' ^ . 

Proof. By (6.22), we have that 

3 \ U ^+1 

£i+1Qe> 

^ 2 1 7100 3 iV3
 i + 1 

- - 4 7-3 ' lCs I 
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By construction, we have that (6.18) holds, that is, \S^+1\ < e aJsi. Hence, 

we obtain that 

3 \ U Ei+l 

t"p z^^-q 

17„12<r 

< 
217e iV 103W+1)0'+2) . e-°i

si. 

Since we have that \£3
a\ > e 25^ ' , we obtain that 

131 U 
fj+1C£j 

> 1 _ 2 l ? e l 2 g . f^T) . 103(J+DO-+2) . e-HM,-
<T̂  

> 1 - e " ^ ^ , 

where we used (6.50) and (6.51). This finishes the proof. • 

We now come to 

Lemma 6.19. We have that 

(6.53) 
Qi+i 

U^+1 
g=0 

> 
Qj 

W 
q=0 

( l _ e - | ^ ) 

Proof. This is a consequence of the last lemma. • 

Proof of Theorem 6.14- By the previous discussion, we can choose SQ such 

that 
00 

\s0\>H(i-e-^)n 
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Using (6.40) and log(l — x) > —2x, we find that 

„0, ^ e,P (-.ge-^-.o^ ^ exp (-2s|^) , 

since ET=^taJ < !&• ° 

6.5 Proof of Theorem 6.2 

We begin by observing that (6.3) implies that, for L large enough, { ^ ( n ) } ^ - 1 

is (8, a, L, £)-critical for 6 = jK, in the sense of Definition 6.4. To see this, 

choose kj = jK and £ as the complement of the set in (6.3). The rest follows. 

We now use the mechanism of the last two sections to improve the estimate. 

Lemma 6.20. {V(n)}^^~1 will be (5, a, L,£)-critical, where £ C £ satisfies 

(6-54) W\ £ exp (-TJJM50)J 

and by Lemma 6.13, we have that 

(6.55) 5L > e-^-^-iK • L. 

Proof. Since { K ^ n ) } ^ 1 *s (A °~i Lt, £)-critical, we now wish to apply Theo­

rem 6.14 to improve this estimate. In order to do this, we still have to ensure 

that (6.45),(6.46) (6.47) hold. (6.4) implies (6.46). (6.47) is implied by (6.5). 

For (6.45) observe that it is satisfied if L is large enough. • 
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We now come to 

Lemma 6.21. We may choose the set £ so that for every A C [0, LK — 1] 

and every E E 8, we have 

(6.56) dist{H,a(HA))>e -aS 

Proof. This follows by an inspection of the argument of the last section. • 

Now repeating the argument to obtain Green's function estimates as done 

in Lemma 6.10, we obtain the estimates required by Lemma 3.9. Hence, we 

obtain that 

(6.57) - L log \\A{E, LK)\\ > e ^ e ' ^ - ^ 

for E E £. This finishes the proof of Theorem 6.2, using that e~x > 1 — x 

for x > 1. 

6.6 Proof of Theorem 6.3 

We first need the following observation. 

Lemma 6.22. There exists to G Q, such that the following properties hold: 

(i) We have that 

(6.58) L(E) > l imsup- log | |Aj(£ ,n) 

72 



for all E. 

(ii) There are sequences Nt, Lt —> oo such that {Vul(n)}n^) is (•yK, a, Lt, £)-

critical and 

(6.59) lim ~r = K. 

Proof. Let Qcs be the set from Lemma 3.7. This implies that property (i) 

holds as long as u> G fics- Furthermore, we have that fx(flcs) = 1-

Let Qg be the complement of the set in (6.8). By Lemma 2.11, we can 

find a set £1 with (J,(Q) > 0, and for each u> E fi, sequences Nt, Lt —> oo such 

that property (ii) holds. 

So we have that Qcs H 0, is non-empty and by choosing u> E £lcs H Q, we 

are done. • 

We now fix ui as in the last lemma, and abbreviate 

(6.60) V » = Vu(n). 

The claim now follows by repeating the arguments of the last section of the 

proof of Theorem 6.2. Giving more details, we obtain a sequence of sets St 

satisfying 

| 5 t | > ( l - e - ^ * ) | £ | 
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and for E e £t, we have 

l-\og\\A{E,Nt)\\>e-Sa^1 + o{l) 

as t —> oo. Hence, we have that 

L(£) > e~8<Je~^7 

for 

We have 

Lemma 6.23. The set (£ = f \>i Ut>s^< has measure 

(6.61) |£| > ( l - e - ^ ^ l ^ l . 

Proof. Let £ s = \Jt>a£t. We have that <BS+1 C € s and |£ s | > ( l - e -A a 7 K ) | £ | . 

This implies the claim, since £ s C £ with |£| < oo. D 

This finishes the proof of Theorem 6.3. 

6.7 Applications 

We are now ready to prove Theorem 1.5. In fact it follows easily from Propo­

sition 5.7 and Theorem 6.3. 
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CHAPTER 7 

.Outline of the second multiscale scheme 

The goal of this chapter is to give an outline of the second multiscale scheme, 

and to derive results from it. In this introduction, I will just state the most 

basic consequence. 

Theorem 7.1. Let H^ be a family of skew-shift Schrodinger operators with 

Diophantine frequency. Let Mi > (K • MQ)2 and MQ be large enough. Assume 

that 

(7.1) \{u : dist(£, a{H^[lMj])) > 1}| < e~^1/2 

for j = 0,1. Then for a universal 70 > 0, 

(7.2) L(E) > 70. 
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We now get down to business. 

7.1 Definitions and Notation 

In this section, we discuss definitions and notation necessary for the following. 

The same notation will be used in all the following chapters. 

V(n) will always denote a bounded and real-valued sequence, and H = 

A + V the associated Schrodinger operator on £2(Z). Since we do not make 

the dependence on the energy E explicit, one might have to replace H by 

H — E. Next, we need the following definition. 

Definition 7.2. Let [a, b] C Z be an interval. We call x,y e [a, b] good if 

, , . . | 6 - a | 

(7-3) \x-y\>X-^ 

and 

(7.4) \x — y\ < max(|x — o|, \x — b\, \y — a\, \y — b\). 

The second condition is important to iterate the resolvent equation. We 

now come to 

Definition 7.3. Let 7 > 0, 1 > r > 0, and p > 0 be an integer. An interval 

[a,b] is called (7, r,p) -suitable for H if 

(7-5) \\(H[aM)-l\\ < ±-/b~a)T 
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and for good x, y € [a, b], we have 

(7-6) l<e„(^ [ « ,6] ) - 1 e v >l<^re-^-" l . 
2 P + I 

We recall that i/[a,&] denotes the restriction of # : ^2(Z) —> £2(Z) to 

£2([a, fr]) and that (,) denotes the scalar product of £2(Z) and {ex}xez its 

standard basis. We will write B^Tp{H) for the set of length N intervals I 

such that / is not (7, r, p)-suitable for H. 

We will usually assume the potential V(n) is generated by evaluating a 

sampling function / along the orbits of the skew-shift Ta : T^ —> TK. Here, 

we will assume that / is a trigonometric polynomial, that is 

(7-7) / G E ) = £ / ( £ M £ - 3 D , 
l€l<* 

where e(x) = e2nix, |f | = maxKKK |£fc| for f e ZK , and £ • x = £ f e = 1 6ĉ fc-

Purthemore, we recall that 

{wi + a, k = 1; 

a;fc+a;fe_i, 2 < k < K. 

We will also need to impose a Diophantine condition on the frequency a. For 

c > 0, we write a G DC(c) if for all a, n e Z with n > 1 we have 

a -
a 

- — 
n 

c 
> — 

n J (7.9) 
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Furthermore, if Q C TK, we write \Q\ for the Lebesgue measure of fi. 

7.2 The result and applications 

We will now state the main result, and discuss how Theorem 1.6 follows. 

Theorem 7.4. Let -j^a e DC(c), and /i, r, 7 > 0. Let Mx > M0 > 1 with 

M0 large enough and assume (Mi)M > 67LM0 and for j = 0,1 that 

(7.10) I {a; : [1, M,-] is (7, T, 3)-suitable for H^}\ > 1 - e - ( M ^ . 

Introduce for (5 = 500KS]og{K)2 

(7.11) iVmjn = re (Mo)f 1, JVma, = Le(Mo)"j. 

ylsswne n > 2/3. TTien /or -/Vmjn < N < Nmax and 

( 7"1 2 ) ^ 7 ( 1 - i } ' f = 1 " 200X3log(K)' 

we /lave £/ia£ 

(7.13) I {a;: [1, N] is (^f,f, 3)-suitable for HJ\ > 1 - e~{N)20. 

Here the largeness condition on M0 depends on fi, r, 7, c and X. For M0 

large enough, we can iterate the procedure. Combining this with Lemma 3.9, 
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we obtain the following conclusion. 

Corollary 7.5. Let -^a e DC(c), and \x, T, 7 > 0. Let Mx > M0 > 1 with 

M0 large enough and assume (MiY > 6jLM0 and, for j = 0,1, that 

(7.14) \{u : [l,Mj] is (7, r, 3)-suitable for Hj\ > 1 - e - ( M ^ . 

T/ien 

(7.15) L(£) > | . 

Proof. Let iVo = M0 and introduce 

Nj= [ e ^ - 1 ^ ] . 

If M0 is large enough, we obtain that the assumptions of Theorem 7.4 hold 

again with M0 = N\ and Mi choosen in such a way that (MiY > 6jLM0. 

Note that now /i = 2(3. Furthermore, it is easy to see that then the assump­

tions of Theorem 7.4 hold for M0 = Nj and a similar choice of Mi. Hence, 

we obtain 

\{u: [1, Nj] is (7i, r, 3)-suitable for ^ } | > 1 - e~(^)M, 

where 7-,- = 7j_i • (1 — jf~), 7o = 7- Hence, we obtain by using the Borel-
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Cantelli lemma and Lemma 3.9 that 

l imsup-^ log | |A, (£ ,W) | |> inf7 i 

for almost every u_ € TK. By choosing MQ large enough, we can ensure that 

infj>i -fj > ^7, which implies the claim. • 

In particular, we obtain Theorem 1.6 using Proposition 5.7. We will now 

discuss the main ingredients necessary to prove Theorem 7.4, and then prove 

it. 

Let me furthermore point out that our results imply some continuity of 

the integrated density of states. In fact, we will show the following result, 

which holds for general ergodic Schrodinger operators. It should be noted 

that the following result requires the assumption at all energies E. 

Theorem 7.6. Let i,T,fi,P > 0. Assume that fj, < r and for every E G R 

and N sufficiently large 

(7.16) \{u: [1, TV] is (7, r, 3)-suitable forH^-E}\>l- e_JV". 

Then for 0 < ft < /1, we have for N sufficiently large 

(7-17) 1 / tr (JK*i](#J) *± ^ e" I o s(^r 
1\ JTK 

Let N(E) be the integrated density of states defined as in Section 3.5. 

80 



Then this theorem combined with the previous results implies for the skew-

shift model that 

(7.18) Af(E + e)-Af(E-£)<e-]os^)0. 

7.3 Ingredients based on the resolvent equa­

tion 

In this section, we discuss parts of the proof that are essentially based on the 

resolvent equation, which relates matrix elements of the resolvent on a large 

scale to the ones on small scales. Given x € [a, b] C A and y G A \ [a, b], the 

resolvent equation states that 

(ex, (Hh)-
ley) = - (ex, (H[aM)~lea){ea_l, (/yA)_1ew) 

(7.19) 
- (ex,(H[aM) leb){eh+l,(HK) 1ey). 

Naively, one might guess that nothing is gained by it, since both sides involve 

( .HA) - 1 , but we will usually know that the entries involving (if[ab])_1 are 

exponentially small. Combining this with weak estimates on (H{C)~l, we are 

able to obtain strong ones for it. The first implementation of this is 

Theorem 7.7. Let 7 , r > 0 , 1 < M < L and assume 

(7.20) 7 M 1 - T > 6, MT >max(log(L)),6), 10(4M r+ M + log(2)) < U. 
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Assume 

(7.21) \{u : [1,M] is not (7, r, 3)-suitable for H^}\. < e~M" 

Then there exists a set D,\ C TK with the following properties. 

(1) |fii| > 1-Le-M\ 

(ii) For UJ_ e f2i, we /iai>e 

(7-22) | | (^ , [ i ,L])- 1 | |<e 4 M T , 

fmj For u € Cli, [1, L] is (7, r, 3)-suitable for H^ where 7 = 7 — p ^ . 

We will also show 

Theorem 7.8. Let 0 < p < r, [i, v > 0, 0 < q < (y^) , and 1 < L0 < N. 

Assume N 3> 1 and 

(7.23) N2e-^" < e~N\ N* > (L0)2. 

Assume for L0 < L < N that 

(7-24) \{u: | | ( ^ , [ 1 , L ] ) - 1 | | < e L P } | > l - e - ^ 
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and for w e T 

(7.25) # (A C [1, N] : A e B%rfl{H^) < N1^. 

Then for 7 = 7 • ( l - log(AO^) 

(7.26) |{oj: [ l , ^ ] e ^ T , 3 ( ^ ) } | < e - ^ . 

Here N ^$> 1 means that N > N0 = No(p, if, 70), where 70 < 7. In fact, 

this condition can be explicitly read of from Theorem 9.1. 

The proofs of Theorem 7.7 and 7.8 are both deterministic. This means 

that they follow from statements for single operators combined with basic 

probabilistic estimates. Let me furthermore point out the big difference 

between the two results. Theorem 7.7 needs that all intervals of length 

M are suitable, but it does not require resolvent estimates on all scales. 

Theorem 7.8 allows for intervals that are not suitable, however it requires 

resolvent estimates on all scales. 

This difference is also manifest in the proofs. For Theorem 7.7, most of 

the work is needed to ensure that the norm of the resolvent is bounded, and 

then the decay of the off-diagonal terms follows through a simple iteration 

of (7.19), whereas for Theorem 7.8, we already know that the resolvent is 

a bounded operator, and we only need to work to obtain the decay of the 

off-diagonal terms. 
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It should also be pointed out that Theorem 7.8 is the analog of what 

Kirsch calls the analytic estimate in Chapter 10 of his lecture notes [18]. 

7.4 Ingredients based on ergodicity 

We will prove the following uniform recurrence result. It is an improved 

version of the answer to the question of how often an iterate of a point u_ 

under the skew-shift lands in a small ball. The proof depends on a bound on 

this number, which we give in Theorem 11.3. I will discuss further aspects 

of the proof after its statement. 

Theorem 7.9. Let 7, r, /J,, c > 0 and K > 1. There exists L0 = L0(K, c) > 0, 

G2 = G2(K) > 0, and W3 = W3(K,c) > 0. Define 

(7.27) 
* 50K3 \og(K) 

Let L> M > 1 and -^a e DC(c). Assume 

M f (7.28) max (MG\L0(K,c))<L<e* 

(7.29) \{u : [1, M] e B^(H^)}\ < ̂  • ± 

Then for uETK, 

(7.30) #(A C [1,L] : A G B™Tfi(H„)) < L1"*. 
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The first step of the proof is to derive Theorem 11.3, which bounds the 

number of iterates of the skew-shift, which land in a small ball. The proof 

relies on estimates on the growth of exponential sums, which I review in 

Chapter 10. The next step is to extend Theorem 11.3 to semi-algebraic sets, 

which is done in Theorem 11.7. 

The last step is then to show that the set of u_ where [1, L] is not suitable 

for Hyj_ can be contained in a semi-algebraic set. This is done in Section 11.5. 

In fact, the current proof of this result uses that / is a trigonometric poly­

nomial. However, this is unnecessary, as explained in Remark 11.10. 

However, there is also another direction in which Theorem 7.9 could be 

improved. At the moment (7.30) holds for every u_ € TK. However, for all 

our applications it would be sufficient if we had (7.30) up to an exceptional 

set of a; of measure e~L<7 for some a > 0. In particular, we know that the ana­

log of this theorem for random Schrodinger operators has this probabilistic 

nature. See for example Theorem 10.22 in the lecture notes of Kirsch in [18]. 

Hence, I expect that if one wanted to make the constant L0 in this theorem 

quantitative in K, one should proceed like that. The current dependence is 

at least like LQ> KK. 

7.5 Ingredients based on complex-analysis 

The results of this section depend o n u n H^ being an analytic function. 

We make the necessary property explicit in the following definition. 
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Definition 7.10. RK 3 u ^ Hu is nice, if the following hold. 

(i) H^ extends to an analytic function CK 3 z_ \—> H^. 

(ii) There exist constants Ci, C2 > 0 such that for A C [I, N] and p > 0, 

we have for all z_ G CK satisfying \Im(zk)\ < p for 1 < k < K that 

(7.31) H ^ A I I ^ C ^ 2 ^ . 

We will show the following theorem, where q could be a parameter, but 

will be q = 5QK3 \og{K) in all applications. 

Theorem 7.11. Let 7, r > 0 and L > M > 1. Assume LO_ t-> H^ is nice and 

(7.32) L> (8000Klog(K))f 

(7.33) 7 M r > max(const, # log(L)) 

(7.34) 7 M 1 _ r > 6 

(7.35) L* > 24M2. 

Furthermore assume 

(7.36) # (A C [1, L] : A G ̂ M
T > 0 (^ ) ) < L1^ 

(7.37) |{a;: I K ^ L L ] ) " 1 ! ! < e L f } | > 1 - e~^KM. 
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Then 

(7.38) \{u : IK^H.L])" 1!! < e L " § } | > 1 - e~L\ 

It should be remarked that in (7.37) and (7.38), the left hand sides are 

the same, but the right hand side in (7.38) is much closer to 1 than in (7.37). 

This is why I would describe the application of this theorem as improving a 

probability. 

The proof of this theorem will be given in Chapter 12. The essential 

idea is to use a high dimensional version of Cartan's lemma (Lemma 12.1) 

to improve the probability in (7.37). For this it will be important that, 

using (7.36), we can reduce the size of H^J^L] from an L x L matrix to an 

Ll~q x Ll~q matrix. 

Using Lemma 7.15, one can convert (7.38) to the following Wegner-type 

estimate 

(7-39) j f tr(P{_£,e](H^[lM))dLJ<e-Li, 

where e = e~L 

7.6 Recipe to prove Theorem 7.4 

We first need to show 

Lemma 7.12. (7.31) holds. 
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Proof. By (7.7) and a computation involving the skew-shift, we have | V(n)| < 

C\QAn p as long as |Im(zfc)| < p for 1 < k < K. The claim follows. • 

We now proceed to give the proof of Theorem 7.4. Recall that q = 

50K3 log(K) as in (7.27). Pick N G [Nmin, Nmax] and introduce 

(7.40) L0 

x 1 

- • N * 
2 

This is chosen such that (7.23) holds with /u, = 2/5 and u = | . Also note that 

— = 40 • q. An easy estimate shows that 

4 

(7.41) L0 >(\Y • e40^M°)3/2 

independent of the choice of A7 € [Nmin, Nmax\. 

Let me begin by giving the general outline of the proof, which is shown 

in Figure 7.1. The general idea of the flowchart is to give an idea of where 

what happens and what ingredients are used. With Scale Mj, I denote in this 

flowchart (7.10), by Scale L0 in scale N, the conclusion of Theorem 7.9, and 

by Wegner estimate at scale L, the conclusion of Theorem 7.11. Otherwise, 

I hope that the flowchart is self-explanatory. 

Let me now proceed by making the first step precise. Again, the general 

outline is presented in Figure 7.2. In this figure the clouds indicate which 

of the previous sections the necessary results to make the conclusion can be 

found. Furthermore, by weak probability, I indicate an estimate of the form 
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Scale M0 

1 
Wegner estimate 

at scale L for 
LQ < L < N 

^ 

Scale N 

Scale Mi 

Scale L0 in scale N 

Figure 7.1: General outline of the proof 

(7.37), that is, where the probability is still small, but not of size e~L", where 

L is the length scale. 

Scale M0 

Ergodicity 

Scale M0 in scale L 
Scale L with 

weak probability 

Wegner esti­
mate at scale L 

Figure 7.2: First step of the proof. Implemented in Proposition 7.13. 

Proposition 7.13. Assume (7.10), ( M ^ > 6^KM0, and that M0 > 1 is 

large enough. Then for L0 < L < N 

(7.42) 1-3-Ife: UH^^W < eL "*}|>l-e 
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Proof. By (7.41), one obtains the lower bound in (7.28) as long as M0 is large 

enough. The upper bound is clear from definition of N < Nmax = ê M°̂  , 

where ft < \JJL. By Theorem 7.9 with M = M0, we can conclude that 

# { A C [ 1 , L ] : A e B^0(H„)} < L1-*. 

This is (7.36) with M = M0. 

Again by assuming that M0 < Mi is large enough, we are able to conclude 

that (7.20) holds for M = Mx. By Theorem 7.7 applied with M = Mi, we 

can conclude that 

|{w: I K i W i ) " 1 ! ! < e L l } | > l-Le-^" > 1 - Ne~^. 

l-E 

For M0 large enough, we have that ^yKM0
 2 > 1. This and the assumption 

imply (7.37) with M = M0. We see that (7.32) to (7.35) again hold for M0 

large enough. Thus by Theorem 7.11, we obtain the conclusion (here we just 

use M0 » 1). • 

We now come to the second part of the proof. The key steps are shown 

again in the flowchart in Figure 7.3. 

Proposition 7.14. Assume M0 > 1 is large enough. Then for every ui G T^ 

(7.43) #{A C [1, N] : A e #?%(#„)} < Nx~i. 

90 



Scale Mi 

I 

Resolvent 
equation 

I 
Scale LQ with weak probability 

Ergodicity 

Scale I/0 in scale N 

Figure 7.3: Second step of the proof. Implemented in Proposition 7.14. 

Proof. (7.20) holds for M0 large enough, since Mi > M0. Apply Theorem 7.7 

with M = Mi and L — L0, to conclude that 

\{u : [1, L0] is (7, r, 3)-suitable for H^}\ > 1 - L0e~(Ml)fi. 

Hence (7.29) holds with M = L0 and L = N, as long as M0 is large enough. 

The same is true for (7.28). Now apply Theorem 7.9 to conclude the claim. 

• 

We now give again the picture, from which the final step of the proof 

follows. 

Proof of Theorem 7.4- Having (7.42) and (7.43), we are now in a position to 

apply Theorem 7.8. This finishes the proof of Theorem 7.4. • 
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Scale I/0 in scale N 
Wegner at scales 

L0 < L < N 

Figure 7.4: Final step of the proof 

7.7 Proof of Theorem 7.6 

We need the following 

Lemma 7.15. Assume that 

(7.44) \W- | | ( % ^ - £ ; ) - 1 | | < A } | > l - e . 

Then 

(7-45) 1 J^ tr(P[E_hE+lx](Hu,{i,N]))dui < e. 

Proof. By assumption there exists Q\ C T^ such that \Qi\ > 1 — e and for 

UJ_ £ fii, we have 

t r (P [ £ _ i £ + I ] ( / L , [ I , J V ] ) ) = 0. 
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The claim now follows from the bound 

tr(P[E.hE+ix](H^[m)) < N, 

which holds for any LO_ G TK. • 

By (7.16), we can apply Theorem 7.7 with M = N and L = [ez^J for 

JV > 1 sufficiently large to conclude that 

- i w (7.46) \{u: \\(H[liL]-E)-i\\<e*NT}\>l-e^ 

By the previous lemma, this implies by partitioning an energy interval [E0, E\] 

into pieces of length 2e~4ArT that 

(7-47) \ f^ tv(P[Eo,El](H^L]))ou < ( B ^ o e ^ + i) e " ^ . 

Proof of Theorem 7.6. By a standard decoupling argument, we also obtain 

for P » L that 

Choose N = | log ( E \E ) to obtain the claim. • 
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7.8 Some properties of suitability 

We begin with the following lemma about perturbations of the inverse, whose 

proof we leave to the reader. 

Lemma 7.16. Let A be an invertible operator and \\A — A\\ < 2\\A-^\\. Then 

(7.48) Hi"1!! <2\\A~1\\ 

(7.49) l l i " 1 - ^ 1 ! ! < 2 | | A - 1 | | | | I - A | | . 

Rewriting this lemma using the notion of suitability, we obtain 

Lemma 7.17. Let [a,b] be (7, r,p)-suitable for H. Assume \^{b — a) > 

{b — a)T and 

(7.50) | | # _ # | | < _ L e - 7 ( f c - a ) . 

Then [a, b] is (7, r,p — 1)-suitable for H. 
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CHAPTER 8 

First application of the resolvent equation 

In this chapter, we develop a mechanism on how to show that a large interval 

is suitable assuming one knows that all its subintervals of one size are suitable. 

The essential point here is to show that the resolvent remains a bounded 

operator. In particular, we will prove Theorem 7.7. 

8.1 Deterministic results 

In this section, we present the main results of this section. 

Theorem 8.1. Let N > M > 1, 7 > 0, 0 < r < 1 be given. Assume 

(8.1) 7 M 1 ~ r > 6, MT > max(log(A0,6). 

Let A be a union of length M intervals satisfying |A| < N. Assume that 
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every interval [n, n + M — 1] C A is (7, T)-suitable. Then 

(8.2) | | ( ^A) _ 1 | | <e 4 M r . 

We also have decay of the off-diagonal elements. 

Proposition 8.2. Assume A is an interval. Let x,y G A be good in the sense 

of Definition 7.2. Then we have 

(8-3) Kc x , (^A ) - 1e y>l<^l*-»l , 

where 71 = 7 — 10 N
 + . 

Proof. We assume without loss of generality that 

dist(x,{a,b}) > dist(x,y) > — . 

Assume for simplicity that M is even and introduce s = \M. Furthermore, 

introduce 

, • T \ x ~ y \ 

Xj = X + JS, J = L J-

We see that {xj}j=_j C A. Furthermore, by the resolvent equation applied 

to the interval [xj-i + 1, £j+i — 1], we obtain that 

\(eXj, {HKyley)\ < e "^ • max(|(ex._1, {Hh)-
ley)l \{eX}+l,{HK)-'ey)\). 
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This implies that 

|(cx, ( ^ A ) " 1 ^ ) ! < e _ 7 S ' J • _^x j |<e , i , (^A)- 1 e„> | . 

The claim follows. D 

As a simple corollary, we obtain 

Corollary 8.3. Assume that 4MT < |A|r. Then A is (7, r, 0)-suitable for 

H. 

Proof. This follows by comparing definitions. • 

8.2 Results for ergodic Schrodinger operators 

Let us now discuss the consequences for ergodic Schrodinger operators. We 

will assume that (O, fi) is a probability space and T : ft —> Q an invertible 

and ergodic transformation. For a bounded measurable function / : Q —> R, 

we define the potential by Vw(n) = f(Tnu) and the Schrodinger operator 

Hu = A + Vw. A direct consequence of the result of last section is 

Corollary 8.4. Let N > M > 1, 7 > 0, 0 < r < 1 be given. Assume (8.1). 

Furthermore, assume 

(8.4) n({u : [1, M] is (7, r) - suitaWe /or f^}) > 1 - e. 

Then there exists a set Qi with the following properties. 
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(i) ^(fii) >1-Ne. 

(ii) For u e f i i 

(8-5) | | ( ^ [ i , i v ] ) - 1 | | < e 4 M T . 

(in) For x,y G [1,N] good 

(8.6) \(exAH.,[mrley)\<\e-^-y^ 

^ e r e 7 i - 7 - 1 0 l o g ( 2 ) + ^ + 4 M r -

Proof. Denote by Flo the set from (8.4). Introduce 

N 

Hi = f| T-nr2o. 
7 1 = 1 

That /x(Qi) > 1 — A/e follows, and also that for CJ € f̂ , if^ satisfies the 

assumptions of Theorem 8.1 with A = [1, N]. D 

We are now ready for 

Proof of Theorem 7.7. This follows from the previous corollary, that e4AfT < 

^eLT , and the choice of 7. D 
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8.3 Proof of Theorem 8.1 

The basic strategy of the proof will be to show that if H^u = Eu has a 

non-trivial solution u, then \E\ must be large. In order to do so, we will 

need to analyze the restrictions of u to intervals of size M. Let us begin by 

introducing the necessary notation. For [a,b] C A and u G £2(A) a solution 

of H\u = Eu, we have for n G [a, b] that 

(8.7) u(n) = -(en, (HM - E)-lea)u{a - 1) - (en, (H[aM - E)-leb)u(b + 1), 

where u(x) = 0 if x ^ A. We furthermore recall that 

frr W | | =„y iII^A^I|-
1-"AJ II IMI=1 

Since î A is self-adjoint, the infimum is attained by an eigenvector v to an 

eigenvalue E. Let w be such a normalized eigenvector 

(8.9) HAv = Ev, \E\ = 
HA)-1]]' 

Denote by m G A a point such that |w(m)| > \v(n)\ for all n G A. In 

particular, we have 

(8.10) \v(m)\2 > 1 
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We denote by <9A the boundary of A. If we write A as the union of disjoint 

intervals [at, bt] with bt < at+\ — 2, then 

(8.11) A = |J[atA], dA = {J{at,bt}. 
t t 

We have the following lemma 

Lemma 8.5. Assume 7M > 101og(4) and 

(8.12) \E\ < l-e~2MT. 

We have that dist(m,<9A) < | | . 

Proof. Let n e A be contained in an interval [a, b] of length M, such that 

. M 

\a-n\,\b-n\ > —. 

Apply Lemma 7.17 with H = H — E. We may thus conclude 

(ea, (H - EYlen)\, \(eb, (H - E)~len)\ < 1. 

Thus, we obtain by (8.7) that 

\v(n)\ < \\v{a - 1)| + \\v{b+l)\ < ^(max(|^(a - 1)|, \v(b+ 1)|), 

which implies that either \v(a — 1)| or \v(b+ 1)| would be larger than \v(n) 
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This shows m ^ n, finishing the proof. • 

Remark 8.6. This lemma gives us some information about the structure of 

v. Denote 

a = e-^M + 4\E\e2MT. 

Then, as in the last lemma, we infer for j > 1 an integer and dist(n,9A) > 

•^10 that \u(n)\ < a?. This means that u is localized close to dA. 

We are now ready for 

Proof of Theorem 8.1. Choose an interval m G [a, b] such that either a — 1 ^ 

A or b + 1 ^ A. We may assume the first case, and that \m — a\ < y-j. For 

some c such that \a — c\ > ^- and \b — c\ > y , as in the last lemma, we may 

conclude using Lemma 7.17 and (8.7) that 

\v(c)\, \v(c+l)\ < h-2^ + \E\2e2M\ 

Define a vector u by 

f v(n), a < n < c; 

0, otherwise. 
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We can compute 

H[a,b]u{n) = < 

Eu(n), a < n < c — 1; 

—v(c +1) , n = c; 

v(c), n = c + 1; 

0, otherwise. 

Hence, we conclude that 

| | # M M | | < | £ | + e - ^ + 4 | £ | e 2 M \ 

Futhermore from (8.10) and [a, b] being (7, r)-suitable, we have H-H^u 

N~ll2e~MT > 2e~2MT. Combining these two inequalities, we obtain 

-2M 2e~ZM - e a >e~
ZM > 5E\e 2MT ,2MT 

This implies the claim. 
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CHAPTER 9 

Second application of the resolvent equation 

The goal of this chapter will be to prove Theorem 7.8. The main ingredient 

will be an iteration of the resolvent equation, which we present in Proposi­

tion 9.4, and an argument increasing the length of good subsets, presented 

in Section 9.4. 

9.1 The statement for a single operator 

The following theorem is a determinstic analog of Theorem 7.8. We will 

let H : £2([1,N]) —> £2([1,N]) be a Schrodinger operator, without further 

assumptions. 

Theorem 9.1. Let 0 < p < r < 1 and 70 > 0. Assume that for every 
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subinterval A C [l,iV] satisfying |A| > LQ, we have 

(9.1) \\{HA)-l\\<^P. 

Furthermore assume for 0 < q < j ^ that 

(9.2) #{A C [1,N] : A € B%Tfi(H)} < N1^. 

Assume Nq > (L0)
2 and 

fa* i rm^ , log(10) - log(7o) /32 V 1 
(9.3) log(N) > max — , — i - p V 2 'yqj ^ ( p - 1 ) 4 

Introduce 

(9-4) 7 M = ( I _ _ ! _ ] . 7 O . 

Then [1, A/"] is (700, r, 3)-suitable for H. 

One might wonder why this theorem does not impose a smallness condi­

tion on N, with the conclusion improving as N —» 00. The reason is that as 

N —> 00, the assumption (9.2) improves. 

We now proceed to prove Theorem 7.8. First, we will show the following 

lemma, which will allow us to check (9.1). 
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Lemma 9.2. Assume (7.24) and that 

(9.5) N2e~^" < e""". 

There exists a set 0,i such that 

(ii) for every LO_ G ft\ and subinterval A C [1, N] satisfying |A| > L0, we 

have 

(9.6) UH^))-1]] < eW. 

Proof. There are less then A"2 of choices o f l < a < 6 < A f such that 

b — a > L0. Furthermore for each, we have 

\{u: \\(H[aM)-'\\>e^P}\<e-^\ 

Define 

^ 2 = 0 & : IK-^[a,6])-1|l>e(6-Q)P}. 
l<a<b<N,b-a>L0 

By the previous observations, we have that 

| Q 2 | < 7 V 2 e - ( L ^ < e - ^ . 

Now, let Qi = T^ \ 0,2 and the claim follows. D 
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We are now able to proof Theorem 7.8 assuming that Theorem 9.1 holds. 

Proof of Theorem 7.8. By (7.25), (9.2) holds for every u. Let VLX be the set 

from the previous lemma. We have that (9.1) holds for every a; E f2i. Hence, 

the claim follows. • 

9.2 Using the resolvent equation 

In this section, we wish to prove the following proposition, which provides an 

abstract version of the resolvent equation iteration, which we use. We begin 

with the following definition used to quantify decay of the Green's function. 

Definition 9.3. Let 7 > 0. An interval I C [1,N] has j-decay, if for any 

good x,y £ I, we have 

(9-7) l<e.,(tf,r\>|<^e-^l. 

We remark that if [a, b] has 7-decay and ||(if[a)b])_1|| < e^~a^T then [a, b] is 

(7, r)-suitable for H. We also recall the resolvent equation. If x E [a, b] C A 

and y E A \ [a, b], we have that 

(ex, (HK)-ley) = - (ex, {H[afi])~
lea){ea-U {Hky

ley) 

- (ex, {H[a^)~leb){eb+i, (H^ey). 

The following proposition, will allow us to pass from scale to scale as long 
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as, we have information on the size of the resolvents. It's proof is a basic 

iteration argument of the above equation. 

Proposition 9.4. Let 7 > 0 , 0 < c r < ^ and M > L > 1. Assume for every 

interval A C [1, M] of length |A| > L that 

(9-8) \\(HA)-l\\ < ±e&. 

Furthermore assume 

M 
(9.9) #{A C [1, M] : |A| = L, HA does not have 7 decay} < a • —. 

Then ^[I,M] has 7 = (1 — 30a)j-decay. 

Define 3 as the M/2 + 2 neighborhood of the union over all intervals A 

of length L, which do not have 7-decay. It is easy to see that 

(9.10) |H| < SaM. 

Furthermore write 

T 

(9.11) E = (j[at,bt] 

for disjoint intervals Jt = [at, bt]. We also have that T < aMjL. 
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Lemma 9.5. For dist(y, {at, bt}) > M and x € {at, bt}, we have 

(9-12) \{ex,{HJt)~
ley)\<^. 

Proof. By construction of E, we have that the intervals [at,at + M — 1] and 

[bt-M + 1, bt] have 7-decay. Denote a = at+ \M/2] ,b = bt- \M/2\. Then 

a computation yields that 

\{ex,{HJt)-\)\ < |<ex, (^ t)-1ea_1>||<ea, ( ^ g j ) " 1 ^ ) ! 

+ \{ex,(Hjt)-
1e-b+1)\\(e-b,(HKb])-

1ey)\ 

< ^ L . maxdfe, {HJt)~
le^, \(ex, (Hj^e-^l). 

We also obtain that 

\{ex, (HjJ^ea-i)] < \(ex, {HJt)-
leat+M-i)\\{ex, (F [ a t ! a t + M_1 ])-1e a- i) | 

< -e~*lL. 
- 6 

The claim follows by a similar computation for bt. • 

Proof of Proposition 9.4- By the previous lemma, we can iterate the resol­

vent equation until the boundary, only picking up decaying terms. The decay 

even always beats the growth of the number of terms. Hence, we will obtain 
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for x, y £ A good, that 

(ex,{H{imyley)\<
l-e-^-y\^M, 

where the last term accounts for the bad bits. The claim now follows. • 

9.3 Definitions for the proof of Theorem 9.1 

The goal of this section is to define the basic quantities used in the proof of 

Theorem 9.1. We will also prove various estimates on these quantities. We 

begin by introducing a sequence of scales 

L0 < Lx « Lj « . . . Ljmax « N. 

Define 

(9.13) a= — 
P~2 

Lemma 9.6. Assume that 

(9.14) log(iV) > M 1 Q ) ~ M-To) 
1 — P2 

then 

(9.15) N^P'1 < y^. 
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Proof. A computation shows that (9.15) is equivalent to 

, log(7o) - log(10) 
[P) ~l~ MAO ' 

The claim follows, since the assumption implies that the right hand side is 

> pi - 1. • 

We note that the assumptions of this lemma are satisfied once 70 > 10. 

Introduce a sequence of scales by 

(9.16) L3+l=[(L3T\. 

We observe that we have Lj ~ (L0)
a3. We have that 

Lemma 9.7. Denote by j m a x the number such that 

(9-17) Ljmax < N < LJmax+1. 

We then have that 

(9.18) j m a x = -—j— • log -——- < 2—— _ . 
log(a) \\og{Lo)J log(p x) 

Proof. From Ljmax ~ L$3max, we obtain 

log(A) 
log(Lo)' 
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The claim follows by taking another logarithm. • 

Furthermore define 

1 
(9.19) a log(JV) 

Introduce 

(9.20) 7i = (1 - 30a)J7o. 

Lemma 9.8. Assume that 

(9.21) log(iV) > 
120 x 4 

>g(p - x ; 

Then 

1 
(9-22) 1 J M I > 7o 1 

log(N)i 

Proof. We have jjmax = 7o • (1 — 30a)jmax. We compute 

(1 - 30a) J— = exp (log(l - 30a) • Jmax) > 1 + log(l - 30a) • j m a x 

> 1 - Wo-jmax > 1 - 120 ° • log(log(A0) 
log(p_1) 

where we used (9.18) in the last line. Now use that a = loJ/N), and that 
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log(log(iV)) < 41og(Ar)1/4 to conclude 

120 
1 - 30a)Jmax > 1 -

log(p-i)log(Ny/4j \og(N)l2 

The claim follows, since by assumption (log
1
(^-1) log(^)1/4 j < 1. 

Introduce a sequence of densities 

1 1 \OK(NV 

(9.23) 4 = ^ , t ^ - k — f a L . 

Lemma 9.9. Assume that 

(9.24) log(A0 > max ( 7 ^ n y ) , 256?
2 

Then 

(9-25) djmax < a. 

Proof. We compute 

! o g ( ^ m a J = l o g ( d o ) + j m 0 x l o g ( l o g ( i V ) ) < - - l o g ( N ) + j m a x l o g ( l 
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By (9.18), we conclude 

log(djmoJ < 

< 

< 

where we used the assumption in the last line. Hence, we conclude that 

dn < N~ 4, and the claim holds. D 

9.4 Increasing the length 

In this section, we will prove Theorem 9.1. The proof will proceed by showing 

that resolvent estimates hold for larger and larger intervals, with not too 

small density. It is noteworthy here that the density, where the estimate 

holds decreases as the scales get large. The following lemma reformulates 

(9.2). 

Lemma 9.10. Assume (9.2) and L0 < NQ/2, then we have that 

N 
(9.26) # { / C [1, N] : \I\ = L0 does not have "fo-decay} < d0—. 

Lo 

Proof. This follows by comparing definitions. • 

We also bring (9.1) into a more convenient form. 

| 1 ° g W + I^nylog(log(iV))2 

16 
2 logGo"1) log(A^)1/2 

log(iV) 

- > g ( A 0 , 
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Lemma 9.11. Let A C [1, N] with L0 < |A| < LJ+i, we then have 

(9.27) \\{HA)-l\\<l-eh^. 

Proof. We have Lj+1 < (L3)
a = (£,,-)' • {Lj)a~~p. Thus 

{Lj+ly < ^ • (Lor-1 < L3 • iV^"1 < ^Lj < | L , 

by Lemma 9.6 and (9.22). The claim now follows by (9.1) and that jjLj > 

201og(3). D 

We will also need the following 

Definition 9.12. Let J C [l,iV] be an interval of length Lj+\. J is called 

a-bad, if 

L 
(9.28) ^{disjoint length Lj intervals in J without 7j decay} > a- 'j+i 

Lj 

Otherwise J is called a-good. 

This definition is motivated by the following version of Proposition 9.4. 

Proposition 9.13. Let J C [1,AT] be an interval of length \J\ = Lj+\. 

Assume that J is a-good, then J has jj+i-decay. 

Proof. We observe that the previous lemma and definition ensure the con­

ditions of Proposition 9.4 with M = Lj+i, L = Lj, and 7 = 7j- Hence, the 

claim follows. • 
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We have the following 

L e m m a 9.14. Assume that 

N 
(9.29) ^{disjoint length Lj intervals in [l,N] without 7,- decay} < dj — . 

Then 

(9.30) 
N 

^{disjoint length Lj+X intervals in [1,N] without jj+i decay} < dj+\-

Proof. By the previous proposition, it suffices to show that 

di N 
#{disjoint cr-bad intervals in [1, N] of length Lj+\} < n_ 

a Lj+1 

Assume the converse and conclude that we have more then 

dj+1 N Lj+1 N 

a Lj+i Lj Lj 

intervals of length Lj in [1, iV]. This is a contradiction finishing the proof. • 

We finally note 

Propos i t ion 9.15. We have that [l,iV] has "yjmax-decay. 

Proof. This is again an application of Proposition 9.4, which is possible by 

(9.25). • 
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Proof of Theorem 9.1. The decay condition follows from the previous propo­

sition. The condition on the norm of (i/[i,jv])_1 holds by assumption (9.1). 

• 
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CHAPTER 10 

.Distribution of exponential sums 

In this chapter, we will discuss some results about exponential sums. These 

will be used in the next chapter to derive the uniform recurrence results for 

the skew-shift. For c > 0, we write a e DC(c) if for all integers a, n G Z, we 

have 

(10.1) 

Furthermore, we denote e(x) = e2mx. The main result is 

Theorem 10.1. Let K > 1 and define 

(10.2) p = 

a -
a 

- — 
n 

c 
> - r 

n6 

lhK2\og{K)' 

Let P{n) be a polynomial of degree 1 < k < K with leading coefficient a G 
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DC(c), then for L > 1 

(10.3) Ee(pw) 
n = l 

< *°L^, 
c 

where W0 = W0(K) > 0 is a constant. 

The rest of this chapter contains the derivation of this theorem from the 

literature. It can be skipped for people only interested in understanding the 

multiscale procedure. Most of the results will be taken from Montgomery's 

lecture notes [33]. We will provide some details to make the dependence on 

the number c > 0 in the Diophantine condition explicit, since we will need it 

in the next chapter. 

We will comment on the optimality of the results derived here after The­

orem 10.10. The essential situation is that, one has that the exponent p in 

Theorem 10.1 must satisfy p > -^. 

10.1 Diophantine numbers 

The goal of this section is to discuss how well a real number a can be ap­

proximated by rationals with small denominator. As usual, we denote 

(10.4) ||x|| =dist(x,Z). 
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We begin with a simple observation. Let a G K and n be a nonzero integer. 

Then \\na\\ < e implies that there exists an integer a such that 

(10.5) 
a 

a 
n 

< 
n 

We now come to Dirichlet's theorem. 

Theorem 10.2. Let a G R and N > 1. Then there exists 1 < q < N such 

that 

;io.6) \Q&\\ < 
1 
iV' 

This theorem is a consequence of the pigeonhole principle, and can for 

example be found as Theorem 4.1 in Nathanson's book [34]. Our goal in the 

following will be to impose a restriction on a so that the above q are not too 

small. For c > 0, we write a £ DC(c), for Diophantine condition, if 

(10.7) \an\\ > 
n2 

for all integers n ^ 0. Since the series ]Cn>i "^ converges, one can show that 

Uc>o DC(c) has full measure. Let me remark that the meaning of (10.7) is 

that there are no integer solutions a and n > 1 of 

(10.8) 
a 

a 
n 

< 
nJ 
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So a is badly approximable by rationals. The first lemma studies the stability 

of this condition under multiplication of a by an integer. 

Lemma 10.3. Assume a E DC(c). Then for 1 < m < M, we have ma E 

Proof. Compute \\n • ma II > j±^ > cJ^- The claim follows. D 

We will need the following variant of Dirichlet's Theorem for Diophantine 

numbers. 

Lemma 10.4. Let a E DC(c) and N > 1. Then there exists \/cN < q < N 

such that 

(10-9) \\qa\\ < 1 

Proof. The existence of 1 < q < N with (10.9) follows from Theorem 10.2. 

By a E DC(c), we have that 

? * IMI s F 

This implies q2 > cN. • 

10.2 T h e cases K = 1 and K = 2 

In this section, we will present the results for polynomials of low degree. We 

begin with the case of linear polynomials. 
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Theorem 10.5. Assume a e DC(c). Then for P(n) = an + (3, we have 

(10.10) X>(p(n)) 
n = l 

21 
< — . 

TV C 

Proof. Since e(an + (3) — e(/3) • e(a)n, we may compute 

TV 

e(P(n)) = e ( /3 )e (a )47r r—r = e(/3)e(—?—cO V ; 

n = l 
e(a) - 1 2 sin(7ra) 

Prom this, we obtain the upper bound TLi<P(n)) < T-r-j rr. NOW, USe 

— |sin(7ra)| ' 

a that sin(x) > | x for 0 < x < 7r/2 to conclude the claim. 

We also state the result for quadratic polynomials. 

Theorem 10.6. There exists a constant Vo such that for a € DC(c), we 

have for a polynomial P(n) = an2 + (5n + 7 that 

(10.11) Ee(p(n)) 
n = l 

< y 0 V / I ^ + 2V
/iog(L) 

Proof. This follows from Theorem 2.2. from [33] combined with Lemma 10.4. 

D 

10.3 Vinogradov's Method 

In this section, we will treat polynomials of degree > 3. The method used 

here was originally developed by Vinogradov. Introduce for a e [0,1}K and 
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L> 1 

L 

(10.12) f(a, L) = Y^ e(ain + a2n2 + ••• + aKnK). 
n=l 

Introduce 

(10.13) Jb,K{L)= I \f(u,L)\2bda. 
J[o,i}>< 

We will need Theorem 4.2. from [33]. This result is known as Vinogradov's 

mean value theorem. 

Theorem 10.7. Let K,b > 1 be integers. There exists a constant V\ = 

Vi{b,K) > 0, such that 

(10.14) Jb,K(L) < Vx • L26-(i-*)ifc(fc+i) 

where 5 = e~b^k . 

And also Theorem 4.4. from [33]. 

Theorem 10.8. There is an universal constant V2 > 0. Let P{n) = J2k=o aknk-

Assume that there is q such that 

(10.15) \\aKq\\ < -
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then for b > 1 

Ee(pw) 
n = l 

< V2(b
kk)™ • L 

Jb,K-l(3L) 
l/2b-K(K-l)/2 

(10.16) 
1 log(g) q\og(q)\2b 

q L LK 

Next, we show 

Lemma 10.9. Let K > 3 and 0 < c < ±, a G -DC^c), and L > 3. T/ien 

i/iere exists q such that IIgall < - and 
1 ll-i II — g 

[10.17) 
1 log(g) glog(g) 51og(L) 1 
9 L LK - ^ L' 

Proof. By Lemma 10.4, we may choose q such that y/cL < q < L2 and 

\\qa\\ < - hold. The claim follows through a computation. • 

Furthermore, we may compute that 

[2b-K{K-l)/2 

For the choice b = [3k2 log(k)\, one may compute for k > 3 that 5fc(fc — 1) < 

\. Hence, we may conclude that 

Theorem 10.10. There exists a constant V3 = V${K) > 0, such that 

(10.18) J2e(P(n)) V, 1 - : 

7 1 = 1 

< —— . L lifc'-Mog(k) 
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Further applications of the methods of this thesis will require to obtain 

better control of the recurrence of the skew-shift. The naive first idea to do 

this is to improve the above theorem. However, this is not easily possible 

as discussed in the survey of Ford [20]. In particular, it is shown that the 

best possible bound in Theorem 10.7 is 5 = 0. So, we are quite close for the 

considered region b > k2\og{k), which means 5 < | . Let me furthermore 

recommend the survey of Ford here as a source for other application of these 

bounds for exponential sums. 

Some slight improvements in particular by making the dependence on 

K are possible in Theorem 10.7 by taking the results of Wooley from [38]. 

However, these results are not major improvements. 
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CHAPTER 1 1 

Return times to the set of non-suitability 

The goal of this chapter is to derive Theorem 7.7. The proof will be done 

in two steps. First, we will derive recurrence results for the skew-shift using 

the bounds on exponential sums from the last chapter. This will be achieved 

in Theorem 11.3. 

Then, we will study the structure of the set B^fT{Hj) using semi-algebraic 

geometry, and reduce questions about recurrence to them to questions about 

the recurrence to small balls. 

11.1 Selberg Polynomials 

In this section, we discuss properties of Selberg polynomials, which allow us 

to majorize characteristic functions of small balls in T^. We will use this 
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to convert the question about the recurrence to a small ball to estimates 

on exponential sums. Given A C TK, we denote by XA the characteristic 

function of A and e(x) = e27nx. 

Lemma 11.1. Let a £ K and e > 0. There are \fa,e(l)\ < he and d < 2/e 

such that for 

; i l . l ) faA*) = E ke(l)e(lx), 

l=-d 

we have fa,e(
x) > X[a-e,a+£](x) for all i £ l 

Proof This can be achieved by choosing / to be a Selberg polynomial, see 

(21+) on page 6 in [33]. For the decay of a; see (22) on page 8 in [33]. • 

Denote by |x|oo = sup1<fc<x \xk\ and 

(11.2) B£{a) = {x e TK : | x - a | o o < £ } . 

The following proposition is a multidimensional version of the last lemma. 

Proposition 11.2. Let a e T^ and 0 < e < ^ . Then there exists a 

trigonometric polynomial of degree d < 2/e given by 

(n-3) /fe) = £/(£M£ • aO 

l£l<d 

such that XBe(a) < f and \f{Q\ < (5e)K. 
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\K Proof. Choose / = Y\k=x /<**,£ with the /afc>£ as in Lemma 11.1. • 

11.2 Probability to be in a small ball 

The goal of this section is to prove the following theorem, which bounds the 

probability to land in a small ball. 

Theorem 11.3. Let K > 1 and c > 0 and define p = l5K^0 K- There is 

a constant W\ = Wi(K,c) > 0, such that for L > 1, j^a € DC(c), and 

u,a£ TK 

#{n = l , . . . , L : | |T Q "a ; -a | |< £ } 

(11.4) < (5e)KL + ^-L'-P. 

As in the previous chapter, DC(c) denotes the set of all real numbers a 

such that 

;n.5) HHi > 4 
nA 

holds for all integers n ^ O . We furthermore remark, that with Wo is Theo­

rem 10.1, we have that Wx = (20)* ^ . 

We begin the proof by replacing the claim about a ball, by a claim about 

exponential sums. Denote by f(x) = Yl\f\<z f(§)e(€ ' £•)> the function ob-
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tained from Proposition 11.2. We compute 

#{n = 1, . . . ,L : | | 2 > - o | | < e} = J2XB^)(T» 

(11.6) 
7 1 = 1 

n=l 

n=l | { |<2 

= (5sf L + (5ef E 
O<KI<! 

IXI -TM 
7 1 = 1 

In order to control the terms 

following lemma 

En=i <i • Ta^)\ for |£| < f, we will need the 

Lemma 11.4. Let 0 < |£| < | . Denote by 1 < k < K the number such that 

& ^ 0 and & = 0 fori >k + l. Then for u_eTK 

(11.7) i-7>=|p 

where ... denotes a polynomial of degree k — 1. 

Proof. This can be shown using induction. • 
We can thus apply Theorem 10.1 with a G DC(£j-). Hence, we obtain 

(11.8) Ee(i-T» 
71 = 1 

cs2 
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Proof of Theorem 11.3. There are less then (4/e) many £ such that |£| < 

2/e. Hence 

0<I4I<^ 

Ee(i-T^) 
n=\ 

< (20)* ^L'-r. 
ce2 

The claim now follows. • 

11.3 Semi-algebraic sets 

In this section, we introduce the notion of semi-algebraic set and study its 

properties. This notion is important, since it will allow us to reduce the 

question if a point is in a semi-algebraic set S to the question, if that point is 

in a small ball. More information on semi-algebraic sets can be found in the 

book of Bochnak, Coste, and Roy [2] and in Chapter 9 of Bourgain's book 

[6], 

We begin with giving the basic definitions. We denote by MpG, . . . , Xn] 

the set of all polynomials in the n variables X±,..., Xn. That is all functions 

of the form 

(11.9) P(X1,...,Xn) = J2 Pk1,...,knX*--.X£, 
0<fci,...,fc„<d 

where d > 0 is some integer and Pklt...,kn
 a r e r e a l numbers. We denote the 

lowest possible choice of d by deg(P) and call it the degree of the polynomial. 
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It will be important in the following, that we have 

(11.10) deg(P • Q) < deg(P) + deg(Q). 

We now come to the definition of a semi-algebraic set S. 

Definition 11.5. A set S C M.n is a semi-algebraic set of degree at most 

s • d, if there exist polynomials 

(11.11) Pu...,P8eR[X1,...,Xn] 

whose degree is bounded by d such that 

(11.12) 5 = UH(( ) e K" : Pl(xi,...,xn)sji0}, 

where Cj C { 1 , . . . , s} and Sji G {<, >, = } . 

Here the degree of the semi-algebraic set is the minimum over all possible 

choices for s and d. We will write deg(S) for the degree of S. One can see 

that the notion of semi-algebraic sets and their degree give nice properties of 

the underlying set from the result of Milnor [32], which says that the number 

of components of S is 0(deg(S)c), where C = C(n) is an universal constant. 

We will need the following result on the structure of semi-algebraic sets 

due to Gromov [22] and Yodin [39]. 

Proposition 11.6. Let n > 1. There are constants G\ > 0 and EQ > 0. Let 
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(S C [0,1]" be a semi-algebraic set of degree B, and 0 < e < EQ. If 

(11.13) \S\<en, 

then we can cover S by less then 

-i \ n—l 

(11.14) BGl ' 

many e balls. 

Proof. For the proof use Lemma 3.3. in [22] and then follow Bourgain as in 

Corollary 9.6. [6]. • 

11.4 Return times to semi-algebraic sets 

In this section, we will prove the following result, which is the extension of 

Theorem 11.3 to semi-algebraic sets. We recall that p = 15K2 ^ (K). 

Theorem 11.7. Let K > I, c > 0 and define q = 60R3 ]OK,K\ • There are 

constants W2 = W2(c,K),W3 = W3(c,K) > 0. Let S C TK be a semi-

algebraic set of degree B. Assume L satisfies 

;il,15) W2 • B^K+2^ < U>'2 < W3
 l l 

S\ BKG^' 
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Then for u£TK and ±a G DC(c) 

;il .l6) #{n = l , . . . , L : T > G S} < L1^. 

In the above theorem, we have that 

(11.17) W2 = 4- (10)*-5*2 -Wlt W ^ ^ - ^ . 

Furthermore G\ is the constant from Proposition 11.6. We will now prove 

this result using Theorem 11.3 and Proposition 11.6. In the following, we 

choose r > 0 such that 

(11.18) \S\ < rK, deg(<S) < B 

hold. The assumption on the degree holds by assumption, and for the other 

one, we need r > l*^11/jFC. We will begin with the following lemma 

Lemma 11.8. Assume that 

, „, '2W1B
G'\1/l<-,} f 1 Y" 

Then for any UJ_ G TK, we have that 

(11.20) #{n : 1 < n < L : T£u G S} < Ll~q. 
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Proof. By Proposition 11.6, we may cover S by T = BGxrK l many balls of 

radius r. Denote these by Br(a1),... ,Br(aT). By Theorem 11.3, we obtain 

that for 1 < t < T 

#{n: \<n<L: T^u G Br(at)} < (5r)K L + ^Ll~p. 

Since S C ( J t = 1 Br(at), we obtain 

4{n : 1 < n < L : T^ueS}<T- ( (5r ) K L + 5 L l " P 

r^ 

Hence, we see that the claim holds as long as 

BG>r-K+1(5r)KL < -Ll~\ ^ L ^ S ^ - K + I < - L 1 " 9 . 

These inequalities are implied by (11.19) as one checks through a computa­

tion. • 

Proof of Theorem 11.7. Choose r as 

1 
r = 2BG^KLi 

such that the inequality on the right hand side of (11.19) holds. It thus 

remains to check that 

4 • (10)* • 5K2W1B^K+2^ < Lp~^K+2l 
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Since p = l5K2\og{K) and q = ^ 3 | o g W , we have that D>'2 < U>~^+^. This 

leads to the modified condition 

4 • (10)* • b^W.B^2^ <LP'2. 

This is the right hand side of (11.15). We furthermore, recall that we need 

to require r > l^ l 1 ^ . Since LP I2 < LKK, this leads to the left hand side of 

(11.15). • 

11.5 Semialgebraic structure of suitability 

In this section, we will show how the set of suitable operators can be contained 

in a semi-algebraic set. We will begin by stating the necessary assumptions 

on the potential V(n) = f{T™u). For £ e ZK introduce 

(11.21) | e |= max 1^1-
— Kk<K 

We will assume that / is a trigonometric polynomial of degree A, that is 

(11-22) f(u)= £ / ( £ ) e ( £ - w ) . 
\£\<A 

Here e(x) — e2mx and £ • UJ_ = J2k=i ̂ kU>k a s U S U &1- We now state the main 

result of this section. 

Theorem 11.9. Let 7 > 0, 0 < r < 1. Denote by Qi C TK the set where 
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[1,N] is (7, T, p + 2) -suitable for H(u). For N > 10 large enough. There 

exists SI2 C T^ with the following properties 

(i) 0,2 is semi-algebraic of degree deg(Q2) < NK+5. 

(ii) fii C Q2. 

(Hi) We have for to € f22 that [1, TV] is (7, r,p)-suitable for H(UJ). 

Let me begin by a remark. 

Remark 11.10. The assumption that f is a polynomial is not really neces­

sary. It would be sufficient to assume the existence of constants C,c,a > 0 

such that 

(11.23) El/( i) l^C ' e"C A C T 

l£l>^ 

for all A > 1. The argument would then carry through, if one approximates 

f by a degree N°+l degree polynomial fN before truncating the exponential 

sums. Property (i) of Theorem 11.9 would then be replaced by deg(Q2) < 

NK+±+6_ 

We now begin with the preparations necessary for the proof. Introduce 

the map fa : R^ -» RK by 

{ u>i + a, k = 1; 

uk+uk-\, 2<k<K. 
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We then have (Tauj)k = (Tau)k (mod 1). Furthermore, we have 

Lemma 11.11. For 1 < k < K, {T^^Ljk is a polynomial of degree k and 

| f e ) * | < enk. 

Proof. It follows using induction that 

^ - ( 3 » + g ( 3 
fc-i 

( n\ 
\ I, I 

1=0 

Since (™) = j^y • ̂ [ < ^ and YIZo f. ^ e> t n e c l a i m follows. D 

For M > 1, introduce the cut-off potential VM by 

(11.25) VM(n) = £ E -d~f{^ " ^ - r ' 

|J |<Am=0 

We have 

Lemma 11.12. Assume M > 47re2A/VK then 

(11.26) | V ( n ) - V M ( n ) | < 
2 M - e ' 

Furthermore VM is a polynomial of degree less then M in UJ_. 

Proof. We compute 

°° f97 r i ' |
T n 

V(n)-VM(n)="£f(e, J2 - ~ r ^ f : - r -
\i\<A m=M+l 
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Using that ^7 < - ( ^ ) m and denoting C — 2irANKe2, we obtain that 

IT// \ V I M ^ WfW^iZ") V^ (C\m 

\V(n)-VM(n)\<^^ 2 . {-) m=M+l 

< „„ ,\I>HZK) 1 ( C X M+l 

e 1 - C / ( M + 1 ) V M + !, 

The claim follows. • 

Define the operator H{fNi as i7[i,jv] with the role of V replaced by VM-

By the previous lemma, we then have that 

;il.27) \\H^N]{u) - H{l^u)\\ < ] ^ 

Introduce 0 2 as the set, where [1, N) is (7, r ,p + l)-suitable for HM(LS). We 

have the following lemma 

Lemma 11.13. Assume 

11.28) M > , 7 , X/V 
J -21og(2) 

Then 

(1) Oi C fl2. 

(ii) For ui e f̂ 2, we have that [1,7V] is (7, r,p)-suitable for H{UJ). 
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Proof. By Lemma 7.17, we need to ensure that 

H/lllMZ*) < _L e-7iV 
2M • e ~ 2P+4 

This can be achieved as long as (11.28) holds and N is large enough. • 

We now come to 

Proof of Theorem 11.9. First observe that Definition 7.3 involves less then 

iV2 polynomial inequalities involving sums of elements (ex, {H^NAUJ))~1 ey). 

By Lemma 3.8, we can write these elements as ratios of determinants. These 

are polynomials of degree < 27V in the values V(n) of the potential. Hence, 

we can conclude that 

deg(ft2) < 2N3M. 

Because of the restrictions imposed in Lemma 11.12 and (11.28), we can 

choose NK < M < ^NK+l for N large enough. The claim now follows. D 

11.6 Proof of Theorem 7.9 

In this section, we will prove Theorem 7.9. We begin with the following 

lemma 

Lemma 11.14. There exists a semi-algebraic set S of degree deg(<S) < 

MK+b, such that for u_ £ S, we have that [1, M] is (7, r)-suitable for H^. 
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Proof. Introduce f2i as the set of all u_ such that [1, M] is (7, r, 3)-suitable 

for H„. By (7.29), we have | ^ i | > 1 - e~M\ By Theorem 11.9, we can find 

a semi-algebraic set fi2 ^ ^1 of degree < MK+Z such that for CJ G 0,2, [1, M] 

is (7, r)-suitable for H^- We let S = T^ \ fl2 and the claim follows. • 

We now come to 

Proof of Theorem 7.9. This follows by applying Theorem 11.7 to the set S 

from the previous lemma. • 

By (11.15), one can interfere the following smallness condition on S: 

W3 1 
[11.29) \S\ < 

NG* LP/2 ' 

where G2 = G2(K) = 2 • Gx • K2 (with G 1 as in Proposition 11.6) and 

P = i5Ki\og(K)- T h i s i s e x a c t l y (7.29). 
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CHAPTER 12 

Cartan's Lemma and Consequences 

In this chapter, we will provide the mechanism on how to improve proba­

bilities. In particular, we will prove Theorem 7.11. The main ingredient 

will be Cartan's lemma, which tells us that the set, where an appropriately 

normalized subharmonic function vanishes, has small measure. 

Theorems of the type of the main result of this chapter have first appeared 

in the work of Bourgain, Goldstein, and Schlag [11] on Anderson localization 

on the lattice Z2. They were then improved by Bourgain in [5], [6], [8], and 

[9]. 
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12.1 Cartan 's Lemma 

The following result is known as Cartan's lemma. It provides the basic idea 

of the result, although we will need a multidimensional version, which we 

discuss below. 

Lemma 12.1. Let ( / ) : D ^ l U {—00} be a subharmonic function satisfying 

(12.1) s u p p ( z ) < l , <p(0)>-l. 
\z\<l 

Then there exists a constant Ccartan > 0 such that 

;i2.2) \{y G [-i , l-] : \<p(y)\ > \}\ < e~ c — A . 

Proof. The proof is part of Section 1 of [5]. See also Section 11.2 and 11.3 in 

Levin's book [30]. • 

We will now discuss the main result of the paper [35] by Nazarov, Sodin, 

and Volberg. It proves a dimension independent statement of Cartan's lemma 

i n C K . 

Introduce for z E CK the norm 

K 1/2 

(12.3) \z\2= J ] M 2 

,fc=i 

We will use similar for vectors in R , T and so on. Let B = {2 £ C 
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I z 12 < 1} be the unit ball and / : B —* C an analytic function. Define the 

degree df by 

(12-4) " ' -^ I jTkf f i ' ^ 1 1 ' 

C = 64, and a = 384 • df. Furthermore, define the number M(f) by 

:i2-5) | { y 2 < \ : | / ( ^ ) | > M ( / ) } | = I 
z e 

From [35], we know that 

(12-6) M(f) < (eCy\\f\\L1{[_hii]K). 

Theorem 1 in [35] states that 

(I") |{M.<5: l / fe) l<^}l<i 

Combining these things, we obtain 

Theorem 12.2. Let f : B —>• C be an analytic function and set (p(z) 

log(|/(z)|). Assume that 

(12.8) (p(0) > - 1 , sup (p(z) < 1. 
W2<1 
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We have for A > 1 

1 , ^A (12.9) K M 2 < 2 : b ( ^ ) l > A } | < e - 7 6 s 

Proof. Follows from the previous discussion, noting that df < 2 and H/HL1 < 

e. D 

In particular, we see that a possible choice for Ccartan is Ccartan = Tjjjg-

Let me furthermore remark that in [7], Bourgain shows how to derive a 

version of this theorem from Lemma 12.1, where one has to replace e~CA by 

e~cx on the right hand side. 

12.2 A matrix valued Cartan Theorem 

In this section, we will show a variant of Cartan's lemma for matrix valued 

functions. In addition to imposing conditions (iii) and (iv), which are similar 

to the ones of Cartan's lemma, we will also impose a condition on submatrices 

being nice. This will allow us to obtain better estimates. Similar results 

can be found in Bourgain's book [6] in Chapter 14. The proof here largely 

parallels Bourgain's argument. 

Theorem 12.3. Let 7 > 0, 0 < r < 1. Let 0 < K < 1 and p > 0 satisfy 

(12.10) K + 2p<l. 
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Let LJQ £ TK and r > 0. Assume the inequalities 

(12.11) MT >max(6,log(7V)), lMl~T > 6, TV" > 24M2. 

Furthermore, assume the following conditions. 

(i) There exists a set E C [1,N] containing less than MNK elements. 

(ii) Let I C. [1,7V] be an interval of length M satisfying IDE = 0. For 

| l ~~ ̂ ob < 2r, we /wwe that I is (7, r)-suitable for H(z). 

(Hi) For \z_ — w0|2 < 2r, we have 

(12.12) | |%iv]U) | |<e 4 M T . 

fii/j We have 

(12-13) ||^[i,Ar](^o)_1|l < e ^ 

Then 

NP 
3M 

Np 
2000 (12.14) | { | w - " o | 2 < r : j|^[I,TV]C^)"1!! > eNK+2"}\ < rKe~^ 

The proof of this theorem will take the remainder of this section. It will 

culminate in us being able to choose a good function <p in (12.22) to apply 

Cartan's Lemma to. This ip will be the determinant of the Schur complement, 
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to which the inversion can be reduced by our suitability assumption. For this, 

we will first have to study the set J, where it holds. 

We let J be the union of all length M intervals in [1, N] disjoint from E. 

We note that any interval / C J of length |/ | = M will be (7, r)-suitable. 

We first compute 

Lemma 12.4. We have 

(12.15) \JC\ < 3MNK. 

Proof. Compute \J\ > N - 3MNK. D 

By assumption (ii) and Theorem 8.1, we have 

Lemma 12.5. Assume that MT > max(6, log(TV)) and ryMl~T > 6. For z_ 

satisfying \z_ — CJ0|2 < 2r, we have that 

(12.16) IK^r'CsJU^e4^. 

We will need the Schur complement formula 

Lemma 12.6 (Schur complement). Assume A is invertible. Then 

(12.17) 

\c Dl 
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is invertible, if and only if 

[12.18) S = D- CA~lB 

is invertible. Furthermore then 

[12.19) 
(A B \ (*-1 

\ c D) V 

A^+A^BS^CA-1 -A~lBS 

S^CA-1 S~l 

1 D O - l 

We apply the Schur complement formula with 

(12.20) A = Hj, D = Hjc, B = C* 

where we have with J = Us[as, b. 

(12.21) C = J ] ( ( e a s , .)eas_! + (ebs, .)eb,+1) 

We remark for further reference that \\BII < 1. Define 

(12.22) <p(z)=log\det(S(z))\ 

We record that 

Lemma 12.7. Assume that 8M < Np. Then for |u; - u_0\2 < 2r 

(12.23) \n-\{uj) II < e'^-^'e2 
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Proof. By the Schur complement formula, we compute 

I t fA^Hsu + iis-ixi + iiFj1!!)2. 

By Lemma 12.5, we compute 

8(l + | | # 7 1 | | ) 2 < 3 2 e 8 M T < e ^ + 2 p . 

Next, we observe that we may bound \\S\\ < 5\\HJ1\\ < 5e 4 M \ Using this 

and (12.15), we interfer for any minor S of S that 

log | det(5)| < (log(5) + 4M r) • 3MNK < 16M2NK < -NK+2p. 

Hence, we may conclude 

The claim now follows. • 

Furthermore, we have that 

Lemma 12.8. Assume 2AM2 < Np. We have for \z_ — u;0|2 < 1r that 

(12.24) \<p(z)\ < NK+P. 

Proof. Denote by Xj the eigenvalues of S. By Lemma 12.5 and (12.12), we 
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have that 

\\j\<\\H(z)\\ + \\Hj(z)-1\\<2e*MT. 

Hence, we conclude using (12.15) that 

<p(z) = ] T | log |Aj|| < 24M2NK. 
j 

This finishes the proof. • 

Lemma 12.9. We have that 

(12.25) bG4))| > -NK+P 

Proof. We observe that H S ^ ) - 1 ! ! < H ^ I . J V ] ^ ) - 1 ! ! < e ^ * " by (12.13). By 

(12.15) with Xj the eigenvalues of S(u>0) 

<p(Uo) = _ Y^ | log - i - | > -3MNK inf | log - 1 -
|Aj | j \Xj\ 

Now use that TJ-J < H^WQ) 1|| to conclude the result. • 

Proof of Theorem 12.3. Define for |z|2 < 1 

<p(z) = -^(p(2rz + u0) 

The previous two lemmas imply that </5(0) > —1 and sup|2|2<1 (p(z) < 1. We 
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may thus apply Theorem 12.2 to (p with 

A = -Np. 
2 

Hence, we obtain a set 0 C {z : \z\2 < | } of measure 0 < e~is36N" such 

that <p(uj) > —\NP on it. Rewriting this in terms of ip, we obtain 

\<plHL)\ < \NK+2P-

The claim now follows by (12.23) and a change of variables. • 

12.3 Proof of Theorem 7.11 

Our first task to prove Theorem 7.11 will be to extend condition (7.36) from 

a single w t o a small neighborhood. Introduce 

(12.26) E(u,p) = {A C [1,L] : AG B^p(H„)}. 

By (7.36), we have #H(w, 1) < Ll~q. We will now show that for zeCd with 

\z — ^ h small enough, we have 
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In the following, we let |Im(z)| = maxi<k<K |Im(^fc)|. We begin with the 

following lemma 

Lemma 12.10. Assume for A C [1,JV] and |Im(,z)| < p 

(12.27) \\HA(z)\\ < de0""". 

Let \Im(z)\ < jp<, then for 1 < k < K we have 

(12.28) | | / - # A U ) | | < C3N
2K, C3 = d e 2 C \ 

ozk 

Proof. Abbreviate f(z) = HA(z). Let f(z) = f(zi,..., zk-U z, Zk+u • • •, zK). 

Then / is an analytic function, satisfying for |Im(z)| < •£? that 

\f(z)\ < C^c\ 

By Cauchy's integral formula 

2mJK_Zkl=i((-zk)* 

The claim follows. D 

Next, we discuss how stable the assumption of being (7, r)-suitable is for 

a length M interval in [1, N]. We will later apply the proposition with p = 1. 

Lemma 12.11. Let p > 1, 7, r > 0. Let A C [1,N] be a length M interval, 
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that is (7, r,p)-suitable for H(LOQ). Assume 

(12.29) 7 M 1 " r > 2 , 7 M>max( J Fnog(A0,(p+l) log(2) + log(C3)) 

and 

(12.30) \u0 - z\2 < e"47M'. 

Then A is (7, r ,p — l)-suitable for H(z). 

Proof. The previous lemma implies that 

| |^K)-//U)||<C3iV2KU-a;ol2. 

We note that N2K < e2^ and 2p+2C3e^M by assumption. Thus 

|#H)-i7U)||<^e-^. 

The claim now follows by Lemma 7.17. • 

We collect the consequences of this lemma, in the next proposition. 

Proposition 12.12. Let u_Q e T^ and r = | e~ 4 7 M . There exists a set 5 

such that assumptions (i) and (ii) of Theorem 12.3 hold with K = 1 — q and 

N = L. 

Proof. We first observe that the previous lemma implies that for |z—ct;0|2 < r, 
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we have z,(z_, 0) C r,(w0,1). Choose 

= = U A-
AeE(ujo,l) 

We have that # £ < M • #S(w0,1). The claim follows. • 

Lemma 12.13. Assume (12.27) and jM > K\og(L), then condition (Hi) 

of Theorem 12.3 holds for r = ^e~4lM, N = L, and M large enough. 

Proof. A quick computation shows that |#[I,L](,Z)| < C\^°2 as long as 

|Im(z)| < r. The claim follows as long as AMT > log(Ci) + \C2. • 

It now only remains to ensure condition (iv) of Theorem 12.3. We will 

need the Vitali covering lemma. It can be found for example as Lemma 4.8. 

in Falconer's book [19]. 

Lemma 12.14. Let C be a family of balls contained in some bounded region 

ofMJ1. Then there is a (finite or countable) disjoint subcollection {Bi} such 

that 

(12.31) \jBc\jBi 
BeC i 

where Bi is the closed ball concentric with Bi and of four times the radius. 

We denote in the following 

(12.32) Br(uQ) = {uieRK : \u - u0\2 < r}. 
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Furthermore, we recall that in R , we have that 

K TTK/2 

(12.33) \{xeRK: £ |xfc|
2 < 1}| = = 7 * — r -

fc=l L\2 + L) 

We now come to 

Lemma 12.15. Let r = ^e~4lM as in Lemma 12.11 and assume (7.37). Let 

L > M and assume 7M > lOlog(A'). There exists a set fi0 Q ^K with the 

following properties: 

(i) The cardinality of Q,Q is bounded 

[12-34) #Q 0 < hjr—--e^KM TT^2 • AK 

r(f+ i)1 

K (ii) We have the following covering of T 

(12.35) JK = ( J Br(u0) 

(Hi) For U_Q 6 f20;
 we have 

(12-36) ||#[i,L]G4,)-1 | |<eL ' 

Proof By (7.37), there exists fti satisfying \QX\ > \-e~^KM and for u G fy, 

we have 

I ^ L L i ^ - ' l l ^ e ^ 
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Since 
TTK'2 1 1 

T(f + l)AKr BlM\ = ^ - T ^ > ^ K M -

we have that T^ \ Qi cannot contain such a ball of radius | r . Hence, we 

have that 

T* = u B\r^-4 ' 

We can now obtain the Vitali covering lemma to the collection of balls 

{Bir(uj)}^eQ1. Denote these by fir^),... BL(LO_T). Using that these are 

disjoint and TK D (Jt=i -^ r(^t) ' w e obtain 

1 = |TK | > 
t = l r(f + i) 

The claim follows. D 

In order to prove Theorem 7.11, we will apply Theorem 12.3 with K = 1—q 

and p = | . We will need the following lemma 

Lemma 12.16. Assume that 

(12.37) L > (8000A'log(Ar))^ 

then 

K/2 AK 1 a 

(12.38) —j, . e-2oooL3 < e" 
y ; r f + i 
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Proof. This is a somewhat lengthy computation, where one uses the bound 

log(r(f + l))<2Klog{K). • 

We are now ready for 

Proof of Theorem 7.11. The previous discussions show that we can apply 

Theorem 12.3 to each ball Br(uj) for u> e Vt\. We can thus conclude that the 

claim holds except in an exceptional set of measure 

< — v e~2ooo^3 < e~
L . 

- r ( f + i) 

This finishes the proof. • 
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APPENDIX A 

.Numerics 

The eigenvectors were computed with the following Mathematica code. I 

believe that the code is self-explanatory enough, that I do not need to make 

further comments. 

s ize = 30; 

lam = 0 .9 ; 

alpha = Sqr t [2 . ] - 1; 

KK = 2; 

HO = DiagonalMatrix[Tabled, {k, 1, size - 1}], 1] 

+ DiagonalMatrix[Tabled, {k, 1, size - 1}], -1]; 

HI = HO + DiagonalMatrix[Table[2 lam Cos [2 Pi alpha n"KK], 

{n, 1, size}]]; 

evs = Eigenvectors [HI]; 
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Table[ListPlot[Abs [evs [ [ k ] ] ] , PlotRange -> {-0.1, 1}] , 

{k, 1, s ize}] 
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