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Abstract
Because the medical-image-based geometries used in patient-specific arterial fluid–structure interaction computations do 
not come from the zero-stress state (ZSS) of the artery, we need to estimate the ZSS required in the computations. The task 
becomes even more challenging for arteries with complex geometries, such as the aorta. In a method we introduced earlier the 
estimate is based on T-spline discretization of the arterial wall and is in the form of integration-point-based ZSS (IPBZSS). 
The T-spline discretization enables dealing with complex arterial geometries, such as an aorta model with branches, while 
retaining the desirable features of isogeometric discretization. With higher-order basis functions of the isogeometric discre-
tization, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and 
fewer elements. In addition, the higher-order basis functions allow representation of more complex shapes within an element. 
The IPBZSS is a convenient representation of the ZSS because with isogeometric discretization, especially with T-spline 
discretization, specifying conditions at integration points is more straightforward than imposing conditions on control points. 
The method has two main components. 1. An iteration technique, which starts with a calculated ZSS initial guess, is used for 
computing the IPBZSS such that when a given pressure load is applied, the medical-image-based target shape is matched. 2. 
A design procedure, which is based on the Kirchhoff–Love shell model of the artery, is used for calculating the ZSS initial 
guess. Here we increase the scope and robustness of the method by introducing a new design procedure for the ZSS initial 
guess. The new design procedure has two features. (a) An IPB shell-like coordinate system, which increases the scope of the 
design to general parametrization in the computational space. (b) Analytical solution of the force equilibrium in the normal 
direction, based on the Kirchhoff–Love shell model, which places proper constraints on the design parameters. This increases 
the estimation accuracy, which in turn increases the robustness of the iterations and the convergence speed. To show how 
the new design procedure for the ZSS initial guess performs, we first present 3D test computations with a straight tube and 
a Y-shaped tube. Then we present a 3D computation where the target geometry is coming from medical image of a human 
aorta, and we include the branches in the model.

Keywords Patient-specific arterial FSI · Medical-image-based geometry · Aorta · Zero-stress state · Isogeometric wall 
discretization · T-spline basis functions · Integration-point-based zero-stress state · Shell-model-based initial guess

1 Introduction

Space–time (ST) computational methods [1, 2], with all the 
desirable features of moving-mesh methods, have a relatively 
long track record in arterial fluid–structure interaction (FSI) 
analysis, starting with computations reported in [3–6]. These 
were among the earliest arterial FSI computations, and the 
core method was the early version of the Deforming-Spatial-
Domain/Stabilized ST (DSD/SST) method [1, 2], now called 
“ST-SUPS.” The acronym “SUPS” indicates the stabiliza-
tion components, the Streamline-Upwind/Petrov-Galerkin 
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(SUPG) [7] and Pressure-Stabilizing/Petrov-Galerkin 
(PSPG) [1].

The ST computations have been a small part of the 
many cardiovascular fluid mechanics and FSI computa-
tions reported in the last 15 years (see, for example, [8–29] 
for computations with other methods), with the Arbitrary 
Lagrangian–Eulerian (ALE) method having the largest 
share. Still, many ST computations were also reported in the 
last 15 years. In the first 8 years of that period the ST compu-
tations were for FSI of abdominal aorta [30], carotid artery 
[30] and cerebral aneurysms [31–37]. In the last 7 years, 
the ST computations focused on even more challenging 
aspects of cardiovascular fluid mechanics and FSI, includ-
ing comparative studies of cerebral aneurysms [38, 39], 
stent treatment of cerebral aneurysms [40–44], heart valve 
flow computation [45–50], aorta flow analysis [50–53], and 
coronary arterial dynamics [54]. The computational chal-
lenges encountered were addressed by the advances in the 
core methods for moving boundaries and interfaces (MBI) 
and FSI (see, for example, [20, 21, 39, 45, 46, 48, 49, 55–63] 
and references therein) and in the special methods targeting 
cardiovascular MBI and FSI (see, for example, [20, 37, 43, 
44, 47–50, 53, 64] and references therein). For an overview 
of the ST MBI and FSI computations in general, see [65].

A challenge specific to patient-specific arterial FSI com-
putations is how to use the medical-image-based arterial 
geometry, which does not come from the zero-stress state 
(ZSS) of the artery. The special methods targeting cardio-
vascular MBI and FSI include those intended to account for 
that. The task becomes even more challenging for arteries 
with complex geometries, such as the aorta. The attempt to 
find a ZSS for the artery in the FSI computation was first 
made in a 2007 conference paper [66], where the concept of 
estimated zero-pressure (EZP) arterial geometry was intro-
duced. The method introduced in [66] for calculating an 
EZP geometry was also included in a 2008 journal paper on 
ST arterial FSI methods [31], as “a rudimentary technique” 
for addressing the issue. It was pointed out in [31, 66] that 
quite often the medical-image-based geometries were used 
as arterial geometries corresponding to zero blood pressure, 
and that it would be more realistic to use the medical-image-
based geometry as the arterial geometry corresponding to 
the time-averaged value of the blood pressure. Given the 
arterial geometry at the time-averaged pressure value, an 
estimated arterial geometry corresponding to zero blood 
pressure needed to be built. The special methods developed 
to address the issue include the newer EZP versions [20, 33, 
36, 37, 64] and the prestress technique introduced in [16], 
which was refined in[18] and presented also in [20, 64].

A method for estimation of the element-based ZSS 
(EBZSS) was introduced in [67] in the context of finite ele-
ment discretization of the arterial wall. The method has 
three main components. 1. An iteration technique, which 

starts with a calculated ZSS initial guess, is used for com-
puting the EBZSS such that when a given pressure load is 
applied, the medical-image-based target shape is matched. 
2. A technique for straight-tube segments is used for com-
puting the EBZSS so that we match the given diameter 
and longitudinal stretch in the target configuration and the 
“opening angle.” 3. An element-based mapping between 
the artery and straight-tube is extracted from the mapping 
between the artery and straight-tube segments. This pro-
vides the mapping from the arterial configuration to the 
straight-tube configuration, and from the estimated EBZSS 
of the straight-tube configuration back to the arterial con-
figuration, to be used as the ZSS initial guess for the itera-
tion technique that matches the medical-image-based target 
shape. Test computations with the method were also pre-
sented in [67] for straight-tube configurations with single 
and three layers, and for a curved-tube configuration with 
single layer. The method was used also in [54] in coronary 
arterial dynamics computations with medical-image-based 
time-dependent anatomical models.

The version of the EBZSS estimation method with isoge-
ometric wall discretization, using NURBS basis functions, 
was introduced in [68]. With isogeometric discretization, 
we can obtain the element-based mapping directly, instead 
of extracting it from the mapping between the artery and 
straight-tube segments. Because all we need for the element-
based mapping, including the curvatures, can be obtained 
within an element. With NURBS basis functions, we may be 
able to achieve a similar level of accuracy as with the linear 
basis functions, but using larger-size and fewer elements, 
and the NURBS basis functions enable representation of 
more complex shapes within an element. The 2D test com-
putations with straight-tube configurations presented in [68] 
showed how the EBZSS estimation method with NURBS 
discretization works. In [69], which is an expanded, journal 
version of [68], how the method can be used in a 3D com-
putation where the target geometry is coming from medical 
image of a human aorta was also shown.

In the method introduced in [70], the estimate is based 
on T-spline discretization of the arterial wall and is in the 
form of integration-point-based ZSS (IPBZSS). The T-spline 
discretization enables dealing with complex arterial geom-
etries, such as an aorta model with branches, while retain-
ing the desirable features of isogeometric discretization. The 
IPBZSS is a convenient representation of the ZSS because 
with isogeometric discretization, especially with T-spline 
discretization, specifying conditions at integration points is 
more straightforward than imposing conditions on control 
points. The method has two main components. 1. An itera-
tion technique, which starts with a calculated ZSS initial 
guess, is used for computing the IPBZSS such that when a 
given pressure load is applied, the medical-image-based tar-
get shape is matched. 2. A design procedure, which is based 
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on the Kirchhoff–Love shell model of the artery, is used for 
calculating the ZSS initial guess.

In this article we increase the scope and robustness of the 
method by introducing a new design procedure for the ZSS 
initial guess. The new design procedure has two features. 
(a) An IPB shell-like coordinate system, which increases 
the scope of the design to general parametrization in the 
computational space. (b) Analytical solution of the force 
equilibrium in the normal direction, based on the Kirch-
hoff–Love shell model, which places proper constraints on 
the design parameters. This increases the estimation accu-
racy, which in turn increases the robustness of the iterations 
and the convergence speed. To show how the new design 
procedure for the ZSS initial guess performs, we first present 
3D test computations with a straight tube and a Y-shaped 
tube. Then we present a 3D computation where the target 
geometry is coming from medical image of a human aorta, 
and we include the branches in the model.

In Sect. 2, from [70], we describe the Element-Based 
Total Lagrangian (EBTL) method, including the EBZSS 
and IPBZSS concepts. The IPB shell-like coordinate sys-
tem and the related mesh generation are described in Sect. 3. 
The design procedure for the ZSS initial guess, based on the 
Kirchhoff–Love shell model, is described in Sect. 4. The 
numerical examples are given in Sect. 5, and the concluding 
remarks in Sect. 6.

2  EBTL method

We first provide, from [70], an overview of the EBTL 
method [67], including the EBZSS and IPBZSS concepts 
and the conversion between the two ZSS.

Let 𝛺0 ⊂ ℝ
nsd be the material domain of a structure in the 

ZSS, where nsd is the number of space dimensions, and let 
�0 be its boundary. Let 𝛺t ⊂ ℝ

nsd , t ∈ (0, T) , be the material 
domain of the structure in the deformed state, and let �t be 
its boundary. The structural mechanics equations based on 
the total Lagrangian formulation can be written as

Here, � is the displacement, � is the virtual displacement, 
�� is the variation of the Green–Lagrange strain tensor, � 
is the second Piola–Kirchhoff stress tensor, �0 is the mass 
density in the ZSS, � is the body force per unit mass, and 
� is the external stress vector applied on the subset 

(
�t

)
h
 of 

the boundary �t.

(1)
∫�

0

� ⋅ �
0

d
2�

dt2
d� + ∫�

0

�� ∶ � d� − ∫�
0

� ⋅ �
0
� d�

= ∫(�t)h

� ⋅ � d� .

2.1  EBZSS

In the EBTL method the ZSS is defined with a set of posi-
tions �e

0
 for each element e. Positions of nodes from differ-

ent elements mapping to the same node in the mesh do not 
have to be the same. In the reference state, �REF ∈ �REF , all 
elements are connected by nodes, and we measure the dis-
placement � from that connected state. The implementation 
of the method is simple. The deformation gradient tensor � 
is evaluated for each element:

where � is the position in the deformed configuration. The 
deformation gradient tensors for different elements are on 
different states, but the terms in Eq. (1), including the second 
term, do not depend on the orientation. Therefore the rest 
of the process is the same as it is in the total Lagrangian 
formulation.

2.2  IPBZSS

The key idea behind the EBZSS method was that, due to the 
objectivity, all the quantities seen in Eq. (1) can be computed 
with any orientation of the ZSS. We can extend the way we 
see �e

0
 to integration-point counterpart of �e

0
 . As we did with 

the EBZSS, we work with the reference domain. With the 
reference Jacobian

Eq. (1) can be rearranged as

In our implementation, we use the natural coordinates, with 
covariant basis vectors

(2)�e ≡ ��

��e
0

,

(3)=

�
(
�REF + �

)
��e

0

,

(4)JREF = det

(
��REF

��0

)
,

(5)
∫�REF

� ⋅ �0
d2�

dt2
J−1
REF

d� + ∫�REF

�� ∶ � J−1
REF

d�

− ∫�REF

� ⋅ �0� J
−1
REF

d� = ∫(�t)h

� ⋅ � d� .

(6)�I =
��

��I
,

(7)�I =
��

��I
,
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where �I is the parametric coordinate, and I = 1,… , npd , 
with npd being the number of parametric dimensions. The 
contravariant basis vectors can be calculated with the metric 
tensor components as

where

With those vectors, we can express the deformation gradi-
ent tensor:

and the Cauchy–Green deformation tensor:

The Jacobian, J = det� , can be expressed as

We can write det� as

and from that we obtain

We define the covariant basis vectors corresponding to �REF:

and the components of the metric tensor are

In Eq. (20), we replace �I and �J with 
(
�REF

)
I
 and 

(
�REF

)
J
 

and obtain an alternative to the expression given by Eq. (4):

(8)�I = gIJ�J ,

(9)�I = GIJ�J ,

(10)gIJ = �I ⋅ �J ,

(11)GIJ = �I ⋅�J ,

(12)
[
gIJ

]
=
[
gIJ

]−1
,

(13)
[
GIJ

]
=
[
GIJ

]−1
.

(14)� = �I�
I ,

(15)� = �T
⋅ �

(16)= �I�I ⋅ �J�
J

(17)= gIJ�
I�J .

(18)J2 = det�.

(19)det� =
det

[
gIJ

]

det
[
GIJ

] ,

(20)J =

(
det

[
gIJ

]

det
[
GIJ

]
) 1

2

.

(21)
(
�REF

)
I
=

��REF

��I
,

(22)
(
GREF

)
IJ
=
(
�REF

)
I
⋅

(
�REF

)
J
.

The Green–Lagrange strain tensor,

where � is the identity tensor, can be expressed with the 
contravariant basis vectors as

The second Piola–Kirchhoff tensor can be expressed with 
the covariant basis vectors as

where SIJ can be expressed with the components of the 
metric tensors. Thus, the inner product �� ∶ � , and all the 
other quantities, in the weak form given by Eq. (5) can be 
evaluated without actually using the basis vectors �I . This 
justifies using 

(
GIJ

)
k
 as the integration-point counterpart of 

�e
0
 , with k = 1,… , nint , where nint is the number of integra-

tion points. Note that GIJ is symmetric, and therefore the 
IPBZSS representation will in 3D have 6×nint parameters 
for each element.

2.3  EBZSS to IPBZSS

Converting the EBZSS representation to IPBZSS representa-
tion is straightforward. From given �e

0
 we can calculate the 

covariant basis vectors at each integration point ���k:

and obtain the components of the metric tensor from 
Eq. (11).

2.4  IPBZSS to EBZSS

Converting the IPBZSS representation to EBZSS repre-
sentation, which we might need for visualization purposes, 
will, in general, not be exact because the IPBZSS has more 
parameters than the EBZSS. Given 

(
GIJ

)
k
 , we solve a 

steady-state element-based problem (with � = � and � = �):

and the solution to that, in the form �REF + � , will be the 
EBZSS representation. If the stress calculated from the 

(23)JREF =

(
det

[(
GREF

)
IJ

]

det
[
GIJ

]
) 1

2

.

(24)� =
1

2
(� − �),

(25)� =
1

2

(
gIJ − GIJ

)
�I�J .

(26)� = SIJ�I�J ,

(27)
(
�I

)
k
=

��e
0

��I

|||||���=���k
,

(28)∫�e
REF

�� ∶ � J−1
REF

d� = 0,
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solution is zero, then the conversion will be exact. We note 
that to obtain a steady-state solution, we need to preclude 
translation and rigid-body rotation by imposing 6 appropri-
ate constraints. To do that we first select three control points: 
A, B and C. We set all three components of �A to be zero and 
constrain �B to be in the direction (�REF)B − (�REF)A . The 
last constraint is �C to be on the plane defined by the vector (
(�REF)B − (�REF)A

)
×
(
(�REF)C − (�REF)A

)
.

3  Coordinate systems for the artery inner 
surface and wall

A geometrical relationship between the ZS and reference 
states, for a straight tube, was described in [70]. It was based 
on the shell model, where it is assumed that the inner-sur-
face elements are extruded in the normal direction. Here we 
increase the scope of the method to general parametrization 
in the computational space. For each integration point of the 
computational space, we use a special shell-like coordinate 
system specific to that integration point. We will explain that 
coordinate system later in this section, after first explaining 
how the mesh is generated.

In our notation here, � will now imply �REF , which is our 
“target” shape, and � will imply �0 . We explain the method 
in the context of one element across the wall. Extending the 
method to multiple elements is straightforward.

3.1  Mesh generation

We again start with the artery inner surface, and build the wall 
in some fashion. Here we first build a T-spline inner-surface 
mesh. Then we expand that by an estimated thickness to obtain 
the outer-surface mesh. After that we modify the outer-sur-
face mesh manually by moving the control points. When the 
thickness is larger than the radius of curvature, parts of the 
outer surface overlap. This might happen near the branches. 
Therefore, a simple extrusion does not work. Since the outer 
surface cannot be obtained from medical images, the design of 
the outer surface has to be based on other anatomical knowl-
edge. This is the reason why currently meshes are generated 
manually rather than by an automated process. After defining 
the outer-surface mesh, which will have a control point cor-
responding to every control point on the inner surface, we add 
two control points for each pair. We use the four control points 
to form a cubic Bézier element across the wall. This is the way 
we obtain a T-spline volume mesh.

3.2  Inner‑surface coordinates in the target state

The natural coordinates is used for the surface representation 
as explained in [70]. With the notation ∙ indicating the inner 
surface, the basis vectors are

where � = 1, 2 . We define the unit normal vector as

and the second fundamental form as

and the curvature tensor is

We also define two orthonormal vectors �1 and �2 , which are 
the principal directions of the curvature tensor:

where �̂�1 and �̂�2 are the corresponding eigenvalues, and 
�̂�1 ≥ �̂�2 . The derivation and more details are in [70].

3.3  Inner‑surface coordinates in the ZSS

Since the principal-curvature directions �1 and �2 of the target 
shape are orthogonal to each other, we can build the ZSS 
shape using those directions. The basis vectors on the inner 
surface in the ZSS are

and the unit normal vector in the thickness direction is

We assume that the two directions �1 and �2 are also the 
principal-stretch directions. Then the ZSS basis vectors are 
calculated from

(29)�� =
��

���
,

(30)� =
�1 × �2

‖‖�1 × �2
‖‖

(31)b�� =
���

���
⋅ �,

(32)
�̂�𝜅𝜅 = −b𝛼𝛽

���
�̂�𝛼𝛽

�
𝛼
�
𝛽
.

(33)�̂�𝜅𝜅 = �̂�1�1�1 + �̂�2�2�2,

(34)�� =
��

���
,

(35)� =
�1 ×�2

‖‖‖�1 ×�2
‖‖‖
.

(36)�̂�1�1 = � ⋅ �1,

(37)�̂�2�2 = � ⋅ �2,
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where �̂�1 and �̂�2 are the principal stretches. Based on that we 
obtain the ZSS covariant basis vectors as

where 
(
t�
)�

= �� ⋅ �
� . The derivation and more details are 

in [70].

3.4  Wall coordinates in the target state

In a target volume element, we again use the natural coordi-
nate system. The position in the target state is �(���) , and the 
total differential of the position is

Here we introduce a coordinate � in the “normal” direction:

where �̂ is the unit normal vector inside the wall. As we per-
form the integration ∫ d� , the difference between the values 
we find as we reach the inner and outer surfaces will be our 
formal definition of the thickness hth . There are two options 
for defining �̂.

The first option is that we find the closest point �⊥ on the 
inner surface from a given position �:

assuming a reasonable geometry for the purpose of calculat-
ing �̂ . For ‖�(𝜉𝜉𝜉) − �

⊥‖ = 0 , we get Eq. (30). Figure 1 shows 
the normal definition.

The second option is

which naturally gives Eq. (30) at the surface. Figure 2 shows 
the normal definition. The other two components of the new 

(38)

[
�1

�2

]
=

[(
t1
)1 (

t1
)2

(
t2
)1 (

t2
)2
]−1 [ 1

�̂�1
0

0
1

�̂�2

][(
t1
)1 (

t1
)2

(
t2
)1 (

t2
)2
][

�1
�2

]
,

(39)d� = �Id�
I .

(40)d𝜗 = �̂ ⋅ �Id𝜉
I ,

(41)�̂(𝜉𝜉𝜉) =
�(𝜉𝜉𝜉) − �

⊥

‖‖‖�(𝜉𝜉𝜉) − �
⊥‖‖‖

,

(42)�̂(𝜉𝜉𝜉) =
�1 × �2

‖‖�1 × �2
‖‖
,

coordinate system is represented by the vector 𝜉𝜉𝜉 ∈ ℝ
nsd−1 , 

and the corresponding basis vectors are �̂𝛼:

For the normal-vector definition of Eq. (42), it simplifies to

Remark 1 We note that even if �̂𝛼 = �𝛼 , �̂𝛾 and �� are not the 
same in general, because �3 is not perpendicular to �1 and �2 
and �� will have an out-of-plane component.

The total differential of the position is expressed as

Remark 2 The first normal-vector option is closer to the 
shell theory. The downside is that we may not always have 
a reasonable geometry, for example when the radius of cur-
vature is low compared to the thickness. The second option 
does not suffer from that problem and gives us the possibility 
of coming up with an �̂ design that would make the method 
better. However its quality depends on the mesh, such as the 
smoothness of the constant-�3 surfaces.

At the kth integration point we define a shell-like coor-
dinate system:

where �k is an offset defined in such a way that �(𝜉𝜉𝜉(𝜉𝜉𝜉, 0)) 
is � on the surface. To find the value, we use the following 
expression:

(43)�̂𝛼

(
𝜉𝜉𝜉(𝜉𝜉𝜉), 𝜗(𝜉𝜉𝜉)

)
= (� − �̂(𝜉𝜉𝜉)�̂(𝜉𝜉𝜉)) ⋅ �𝛼(𝜉𝜉𝜉).

(44)�̂𝛼

(
𝜉𝜉𝜉(𝜉𝜉𝜉), 𝜗(𝜉𝜉𝜉)

)
= �𝛼(𝜉𝜉𝜉).

(45)d� = �̂𝛼d𝜉
𝛼 + �̂d𝜗.

(46)�(𝜉𝜉𝜉) = �̂(𝜉𝜉𝜉(𝜉𝜉𝜉)) + �̂(𝜉𝜉𝜉)
(
𝜗 − 𝜗k

)
,

(47)𝜗k =
‖‖‖�(𝜉𝜉𝜉k) − �

⊥‖‖‖.

Fig. 1  The coordinate system with the normal based on the closest 
point

Fig. 2  The coordinate system with the normal based on the two axis 
of the natural coordinates, �

1
 and �

2
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Remark 3 In generating the ZSS, for each integration point, 
we calculate hth as

where �⊤ is the closest point on the outer surface.

By differentiating � from Eq. (46) with respect to 𝜉𝛼 , we 
obtain the covariant basis vectors in the thickness direction:

Here b̂𝛼𝛾 is the second fundamental form:

which can be calculated by using the natural coordinates:

How to obtain this expression is described in Appendix A. 
To obtain 𝜕𝜉

I

𝜕𝜉𝛼
 , we inner-product the right-hand sides of 

Eqs. (39) and (45) with �J and equate the two:

Therefore

For the normal-vector definition of Eq. (42), the expression 
given by Eq. (52) simplifies to

From Eqs. (50) and (51), we obtain:

(48)hth =
‖‖‖�

⊤ − �
‖‖‖ +

‖‖‖� − �
⊥‖‖‖,

(49)�̂𝛼(𝜉𝜉𝜉, 𝜗) = �̂𝛼
||𝜗k +

𝜕�̂

𝜕𝜉𝛼

|||||𝜉𝜉𝜉(𝜉𝜉𝜉,𝜗k)
(
𝜗 − 𝜗k

)

(50)= �̂𝛼
||𝜗k −

(
b̂𝛼𝛾 �̂

𝛾
)|||𝜗k

(
𝜗 − 𝜗k

)
.

(51)b̂𝛼𝛾 (𝜉𝜉𝜉, 𝜗) =
𝜕�̂𝛼(𝜉𝜉𝜉, 𝜗)

𝜕𝜉𝛾
⋅ �̂(𝜉𝜉𝜉(𝜉𝜉𝜉, 𝜗)),

(52)b̂𝛼𝛾 =
𝜕�I

𝜕𝜉J
𝜕𝜉I

𝜕𝜉𝛼

𝜕𝜉J

𝜕𝜉𝛾
⋅ �̂.

(53)
d𝜉J = �J ⋅ �̂𝛼

���

=
𝜕𝜉J

𝜕𝜉𝛼

d𝜉𝛼 + �J ⋅ �̂d𝜗.

(54)
𝜕𝜉I

𝜕𝜉𝛼
= �I ⋅ �̂𝛼 .

(55)b̂𝛼𝛾 =
𝜕�𝛼

𝜕𝜉𝛾
⋅ �̂.

(56)

b̂𝛼𝛽

(
𝜉𝜉𝜉, 𝜗

)
= b̂𝛼𝛽

|||𝜗k −
𝜕b̂𝛼𝛾

𝜕𝜉𝛽

|||||𝜗k
�̂𝛾 |𝜗k ⋅ �̂
�����

=0

(
𝜗 − 𝜗k

)

− b̂𝛼𝛾
|||𝜗k

𝜕�̂𝛾

𝜕𝜉𝛽

|||||𝜗k
⋅ �̂

(
𝜗 − 𝜗k

)

The derivative of the contravariant basis vector needed in 
Eq. (56) is derived in Appendix B.

3.5  Wall coordinates in the ZSS

Once we define the shell-like coordinate system for kth inte-
gration point, we can use the corresponding ZSS coordinate 
system as described in [70]. From that we compute the com-
ponents of the metric tensor corresponding to the natural 
coordinates.

Here we redescribe the method by using the notation from 
the earlier parts of Sect. 3. The position in the ZSS configu-
ration is

where 0 ≤ �0 ≤ (
hth

)
0
 , and 

(
hth

)
0
 is the wall thickness in 

the ZSS configuration. This thickness will be expressed as 
(hth)0(𝜉𝜉𝜉) . The position � on the inner surface is an arbitrary 
position, and �̂ = � as given in Eq. (35):

The covariant basis vectors are

where �� is obtained from Eq. (38) with

which is from Eq. (50) at � = 0 . The curvature tensor in the 
ZSS configuration is

(57)

= b̂𝛼𝛽
|||𝜗k −

(
b̂𝛼𝛾 ĝ

𝛾𝛿
)|||𝜗k

𝜕�̂𝛿

𝜕𝜉𝛽

|||||𝜗k
⋅ �̂

�������

b̂𝛿𝛽|𝜗k

(
𝜗 − 𝜗k

)

(58)= b̂𝛼𝛽
|||𝜗k −

(
b̂𝛼𝛾 ĝ

𝛾𝛿 b̂𝛿𝛽
)|||𝜗k

(
𝜗 − 𝜗k

)
.

(59)�(𝜉𝜉𝜉(𝜉𝜉𝜉, 𝜗)) = �(𝜉𝜉𝜉) + �̂(𝜉𝜉𝜉)𝜗0(𝜗),

(60)�̂ = � =
�1 ×�2

‖‖‖�1 ×�2
‖‖‖
.

(61)�̂𝛼(𝜉𝜉𝜉, 𝜗) =
𝜕�

𝜕𝜉𝛼

(62)= �𝛼 +
𝜕�̂

𝜕𝜉𝛼
𝜗0(𝜗)

(63)= �𝛼 − B̂𝛼𝛾�
𝛾
𝜗0(𝜗),

(64)�𝛼 = �̂𝛼
||𝜗k +

(
b̂𝛼𝛾 �̂

𝛾
)|||𝜗k𝜗k,

(65)�̂�𝜅𝜅0 =
(
�̂�0
)
1
�1�1 +

(
�̂�0
)
2
�2�2,
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and the second fundamental form B̂𝛼𝛽 can be obtained from 
that as

Typically, the curvature in the ZSS is a function of the cur-
vature at the inner surface. The inner-surface curvature ten-
sor can be calculated as

where the basis vectors are obtained from the covariant basis 
vectors given by Eq. (64).

The relationship �0(�) is given by

The stretch �3 can be obtained by the in-plane deformation 
and the constitutive law.

With all from the earlier parts of Sect. 3, we obtain �−1 
at ���k:

With

and

we extract GIJ from

while obtaining �−T
⋅ �−1 from Eq. (70):

More explicitly, we can write

4  Analytical expression and design 
for the ZSS initial guess

As explained in [70], the design parameters are the principal 
curvatures 

(
�̂�0
)
1
 and 

(
�̂�0
)
2
 , and the stretches �̂�1 and �̂�2 for 

each principal-curvature direction. However, they are not a 
set of independent values because there are constraints for 

(66)B̂𝛼𝛽 = −�̂�𝜅𝜅0 ∶ �𝛼�𝛽

(67)
= −

(
�̂�0
)
1

(
�1 ⋅�𝛼

)(
�1 ⋅�𝛽

)
−
(
�̂�0
)
2

(
�2 ⋅�𝛼

)(
�2 ⋅�𝛽

)
.

(68)�̂�𝜅𝜅|𝜗=0 = −

(
b̂𝛼𝛽

|||𝜗k +
(
b̂𝛼𝛾 ĝ

𝛾𝛿 b̂𝛿𝛽
)|||𝜗k𝜗k

)
�
𝛼
�
𝛽
,

(69)
d�0

d�
=

1

�3
.

(70)�−1 = �̂𝛼 �̂
𝛼 +

1

𝜆3
�̂�̂.

(71)�−1 = �I�
I

(72)�−T
⋅ �−1 = GIJ�

I�J ,

(73)GIJ =
(
�−T

⋅ �−1
)
∶ �I�J ,

(74)�−T
⋅ �−1 = Ĝ𝛼𝛽 �̂

𝛼 �̂𝛽 + 𝜆−2
3
�̂�̂.

(75)GIJ =
(
Ĝ𝛼𝛽 �̂

𝛼 �̂𝛽 + 𝜆−2
3
�̂�̂

)
∶ �I�J .

the ZSS to give us the target shape for the given load, and 
we try to get close to that even for the initial guess. To that 
end, we use the force equilibrium in the normal direction by 
using a local analytical solution for each integration point. 
After that, we describe the design for the ZSS initial guess.

4.1  Analytical solution based on the Kirchhoff–Love 
shell model

We use the Kirchhoff–Love shell model with plane-stress 
condition to obtain the analytical solution. That is the gen-
eralized version of the solutions given in [71] for pressurized 
sphere and cylinder.

To deal with an arbitrary geometry, we assume the shape is 
given in terms of the principal curvatures. That is the reason 
we use only the equilibrium equation in the normal direction 
and focus on a small surface area ��  . From that surface area, 
we extrude in the normal direction by hth to define a volume: 
�� = ∫ hth

0
�� (�)d�.

The force equilibrium in the normal direction is

where ��� and p are the Cauchy stress tensor and pressure 
load. Now we express this by using the shell-coordinate sys-
tem. Using the plane-stress condition, we can write

and the divergence of it is

Because �� → 0 , � ⋅ �̂𝛼 → 0 . Thus, what is left in the nor-
mal direction is

The small area can be expressed as

where

(76)−� ⋅ ∫
hth

0 ∫�� (�)

∇∇∇ ⋅ ���d�d� = p�� ,

(77)𝜎𝜎𝜎 = �̂�𝛼𝛽 �̂𝛼 �̂𝛽 ,

(78)∇∇∇ ⋅ 𝜎𝜎𝜎 =
𝜕𝜎𝜎𝜎

𝜕𝜉𝛾
⋅ �̂𝛾

(79)=
𝜕
(
�̂�𝛼𝛽 �̂𝛼 �̂𝛽

)

𝜕𝜉𝛾
⋅ �̂𝛾

(80)=
𝜕�̂�𝛼𝛾

𝜕𝜉𝛾
�̂𝛼 + �̂�𝛼𝛾

𝜕�̂𝛼

𝜕𝜉𝛾
+ �̂�𝛼𝛽 �̂𝛼

𝜕�̂𝛽

𝜕𝜉𝛾
⋅ �̂𝛾 .

(81)� ⋅ (∇∇∇ ⋅ 𝜎𝜎𝜎) = �̂�𝛼𝛾� ⋅

𝜕�𝛼

𝜕𝜉𝛾

(82)= �̂�𝛼𝛾 b̂𝛼𝛾 .

(83)𝛿𝛤 (𝜗) = Â(𝜗)𝛿𝜉1𝛿𝜉2,
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At the inner surface, we write

With all above, Eq. (76) becomes

Thus, we obtain the relationship

where

which can be obtained from Eq. (58) with �k = 0 . To express 
the stress components, we need the basis vectors for all � , 
which are

The expression comes from Eq. (50) with �k = 0.
Now we use the orthonormal vectors corresponding to 

the principal curvatures to be the covariant basis vectors at 
the inner surface: �� = �� , and the second fundamental form 
becomes diagonal: b𝛼𝛼 = −�̂�𝛼 (no sum). Thus, Eqs. (88) and 
(89) become

From that, we also obtain A = 1,

and

Here we introduce the components of the Cauchy stress ten-
sor based on the orthonormal vectors:

and obtain

That can be simplified as

(84)Â(𝜗) = ‖‖�̂1 × �̂2
‖‖.

(85)A = ‖‖�1 × �2
‖‖.

(86)−∫
hth

0

�̂�𝛼𝛾 b̂𝛼𝛾 Â𝛿𝜉
1𝛿𝜉2d𝜗 = pA𝛿𝜉1𝛿𝜉2.

(87)p = −
1

A ∫
hth

0

�̂�𝛼𝛾 b̂𝛼𝛾 Âd𝜗,

(88)b̂𝛼𝛽 = b𝛼𝛽 − b𝛼𝛾g
𝛾𝛿
b𝛿𝛽𝜗,

(89)�̂𝛼 = �𝛼 − b𝛼𝛾�
𝛾
𝜗.

(90)b̂𝛼𝛼 = −�̂�𝛼
(
1 + �̂�𝛼𝜗

)
(no sum),

(91)�̂𝛼 =
(
1 + �̂�𝛼𝜗

)
�𝛼 (no sum).

(92)Â =
(
1 + �̂�1𝜗

)(
1 + �̂�2𝜗

)
,

(93)�̂𝛼 =
1

1 + �̂�𝛼𝜗
�𝛼 (no sum).

(94)𝜎𝜎𝜎 = �̃�𝛾𝛿�𝛾 �𝛿 ,

(95)�̂�𝛼𝛽 = �̃�𝛾𝛿�𝛾 �𝛿 ∶ �̂𝛼 �̂𝛽 .

Thus, Eq. (87) becomes

To calculate �̃�𝛼𝛽 , we need the ZSS. For that, we substitute 
�� = �� into Eq. (38) and obtain the covariant basis vectors 
of the ZSS:

and from �0(�) , yet to be calculated, we obtain the covariant 
basis vectors:

From that, we obtain the contravariant basis vectors:

Because we assume that the principal stretches are also in 
the principal-curvature directions, we obtain the principal 
stretch in � direction as

From that, we obtain

To obtain �0(�) , we start from � = �0 = 0 and integrate by 
using Eq. (69). This requires numerical integration, unless 
the constitutive law is very simple.

(96)�̂�𝛼𝛽 =
�̃�𝛼𝛽(

1 + �̂�𝛼𝜗
)(
1 + �̂�𝛽𝜗

) (no sum).

(97)p = ∫
hth

0

(
�̃�11�̂�1

(
1 + �̂�2𝜗

)
+ �̃�22�̂�2

(
1 + �̂�1𝜗

))
d𝜗

(98)
= �̂�1 ∫

hth

0

�̃�11d𝜗 + �̂�2 ∫
hth

0

�̃�22d𝜗

+ �̂�1�̂�2 ∫
hth

0

(
�̃�11 + �̃�22

)
𝜗d𝜗.

(99)�𝛼 =
1

�̂�𝛼
�𝛼 (no sum),

(100)�̂𝛼 =
1

�̂�𝛼

(
1 + (�̂�0)𝛼𝜗0(𝜗)

)
�𝛼 (no sum).

(101)�̂𝛼 =
�̂�𝛼

1 + (�̂�0)𝛼𝜗0(𝜗)
�𝛼 (no sum).

(102)
(
��
)2

= �T
⋅ � ∶ ���� (no sum)

(103)= ĝ𝛾𝛿�̂
𝛾�̂𝛿 ∶ �𝛼�𝛼 (no sum over 𝛼)

(104)=
(
1 + �̂�𝛼𝜗

)2
(

�̂�𝛼

1 + (�̂�0)𝛼𝜗0

)2

(no sum).

(105)𝜆𝛼 =
1 + �̂�𝛼𝜗

1 + (�̂�0)𝛼𝜗0(𝜗)
�̂�𝛼 (no sum).
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4.2  The design for the ZSS initial guess

As proposed in [69, 70], the two principal directions are seen 
as circumferential and longitudinal directions, and �̂�1 is in 
the circumferential direction, giving us

Here � is the opening angle, which is seen after a longitu-
dinal cut, based on artery experimental data [72]. The wall 
thickness is about 8–10 % of the diameter at the target con-
figuration. This means that �̂�1hth is 0.16–0.20, and �̂�2hth is 
nearly equal to zero but it could be negative.

Patient-specific geometries are more complicated than 
that. To classify the local shapes, we consider the quadrants 
of the space formed by �̂�1hth and �̂�2hth . In the first quadrant, 
we have a balloon-like shape, which may be seen at a branch 
or an aneurysm. In the second and fourth quadrants, we have 
saddle points, which may be seen near branches. In the third 
quadrant, we have both curvatures negative, which may be 
seen also near branches. We note that because of the Kirch-
hoff–Love shell assumption, the following conditions (for 
� = 1 or 2) are out of scope:

or

5  Computations

All computations are based on the Fung’s model (see 
Appendix C) with D1 = 2.6447× 103 Pa , D2 = 8.365 , and 
the Poisson’s ratio � = 0.49 . The load is p = 92 mm Hg . We 
use the normal-vector definition of Eq. (42).

5.1  Analytical solution for constant stretch 
on the inner surface

We assume that the stretches �̂�1 = �̂�2 = 1.05 and find the 
opening angles �1 and �2 in terms of �̂�1hth and �̂�2hth . We 
define an opening angle for each direction:

where � = 1, 2.

Remark 4 We note that the stretch value 1.05 gives 
�1 = 410◦ for a straight tube with �̂�1hth = 0.16 , and 
�1 = 310◦ with �̂�1hth = 0.20.

(106)
(
�̂�0
)
1
=

2𝜋 − 𝜙

2𝜋
�̂�1.

(107)�̂�𝛼hth < −1

(108)
(
�̂�0
)
𝛼
(hth)0 < −1.

(109)𝜙𝛼 = 2𝜋

(
1 −

(�̂�0)𝛼

�̂�𝛼

)
(no sum),

−0.5 0 0.5 1

−0.5

0

0.5

1

κ̂1hth

κ̂
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th

−720

−360

0
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720

Fig. 3  Opening angle �
1
 over the space formed by �̂�

1
h
th

 and �̂�
2
h
th

Fig. 4  Straight tube. The mesh has �
3
 in � direction

Fig. 5  Straight tube. The mesh has �
3
 skew to � direction
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Figure 3 shows �1 , which is obtained iteratively and may 
not be unique. The figure also gives us �2 when we inter-
change �̂�1hth and �̂�2hth . We note that in many regions we 
have symmetry with respect to �̂�1hth = �̂�2hth . We see large 
departure from the symmetry in regions where �̂�1�̂�2 < 0 , 
which are the saddle points.

We use this map for generating the initial guess. When 
the geometry is out of scope, we set �� = 0.

0.80 1.00 1.25

Fig. 6  Straight tube. Maximum principal stretch for the mesh in 
Fig. 4. From the ZSS initial guess (left) and converged ZSS (right)

0.80 1.00 1.25

Fig. 7  Straight tube. Minimum principal stretch for the mesh in 
Fig. 4. From the ZSS initial guess (left) and converged ZSS (right)

0.80 1.00 1.25

Fig. 8  Straight tube. Maximum principal stretch for the mesh in 
Fig. 5. From the ZSS initial guess (left) and converged ZSS (right)

0.80 1.00 1.25

Fig. 9  Straight tube. Minimum principal stretch for the mesh in 
Fig. 5. From the ZSS initial guess (left) and converged ZSS (right)

0.00 0.10 0.20

Fig. 10  Y-shaped tube. �̂�
1
h
th

−0.50 −0.25 0.00

Fig. 11  Y-shaped tube. �̂�
2
h
th
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5.2  Straight tube

The tube has �̂�1hth = 0.20 . The meshes used in the com-
putations are shown in Figs. 4 and 5. They are based on 
cubic B-splines, with 16, 8 and 1 elements in the circum-
ferential, longitudinal and thickness directions. For the 
first mesh, �3 is in � direction, and for the second mesh, 
�3 is skew to � direction. As can be clearly seen in Fig. 5, 
the mesh is twisted.

Figures 6 and 7 show, for the mesh in Fig. 4, the stretches 
from the ZSS initial guess and converged ZSS. Figures 8 and 
9 do the same for the mesh in Fig. 5. From all these results 
we see that our initial guess is very good, even for the mesh 
where �3 is skew to � direction.

5.3  Y‑shaped tube

This geometry was motivated by branched arteries. The tube 
parts have �̂�1hth = 0.16 , with constant thickness. Figures 10 
and 11 show the shape and �̂�1hth and �̂�2hth . The geometry has 

Fig. 12  Y-shaped tube. Inner-surface mesh made of cubic and quartic 
T-splines. Red circles represent the control points. The parts with the 
quartic T-splines, obtained by order elevation [73], are around the two 
extraordinary points, each connected to six edges

Fig. 13  Y-shaped tube. The 
IPBZSS, shown using the 
EBZSS representation. From 
the ZSS initial guess (top) and 
converged ZSS (bottom)
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two umbilical points, where �̂�1 = �̂�2 , and three saddle-point 
regions. The mesh is shown in Fig. 12.

Figure 13 shows the IPBZSS, using the EBZSS represen-
tation, from the ZSS initial guess and converged ZSS. The 
stretches are shown in Figs. 14 and 15. The initial guess has 
nearly uniform stretch on the inner surface. However, at the 
saddle point, the maximum stretch is higher than what we 
obtain from the ZSS initial guess. This affects the stretch 
on the outer surface too. There is less effect at the umbilical 
points. Figure 16 shows the stretch in �̂ direction. Again, 
there is less effect at the umbilical points.

5.4  Patient‑specific aorta

The largest diameter is about 30 mm . Figures 17 and 18 
show the shape and �̂�1 and �̂�2 . The inner-surface mesh is 
shown in Fig. 19. We use Laplace’s equation to determine 

a smooth thickness distribution, setting the values at the 
boundaries to result in �̂�1hth = 0.20 . We then generate the 
volume mesh as described in Sect. 3.1, which involves modi-
fication of the outer surface and consequently the thickness. 
The volume mesh is shown in Fig. 20. The measured thick-
ness is displayed on the inner-surface mesh in Fig. 21, with 
an average value of �̂�1hth = 0.18.

From the results of the Y-shaped tube we learned that 
the initial guess should have had, on the outer surface, less 
variation in the stretch in �̂ direction. Based on that, we 
improve the initial guess in parts of the region where we do 
not have both curvatures positive. For a straight tube with 
�̂�1hth = 0.18 , on the outer surface, the stretch in �̂ direction 
is 0.80. We target that value in improving the initial guess.

We define four cases in deciding how to do the improve-
ment, which we go through in the order given below:

Fig. 14  Y-shaped tube. Maxi-
mum principal stretch. From 
the ZSS initial guess (top) and 
converged ZSS (bottom)

0.67 1.00 1.50
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1. �̂�1hth < −0.6 or �̂�2hth < −0.6

2. �̂�1hth < −0.4 or �̂�2hth < −0.4

3. �̂�1hth + �̂�2hth < 0

4. Elsewhere

We take the following actions for each case:

1. Set �1 = �2 = 0 and �̂�1 = 𝜆2 = 1.
2. Set �1 = �2 = 0 . Assume that �̂�1 and �̂�2 are the same. 

Determine them in such a way that, on the outer surface, 
the stretch in �̂ direction is 0.80.

3. Leave �̂�1 = �̂�2 = 1.05 unchanged. Assume that �1 and 
�2 are the same. Determine them in such a way that, on 
the outer surface, the stretch in �̂ direction is 0.80.

4. No modification.

Figure 22 shows the IPBZSS, using the EBZSS representa-
tion, from the ZSS initial guess and converged ZSS. The 
stretches are shown in Figs. 23 and 24. Figure 25 shows 
the stretch in �̂ direction. Overall, the ZSS initial guess and 
converged ZSS are very similar. This indicates that reach-
ing the ZSS design targets based on the analytical solution 
works well.

Fig. 15  Y-shaped tube. Mini-
mum principal stretch. From 
the ZSS initial guess (top) and 
converged ZSS (bottom)

0.67 1.00 1.50
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6  Concluding remarks

We have increased the scope and robustness of the method 
we introduced earlier for estimating the ZSS required in 
patient-specific arterial FSI computations, where the med-
ical-image-based arterial geometries do not come from the 
ZSS of the artery.

The estimate is based on T-spline discretization of the 
arterial wall and is in the form of IPBZSS. The T-spline 
discretization enables dealing with complex arterial geom-
etries, such as an aorta model with branches, while retaining 
the desirable features of isogeometric discretization. With 
higher-order basis functions of the isogeometric discretiza-
tion, we may be able to achieve a similar level of accuracy 
as with the linear basis functions, but using larger-size and 

fewer elements. In addition, the higher-order basis functions 
allow representation of more complex shapes within an ele-
ment. The IPBZSS is a convenient representation of the ZSS 
because with isogeometric discretization, especially with 
T-spline discretization, specifying conditions at integration 
points is more straightforward than imposing conditions on 
control points.

The method has two main components. 1. An iteration 
technique, which starts with a calculated ZSS initial guess, 
is used for computing the IPBZSS such that when a given 
pressure load is applied, the medical-image-based target 
shape is matched. 2. A design procedure, which is based 
on the Kirchhoff–Love shell model of the artery, is used for 
calculating the ZSS initial guess.

Fig. 16  Y-shaped tube. Stretch 
in �̂ direction. From the ZSS 
initial guess (top) and converged 
ZSS (bottom)
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0.00 0.25 0.50

Fig. 17  Patient-specific aorta. �̂�
1
(mm

−1) . The maximum and mini-
mum values are 1.822 mm

−1 and −0.2810 mm
−1

−0.50 −0.25 0.00

Fig. 18  Patient-specific aorta. �̂�
2
(mm

−1) . The maximum and mini-
mum values are 0.1973 mm

−1 and −1.543 mm
−1

Fig. 19  Patient-specific aorta. 
Inner-surface mesh, made of 
cubic and quartic T-splines. 
Red circles represent the control 
points. The parts with the quar-
tic T-splines, obtained by order 
elevation [73], are around the 
two extraordinary points, each 
connected to six edges

Fig. 20  Patient-specific aorta. 
Volume mesh, made of cubic 
and quartic T-splines. Red cir-
cles represent the control points
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We increased the scope and robustness of the method 
by introducing a new design procedure for the ZSS initial 
guess. The new design procedure has two features. (a) An 
IPB shell-like coordinate system, which increases the scope 
of the design to general parametrization in the computa-
tional space. (b) Analytical solution of the force equilib-
rium in the normal direction, based on the Kirchhoff–Love 
shell model, which places proper constraints on the design 
parameters. This increases the estimation accuracy, which 
in turn increases the robustness of the iterations and the con-
vergence speed.

To show how the new design procedure for the ZSS ini-
tial guess performs, we first presented 3D test computations 
with a straight tube and a Y-shaped tube. After that we pre-
sented a 3D computation where the target geometry is com-
ing from medical image of a human aorta, and we included 

the branches in the model. The computations show that the 
new design procedure for the ZSS initial guess is reaching 
the design targets well.

0.20 1.00 4.00

Fig. 21  Patient-specific aorta. h
th
(mm)

Fig. 22  Patient-specific aorta. The IPBZSS, shown using the EBZSS 
representation. From the ZSS initial guess (top) and converged ZSS 
(bottom)
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0.67 1.00 1.50

Fig. 23  Patient-specific aorta. Maximum principal stretch. From the 
ZSS initial guess (top) and converged ZSS (bottom)

0.67 1.00 1.50

Fig. 24  Patient-specific aorta. Minimum principal stretch. From the 
ZSS initial guess (top) and converged ZSS (bottom)



Computational Mechanics 

1 3

Acknowledgements This work was supported in part by JST-CREST; 
Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of 
Education, Culture, Sports, Science and Technology of Japan (MEXT); 
Grant-in-Aid for Scientific Research (A) 18H04100 from Japan Society 
for the Promotion of Science; and Rice–Waseda research agreement. 
This work was also supported (first author) in part by Grant-in-Aid for 
JSPS Research Fellow 18J14680. The mathematical model and com-
putational method parts of the work were also supported (third author) 
in part by ARO Grant W911NF-17-1-0046 and Top Global University 
Project of Waseda University.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix A: The second fundamental form 
in the shell‑like coordinate system in terms 
of the natural coordinates

The covariant basis vectors for � = 1,… , nsd − 1 are

which can be represented by using the chain rule:

where I = 1,… , nsd . Differentiating that with respect to 𝜉𝛽 , 
we obtain

where � = 1,… , nsd − 1 and J = 1,… , nsd . Thus, the second 
fundamental form is

Appendix B: Derivative of the contravariant 
basis vectors

Here we show that ��
�

���
 can be expressed as

(110)�̂𝛼 =
𝜕�(𝜉𝜉𝜉(𝜉𝜉𝜉, 𝜗))

𝜕𝜉𝛼
,
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0.67 1.00 1.50

Fig. 25  Patient-specific aorta. Stretch in �̂ direction. From the ZSS 
initial guess (top) and converged ZSS (bottom)
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We start with the transformation from the contravariant basis 
vectors to the covariant basis vectors:

We take the derivative of both sides:

and from that obtain

From that and using g�� = �� ⋅ �� , we obtain

Multiplying both sides with g�� , we obtain

Thus,

Appendix C: Fung’s model

The elastic-energy density function for the Fung’s model is

where D1 and D2 are the coefficients of the Fung’s model. 
As a compressible-material model, we use the following 
expression:

(117)
���

���
=
(
g���� − ����

)
⋅

���

���
.
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� .

(119)
���

���
=

�g��

���
�� + g��

���

���
,

(120)g��
���

���
=

���

���
−

�g��

���
�� .
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(127)�
F(�) = D

1

(
e
D

2
(trC−n

sd
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)
,
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(
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−

2
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+ �vol(J),

where

and � is the bulk modulus. We determine the bulk modulus 
from the Poisson’s ratio � as
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