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Abstract

In a recent paper, Barzilai and Borwein presented a new choice of
steplength for the gradient method. Their choice does not guarantee
descent in the objective function and greatly speeds up the conver-
gence of the method. We derive a relationship between the gradient
method for minimizing a quadratic function and the shifted power
method. This relationship allows us to establish the convergence of
the Barzilai and Borwein method when applied to the problem of min-
imizing any strictly convex quadratic function (Barzilai and Borwein
considered only 2-dimensional problems). Our point of view also al-
lows us to explain the improvement obtained by using this new choice
of steplength.
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1 Introduction

In order to solve the unconstrained minimization problem, we consider the
nonlinear equations problem :

find x, ¢ IR" such that V f(z,) =0, (1)

where f : IR" — [K. The numerical solution of (1) is usually iterative,
moving at each iteration from an estimate z. of x, to a better estimate
4. In many algorithms, each iteration involves the calculation of a quasi-
Newton step, son = —A7'V f(x.), where A, ¢ IR™" is an approximation of
the Hessian of f at .. After each iteration the current A, is updated to Ay,
an approximation of the Hessian of f at x,. The approximation usually is
chosen to satisfy the secant equation,

A+'Sc =Y (2)

where s, = x4 — x. and y. = Vf(zy) — Vf(z.).

In the one dimensional case the secant equation completely determines
Ay; however if n > 1 | then many matrices will satisfy the secant equation.
So, in addition to obeying (2), the update A, must be further restricted to a
set of matrices that have desirable properties, See Dennis and Schnabel {3].

Barzilai and Borwein in {2] considered a related but somewhat different
approach. They observed that the scalar aycIR that uniquely solves the
overdetermined linear system y. = a3, in the least squares sense is given by

t
sty. «
oy = == 3
= (3)
if s, # 0. Hence by restricting the update matrix in the quasi-Newton
method to the class of scalar multiples of the identity and then asking that
the secant equation be satisfied in the least squares sense they devised the

following algorithm

Algorithm 1 (Barzilai and Borwein Method)
Given xg € IR" a0 € IR

For k=0,1,..., (until convergence) do
y S
1. Set s, = —a V()



2. Set xpp = T+ Sy

3. Sel yr =V f(wee) — VI(xe)

, 5Ly
4. Set gy = =

Sksk
['nd do

This algorithin requires only O(n) floating point operations per iteration in
addition to the gradient evaluation.

If we consider problem (1) when f(z) = Jx'Ax — b'a + ¢ is a quadratic
function and A is a symmetric positive definite (SPD) matrix, then «y in (3)
becomes

st As,

y = Sts (4)

and Algorithm 1 becomes

Algorithm 2 (Barzilai and Borwein Method for Quadratics)
Given xg ¢ IR 0 € IR

For k=0,1,..., (until convergence) do
1. Set s, = —z%;Vf(évk)
2. Sel Tppq = T + 5
Stfs
. f;Et CYk4_1 = LiTi—E
Sy Sk
End do

[ou)

In the quadratic case, apy1 turns out to be the Rayleigh quotient of A at
the vector s;. Since A is SPD,

0 < Amin S Qg S Amcz:c fO?" (lll ka (5)

where A;, and X, are respectively the smallest and largest eigenvalues
of A. And so, in step 1 there is no danger of dividing by zero.

Barzilai and Borwein [2] also observed, by symmetry, that the scalar &4
that uniquely solves the overdetermined linear system iyc = s, in the least
squares sense is given by
Yeye

d’+ -
.1
Scyc

(o



if sy, # 0. In the quadratic case, &, becomes

which is the Rayleigh quotient of A at the vector VAs.. Hence, a, also
satisfies (5).

In the rest of this paper, we will only consider the Barzilai and Borwein
method with the choice of oy defined by (3) in the general case and by (4)
in the quadratic case. The reason for this is that all results established for
Algorithm 2 with the choice a4 also hold with the choice &y since the method
has the same properties in either case.

Notice that, in the Barzilai and Borwein gradient method, the search
direction is always the negative gradient of f at z. as in the gradient method,
but the choice of steplength is not the standard choice. In fact, Algorithm 2
would be the steepest descent method for quadratics if we changed (4) to

t
9494
oy = S0 (6)
9+9+
where g, = V f(«xy). Since the vector sy is a multiple of the vector g, then
t
(6) can also be written as ay = ot

stsp T

Despite the similarities betWeer;L these two methods, Algorithm 2 is signifi-
cantly faster than the steepest descent method at the same cost per iteration,
see Barzilai and Borwein [2] and also Fletcher [4].

Barzilai and Borwein [2] presented a convergence analysis of their method
only in the two-dimensional quadratic case. It is unlikely that their analysis
can be extended to higher dimensional problems. In the present work, we
establish the convergence of the Barzilai and Borwein gradient method for
any strictly convex quadratic function.

This paper is organized as follows. In Section 2 we present a relationship
between the gradient method for minimizing a quadratic function and the
shifted power method. We believe that this connection is the key to under-
standing the convergence properties of the Barzilai and Borwein method. In
Section 3 we study the convergence of their method applied to a quadratic
function with a SPD Hessian.



2 Relationship to the Shifted Power Method

Let us consider the gradient method for problem (1) when f is a differen-
tiable function. For the purpose of comparison we will write the steplength
choice in a slightly different way.

Algorithm 3 (Gradient Method)
Given xg ¢ IR”

For k=0,1,..., (until convergence) do

1. Choosc steplength —;’;

]

. Set sy = —EIZVf(.Tk)
3. Set xpyp1 = x) + 84

End do

Both the steepest descent method and the Barzilai and Borwein method
for quadratics are special cases of Algorithm 3 . They differ only in the way
the scalars o are chosen. Lemma 1 demonstrates a connection between Al-
gorithm 3 and the shifted power method. This relationship will be used to
establish our convergence results in Section 3.

Lemma 1 Let f(z) = 2’ Az — bz +c where A is a SPD matrix. Further let
x, be the unique minimizer of f, {xy} the sequence generaled by Algorithm 3
and e, = x, — xy, for all k. Then

1. 14(’,k. = S}

[5S)

» €y = -al—k(akl — A)ek

3. Sk41 = 0}3+1(0k1 — 14)Sk

Proof: Using the fact that V f(2;) = Ay — b and the definition of the step
s 1n Algorithm 3, the three claims in Lemma 1 follow directly a

ot



Since A is SPD, the scalars ay satisfy (5) when they are generated by
either (6) or by (4). And so, claim 1 in Lemma 1 allows us to conclude
that ||ex]| tends to zero if and only if ||sk]| tends to zero. Thus, for the
minimization of a quadratic function with a SPD Hessian it suflices to study
the behavior of {s}.

For any sg, there exist constants ¢, c,, ..., ¢, such that:

i3
S0 = Z vy, (7)
i=1

where {vy, vy, ...,v,} are orthonormal eigenvectors of A associated with the
eigenvalues {Ay, Ay,..., A, }. Now, using Lemma 1 it follows that for any
integer &,

k
Skl = —I;Z: I1(e; = X))eivs (8)

1 5=0

where
k+1

e =[] «;-
j=1

From (8) we can see that if we use the exact cigenvalues of A as the
scalars o in Algorithm 3, in any order, then we find the exact solution in p
iterations, where p is the number of distinct eigenvalues of A. Unfortunately,
we do not know the eigenvalues of A in advance. However, we can choose
ay to be the Rayleigh quotient at s; (the choice of the steepest descent
method) or the Rayleigh quotient at si_p (the choice of the Barzilai and
Borwein method) to approximate the eigenvalues of A. With the choice of
the steepest descent method, it can be shown that s}, s; = 0 for all k£, and
also that the 2-norm of the error decreases at every iteration. Consequently,
the scalars a; tend to take values closer to \,,,, than to A,,;,. Therefore,
the coefficients associated with the large eigenvalues in (8) will be effectively
reduced, while the coefficients associated with the small cigenvalues only
decrease very slowly. See Johnson [5] and Akaike [1] for details.

On the other hand, the choice of the Barzilai and Borwein method does
not guarantee any orthogonality among the vectors sg, and the 2-norm of
the error might increase at some iterations. In fact, by properties of the
Rayleigh quotient, the scalar aj will approximate the eigenvalue associated
with the largest coefficient in the eigenvector expansion of the vector si_q,



regardless of the eigenvalue location in the spectrum. Therefore, the Barzilai
and Borwein method is more effective at reducing the coefficients associated
with all the eigenvalues in the eigenvector expansion (8).

The behavior of the sequence {ay} for the Barzilai and Borwein method,
in particular the approximation of the cigenvalues of the Hessian, is most
easily appreciated by considering a particular example.

Example 1

Let f(x) = %.’Et/l{l? where A = diag(1,2,12). Clearly, f has a unique min-
imizer at z, = (0,0,0)". The first 10 iterations generated by Algorithm 2
starting at x9 = (1,1,1)" and oy = 1 are shown in Table 1. The Table lists
the 2-norm of the error, and the 2-norm of the gradient. Also shown are the
scalars ay and the coeflicients in the eigenvector expansion (8) associated
with the three eigenvalues of A.

Since ap = Ay = 1, the column with the coefficients of the eigenvector
associated with A, in Table 1 contains zero after the first iteration, and the
scalar a; approximates only the eigenvalues A, = 2 and A3 = 12 during
the rest of the process. Notice that aj approximates, at each iteration, the
eigenvalue with the larger coefficient in the previous iteration. In fact, the
bigger the difference between the two coefficients the closer the scalar will be
to the eigenvalue.

Notice also that this is not a descent algorithm. Under special circum-
stances, that will be studied in the next section, the 2-norm of the error
€k, as well as the objective function, increases at some iterations. This is in
sharp contrast to the steepest descent method. In fact, if the steepest descent
method is used to minimize the function f(x) with the same initial guess o,
then 165 iterations are required to achieve an error of .3x1072%. Observe that
the Barzilai and Borwein method achieved this accuracy in only 10 iterations.

3 Convergence Analysis

In this section we establish the convergence of Algorithm 2 applied to any
quadratic function with a SPD Hessian.
For any initial crror ey, there exist constants d9,dS, ...,d% such that:

n

o = Z ddv;,

i=1



coefficients of eigenvectors
iteration Ilex |2 IV f(zi)ll2 Qg associated with
A =1 Ay =2 Az =12
0 0.17d401 | 0.12d402 [ 0.1000d+401 | -.10d401 | -.20d401 | -.12d+02
1 0.11d+402 | 0.13d403 | 0.1165d4-02 | 0.00d+00 | 0.17d+00 | 0.11d+402
2 0.88d4-00 | 0.42d+01 | 0.1199d+02 | 0.00d4-00 | 0.14d+400 | -.32d+00
3 0.69d+00 | 0.13d401 | 0.1045d+402 | 0.00d+00 | 0.13d+400 | 0.71d-04
4 0.55d4-00 [ 0.11d401 | 0.2000d+01 | 0.00d+00 | 0.56d+00 | -.55d-04
5 0.45d-04 0.54d-03 | 0.2000d+01 | 0.00d+00 | 0.80d-06 | 0.27d-03
6 0.22d-03 | 0.27d-02 | 0.1199d+02 | 0.00d+00 | 0.65d-14 [ -.23d-03
7 0.16d-08 | 0.19d-07 {0.1200d+02 | 0.00d+00 | 0.54d-14 | 0.16d-08
8 0.26d-13 | 0.53d-13 | 0.1200d4-02 | 0.00d+00 | 0.45d-14 | 0.00d+00
9 0.22d-13 | 0.44d-13 | 0.2000d+01 | 0.00d+00 | 0.22d-13 | 0.00d+00
L0 0.31d-29 | 0.63d-29 | 0.2000d4-01 | 0.00d+00 | -.32d-29 | 0.00d+00

Table 1: Barzilai and Borwein method for Example 1

where {v, vy, ...,0,} are orthonormal eigenvectors of A associated with the

eigenvalues { A1, Ay, ..., A ).
Using Lemma 1 we obtain for any integer k,

T
€41 = Zd;ﬂ-lvia (9)
=1
where \
A | ()
j:O a.]

We observe that the convergence properties of the sequence {¢x} will

depend on the behavior of each one of the sequences {df}, 1 < i < n.
Later in this section, we will prove that each of these sequences converges to
zero. First let us establish the Q-linear convergence of Algorithm 2 applied
to a quadratic function with a SPD Hessian that satisfies the admittedly
restrictive condition

)\mar. < 2% )\min- (10)



Lemma 2 Let f(x) = 12’ Av—b'w+c where A is SPD and satisfies (10). Let
{ap} be the scquence gencraled by Algorithm 2 and x, the unique minimizer
of f. Then the sequence {xy} converges Q-lincarly to x, in the Fuclidean
norm with convergence factor ¢ = (Anar — Amin)/Amin-

Proof: Using Lemma 1 and (9) we obtain for any k,

1 n T

(el — A dbo; = Z(E\—L——-ﬁ)dfvz

g i=1 i=1 O

Cr41 =

By the orthonormality of the eigenvectors we have

o g, O — /\i o — /\i .
lexslls = Z(df)Z(_—‘")Z < m.a-X(”—"')ZHCk”%- (11)
=1 A ! Wk
From (10), recalling that aj obeys (5),
Lk — /\i /\Tna._r - /\min -
max |m' | < - < 1. (12)
¢ g /\min

Combining (11) and (12) gives

A /\maa: - /\min ;
lex]. where ¢=——— < 10
/\min
Now we can explain why the norm of the error might increase at some
iterations when the spectrum of A does not satisfy (10). Let us first divide
the spectrum of A into two subintervals

flersr]ls < ¢

A77’L(2 &

Am,a-.l‘
——=] and Right = (

Lfffl = [/\mm, ) /\maa:]-

Clearly, if the spectrum of A obeys (10) then the Left interval is empty
and Lemma 2 says that the error decreases at each iteration. I we force the
scalars o to be in the Right interval, by a similar argument, {z;} converges
Q-linearly to x, for any zy ¢ IR". But Algorithm 2 moves the scalars ay
dynamically within the spectrum of A. If at the ;%" iteration o, € Left , then
the coeflicient associated with the cigenvalues A; that satisfy A; > 2a;, will
be amplified by the factor |“22 > 1 (ie., [@*!] > |d{]), and this could
lead to an increase of [le;4,| with respect to ||e;|[. In general, the sequences
{d*} defined in (9) will increase at some iterations. However, the sequence
{d¥} associated with the eigenvalue A,;, will decrease at every iteration.



Lemma 3 The sequence {d¥} converges to zero Q-linearly with convergence
Jactor ¢ =1 — (A in/ M naz)-

Proof: For any positive integer k,

Q. — Amin
d}1g+1 — ( k mm)d]f.
QO
Since ¢, satisfies (5), we have
0 < )\min S )\min S 1
)\ma‘.lr )
And so,
: Ami Qo
[ = (1= =2)dy| < el
oy
where

A
6=1— min <10

Amar

In the proof of our convergence theorem, we will use the following result.

Lemma 4 [f the sequences {d5}, {d%}, ..., {d¥} all converge to zero for a fired
winteger [, 1 <l < n. Then,

. k
]‘iﬂ?ﬂf |l | =0.

Proof: Suppose, by way of contradiction, that there exists a constant € > 0
such that
(df 1 )* M\, > efor all k.

By (9), Lemma 1 and the orthonormality of the eigenvectors {vq, va, ..., v, },
we can see that the Rayleigh quotient o444 can be written as
L (dh)ia

L 2= A 13
RS VDY )

Since the sequences {d}, ..., {dF} all converge to zero, there exists k suf-
ficiently large such that

i
$O(dF)2A2 < % for all k> F . (14)

=1

10



By (13) and (14), we obtain

(Sl ()2 A2 A

< (&73 S /\ma..r . ]5)
St (Sl (dEA) S (
Since .
Z (‘lf)2/\? 2 ((lf+1)2/\l2+1 > €,
t=I[+1

then, by using (15), it follows that
2 .
gx\lﬂ < gy S A for all k> k.

Finally, using the fact that dfjll = ((ak — Aiy1)/ax)df,;, we obtain for all

k> k41,

A
k1) _ 41 gk N
'dl+1 | = |1 - Hdl+1| < Cdl+1 3
Qg
where \
1
¢ = max(=-,1— L ) <1,
2 /\TnaJ:
which is a contradiction. Therefore, liminfy_, |df,,| =0 O

Theorem 1 establishes the convergence of the Barzilai and Borwein method
when applied to a quadratic function with a SPD Hessian.

Theorem 1 Let f(x) be a strictly convex quadratic function. Let {xy} be
the sequence generaled by Algorithm 2 and x, the unique minimizer of f.
Then, either x; = x, for some finite j, or the sequence {x} converges to x,.

Proof: We need only consider the case in which there is no finite integer
J such that z; = x,. Hence, it suffices to prove that the sequence {ey}
converges to zero.

From (9) and the orthonormality of the eigenvectors we have

n

lexlls = >_(d7)*.

i=1

11



And so, the sequence of errors {e;} converges to zero if and only if each one
of the sequences {d¥} for i = 1,2,...,n converges to zero.

Suppose, by way of contradiction, that some of the sequences {d*} are
not converging to zero. In particular, let us suppose that p is the smallest
integer between 1 and n for whicli the sequence {di} does not converge to
zero. By Lemma 3, we can see that p > 2.

Since {d}},..{df_,} all converge to zero, then for a given ¢ > 0 there

exists k sufficiently large such that

p—1
(2N < ;f_or all k> k. (16)
=1 '

By Lemma 4, it follows that liminfi_ ldlljl = 0. Hence, there exists

k, > k such that
(d;")z)\i <e.

Now, to study the behavior of the sequence {d]k,} for k > k,, we define

M, = $1.1]){(d;)2} .

1>kp
Let us say that ko > k, is any positive integer for which (dﬁo—l)z)\i < € and
(d°)?A2 > ¢. From (13) and (16), it follows that
2
'3_Ap S Qg S A'm,a.ar i (17)

for all integer & that satislies kg + 1 < k < j, where j is the first positive
imteger greater than kg for which (d;;)zx\f, < €.
Finally, using the bound

Amrm‘ - Amin SO
Id/’;oﬂl < (_"—f—)Zld;];O 1l ,
and the fact that . \
|d11;‘+l| < ma.x(;z-, 1 - T\—T—n%;)ld]]jl ,

whenever ay satisfies (17), we conclude that,

)‘ma.m - /\min €
M, < (i
P

)‘min

12



o ! an T « k\2
Since ¢ > 0 can be chosen arbitrary small, then limsup,_,(d;)* = 0.

Hence, limy_q |d5[ = 0, which is a contradiction. Therefore, the sequence
{er} converges to zero O
. . . N st A%sy . st Asy
Notice that with the choice of Gy = ﬁ: instead of aj41 = “ff‘;a
k k

equality (13) can be written as

T (dE
T S (RN

Then, by a similar argument, we conclude that the convergence result estab-
lished in Theorem 1 for Algorithm 2 with the choice of agy, also holds with
the choice of épyy.
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