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ABSTRACT

Estimating Realized Covariance using High Frequency Data
by

Lada Maria Kyj

Assessing the economic value of increasingly precise covariance estimates is of great
interest in finance. We present a realized tick-time covariance estimator that incorporates
cross-market tick-matching and intelligent sub-sampling. These features of the estimator
offer the potential for improved performance in the presence of asynchroneity and mar-
ket microstructure noise. Specifically, tick-matching preserves information when arrival
structures are asynchronous, and intelligent sampling and averaging across sub-samples
reduces microstructure-induced noise and estimation error. We compare the performance
of this estimator with prevailing methodologies in a simulation study and by assessing out-
of-sample volatility-timing portfolio optimization strategies. We demonstrate the benefits
of tick time over calendar time, optimal sampling over ad-hoc sampling, and sub-sampling
over sampling. Results show that our estimator has smaller mean squared error, smaller
bias, and greater economic utility than prevailing methodologies. Our proposed optimized
tick-time estimator improves upon both prevailing calendar-time methods and ad-hoc sam-
pling schemes in tick time. Empirical results indicate substantial gains; approximately 70
basis points improvement against the 5 minute calendar time sampling scheme; approxi-

mately 80 basis points against optimally sampled calendar time; and 30 basis points against



tick time sampled every 5th tick. Both simulation and empirical results indicate that tick
time is the better sampling scheme for portfolios with illiquid securities.

Asset allocation is inherently a high dimensional problem and estimated realized co-
variance matrices fail to be well-conditioned in high dimensions. As a result, the portfolios
constructed are far-from optimal. Factor modeling offers a solution to both the growing
computational complexity and conditioning of the covariance matrices. We find that risk
averse investors would be willing to pay up to 30 basis points annually to switch from the
best performing exponentially smoothed portfolio to the best performing single-index port-
folio. As the number of assets increases, portfolio allocation using the single-index model
is better able to replicate the benchmark index. For high-dimensional allocation problems,

factor models are a more natural setting for employing realized covariance estimators.
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Chapter 1
Introduction

Assessing the economic value of increasingly precise covariance estimates is of great
interest in finance. Adoption of high-frequency data provides opportunities for better in-
ference of market behavior, but at the same time necessitates the development of more
sophisticated computational methods. We present a realized tick-time covariance estimator
that incorporates cross-market tick-matching and intelligent sub-sampling. These features
of the estimator offer the potential for improved performance in the presence of asyn-
chronous observations and market microstructure noise. We compare the performance of
this estimator with prevailing methodologies in a simulation study and by assessing out-of-
sample volatility-timing portfolio optimization strategies. Results show that our estimator
has smaller mean squared error, smaller bias, and greater economic utility than prevailing
methodologies. For high-dimensional allocation problems we address the problem of ill-
conditioned covariance matrices by considering the performance in the settings of rolling
regression and factor models. We conclude that factor models are a more natural setting
for employing realized covariance estimators.

High-frequency financial data are observations recorded at the finest time scale, often
at the transaction level. These data sets have been used to study market microstructure and
realized covariance. Market microstructure is concerned with characterizing the moment-
to-moment structure of exchanges. Realized covariance estimation utilizes high frequency
data and provides considerable efficiency gains in measuring variance, which is an essential

statistic for trading decisions, risk measurement, and portfolio optimization. Two problems



emerge with the adoption of high frequency data: 1) market microstructure effects contam-
inate the underlying process, and 2) observations are asynchronous and irregularly spaced.

Our proposed estimator addresses both of these problems.

Gigabytes

o BTN

2000 2001 2002 2003 2004 2005 2006

Figure 1.1  Size of Trades and Quotes (TAQ) database of the New York Stock Exchange (NYSE)
contains all recorded trades and quotes on NYSE, AMEX, NASDAQ, and the regional exchanges
from 2000 to 2006. Derived from Yan (2007)

High frequency databases have been available for over two decades, and the analysis
of this data continues to evolve. Wood (2000) chronicles the development of this class of
data; from the Fitch data in the early 80’s, to ISSM data, to the release of the Trades and
Quotes (TAQ) database in 1993. The TAQ database contains all recorded trades and quotes
on the New York Stock Exchange (NYSE), AMEX, NASDAQ, and the regional exchanges
from 1992 to present. Figure 1.1, derived from Yan (2007), shows the growth in the
TAQ database and that the number of quotes has changed dramatically in recent years. As
confirmed in a study by Hansen and Lunde (2006) properties of market microstructure have
changed substantially over (2000-2004). This coincides with the NYSE’s phased transition

from fractional to decimal pricing completed in February 2001.



Market microstructure describes the features of the interaction between buyers and sell-
ers of a financial asset. A survey by Madhavan (2000) identifies three sources of market
frictions which result in departures from the latent price process asssumption: 1. trading
frictions, 2. private information, and 3. alternative trading structures. Economic theory of
market microstructure is discussed in O’Hara (1995) and Hasbrouck (2007) provides a
discussion of empirical findings. Although market microstructure effects capture the im-
pact of trading mechanisms on the price formation process, from a statistical perspective
we can view market microstructure effects as “observation error”, the deviation of the ob-
served values from the hypothesized latent price process. In the remainder of this thesis we
refer to the market microstructure as MM noise.

Estimating covariance is challenging as: 1) the continuous time covariance process
is observed only at discrete times, 2) asynchroneity introduces the so called Epps ef-
fect, where the realized covariance estimator is biased towards zero as the sampling fre-
quency increases, and 3) in high dimensional settings, the realized covariance matrix is
ill-conditioned. Numerous methods have been proposed to solve the problem of discrete
observations of continuous time processes. See Sorensen (2004) or Fan (2005) for survey
papers. The consideration of multiple processes, arriving asynchronously, and contami-
nated with market microstructure noise further complicates the estimation problem. See
Rend (2003) for a detailed analysis of the Epps effect. This problem is more pronounced
for sparse data, such as generated by less actively traded assets.

Andersen, Bollerslev, Diebold, and Labys (2001) developed nonparametric estimators,
termed realized estimators, which estimate the covariance matrix from the sum of squares

or cross-products of returns without consideration for market microstructure noise. Only



recently have works on realized covariance begun to address the role market-microstructure
plays in covariance estimation. The estimation of realized covariance of asynchronous
observations has largely relied upon calendar-time methods of synchronization. Hayashi
and Yoshida (2005) developed a tick matching covariance estimator that does not rely on
ad-hoc synchronization and this has generated a number of open questions in the estimation
of the realized covariance. Examining the performance of these estimators has developed
into an active research area. As evidenced by Bandi, Russell, and Zhu (2008), Bandi
and Russell (2006), Zhang, Mykland, and Ait-Sahalia (2005), Voev and Lunde (2007),
Griffin and Oomen (2006), most studies have been limited to low dimensional settings
(p < 3). Higher dimensional studies, such as de Pooter, Martens, and van Dijk (2006), have
addressed the ill-conditioned covariance matrix problem by employing rolling regression

techniques.

1.1 Context

1.1.1 Calendar-Time Realized Covariance Estimation

The discretely observed price process p(t;) is a function of both the latent price process
and the market microstructure effects. Andersen, Bollerslev, Diebold, and Labys (2001),
introduced nonparametric estimators of the quadratic variation and covariation, as they
estimate the unobserved quantities from the sum of squares or cross-products of returns.
This methodology first creates a homogenous time series by sampling the observations at
equally spaced intervals. Specifically, we allow for m equally spaced intraday observations

within the daily time span of 0 as the start of the day and T as the terminal time of the day.



We define return of asset A4 as:

1*T) t¢=1*T,2*T,...,T. (1.1
m m

T am)(ts) = palts) — palts —

The resulting realized variance and realized covariance are of the form:

~ 3 =, i
Va(m) = ;TA,(m)(mT) (1.2)
and
Cas(m) = 3 ram(=T)  om(=T). (1.3)

i=1

Asymptotic distribution theory for these estimators is developed in Barndorff-Nielsen and
Shephard (2002, 2004a), who show that they are consistent estimators that converges to the
true variance and covariance at a rate of \/m.

Realized covariance estimators require synchronous observations and this is achieved
by interpolating prices onto an ad-hoc common sampling grid, i.e every 5 minutes. This
creates an artificial dependency on the choice of the granularity of the sampling grid. Pop-
ular interpolation scheme include previous tick and linear interpolation. Dacorogna, Gen-
cay, Muller, Olsen, and Pictet (2001) provide a survey of these methods and highlight in-
herent problems. The basic issue is a balance between the bias introduced by asynchroneity
and the reduction in variance.

Eliminating dependency on ad-hoc gridding schemes motivates the discussion of find-
ing optimal sampling frequencies. Bandi and Russell (2006) consider optimal sampling
and present a technique for separating the microstructure noise from the realized covari-
ance. They present an optimal sampling frequency which is a function of the signal-to-
noise ratio. This suggests that a variant of signal-to-noise ratio should be used to sam-

ple the series, and hence different assets will should be sampled at different frequencies.



Zhang, Mykland, and Ait-Sahalia (2005) present a similar optimization of the sampling
frequency methodology for calculating realized volatility in the presence of microstructure
noise. Moreover, where sampling throws away most of the data, Zhang, Mykland, and
Ait-Sahalia (2005) introduce sub-sampling as a method for preserving the richness of high
frequency data.

For variance reduction Zhang, Mykland, and Ait-Sahalia (2005) advocate sub-sampling
and averaging. This is carried out by dividing the time domain grid into K non-overlapping
subgrids, and then average of the estimates calculated over the different subgrids. Figure
1.2 illustrates the intuition behind sub-sampling. This example includes two subgrids, top
and bottom. Estimates are calculated for both the top and bottom sets, and then the two
estimates are averaged. Zhang, Mykland, and Ait-Sahalia (2005) present Monte Carlo
evidence of the performance of different estimation strategies and attribute substantial bias
reduction to sparse sampling. They attribute variance reduction to sparse sampling and/or

sub-sampling.

Lol

Figure 1.2 Illustration of sub-sampling, Two sub-grids, top and bottom, and two estimates are
calculated for each set. Finally, the top and bottom estimates are averaged.

Hansen and Lunde (2006) discuss optimal sampling of realized variance in the context
of different noise structures. Specifically, their data analysis rejects the notion that noise is
independent and identically distributed (i.i.d.), and instead they advocate for autocorrelated

noise that is dependent on price. Under this noise specification Hansen and Lunde (2006)



advocate a bias-correcting kernel estimator introduced by Zhou (1996) that incorporates
the first order autocovariance. This proposed kernel estimator is shown to reduce the bias
due to noise and motivates the discussion of lead-lag estimators. Examples of kernel-type
realized covariance estimators include Griffin and Qomen (2006), Voev and Lunde (2007)
and Hansen, Large, and Lunde (2006).

Bandi and Russell (2005) extends their univariate work and translate their methodology
into optimal sampling for covariance. The Bandi and Russell optimal sampling frequency
can be understood as the ratio of the second moment of the cross product of price returns
over the squared second moment of the cross product of the noise process. De Pooter,
Martens, and van Dijk (2006) is a closely related study, where realized covariances are not
only optimally sampled, they are also sub-sampled and then bias corrected. De Pooter,
Martens, and van Dijk (2006) also consider lead lag covariances to control the bias. Zhang
(2006) provides a comprehensive discussion of the Epps effect and provides an optimal
sampling scheme that balances the trade-off between bias and the numerous sources of

CIror.

1.1.2 Tick-Time Realized Covariance Estimation

Sampling schemes emerge as another important issue in determining optimal sampling
frequencies. Ait-Sahalia, Mykland, and Zhang (2005) considers non-uniform sampling
intervals, including randomly spaced intervals. Their chief finding is that once the noise
structure is modeled, then it is optimal to sample as often as possible, independent of arrival
structure. Oomen (2006) compares different time scales, calendar time (CT), and tick time

sampling (TT), and finds that TT provides optimal results with respect to the MSE criteria.



He credits this to the location of the sampling points that generate the information set.
Hansen and Lunde (2006) also consider different sampling schemes, and accordingly find
favorable results using tick time instead of calendar time.

Hayashi and Yoshida (2005), HY hereafter, introduce a cumulative covariance estima-
tor that is a transaction time estimator and does not require any artificial grids. The HY
estimator is the sum of the cross product of returns of non-empty overlapping intervals,
In the absence of noise this estimator is unbiased and consistent, moreover the HY esti-
mator is consistent when observations are asynchronous. This estimator is similar to the
estimator introduced by de Jong and Nijman (1997). The de Jong estimator regresses the
cross-covariance on the length of the overlapping interval, and is limited to a discrete time
model with stationary increments. Hayahsi and Yoshida claim that their estimator should
display properties of unbiasedness and consistency even if Brownian motions are replaced
with Levy processes, as the key properties in their proofs are independence of increments
and finiteness of moments. The main contribution of this estimator is correcting for the
bias introduced by asynchroneity. This advance can be understood as intelligently match-
ing ticks across assets. The introduction of MM noise renders this estimator inconsistent
and dependent on the noise structure, it may also be biased. An additional issue with this
estimator is the computational intensity.

For the sake of computational efficiency Palandri (2006) develops an aggregation
scheme for the HY estimator and shows that this scheme preserves the informational con-
tent of the original HY estimator. Voev and Lunde (2007) also propose an aggregated
HY estimator where the ticks of the faster process are matched to the ticks of the slower

process.



Griffin and Oomen (2006) compare the bias and variance of a calendar-time realized
covariance estimator and the HY estimator in the presence of asynchronous observations
arriving with a Possion process. The microstructure noise is assumed to be independent
and identically distributed (i.i.d.) and independent of the efficient price process. Griffin
and Oomen conclude that under i.i.d. noise both estimators are unbiased but inconsistent,
optimal sampling frequencies are determined by the slowest process, and that relative per-
formance is a function of the noise-to-signal ratio. For low noise-to-signal ratios the HY
is ideal, but for high noise-to-signal ratios an optimally sampled calendar-time realized
covariance estimator may perform better. Griffin and Oomen suggest sampling both pro-
cesses with the same sampling frequency, which is counter to the approach of this thesis.

Moreover the Voev and Lunde (2007) study examines the HY estimator where the MM
noise is contemporaneously and serially correlated with the price process. An extensive
simulation study is conducted where the MSE of the covariance estimators of different
arrival structures are compared under different noise structures. In the absence of noise,
the original HY estimator is optimal with respect to MSE. The introduction of i.i.d. noise
makes an ad-hoc sub-sampled HY optimal. In the case of stochastic correlation and cor-
related noise, the ad-hoc sub-sampled HY and an ad-hoc sub-sampled kernel type HY
estimators are most competitive. Results suggest that the greatest gains are achieved by
sub-sampling. The study suggests optimizing the sub-sampling frequency as a topic of

interest.
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1.1.3 Economic Assessment

Andersen, Bollerslev, Diebold, and Labys (2001) find that assets realized covariances
display persistence and this slow rate of decay is preserved even under temporal aggrega-
tion. These finding motivate the use of volatility-timing strategies for assessing the perfor-
mance of different variance and covariance estimators.

Fleming, Kirby, and Ostdiek (2001, 2003) popularized volatility-timing as an objective
methodology for assessing the economic “value-added” of alternative estimators. “Value-
added” is understood in a portfolio framework as the amount a risk-averse investor would
be willing to pay to capture the observed gains in portfolio performance. Specifically,
investors follow a volatility-timing strategy where the portfolio weights vary only with
changes in estimates of the conditional covariance matrix of daily returns. Markowitz
mean-variance (MV) optimization is the standard theoretical framework for optimal port-
folio construction followed in this research. A quadratic utility function is used to dif-
ferentiate between portfolios generated using different estimators. The incremental value
of using the one estimator instead of another is calculated by finding the constant which
makes the two utilities equal.

Bandi and Russell (2006) evaluate their optimally sampled realized variance estimator
using the volatility-timing strategy presented in Fleming, Kirby, and Ostdiek (2003). They
find that a risk-averse investor is willing to pay between 25 and 300 basis points per year to
switch from fixed intervals to optimally sampled intervals. Furthermore, Bandi, Russell,
and Zhu (2008) evaluate a related optimally sampled covariance estimator, and find that

an investor would be willing to pay around 80 basis points a year to change from fixed
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intervals to optimal intervals to achieve this superior level of performance.

1.1.4 High Dimensional Estimation

Markowitz mean-variance (MV) optimization is the standard theoretical framework for
optimal portfolio construction. MV optimization requires covariance matrices to be not
only invertible, but also well-conditioned. Realized covariance estimation has emerged
as a viable candidate for covariance estimation. This class of estimators employs high-
frequency data and provides more precise estimates. In a low dimensional setting, it
has been shown that realized covariance estimators provide utility gains over traditional
GARCH approaches based on daily data for risk averse investor following a MV optimiza-
tion strategy.

Estimation of high dimensional covariance matrices is computationally expensive. As
the number of dimension increases, the number of operations increases quadratically. Re-
alized covariance estimates also become numerically ill-conditioned due to small effective
sampling sizes. As a result the inversion of the matrix, a necessary step in mean-variance
optimization, becomes problematic. This is a paradox of high frequency data, at first glance
it appears as there is “too much data”, but once asynchroneity and market microstructure
effects are acknowledged, then once again we are confronted with excessive sampling er-
rors.

Previous literature has addressed imprecise covariance matrix estimates by imposing
more structure on the covariance matrix. The single-factor model is one possible alterna-
tive. It has the advantage of reducing the dimension of the estimation problem, but also a

disadvantage of possibly not capturing all of the covariation and thereby resulting in biased
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estimates. In addition, Andreou and Ghysels (2002) suggest roiling regression as a more
structured estimator. We will examine the performance of realized covariance estimators

in both of these settings.

1.2 Contribution

This thesis has addressed realized covariance estimation using high frequency data, an
issue that is of great interest in finance. Market microstructure effects and asynchronous
observations necessitate the development of more sophisticated computational methods.
We present a realized tick-time covariance estimator that incorporates cross-market tick-
matching and optimal sub-sampling. The bias and variance properties of this Cross-Market
Tick-Matching Estimator are derived. We compare the performance of this estimator with
prevailing methodologies in a simulation study and by assessing out-of-sample volatility-
timing portfolio optimization strategies. Results show that our estimator has smaller mean
squared error, smaller bias, and greater economic utility than prevailing methodologies.
For high-dimensional allocation problems, factor models are a more natural setting for
employing realized covariance estimators. We consider parsimonious realized portfolio
selection and conclude that the Cross-Market Tick-Matching Estimator provides as good
as or better levels of utility within a single-factor model setting as any other competing
estimator when using a fully estimated covariance matrix. The computational efficiency
of the factor-model is a very desirable feature and suggests a practical application for our
proposed estimator. The plan of the thesis is as follows:

Chapter 2 develops and assesses an optimally sub-sampled tick-time realized covari-

ance estimator. The properties of this proposed estimator are assessed in a simulation study.
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In addition, a volatility-timing framework, as popularized by Fleming, Kirby, and Ostdiek
(2001, 2003), is used to empirically assess the economic value of this proposed estimator
with respect to prevailing methodologies. We assess a small portfolio with only three as-
sets and conclude that our proposed estimator performs well in the presence of infrequently
quoted assets and provides risk averse investors with utility gains.

Chapter 3 considers a parsimonious method for portfolio allocation of a high dimen-
sional problem. The realized covariance estimator suffers the curse of dimensionality as
the number of dimensions increases. In particular the realized covariance matrix becomes
ill-conditioned and fails to provide optimal portfolio weights. We compare the performance
of exponentially weighted covariance matrices against covariance matrices generated by a
single-index model. The single-index model has an attractive feature of being far less com-
putationally intensive. Using the Dow Jones Industrial Average, we find that the single-
index model is a plausible alternative to estimating the full covariance matrix as it provides
similar utility gains for a risk averse investor.

Chapter 4 presents the derivation and properties of the Cross-Market Tick-Matching
estimator as well as simulated results. We find that tick-time estimators perform very well
in the presence of dynamic arrival rates. We also show a limitation of tick-time estimation
as it performs poorly in the presence of large noise-to-signal disturbances further contam-
inated by asynchronous jumps. This motivates future research into accommodating for
jumps in realized covariance estimation.

Finally, Chapter 5 summarizes the finding within this thesis and outlines four avenues

for future research.



Chapter 2
The Economic Value of Cross-Market Tick-Matching
Realized Covariance

2.1 Introduction

Asset prices can be understood as discrete time observations of underlying continuous
time price processes. Realized covariance is a non-parametric estimate of the covariance
structure obtained by summing the squares of returns, for variance elements, and cross-
products of returns, for covariance elements. Adoption of high-frequency data is desirable
under the assumption of continuous time price processes, because more frequent sampling
mitigates the estimation error caused by discrete observations. Noise from market mi-
crostructure effects, however, can be an important component of high frequency returns. As
aresult of these competing factors, the sampling frequency can greatly influence the perfor-
mance of realized covariance estimators. Sparse sampling provides insufficient information
improvement over daily data, but sampling too frequently can cause market microstructure
effects to dominate the covariance estimates. Hence, the adoption of high-frequency data
provides opportunities to better model and understand market behavior, but it requires the
development of more sophisticated methods.

Past literature largely focuses on estimating volatility and addresses many of the con-
cerns raised by microstructure noise contamination of the univariate series. Andersen,
Bollersiev, Diebold, and Labys (2001) first proposed realized variance estimation using
ad-hoc calendar-time sampling. Recent literature on realized volatilities includes works by
Dacorogna, Gencay, Muller, Olsen, and Pictet (2001), Andreou and Ghysels (2002), Bandi

and Russell (2006), Ghysels, Santa-Clara, and Valkanov (2006), and Hansen and Lunde
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(2006). Asymptotic distribution theory for these estimators is developed in Barndorff-
Nielsen and Shephard (2002, 2004a). A limitation of calendar-time sampling is the need for
synchronous observations across markets. Under the standard methodology this is achieved
by interpolating prices onto an ad-hoc common sampling grid i.e, every 5 minutes. This
causes realized covariance estimates to be vulnerable to the so called “Epps effect” (Epps
1979), where the covariation estimate converges to zero as the sampling grid gets finer.
(See Reno (2003) and Zhang (2006).)

Eliminating dependency on ad-hoc calendar-time grid intervals motivates determining
the optimal sampling frequency by minimizing the mean squared error (MSE) of the re-
alized covariance estimator. The optimal sampling frequency is a function of the return
series’s signal-to-noise ratio, implying that different assets should be sampled at differ-
ent frequencies. Recent literature on optimal sampling frequencies for calendar-time esti-
mators includes works by Bandi and Russell (2006), Zhang, Mykland, and Ait-Sahalia
(2005), and Griffin and Oomen (2006). Sampling, however, considers only a small portion
of the data. Zhang, Mykland, and Ait-Sahalia (2005) advocate sub-sampling and aver-
aging as a technique for exploiting the richness of high frequency data. They divide the
time domain grid into K non-overlapping subgrids and average the estimates over the K
different subgrids to calculate the final estimate.

When sampling high-frequency data, choosing tick time or calendar time is another
important issue. Operating in tick time samples the price process according to changes in
the level of market activity. As a result, tick-time sampling offers superior location of the
sampling points that generate the information set. Oomen (2006) finds that tick-time sam-

pling yields lower MSE in the univariate setting. Recent literature on tick-time estimation
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includes Hansen and Lunde (2006), Garcia and Meddahi (2006), Ait-Sahalia, Mykland,
and Zhang (2005), and Griffin and Oomen (2008). Hayashi and Yoshida (2005) and Corsi
(2006) develop a tick-time covariance estimator (HY hereafter) that does not rely on ad-hoc
synchronization, but leaves open how to determine the optimal sampling frequency. Griffin
and Oomen (2006) and Voev and Lunde (2007) evaluate the performance of the HY esti-
mator against prevailing calendar-time estimators. Griffin and Oomen (2006) determine an
optimal sampling frequency and sample both processes independently at this frequency; a
setup that fails to address asynchroneity. Voev and Lunde (2007) introduce a cross-market
tick-matching algorithm, but they implement it with ad-hoc tick-time sampling.

We address the implementation issues introduced by Hayashi and Yoshida (2005) by
presenting an optimally sub-sampled realized covariance estimator via a cross-market tick-
time algorithm. Working in transaction time rather than calendar time, we can construct
a Cross-Market Tick-Matching (CMTM) estimator that better addresses non-synchronous
price observations. We determine the optimal sampling frequency for the CMTM estima-
tor with respect to the mean squared error (MSE) criterion. Finally, we exploit the richness
of high frequency data by generating multiple sampling sets (via sub-sampling) and aver-
aging the resulting estimators. Our proposed estimator differs from existing methods as
the level of trading activity determines the optimal sampling frequency. We also provide
empirical analysis that highlights the advantages of operating in tick time when estimating
covariances for portfolios containing less active stocks.

This chapter provides three primary contributions: 1) derivation of a Cross-Market
Tick-Matching covariance estimator, 2) optimal sub-sampling of this CMTM estimator,

and 3) quantification of the incremental contribution of each enhancement to the covariance
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estimator. In addition to conducting simulation experiments, we use the volatility-timing
strategies popularized by Fleming, Kirby, and Ostdiek (2001, 2003) to objectively assess
the economic value of the CMTM estimator with respect to prevailing methodologies. In
this setting, we demonstrate the benefits of tick time over calendar time, optimal sampling
over ad-hoc sampling, and sub-sampling over sampling.

As demonstrated in Bandi and Russell (2006), de Pooter, Martens, and van Dijk
(2006), and Fleming, Kirby, and Ostdiek (2003), calendar-time covariance estimators
using high frequency data have provided considerable efficiency gains in measuring re-
turn volatility, an essential statistic for trading decisions, risk measurement, and portfolio
optimization. Our proposed optimized tick-time estimator improves upon the prevailing
calendar-time methods and upon ad-hoc sampling schemes in tick time. We realize ap-
proximately 70 basis points improvement against the five-minute calendar time sampling
scheme, approximately 80 basis points against an optimally sampled calendar-time esti-
mator, and 30 basis points against a tick-time estimator sampled every fifth tick. Both
simulation and empirical results indicate that tick time is the better sampling scheme for
portfolios with less active securities.

This chapter is organized as follows. Section 2.1.1 outlines the theoretical framework
for realized covariance estimators. Section 2.2 presents our data. Our proposed estimator is
presented in Section 2.3. Section 2.4 discusses the Monte Carlo simulation results. Section
2.5 presents the results of the volatility-timing trading strategy. Section 2.6 concludes
and suggests avenues for future research. The Appendix A.1 provides details of the data

filtering technique.
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2.1.1 Model Framework

To begin, let X; = [2(1,0),Z(24):- .., Z(ne)] be an n-dimensional vector of log price
processes define as:
}4 t
X = / p(s)ds +/ ©(s)dW (s). (2.1)
0 0

Here, p(s) is the n-dimensional vector of drift coefficients, ©(s) is a n x n matrix satisfy-
ing ©(s)O(s)" = X(s), and W is an n-dimensional Brownian motion. The instantaneous

covariance

UE;(S) o40Bp(s)
Xanp(s)= ) (2.2)

caopp(s)  oh(s)

yields the cumulative covariance between processes A and B, such that for all t < oc:

t
/ Yap(s)ds < o0. 2.3)
0

In the continuous time setting, we can assume that ;1 = 0 because the estimate of
1 is small relative to the estimation error. This assumption holds for sufficiently small
increments in the discrete time setting. We are interested in estimating the quadratic or

cumulative covariation between process A and process B which is defined as:

t
VA = / ZA(S)dS (24)
Ot
XA

CA,B — ,B(S)ds' (25)

0

The presumed latent price process fails to fully capture market microstructure effects.
Hence the discretely observed price process P(#;) is a function of both the latent price
process X (t;) and the market microstructure effects u(¢;), which are treated as “observation

error” such that the price of asset A is observed as:

palty) = zalts) +ualty), i=1,2,...,n (2.6)
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Hence, returns are written as
ra(ts) = Apalti) = Az a(ts) + Aua(ty). (2.7

Define the noise terms to be contemporaneously correlated such that:

Ua 0 5,24 €A,B

~N (2.8)

up 0 éas &3

and assume that noise is uncorrelated with the latent price process X (¢;). In addition, the

noise is assumed to be uncorrelated with non-contemporaneous noise terms.

2.2 Data

High frequency databases have been available for over two decades and the analysis
of this data continues to evolve. Wood (2000) chronicles the development of this class
of data from the Fitch data in the early 1980’s, to the Institute for the Study of Securi-
ties Markets (ISSM) data, to the release of the Trade and Quote (TAQ) database in 1993,
Academic research in both market microstructure and covariance modeling rely heavily
on high frequency data. Market microstructure literature is concerned with characteriz-
ing the moment-to-moment structure of exchanges affecting trade and quote dynamics.
This includes market structure for transactions, agents facing asymmetric information, and
operational constraints such as clearing and inventory costs. Economic theory of market
microstructure is discussed in O’Hara (1995) and Hasbrouck (2007) provides a discussion
of empirical findings. Although market microstructure effects capture the impact of trading
mechanisms on the price formation process, from a statistical perspective microstructure
effects act as observation error, which we label “MM noise.” Only recently has realized co-

variance research begun to address the role market microstructure plays in estimation. (See
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Bandi, Russell, and Zhu (2008), Bandi and Russell (2006), Zhang, Mykland, and Ait-
Sahalia (2005), Voev and Lunde (2007), and Griffin and Oomen (2006).) This research
relies on estimating optimal sampling frequency as a function of the volatility-to-noise ra-
tio of a given time series of returns. Our realized covariance estimator is a function of the
estimate of MM noise.

The characteristics of high-frequency data continue to evolve. Yan (2007) shows nearly
8-fold increase in the number of trade and quote observations in the TAQ database in the
six years following 2000. Hansen and Lunde (2006) observe that in addition to the in-
creased number of quotes, the characteristics of these quotes has also changed dramatically
in recent years. A dramatic structural change was completed in February 2001 when the
New York Stock Exchange (NYSE) finished the transition from fractional to decimal pric-
ing. (See Goldstein et al. (2008).) This in turn led to a reduction in market makers’ rents,
changing the nature of price discovery. Traditionally, regional exchanges competed with
the NYSE by offering competitive quotes, cheaper executions, and anonymity. Now quotes
posted on the NYSE are more often alone at the National Best Bid and Offer (NBBO)
(Goldstein et al. 2008). To avoid this shift in market microstructure properties we limit our
sample to the period after decimalization, namely post 2001.

In this study we examine the covariance structure between Exxon Mobil Corp. (XOM),
Occidental Petroleum Corp. (OXY), and The J. M. Smucker Company (SJM) over the
period from of January 2002 to December 2006. Appendix A.1 details the data filtering
criteria. Figure 2.1 shows the observed price processes over this time horizon and Table 2.1
presents summary statistics. In Table 2.1, the reported market capitalization is calculated

on January 2002, the beginning of our study; the annualized mean p and volatility ¢ are for
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close-to-close returns, and the noise-to-signal ratio £ /o, captures the market microstructure
effects. These stocks exhibit different market capitalization, quote frequencies, and noise-
to-signal characteristics, and there are different levels of return correlation across the three
pairs. As seen in Table 2.1 the energy stocks XOM and OXY are strongly correlated, but

SIM (a food products manufacturer) is weakly correlated with the energy stocks.
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Figure 2.1  Stock prices from January 1, 2002 to December 31, 2006 for Exxon Mobil Corp.
(XOM), Occidental Petroleum Corp. (OXY) and The J.M. Smucker Company (SIM). Prices have
been adjusted for stock splits.

Table 2.1  Summary statistics of stock returns from January 1, 2002 to December 31, 2006. Table
reports market capitalizations of stocks, annualized mean 4 and standard deviation ¢ of returns,
noise-to-signal & /o ratios for the returns, and correlation of daily returns.

Ticker Market Cap c €&/o 0
XOM OXY SIM
XOM 267B .13 .184 .022 1. 071 0.15
OXY 9.7B .26 .204 .029 1 0.10
SIM 0.79B .07 .166 .062 1
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Table 2.2  Annual averages of daily admissible quotes. The number of quotes increases over
time for all three stocks. SJM is relatively less frequently quoted than XOM or OXY.

Ticker 2002 2003 2004 2005 2006
XOM 1578 2424 2439 4247 5374
OXY 820 1496 2533 4616 6386
SIM 388 770 933 912 1230

Table 2.2 shows that the number of admissible quotes (see Appendix A.1 for definition)
has increased substantially over time for all three stocks. XOM, selected because it is
one of the largest stocks on the NYSE by market capitalization, is a very actively quoted
security. In contrast, SJM is a relatively less actively quoted security with approximately a
quarter of the activity observed in XOM. OXY, another energy stock, was selected because
it has a strong correlation with XOM. Over the five year sample period, the quote activity
for OXY increases from about half the XOM level of activity to surpassing it. Figure
2.2 illustrates the evolution of the noise-to-signal ratios over time. We see that the noise-
to-signal ratios over this period decreased for each stock, dramatically so for OXY and
SIM. A portion of this decrease can be explained by the increase in quote activity over
the period. The different levels of quote activity and noise-to-signal characteristics offer

important contrasts for assessing the properties of realized covariance estimates.

2.3 Method

2.3.1 Tick-Time Covariance Estimation

Hayashi and Yoshida (2005) introduce a tick-time cumulative covariance estimator:

Ma Mg

HY = ZZAPA(Ii)APB(Jj)l{NT Ti#0}- 29

i=1 j=1
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Figure 2.2  Noise-to-Signal Ratio. XOM has the lowest noise-to-signal ratio. All three stocks
show a decrease in noise-to-signal ratio corresponding to an increase in quote frequency.

Define T as the terminal time and 114 = {t;},0,10,..», and II1Z = {¢;},20,12,.. 1, to be
the sets of observation times for processes A and B respectively, where 0 < t; < T and
0 < t; < T forall4,;. For process A, the interval of observation times I* is defined as
(ti-1,t;). For process B, the interval of observation times J7 is defined as (¢;-1,%;]. The
intervals satisfy fhe following conditions:

Condition 1
1. (I') and (J7) are independent of p4 and pg.
2. Asn — oo, Elmax; |I'| V max; |J7|] = o(1).

The HY estimator is similar to the estimator introduced by de Jong and Nijman (1997) and
Corsi (2006). This estimator is the sum of the product of any pair of overlapping intervals.
In the absence of noise, calendar-time estimators are biased and inconsistent, but the

HY estimator is not. This improvement can be attributed primarily to the cross-market
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tick-matching which corrects for the bias introduced by asynchroneity. Never the less,
the introduction of market microstructure noise renders this estimator inconsistent and,
dependent on the noise structure, it may also be biased.

An additional issue with this estimator is computational complexity. For the sake of
computational efficiency Palandri (2006) and Voev and Lunde (2007) develop aggrega-
tion schemes for the HY estimator. These aggregation schemes preserve the informational
content of the original HY estimator. In particular, Voev and Lunde propose an aggregated
HY estimator where the ticks of the faster process are matched to the ticks of the slower

process.

2.3.2 Cross-Market Tick-Matching

Building on this research, we develop an aggregate tick-time estimator by matching
the ticks of the faster process (B) to the slower process (A) by: pp(t]') = ps(min{t; €
1% . t; > max{t, € I'}}) and pp(t)) = pp(max{t; € II? : t; < min{t; € I'}}).
This Cross-Market Tick-Matching estimator (CMTM) is shown in Figure 2.3. Using the
slower process (A) as the base arrival process we sample with respect to M 4 the number of
intervals between observations for process (A).

This allows us to write:

Ma
CMTM =Y Apa(I')(ps(t}) — pa(t))) ZTA (IYra(tY, ). (2.10)

i=1
2.3.3 Properties of Proposed Estimator

The expected value of our proposed estimator is

Ma
E = posop+2r Y Eap 2.11)

i=1
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Figure 2.3  Visualization of Cross-Market Tick-Matching. The slower process (A), represented
by squares, is used as the base. The observations of the faster process (B), represented by circles, are
matched to the corresponding observations of (A). By construction this estimator has overlapping
intervals, which are represented by the grey rectangles.

We define 7 as the probability of synchronous observations. We see that the noise ac-
cumulation is influenced by the extent of asynchroneity. (See Chapter 4 for derivation.)
Consistent with the original HY estimator, this estimator is unbiased in either the absence
or in the presence of i.i.d. noise. Contemporaneously correlated noise does render the
estimator biased. The magnitude of the bias is a function of the number of observations
of the slower process multiplied by the probability that the price pairs are synchronously
observed.

The variance of our proposed estimator is

My
Vo= Z(pgAaB)2l(ﬂ)2+o§1(ﬁ> 21t 1) (2.12)
t=1
+ QPUAUBZ(-” (t_1t DPUAUBZ(P1 (/1)
Ma—1

+ 25AZoBl I'>+2fBZoAz r +Z2 (1+m)eded + Z 2mEL e

Ma—1

47rZ§AB+2 Z (2m — %) £AB+47TZUAUBP§AB

g==1

—+

(See Chapter 4 for derivation.) From Condition 1 it follows that the sum of squared obser-
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vation intervals converges to zero:

n
> [I'[* = 0 in probability as n — oo. (2.13)
i=1
This ensures that the variance due to discretization converges to zero as the number of

observations goes to infinity. We define [ as the length of the interval. Rewriting Equation

2.12 the variance of our proposed estimator reduces to:

1
vV = m{(pa/;ag)z(l+2a1a2)+02023(1+a0)} 2.14)

I

Mag—1

2630% + 262 oA+Zz (1+mERes+ > 2méaes
=1 =1
Ma—1

+ 47TZ§AB+2 Z (2r — %) §AB+47FZUAUBP§AB

.{,_

The first line in Equation 2.14 represents the error due to discretization. Namely, as M4
goes to infinity, the first line goes to 0. The remaining lines show the error contributions
due to market microstructure effects. The terms in the final three lines increase with M4
rendering the estimator inconsistent. The i.i.d. noise setting is obtained by letting £ 45 = 0.

In this context, «; are a measure of the overlap in the CMTM estimator. In the second
element, 1 + o represents (¢}, ¢/")/1(I*), where [ is the length of the intervals. Thus, g
represents the estimated overlap of contemporaneous intervals. In similar fashion, «; is
Lty e ) /(1Y) and ag is [(t), ¢1)/1(1771), each capturing the estimated overlap with the

adjacent intervals. Consistent with Voev and Lunde (2007), this allows us to express the

bounds of asynchroneity in terms of ¢;.
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2.3.4 Optimal Sampling

The M SE is stated as a function of sampling frequency & by replacing M 4 with M4 /k
and [(I%) with k x [(I%):

Q102

k
MSE(k) = —{(posop)*(1+2—= 1z

My
2 2 2 2 Ma 2 42
+ 28405 + 2850, + ——2(1 + m)€4ép +

k
My—1 M M3
Ak —(2r — 1% + 47T'E40'A0'BP€AB + 47r27%54§313~

)+ 020 (1+ %9)} (2.15)

M
2 §5Ep + 4m AfAB

k
+ 2

Taking the first derivative of the MSE with respect to the sampling frequency & and setting

equal to zero yields:

31 93
9o+ % +i R

= 0, (2.16)
where go = 31~{(poa05)’+0%0%}, g5 = =872 M5E% 5, 91 = 0, and g, = remaining terms,

The optimal solution is approximated by selecting:

_ 1/3 2773 2 1/3
kz(—-‘gf{) z( 8" Malas ) . 2.17)

5
90 pPodod + 0403

The second derivative is positive at this value, verifying that the optimization yields a
minimum for the MSE. This approximation is very precise for low noise-to-signal levels
and low frequencies. At higher frequencies the approximation tends to be slightly below
the exact k, but in the high frequency setting individual ticks are not as informative as in the
low frequency setting. The corresponding sampling frequency for the tick-time estimated

variance is found by simple substitution as:

37232\ 1/3
km(%—(—gi)—> . (2.18)

4
20%
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2.3.5 Parameter Estimation
We estimate the underlying parameters as follows:
e M4 is the number of intervals between observations for the slow process (A).
e )4 is the arrival intensity of process A.
o &, isestimated as 1/M, 34 r%(I%), using all the observations.

o {4pisestimatedas1/n* Z;’ Ta,;7B,;, Where n* = % suchthat § = 2(max{A4, Ag}).

o The overlapping intervals are estimated as:

o & Ag/Aa
o R l)\ /A
1 N 5AB/AA
~ Iap/a
Qg R 5 B A

e The Barndorff-Nielsen and Shephard (2004a) quarticity estimates, with a sampling
frequency of 15 minutes, are used to obtain more stable estimates for the denomina-

tors in Equations 2.17 and 2.18.

We find that it is necessary to smooth the &; estimates to derive reasonable sampling fre-
quencies. We employ the rolling smoothing technique advocated in Andreou and Ghysels

(2002) with the following recursion: €3 , = 0.9¢2 , + 0.16%,_;.
2.4 Simulation

We present Monte Carlo simulation results comparing the efficiency of our proposed

sub-sampled CMTM estimator. Each simulation consists of 5000 iterations. We evaluate
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the relative performance of the covariance estimators under contemporaneously correlated
noise structures. Three different arrival regimes, in terms of expected duration between
arrivals, are examined: 1.) low-low (30:30), 2.) low-high (30:10), and 3.) high-high
(10:10). These arrival regimes are representative of the subset of the TAQ quote data that
we are studying. In order to consider the marginal contribution of tick matching, optimal

sampling, and sub-sampling, we consider the five estimators presented in Table 2.3.

Table 2.3  Realized covariance estimators considered in simulation. Calendar time is abbreviated
as (CT) and tick time is abbreviated as (TT).

Symbol Estimator Abbreviation
0 5 minute calendar time (CT5)

o 15 minute calendar time (CT15)

A calendar time optimally sampled (CTO)

X 5th tick estimator (TT5)

+ optimally sampled CMTM estimator (TTO)

24,1 Simulation Design

The latent process is a bivariate Brownian motion. This process is observed at non-
synchronous Poisson times. The generator is a two step process. First the latent process is

generated using the Euler scheme suggested by Higham (2001);

AZ'A ZA

= VAt [ or J (2.19)
Azp ZB

where ©7 is the Cholesky factorization of the covariance matrix such that @07 = I,

¥ is a 2 x 2 matrix. Z represents the Brownian motion and z; ~ N(0,1). The inter-

arrival times are exponential so arrival times are determined by the cumulative sum of

the generated vector of exponential random variables and rounded to the nearest integer
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value. The resulting values determine which elements of the latent process will be ob-
served. Asynchroneity is achieved by simulating two different arrival time vectors. Finally,
market microstructure effects are added to the selected latent values to create observed
values (pa(t;) = zalt;) + ualts)).

Specifically, we consider 011 = 092 = 1 and ;5 = 0.9. We generate our realizations
of the processes using At = 1 second. We assume that oy ; and o3 5 are known and focus

exclusively on estimating the covariance.

2.4.2 Simulation Results
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Figure 2.4  Bias of realized covariance estimators, where p = 0.9 and symbols are defined in Ta-
ble 2.3. Tick-time estimators are unbiased for low noise-to-signal settings. For low quote frequency
settings, calendar-time estimators display a downward bias. As the quote frequency increases, the
ad-hoc tick time estimator displays a positive bias.

Figure 2.4 presents the bias of the covariance estimators under the three different ar-
rival regimes Figures 2.5 and 2.6 show the associated mean squared error (MSE). We
see that under the low arrival regime, the tick-matching estimators are the least biased. In
contrast, for very low noise-to-signal ratios the calendar-time optimal sampling methodol-

ogy performs very poorly. This is due to the Epps effect induced by the large degree of

asynchroneity. For the ad-hoc estimators (5 minute and 15 minute), the 15 minute estima-
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Figure 2.5 Mean Squared Error of realized covariance estimators, where p = 0.9 and symbols
are defined in Table 2.3. Tick-time estimators have smallest MSE, but the difference relative to
calendar-time estimates is less pronounced as the noise-to-signal ratio increases.
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Figure 2.6  Mean Squared Error of sub-sampled realized covariance estimators, where p = 0.9
and symbols are defined in Table 2.3. The sub-sampled estimators have much smaller MSE than

the MSE presented in Figure 2.5.

tor is less biased, because it mitigates the effect of asynchroneity. The medium and high

arrival regimes show bias reductions for all the calendar methods, with the CTO improv-

ing the most dramatically. This reflects the reduction in asynchroneity with more frequent

observations.

We also see the benefit of sampling in tick time. In contrast to calendar time, tick-time

estimators demonstrate a positive bias that increases with the noise-to-signal ratio and with

arrival frequency. This is consistent with additive noise and with decreased asynchroneity
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as frequency increases. The contrast in the bias of the TTS and TTO estimators indicates
the benefits of optimal sampling in the tick-time setting. Note that for this range of noise-
to-signal values, the optimally sampled tick-time estimator is always less biased then the
calendar-time alternatives.

In Figures 2.5 and 2.6 we see that for low noise-to-signal ratios the tick-time estimators
have the smallest MSE, and indeed the sub-sampled TTO estimator has the smallest MSE
overall. As the noise level increases, the tick-time methods and the CTS and CTO methods
provide similar results. The optimally sampled calendar-time estimator is non-competitive
for low noise, and low frequency due to the large bias. As the frequency and noise increase,
this estimator begins to outperform the ad-hoc calendar-time estimators. Figure 2.6 shows

that sub-sampling reduces the MSE with greatest benefits in high noise settings.

2.5 Application

Andersen, Bollerslev, Diebold, and Labys (2001) find that realized covariance dis-
plays strong persistence and is characterized by a slow decay of autocorrelation which is
preserved even under temporal aggregation. These findings motivate the use of volatility-

timing strategies for assessing the performance of different covariance estimators.

2.5.1 Data Analysis

Figure 2.7 displays the sampling frequency for the tick-time variance estimator and
Figure 2.8 shows the sampling frequency for our proposed cross-market tick-matching co-
variance estimator. The variance sampling frequency follows the day-to-day quote activity
and for OXY and SJM shows an increase that corresponds with the increased quote activity

in these two stocks. The covariance sampling frequency is largely determined by the quote
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activity of the less actively quoted asset. This can be seen easily in Figure 2.8 as pan-

els (b) and (c) both have SIM as the less actively quoted asset and have similar sampling

frequencies, but the frequencies are much lower than for the actively traded pair (panel (a)).
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Figure 2.8  Tick-time Covariance Sampling Frequency

Figure 2.9 displays the volatility estimates of XOM using CTS5, CT15, and TTO-Sub,

and Figure 2.10 shows the correlation estimates between XOM and SJM using these

three techniques. The ad-hoc calendar-time methods display larger variations in day-to-

day volatility estimates. In contrast, the tick tick optimal sampling technique appears much

more stable.

Table 2.4 presents the returns, volatilities, and estimated Sharpe ratios (/o ), a mea-
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sure of reward to risk, generated by following a strategy of taking positions at the market
open and exiting positions at the market close. The final row presents the results of an
equally weighted portfolio. The open-to-close returns of XOM and OXY are close to zero
and even negative, which is consistent with the results presented in Cliff, Cooper, and
Gulen (2007). Table 2.4 also shows the correlations of open-to-close returns, and we
see higher correlations between SJIM and the energy stocks (XOM and OXY) than in the

close-to-close correlations presented in Table 2.1.
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Table 2.4  Summary of Open-to-Close Returns. Presents annualized mean and standard devia-
tions of open-to-close returns, estimated Sharpe ratio, 41/o , and correlation matrix. The last line
presents an equally weighted portfolio.

7 o o p
XOM OXY SIM
XOM -283% 17.80% —0.14 I 071 028
OXY 3.10% 2020% 0.16 1 022
SIM  21.50% 16.85%  1.29 1

Equal 7.26% 1429%  0.52

2.5.2 Volatility Timing

Fleming, Kirby, and Ostdiek (2001, 2003) popularized volatility-timing as an objec-
tive methodology for assessing the economic “value-added” of alternative estimators. The
value-added is measured in a portfolio framework as the fee (as a percent of assets) a risk-
averse investor would be willing to pay to capture the gains in portfolio performance made
possible by using a given covariance estimator. The assessment is made based on the in-
vestor’s utility improvement which is converted into a management fee and expressed in
basis points (i.e. 0.01%). Specifically, investors follow a volatility-timing strategy where
the portfolio weights vary only with changes in estimates of the conditional covariance ma-
trix of daily returns. Define F;_; to be the day ¢ — 1 information set. Conditional volatility

is minimized using risky asset weights:

2—1
w, = Ept P (220)
ey iy
where u, is the target expected return on the portfolio, py = E[R|F;—4] is the vector of

conditional means, and £; = E[(Ry — ;) (Rt — ) |Fy—1]. These weights are the result

of standard mean-variance portfolio optimization.
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The realized daily utility generated by the returns of this portfolio (R,;) for an investor

with ~ relative risk aversion is

U(Rp) = Wy <(1+Rf+Rpt) - (1+Rf+R,,t)2>. (2.21)

T
2(1+7)
Ry is the risk-free rate and W, is the amount of wealth that is invested. The incremental
value of using the second estimator instead of the first is calculated by finding the constant
A, such that Zthl U(Rpit) = ZtT:l U(Rpat — A). This can be thought of as the basis point

fee an investor would be willing to pay to access the second estimator instead of the first.

2.5.3 Isolating A Single Hypothesis

Recall that in Equation 2.20, the optimal allocation is a function of the targeted port-
folio expected return, the conditional means, and the conditional covariance. In order to
test only the performance of the covariance estimators, we must control for misidentifica-
tion of the expected returns. Engle and Colacito (2006) suggest that in the multivariate
setting, the relationship between returns (i.e. angle in a bivariate setting) is more critical
than the relative magnitudes. Chopra and Ziemba (1993) consider the impact of specify-
ing the functional form of the utility function and parameter estimation of the means and
covariance matrix. They find that portfolio optimization is invariant to the utility function,
and correct specification of the means is ten times more important than specification of the
covariance matrix. Within the covariance matrix, they find that specification of the variance
elements is twice as important covariance elements.

We isolate the impact of our proposed covariance estimator by controlling the mean
estimates through a bootstrap procedure. We sample with replacement blocks of 50 returns

to bootstrap 5000 different realizations of the return process. (We use block resampling to
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preserves the dependence structure in the return series. See Politis (2003).) We then take
the mean return of these realizations and in this fashion obtain a distribution of possible
expected returns. We consider the performance of the volatility-timing strategies using this
set of 5000 bootstrapped expected returns.

We find that overnight returns are very noisy and bring additional estimation challenges.
For this analysis, therefore, we constrain our investor to taking positions at the market open
and liquidating at market close, thereby eliminating overnight returns from our analysis.
We refer readers to Hansen and Lunde (2005) for a detailed discussion of the estimation

of an entire day’s realized variance by including the squared overnight returns.

2.54 Economic Value Results

Table 2.5 compares the mean, standard deviation, and Sharpe ratios of the volatility-
timing portfolios using the 5 and 15 minute calendar-time (CT5) and (CT15), optimally
sampled calendar-time (CTO), CMTM sampled every 5 ticks (TTS), and optimally sam-
pled CMTM (TTO) covariance estimators. We also consider sub-sampled versions of the
optimally sampled calendar-time (CTO-S), CMTM sampled every 5 ticks (TTS-S), and op-
timally sampled CMTM (TTO-S) covariance estimators. We set the target annual return at
p = 7.5%, slightly more than the return on an equally weighted portfolio as presented in
Table 2.4. We set the risk free rate Ry = 0. From Table 2.5 we see that the calendar-time
methods have smaller returns than the tick-time methods. The TTO-S estimator has the
greatest return with one of the smallest standard deviations. The optimal sampling esti-
mators result in larger standard deviations for both calendar-time and tick-time estimators,

Sub-sampling over the optimal sampling frequency, however, results in a portfolio stan-
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dard deviation for the tick-time estimator that is less than that for the sub-sampled ad-hoc

estimators.
Table 2.5 Summary results for portfolio containing XOM, OXY, and SIM. Target return is

wp = 7.5%. Presents annualized means, standard deviations, and Sharpe ratios for portfolio returns
using § different covariance estimators.

CT5 CT15 CTO CTO-S TT5S TT5-S TTO TTO-S
“R 6.20% 5.84% 6.19% 6.16% 6.53% 6.62% 656% 6.90%
OR 561% 5.75% 5.85% 5.84% S571% 571% 5.82% 5.64%
Sharpe Ratio 111 1.02 1.06 1.06 1.15 1.16 1.13 1.22

Table 2.6 shows the annualized basis point fees that a risk averse investor is willing
to pay to switch to the TTO-S method from traditional methods. Outliers, more than 500
basis points away from the median, were removed and the filtered means are presented.
We consider the performance of our proposed estimator relative to calendar-time estimates
with ad-hoc and optimal sampling techniques and relative to ad-hoc tick-time sampling.
This allows us to investigate the benefits of using tick time rather than calendar time, the
benefits of optimal sampling, and the contribution due to sub-sampling.

Table 2.6  Annualized Basis Points for portfolio containing XOM, OXY, and SJM. Target return
is up = 7.5%. Investor risk aversion increases with .

Method M Vs Y10
CT5:.TTO-S 70.20 69.52 68.68
CT15:TTO-S 107.54 110.13 113.36

CTO:CTO-S -2.81 =255 =224
CTO:TTO 37.18 38.02 39.07
CTO-S:TTO-S 7549 80.13 8594
TT5: TTO 241 016 -3.39

TTS-S:TTO-S  27.71  30.19 32.04
TTO:TTO-S 35.50 39.55 44.63
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We see that the TTO-S estimator’s greater returns with lower volatility translate into
greater utility over the ad-hoc sampling techniques. The TTO-S estimator generates nearly
70 addition basis points against the 5 minute calendar-time estimator, and around 110
against the 15 minute estimator, regardless of the assumed risk-aversion parameter. The
optimally sampled tick-time estimator generates an additional 40 basis points over its
calendar-time counterpart. Moreover, the tick-time estimator benefits more from sub-
sampling than its calendar-time counterpart. The sub-sampled optimally sampled tick-time
estimator (TTO-S) provides 80 basis points gain over CTO-S and 30 basis points gain over
TTS5-S. This demonstrates the benefits of tick time over calendar time, optimal sampling
over ad-hoc sampling, and sub-sampling over sampling.

Figure 2.11 shows the weights of the positions taken using this volatility timing strategy
where the expected returns are set by the means reported in Table 2.4. To control for
outliers in the portfolio weights, the trading strategies are implemented with the constraint
that |w;| < 300%. (Empirical investigation indicates that the qualitative assessment is not
sensitive to weight constraints.) As expected, the sign and magnitude of each of the weights
depends on the expected return. The day-to-day changes in the weights are driven by the
covariance estimates.

To better identify why the TTO-S estimator provides utility gains we further disaggre-
gate the results by considering the three pairs of XOM:0XY, XOM:SJM, and OXY:SJM.
Table 2.7 shows that the tick-time estimators consistently provide superior reward for risk
in any setting. For portfolios with the less actively quoted stock (SJM), the tick-time esti-
mators generally result in the largest portfolio returns. For XOM:SJM, TTO-S provides the

best Sharpe ratio, and for OXY:SJM, TT5-S and TTO-S provide superior Sharpe ratios.
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Figure 2.11 A realization of portfolio weights using a volatility-timing strategy. Presents results
for CT5, CTO-S, TT5-S, and TTO-S.

Table 2.8 decomposes the impact of calendar-time vs. tick-time sampling and sub-
sampling across the security pairs. For the XOM:OXY pair the TTO-S estimator slightly
underperforms the static methods. This may indicate that actively quoted stocks need a
more generalized noise structure, such as the autocorrelated noise structure discussed in
Hansen and Lunde (2006). These results are consistent with the expectations from the sim-

ulation experiment. TTO provides 6 to 46 basis point gain over CTO, and the substantial
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Table 2,7 Summary results for disaggregated portfolio pairs. Target return is up = 7.5%.
Presents annualized means, standard deviations, and Sharpe ratios for portfolio returns using 8
different covariance estimators.

CT5 CT15 CTO CTO-S TTS TTS-S TTO TTO-S

XOM:0XY

UR 235% 2.15% 1.94% 1.96% 1.81% 1.89% 1.96% 2.20%
OR 2042% 20.28% 21.25% 21.23% 21.62% 21.67% 20.80% 20.73%
LR/OR 0.115 0.106 0.0911 0.0925 0.0838 0.0871 0.0942 0.106

XOM:SJM

LR 7.07% 6.88% 734% 134% 732% 17.35% 737% 7.56%
ORr 6.16% 623% 624% 624% 6.18% 6.17% 622% 6.18%
Lr/CR 1.15 1.10 1.18 1.18 1.18 1.19 1.18 1.22
OXY:SJM

LR 6.99% 6.62% 674% 675% T22% 1.28% T1.08% 7.18%
OR 701% 7.15% 7.06% 7.06% 7.06% 7.06% 7.08% 7.03%

UR/OR 0.997 0926  0.955 0.956 1.02 1.03 1.00 1.02

difference between the three risk aversion levels indicates that CTO is a more volatile es-
timator than TTO. We also show that optimizing in tick time provides 12 to 48 basis point
gains over every 5th tick sampling. Finally, sub-sampling the optimized tick-time estima-
tor provides an additional 30 to 40 basis points gain. The TTO-S estimator provides 30-90
basis point gains over CTO-S and 40-100 basis point gains over TT5-S. This suggests that
tick-time sampling alone does not provide the utility gains, but optimizing the sampling
frequency plays a non trivial role. For XOM:SJM we see approximate gains of 20 basis
points against the CTO and the TT5. TTO-S provides 50 and 70 basis point gains against
the CTS and CT15 estimators respectively. In the OXY:SIM pair, we see gains of 20, 60,
and 33 basis points when using TTO in place of CT5, CT15, and CTO respectively. We

see a loss of 15 basis points when comparing TTS against TTO. This loss is between 10



Table 2.8  Annualized Basis Points for disaggregated portfolio pairs. Target return is up

7.5%. Investor risk aversion increases with 7.

Method M Y5 Y10
XOM:OXY
CT5:TTO-S —19.75 —-2829 —3597
CT15:TTO-S 2.89 2.84 1.37
CTO:CTO-S 2.62 4.53 6.80
CTO:TTO 633 2628  46.78
CTO-S:TTO-S 3210  59.94  87.15
TT5:TTO 11.53 2932  48.64
TT5-S:TTO-S 4028  70.97 102.85
TTO:TTO-S 28.99  34.62  39.67
XOM:SIM
CT5:TTO-S 4925 4876  48.16
CT15:TTO-S 68.92  70.11  71.61
CTO:CTO-S -024 -025 —0.28
CTO:TTO 3.13 3.69 4.40
CTO-S:TTO-S 2250 24.08  26.05
TTS:TTO 4.99 3.94 2.62
TT5-S:TTO-S 2150 21.28  21.01
TTO:TTO-S 19.13  20.12  21.37
OXY:SIM
CTS:TTO-S 19.14 1851  17.72
CT15:TTO-S 5729 6052  64.58
CTO:CTO-S 0.98 0.99 1.00
CTO:TTO 33.61  33.04 3233
CTO-S:TTO-S 4270 4352  44.54
TT5:TTO —1471 —1541 -—16.29
TT5-S:TTO-S —10.04 —9.31 —839
TTO:TTO-S 10.08 1147  13.21

42
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to 8 basis points when considering sub-sampled estimators. The loss against the TTS5 can
be partially explained by the fact that the mean value of the estimated optimal sampling
frequency for the tick-time estimator is approximately five. This indicates that smoothing
the optimal sampling frequency may be beneficial.

Results suggest that calendar-time sub-sampling is not effective when less actively
quoted stocks introduce asynchroneity. This is in sharp contrast to the large gains realized
by the sub-sampled tick-time estimators in this case. These results suggest that tick-time is

the more natural setting for covariance sub-sampling.

2.6 Conclusion

We contribute to the discussion of realized covariance by deriving an optimal sampling
frequency for a cross-market tick-matching estimator. Furthermore, we demonstrated the
potential benefits of this new estimator via a simulation study that shows tick matching and
sub-sampling providing substantial MSE reduction and we estimate the economic value-
added of this estimator,

Unlike Griffin and Oomen (2006) we first match the ticks and then sample with respect
to the slow process. Unlike Voev and Lunde (2007), who use tick matching but have
an ad-hoc sampling scheme, we calculate an optimal sampling frequency with respect to
MSE. Finally, we provide the first economic value added assessment of cross-market tick-
matching estimators in a volatility-timing framework. We find that our optimally sub-
sampled cross-market tick-matching estimator provides 70 basis point gains over the 5
minute calendar time strategy, approximately 110 basis point gains over the 15 minute

calendar time strategy, and 80 basis point gain over a corresponding optimally sub-sampled
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calendar time strategy. The proposed estimator provides the greatest contribution in the
presence of less actively quoted securities.

As further research, we are currently assessing the performance for a higher dimen-
sional portfolio and examining the ability of the estimator to identify extreme events. Fi-
nally, we recognize that Hansen and Lunde (2006) have shown that noise is correlated with
the price process and that the noise process may be time dependent. These noise general-

izations are beyond the scope of this study but they are clear avenues of future research.



Chapter 3
Parsimonious Realized Portfolio Selection using
High-Frequency Data

3.1 Introduction

Markowitz mean-variance (MV) optimization is the standard theoretical framework for
optimal portfolio construction (See Chan, Karceski, and Lakonishok (1999), Jagannathan
and Ma (2003), and references therein). MV optimization requires covariance matrices
to be not only invertible, but also well-conditioned. Michaud (1989) points out that this
procedure maximizes the effects of errors in the input assumptions and as a result practical
implementation is problematic. Britten-Jones (1999) examined the sampling error of the
weights of mean-variance efficient portfolios and found them to be very large.

Realized covariance estimation has emerged as a viable candidate for covariance esti-
mation. This class of estimators employs high-frequency data and provides more precise
estimates. In a low dimensional setting, Fleming, Kirby, and Ostdiek (2003) have shown
that realized covariance estimates provide utility gains over implied covariance estimates
for risk averse investor following a MV optimization strategy. Realized covariance litera-
ture has focused on improving these estimators by using techniques such as cross-market
tick-matching (See Kyj, Ensor, and Ostdiek (2008), Corsi (2006), Hayashi and Yoshida
(2005), Voev and Lunde (2007), Griffin and Oomen (2006)), optimal sampling (See Bandi
and Russell (2006), Bandi, Russell, and Zhu (2008), Oomen (2006), de Pooter, Martens,
and van Dijk (2006), and sub-sampling (See Zhang, Mykland, and Ait-Sahalia (2005),
Voev and Lunde (2007), Kyj, Ensor, and Ostdiek (2008)).

Estimation of high dimensional covariance matrices is computationally expensive. There
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are p X (p+ 1)/2 operations, where p is the number of assets considered. Realized covari-
ance estimates also become numerically ill-conditioned due to sampling error. As a result
the inversion of the matrix, a necessary step in mean-variance optimization, becomes prob-
lematic. Ledoit and Wolf (2003) suggest that the number of observations, n, needs to be
at least ten times the number of dimensions, p. In the case of five minute calendar time
sampled realized covariance estimation, we have an effective sample size of n = 78 and
this rule of thumb is exceeded when considering more than 7 dimensions. This is a para-
dox of high frequency data, at first glance it appears as there is “too much data”, but once
asynchroneity and market microstructure effects are acknowledged, then once again we are
confronted with errors due to small sample size,

Previous literature has addressed imprecise covariance matrix estimates by imposing
more structure on covariance matrix. Variants of shrinkage are employed to mitigate ill-
conditioned matrices. Fleming, Kirby, and Ostdiek (2003) and de Pooter, Martens, and
van Dijk (2006) use “rolling” estimators, Bandi, Russell, and Zhu (2008) use ARFIMA
forecasting, Jagannathan and Ma (2003) use non-negative constraints, and Ledoit and
Wolf (2003) use shrinkage toward market estimate. Bauer and Vorkink (2007) employ the
matrix logarithm function suggested by Kawakatsu (2006) to ensure positive definiteness.
This amounts to an exponential transformation of the eigenvalues.

Factor models have the advantage of providing a parsimonious representation of the in-
formation and have been shown to offer utility gains over strategies employing full sample
covariance matrices. Chan, Karceski, and Lakonishok (1999) consider both the Sharpe ra-
tio and tracking error as portfolio performance diagnostics and find that a three factor model

is adequate for selecting the minimum-variance portfolio, but argue that more factors are
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necessary for minimizing tracking error volatility. Jagannathan and Ma (2003) compare
the performance of a non-negative sample covariance using daily level data against factor
models and shrinkage estimators. Indeed, the non-negativity constraint is a special form
of the shrinkage. They show that the single factor model performs very well when the
number of observation is not much greater than the number of dimensions. Han (2006)
discusses the importance of factor models in high dimensional settings. Bollerslev and
Zhang (2003) find that within the context of high-frequency data, factor models system-
atically outperform monthly rolling regression-based estimates. Fan, Fan, and Lv (2007)
provides a theoretical understanding of the factor modeling of high dimensional covariance
matrices. They find that the factor model is a more consistent estimate for the inverse of
the covariance matrix.

This chapter sets out to compare a number of competing realized covariance techniques
and their utility gains. We argue that in the presence of linear versus quadratic growth in
computational complexity and ill-conditioned matrices, factor models are a more natural
setting for comparing covariance estimators. Indeed, we find that that a single-index model
can provide similar levels of utility as a fully estimated realized covariance matrix that has

been smoothed via exponential weights.

3.2 Methods

3.2.1 Review of Realized Estimators

The discretely observed price process p(t;) is a function of both the latent price process

z(t;) and the market microstructure effects u(¢;), which are treated as “observation error”
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such that the price of asset A is observed as:
palty) = za(ts) +ualty), i=1,2,...,n. (€B))
Hence, returns are written as
ra(ty) = Apa(ts) = Az a(ty) + Aua(ty). (3.2)

We define the noise terms to be contemporaneously correlated such that:

ua | N 0 &4 €as 33)
up 0 £aB £3
and assume that noise is uncorrelated with z, and uncorrelated with non-contemporaneous
own and cross-market noise terms.
Andersen, Bollerslev, Diebold, and Labys (2001) first proposed realized variance esti-
mation using ad-hoc calendar-time sampling. Calendar-time sampling requires synchronous
observations across markets and this is achieved by interpolating prices onto an ad-hoc

common sampling grid i.e, every 5 minutes. We construct m equally spaced intraday ob-

servations, and these calendar time realized estimators can be written as:

Va(m) =% my(i/m) (3.4)
and
5A5(m) = ZTA,(m)(i/m) X TB’(m)(i/m). (35)

%

Eliminating dependency on ad-hoc calendar-time grid intervals motivates determining
the optimal sampling frequency by minimizing the mean squared error (MSE) of the re-

alized covariance estimator. The optimal sampling frequency is a function of the return
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series’s signal-to-noise ratio. Zhang, Mykland, and Ait-Sahalia (2005) and Bandi and
Russell (2005) develop optimal sampling schemes in the calendar time setting. The opti-
mal sampling frequencies for the variance and covariance are given in Equations 3.6 and

3.7 respectively.

. 244 1/3
. (PP0h0h + 0505\
"= (€aB)? G-D

For variance reduction, Zhang, Mykland, and Ait-Sahalia (2005) advocate sub-sampling
and averaging as a technique for exploiting the richness of high frequency data. They di-
vide the time domain grid into K non-overlapping subgrids and average the estimates over
the K different subgrids to calculate the final estimate.

When sampling high-frequer;cy data, choosing tick time or calendar time is another
important issue. The interpolation schemes in calendar time estimation causes realized
covariance estimates to be vulnerable to the so called “Epps effect” (Epps 1979), where
the covariation estimate converges to zero as the sampling grid gets finer. Operating in tick
time samples the price process according to changes in the level of market activity. As a
result, tick-time sampling offers superior location of the sampling points that generate the
information set. Working in transaction time rather than calendar time, Kyj, Ensor, and
Ostdiek (2008) construct a Cross-Market Tick-Matching (CMTM) estimator that better
addresses asynchronous price observations. For asset A, the interval of observation times
I' is defined as (t;_1,t;]. For asset B, the interval of observation times J/ is defined as
(t;-1,t;]. This matches the ticks of the faster asset (B) to the slower asset (A) by: pg(t}) =

pe(min{t; € TI® . t; > maz{t; € I'}}) and pp(tY) = ps(maz{t; € I8 : t; <
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min{t; € I'}}). Using the slower asset(A) as the base arrival process we sample with
respect to M 4 the number of intervals between observations for asset(A). This allows us to
write:

My

My
CMTM = ZAPA(F)(I)B(QA) —pa(t))) = ZTA(Ii)TB(tz'vat?]- (3.8)

Kyj, Ensor, and Ostdiek (2008) determine the optimal sampling frequency for the
CMTM estimator with respect to the mean squared error (MSE) criterion. We define 7
as the probability of synchronous observations. The optimal solution is approximated by

selecting:

2073 2 1/3
ko~ ( S Makas 2) . (3.9)

pPoh0% + 0ho}
The corresponding sampling frequency for the tick-time estimated variance is found by

simple substitution as:

37232\ 1/3
k%(w> . (3.10)

204
Section 3.3 will compare the performance of volatility-timing portfolios using the 5
and 15 minute calendar-time (CTS) and (CT15), optimally sampled calendar-time (CTO),
CMTM sampled every 5 ticks (TT5), and optimally sampled CMTM (TTO) covariance
estimators. We also consider sub-sampled versions of the optimally sampled calendar-time
(CTO-S), CMTM sampled every S ticks (TT5-S), and optimally sampled CMTM (TTO-S)
covariance estimators. These estimators will be considered using both rolling estimators

and single index modeling discussed in Sections 3.2.3 and 3.2.4 respectively.
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3.2.2 IlI-Conditioned Covariance Matrices

Many applied financial problems require a covariance matrix estimator that is not only
invertible, but also well-conditioned. The true covariance matrix is well-conditioned, but
estimators may not be due to sampling error. The sample covariance matrix is a consistent
estimate of the true covariance matrix as £ — 0, but when £ — ¢ it may be ill-conditioned.
When the sample covariance matrix is not consistent it is due to the accumulation of a large
number of small errors off the diagonal. Michaud (1989) points out that within the MV
context, ill-conditioned covariance estimates results in exaggerated estimation error. This
problem has been identified as a barrier to practitioner adoption of the MV framework.

A positive definite matrix is necessary for matrix inversion, an essential step in the
MV framework. The following three tests are necessary and sufficient conditions for a

symmetric matrix A to be positive definite:
1. 2T Az > 0 for all nonzero vectors z.
2. All the eigenvalues of A satisfy A; > 0.
3. All the upper left submatrices Ay have positive determinants.

The relationship between positive definiteness and invertibility is understood via the eigen-
values. The determinant is defined as: det(A) = J]5_, ;. A matrix is invertible when the
det(A) # 0. Hence the second test ensures that a positive definite matrix is invertible,

A well-conditioned operator is defined as having the property that all small perturba-
tions of z lead to only small changes in f(z). The condition number of a matrix A is

defined as: k(A) = ||Al|r||A™Y|F, where || - ||r is the Frobenius norm and can be ex-

F
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pressed as: ||Al|r = /tr(AAT). We note that || A2 = 7, I_1 A%, and in our case
A is symmetric so ||A]|% = Y7 | A4, where \4; are the eigenvalues of A. In this setting,
the condition number can be interpreted as the eccentricity of the ratio of eigenvalues. An
ill-conditioned matrix is close to being non-invertible.

The definitions above indicate that the relative magnitude of eigenvalues of realized co-
variance matrices plays a very prominent role in MV asset allocation. Positive definiteness
requires the eigenvalues be positive, and the well-conditioned property imposes an addi-
tional requirement of proportional eigenvalues. Imposing more structure can help mitigate
the imprecision of realized covariance matrices. The two methods discussed in Sections

3.2.3 and 3.2.4 have been shown to be consistent estimators of the true covariance matrix

and are well-conditioned.

3.2.3 Rolling Estimators

Conditional heteroskedasticity is a well know property of financial time series. In the
presence of conditional heteroskedasticity, estimation of the covariance matrix requires a
delicate balance between considering a sufficiently large number of observations to ob-
tain an unbiased and consistent estimate, and adaptive enough to accommodate changes
in in the covariance structure. Rolling realized covariance estimation attempts to balance
the statistical power obtained using a large sample against potential problems caused by
heteroskedasticity. Foster and Nelson (1996) demonstrate that exponential weighting min-
imizes the asymptotic MSE of rolling variance estimators. In a related empirical study,
Andreou and Ghysels (2002) confirmed that exponentially weighted rolling estimators pro-

vided MSE efficiency gains for realized covariance estimators.
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Rolling estimation is a common feature in realized covariance applications (See Flem-
ing, Kirby, and Ostdiek (2003), Bandi, Russell, and Zhu (2008), de Pooter, Martens, and
van Dijk (2006), Bandi and Russell (2006)). We follow the framework outlined in Flem-
ing, Kirby, and Ostdiek (2003) and construct exponentially weighted rolling covariance
estimators for 3; where:

S = (1-a)S, +aC. (3.11)

Equation 3.11 resembles a GARCH(1,1) and this relationship motivates adopting the
GARCH estimation technique for selecting the optimal decay parameters. As noted by,
Kawakatsu (2006) and Tse and Tsui (2002), the multivariate GARCH models suffer from
the “curse of dimensionality” in that the number of parameter estimates grows quadrati-
cally, and equally important, high dimensional GARCH models have difficulty maintaining
positive definiteness of the covariance matrix. Moreover, Andersen, Bollerslev, Diebold,
and Labys (2003) state that the realized covariance matrix will also display difficulty main-
taining positive definiteness as the dimensions increase. Imposing some simplification is
necessary and Fleming, Kirby, and Ostdiek (2001) suggest an adjustment , where only
one « is estimated for the entire covariance matrix, as opposed to a different c; ; for every
element of the covariance matrix.

We estimate o by means of maximum likelihood estimation as outlined in Tse and
Tsui (2002). Fleming, Kirby, and Ostdiek (2001) and de Pooter, Martens, and van Dijk
(2006) both examine the possible look-ahead bias due to fitting the decay parameter « using
all available data and conclude that the method used to evaluate the performance of the

different portfolios are robust to decay parameter estimation. In fact, Fleming, Kirby, and
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Ostdiek (2001) show that volatility timing is more effective when estimates are smoothed
more than is optimal according to the asymptotic MSE criterion.

Proposed by Ledoit and Wolf (2004), shrinkage seeks to minimize the expected quadratic
loss E[||Sr — £J2] where £7(e) = (1 — )G + a8, a € [0,1], and G is some ma-
trix. Rolling estimation may be viewed as shrinkage in the time domain. It is know that
the true covariance matrix X, is positive definite and better conditioned than estimates of
the covariance matrix estimates and this motivates shrinkage toward the true covariance
matrix. Ledoit and Wolf (2004, 2003) applied shrinkage in a spatial setting to reduce the
dimensionality. Sancetta (2008) applied shrinkage to time series dependent observations.

Finally, we discuss the conditioning of rolling estimators. In this setting, ¥, is assumed
to be a consistent estimator of £,. Rolling estimation shrinks the realized covariance esti-
mator towards the more consistent rolling estimator and thereby provides better conditioned

covariance matrices. First, we examine the positive definiteness of this estimator:

TS0 = a’(1 - a)it-la + aTaat_la (3.12)

= (1-a) aTit_la-+—a aT@_la
Ly NN~
(1) (2)

For p > m, where p is the dimension of the matrix, and m is the number of intraday
observations sampled, @_1 will not be of full rank and hence (2) is not always positive
definite. Using the consistency result from Foster and Nelson (1996), we can see that the
quantity (1) is positive definite in expectation. Andreou and Ghysels (2002) state that
rolling the realized estimator accelerates the convergence to the true covariance matrix.

Hence, the rolling realized covariance estimator should be better conditioned.
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3.2.4 Single-Index Model

Factor models capture data of high dimensionality using a parsimonious set of common
factors. In finance, factor models are invaluable in simplifying the estimation of the covari-
ance matrix. Assuming conditional independence of contemporaneous returns of a large
number p of assets given a small number of K factors, one dramatically reduces the num-
ber of parameters needed to estimate to capture the cross-sectional dependence between
returns. Chamberlain and Rothschild (1983) discuss the relationship between factor struc-
ture and asset pricing. Chan, Karceski, and Lakonishok (1999) and Jagannathan and Ma
(2003) both show that factor models can reduce the variance of optimal mean-variance port-
folios. Bollerslev and Zhang (2003) employ high-frequency data in a multi-factor model
and find improved asset pricing predictions when compared with conventional monthly
rolling estimates. We aim to assess realized covariance estimation within a single-index
model.

The single-index model introduced by Sharpe (1963) states that:

Tat = 04+ Barae + €ay (3.13)

In this setting 74 is the return of the individual stock, s is the return of the market
represented by the Index, and o represents the non-systemic risk, and § represents the
comovement with the systemic risk that is represented by the Index. We assume that ¢; ~
N(0, ¢2) and that residuals € 4 are uncorrelated to market returns. The resulting covariance
matrix is:

® =0} 867 +D (3.14)

From ordinary least squares regression we know that 34 = ”;‘Z;M. We can estimate this
M
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value by computing the realized covariance and realized variance of the index. The matrix
D represents the diagonal matrix of §,; = VAR(e), the residual variances. As stated in
Mardia, Kent, and Bibby (1979), it is natural to set §;; = s;,. Where s? is the estimate of

o2, the estimated ® can be written as:

2

sz ifis

qu',j = (3.19)

S2bbT i j
The assumption from Equation 3.14 is that all the covariation between stocks is cap-
tured by the covariation estimated by the market index. Intuitively, the single factor is trying
to capture all the systemic risk. This is similar to the shrinkage toward identity matrix es-

timator proposed by Ledoit and Wolf (2004). The covariance matrix of the single-factor

model is always positive definite.

T&. .. T (.2 naT 2 Tpal T
a" ®a=a (aMﬁ,B +D)a—aMa 88 a+a ?a. (3.16)
>0 >

It is easy to see that for all nonzero vector a, a?’ Da > 0 as D is a diagonal matrix of
positive values. Likewise, 37a = v, is a scalar, and as a result a7 357a = v? > 0.

Having established positive definiteness, we now consider the conditioning of this co-
variance matrix. Fan, Fan, and Lv (2007) state that the major advantage of factor models is
in the estimation of the inverse of the covariance matrix. They show that when K = o(p),
where K is the number of factors, the inverse of the factor model covariance matrix con-
verges to the true inverse covariance faster than the inverse of the sample covariance matrix.
Again, this faster convergence implies that the factor model is better conditioned than the

full matrix.
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3.2.5 Assessment Criteria

We consider an array of methods for portfolio allocation assessment. Chan, Karceski,
and Lakonishok (1999) and Jagannathan and Ma (2003) advocate the use of Global Min-
imum Variance (GMV) due to problematic nature of y, the vector of expected returns.
Indeed, portfolios constructed using the historical mean as an estimate for expected returns
fail to outperform a naive assumption of y; = 0. The GMV circumvents this issue as it

does not depend on estimates of 4; and solves the following optimization problem:

min,, w;tht
(3.17)
st wyg=1
Where ¥ is the covariance matrix and 7 is a unitary vector of length p, the GMV weights

are given as;

(3.18)

We also consider a portfolio that minimizes variance given a set target return as outlined
in de Pooter, Martens, and van Dijk (2006) . We choose this construction because like the
GMV it requires that the investor be fully invested in the market and allows for loose
comparison. We circumvent the previously mentioned concerns regarding estimating u; by
bootstrapping a distribution of possible realizations from historical returns. This simulation
approach was suggested in Jorion (1992). The Sharpe Ratio Minimum Variance (SRMV)
is a linear combination of GMV portfolio weights and Maximum Sharpe Ratio (MSR)

weights for a target return pp. The Sharpe ratio is defined as: {"—}‘Z The optimization
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problem is given as:

min,, wétht
(3.19)
st wiu=pup and wy=1

where we define y; = E[r;] and up is the target return for the portfolio. The weights of the

MSR portfolio are given as:

Wt MSR = ]— (3.20)
and the weights for the target return portfolio are the given by:

Ht,MSR — MP Hp — He.GMvV
Wy SRMV = wyamy + Wt MSR (3.21)
Mt MSR — Mt.GMV Hi, MSR — Mt,GMV

where we define p; pror = w;,MSth and py gpy = wéyGMvrt.
Tracking Error (TE) is a measure of imperfect replication of a given benchmark portfo-
lio. Let b be a vector of benchmark returns, and 7p be a vector of portfolio returns, where

both vectors are of length NV, then the TE is given in Equation 3.22.

N
1
TE =\|5—1 ;(rm —~b;)? (3.22)

Minimum tracking error portfolios are of great interest as in practice it is often necessary to
construct portfolios using a subset of all available stocks due to transaction costs or liquidity
constraints. Jorion (2003) outlines implementing portfolio optimization with tracking error
constraints,

Fleming, Kirby, and Ostdiek (2001, 2003) popularized volatility-timing as an objec-
tive methodology for assessing the economic “value-added” of alternative estimators. The
value-added is measured in a portfolio framework as the fee (as a percent of assets) a risk-

averse investor would be willing to pay to capture the gains in portfolio performance made
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possible by using a given covariance estimator. The assessment is made based on the in-
vestor’s utility improvement which is converted into a management fee and expressed in
basis points (i.e. 0.01%). Specifically, investors follow a volatility-timing strategy where
the portfolio weights vary only with changes in estimates of the conditional covariance
matrix of daily returns.

The realized daily utility generated by this portfolio (R,) for an investor with +y relative

risk aversion is

U(Rp) = Wy ((1+Rf+Rpt) - 5(—13;—7—)(1+Rf+Rm)2>. (3.23)

Ry is the risk-free rate and W) is the amount of wealth that is invested. Misidentification
of the utility function is not a great concern as Chopra and Ziemba (1993) state that sev-
eral different utility functions result in similar portfolio allocations for similar levels of risk
aversion. The incremental value of using the second estimator instead of the first is calcu-
lated by finding the constant A, such that Z;‘rzl U(Rpit) = Zthl U(Ry: — A). This can
be thought of as the basis point fee an investor would be willing to pay to access the second
estimator instead of the first.
3.3 Empirical Analysis
3.3.1 Data: Dow Jones Industrial Average

We consider the the covariance structure of the Dow Jones Industrial Average (DJIA)
over the period from January 2002 to December 2006. The DJIA is a price weighted index
of 30 blue-chip stocks representative of major US industrial corporations. It is is a scaled
average, as the divisor is adjusted to accommodate for stock splits and other corporate

actions which influence the relationship between price and market capitalization.
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Table 3.1 Composition of Dow Jones Industrial Average from January 1, 2002 to December 31,

2006.
Company Name - Symbol Active (DAYMONTHYEAR)
Alcoa Inc. AA
Altria Group MO
Amer Express AXP
Amer International Group AIG 08042004-31122006
AT&T Corp. T 01012002-07042004 & 22112005-31122006
Boeing Co. BA
Caterpillar Inc. CAT
Citigroup C
Coca-Cola Co KO
dupont(e.i.)denemours DD
Eastman Kodak EK 01012002-07042004
Exxon Mobil XOM
Genl Electric GE
Genl Motors GM
Hewlett-Packard Co. HP
Home Depot HD
Intel Corp. INTC
Intl Bus. Machines IBM
Intl Paper P 01012002-07042004
J.P. Morgan Chase JPM
Johnson & Johnson JNJ
Mcdonald’s Corp MCD
Merck & Co MRK
Microsoft Corp MSFT
3M Co MMM
Pfizer Inc. PFE 08042004-31122006
Procter & Gamble PG
SBC Communications Inc. SBC 01012002-21112005
United Technologies Corp. UTX
Verizon Communications Inc. VZ 08042004-31122006
Wal-Mart Stores WMT
Walt Disney Co. DIS
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We consider a single factor model with the DJIA as the sole factor. We estimate the
covariance of the returns of the 30 components with the DJIA futures contract traded on
the Chicago Board of Trade, using the symbol DJ. These futures contracts are pit traded
and only changes in transaction prices are recorded. The stock price data was obtained
from the TAQ database and was filtered according to the trade-quote matching technique
suggested in Lee and Ready (1991) and Henker and Wang (2006). Appendix A.3 provides
details. The futures data was obtained from TickData Inc.

We limit our data set to observations posted from 10:00am EST to 4:00pm EST. The
first 30 minutes of every trading day are omitted to eliminate the effects of the opening call
auction. As stated in Hansen and Lunde (2005), overnight returns are very noisy and bring
additional estimation challenges. Our risk averse investors take positions at market open

and liquidate at market close, thereby eliminating overnight returns from our analysis.

3.3.2 Computation

For 30 assets we need to estimate 465 elements every single day for each covariance es-
timation technique. This is a computational challenge. We employed “Ada” - the Cray XD1
Cluster at Rice University to help speed up the computation. We parallelized the process
by decomposing the covariance matrix into 36 sub-blocks each of dimension p = 5. Then
due to the symmetry, we only considered the upper triangle which contained 21 blocks.
Figure 3.1 shows how the covariance matrix was partitioned. We further decomposed the
computation, by partitioning the data set into years. We run 21 x 5 = 105 parallel pro-

cesses to perform the necessary estimations. This allowed us to run the computation in

1

approximately 15z

the computing time required if we were to run this using serial code.
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Figure 3.1  Partition of Covariance Matrix into sub-matrices of dimension 5. Each sub-matrix is
run independently. The computation is accelerated further by computing each year independently.
This allows for parallel computation in Té% of the time necessary when a using a serial technique.

3.3.3 Results

In Table 3.2 we present the optimal decay parameter estimates for the entire covariance
matrix oy, as well as for just the diagonal elements ap. Recall from Section 3.2.3 that the

exponential smoothing is of the form:
it = (1 ot Oé)it_l + Oéét_l. (3.24)

The o parameter represents the degree of local persistence. In general, tick-time methods
display greater local persistence as more weight is put on recent lags, as TT5 = .0967
and TTO = .0709. In contrast, the o of the calendar-time estimator sampled every 15
minutes, CT15 = .0320, puts less weight on recent lags and includes a larger window of
values to average. These results are consistent with Foster and Nelson (1996); as the
sampling intervals get finer, the rolling regression estimator includes a growing number of

observations generated over a shrinking period of time. The ap estimates are presented to
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show that the diagonal elements display a greater degree of persistence. The comparison
suggests that recent lags play a greater role in volatility estimation, whereas covariance is
a longer memory process.

Table 3.2  Optimal weight parameters for 8 different realized covariance estimators. Weights

are smallest for ad hoc calendar-time estimators. Optimal weight parameters for variance only
estimators are larger than corresponding covariance estimators.

Model CTS CTIS CTO CTOS TTS TTS5S TTO TTOS
ox 0519 .0320 .0814 .0809 .0967 .1035 .0709 .0762
ap 2326 1720 2641 2571 .2845 2886 .2369 .2597

In Table 3.3 we consider the performance of a full realized covariance matrix of dimen-
sion 5 against the exponentially weighted rolling covariance matrix, “Rolling” hereafter,
and a single-index model, “Factor” hereafter. Characteristics include the resulting portfo-
lio returns: mean, the standard deviation (St. Dev), the Sharpe ratio (SR), tracking error
(TE), correlation to market (o)), and basis points gains relative to and equally weighted
portfolio for investors with risk aversion v = 1 and v = 10. In panel (a) we include present
the DJIA futures (DJIA), and in panel (b) a naive, equally weighted portfolio (Equal). The
five stocks considered are: American Express (AXP), 3M Corporation (MMM), Merck
(MRK), Proctor and Gamble (PG), and Walmart (WMT). These stocks were selected as
they are included in the DJIA for the entire duration of the study and they are representa-
tive of the entire DJIA spanning the financial, conglomerates, health care, consumer goods,
and services sectors respectively. Panels (c-e) present the results of the full covariance
matrix, the rolling covariance matrix, and the single-index model. We see that the rolling

estimators obtained the smallest minimum variances. The full covariance matrix performed
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poorly, displaying high variances, low Sharpe ratios and negative utility gains relative to
the equally weighted portfolio. The ad-hoc calendar time methods performed best in the
rolling covariance matrix setting, but were outperformed by the other estimators in the fac-
tor model setting. The Sharpe ratios are generally lower in the factor models than the rolling
covariance matrices. Of interest, sub-sampling failed to produce smaller portfolio volatil-
ities in rolling and single-factor covariance matrix settings. As anticipated, the tracking
errors are lower in the factor models than in the full or rolling matrices. The single-factor
model shows utility gains of 50 to 150 basis points over the equally weighted portfolio. The
ad-hoc calendar-time estimators show larger gains in the rolling covariance matrix setting.
Table 3.3 shows that for even low dimensional settings, imposing structure on the realized
covariance estimators can be generate utility for risk averse investors.

We consider the performance characteristics of the GMV portfolio in a higher dimen-
sional setting using the 30 stocks that make up the Dow Jones Industrial Average Index.
In Table 3.4 we show the results. The full covariance matrix is not presented as it is
ill-conditioned at this dimensionality. Instead we focus on the performance of the rolling
covariance matrix and the single-factor model using the different realized covariance es-
timators. In the rolling covariance matrix setting, the CTS method obtains the smallest
minimum variance. The TTO-S is the second smallest minimum variance. In the single-
index setting, all realized estimators outperform an equally-weighted portfolio. The lowest
minimum variances are obtained by the CT5, CTO-S, and TTO-S. Of interest, the CT15,
TT5, and TTS5-S have the largest minimum variances. The correlation to market statistic
shows that the portfolios generated by the single-index model are more closely correlated to

the benchmark of the DJ futures. In both the single-index model and the rolling covariance
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matrix the CT1S estimator has the highest Sharpe ratio. In particular, the exceptionally
large Sharpe ratios of the rolling CTS and CT15 relative to the equally weighted portfo-
lio appear unrealistic. A limitation of the GMV methodology is that it only considers one
realization for a given optimized portfolio. Jorion (1992) suggests bootstrapping possible
realizations and evaluating the distribution of MV portfolio returns as a better method of
assessment.

We bootstrap 150 possible realizations for the expected mean p; and implement the
SRMY portfolio allocation method. The number of realizations to bootstraps was deter-
mined by convergence diagnostics. The results are presented in Table 3.5. By construction
the variances of the portfolio returns are larger than in Table 3.4. The bootstrapping ad-
dressed the concern with the Sharpe ratios, and we see that we no longer have Sharpe ratios
that are many times larger than the benchmark equally weighted portfolio.

We see that the portfolio returns using the ad hoc calendar-time rolling estimators have
the highest Sharpe ratios, but also may have large negative utility losses. The CT5 esti-
mation technique using the rolling estimator results in 76 basis point gains for the investor
with mild risk aversion (y = 1). This is a much smaller than the 378 basis point gain
reported for CTS in Panel (c) of Table 3.4. A more risk averse investor with v = 10 ob-
tains utility gains of 433 annual basis points. Again, this is smaller than the 767 previously
reported. We see that the rolling CT5, CT15, and CTOS outperforms the equally weighted
portfolio with respect to Sharpe ratio. The other methods fail to outperform the equally
weighted portfolio. The large variances in the portfolio returns and large negative basis
point losses suggest that the rolling estimators may be ill-conditioned and provide poor

portfolio allocation strategies.
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Table 3.3  Performance Characteristics of Global Minimum Variance (GMV) portfolios using 5

stocks.

Model Mean St. Dev. SR TE py bpy=1 bpy=10
(a) Market

DIJIA 0.0037 0.1424 0.0260 0.0000 1.0000

(b) Benchmark

Equal 0.1258 0.1401 0.8980 0.0774 0.8499 0 0
(c) Full

CT5 0.1159 0.1317 0.8799 0.0914 0.7806 —87 15
CT15 0.0924 0.1383 0.6679 0.1096 0.6952 -332 310
CTO 0.1174 0.1308 0.8974 0.0835 0.8164 72 42
CTOS 0.1151 0.1309 0.8792 0.0836 0.8161 —94 18
TTS 0.1208 0.1306 0.9250 0.0854 0.8077 37 79
TT5S 0.1178 0.1303 0.9042 0.0846 0.8112 —66 53
TTO 0.1155 0.1322 0.8738 0.0892 0.7914 -92 5
TTOS 0.1039 0.1311 0.7923 0.0870 0.8008 -—207 —-97
(d) Rolling a5

CTs 0.1282 0.1260 1.0170 0.0822 0.8191 43 211
CT15 0.1330 0.1241 1.0720 0.0880 0.7902 94 285
CTO 0.1215 0.1294 0.9380 0.0785 0.8373 —28 101
CTOS 0.1214 0.1295 0.9378 0.0785 0.8375 29 99
TT5 0.1239  0.1281 0.9667 0.0800 0.8304 -3 142
TTS5S 0.1240 0.1283 0.9668 0.0800 0.8300 -2 141
TTO  0.1256 0.1280 0.9814 0.0799 0.8307 15 160
TTOS 0.1241 0.1281 0.9686 0.0796 0.8319 0 144
(e)Factor

CT5 0.1280 0.1324 0.9668 0.0779 0.8417 33 127
CT15 0.1242 0.1324 0.9380 0.0805 0.8307 -6 89
CTO 0.1293 0.1316 0.9831 0.0776 0.8425 47 152
CTOS 0.1280 0.1317 0.9722 0.0776 0.8424 34 137
TT5 0.1300 0.1320 0.9843 0.0771 0.8446 53 152
TT5S 0.1294 0.1319 0.9808 0.0771 0.8447 48 147
TTO 0.1288 0.1320 0.9753 0.0785 0.8390 41 140
TTOS 0.1253 0.1318 0.9514 0.0780 0.8407 7 109
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Table 3.4  Performance Characteristics of Global Minimum Variance (GMV) portfolios using
the 30 stocks within the Dow Jones Industrial Average.

Model Mean St. Dev. SR TE pm bpy=1 bpy=10
(a) Market

DIIA 0.0037 0.1424 0.0260 0.0000 1.0000

(b) Benchmark

Equal 0.0320 0.1440 0.2225 0.0516 0.9351 0 0
(c) Rolling ax,

CT5 0.0655 0.1100 0.5958 0.0869 0.7923 378 767
CT15 0.1387 0.1197 1.1590 0.1204 0.5897 1098 1387
CTO —-0.0901 0.2906 -—0.3101 0.2725 03686 —1540 —4431
CTOS 0.1019  0.2013 0.5061 0.1771 0.5132 599 =294
TT5 0.0283 0.1154 0.2452 0.0680 0.8814 0 333
TT5S 0.0247 0.1154 0.2144 0.0678 0.8823 -36 298
TTO 0.0186 0.1164 0.1593 0.0722 0.8631 —-99 224
TTOS 0.0237 0.1147 0.2066 0.0699 0.8739 —46 295
(d)Factor

CT5 0.0403  0.1290 0.3121 0.0539 0.9259 102 287
CT15 0.0486 0.1296 0.3754 0.0562 0.9190 185 363
CTO 0.0420 0.1292 0.3251 0.0536 0.9266 119 302
CTOS 0.0405 0.1289 0.3139 0.0537 0.9265 105 289
TT5 0.0399  0.1296 0.3080 0.0534 0.9273 98 276
TT5S 0.0410 0.1297 0.3157 0.0528 0.9290 109 284
TTO 0.0418 0.1293 0.3230 0.0536 0.9267 117 298
TTOS 0.0396  0.1289 0.3072 0.0537 0.9266 96 281
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Table 3.5  Performance Characteristics of maximum Sharpe Ratio Minimum Variance (SRMV)
portfolios using the 30 stocks of the Dow Jones Industrial Average where up = 5%

Model Mean St Dev. SR TE pm bpy=1 bpy=10
(a) Market

DJIA 0.0037 0.1424 0.0260 0.0000 1.0000

(b) Benchmark

Equal 0.0320 0.1440 0.2225 0.0516 0.9351 0 0
(c) Rolling oy

CT5 0.0356 0.1130 0.3154 0.0863 0.7963 76 433
CT15 0.1045 02666 0.3918 0.2627 04922 -1527 —1490
CTO  0.0551 03796 0.1452 0.3387 0.7098 —94890 —1251
CTOS 0.0340 0.1316 0.2500 0.0840 0.8212 34 164
TT5 0.0149 0.1170 0.1273 0.0684 0.8791 —136 180
TT5S 0.0116 0.1171 0.0992 0.0682 0.8799 —169 146
TTO 0.0113 0.1965 0.0573 0.1549 0.7953 —1246 —459
TTOS 0.0101 0.1178 0.0857 0.0720 0.8649 —186 120
(d)Factor

CT5 0.0386  0.1297 0.2976 0.0553 0.9218 85 261
CT15 0.0375 0.1696 0.2208 0.1007 0.8737 354 —-93
CTO 0.0407 0.1298 0.3133 0.0551 0.9225 105 280
CTOS 0.0397 0.1296 0.3067 0.0552 0.9224 97 273
TT5 0.0398  0.1301 0.3064 0.0550 0.9229 97 268
TT5S 0.0408 0.1302 0.3135 0.0545 0.9244 107 276
TTO  0.0410 0.1299 0.3160 0.0552 0.9223 109 282
TTOS 0.0391 0.1296 0.3015 0.0552 0.9223 90 266
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In Panel (d) of Table 3.5 we show the results using the single-index model. With
the exception of the CT15, all of the methods outperform the equally weighted portfolio
with respect to Sharpe ratio. Employing any of these strategies generates approximately
100 basis point gains over an equally weighted portfolio for an investor with risk aversion
~v = 1 and approximately 270 basis points for an investor with risk aversion v = 10. We
can conclude that a risk averse investor can obtain the same level of utility when using a
realized volatility estimation technique in a single-factor model as from the best estimation
technique in a smoothed covariance matrix setting. The single-index model CTO, TTO,
and TTSS estimators all have Sharpe ratios that match the CTS estimator in the rolling
covariance matrix setting. The factor models have greater variance and so a very risk
averse investor v = 10 will still be willing to pay an additional 150 basis points to use the
CTS5 rolling covariance matrix over any single-factor model.

A rolling realized covariance matrix provides minimized variance in portfolio returns.
When performance is assessed in terms of expected returns and variance, then single-index
models offer a computationally convenient alternative. Our results suggest that the single-
factor model performs on par with more computationally intensive methods of estimating
the entire covariance matrix. Moreover we see that the returns using the single-index model
are more strongly correlated with the benchmark index, and this encourages future assess-

ment of minimal tracking error portfolios.

3.4 Conclusion

In this chapter we have compared a number of realized covariance techniques and the

characteristics of the Markowitz mean-variance optimized portfolios they generate. We
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compared the performance of two technique for improving the conditioning of matrices;
exponentially weighted rolling realized covariance matrix and a single-index model. We
argue that in the presence of linear versus quadratic growth in computational complexity
and ill-conditioned matrices, factor models are a more natural setting for comparing co-
variance estimators.

In the future we will consider alternatives to the rolling estimator such as the shrinkage
toward market estimator proposed in Ledoit and Wolf (2003), the exponential matrices
as suggested in Kawakatsu (2006), and the regularization of large covariance matrices
as suggested by Bickel and Levina (2008). The first two methods are computationally
intensive, requiring estimation of all the covariance elements. The third method offers a
computationally parsimonious alternative,

From a financial perspective, the strong performance of the factor model in this setting
motivates further exploiting the computational efficiency of this model. The next step is
to consider a portfolio which minimizes tracking error. Our objective would be to develop
portfolios with minimized tracking error which incur minimal trading costs by holding
relatively few assets. This would be of great interest for the finance community where

many fund managers are assessed according to their ability to track indices.



Chapter 4
Derivation and Simulation of Cross-Market
Tick-Matching Estimator

Tick time estimation offers an advantage of not rely upon any artificial grids. Tradi-
tional calendar-time estimator are subject to a downward bias introduced by interpolating
asynchronous observations onto a synchronous sampling grid. Figure 4.1 offers a graphi-
cal interpretation of the Hayashi and Yoshida (2005) tick-time estimator, which is simply
the sum of the product of overlapping intervals. Palandri (2006) and Voev and Lunde
(2007) both observe that due to computational efficiency it is advantageous to develop an
aggregated version of this tick-time estimator. As seen by the dashed rectangles in Figure
4.1, aggregation preserves the informational content of the original tick-time estimator.

Cross-Market Tick Matching (CMTM) can be written as:

My
CMTM = > Apa(I')(ps(t)) - ps(t))) 4.1

i=1

My
= > ra(lra(t!, ¢
i=1

where T is defined as the terminal time and I = {¢;}i20.12,...ar, and 12 = {t;};201.2, .15
are the sets of observation times for processes A and B respectively, where 0 < t; < T and
0 < t; < T foralli,j. For process A, the interval of observation times I ¢ is defined as
(ti—1,t;]. For process B, the interval of observation times J7 is defined as (¢;_1,t;]. Cross-
Market Tick Matching (CMTM) is an aggregate tick time estimator that matches the ticks
of the faster process (B) to the slower process (A) by: pg(t) = pp(min{t; € 15 : ¢; >

max{t; € I'}}) and pp(t)) = pp(max{t; € 118 : t; < min{t; € I'}}).



72

8 — O pons
%
[= 2 %
©
< %
o ]
<
L
[ B
N
//
o 4 B V. AV N Iy
T T T T T T
0 20 40 60 80 100
B

Figure 4.1  Aggregated Tick-Time Estimation. Grey rectangles represent a traditional Hayashi
Yoshida tick-time estimator; the sum of the product of non-empty overlapping intervals. The dashed
lines are a visual representation of aggregation scheme, which matches the ticks of the faster process
(B) to the corresponding ticks of the slower process (A).

4.1 Derivation of Cross-Market Tick-Matching

The model framework is defined in Section 2.1.1. Building on this framework we
discuss the derivation of the CMTM estimator. We begin by restating the changes in the
price processes in terms the latent price processes and the MM noise. Then we expand
the terms and decompose the product into four elements: 1) D; the cross-product of latent
price processes, 2)1, the cross product of the MM noise of A and latent price process B,

3) Dj3 the cross product of the MM noise of B and latent price process A, and 4) D, the
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cross-product of MM noises.

CMTM =

> Apa(I)(pa(t)) - pa(t))

i=1
My

D (Aza(I') + Augy)(@s(t)) — z5(t]) + Aug,)

My
Yo | Aza(I)(@s(t)) — zs())) + Augslzs(t)) — zs(1)))

) s

D1 D2

A’LLBJ'AI'A(IZ.) + A’U/AJ'AUBJ-

D3 D4

My
> (D1, + D2; + D3; + D4;)

i=1

We calculate the expected value of the CMTM estimator. First we use the fact that

the expectation operator is linear, allowing us to rewrite this as the expectation of the four

components.

E(CMTM)

My
= E <Z(D1i + D2 + D3; + D4i)>

i=]

Ma Ma My My
- E (ZDlH—ZDZH—ZD& +ZD4i>
i=1 i=1 i=1 i=1

My Ma Mg My
= Y E(DL)+» E(D2)+) E(D3)+ Y E(D4)

Ma

Ma
= Z poaogl(I' N[ty t)]) + Z E(Aua;Augy)

i=1 i=1

My
= poaop+27 Y Eap.

i=1

The operator {() is the length of the interval and 7 represents the probability of syn-

chronous observations. The expectation of Dy and Dj are both zero by the assumption that

the latent price process and MM noise are independent. Note, the noise accumulation in



74

the expected value is influenced by the extent of asynchroneity.

Ma
VAR(CMTM) = VAR (Z(Dh + D2; + D3; + D4i)> (4.2)

7}\;,1 My My Ma
= VAR (Z—; D1, + z—; D2; + ;D&‘ + ; D4¢>

My Ma Mg
= VAR()_ DL)+VAR(Y_ D2)+VAR(Y D3
i=1 )

i=1 i=1

My My My
+ VAR D4)+200V(> D2, D3,)
i=1 i=1 i=1
Only one covariance term is included, the other terms equal zero due to the assumption
of independence of MM noise with the latent price process. VAR(D;) is the variance of

CMTM in the absence of noise and is a generalization of the result in Voev and Lunde

(2007).

]WA MA

VAR() DL) = > ((poaosl(I')* + o4U(I")oRl((t) 1)) (4.3)

i=1 =1

T

+ 2004081 N (81, tiq])poacsl (I N (8], t1])

The second term, presented in Equation 4.4, considers the cross product of the latent
price process and the MM noise. The first line follows due to the definition of variance and
the expectation of ), = 0 due to the assumption of independence between the latent price
process and the MM noise. The second line follows due to the linearity of the expectations
operator. As illustrated in Figure 2.3, the overlap of the intervals is limited to the adjacent

intervals. We consider the interval itself 7, the preceding interval ¢ — 1, and the following
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interval ¢ -+ 1.

Ma My My 9 Ma
VAR(Y D2) = E( S D2, -E( Dzi)) ~E <(Z D2¢)2) 4.4)
=1 AZ/ZI s i=1 M Ml =1
= E{d > D2D2.}=> > E{D2D2.}

i=1 ix=1 i=1 ix=1
My i+l

= Z Z E{AUA,z‘TB( i Z}Aqu*rB(tz*vtg]}

i=1 t¥=i—1

When ix = 4 then due to independence between the noise and efficient price process:
E{(Auaa )} E{(r5(t], 7))} = 264051t ¢]))
When i* = ¢ — 1 then,
E{(Auaidua i) E{(ra(t] 6] Ira(ty, )} = —€A0BU((t 1] N (8L, t4)).

We have an overlap on both sides, hence by symmetry,

Ma My
VAR(Z D2) = Z ( fAUBZ(t;/, tf\])
= D (Gl N (L, ) + GaBU( 1) Nt tha)))
i=1
My

= 225 UBZ( )

=1
The calculations for VAR(3"4 D3,) is simple due to the independence between the
efficient price process and noise. Note, the Aup is defined by the A process and may not
include the same error term, and as a result the MM error due to overlap terms do not play

any role.

Mg i+1

Ma
VAR(Z D3l> = Z Z E{AUBYZ'ATA( )AUB,*AT‘A I’L* }"‘ Z2§B0Al ) (4 5)

i=1 =1 ik=i—1 i=1
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The variance of the MM error terms is computed by rewriting in the variance as a
covariance term. Then, as the covariance is a bilinear operator, we can move the covariance
operator inside the double sum. The second line restates the covariance as a sum of diagonal
and off-diagonal elements. Finally, recall that only adjacent intervals can overlap and have

any contribution. Hence, we only consider covariance terms when 4% = ¢ + 1.

i=1 tx=1

My
VAR() _D4;) = COV (Z D4;, Z D4Z*> (4.6)
Ma Ma

= > > COV (D4, D4,)

i=1 fx=1
Mag-1 M
= ZCOV D4;, D4;) +2 AZ ZA COV (D4, D4ss)

i=1 1=1 gx=1+1
Ma—1
= ZVAR (D4)+2 Y COV(D4;, Ddypr)

=1 =1

Now, using the definition of variance, we have
VAR(D4;) = E(D4?) — E(D4;)*. 4.7)

We already know from the expectation calculation that E(D4;) = 27€4 5. The first term
is determined by Equation 4.8. This result is obtained by first writing out the difference
formulas. Recall that the observations of process (B) are not indexed according to process
(A). Our notation from the price process follows to the MM noise. Specifically, ug(i") =
up(min{t; € 1% : ¢; > max{t;, € I'}}) and up(:¥) = up(max{t; € 1% : t; < min{t; €
I'}}) We then expand the multiplication and identify non-contemporaneous terms as “NC”.
According to our assumption of the MM noise process, non-contemporaneous noise terms

are uncorrelated. We expand our multiplication once more, and then take the expectation



77
of the resulting three terms. We use the fact that E{z%z%} = 040% + 20%5.
E(D4}) = E{(AuaAup;)?} 4.8)

= E{((UA,ZH - uA,i)(uB,(H»l)A - uB,iV))Q}

2
= E{(UA,z‘+1UB,(z'+1)A ~ UAi+1UBgY — UAUB (i+1)0 +uaUp;v) }

~

NC NC
2 2
- E{<UA,Z'+1UB,(1+1)A) + 2“A,¢+1UB,(¢+1)AUA,iuB,z'v + (UA,iUB,iV) }

= 2m[285, + E4ER] + 26568 + AnElp

This results in

VAR(D4;) = 2m[265 5 + £5€3] + 26585 + AnEh g — 4n?Elp . (4.9)
E(D42) E(D4;)?

We return to the final term in Equation 4.6.

COV(D4;,D4;y1) = E[D4D4dir:] — E(D4)E(Ddsyr) 4.10)
— E[D4;, Ddyr1] — B(D4)E(Ddisy)
= m[264p + E4ER] + 3n°E 5 — AnElp
= 7l26hp + E463) — mEhp

Hence,

Mag—1 Ma-1

Ma Ma Ma
VAR(Z D4;) = Zl%[%ig%if%%i; 2565+ Y 2m(2ehp+EAER]— Z 22l g
i= i= i= i=1 i=

(4.11)



78

Finally, we return to Equation 4.2 and determine COV (324 D2, S"M4 D3,) as

A A Ma
COV(>_ D2,» D3;) = Y COV(D2;,D3) (4.12)

v
= > (E(D2,D3;) - E(D2;,)E(D3;))

i=1

Mg
= Z E (Aug,rpAup,ra;)

i=1

My
= Z E(rarg) E(AuaAupg;)

My

- Z(aAaBp) * (2m€a,B)

i=1

In the second line, we recall that the expectations of D2; and D3; are both equal to 0, and

then the rest follows.

Putting all these pieces together we obtain the variance of the CMTM estimator.

VAR(CMTM)

4.2 Simulation

Mg

> (poacs) I + o41(I1) a1t 1)) (4.13)

i

2p0 40 BL(I' N (8, 871D poaosl(I71 N (2], t1))

Ma Ma My
262 Z oI + 263 Z oAl(I') + Z 2(1+ m)E5éR
Ma—1 Ma-1

Z 2mE5EE + 4 ZfAB +2 Z (2m — 755

4 Z TACBPEAB-
1

Simulation studies of tick-time covariance estimators include Griffin and Oomen (2006)

and Voev and Lunde (2007). We consider scenarios not previously considered: 1. Dynamic

Arrival Rates, and 2. Brownian Motion plus Jump Process,
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The first scenario is largely motivated by the financial duration modeling literature.
Engle and Russell (1998) show strong evidence of deterministic time-of-day effects in the
duration times of financial transaction data. Exploratory data analysis confirms that arrival
rates are not constant, but rather display this well known diurnal (or U-shaped) pattern.
Barndorff-Nielsen and Shephard (2002) note that the impact of diurnal effects on real-
ized volatility should not be ignored. Figure 4.2 shows the estimated quote intensity as
a function of time-of-day. A diurnal effect is observed with more quotes at the start and
conclusion of trading day, and comparatively fewer quotes during the middle of the day.
This intensity pattern can be modeled as a quadratic function. Dynamic arrival rates, which
display a diurnal pattern, are a more accurate characterization of the price process. As a
result, we will examine the impact on realized covariance estimators when observations
arrive in a diurnal fashion.

The second scenario examines the impact of asynchronous jump processes on the re-
alized estimators. Barndorff-Nielsen and Shephard (2004a) show that the calendar-time
variance and covariance estimators are not robust to the inclusion of jump processes. Fur-
thermore, Barndorff-Nielsen and Shephard (2004b) introduce realized bipower variation

(BPV),

BPV(t) Y |ril'ria|', 4.14)

=1

as a robust alternative to realized covariance estimation.
Andersen, Bollerslev, and Diebold (2005) build on the results in Barndorff-Nielsen and
Shephard (2004b) and provide an empirical analysis of variance and jump estimation using

the bipower variation methodology. Jumps are found to be prevalent across asset classes,
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Figure 4.2  Number of quotes observed per minute. X-axis is the time of day, with the market
opening at 9:30 and closing at 16:00. The Y-axis is the number of quotes observed per minute. A
diurnal effect is observed with more quotes at the start and conclusion of trading day, and compara-
tively fewer quotes during the middle of the day.

but less persistent than the variation of the continuous process. An interesting finding
in Barndorff-Nielsen and Shephard (2006) is that the jump process is better identified as
the sampling interval decreases, this is in contrast to the sparse sampling advocated for
diffusions contaminated by observational noise. In a related study, Oomen (2006) also
considers the price process as a pure jump process. Optimal sampling is identified as a
future avenue of research.

We present Monte Carlo simulation results comparing the efficiency of our proposed
sub-sampled CMTM estimator. Each simulation consists of 2500 iterations. We evaluate
the relative performance of the covariance estimators under contemporaneously correlated
noise structures. Three different arrival regimes, in terms of expected duration between

arrivals, are examined: 1.) low-low (30:30), 2.) low-high (30:10), and 3.) high-high
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(10:10). These arrival regimes are representative of the subset of the TAQ quote data that
we are studying. In order to consider the marginal contribution of tick matching, optimal

sampling, and sub-sampling, we consider the five estimators presented in Table 4.1.

Table 4.1 Realized covariance estimators considered in simulation. Calendar time is abbreviated
as (CT) and tick time is abbreviated as (TT).

Symbol Estimator Abbreviation
o 5 minute calendar time (CTS)

o 15 minute calendar time (CT15)

VAN calendar time optimally sampled (CTO)

X Sth tick estimator (TT5)

+ optimally sampled CMTM estimator (TTO)

4.2,1 Simulating Brownian Motion

The latent process is a bivariate Brownian motion. This process is observed at non-
synchronous Poisson times. First the latent process is generated using the Euler scheme

suggested by Higham (2001):

AIEA

ZA
szt{@T] (4.15)
ACL‘B 2B
where ©7 is the Cholesky factorization of the covariance matrix such that ©07 = . ¥ is
a 2 X 2 matrix. Z represents the Brownian motion and z; ~ N(0, 1). The inter-arrival times
are exponential so arrival times are determined by the cumulative sum of the generated vec-
tor of exponential random variables and rounded to the nearest integer value. The resulting
values determine which elements of the latent process will be observed. Non-synchroneity

is achieved by simulating two different arrival time vectors. Finally, contemporaneously

correlated microstructure effects are added to the selected latent values to create observed
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Figure 4.3  Realization of Bivariate Brownian Motion. The lines represent the underlying price
processes generated using an Euler scheme with step size At = 1 second. The points are the
observations recorded at Poisson times. The two processes are strongly correlated, with p = 0.9,
but observed asynchronously.

values (pas = za: + uay). Specifically, we consider 011 = 032 = 1 and 012 = 0.9. We
generate our realizations of the processes using At = 1 second. We assume that oy ; and
07,2 are known and focus exclusively on estimating the covariance.

Figure 4.3 shows a realization of this process. The lines represent the Euler realization
of the continuous time process when At = 1 second, and the points are the observations
recorded at Poisson times. It is easy to see from the figure that the observations are asyn-

chronous, yet obtained from correlated latent processes.
4.2.2 Dynamic Arrival Rate
We again model the underlying price process as a bivariate Brownian motion as given

in Section 4.2.1. The arrival intensities are determined according to time-of-day dynamics.

Let T be the terminal time in seconds, then the arrival intensity follows a diurnal pattern
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Figure 4.4  Realization of Bivariate Brownian Motion with Dynamic Arrival Rates. The lines
represent the underlying price processes generated using an Euler scheme with step size At = 1
second. The points are the observations recorded at Poisson times. The two processes are strongly
correlated, with p = 0.9, but observed asynchronously. The dynamic arrival rate is evidenced by
the relatively fewer observations during the middle of the day.

given by:

Mt)=ax(t—T/2)>+b/3 where a=0bx*(T/2)72 (4.16)

In this equation b is the intensity rate at the start of the trading day. Figure 4.4 shows
a realization of this process. The lines represent the Euler realization of the continuous
time process when At = 1 second, and the points are the observations determined by the
dynamic arrival rate. Observations are less frequent during the middle of the day. Also

asynchroneity is more pronounced in the middle of the day.

4.2.3 Brownian Motion with Jumps

We also examine whether realized covariance estimates are robust in the presence of

jumps. Barndorff-Nielsen and Shephard (2004a) have shown that calendar-time estimators
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are not robust in the presence of jumps, and in turn we consider the performance of tick-

time estimators. Following Glasserman (2004) this process can be generated by:

ALL’A BA 0

= VAt [ oT ] g Jumpsize 7 (4.17)
Azg zB 0 Bsp JB

where B; is distributed as a Bernoulli(g;), and J; is distributed as lognormal(0,1). In
our simulations the probability of a jump occurring is ¢ = 0.0005 for both processes,
and Jumpsize = 0.1. The parameters of the bivariate Brownian motion are given in
Section 4.2.1. Figure 4.5 shows a realization of this process. The lines represent the Euler

realization of the continuous time process when At = 1 second, and the points are the

observations. A jump in the grey process occurred within the dashed rectangle.

4.3 Results

Figure 4.6 presents the bias of the covariance estimators of a bivariate Brownian mo-
tion with dynamic arrival rates under the three different arrival regimes. Figures 4.7 and
4.8 show the associated mean squared error (MSE) plots. We see that under the low arrival
regime (panel a), the tick-matching estimators are almost unbiased. In contrast, for very
low noise-to-signal ratios the calendar-time optimal sampling methodology performs very
poorly and displays a large negative bias. A comparison of the ad-hoc estimators (5 minute
and 15 minute) shows that the 15 minute estimator is less biased. The 5 minute estimator
performs worse than in constant arrival rate simulation in Figure 2.4. The large negative
biases of the calendar time methods is due to the Epps effect induced by the greater degree

of asynchoneity during the mid-day. The medium and high arrival regimes show bias re-
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Figure 4.5  Realization of Bivariate Brownian Motion with Jumps. The lines represent the un-
derlying price processes generated using an Euler scheme with step size At = 1 second. The points
are the observations recorded at Poisson times. The two processes are strongly correlated, with

p = 0.9, but observed asynchronously. We see a large jump in the grey process within the dashed
rectangle.

ductions for all the calendar methods, with the CTO improving the most dramatically. This
reflects the reduction in asynchroneity with more frequent observations. Even in the high
arrival regime the optimal tick-time estimator is always less biased then the calendar-time
alternatives for all noise-to-signal levels.

We also see the benefit of sampling in tick time. In contrast to calendar time, the
ad-hoc tick-time estimator demonstrates a positive bias that increases with the noise-to-
signal ratio and with arrival frequency. The difference in the biases of the TTS and TTO
estimators indicates that the benefits of optimal sampling in the tick-time setting persist
even in a dynamic arrival rate setting,

In Figures 4.7 and 4.8 we see that for low noise-to-signal ratios the tick-time esti-

mators have the smallest MSE, and the sub-sampled TTO estimator has the smallest MSE



86

overall. As the noise-to-signal ratio increases, the ad-hoc tick-time estimator becomes non
competitive in the medium and high frequency settings. In the high frequency, high noise-
to-signal setting the CTS, CTO, and TTO methods provide similar results. The optimally
sampled calendar-time estimator is non-competitive for low noise, low frequency due to
the large bias. Figure 4.8 shows that sub-sampling reduces the MSE for all estimators with

the benefits increasing with the noise-to-signal ratio.
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Figure 4.6  Bias of realized covariance estimators under the Dynamic Arrival Rate, where p =
0.9 and symbols are defined in Table 4.1. The x-axis is the noise-to-signal ratio and the y-axis is
the bias of the estimators. The optimized tick-time estimator, represented by the black line, is the
least biased in all three frequency settings.

Figure 4.9 presents the bias of the covariance estimators of a bivariate Brownian motion
with jumps under the three different arrival regimes. Figures 4.10 and 4.11 show the
associated mean squared error (MSE) plots. For low noise-to-signal settings, the tick-time
estimators display small biases relative to the other realized estimators. The results suggest
that in the absence of noise tick-time estimation is robust to jumps. Barndorff-Nielsen and
Shephard (2006) state that jump identification requires frequent observation of the process,
and the low noise-to-signal setting will suggest the most frequent sampling. As the noise-

to-signal ratio increases, our optimal sampling frequency increases, hence we are less able
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Figure 4.7 Mean Squared Error of realized covariance estimators under the Dynamic Arrival
Rate, where p = 0.9 and symbols are defined in Table 4.1. Tick-time estimators have the smallest
MSE, but the difference relative to the calendar-time estimators is less pronounced as the noise-to-
signal ratio increases.
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Figure 4.8 Mean Squared Error of sub-sampled realized covariance estimators under the Dy-
namic Arrival Rate, where p = 0.9 and symbols are defined in Table 4.1. The sub-sampled estima-
tors have much smaller MSE than in Figure 4.7.

to isolate the jump component and obtain contaminated realized covariance estimates, We
see that for all signal-to-noise levels the optimal tick-time estimator is less biased or equal
to the ad-hoc tick-time method. The calendar-time estimators are biased for low noise-to-
signal ratios and suggest that calendar time realized covariance estimators are not robust to
jumps. These results are consistent with Barndorff-Nielsen and Shephard (2004b).

InFigures 4.10 and 4.11 we see that in the low and medium frequency settings the tick-
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Figure 4.9  Bias of realized covariance estimators with Jumps, where p = 0.9 and symbols
are defined in Table 4.1. The x-axis is the noise-to-signal ratio and the y-axis is the bias of the
estimators. The bias of the optimized tick-time estimator, represented by the black line, increases
as the noise-to-signal ratio increases.
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Figure 4.10 Mean Squared Error of realized covariance estimators with Jumps, where p = 0.9
and symbols are defined in Table 4.1. Tick-time estimators have the smallest MSE for low noise-
to-signal ratios, but are no longer the smallest as the noise-to-signal ratio increases.

time estimators have the smallest MSE for low noise-to-signal ratios. The CT15 estimator
performs very poorly in all settings. The optimally sampled calendar-time estimator is
non-competitive for low noise, slow frequency due to the large negative bias. The CT5
estimator appears relatively competitive for noise-to-signal ratios > .5. Overall, the MSE
is much higher than for the bivariate Brownian motion presented in Figures 2.5 and 2.6

and the dynamic arrival rate presented in Figures 4.7 and 4.8. Again sub-sampling reduces
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Mean Squared Error of sub-sampled realized covariance estimators with Jumps,

where p = 0.9 and symbols are defined in Table 4.1. The sub-sampled estimators have much

smaller MSE than in Figure 4.10.

the MSE with greatest benefits in high noise-to-signal settings as shown in Figure 4.11.



Chapter 5
Conclusion

This thesis presents a realized tick-time covariance estimator that incorporates cross-
market tick-matching and intelligent sub-sampling. Results show that our estimator has
smaller mean squared error, smaller bias, and greater economic utility than prevailing
methodologies. Assessing the economic value of increasingly precise covariance estimates
is of great interest in finance. We compare the performance of this estimator with prevail-
ing methodologies in a simulation study and by assessing out-of-sample volatility-timing
portfolio optimization strategies. For high-dimensional allocation problems we address the
problem of ill-conditioned covariance matrices by considering the performance in the set-
tings of rolled regression and factor models. We conclude that factor models are a more
natural setting for employing realized covariance estimators,

This thesis has demonstrated that tick-time estimators can play an important role in re-
alized covariance estimation. In Chapter 2 we showed the tick-time covariance estimators
provide smaller mean squared error in the presence of less frequently quoted processes.
In Chapter 3 we show the role that tick-time covariance estimators can play in high di-
mensional covariance estimation. Specifically, when a factor model structure is imposed
on the covariance matrix, the optimally sampled tick-time estimator provides a risk averse
investor with the better than or equal to level of utility as any exponentially smoothed full
realized covariance matrix.

This work should be understood as an empirical validation of a vast body of literature.

Many studies have provided simulation results, or at best low dimensional empirical anal-
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ysis. This work is distinguished in that it assesses a computationally challenging problem.
Moreover, this study considers the practical challenges of employing high frequency data
in a high dimensional setting. It demonstrates that factor modeling dramatically reduces
the dimensionality of the problem and allows for efficient estimation of high dimensional
covariance matrices.

The framework for this estimator is sufficiently general to be applicable in a larger
spectrum of problems. Essentially any estimation of a multivariate diffusion process, whose
observétions are asynchronous and contaminated by error, can benefit from this proposed
methodology. Such fields include: stochastic kinetic biochemical modeling (Golightly and
Wilkinson 2006), dynamics of mechanical devices (Cao and Pope 2003), and real estate

valuation (Gelfand, Banerjee, Sirmans, Tu, and Ong 2007), to list a few.

5.1 Future Work

The results presented in Chapters 2 through 4 uncovered many interesting avenues
for future research. The data analysis in Chapter 2 motivates further exploration into
generalized market microstructure characterizations. Likewise, the encouraging single-
factor model results in Chapter 3 warrant further investigation into the practical use of this

methodology. The following section outlines four avenues for future research.

5.1.1 Tracking Error Minimization

The strong performance of the factor model in the multivariate setting motivates fur-
ther exploiting the computational efficiency of this model. The next step is to consider a
portfolio which minimizes tracking error. The objective would be to develop portfolios

with minimized tracking error while incurring minimal trading costs by holding relatively
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few assets. This would be of great interest for the finance community where many fund

managers are assessed according to their ability to track indices.

5.1.2 Time-of-day Covariance Estimation

The U-shaped pattern of financial quote activity with respect to time of day is well
know. Currently, realized variance and covariance estimators have focused on obtaining
estimates of daily variation. Given the fact that arrival rates are dynamic during the day,
we should also consider how variance and covariance change during the day. A hierarchi-
cal Bayesian framework may allow for more dynamic realized covariance estimation. A
possible application could be to help determine optimal timing for trade execution. Has-
brouck (2004) has examined within day price characteristics in a Markov Chain Monte

Carlo setting.

5.1.3 Generalized Market Microstructure Noise

Generalizing the market microstructure noise assumptions to allow for autocorrelation
is a natural extension to this work. This idea is supported by Hansen and Lunde (2006),
which provides empirical results suggesting that market microstructure noise displays auto-
correlation and is correlated with the latent price process. The autocorrelation assumption
would result in different optimal sampling frequencies for both calendar and tick time esti-
mators. It is of great interest to compare the estimation performance under the two different

noise assumptions.

5.1.4 Covariance Estimation in the Presence of Jumps

The simulation results in Chapter 4 show that tick-time realized covariance estima-

tion is robust to jumps at very low nose-to-signal settings. As the noise-to-signal ratio
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increases, tick-time estimators are no longer robust to jumps. It would be interesting to
compare the performance of bipower variation in the calendar-time against tick-tick time
setting. Oomen (2006) has shown promising results for tick-time estimators in the univari-

ate setting.



Appendix A
Filtering

In February 2001 the NYSE completed a phased transition from fractional to decimal
pricing. This led to a reduction in market makers’ rents and thereby changed the nature
of price discovery. Traditionally, regional exchanges competed with the NYSE by offering
competitive quotes, cheaper executions, and anonymity. Now quotes posted in the NYSE
have become more genuine price discovery signals as under decimalization the NYSE is

now more often alone at the National Best Bid and Offer (NBBO) Goldstein et al. (2008).

A.1 Quotes

We limit the data to quotes posted on the NYSE due to this exchange’s dominance in
setting the NBBO Goldstein et al. (2008). We define admissible quotes according to the
following filtering criteria (See, e.g. Yan (2007), Hansen and Lunde (2006) Chordia et al.

(2005), Cliff et al. (2007)):
1. Remove quotes with mode of (4, 7, 9, 11, 13, 14, 15, 19, 20, 27, 28)
2. Remove quotes with negative prices and/or negative/zero volumes
3. Remove bid ask pairs where the bid ask spread is more than 10% of the bid.
4. Remove midquote prices that are more then 10% change from prevailing price.

5. Remove midquote prices that are the same as the prevailing price (i.e. depth revi-

sions)
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This final criteria addresses depth quotes. Note, for stocks listed on the NASDAQ, we limit

our data to quotes posted on the NASDAQ.

A.2 Trades

We define admissible trades according to the following filtering criteria (See, e.g. Yan

(2007), Chordia et al. (2005), Cliff et al. (2007)):
1. Remove trades with condition of (“O”, “Z”, “B”, “T”, “L”, “G”, “W”, “J”, “K™)
2. Remove trades with negative prices and/or negative/zero volumes
3. Remove trades with correction not in (0, 1, 2).

4, Remove trade reversals.

A.3 Quote Trade Matching

Filtering based only on quotes may at times admit unreasonable quote values. By con-
sidering quote relative to trades, the Figure A.1 motivates the need for quote trade match-

ing. We can see that the opening bid ask quotes on March 12 are 160.4 and 160.48 respec-

DATE PRICE ot ime bid ofr ex
120020311 104.9  15:59:41 104.5  104.92 N
120020311 104,92 15:59:42 104.9 104.92 N
120020311 104,98 15:58:49 104.8 104.98 N
120020311 104,95 15:59:49 104.8 104.98 N
|20020311 105.01 16:00:03 104.8 105.01 N
120020311 105.01 16:00:03 104.9 105.01 N
20020311 105.1 16:00:03 104.9 105.01 N
20020311 105.24 16:00:36 105 105.24 N
20020311 105.24 16:00:46 105 105.25 ™

002031, 205.24  16:00:46 105 03,23 N

002031 105,247716:011 2% 165.7T 105,25 N

Q02031 106,45, 9133554 169.4 60,48 N
12002051, 106.45 Brz3:51 160.4 160,48 N
20020312 106.5 9134:34 160.4 160.5 N
20020312 106.5 9134147 %60.4 160.95 N
20020312 106.5 9:34:47 160, 4 160,55 N
20020312 106.5 9135:24 106.5 160.6 N
20020312 106.5 9:35:49 106.5 160.6 N
20020312 106.5 ©:35:49 106.5 160.6 N
20020312 106.6 9:36;17 106.5 1lé0.6 N
20020312 106.6 9:36:40 106.6 160.7 N
20020312 1¢6.6 9:37:01 106.6 160.7 N
120020312 106.6 9:37:23 106.6 106.8 N
20020312 106.6 9:i37:33 106.6 106.8 M
200290312 108.8 9:37:42 106.86 106.8 N

Figure A.1  Example of limitation of quotes only filtering and how trade quote matching miti-
gates problem. Data is IBM on March 11-12, 2002,

tively. The previous quotes were 105.1 and 105.25. The corresponding opening trade was
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at 106.45. Hance the trade suggests that the opening quotes are invalid. This suggests a
need for using a filtering criteria that is dependent on trade prices. We employ the quote
trade matching developed in Lee and Ready (1991) and Henker and Wang (2006). To
address the problem identified in Figure A.l we impose an additional criteria of requiring
the trade to be within a spread above the offer and a spread below the bid as illustrated in

Figure A.2.

" Upper
Offer

Spread <
Bid

Lower

Figure A.2  Criteria for Filtering Quotes with respect to Trade

We define admissible quotes according to the following filtering criteria:

1. Remove quotes with mode of (4, 7,9, 11, 13, 14, 15, 19, 20, 27, 28)

2. Remove quotes with negative prices and/or negative/zero volumes

3. Remove bid ask quote pairs where the bid ask spread is more than 10% of the bid.
4. Remove trades with condition of (“O”, “Z”, “B”, “T”, “L”, “G”, “W”, “J”, “K”)
5. Remove trades with negative prices and/or negative/zero volumes

6. Remove trades with correction not in (0, 1, 2).

7. Quote time = Quote time + 1
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8. Match trades to quotes

9. Keep if Trade € (bid — spread, ofr + spread)

10. Remove midquote prices that are the same as the prevailing price (i.e. depth revi-

sions)
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