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Abstract 

In a recent paper, Barzila.i and Borwein presented a new choice of 
steplength for the gradient method. Their choice does not guarantee 
descent in the objective function and greatly speeds up the conver­
gence of the method. We derive a relationship between the gradient 
method for minimizing a quadratic function and the shifted power 
method. This relationship allows us to establish the convergence of 
the Barzilai and Borwein method when applied to the problem of min­
imizing any strictly convex quadratic function (Barzilai and Borwein 
considered only 2-dimensional problems). Our point of view also al­
lows us to explain the improvement obtained by using this new choice 
of steplength. 
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1 Introduction 

In order to solve the unconstrained minimization problem, we consider the 
nonlinear equations problem : 

(1) 

where f : Ill" - ZH. The numerical solution of (1) is usually iterative, 
moving at each iteration from an estimate Xe of :r* to a hetter estimate 
:r+. In many algorithms, each iteration involves the calculation of a quasi­
Newton step, -"'QN = -A;:- 1V f(;rc), where Ac c IR"xn is an approximation of 
the Hessian of J at :re. After each iteration the current Ac is updated to A+, 
an approximation of the Hessian of .f at :r+. The approximation usually is 
chosen to satisfy th<' secant equation, 

(2) 

where .Sc = X+ - .r c and Ye = Vf( x+) - V.f( Xe)· 
In the one dimensional case the secant equation completely determines 

A+; however if n > 1 , then many matrices will satisfy the secant equation. 
So, in addition to obeying (2), the update /l+ must be further restricted to a 
set of mat.rices that have desirable properties, See Dennis and Schnabel [3]. 

Barzilai and Bonvein in [2] considered a related but somewhat different 
approach. They observed that the scalar Ct+<cIR that uniquely solves the 
overdetermined linear system Ye = a+.sc in the least squares sense is given by 

(3) 

if .Sc I- 0. Hence by restricting the update matrix in the quasi-Newton 
method to the class of scalar multiples of the identity and then asking that 
the secant equation be satisfied in the least squares sense they devised the 
following algorithm 

Algorithm 1 (Barzilai and Borwein Method) 
Given x 0 E IR" ,a0 E IR 

For k=0,1, ... ,(until convergence) do 
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End do 

This algorithm requires only O(n) floating point operations per iteration in 
addition to the gradient evaluation. 

If we consider problem (l) when .f(x) = ½:i:1Ax - b1x + c is a. quadratic 
function a.nd A is a symmetric positive definite (SPD) matrix, then CY+ in (3) 
becom.es 

and Algorithm l becomes 

Algorithm 2 (Barzilai and Borwein Method for Quadratics) 
Given :i:0 t lll",a0 e II? 

For ~:=0,1, ... , (until convergence) do 

1. Sets1,,=-;kv'.f(xk) 

End do 

(4) 

In the quadratic case, CYk+I turns out to be the Rayleigh quotient of A at 
the vector sk. Since A is SPD, 

0 < Amin :::; CYk :::; Ama.x for all k, (-5) 

where Amin and Ama.r are respectively the smallest and largest eigenva.lues 
of A. And so, in step 1 there is no danger of dividing by zero. 

Ilarzilai and Borwein [2] also observed, by symmetry, that the scalar &+ 
that uniquely solves the overdetermined linear system ..;Lye = Sc in the least 

a+ 
squares sense is given by 

,,,ty, 
A ./ L C 

CY+= --
S~Yc 
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if c9~!/c #- 0. In the quadratic case, &+ becornes 

which is the Rayleigh quotient of A at the vector vA.sc. Hence, &+ also 
satisfies (.5 ). 

In the rest of this paper, we will only consider the Barzilai and Borwein 
method with the choice of a+ defined by (3) in the general case and by ( 4) 
in the quadratic case. The reason for this is that all results established for 
Algorithm 2 with the choice a+ also hold with the choice&+ since the method 
has the same pro1)f'rties in either case. 

Notice that, in the Barzilai and Borwein gradient method, the search 
direction is always the uegative gradient off at .re as in the gradient method, 
but the choice of steplength is not the standard choice. In fact, Algorithm 2 
would be the steepest descent method for quadratics if we changed ( 4) to 

(6) 

where 9+ = v f ( :r+ ). Since the vector .s+ is a multiple of the vector 9+, then 
. st As+ 

(6) can also be wntten as a+ = ~-
s+s+ 

Despite the similarities between these two methods, Algorithm 2 is signifi-
cantly faster than the steepest descent met.hod at the same cost per iteration, 
see Barzilai and Borwein [2] and also Fletcher [L1]. 

Barzilai and Borwein [2] presented a convergence analysis of their method 
only in the two-dimensional quadratic case. It is unlikely that their analysis 
can be extended to higher dimensional problems. In the present work, we 
establish the convergence of the Barzilai and Borwein gradient method for 
any strictly convex quadratic function. 

This paper is organized as follows. In Section 2 we present a relationship 
between the gradient. method for minimizing a quadratic function and the 
shifted power method. We believe that this connection is the key to under­
standing the convergence properties of the Barzilai and Borwein 1nethod. In 
Section 3 we study the convergence of their method applied to a quadratic 
function with a SPD Hessian. 
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2 Relationship to the Shifted Power Method 

Let us consid<>r tlic gradient method for problem (1) when f is a differen­
tiable function. For the purpose of comparison we will write the steplength 
choice in a slightly different way. 

Algorithm 3 (Gradient Method) 
Given x 0 E IR" 

For k=O, 1, ... , (unlit convergence) do 

1. Choose slcJJ!rngth ..L 
• t:Yk 

2. Sd .sk = - ;k v'.f(xk) 

3. Set :rk+1 = :rk + sk 

End do 

Both the steepest descent method and the Barzilai and Borweiu method 
for quadratics are special cases of Algorithm 3 . They differ only in the way 
the sca.lars ak are chosen. Lemma 1 demonstrates a connection between Al­
gorithm ;3 and the shifted power method. This relationship will be used to 
establish our convergence results in Section 3. 

Lemma 1 Let f ( x) = {rt A:r - b1 x + c where A is a SP D matrix. Further let 
:r* be ilu: unique minirnizer of.{, {:rk} the sequence generated by Algorithm 3 
and q = x * - ;Tk for all k. Then 

2. fk+J = a\ (akl - A)ek 

3. ·"k+i = - 1-(okl - A)sk 
ak+l 

Proof: Using the fact that v'f(.rk) = A:rk - band the definition of the step 
sk in Algorithrn 3, the three claims in Lemma 1 follow directly D 
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Since A is SPD, the scalars ak satisfy (5) when they are generated by 
either (6) or by (4). And so, claim l in Lemma 1 allows us to conclude 
that llckll teuds to zero if and only if llskll tends to zero. Thus, for the 
mi1timi:--;ation of a quadratic function with a SPD Hessian it suffices to study 
the behavior of {8k}. 

For any .s 0 , there exist constants c1 , c2 , •.. , en such that: 

n 

-"o = L civi, 
i=l 

(7) 

where { v1 , v2 , ... , v11 } are orthonormal eigenvectors of A associated with the 
eigenvalues {,\1 , ,\ 2 , ... , ,\ 11 }. Now, using Lemma 1 it follows that for any 
integer !.:, 

(8) 

where 
k+l 

rk = IT a1. 
j=l 

From (8) \Ve can see that if we use the exact eigenvalues of A a.s the 
scalars ak in Algorithm 3, in any order, then we find the exact solution in p 
iterations, where pis the number of distinct eigenvalues of A. Unfortunately, 
we do not know the eigenvalues of A in advance. However, we can choose 
ak to be the Rayleigh quotient at sk ( the choice of the steepest descent 
method) or the Rayleigh quotient at .sk-l (the choice of the Barzilai and 
Borwein method) to approximate the eigenvalues of A. vVith the choice of 
the steepest descent 1nethod, it can be shown that .si+i.5k = 0 for all k, and 
also that the 2-norm of the error decreases at every iteration. Consequently, 
the scalars ak tend to take values closer to ,\ma.v than to Amin- Therefore, 
the coefficients associated with the large eigenvalues in (8) will be effectively 
reduced, while the coefficients associated with the small eigenvalues only 
decrease very slowly. See Johnson [5] and Akaike [1] for details. 

On the other hand, the choice of the Ila.rzilai and Bonvein method does 
not guarantee any orthogonality among the vectors .sk, and the 2-norm of 
the error might increase at some iterations. In fa.ct, hy properties of the 
Rayleigh quotient., the scalar ak will approximate the eigenvalue associated 
with the largest coefficient in the eigenvector expansion of the vector ,9k-l, 
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regardless of the eigenvalue location in the spectrum. Therefore, the Barzilai 
and Borwein method is more effective at reducing the coefficients associated 
with all the eigenvalues in the eigenvector expansion (8). 

The behavior of the sequence { aA,} for the Barzilai and Borwein method, 
in particular the approximation of the eigenvalues of the Hessian, is most 
easily appreciated by considering a particular example. 

Example 1 

Let f(.r:) = ½:rt A:r where A = diag(l, 2, 12). Clearly, f has a unique min­
imizer a.t x* = (0, 0, 0)1. The first 10 iterations generated by Algorithm 2 
starting at x 0 = (1, 1, l)t and a 0 = 1 are shown in Table 1. The Table lists 
the 2-norrn of the error, and the 2-norm of thE' gradient. Also shown are the 
scalars a k and the coefficients in the eigenvector expansion ( 8) associated 
with the three eigenvalues of A. 

Since o 0 = ,\1 = 1, the column with the coefficients of the eigenvector 
associated with ,\ 1 in Table 1 contains zero after the first iteration, and the 
scalar ak approximates only the eigenvalues ,\2 = 2 and ,\3 = 12 during 
the rest of the process. Notice that ak approximates, at each iteration, the 
eigenvalue with the larger coefficient in the previous iteration. In fact, the 
bigger the difference between the two coefficients the closer the scalar will be 
to the eigenvalue. 

Notice also that this is not a descent algorithm. Under special circum­
stances, that will be studied in the next section, the 2-norm of the error 
fk, as well as the objective function, increases at some iterations. This is in 
sharp contrast to the steepest descent method. In fact, if the steepest descent 
method is used to minimize the function f (::r) with the same initial guess :r0 , 

then 16,5 iterations are required to achieve an error of .3xl0-29
• Observe that 

the Barzilai and Borwein method achieved this accuracy in only 10 iterations. 

3 Convergence Analysis 

In this sect.ion we establish the convergence of Algorithm 2 applied to any 
quadratic function with a SPD Hessian. 

For any initial error e0 , there exist constants d?, dg, ... , d~ such that: 

n 

co= I:CI?vi, 
i=l 
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coefficients of eigenvectors 
iteration lick 112 llv'.f(xk)ll2 ()' k associated with 

)q = 1 >.2 = 2 ,\3 = 12 
0 0.17d+01 0.12d+02 0. l000d+0l -.10<l+0l -.20d+0l -.12d+02 
1 0.lld+02 0.13d+03 0.1165d+02 o.ood+oo 0.1,d+oo 0. lld+02 
2 o.ssd+oo 0.42d+0l 0.1199d+02 0.00d+oo o.11d+oo -.32d+oo 
3 o.69d+oo 0.l3d+0l 0.1015d+02 0.00d+oo o.13d+oo 0.7ld-04 
4 o.55d+oo 0.lld+0l 0.2000d+01 0.00d+oo o .. 56d+oo -.. 55d-M 
5 0.45d-04 0.54d-03 0.2000d+01 o.ood+oo 0.80d-06 0.27 <l-03 
6 0.22d-03 0.27d-02 0.ll99d+02 0.00d+oo 0.65d-14 -.23d-03 
7 0.16<l-08 0.19d-07 0.1200d+02 o.oocl+oo 0.54d-14 0.16d-08 
8 0.26d-13 0.53d-13 0.1200d +02 o.ood+oo 0.45d-14 o.ood+oo 
9 0.22d-1:3 0.44d-13 o.2oooc1+01 0.00d+oo 0.22d-13 0.00d+oo 
10 o.:nd-29 0.63d-29 0.2000d+0l 0.00d+oo -.32d-29 O.00d+oo 

Table l: Barzilai and Borwein method for Example 1 

where { 1'1, v2 , ... , v11 } are orthonormal eigenvectors of A associated with the 
eigenvalues {>.1, >.2, ... , >.n}-

Using Lemma 1 we obtain for any integer k, 

(9) 

where 

d7+1 = IT(°'j - Aj)cf;. 
j=O Cij 

\1/e observe that the convergence properties of the sequence {Ck} will 
depend on the behavior of each one of the sequences { d7}, 1 ::; i ::; n. 
Later in this section, we will prove tbat each of these sequences converges to 
zero. First let us establish the Q-linear convergence of Algorithm 2 applied 
to a quadratic function with a SPD Hessian that satisfies the admittedly 
restrictive condition 

Amax < 2 * Amin· (10) 
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Lemma 2 Let f(.r) = ½:r 1Jh:-bt:r+c whrn A is SPD and satisfies (10). Ld 
{ :rd l)( the sequence gcneralld by Algorithm 2 and :r* the unique minimizer 
off. Then the sequrnce {;rk} converges Q-linearly to x* in the Euclidean 

norm with convcrgrncc factor c = (Amax - Amin)/Amin· 

Proof: Using Lemma 1 and (9) we obtain for any k, 

1 ( ~ k ~ ah, - A; A, 
Ch:+1 = - akl -A) L.,d;v; = L.,(---)d;v;. 

O:k i=l i=l O'k 

By the orthonorrnality of the cigen vectors we have 

From (10), recalling that ak obeys (5), 

a1,,~ - /\i Arna.x - An1.in 
max I · I < ----- < 1. 

1 0:A: Am~ 
(12) 

Combining ( 11) and (12) gives 

where 
A Amax - Amin l D 
c=----- < 

Amin 

Now we can <'xplai11 why the norm of the error might increase at some 
iterations when the spectrum of A does not satisfy (10). Let us first divide 
the spectrum of A into two subintervals 

Left= [Amin, Ar;a"'] and Right= ( An~a.r, Amax]-

Clearly, if the spectrum of A obeys (10) then the Left interval is empty 
and Lemma 2 says that the error decreases at each iteration. If we force the 
scalars nk to be in the Right interval, by a similar argument, { Xk} converges 
Q-linearly to x* for any x0 c !Rn. But Algorithm 2 moves the scalars o:k 

dynamically within the spectrum of A. If at the jih iteration O:j t Lcf t , then 
the coefficient associated with the eigenvalues A; that satisfy ,\; > 2o:j, will 
be amplified by the factor I "' 1-,\, I > 1 (i.e., ldi+ 1 I > ldJI), and this could 

()' J 

lead to an increase of llei+ill with respect to lltill- In genera.I, the sequences 
{ d7} defined in ( 9) will increase at some iterations. However, the sequence 
{ d}} associated with the eigenvalue Amin will decrease at every iteration. 
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Len1111a 3 The 8(q1tcnce { an con ucrges to zero Q-linearly with convergence 

factor C = 1 - ( ,\rnin/\rnax) · 

Proof: For any positive integer k, 

d}+l = (Qk - Arnin)d}. 
Ok 

Since nk satisfi<'s (.~), we have 

0 < 

And so, 

where 

In the proof of our convergence theorem, we will use the following result. 

Lemma 4 If the sequences { dn, { dn, ... , { df'} all converge to ::ero for a .fixed 
integer l, l :; l < n. Then, 

Proof: Suppose, by way of contradiction, that there exists a. constant E > 0 
such that 

( d7+1 )2 >.r+l > f for a.11 k . 

By (f)), Lemma. 1 and the orthonorma.lity of the eigenvectors { u1 , v2 , ••• , vn}, 

we can see that the Rayleigh quotient ak+ 1 can be written a.s 

(13) 

Since the sequences { dn, ... , { dr} all con verge to zero, there exists k suf­
ficiently large such that 

(14) 

10 



By (13) and (M), we obtain 

o=:~1+1 (d7)2 
>-n>-1+1 \ 

---"-'---k--::; CYk+l::; Amax • 
~ + o::::;~1+1 ( d; )2 >.n ( 15) 

Since 
n 

L (d7)2 >.; 2:: (d7+1l Af+1 > f' 
i=l+l 

then, by using (15), it follows that 

Finally, using the fact that rI7t/ = ( ( ok - >-1+1 )/ ak )df+1 , we obtain for all 

k2::K+1, 

ldA+l1 I Az+l lldk I 'ldk I i+l = 1 - -- 1+1 ::; C 1+1 , 
ak 

where 
A 1 >-1+1 
c = max(-, 1 - --) < 1 , 

2 Amax 

which is a contradiction. Therefore, lim inf k-+oo ldf+1 I = 0 D 

Theorem 1 establishes the convergence of the Barzilai and Borwein method 
when applied to a quadratic function with a SPD Hessian. 

Theorem 1 Let .f(:r) be a strictly convex quadratic function. Let {xk} be 
the sequence generatul by Algorithm 2 and :r* the unique minimizer off. 
Then, either x_; = x* for som.c finite j, or the sequence {;rd converges to x*. 

Proof: We need only consider the case in which there is no finite integer 
j such that Xj = :r*. Hence, it suffices to prove that the sequence { ek} 
converges to zero. 

From (9) and the orthonormality of the eigenvectors we have 
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And so, the sequence of nrors { ek} converges to zero if and only if each one 
of tlie sequences { d7} for i = 1, 2, ... , n converges to zero. 

Suppose, by vrny of contradiction, that some of the sequences { d7} are 
not converging to zero. In particular, let us suppose that p is the smallest 
integer between l and n for which the sequence { d!} does not converge to 
zero. By Lemma 3, we can see that p 2'. 2. 

Since {dn, ... {d;_1 } all converge to zero, then for a given e > O there 

exists k: sufficiently large such that 

p-1 

L(d7)2 ,\f < ~ for all A: 2: k:. 
i=l 

(16) 

By Leanna 4, it follows that lim infk-+= Id; I = 0. Hence, there exists 

l:P 2'. k: such that 
kp 2 2 (dp ) \ < f . 

Now, to study the behavior of the sequence { d;} for k 2'. kp, we define 

Let us say that k0 > A:P is any positive integer for which ( d;0
-

1 )2 ,\; < e and 
(d!0

)
2
,\; > e. From (13) and (16), it follows that 

2 

3,\1' :S ak :S Amax , (17) 

for all integer A: that satisfies k0 + l :S k ::=:; j, where j is the first positive 
integ<'r greater than A·0 for which (dt) 2 

,\~ < e. 

Finally, using the bound 

ld;o+I1 :S (Ama:-,\min)21d;o-1J, 
rnin 

and the fa.ct that 

whenever ak satisfies ( 1 7), we conclude that 

,\ -,\ f 
11,;f < ( ma.x min )4-

" t - ,\ . ,\2 ' 
min p 
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Since c > 0 can be chosen arbitrary small, theu limsupk_,=(d;)2 = 0. 
Hence, lirnk_,cx \d;\ = 0, which is a. contra.diction. Therefore. the sequence 
{ e k} con verges to zero D 

Notice that with the choice of Ok+l 

equality (13) can be written as 

Then, by a. similar argument, we conclude that the convergence result estab­
lished in Theorem ] for Algorithm 2 with the choice of O'k+l also holds with 
the choice of cvk+1. 
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