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ABSTRACT

NONPARAMETRIC MODE ESTIMATION FOR HIGHER

DIMENSIONAL DENSITIES

by

Steven B. Boswell

In this study a family of estimators is developed for
local maxima, or modes, of a multivariate probability den-
sity function. The mode estimators are computationally
feasible iterative optimization procedufes utilizing non-
parametric techniqﬁes of probability density estimation
which generalize easily to sample spaces of arbitrary
dimension. The estimators are proven to be strongly con-
sistent for any distribution possessing mild continuity
ﬁroperties..

Three specific mode estimators are evaluated by exten-
sive Monte Carlo testing upon samples from both classical
unimodalland nonstandard unimodal and bimodal distributions.
Detection of the presence of multiple modes is a matter of
special concern in many investigations. Thus a global
strategy is developed and tested to demonstrate.the poten—~

tial of the estimators for complete characterization of

sample modality.
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I. INTRODUCTION AND SUMMARY

l.1. Introduction

Many techniques of statistical analysis rely ultimately
upon the estimation of a probability distributioﬁ from
available data. When it is reasonable to assume that the
unknown distribution belongs to an easily summarized func-
tional family, the estimation problem reduces to the
estimation of a small number of parameters which identify
individual members of the family. A parametric model grants
the anaiyst more efficient estimators and more powerful
" inferential techniques, but only if the model that is used
is appropriate. If the model fails to account for important
features of the stochastic behavior being studied, the
results of the parametric estimation may be seriously mis-
leading, the more so as the distortion escapes the prac-
ticioner and propagates through subsequent analyses. 1In
a less negative vein, an analyst may consciously seek to
detect nonstandard distributional characteristics because
of the information they carry about the phenomenon he is
investigating. An example of such endeavor is the investi-
gation of bumps and dips in mass spectra in scattering
experiments [Good and Gaskins, 1980].

Among the most damaging distributional features, when
undetected, and the most informative, when detected, is the

presence of multimodality in the population density. This

1



is particularly true as dimension increases, since
experience of workers in the field indicates that multi-
modal data is encountered very frequently in high dimen-
sions, while at the same time recognition of data structure
becomes a difficult problem. M

For the reasons outlined above, the past two decades
have witnessed the development of procedures for estimating
probability density functions which employ assumptions only
on the regularity of the function. Kernel type estimators,
employed throughout the study, require for consistency only
that the density be continuous, though finite sample appli-
cations depend upon an additional supposition that the
estimated density be "not too rough." As a practical matter,
an estimate which is too rough is identified by the
presence of high frequency oscillation, and thus of many
local minima and maxima. Good density estimates avoid
such rapid oscillafion but are usually just on the verge
of acquiring it. Thus nonparametric density estimation and
the investigation of multimodality exist in a special
symbiotic relationship with one another. A principal
motivation for density estimation is to evaluate the
presence or absence of multiple modes; yet the density
estimate is evaluated to a large extent by the modality
pattern it yields.

The object of this research has been to devise and

implement a nonparametric proceduré for the detection of



modes in high dimensional data. Our effort has focused on
the accurate identification of a local maximum (any local
maximum). The task of locating the global mode, or of
cataloging all local maxima, has been considered more
briefly. By high dimensional we mean dimension greater than
two, though we should point out that our estimators are
valid and tested in low dimension as well. Nevertheless,
the main interest has been in dimensions lafge enough that
visual display of data structure is intractable.

Motivation for this study derived from difficulties
encountered in utilizing nonparametric density estimation
techniques in such dimensions. The difficulties stem from
the loss of representational economy which necessarily
accompanies nonparametric estimates. A part of the problem
is computational. To characterize the density over a regién,
point estimates must be made on a lattice which covers the
region with adequate precision. With the spacing held
constant, the number of mesh points grows exponentially.

A mesh with ten points along each coordinate is likely too
sparse to detect pattern over the full support of the
density; yet even such a rough grid will require 100,000
point evaluations in dimension five. The computational
burden may be lessened by first locating regions of high
concentration of the density, so as to focus computation
where it is needed.

Perhaps more crucial is the difficulty of interpreting
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'density estimates in a high dimensional space. Constructing
and displaying level sets, for example, is probably infeasi-
ble beyond dimension three or four. The presence and loca-
tion of modes yield one of the few characteristics of a
multivariate density, aside from low-order moments and
principal component vectors, which can be easily visualized.
Density estimation and mode estimation remain closely
related activities, but as dimension increases, the detec-
tion of modes becomes an increasingly independent problem,
more practical than full-scale density estimation, and more

important in its own right.

1.2. Summary of Later Chapters

In this dissertation three mode estimators are studied.
The first, known as the mean update estimator, is given by

vthe following algorithm:

Let my be an initial iterate,:

k be a fixed parameter;

i=1;
Repeat until mi_*_1 = mi;
begin

Find the sample points {xl,...,xk}
which are nearest to m,;

These are called the neighbor set.
k
m,., = (1/k) I =x.i
i+l j=1 j
i= 1i+l;

end.
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The mean update was studied by Fwu, Tapia, and Thompson [1980],
who reported that the procedure occasionally appeared to
cycle (failed to converge), and otherwise had a tendency

to stop before a bona fide local maximum had been well
approximated. We show that the mean update must converge
in a finite number of iterations, and thus that the cycling
problem does not arise. Extensive tests were conducted

to evaluate the severity of the second fault, using dif-
ferent values of k, different sample sizes, and data of
dimension és high as 100. In univariate and bivariate data
the mean update is untrustworthy on small and moderate
samples, but its ability to identify modes generally
increases as dimension increases, especially up ﬁhrough
dimension 10; and remains stable over the complete range
tested. We were especially interested in the estimator's
performance with k giving small percentages of the sample
size, since limits on k which could be used would imply
limitations on use of the algorithm for exploring multi-
modality. With univariate or bivariate data and moderate
sample sizes, say 100 to 500, the rapidly accelerated
variability of the estimators that occurred with truncation
below 20% of the sample size made use of such small
neighbor sets untenable. In high dimension, however, the
use of neighbor sets even half this size gave reasonable

results. The mean update procedure is discussed in Chapter

III.



Chapter III also describes the design and implementa-
tion of the Monte Carlo testing used throughout the study,
including the methods used for generating random variates
and the means by which performance was measured and reported.

The main failing of the mean update is its‘tendency
to fall short of the mode. To improve its "hill-climbing"
ébility we examined a two-stage procedure which followed
the mean update with a Newton's method algorithm. This
algorithm is discussed in Chapter IV. Asymptotically
unbiased kernel estimators for the derivatives of a density
function were developed. Modifications to the stopping
criteria and line search phase were necessary to adapt
Newton procedures to the mode estimation problem. Because
estimating derivatives is intrinsically more difficult than
estimation of the density itself, expectations for the
Newton method second stage were modest. Nevertheless, on
low-dimensional data in cases where the mean update stalled
well short of a local maximum, and thus where a pronounced
gradient should be evident, the secdnd stage usually
"unstuck" the mode estimate. As dimensionality increased,
however, the effectiveness of the second stage diminished
rapidly. With further refinement of the Newton's method
implementation, particularly in the manner it searches for
better iterates, its performance might be substantially
improved. The fundamental limitation of Newton's method

for our purposes is its reliance at each iteration upon a



one-dimensional line search. When gradient information is
erratic, the direction chosen for the line search is
unreliable, and there is inadequate provision in the proce-
dure for recovering from a poor choice.

By examining expressions for critical points of the
kernel estimate of a probability density function, a -
weighted mean update was devised which addresses the
deficiencies of the Newton procedure. The weighted mean
algorithm makes more complete use of the local information
in the sample, and is less sensitive to the scale of the
measurements. It has an iterative formulation similar to

the previously described mean update:

Let m, be an initial iterate,
-k and h be fixed parameters;
Vi = 1;
Repeat until a stopping criterion is met;
begin
Find the sample points {xl,...,xk}

which are nearest to m, ;

k
M1 ='.E wj(mi;h)xj, where

j=1

k .
w,(x;h) = wm.(x;h)/ I 7. (x;h) and
3 3 j=1 3

ﬂj(X:h) = exp{- % (IIX(J)- x|| /h)2y;
i = i+l;



The smoothing or scale parameter h may remain fixed, as
described above, or may be tagged to local sample charac-
teristics, such as Ilmi—ka » the distance from the current
iterate to its k-th neighbor. We note that the weighted

" mean update is similar to one of the computational forms

of an M-estimate for multivariate location [Huber, 1981].
The weighted mean is the method of choice. TIts properties
and performance are discussed in Chapter V.

Chapter II contains an historical review of research
in univariate mode estimation, and also conducts statisti-
cal analyses of kernel density estimation and related
optimization procedures. These analyses underlie subsequent
demonstrations of the consistency of our mode estimators.

Chapter VI presents a simple global strategy for
organizing the iterative mode estimators with the goal of
fully cataloging the modes of a probability density func-
tion. Performance of the estimators in multimodal environ-
ments is discussed, and topics are suggested for further

research.



II. KERNEL DENSITY ESTIMATION AND DERIVED ESTIMATORS OF THE
MODE: STATISTICAL ANALYSIS

2.1. Review of Mode Estimators (One-Dimensional)

If X is a continuous random variable taking values in
p-dimensional Euclidean space, and f(x) is its density with
respect to Lebesgue measure, the mode Q of £ is typically
defined to be the (unique) point for which f£(6) > f£(x),

X ¢ RP. A more general definition will take 6 as a mode of
f if there exists an open convex set N containing 6, and 0 is
a (unigque) local maximizer of f over N. In most cases we
will consider modes locally without explicit comment. When
it is necessary to identify the mode of the first definition,
it will be called the global mode. A density possessing
more than one local maximum is said to be multimodal; other-
wise it is unimodal.

The problem of estimating modes reéeived_little atten-
tion prior to Parzen's article on nonparametric density
estimation (1962). Since then a number of estimators
designed specifically for the mode have been proposed. The
three most heavily studied were in existence as early as
1965, when they were discussed by Dalenius, who conducted a
brief Monte Carlo investigation of their performance on
small samples from a chi-square distribution. The first of
these estimators is the midpoint of the interval of pre-
scribed length containing the maximum number of cbservations.

It was proposed by Chernoff [1964]. For bias to vanish
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asymptotically, it is necessary that the width of the inter-
val, h(n), go to zero as n + ». Wegman [1971] established
strong consistency for the Chernoff estimator if h(n) converges
to zero more slowly than [log(log n)/n]l/z. The Chernoff
estimate is equivalent to the mode of a kernel-type density

estimate with uniform kernel.

A second and interesting estimator, due to Grenander

[l965]1, is
Mg = B/A, (2.1.1)
where
1 ntk -5
B=3 E (xv+k + x\))(x\)+k =%,
v=1l
n-k -s
A= vil (X, — x,) .
and

are-the order statistics of a sample of size n. Grenander's
estimate is based upon the observation that, under suitable

regularity conditions, the quantity

M, o= S xS a1 o5 (wax
00 S'l'l
=/ xK (x)dx, K_(x) = —f () (2.1.2)
- S fs+l(x)dx
Cmx I

5ty ax

e CO
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will closely approximate the mode for s sufficiently large.
To establish this point, we may assume a simplified version
of conditions utilized by Venter [1967] and Sager [1975],

- which indicate primarily the sharpness of the curvature about
the mdde. Letting 6 be the mode of f, define

inf{f(x): [x-0| <
suplf(x): [x-6[ >

0 (§,R) = g{R} , C(2.1.3)

and suppose there are constants p>0, R > 1, ¢ > 0 such that,

for all small &, a(8,R) > 1 + p8°. Then, for |x-6] > &,

£5* 1 (%) < [sup{f(x): [x-6] > §)15*1
< [inf{f(x): [x-6] < &/R ]s+l .
- [1 + p(8/R)C]
Also,
e ax > g £5%1 (x) ax

|x-6|<68/R
[inf{f(x): |x-8| < &/RISTL . 2(s/R).

|v

Thus, again for |[x-6]| > &,

2{(8/R)
(L + p(8/R) 15

R (x) <

Since the denominator is strictly greater than one, with

Pr R, ¢ constant, then for all § sufficiently small,

su Ks(x) + 0 as s - o,
| %-6]>8
Redefining Es(x) = ﬁs(x+9), Rs satisfies

(1) K (x) >0
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(1i) fKS = 1 for all s
(iii) On any subset of the real line bounded away from
zero, KS + 0 unifo;mly as s » o,

Thus Ky is an approximate identity and

M = foS(x-e)dx

s+1

converges to 6 as s + « [Baggett and Fulks, p. 19].
Grenander estimates Mo, via linear interpolation of the
empirical cumulative distribution at jump points spread k

order statistics apart (see Figure 2.1l.1).

Figure 2.1.1.

k/n
This yields
-1
2 (x) = J-(k/n)[xv+k-xv] v Ry DX XXk
n L 0 e x < Xy Or X > X0

and substituting in (2.1.2) gives expression (2.1.1) for M;.

It is worthwhile to note that M; is a guasi-linear,
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convex combination of the order statistics, i.e.,

k n n-k
ME = vil wox, o+ v=nEk+l wox o+ v=§+k (wv-k+wv)xv’
(2.1.4)
where
-s
v, = nf:v+k-xv] — >0,
2 jgl (%), %,] S

and

n

vil w, < 1.

The formulas for w, are non-linear functions.of the order
statistics themselves (more specifically, their spacings).

The rationale for the Grenander estimate depends upon
the ability to take s large. However, Grenander finds that,
for consistency, it is necessary to take k > s. For small
sample sizes s must be kept small.

The third method, suggested by Dalenius [1965], esti-
mates the mode by a point in the smallest interval (xJ,xJ+k)
containing k points, where k is a prescribed parameter. We
will call this the "nearest neighbor"_mode estimator.
Usually the point estimate is chosen as the midpoint of the
interval, giving M* = % Xy + % Xk Following a remark by
Ekblom [1972], we note that as s + «» in (2.1.4), the rela-
tive contribution of all w, vanish except for v = J; hence

M* is the limiting case of Grenander'skM; as s + », From

this observation, we might suspect the consisténcy of the
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nearest neighbor mode estimator. However, Venter [1967]
proves strong consistency if the parameter k is chosen as a

function of sample size satisfying

(i) k(n)/n » 0 as n + «,

(2.1.5)

and (ii) for all A ¢ (0,1), = nAk(n) < oo,

n=1
Sager [1975] extends Venter's analysis, relaxing conditions
on the distribution of the random variable, and improving
Venter's assessment of optimal rate of convergence. If

a(é,R) > 1 + pﬁc (see (2.1.3)), Sager suggests choosing

n20/(l+2c:)

k(n) = A for some A > 0,

producing a mode estimate which converges as

18(n)-6] = o(n” (L/(1+20)) (154 n)L/c) (2.1.6)

As both he and Venter remark, estimating the mode is a
task of greatly varying difficulty. If ¢ is large in (2.1.6),
the convergence can be very fast indeed. For c small, the
opposite is true.

Monte Carlo studies of the performance of the estimators
have been reported by Dalenius [1965], Ekblom [1972],
Robertson and Cryer [1974], and Andriano, Gentle, and Sposito
[1978]. 1In all cases, the sample sizes available to the
estimatoré were modefate or more typically, very small. No
large sample testing Has been reported. For the sample sizes

considered, however, several conclusions are available. '
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First, all of the estimators are strongly affected by the
shape of the density, in particular the local definition of
the mode. For example, Andriano, et al. reported mean
squared error on samples generated according to three dif-
ferent distributions =-- a beta distribution with (3,50)
degrees of freedom, chi-square with 8 degrees of freedom,
and F-distribution with (25,25) degrees of freedom. The
errors for the F-distribution with a sharp peak at .852,
were on the average 100 times smaller than for the chi-
square, which has a rather flat mode at 6. The exrors
observed with the beta distribution were further reduced two
orders of magnitude.

Secondly, Grenander's estimate is also influenced by
the shape of the density away from the mode, and this makes
it more biased on skew data than its competitors. On the
other hand, the Grenander estimate, since it averages contri-
butions from every observation in the sample,is less variable
than either the nearest neighbor or the Chernoff-type mode
estimate. This increase in stability compensates for the
greater bias, and the Grenander estimate overall appears the
most successful of the three estimators, particularly as
larger sample sizes will allow thé parameter s to increase,
with a corresponding mitigation of the bias problem.

A final remark to make about the common mode estimators
is that they abstract specific features of well-known non-
parametric density estiﬁators, either kernel or nearest

neighbor type. The Chernoff and nearest neighbor mode
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estimates simply locate the maximal sets of the associated
density estimates. The Grenander estimate also relies upon
a nearest neighbor density estimate, and weights the density
estimate's maximal value most heavily, though it averages
it with the midpoints of other spacings in the sample.

The implication is that we will look to generalize the
univariate mode estimators to high dimensional spaces via
generalization of the associated density estimators. As we
want to rule out exhaustive search through the sample space
for reasons of economy, we will look for iterative optimi-
zation procedures' based upon the estimated density to locate
the mode or modes. The Grenander estimate, because of its
essential dependence upon the ordering of the real line,
cannot be extended verbatim beyond one dimension. However,
its formulation (2.1.4) as a weighted average of the sample
points certainly extends, although different weighting func-
tions may be desiréble. For example, the weighting function
may be truncated so that local clusters of sample points,
indicating local modes, may be identified. These considera-
tions lead us to a study of kernel and variable kernel den-
sity estimates, the latter being an amalgamation of kernel

and nearest neighbor techniques.

2.2. Kernel Estimators

2,2.1. Introduction

Consider a sample of n observations of a p-dimensional

random vector X. Superscripts will denote individual
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observations, i.e., X(j) = (X{j),...,xéj))T is the j-th
observation in the sample. Suppose that f is the density of
X with respect to Lebesgue measure on R’ . We will be
interested in designing kernel estimators for £, and, for use
as compcnents in optimization algorithms, in estimators for
V£ and sz as well. Estimators will be distinguished from
true values by a subscript indicating sample size. For
example, fn(x) estimates f£(x). Constructive papers for such
estimators are due to'Parzen [1962], Epanechnikov [1969], and
Singh [1976].

Parzen constructed kernei estimators for univariate
densities, established consistency of the estimators, and
calculated optimal asymptotic rates of convergence. He also
established consistency and asymptotic normality of esti-
mates of the mode obtained from the kernel estimator.
Parzen's work was extended to multidimensional densities by
Cacoullos [1966] and Further considered by Epanechnikov.
Epanechnikov's kernels are constructed as a product of

univariate kernels applied to each coordinate projection of

x—X(J); that is,

_v(3)
f ) =13 2 _1 K(xixi) (2.2.1)
n n j=1 [ hiinj i hiini ! T
i=1
where each Ki: IR:L -> IRl satisfies
a) 0 < Ki(y) <Cc < ow, i1=1,...,p (2.2.2)

b) Ki(y) = Ki(-y) (implying SyK(y)dy = 0)

c) JK;(y)dy = 1
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Q) ry’K(y)dy =1

e) fymKi(y)dy <o for 0 <m < =,

Epanechnikov examined the mean squared error of the kernel
estimate of £ at a point x ¢ RP , and by expanding £ in a

Taylor series about x showed that asymptotically,

Bzf(xl,...,x )

Bias (f (x)} N % 5 . M h2(n), (2.2.3)
n i=1 3°x. L ‘
2
and
Var(£f (x)) ~ -!f(X) —E—[—]-‘——— mez(y)dY] (2.2.4)
n n - J[ hi(n) 1 ’ “e.

i=1
which gives consistency in mean square if hi(n) - 0 and

n —ﬁ— hi(n) + © as n -+ o,
i=1
By minimizing the expression for global integrated mean
squared error with respect to h(n), taking the same kernel
and same h(n) inveach coordinate direction, he determined
that the optimal rate of convergence of the kernel estimator
is of order n_4/(4+p), achieved by taking h(n) proportional

to n~ 1/ (P+4)

Finally, Epanechnikov discusses thé efficiency of
various kernel functions. Under his'assumption (d), the
kernel function enters the expression for mean squared error
only through the integral sz(y)dy. An optimal kernel will
be one which minimizes sz(y)dy subject tb'the constraints

(2.2.2). Using a simple variational argument, details of
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which are reproduced in Section 2.2.3, he arrives at the

guadratic
2
Kely) = (3/4/5) (1 - 1w o0 (). (2.2.5)
Taking as a measure of efficiency for K the ratio
2 2 '
r = /R (y)dy/ K, (y)dy,

Epanechnikov shows that no intuitively appealing kernel
function loses more than a few percentage points of
efficiency, and thus that kernel functions may be safely
chosen for computational ease or desired smoothness properties.
Singh [1976] addressed the estimation of mixed partials

of a probability density function. Writing

' + ool +
rl h ey

P
£ ) = 2 — £(x) ,
) lxl eo. 3 Px

P

where r = (rl,rz,...,rp)T € Iﬁ’, his estimator is

ng) - X.
1 1y . (2.2.6)

nclia

i : K (

(r) 1

£ = (x) = = .

n n ._ pP.+1l i h. (n)
3=l ;o9 hy (n) * i

Again by considering the Taylor formula for f about X, he
finds that to avoid asymptotic bias we must have

fysKi(y)dy =0 ifs <pg, (2.2.7)
and

pi )
Iy Ki(y)dy = p;!. (2.2.8)
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Singh establishes the pointwise and uniform convergence of
these estimators given simple assumptions on £ and its
derivatives, and appropriate sequence of smoothing parameters
hi(n). He does not provide any insight regarding rate of
convergence or kernel choice.

2.2,2. Consistency in Mean Squared Error for Kernels with
Infinite Support

The estimators discussed by Epanechnikov and Singh both
employ kernels formed as a product of univariate kernels
having finite support. The product formulation is useful
but not necessary for either analytical or computational
purposes. The restriction to finite support is less arbi-
trary, as the optimality criteria of Epanechnikov yield
finitely supported kernels, which may also have computational
advantages. On the other hand, arguments by Silverman
[1981] suggest the usefulness of Gaussian kernels for
investigating multimodality; In addition, a Gaussian kernel
underlies the weighted mean update, which is recommended as
a mode estimator in Chapter V. To prove the consistency of
the mode estimator, it is expedient to establish consistency

of kernel density estimates using kernels with infinite

support.

Approximating Kernels

Our asymptotic analysis follows roughly the original
development by Parzen, and depends upon the following multi-

dimensional analog of a result of Bochner [1955]:
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Lemma 2.2.1.. (A) Suppose g: rP ﬂﬂ' € Ll(ﬂﬁﬁ , there

exists M > 0 such that |g(x)]| < M for all x, and K: ® - ﬂg'

satisfies:

(1) S K(yldy < =
&P (2.2.9)

(ii) sup_ [K(y)]| < = .
ya]Rp

Let {H } be a sequence of nonsingular matrices in RPP such

| » the sequence of induced

that, using a vector norm

norms on {Hn}, which we will write {v(Hn)}, converges to zero.

For each n, define

g, (x) = lH;l] s K(H;ly)g(x-y)dy. (2.2.10)
&P '
Then
gn(X) + g(x) / K(y)dy as n » o (2.2.11)
.-

at all continuity points of g.

(B) If g is uniformly continuous the convergence in

(2.2.11) is uniform.

Proof. |g,(x) - g(x) / K(y)dy| =
=P

it

| / [g(x-y) -_g(X)]IH;llK(H;ly)dy !

&P

< sup |g(x~y) - g(x)| / IK(H;l(y)IIH;lIdy
lyll <8 Iylizs
+f lgtemy) = g | [ k(L) ey

Hyll 26
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< sup |g(x-y) = g(x)| / K(z)dz
llyll <8 &P
+ S lg(x=H z) - g(x)||X(z) |dz. (2.2.12)
[,z > 8

Since by definition of the induced norm, |[[H z| < v(H ) X
ltzll o llHgzll > 6 = lz|| > s/vim).
Therefore, using the boundedness of g,

lg, (®)-g(x) J K(y)dy| < sup  |g(x~y)-g(x)| / K(z)dz

+ 2M s |K(z) |dz.
lzll>6/va)
(2.2.13)
For any 6 > 0, since v(Hn) - 0 as n + », and K is integrable,
the second term vanishes as n + », Thus, given € > 0, if g
is continuous at x, there exists 6€ > 0 such that

sup ~ |g(x-y) - g(x)| s/ XK(z)dz < e/2,
vyl <6, &P

and there is an n such that

2M i |K(z)|dz < g/2.
21> 8 /v ()
If g is uniformly continuous, 6€ applies for all x. Since
the above holds for arbitrary e, the lemma is proved.
If g may be unbounded, additional conditions must be
imposed upon the kernel function and the set of smoothing

parameters.
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Lemma 2.2.2. All definitions and assumptions of Lemma

2.2.1 apply except that g may be unbounded. Assume that

IIZHE)K(Z) + 0 as ||z]| =+ «», that the H, are diagonal, and

that for some ¢ > 0, and for all n,
min{|h, (n) |}/max{|h; (n) |} > c.
i i
Then again, as n + o,

9, (%) > g(x) s K(y)dy
rP

at all continuity points of g, and the convergence is uniform

if g is uniformly continuous.

Proof. The second term in (2.3.12) becomes

/ |g(x-H_ z) - g(x)||K(z)]|dz
2] > 8/v (H )
< s lg(x=H_z) | |K(2z) | ( [|2]|]®/ ||2||F ) dz
2] >6/v(®) n
+ g(x) ! |K(z) |dz.
12 ]] >8/v (1)

(2.2.14)
The second integral vanishes as n » « by the integrability

of K. The first is bounded by

_. vl n
sup (|z]] K(z))s7P S g(u)du.
l|2z]] >68/v (H ) n° P

With the ratio of the hi bounded away from zero,

v(Hn)p/det(Hn) remains bounded as v(Hn) + 0. Thus, both
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integrals in (2.2.14) vanish as n -+ «», and the lemma is

proved.

Kernel Estimates of a Density and Its Derivatives

We present an estimator for

arl-F...'+I

P
£ 8 ) = — £(x),

1 p
Bxl oo axp

assuming the context given below:

(i) There exists a neighborhood of x, N(x), on
which £ ¢ c/Zl(v(x)).

(ii) Let {Hn} = {diag(hl(n),...,hp(n))} be a
sequence of diagonal scaling matrices such

that max hi(n) - 0 as n +» o, and for some
i

¢ > 0, for each n, m@n(hi(n))/mgx(hi(n)) > c.
(ii1) K(y): T - R’ satisfies : |
IK(y)| <M vy e RP
/yER(y)dy = 0 vk with |k| < |z|
or with |k| = |xz| but k#=x.
/Y% K(y)dy = x!
el E ke < w
v lPH1ED k) > 0 as Nyl + = . (2.2.15)

Note that a multi-index notation is being used in which

£ = (rl’rz,‘on'rp)T (3 ]Rp ’
p , P
lr] = £ x, , = T x,1,
- i=1 i=1 *t
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(£) .y - 1 1 2 -1 (3)
£, (x) = U ) 'El K(Hn (X'"'=x)). (2.2.16)
I hy(n) * J7
i=]
Asymptotic Unbiasedness
N P . -r, - -
B ) = (1 hym) blE_ |7t K (-t (y-x)) £(y) dy
i=1 =P
(2.2.17)
p —ri
= (1 hi(n) ) S K(y)f(x+Hny)dy.
i=1 =P

Suppose that the ball of radius p, centered at x, is contained
in N(x) (see 2.2.15), and split R into the domains
{y: [lHyll < e} and {y: eyl > e} e {y: [l¥ll > p/V(H ) }.
Under the assumptions of (2.2.15.ii), as described in the
proof of Lemma 2.2.2, the contribution of the "tail" com-
ponent of the domain vanishes asymptotically.
(x) _ P "y

Efn— (x) = (I hi(n) ) S K(y) f(x+H_y)dy + 6(n).

. n

i=1 B ¥l <p
By assumption, £ in the integrand may be given by Taylor's

formula with p-th order remainder term, yielding -
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pe® () = (T 1 £
SEx) = (1 hBi(a) Y S OR(y) [£(x) +
i=1 | v <p

& (§>f‘%’(x)(nnyxﬁady + 9(n)
lg|=s =
(2.2.18)
P -r.
(I hy(n) *) ./ K(y)IE(x) +
i=1 =P

|
+

|
L 1 Yoo m iy + o).
s =

18 lq|=s

RS

Moment conditions on the kernel remove all terms except those

with g = £. Therefore,

j o -,
efl¥ =L (1 nm He®w s @ nikea.
‘ i=1 IRP
But
r P Fi

(H y)= = x (h; (n)y;)

‘ i=1
p L.

= (I h;(m) HyE .
i=1

Applying Lemmas 2.2.1 and 2.2.2, féE) is asymptotically
(x)

unbiased if max h,(n) > 0 as n + «, uniformly so if £ =
i

is uniformly continuous.

Asymptotic Variance

Since the X(J) are assumed independent and identically

distributed,
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P ~-2r, _ - -
(I hym) M) |H 2 Var K(Hnl(x-x))

i=1

1
Sl

var féf)(x)

P ~2%y ~2 2 =L
(I hyn) B JH | TORS (BT (x-y) £(y)) @y

|
Sl

- Uk @ ey £ ay1 ),

Applying the Lemmas 2.2.1 and 2.2.2 to both integrals gives

that

var £/2 (x) » o U, ™ s ey

- [£(x) SK(y)dy]?}
-1
as n > . Now V(H) + 0 = ?a§ l(hij)nl + 0= [H| =~
, .
+» as n + «, so that asymptotically the second term becomes

negligible. Therefore,

var fég)(x) ~ 1 5T f(x)sz(y)dy: (2.2.19)

n(igl hy (n) ) |8 |

and for the variance of fég)(x) to vanish as n + « it is
necessary and sufficient to have
P 2ri
n( I h;(n) )IHn| + o,
i=1

The convergence is uniform if f is bounded, which is assured

if féx) is uniformly continupus.
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2.2.3. Mean Squared Error; Kernel Design

One of the principal methods for directing the choice
of smoothing parameters and kernel shape has been the

analysis of the mean squared error of the estimator, either

pointwise,
E(£{E ) - £x))2,

or integrated over the support of the density. To perform
such an analysis requires expanding Singh's moment.condi-
tions on the kernel function (2.2.7 and 2.2.8), so that,
assuming product kernels, for some ti > xr, the one- .

dimensional kernels satisfy

s =
fy Ki(y)dy = 0 r, <s < ti

&
Ty Ki(.y)dy < » ,
In estimating the density itself we are held to only one
additional zero moment by the desire to keep K. non-negative.
iIn dealing with derivatives of f there is no such restriction
and we could take ti to be any order higher than Py but
there is little practical advantage gained by taking ti >

P, + 2,

For mean square analysis, we make these modifications to

(2.2.15):

_(f) There exists a neighborhood of x, N(x), on

which £ ¢ c!Z1*2 ().
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(111) K(y) = (-1 Elx(-y) , y ¢ WP
fyg K(y)dy = r! for all k = ¢ + 2ei,
i=1,...,p, where e, is the i-th Kronecker

basis element. ' (2.2.20)

The expression (2.2.19) for asymptotic variance is
unaffected by the revised assumptions. To evaluate the
bias térm, again £ is expanded in a Taylor series aboﬁt X.
The moment conditions in (2.2.20) are designed to strip as
many terms as possible from the expectation of the estimator,

leaving, much as in (2.2.18),

P p -r, (x+2e,)
Bl E - ) = (I oy (1 ohgm) hE T h (o
j=1 '= "=3 i=1
r+2e. (2.2.21)
/oy T R(nay) + e(n).
RrP

Taking Hn = h(n)I, I the pxp identity matrix, the expres-
sion simplifies to

p (x+2e.)
aqy(m-f@Nx)=%rum2_zlf 37 (x) + 8(n).
J=
(2.2.22)

Combining (2.2.22) and (2.2.19), we get

£ (x) /K% (y) dy + h(n) * ( g f(£+2§j)(x))2 + 6(n).

nh (n) P*2 151 Yo (2.2.23)

mse(£{E) (x)) =

Solving for a value of h(n) which will minimize (2.2.23)

gives

h(n) = cln_l/(p+4+2l£l), (2.2.24)
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where c, is a constant which depends upon the higher deriva-

tives of £ in a complicated way, and an optimal rate of con-

vergence for fés)(x),

MSE(féE)(x)) = czn'4/(P+4+2|5|’ . (2.2.25)

Optimal Kernels

The form of the kernel function used for estimating
f(E)(x) appears in the expression for mean squared error
(2.2.23) only through the integral sz(y)dy. The kernel
which is optimal for reducing mean squared error is that
function which minimizes sz(y)dy, subject to the constraints
(2.2.15) and (2.2.20). If the kernel used has a product for-

mulation, each one-dimensional kernel must solve

minimize fKi(t)dt , K L2 (=, ) (2.2.26)
S/T
k 0 0 < k < r.. or k = rl + 1
JE7R; (t)at = 1
r.!, k =r or k=1r. + 2.

(2.2.27)

The constraints (2.2.27) are linear functionals applied to
Ki and thus are their own derivatives. Their representants
are the monomials Hj(x) = xj. Lagrange multiplier theory
provides that Ki is an (ri+2)-degree polynomial restricted
to a compact interval; that is, for some a > 0, there exist

scalars, AO'Al""’Ari+2’ such that
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r,+2

= i 7)1

p (8) .
(2.2.28)

[-a,a

The coefficients are deterﬁined by solving the system of
linear equations generated by‘substituting (2.2.20) into
(2.2.27). The symmetry conditions immediately require
A = 0 for all odd or even k, depending on whether r, is
" even or odd, respectively.

The optimal kernel for estiméting the density itself
(2.2.5) was given by Epanechnikov [1969]. Since we will be
investigating Newton methods for finding local maxima of the
estimated density, it is also.nécessary to design kernels
for estimating the first and second partial derivatives of

£f. The functions obtained by the procedure described above

are,
a 42,3/2,, _ 42 .3 791/2
R, (€)= (79) [t -z5 71+ |t 2 (55 2
(2.2.29)
for estimating first partials, and
- 172, 1 2 _ 5 .4 2
K, (t) = 32 % [-3+t2-3t%,  |t] <
(2.2.30)

used for second partial derivatives. The kernels are pic~-

tured in Pigure 4.1.1.

2.2.4. Variable Kernel Estimators

The ch01ce of smoothing matrix H ¢+ OF bandwidth, is the
crucial issue in kernel estimation, both in asymptotic

analysis and in designing estimates for practical applica-
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tions on finite samples. Many methods have been developed
for guiding the choice of the hi(n), based upon asymptotic
expressions such as (2.2.24) and the observed derivatives
of the estimated density [Scott, 1976; Tapia and Thompson,
1978; Factor, 1979; Nezames, 1980], the modality of fn
[Silverman, 1978], the likelihood of the sample under fn
[Duin, 1976], or cross-validation techniques [Wahba, 1977].
Typically the best values of hi(n) just exceed a threshold
beneath which the density estimates rapidly evince local
oscillation and spurious modes. For this reason, the
character of-estimates in the "good" range is sensitive to
relatively minor changes in the bandwidth, and though the
best of the procedures mentioned above are generally quite
effective, they must still be confirmed by visual display and
user interaction.

Throughout our development it has been assumed that the
bandwidth is prescribed and held constant for all locations
x.‘ One adaptive technique that has received close attention
in multiple dimensions is to make the kernel width used far
the estimate fn(x) be some function of the distance from x
to its closest neighbors in the sample. The most common
function is simply the distance to the k-th neighbor, where
k is a fixed integer, 1 < k < n. Estimators with locatioﬂ
dependent smoothing terms will be called "variable kernel"
or nearest neighbor estimators. To be more specific, the
class of variable kernel estimators is defined as follows:

given the random sample {xl,xz,...,xn} and a point x, let
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{r) (®),ry(x) e,z (X))} be the distances { [|x - x,|| , 1 =
l,...,n}, measured in some norm. Let {r[l_n](x),
r[2=n](x),...,r[n=n](x)} be the same distances arranged in
ascending order; these are the order statistics of the ran-
dom variable, R = ||x = X|| . Finally, let 1.0y
x[2:n]""’x[n:n]} be the original sample points arranged by
the order relation of R. Then, with B(x;p) denoting the
closed ball of radius p about x, and V(x;p) denoting its

volume, the nearest neighbor estimate of f is

1 X - X.

n
£ (x:k) = ; > K( 1
n nV(X,r[k:n] (X)) i=1 r[k:n] (X)

Also, the parameter k is regarded as a function of n, writ-
ten k(n).

The appeal of the nearest neighbor estimator is twofold.
First, k-th neighbor adaptation corresponds roughly to
psychological perceptions of the role of bandwidth. In order
Eo achieve stability in our estimates, we know it is neces-
sary to average the effects over a containing region to
obtain the estimate at a point. Where the density is high
the clustering of points should be dense, and the smoothing
interval can be relatively small; where the density is small,
the smoothing interval ought to expand enough to capture some
of the now sparsely distributed sample. The neighbor dis-
tances promise the ability of order statistics to sense the
natural scale of the problem. Secondly, k(n), or equivalently

a fraction of the sample, k(n)/n, is a more convenient
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control parameter for most users than the more abstract
choice of bandwidth. It is less scale dependent. For
example, the choice of k(n) should be unaffected by the
common practice of rescaling each coordinate to have unit
variance; for h(n) this is clearly not the case. In addi-
tion, the variable kernel estimators appear to be more
robust with.respect to the choice of k(n) than fixed band-
width estimators are with respect to h(n). Such robust-
ness was notéd bf Breiman, Meisel, and Purcell [1977] in
testing of two-dimensional density estimators. Since as a
rough rule of thumb, equivalent émoothing in ®RP should be
obtained with (k(n)/n) proportional to h(n)l/p, this effect
should become more pronounced as the dimension increases.
The variable kernel technique presents some theoretical
problems which the fixed estimator bandwidth does not share.
Comments by Moore and Yackel [1977] demonstrate that, if the
support of the kernel is infinite, nearest neighbor distances
break down as anaiogues of bandwidth in certain circumstances.
Their remarks are echoed by Mack and Rosenblatt [1977],
who study asymptotic convergence of the variable kernel
estimator in mean squared error, and warn against heavy
bias in the tails. However, these difficulties are confined
to estimation over regions where the density may be zero or
infinitely small. When the density in the region of
interest may be bounded away from zero, as is certainly

reasonable in the neighborhood of sample or population



35

modes, the variable and fixed bandwidth estimators have been

shown [Moore and Yackel, 1977] to have equivalent conver-

gence properties.

2.3. Consistency of Mode Estimators

As stated in Section 1 of this chapter, common uni-
variate estimators of the mode are based on nonparametric
estimators of a probability density function. The same will
be true of the multivariate mode estimators we study. The
following proposition provides general conditions, first
given by Parzen [1962], under which local maximizers of the

estimated density are consistent for local modes of the

population density.

Proposition 2.3.1. Suppose £: ® + R is uniformly con-

tinuous in a closed set D, and that f has a unique maximum
in D at 8. Let fn be an estimator of f based on a sample

of size n, and let en be the maximizer of fn in D. Then

fn g f uniformly in D = en E 6, and
w.p.l w.p.1l
£ 2 uniformly in D => 6, E 0.

Proof. By the uniqueness of 6 in D, given e > 0 3n > 0
such that x ¢ D and |[|x-0|] > ¢ = |[f(x)-£(6)] > n. To see
this, assume the converse. Then, for some € > 0, there is
a sequence {x_ } < D such that iﬁf [|x,— €[] > e and

. If(xn)—f(e)l < 1/n. Therefore, sup £(x) = £(9).
stnB(e,e)c
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Since f is a probability density function and
lim £(x) = 0,
x| >

there exists an R > 0 such that also £(8) = sup £(x) over
X e Dn B(e,e)c n B(6,R). But the latter is a compact set,
implying that £ assumes its maximum in D n B(e,e)c, thus
contradicting the uniqueness of 9.

Wwith e,n as above, P[|[6 -6] > el < PL[£(e )-£(8)] >
nl. Therefore, if for every n > 0, P[]f(en)-f(e)l > nl ~
0 as n + », then for every ¢ > 0, P[[[en-GH > el > 0as

n - o, That is f(en) 4 £(8) = 6 g 6. Similarly,

w.p.l w.p.1l
£(6,) > f£(8) = 8, "3 6. Now |f(6n)—f(6)l <
|£(6)-£ (8 )] + lfn(en)—f(e)l' The first term on the
right clearly inherits'any uniform convergence properties
of fn(-). For the second term, suppose fn(en) > £(0).
Then £ (6 )-£(8) < £ (8, )-£(6) < i?g | £, (x)=£(x) .
Similarly, £(8) > fn(en) implies that f(en)-fn(en) <
sup |£ (x)-£(x)|. Thus |£(6 )-£(8) | < 2 sup | £ (x)-£(x) .

XxeD - XeD
Therefore,

fn g f uniformly in D

<=> lim P{sup |fn(x)-f(x)| > n} = 0 for all n
n-+w XeD

=> lim P{sup [£(8_)-£(6)| > n} = 0 for all n

n-ro XeD

and
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L .l
fn v E f uniformly in D
<=> P{lim (sup lfn(x)—f(X)l) =0} =1
n+wo XeD
=> P{lim |[£(e_)-£(8)| = 0} =1
n->oc n
_ w.p.l

This proves the proposition.

Unfortunately, uniform consistency of kernel estima-
tors is not guaranteed by our previous analyses of mean
square convergence. From the study of asymptotic bias
we have easily that s;p]Efn(x)—f(x)l -0 as n -+ o if f is
uniformly continuous. However, the fluctuation of the esti-
mate is given only in terms of expectations. We have from
(2.2.19) that if

P
n I h,(n) - «
i=1 *
as n » o and f is uniformly continuous that sgp Var(fn(x))-+
0; however, this is not sufficient for the conclusion that
sgp|fn(x)—Efn(x)| + 0.

Strong uniform consistency was proved by Van Ryzin

[1969], under rather more restrictive conditions on the

sequence of smoothing parameters. Van Ryzin's result is as

follows:

Proposition 2.3.2. Let K be as described in (2.2.15), with

r= 0. Let
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i<t,u>

k(t) = [ e K (u) du,

rP
where <x,y> is the standard Euclidean inner product, and
assume that k(-) is absolutely integrable, and that g(c) =
Jlk(ct)-k(t) |dt is locally Lipschitz of order 1 at c = 1.

Let {h(n)} be a sequence such that

(i)' h(n) - 0 as n +» «

(ii) nh(n)zP + © as n + o

(i) 2. (@h@P)7? < = (2.3.1)
n=1
and
\ bt 1 1 1
(iv) & - ¢ o,
n=1 nh(n)2P~1 [h(ntl) ~ h(n)

Then with Hn = h(n)I, if f(x) is uniformly continuous on

RP
sup £ (x)=£(x)| + 0 w.p.1 as n » =,
X

Moore and Yackel [1977] extended Van Ryzin's result to
apply also to a uniform kernel (which does not have an
absolutely integrable characteristic function), and they
further establish the equivalence of convergence properties
of kernel and variable kernel density estimators over any
set on which the value of the true density function is
bounded away from zero. For the result we need, suppose
that r(n) » 0 and nr(n)? + » as ﬁ + o, Writing %n(x;a)

for the fixed bandwidth kernel estimate of f£(x), using
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h(n) = o r(n), and kernel K, §n(x;a) for the special case
of a uniform kernel, and writing fn(x;B) for the variable
kernel estimator with k(n) = Bnr(n)p, Moore and Yackel prove

the following result:

Proposition 2.3.3. Let ¢ > 0 be given and choose 0 < § <

€e/l2. For any B > 0 and x ¢ {z: £(z) > 28}, lfn(x;B)-f(x)|>e
implies that I%n(x;a)—f(x)l > §/2 or Ian(x;a)—f(x)l > §/2
for at least one of a finite set of values of o not
depending on n, x, or the sample point w.

They impose one condition on the kernel function K
that, though quite natural, is not strictly necessary for
the consistency of the fixed bandwidth estimator, namely
that K(cu) > K(u) for all u and for any ¢, 0 < e < 1.

The preceding three propositions allow us to prove that
maximizers of either the kernel or variable kernel estima-
tor over specified regions are consistent estimators of the

corresponding local maxima of the population density.

Theorem 2.3.1. Suppose {h(n)} is a sequence satisfying the

conditions 2.3.1 (i)=-(iv) of Proposition 2.3.2, and K(n)

is the sequence of integers [nh(n)P], where [x] denotes the
greatest integer not exceeding x. Let K be a function
which is either uniform on the unit ball in some metric,

or meets the conditions of Proposition 2.3.2. Assume that
£f: RP » R is a uniformly continuous probability density

function. Finally, suppose that for some n > 0, D = {z:



40

£(z) > n} is not empty, and 6 is the unique local maximizer
of £ over D. Then, for any a > 0, the fixed bandwidth
kernel estimate of f, En(x;u), is uniformly strongly con-
sistent} for any B > 0 the variable kernel estimator of £,
fn(x;B) is uniformly strongly consistent; and in either
case, 1f en maximizes the estimated density over D, en + B

with probability one as n + o,

Proof. The consistency of fn(x;a) is given by Proposition
2.3.2. Now suppose that sup|f (x;B)-£(x)| does not con-
verge to zero with probab?i?ty one. Then, for every ¢ > 0,
for every n thére is a larger integer N(e,n) and some x ¢ D,
such that [fN(a’n)(x;B)-f(x)] > e. Let § = min(n,e/12)/2.

By Proposition 2.3.3, this implies that for one of a finite

number of values of o, either
(1) IEN(eln)(x;d)-f(x)l > min(n/2,¢/25), or
(1) |8y (g, q) (X70)=£(x) | > min(n/2,e/25).

Since the inequalities above hold for an infinite number of
N(e,n), there is asingle value a and one of the inequalities
holding for an infinite number of valued of n, {nl < n, <

ns < «++}. Suppose (i) holds. Then for small ¢ > 0, for
every n, there is an n, >n and a point x ¢ D such that
I%ni(x;a)-f(x)l > g/25. This contradicts the assumption that

supl%n(x;a)—f(x)] > 0 with probability one as n + «. There-
X

fore, it must be that £, (xiB) is uniformly strongly consis-
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tent over D. By Proposition 2.3.1, the local maximizer of
either fn(x;a), §n(x;a), or fn(x;B) converges to 6 with
probability one as n + «, This completes the theorem.

Note that, though the conditions (2.3.1) on h(n) and
by extension the conditions on k(n) in Theorem 2.3.1 are
fairly complicated, they are easily satisfied, for example,
by h(n) = an(s~l)/p and k(n) = gn°, for any o > 0, B > 0,

and 1/2 < s < 1.

Iterative Procedures

The mode-~seeking procedures discussed in Chapters TIII
through V may all be reiated to variable kernel density
estimates for which, in each case, Theorem 2.3.1 applies.

In each case as well, the mode estimate is a local

optimum for the cbrresponding density estimate. Thus,
Theorem 2.3.1 gives some evidence that the procedures dis-
cussed in this dissertation are conceptually sound. How-
ever, the mode estimation is conducted by means of itera-
tive algorithms which make no attempt at complete search of
any region beyond the sequence of neighbor sets which they
identify (cf. Algorithm 3.1.1), and for consistency of the
associated density estimate, the neighbor sets will have
zero Lebesgue measure in the limit as n approaches infinity.
It is conceivable that, even if it starts, remains, and con-
verges in a region D having a unique interior local maximi-
zer of the estimated density, any one of our iterative

procedures may fail to attain that value. For this reason,
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Theorem 2.3.1 does not guarantee the consistency of the mode
estimators we will present, even though it does guarantee'
consistency of modes of the associated kernel estimators.
Consistency results may be established for our itera-
tive algorithms using the fact, which will be established
for the various algorithms individually, that each update
step produces an increase in the density estimate with
which the algorithm is paired, and converges to a local
maximizer of that density estimate. The arguments will
require a preliminary .result establishing consistency of
variable kernel estimators of the gradient of the popula--
tion density. With these facts in hand, it will be shown
that asymptotically the mode estimators must converge to a

local maximum or a saddlepoint of the population density.

Proposition 2.3.4. Let KO be a kernel function satisfying

the provisions of (2.3.15) for estimating B/Bme(-). Let

e, be the i-th standard basis element for RF . Suppose
Ko(x) = cl[Kl(x+wem)-Kl(x-wem)] - c2K2(x) for some constant
w, where Kl and K, are symmetric non-negative densities
satisfying (2.2.15) for estimating £, and further satisfying

the monotonicity requirement of Moore and Yackel, that

for all u ¢« R’ and t, 0 <t <1, Ki(tu) > Ki(u).
(2.3.2)
Suppose that for some a > 0 and s, 1> s > max{1/2,2/(p+2)},

h(n) = an(s-l)/p. Then with k(n) = Bnh(n)P = gn®, for any
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X

B > 0, the variable kernel estimator

£ (xiB) = ———t t K (ﬁ—yx(i)'x) (2.3.3)
x;B) = . 3.
n nrk(x)p+l i=1 0 Ty ¥

consistently estimates a/axm f(x) over any region in which

f(x) is bounded away from zero.

Proof. By the asymptotic results of Section 2.2, since

nh(n)p+2 + «, writing the fixed bandwidth kernel estimator

as
- _ 1 ° Xy
fn(x) = m i_E_l KO('—h-(—l;l—)'—) r (2.3.4)

then En(x) - 3%— f(x) as n » », with convergence in the
m

sense of quadratic mean. Similarly, writing

A _ 1 n x ) _y

S et L L Em
and

L no (i)

E Ry S R IO

both En(x) + £(x) and En(x) > £(x) as n -+ o.

Define
1 n X(i)-x
g (x;B) = ———=— I K, (—F7F)
n nrk(n)p+l i=1 1 T (x)

and
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p x 1)
oy 2T

1

S S
nrk(n)p+l

En(X:B) =
NQW

£ 518) = 5= £00| < |fn<x;s)-%n(x>|+-I%n(x>-§§; £(x) ],

and the results of Section 2.2 establish that En(x) -

3%— f(x)l + 0 in quadratic mean or in probability as n -+ «,
m

In addition, with some straightforward algebra, it is pos-

sible to show that
1fn(x;8)-§n(x)l < lcll{Icn(x+wrk(x)em;8)—¢n(x;6)|
+ o (x8)=2 (%) ]

+ lin(x)-in(x+wrk(x)em)1

+

|z, (x-wr (x)e :8) =T (x;B) |

+ g (x:8) - _(x) |

+

Ign(X)-En(x—wrk(X)em)l}

+

Iczl{lin(x;ﬁ)-gn(x)l}.

The arguments sustaining Proposition 2.3.3 and the first
part of the proof of Theorem 2.3.1 carry through with the
factor rk(n)p+l replacing rk(n)p in the denominator of

Enlgn,in, and En, and they provide, since f£(x) > 0, that

both |z_(x:8)-t_(x)| ~ 0 and |£, (x:8)-€_(x)] > 0 with

probability one as n + . As for the remaining terms, the
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choice of k(n) is such that rk(x) + 0 w.p.1l as n +» o,
Since f is continuous at x and gn,En,gn, and én are consis-

tent for £(x), it must be that Ifn(x;B)-%n(x)l + 0 w.p.l

9

as n + », and thus that lfn(x;B)- T £(x)| + 0 in proba-
m

bility.

Proposition 2.3.5. Let f be a uniformly continuous, con-

tinuously differentiable probabili -y dénsity function in
&RP , and {x(l),...,x(n)} be a sampl=z of n independent
observations drawn from f£f. Suppose fn(-) is an estimator

of f whichis uniformly strongly consistent over any domain

0

in which £ is bounded away from zero. Let X  be a starting

point, independent of n, for which f(xo) > 0, and let
{xl,xz,...} be the sequence of iterates produced by an

n’“n
algorithm which guarantees’ that fn(x;+l)

> £ (xl) for all
n''n

i, and suppose  that the x; converge to a point x; at which

an(xﬁ) = 0. Further, define Ln = {x ¢ RP : £(x) > n }

and suppose there is a real number n, f(xo) >n > 0, such

that for all x ¢ Ln, an(x) +~-VE£(x) in quadratic mean as

n + «, Then Vf(x;) + 0 almost surely as n - .

Proof. By the consistency of f, and the monotonicity of
the iterates {f(xi), i=1,2,...}, there is an ‘integer M
such that for all n > M, fn(xd) > n and fn(xi) > n for all
i. Thus, the sequence of mode estimates {x;, n > M} must
lie in the compact set Ln. We will suppose that, for some

€ > 0, there is an infinite subsequence of {xg, n > M} such
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that [|[VE(x*)|| > e for every n belonging to this subse-
quence, and show that this leads to a contradiction. We
will hereafter assume that {xg} is composed only of members
of that subsequence, and not introduce new notation for it.
Owing to its containment in a compact set, {x;} must have
an accumulation point, call it x*. Under the contrary
assumption, since Vf is continuous, it must be that
||[VE(x*) || > e. On the other hand, VE (%) is consistent
in quadratic mean everywhere in Ln, and for each n,
an(x;) = 0. Therefore, for arbitrary § > 0, there is some
index N(§ such that for i > Nes xf lies within a distance
§ of x*, and P{ ||[VE(x})|| < 6} > 1-6. Again, as Vf is con-
tinuous, P{ ||VE(x*)|| < 6} > 1-6. Since § is arbitrary,
then P{ ||Vf(x*)|| = 0} = 1. Thus, with probability 1 we
obtain a contradiction, and the theorem is proved.

The mean upéate and weighted mean updates of Chapters
III and V, respectively, both are gradient-based, steepest
ascent type methods for which the conditions of Proposition
2.3.4 and Proposition 2.3.5 can be verified. Thus, the fol-
lowing theorem, which is the main result of this section,
will be used to establish a quasi-consisténcy result for
both update algorithms as estimators of local maxima of a
probability density function. What keeps it from being a
complete consistency result is that it does not eliminate
the possibility of convergence to a saddlepoint. We believe

it to be true that, asymptotically, convergence to a saddle-
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' point is an event of probability zero, and that in fact,
the consistency of the update mode estimators need not be
qualified. However, we do not have a rigorous proof of the

full conjecture at this time.

Theorem 2.3.2. Let f: R’ + R be a uniformly continuous,

continuously differentiable probability density function,
and {X(l),...,x(n)} be a sample of n independent observa-
tions drawn from f. Let e, be the i-th standard basis ele-
ment in RF . ILet KO be a kernel function satisfiying
(2.3.15) for estimating £, and suppose that for any m,
l<m<p, 5%; Ko(x) is of the form Ké(x) = cl[Kl(x+wem) -
Kl(x—wem)] - csz(x) for some constant w, where also Kl

and K2 satisfy (2.3.15) for estimating £, and for all u ¢
®P and t e [0,1], Ki(tn) > Ki(n), i=0,1,2. Suppose that

for some a > 0 and s such that 1 > s > max{l/2,2/p+2},

h(n) = an(s-l)/p,'and for some B > 0, k(n) = fnh(n)P = BnS.
Let '
1 no X(i)—x
£(x) = —= 5 x (2__=%
n nrk(x)p i=1 0 rk(x)
and
_ 1 n X(i)—x
fn(X) B nh(n)? 1El KO( h(n) )

be the variable and fixed bandwidth kernel estimators of £,

respectively. Let xo be a starting point, independent of n

for which f(xo) > 0, and let {xi,xi,...} be the sequence of
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iterates produced by an algorithm which guarantees that
gn(xl+l) > gn(xl) for all i, and that the x; converge to a
point x; at which Vgn(x;) = 0, for either g, = fn or g =

Vel

fn' Then, with probability one, as n + o, Vf(x;) + 0.

Proof. By Proposition 2.3.2 and the first part of the proof
of Theorem 2.3.1, both'fn and %n are strongly ﬁniformly
consistent in the region {x ¢ RP : f£(x) > f(xi)/z}. The
remainder of the proof follows immediately from Proposition

2.3.4 and Proposition 2.3.5.



III. THE MEAN UPDATE ALGORITHM

3.1. Description of the Mean Update Algorithm and
Discussion

Our initial empirical investigations of the problem of
locating modes in data of arbitrary dimension were con-
ducted using a simple nearest neighbor procedure, which we
refer to as the mean update. The mean update algorithm has
a user-controlled parameter, k, or equivalently a specified
fraction of the sample size, where k indicates the number
of nearby sample points to include in each mean calculation.
With k given and an initial guess, X the mean update

algorithm is:

Algorithm 3.1.1. Find the k observations in the sample,

{X(l),...,x(k)} which are nearest to X, i these are called

the neighbor set or k-neighbor set of X, -
L .
Update: X, = ¢ r X ; find the k-neighbor set of X, i
i=1
If the neighbor set remains unchanged, then X, = X,
and this is the mode estimate;
return;
else
X, = X;
go to update;

end if.
An example of the performance of the mean update is

49
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given in Figure 3.l1.1. The scatter plot is of a sample of
300 observations drawn from a two-component Gaussian mix-
ture with means at -2.25 and +2.25, mixing proportions of
3/4 and 1/4, respectively, and unit covariance matrices.
The starting point is the sample mean (locatién (a)), and
initially k = 50. The mean update proceeds along the path
indicated, and after 13 iterations stops at the location
(b), at the periphery of a relatively tight cluster of
points. With k éecreased to 25, and, upon convergence with
that value, to 12, the ﬁpdate gravitates to the center of
the cluster, at location (d). With k = 100, the update
essentially locates the sample mean of the dominant Gaussian
component (location (f)). A complete trace of the sequence
of iterates is given in Table 3.1.1. With each value of
k indicated there, the mean update is tracked until it con-
verges, and the location of each iterate, the radius of the
associated neighbor set, and the Euclidean distance from
the true norm are given. . -

The rationale for the mean update algorithm is that
modes in the density function will be accompanied by denser
clustering of the sample observations, that the local mean
is an obvious measure of location for such a cluster, and
that successive updates should be drawn by the local distri-
bution of points in a direction of ascent of the density

function.

In fact, the update step is exactly the Newton and
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Figure 3.1l.1. Partial Trace of the Mean Update on Two-
Dimensional Gaussian Mixture
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k=50 (a):

k=25 (b):
(c):

k=12 (c):

(d) :
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TABLE 3.1l.1.
Radius
of ‘the
k-Neighbor
x-Coorxdinate y-Coordinate Set L, Error
-0.873 -0.0752 1.477
-1.210 -0.0907 .958
-1.381 ~-0.0716 .742
-1.452 ~0.0681 . 790
-1.529 -0.0619 .832
~-1.653 -0.1075 .696
-1.744 -0.1176 .668
-1.828 -0.1558 .678
-1.897 - =0.2466 .721
-1.971 -0.3496 .680
~2.017 -0.3764 .647
-2.037 -0.3918 .676
-2.046 ~-0.4079 .660 0.456
-2.046 -0.4079 .249
-2.100 -0.3926 .239
~-2.165 -0.4089 <247
-2.223 -0.3868 .249
-2.289 -0.3524 .259
~2.320 -0.3717 .246
-2.346 -0.3522 .242
-2.378 ~0.3561 .241
-2.401 -0.3386 .236 0.371
-2.401 -0.3386 .0763
-2.387 -0.3164 .0721 0.345



k=100

50

50

(4d):

(e):

(e) :

(f) :

(£):

(g):
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TABLE 3.1.1. Continued.
Radius
of the
k-Neighbor
X~Coordinate y-Coordinate Set L,Error
-2,387 ~0.3164 . 681
-2,352 -0.3056 .649
-2.328 -0.3105 .644
~2.302 -0.3293 .635
-2.270 -0.3281 .613 0.329
-2,270 -0.3281 1.677
-2.227 -0.2824 1.589
-2.173 -0.2464 1.563
-2.144 -0.2118 1.535
-2.120 -0.1877 1.472 0.228
-2.120 -0.1877 .686
-2,192 -0.2822 .698
~2,187 ~0.3137 .666 0.331
-2,191 -0.3255 .682
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gradient step of a variable kernel density estimate with

guadratic kernel,
: 1 2
K(x) = ¢(1 - flIXHZ ), llx”z <1

and c is chosen so that K integrates to 1. Then, writing

rk(x) for the radius of the k-neighbor set of X

' k (1) __n2
£ (xik) = c s I I -% |l x Xy 1, (3.1.1)
nrk(xc) i=1 rk(xc)
k []
) c' (i)
= £ _(x;k) = Z (X =x.)
axm n nrk(x )p+2 i=1 m m
c
and
sz (x:k) = = c’k I,
n nr, (x )p+2
k'"c

where I is the identity matrix of appropriate dimension.
Note that, if the smoothing parameter, once initialized as
h = rk(xc), is held fixed, then szn(x;k) is negative
definite and constant for all x. Again, regardless of the

value of h, as long as the neighbor set is held fixed, the

unique value satisfying an(x;k) = 0 is given by the mean
k .

of the neighbor set. Thus, the update m = (1/k) I x(l)
i=1

is the optimizer of the local quadratic model of the den-
sity function obtained from fn(x;k) and its derivatives

with the neighbor set held fixed.

For use as a density estimator the kernel described

above has some drawbacks. For one thing, the estimate it
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yields is discontinuous at any point where the neighbor set
changes. The form of the estimate over any region where the
neighbor set is constant is a negative definite quadratic.
The imposition of strict, locally uniform concavity in the
estimate of the density is likely to introduce spurious
local modes that might not arise with a kernel function,
such as the Gaussian, whose concavity decreases with dis-
tance from the origin. As an example, consider the fol-
lowing one-dimensional sample and the estimate (3.1.1)

drawn from it:

Figure 3.1.2.

The sample points are indicated by small crosses. Moving
from left to right there are four successive neighbor sets
of size three. These are indicated below the sample in
sketch (a), with numerals marking the maximizers of the

corresponding quadratic models. Vertical arrows mark the
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locations where the neighbor set changes. 1In Figure (b)
the resulting density estimate is pictured. The estimate
retains the optima of each of its component quadratics,
though overall, the estimated density has a unimodal char-
acter. Any optimum that remains is a potential stopping
point for the mean update algorithm. Generally speaking,
many of the component modes will be lost beneath overlapping
quadratic segments, but the susceptibility to many technical
modes remains.

Though the density estimate associated with the mean
update immediately suggests a point of departure for
improving the algorithm (i.e., replacing the quadratic
kernel with one having variable concavity), it also allows
us to observe properties of the mean update that guarantee
its consistency. We would like to demonstrate that each
step taken by the mean update increases the value of the
associated variable kernel density estimate, since then
Proposition 2.3.5 would apply immediately, but we have been
unable to prove or disprove this assertion. However, it
is possible to associate the mean update with a modified
version of (3.1.1) for which each update step does yield an

increased function value.

Lemma 3.1.1. Let {xm} be the sequence of iterates generated

by the mean update procedure, and let {rm} be the associated
k-neighbor distances. Let %(x;h) be analogous to the kernel

estimator (3.1.1) with smoothing parameter h replacing rk(x),
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that is,
n (L) __, 2
B(xih) = % § 1 -4 X oxllg
nhP i=1 h

where n(x) = {x(l),...,x(k)} in the k-neighbor set of x and

r = max {IIX(l)—xH }.

‘1<i<k

Then

(i) the mean update procedure terminates after a
finite number of steps, and

(ii) for any h, and for all m, f(xm+l;h) > f(xm;h).

Proof. Let n(xm) = {Xél),...,xék)} be the k-neighbor set
of X For arbitrary h let §(m)(-;h) be the fixed band-

width sample function based upon n(xm). That is,

1%y 2

2

s o k
f(‘m) (x7h) = — E [1 -

nhP i=1

1, (3.1.2)

N

h

thus f(xm;h) = f(m)(xm;h) (and fn(xm;k) = f(xm;rm)).
Define

D_ (%) = %48 x| 2

e By
[

i
Clearly for any two points 2y and Zy, f(m)(zl;h) <
f(m)(zz;h) if and only if Dm(zl) > Dm(zz); also for any two
iterates X and Xj’ E(xi;h) < %(xj;h) if and only if
Di(xi) > Dj(xj). Therefore f(m)(zl;h) < f(m)(zz;h) if and
e ! = . .
)(zl,h ) < f(m)(zz,h') for any h' > 0. Similarly

only if f(m
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%(xi;h) < %(xj;h) if and only if f(xi;h') < ?(xj;h') for
every h' > 0. Since at each iteration Xorl is chosen to

maximize f(m)(x;h).

D

.

nFpey) < Dp (%), (3.1.3)

with equality only if X = Koqe Now the neighbor set

n(xm+l) can be arranged and written in the form,
_ (1) (k-s) (k-s+1) (k)
n(xm+l) - {xm ,...,Xm ¥ 4 Xm+l ,...’Xm+l}’

' 1 k- k-s+1 k
Where {XII('I ) 1 e e 'Xn(l S)} < n(xm) and {xlfl_i_ls ) ree IXI:I_*_;-} c
n(xm)c.' Then
D (x . )-D_(x_..) = & [|xtst_y 2

m+l " "mtl m " m+l j=1 m+1 m+1l
(k-s+3) _ 2
Xy Xepll ] (3.1.4)
i o'

Combining (3.1.3) and (3.1.4) yields

Dm+l(xm+l) < Dm(xm), (3.1.5)

and accordingly,

f(xm+l;h) > f(xm;h) (3.1.6)

for any h, unless X1 = Xy in which case, the mean update
terminates with that value. Thus, the second statement of
the lemma is proved. To prove the first statement, we

recognize that the number of possible neighbor sets, and
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hence the set of possible iterates X is finite, and the
strict monotonicity of (3.1.6) insures that none of these
iterates may be visited twice without causing termination. 0O

The monotonicity of estimated function values
{fn(xi),fn(xﬁ),...} generated by an iterative mode-finding
procedure is required in Proposition 2.3.5 only as a means
of assuring that the set of mode estimates obtained from a
particular starting point belongs to a compact set contained
in the domain of positivity of f. This compact containment
can be established under the slightly weaker conditions

we have just established.

Lemma 3.1.2. Let Ry € R be a starting point independent
of n, and let k(n) = 0(ns), l > s > max{1/2, 2/p+2}.

. _ . S P S
Define L = {x: £(x) > n}. Let {x; = x7,x ,x ...} be the
sequence of iterates generated by the mean update process
with sample of size n. Then for any n, 0 < n < f(xl), there

exists N > 0 such that f(xg) € Ln/z(p/2+l) for all j and

for all n > N.

Proof. By Theorem 2.3.1, for any n > 0, the variable kernel
estimator, fn(x;k) is (uniformly strongly) consistent over
Ln. By the work of Van Ryzin [1969] and Moore and Yackel
[{1977; cf. Proposition 2.3.3], the fixed bandwidth espimator
%n(x;ch) is also uniformly strongly consistent everywhere,
_taking ¢ as any positive constant and h = r[k(n):n](xl)

by Referring to the definitions of Lemma 3.1.1 and Theorem

lu
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2.3.2, observe that f(xl;rl) = fn(xl;k) = %n(xl,rl),
assuming of course the quadratic kernel (3.1.1). By the
consistency of fn(x;k), if n < f(xl), then for n large
enough, fn(xl;k) > n+8, for some § > 0.
From the preceding lemma, we have that fn(xl;k) <
%(xg;rl), where xg is the m-th iterate of the mean update
(1)

based upon a sample of size n. In what follows, Xm PR

Xék) are the nearest neighbors of xm, listed in ascending

order of distance |[X x (1) xml . Note that if llx(l) 2”2 >
2h2, then X( i) makes a net negative contrlbutlon to the
sample function f(x sh). Let k' be the number of neighbors
for which ||X(l) 2”2 < 2r§. Then,
£ (x7:k) < £(x ixy)
(i) _m 2
P
P oi=1 2 2
i) .my 2
k! [ESE]
<2 3 n-z—n 1 (3.1.7)
nry i=1 r,
(1) .mp 2
p/2 o k! 1 me xn”
n (/2 rl)p i=1 2r

< oP/2+1 £ (x% V2 r

Therefore, for n large enough, %n(xg;/ﬁ rl) > 2—p/2(n+5),
a constant bound which does not depend upon n or m. Since
%n(xg;/i rl) is consistent, again for n large enough, and

for all m, f(xﬁ) > 2—(p/2+l)n, and the lemma is proved.
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We note in passing that the conclusions of this lemma
follow directly from Lemma 3.1.1 without (3.1.7) and with-
out the factor 27 P72 if tne bandwidth in the mean update
procedure is held fixed. For a fixed bandwidth procedure,
consistency can be established even if, say, an extra
dimension is added with every new observation. It is
likely that tighter analysis can remove the dimensional
dependency of the constant 2-p/2, and thus eliminate the
role of dimensionality from the consistency arguments and
the design of the variable kernel mean update; however,
such a goal is of secondary importance at this stage of our.
inquiry.

Lemma 3.1.2 allows us access to the consistency results
of Section 2.3. An additional requirement for those results
is that for arbitrary coordinate direction m, the partial
derivative of the quadratic kernel (3.1.1) may be expressed

in the form

§§; Ki(x) = cl[Kl(x+wem)-Kl(x-wem)] - c2K2(x),

(3.1.9)
where w, Cyr and c, are real constanté, en is the unit m=-th
coordinate vector, and Kl and K, are probability density
functions satisfying the moment conditions (2.3.15) for

. estimating f£f. For the quadratic kernel,

o if I, <1

m 0 , otherwise.
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In the univariate case, the decomposition is simple and

natural; we take

K,(1) =1, for |t| < 1/2,

KZ(T) =1=- |t| , for |t <1,
and c; = ¢, = l and w = =1. In the multivariate case, the
decomposition is complicated by the spherical support of K
and its derivatives. Figure 3.1.3 depicts 3%— K for

m
bivariate random variables, as well as the component Kl of

the decomposition. To generalize the dimension p, we take
C = {(xl,...,xp); X, > 0 and |[[x]|], < 1}, let u be a random
variable distributed uniformly over C, u be the mean of u,

V be the volume of C, and

Kl(.r') = _
0 , otherwise,
/v (1-|t]) , if fell, <1
K, (1) =
o , otherwise.
Then
a —4 —-— —— —

-371; K(x) = Kl(x 1) Kl(x+u) KZ(X)'

Because it is not symmetric with respect to the m-th
coordinate, Kl is not an appealing kernel function; never-
theless, it meets the criteria of Theorem 2.3;2, and thus a

consistency result for the mean update follows immediately.



Figure 3.1.3. Partial Derivative of the Quadratic Kernel
Corresponding to the Mean Update

TN
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1

Theorem 3.1.1. Let f£f: RFP + R be a uniformly continuous,

continuously differentiable probability density function,
and {X(l),...,x(n)} be a sample of n independent observa-
tions drawn from £. Suppose that for some 8 > 0 and some s
satisfying 1 > s > max{1/2, 2/p+2}, k(n) = an. Then the
mean update, Algorithm 3.1.1, will converge to a mode esti-
mate xg in a finite number of steps, and with probability

one, Vf(xg) + 0 as n + »,

3.2. Structure and Implementation of the Monte Carlo Trials

The trace of ﬁhe mean update in Table 3.1.1 gives
limited indication of the character of the algorithm and the
significance of its control parameter k. In the example
nothing unexpected or extreme occurs; accuracy increases
with the size of the neighbor set, while the drop to k = 12,
or 4% of the sample size, has no serious consequences. How-
ever, had the algorithm started at the sample mean with k =
12, it would have halted very quickly, and far from either
mode. In addition, with slightly less separation betwéen
the modes, even a neighbor set as low as k = 100, or 33% of
the sample, could conceivably draw enough from both compo-
nents that it would remain poised between the modes, behaving
essentially as does the sample mean.

Mode estimation has two distinct but complementary
uses. One is an estimation procedure for a single loca-
tion parameter that will be resistant to data contamination.
Under the assumption that, with mihor surgery involving the

removal of outlying points in a sample, the distribution
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being observed.can be "brought to symmetry," it seems
desirable to have neighbor sets that are large, perhaps

80% or 90% of the sample size. Frequently in high dimen-
sional settings that assumption is unfounded. The second
use of mode estimation, and the one which motivated this
study, is for investigating the presence of secondary modes.
For this purpose, it is necessary for the estimation
algorithm to be able to concentrate locally in regions near
individual modes, and this implies that neighbor sets should
be confined to a small fraction of the sample.

It is important to know, and difficult to predict
analytically, over what range of values of k the mean update
will be effective. We need to know how performance char-
acteristics change with varying dimension and sample size,
and how they are affectea by the shape of the population
density. The same issues apply to the quasi-Newton and
weighted mean algorithms of Chapters IV and V. To get
empirical answers to these questions an extensive battery
of Monte Caflo tests was conducted. Each test requires
the simulation of a particular family of multivariate prob-
ability distributions. Holding the sample size constant,
the mode-seeking algorithm (or algorithms) being examined
are applied to data of varying dimensions, and on each
trial are run using several values of the control parameter
k. The structure of the tests ;emained basically unchanged

throughout the course of this study, as given here:
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Algorithm 3.2.1

for I = 1 to #TRIALS

for dimension ?p = 1,2,3,4,5,10,15,20(,50,100)

. Generate a sample of N independent observa-
tions of a p-dimensional random vector
simulated according to a specified prob-

ability law.

for a sequence of neighbor set sizes k,

(either k¥ = .1N,..2N, .3N, .4N

or k +.75N, .90N, .95N, .99N)
for each of the mode-seeking procedures
in the test

start at x.

lnit = (—100-0, _100-010011

~100.0) T

run the current mode-seeking procedure
with parameter k, and

accumulate descriptive performance
statistics

end for
end for
end for

end for

Early testing of the mean update included sample spaces
of dimension 50 and 100. Though the results were favorable

enough to justify further exploration in such high dimen-
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sions, it was decided, for reasons of economy and interest,
to limit the dimensionality for further testing to a maximum
of 20. In all tests, the number of trials was 25, thus all
performance statistics quoted in this study will be based
upon 25 independent executions of the algorithm under a

fixed set of circumstances.

Measurement of Performance

A number of statistics were collected from eéch test
to measure the accuracy of the mode-seeking procedures.
Definitions of the five measures that figure in this report
are given below along with acronyms by which we will often
refer to them. 1In the definitions, it is assumed that the
sample observations are p-dimensional, the true mode isg

x*, and the mode estimate §:

I TESETS R N SN 3
MSE = = Jlx x*[|5 = 5 iil (x,-x3)%;
SUP = ||x-x*||_ = mgx{lgi-xfl}:
1
Lo 13 i
MAD = = |[x-x*[|, = 5 iil | -x¥];
MED = median {(%;-x#), i = 1,...,p};

L2 = p*MSE.

The MSE, of course, is the common quadratic loss,

averaged over the variates to expedite the comparison of
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results between different dimensional spaces. As its
average over a series of trials incorporates errors arising
from both variability and systematic bias, it is the most
complete measure of accuracy, and will be the one used most
often in this study to report and compare performance.
Unaveraged quadratic loss, L2, will often be used with

skew data because of the particular way in which- that data
was‘generated. The SUP measure is included out of concern
for extreme errors that might occur, especially with small
neighbor sets. MAD is used on occasion when the range of
values of the MSE over different dimensions or between
different procedures make them difficult to display on a
linear scale. The MED méasure has significance only due to
the geometry of the test configuration. Unimodal data sets
were generated so that the mode of the simulated density was
located at the origin, and the mode-seeking procedures were
started from (-100.0,...,-100.0). Thus, the predominance
and magnitude of negative values in the mode estimate gave
evidence of the extent to which errors in the estimate
‘stemmed from failure of the algorithm to complete its

ascent operation rather than from sampling variability.

Distributions Used in the Tests .

Tests of the mode-seeking algorithm were conducted with
data sets simulated from several distributions. Testing
began with uncorrelated Gaussian data. Subsequent data

sets were chosen to expose the procedures to distributional



69

patterns that threatened to be problematic, and which we
expected to occur frequently in practice. First among
these is the possibility that the data lie in a manifold of
smaller dimension than that in which the observations were
recorded. To produce such sub-dimensionality, a highly
correlated Gaussian distribution was used, having all
variances equal to unity, and all covariances equal to 0.9.
The determinants of the resulting covariance matrices in
dimensions 5, 10, 15, and 20, are 0.00046, 9.1.Xl0_9,

13, and 1.81 XlO-ls, respectively, indicating that

1.36 x 10~
in the higher dimensions, the generated data will be nearly
univariate in character.

A second distributional characteristic which was
studied is erratic tail behavior or heavy-tailedness. The
study was conducted primarily by the generation of multi-
variate~Cauchy data, uncorrelated, and centered at the
origin.

The third shape characteristic we investigated is
asymmetry about the mode or skewness. The generation of
multivariate skew distributions is rather a difficult prob-
lem and little work has beeh done in the area [Kennedy and
Gentle, 1980]. The situation is further complicated by the
desire to have the severity of the skewness, or shape of the
distribution, especially in the vicinity of the mode, be.
comparable across dimensions. A strategy was developed for

generating two-component Gaussian mixtures which are
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comparable from the standpoint of parametric classification.
The justification for the strategy is rather lengthy
and hence is deferred to an.appendix. The main idea is that

for a two~component mixture density,
P(x) = a;p;(x) + a,p,(x),

where

1

—n/2 exp{_ _2_

py(x) = (2r) 2,172/ (k=) T2 (k) B,

the modality of the mixture is completely summarized by the
modality of the one-dimensional slice passing through the
two mean vectors, so long as Zl and 22 share the eigen-
vector HymHye It is then possible to generate mixtures
whose two components are "equivalently séparated" in
arbitrary dimension by constraining the conditional density
along the slice between the means to match a one-dimensional
prototype. In the.appendix, it is shown that the proto-
type matching technique produces mixtures which yield
dimensionally constanﬁ error rates for an optimal Bayes
classifier, or linear discriminant function.

The prototype we used for investigating algorithm per-

formance in the presence of skewness was

2 2
é—l/ZXx+l.25) + 0.7é-l/2Xx-l.25) },
(3.2.1)

1
p(x) = Vot {0.3

but shifted to the left by, an amount 1.1974 to place the

mode at the origin. The p-dimensional density matched to
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it was

u+l.1974s 2
4 X229 788
x vl

-2

2
p(x) = (2n)'9/25’p{0.3e 2s

L u-1.1974s 2
' - c——— == ]
252 ” /5 ~”

b

+ 0.7 e

with s = 1.2, p = 1.5, and 5 the péaimensional vector com-
posed of all ones, 1 = (l,l,...,l)T. A graph of the pro-
totype density is given in Figure 3.2.1, and Figure 3.2.2
contains a plot of 100 observations drawn from the
bivariate mixture (3.2.2). In the scatterplot, an "X"
marks the origin and the location of the single mode.
Scatterplots -of the first two components of equivalent
three~ and fifteen-dimensional samples are given in Figure
3.2.3.

As the "principal axis" of the skewness in the mixture
density ié aligned directly with the starting point in the
tests, (-lOO.O,...,—lOO.O)T, the iterative algorithms must
contend with the "shoulder" created by the subordinate
component, which is on the verge of generating a local
optimum. Thus, the two-component mixture provides a
slightly more stringent test of the hill-climbing abilities
of the algorithms than either of the symmetric distribu-~
tions.

We also wanted to focus on the behavior of the

algorithms on skewed data in the vicinity of a mode, the
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Figure 3.2.1. Unimodal Mixture G2SKEW, Univariate Prototype
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Scatter Plots of G2SKEW

Figure 3.2.3.
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main purpose being to assess the rate at which a biasing
effect grows with increase in the size of the neighbor set.
To effect this, the previous "least favorable" orientation
was replaced with the "most favorable," by reversing the
weighting of the two mixture components, or simply replacing
x by -x in (3.2.1) and (3.2.2).

Note that the factor vp in (3.3.2) implies that the
Euclidean distance between the mean vectors is constant
regardless of dimension. The difference in individual
coordinates of the component means, however, decreases as
p-l/z, and coordinate average measures such as MAD and MSE
reflect this.  Therefore, accuracy on the skew data is
typically reported in terms of the Euclidean metric, L2,
which in this case is dimensionally stable.

The coalescence of the coordinates of the two mean
vectors also indicates that the nature of the mixture den-
sities does change with dimension. The existence of two
component means introduces with the line passing through
them a particular one—diménsional orientation in p-
dimensional space. The "equivalent separation" of the com-
ponent mixtures produced by the method of prototype matching
is defined in terms of this one~dimensional projection. 1In
high dimensional settings this is a very special orienta-
tion, and the separation of the mixture components will not
be apparent from most vantage points. Though as Figures

3.2.2 and 3.2.3a suggest, the prototype matching technique
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is reasonably effective in producing the desired skew effect
in low and moderate dimensions, in high dimension most
lower dimensional conditional densities will involve a mix-
ture of two nearly identical Gaussians, and most views of
the data (e.g., Figure 3.2.3b) will present a nearly spheri-
cal cloud. Nevertheless, the mixture generated by the pro-
totype matching technique in either low or high dimensions
present a mode-seeking algorithm with a stringent test.

In low dimensions, the algorithm, working on G2SKEWLT, must
bypass the near mode at a Euclidean distance of 2.94 units
from the true mode. The skewing effect of the subordinate
mixture component declines with increasing dimension, but

as it does the mixture exhibits a departure from normality
which is correspondingly more difficult for a nonparametric
procedu;e to detect.

Finally, for generating bimodal distributions, Gaussian
mixtures akin to the skew distributions were used, but with
the component-wise separation held constant independent of
dimension. This procedure can be justified as holding
stable across dimension the expected value of the ratio
SSB/SSW, commonly encountered in the analysis of variance
in clustering procdures, where SSB is the factor or between
group sum of squares, SSB = |I§l-§2H2,/(l/nl + 1/n,), and
SSW is the pooled within group sum of squares.

To recapitulate, a summary of the distributions gener-

rated in this study is given in Table 3.2.1.



TABLE 3.2.1.

Label

GAUSS

R9GAUSS

CAUCHY

G2SKEWLT

* where

G2SKEWRT

G2SEPRT

Functional Description
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Test Data Sets Used in the Study.

Key Features

¢ (x;0,I)*

¢(x;0,I),

L,, =
1J 0.9, i # 3

r e

B (1 |x]|2HPH/2

n
1
0-39(x: 75 L, s?1)
) 2
+ 0.7¢(x; 7; l, s°I1),

(-1) *u-1.1974s,

=
|

1.25, s = 1.0,

=
Il

1= (1,.0.,1)7T

~

0.36(-x A1 1, s21)
- ¢ ’ /E = S

)

+ 0.7¢(-x; l, s I)

QN

My o= (-l) U+ 1.1974s

0.3¢p(x;0;:I)
+ 0.7¢(x; 2.5 1; I)

well-conditioned test
set

correlation;

subdimensionality

heavy tails;
gross error contamina-
tion

asymmetry,
hill-climbing,
heavy tails

asymmetry in the vici-
nity of the mode;
bias

multimodality

*¢(x;u,Z) is the multivariate Gaussian density with mean u
and variance-covariance matrix ZI.
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Generation of Random Numbers

The simulation of variates from a given probability
distribution usually begins with the simulation of a uniform
random variable in the interval (0,1). The most used of
the uniform fandom number generators, fhe multiplicative
congruential generator, has the disadvantage that succes-
sive p-tuples lie in sparse disjoint affine subsets of the
unit hypercube, and can have very poor distributional pat-
terns in high dimensions. A second class of random number
generates, first suggested by Tausworthe [1965], draws
integers from the string of bits generated by a feedback
shift register (FSR) based upon a primitive polynomial over
the field GF(2). If the precision of the integers generated
is L bits, the degree of the polynomial is r, L is rela-
tively prime to 2r—l, and pL < r, then Tausworthe showed
that the FSR procedure achieves p-dimensional uniformity
[Kennedy and Gentle, 1980, p. 150 f£f]. We employed a
generalized version of the FSR technique, due to Lewis and
Payne [1973], with modifications to allow a variable seed
value to initiate the extended shift register it maintains.
If the degree of the generating polynomial is the exponent
of a Mersenne prime (e.g., 89, 127, 521, 607), p-dimensional
uniformity is guaranteed so long as pL < r. We chose r =
127, and generated 31 bit unsigned integers. Thus spatial
uniformity (with 31-bit precision) was guaranteed up through

dimension four, and uniformity of at least the high order
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6 bits (and thus of a lattice of at least 64P mesh points)
was guaranteed throughout the dimensional range of the

tests.

Gaussian random variables were simulated via the
Box-Muller transformation of two independent variates U1
and U2, distributed uniformly over the unit interval,

defined

[-2 n(uy)1Y/? cos (21U,))

>
It

Il

X, = [-2 n(u))11/2 sin(270,),

2

yielding the two independent N(0,1l) variates Xy and X,
Cauchy data was taken from the ratio Xl/Xz, safeguarded to

avoid overflow.

3.3. Presentation of Results with the Mean Update Algorithm

To investigate the feasibility of the mean update
algorithm Monte Carlo tests were first conducted using
uncorrelated Gaussian data, sample spaces ranging from
dimension 1 to 100, sample sizes of 100, 500, and 1000, and
neighbor sets composed of 10, 20, 30, and 40 percent of the
sample. Plots of average componént sguared error (MSE) and
maximum component error (SUP), averaged across 25 trials,
are given in Figures 3.3.1 and 3.3.2, for sample size N =
100; in Figures 3.3.3 and 3.3.4, for N = 500; and in Figures
3.3.5 and 3.3.6, for N = 1000. For a description of the

test procedures and the conventions used in reporting test
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results the reader should consult Section 3.2.

The study of the mean update was undertaken out of the
conﬁiction that modes of a density function are inherently
as identifiable in high dimensions as low, more so if the
distribution includes several independent components in the
vicinity of the mode. The MSE and SUP plots in Figures
3.3.1 through 3.3.6 present clear evidence in support of.
this claim. The pronounced features of the plots are the
rapid improvement of the mean update algorithm with dimen-
sion increasing above one and two, especially for the
smaller neighbor set fractions, and the retention of stabi-
lity in very high dimensions. The regularity of thg plots
in the high dimensional range suggests that the results in
dimension twenty and beyond essentially characterize
infinite-dimensional behavior, and that there is no intrin-~
sic dimensional bound upon the application of the mean
update procedure.

Limitations which do appear concern applications in
dimension one or two, of little concern to us, énd more
significantly, the use of small neighbor sets. The impact
of too small neighbor set selection is indicated in Figure
3.3.7, which contains histograms of the 25 MSE values
obtained from 100 observations in dimension 1, é, and 10.
The left hand graph gives observed MSE using a neighbor set
of size K = 10 = .1N; the right hand graph corresponds to

K = 40. Vertical and horizontal scales are comparable in
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MSE

-07 Figure 3.3.5. GAUSS Distribution, N = 1000, Average of 25 Trials
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the two graphs. The histograms clearly depict the
"tailiness" of the univariate mean update as well as the
diminution of extreme error which accompanies the intro-
duction of additional independent variates.

The source of the frequent large erxrors in 16w dimen-
sion is suggested by Table 3.3.1. The measure MED used in
the table is the median over all components of component-
wise error in the mode estimate, i.e., median {(xi-xi),
i=1...,p}. Table 3.3.1 gives the average MED recorded
over 25 trials. As explained in Section 3.2, MED values
indicate the extent to which the iterative algorithm is
able to detach itself from the starting point of the search.
Consistently negative values of MED indicate that the
algorithm is easily trapped by insignificant gaps or clus-
ters in the gpatial distribution of the sample points, and
thus unable to complete a path of ascent to a genuine mode
of the population density. Table 3.3.1 thus suggests the
extent to which incieased sample size, neighbor set, or
dimension improve the hill-climbing ability of the mean
update. The figures therein clearly indicate that in low
dimensions, the mean update tends to stall prematurely along
a path connecting the initial guess and the population
mode, but that with increasing dimension the stalling prob-
lem is steadily and effectively reduced.

On the uncorrelated Gaussian data, for large dimen-

sions, as long as k/n is not too small, the accuracy of the
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TABLE 3.3.1.

K =, 1N

.6369
.4974
.3560
.3087
.1106
.0757
.0710
.0228
.0216

-1.113

.4513
.2587
.1318
.1131
.3400e”
.2819%e"
.l41l6e”
.5697e"
.3630e”

NN

MED (Ave.
. 2N

-.7901
-.3558
-.1615
-.1502
-.1537
-.04134
~.05907
-.03143
-.01500
-.007647

-.6240
-.1997
-.707%"
-.1781e”
-.3673e"
-.1152e
~.1262e
-.5292e
-.6858e

-.2816e"

Over

1l
1
1
1
1
2
2

2
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25 Trials).

. 3N .4N
-.5240 ~.3066
~.1659 -.09529
-.05835 ~.03797
~.08002 -.05674
-.03932 -.001098
~.03142 ~.02521
~.03515 -.02629
~.02575 -.01239
-.008324 -.007152
~.001475 ~.002391
-.2988 -.1179
-.1058 -.4533e”
-.3231e”t  -.2101e”
-.2395e"%  ~.1130e”
~.1994e”Y  _.1821e”
-.4451e”%  -.4378e”
~.9842¢"2 .. 4204e”
-.4377e%  _.4281e”
-.2507¢”3  -.3903e”
-.6750e"°  -.5813e”

1
1
1
1
2
2
2

2
2
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TABLE 3.3.1.

= .1N

.9721

.3166

.1560

.3819%e
.7613e
.1775e
.189%4e
.6299%e
.4729%e
.7554e

1
1
1
1
2
2
3

Continued.

.2N . 3N
-. 4699 ~.2074
-.8313¢”L . -.3690e"
-.2317e”t  -.1423e”
-.1854e"1  -.o0446e”
-.2041e™t  -.2283
-.5670e”%  -.3071e”
~.3409¢"%  -.1200e"
-.4556e"2%  4,4169e"
~.3573¢"3  -.1831e
-.5963¢”3  _.1483e

8

.4N

-.717%e
-.3365e
-.1476e
-.6702e
-.3142e
+.2921e
+.2957e
-.3142e
-.1l61l2e
-.6754e

6

-1

-1

-1
-2

-2
-2
-2
-2
-2
-3
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mean update depends upon the size of the neighbor set almost
independently of the number of observations in the complete -
sample as an illustration, Figure 3.3.8 depicts the average
MED values for k = 200 with N = 500 ("+") and k = 200 with

N = 1000 ("0"), in dimensions 10 and above.

. 008
o ¢
+ + 4
o )
.002
10 15 20 50 100

Figure 3.3.8

The elemental role 6f neighbor set size in high dimension
is reinforced by the examination of MSE results. Figures
3.3.1, 3.3.3, and 3.3.5 clearly reveal that reduction of
MSE is directly proportional to 1l/k in dimension 20 or
above; in other words, doubling the size of the neighbor
set halves the observed MSE. Moreover, as indicated by
Table 3.3.2, which gives results using neighbor seté of
size 100, the average MSE of the mean update in high dimen-
sions is determined almost entirely by k, without regard to
total sample size.

In high dimensions, the rate of deciease observed in
MSE with increasing neighbor set size equals the rate of

decrease expected for the variance of an estimated mean as



TABLE 3.3.2.

N = 100
500

1000

N = 100
500

1000

Average MSE with Neighbor Sets

.006
.390
. 945

10
.010
.017
.021

.008
.071
127

15
.010
.018
.018

.009
. 041
.060

20
.010
.014
.016

88

of Size k=100.

.009
.023
.035

50
.010
.013
.014

.009
.022
.034

100
.010
.012
.01l
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sample size increases. The implication is that with
increasing dimension, the bias component of the MSE becomes
negligible. Since with a symmetric distribution there is
no inherent bias in the mean update, that proportion of the
MSE which is not explainable by sampling variabi;ity in the
final iterations reflects premature interruption of the
ascent of the mean update. The disappearance of thié addi=-
tional error thus corroborates the assertion that in high
dimensions the ascent operations of the mean update are com-
pletely realized.

Thus, with independent normal data, our empirical
results indicate that the stalling problem of the mean update
diminishes as dimension increases. In sufficiently high
dimension the mean update yields an unbiased mode eétimate
whose final neighbor set contains the population mode within
its convex hull., Moreover, the sampling variability of the
mode estimate in these high dimensions essentially derives
from the variability of the final mean operation, and though
not specifically valued as such for our purposes, the mean
update functions on symmetric distributions effectively as
a trimmed mean, despite the absence of a unigque order rela-
tion in the sample space. Moreover, as indicated by Figure
3.3.9, which compares MSE results for low and high neighbor
set sizes, the amount of trimming which can be tolerated
before the estimation procedure deteriorates increases

appreciably with additional independent dimension.
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Figure 3.3.9. GAUSS Distribution, N = 100, Average MSE, 25
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"Problem" Data Sets

For testing the mean update on the "problem" distribu-
tions introduced in Section 3.2, the maximum dimension of
the simulationé was limited to twenty, and with occasional
exceptions, the sample size used was 100. These two
restrictions remained in place throughout the subsequent
duration of the study, including tests of the Newton and
weighted mean procedures discussed in later chapters. The
dimensional restriction was desired_to reduce data volume,
and, as has already been discussed, every indication is that
dimension twenty can function as proxy for yet higher
dimensional behavior.

An additional change made in the testing format was
the occasional introduction of a high range for neighbor
set values. In such cases, tests of each algorithm on each
distributional type Were conducted in pairs using neighbor
sets k = .1N, .2N, .3N, .4N, and k = .75N, .90N; «95N, .99N.
The two k-ranges were employed in separate simulations with
randomly generated seed values for the random number genera-
tion, and thus with different generated data. Comparison
within a range (.2N vs. .3N, for example) will refer to
exactly the same data. Comparisons between ranges will
not, and small discrepancies between quantities comparable
across the ranges, in particular, the full sample mean,

will naturally occur.

‘The firstof the alternate tests of the mean update was
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performed using data generated from the multivariate Cauchy
distribﬁtion. Cauchy data was employed to investigate two
questions. First was to determine to what extent the
ascent interruption and resulting gross errors characteris-
tic of small neighbor sets are tail phenomena; that is,
whether they occur primarily where the population density
is nearly flat and numerically small. Second was to inves-
tigate limitations on the use of neighbor sets containing a
large proportion of the sample.

flots of measures MAD and SUP for the Cauchy simulation
are given in Fiéure 3.3.11 and Figure 3.3.12. The well-
known instability of the sample mean with Cauchy data is
quite evident in the plots. The small and moderate neighbor
set mean update is realtively impervious to the greatly
exaggerated tails of the population density. 1In fact, in
low dimensions the performance of the mean update with
k = 20 to k = 40 betters that of the Gaussian trials, and
for k = 10 the improvement with increasing dimension is
quite rapid. The tails of the Cauchy distribution do not
have a decided impact until the neighbor set exceeds 40% of
the sample size. Beyond dimension two the performance of
the mean update is virtually unchanged over the range k =
20 to k = 75,

The néxt test of.the mean update utilized highly cor-
related Gaussian data,'designed so.that the data have a

lower dimensional character than the dimension in which
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Figure 3.3.11.
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measurements are recorded. The correlated Gaussian distri-
bution, denoted RY9GAUSS, had all variances equal to 1.0, and
all covariances 0.9. This produced increasingly ill-
conditioned covariance matrices and increasingly extreme
distributional patterns as dimension grew. Results with
the correlated Gaussian data are presented in Figures
3.3.13 and 3.3.14. Both figures give MSE values for the
correlated data on the left, compared with analogous results
for uncorrelated data on(the right. It is clear that, so
far as it presents itself to the mean update algorithm, the
correlated data is effectively one-dimensional over the
range of dimensions tested; also the mean update "sees it"
as one-dimensional regardless of the neighbor set used.

It appears that subdimensionality is a problematic feature
that the mean update may in severe cases be unable to cir-
cumvent. However, we should remark that the data sets we
generated in the higher dimensions are quite extreme.
Even data that is highly correlated in dimension 10, say, is
likely to have four or five effectively independent
coordinates or linear combinations of coordinates. In this
case, by analogy with the standard Gaussian results, we
would expect the mean update to show a several-fold improve-
ment over the extreme correlation results of Figure 3.3.13.
Average L2 results for the skew two-component Gaussian
mixtures are given in Figures 3.3.15, 3.3.16, and 3.3.17.

The mixture densities are described in Section 3.2. Figures
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Figure 3.3.13. Effect of Correlation on Mean Update
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MSE
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Figure 3.3.14. Effect of Correlation on Mean Update
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Figure

3.3.16.
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Figure 3.3.17. G2SKEW, N = 500, Euclidean Norm
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3.3.15 and 3.3.16 are based on sample sizes of 100, and pre-
sent results both for low and high ranges of the size of the
neighbor set. Figure 3.3.17 is based upon samples of 500
observations, and considers only the smaller neighbor sets.
The consistency of the mean update algorithm is guaranteed
by Theorem 3.l.1l under conditions which include the pro-
vision that k/N = 0 as N + «, The ability of the mean
update to respond in practice to significant asymmetries

in the population density hinges upon its ability to perform
effectively with small neighbor sets on practicable sample
sizes. With an insufficient degree of local concentration,
opportunity for the algorithm to detect fine structure in
the data is lost. Figures 3.3.15b and 3.3.16b depiqt the
mean update losing its grasp on the mode as k is incfeased
from 75% of the sample size, converging eventuall§ of course
to the sample mean, which serves as a limiting example of
non-adaptability.

Figures 3.3.15a and 3.3.16a suggest that the mean
update with sample size N = 100 will have difficulty
'responding to relatively subtle distributional features such
as those posed by the multivariate skew mixtures. The
disparity between results obtained with the least favorable
orientation of G2SKEWLT and the most favorable of G2SKEWRT
indicate that the small-sample performance of the mean
update will depend heavily upon the location of the initial

guess and the shape of the population density. For G2SKEWLT
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there does exist a range of neighbor set sizes (approxi-
mately 50 < k < 75) for which the mean update is able to
bypass the near mode in low dimensions and also distinguish
the population mode from the population mean. Unfortu-
nately, the range is small, and deviation from it, parti-
cularly on the low end, rapidly degrades performance. It
should be remarked that the orientation dependence of the
small neighbor set mean update, or any other mode estimator,
may possibly be overcome by an iterated multistart algorithm
to be discussed in Chapter VI; nevertheless, the "single
execution" performance of the mean update with N = 100 is
typically either more sporadic than desirable, or else too
insensitive. '

Fortunately, tests conducted with sample sizes of 500,
given in Figure 3.3.17, demonstrate that the small sample
handicaps of the mean update disappear fairly répidly with
additional observations. For G2SKEWLT in dimensions 2
through 10 the average error of the mean update drops by
a factor of 2 or 3 for almost all of the neighbor set-
dimension pairs. For G2SKEWRT the mean update already per-
forms well in low dimensions with sample sizes of 100;
however, the increase to N = 500 prolongs the advantage over
the sample mean, except for k = .2N, throughout the range
of dimensions tested. More significantly, with minimal
exceptions, confined to dimension 1 or 2 or to very low k,

the performance of the mean update is almost identical for
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both G2SKEWLT and G2SKEWRT, indicating that a genuine and
consistent estimation procedure is obtained irrespective of
the arbitrary selection of a starting point for the

algorithm.

Conclusions

The mean update will be effective as a hill-climbing
local mode finder on moderately sized data sets, particu-
larly in dimensions three and above; moreover, there is no
apparent dimensional limit to its application. In multi-
variate settings, it provides reasonable efficiency with
étandard normal data, and it is able to adapt to all the
types of irregularities devised for testing, though natur-
ally the differentiation of some features requires larger
sample sizes than the differentiation of others. Neverthe-
less, we would like to improve upon the performance of the
mean update with small neighbor sets. For the sample sizes
and distributional features we have considered the mean
update is most effective utilizing 30% to 40% of the sample
in its neighbor sets. Experience with bimodal data, to be
presented in Chapter VI, has indicated that even with such
a degree of local concentration, the mean update can smooth
over and ignore important secondary modes.

Two approaches were considered teo improve upon the mean
update. First was the more explicit implementation of a
Newton-Raphson algerithm, utilizing the analyses of Section

2.2 to derive optimal estimates of the population density
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and its first and second derivatives. The results of this
exercise, which enjoyed reasonable success in low dimensions,
are presented in the next chapter. The second approach,
motivated by observations made in Section 3.1, was to
improve the adaptiveness of the mean update by Qorking from
a kernel density estimate with more flexible curvature.

This approach led to the weighted mean and truncated

weighted mean updates, discussed in Chapter V.



IV. MINIMIZATION OF THE ESTIMATED DENSITY BY NEWTON'S
METHOD

4.1. Introduction

The update step of the mean update algorithm was intro-
duced as corresponding to a Newton step performed upon the
variable kernel density estimate (3.l1l.l1). That estimate
presents some conceptual difficulties because it is only
piecewise differentiable, and is not consistent as an esti-
mator of second order derivatives. A natural strategy for
improving the adaptability and the statistical efficiency
of the mean update is to replace (3.1.l1) with a density |
estimate that is consistent énd optimally efficient for
derivative information, and design a Newton-like optimiza-
tion procedure for the revised estimate. Statistical
analysis of kernel density estimators is presented in
Chapter II. The fixed bandwidth kernel estimator fn
(2.2.16) inherits the differentiability properties of thé
kernel function K. Thus if K is properly chosen, a Newton's
algorithm applied to fn will be well-defined, and conver-
gence to a maximizer of fn is guaranteed by standard results.
Optimal kernels for estimation of f and its derivatives,
based upon analysis of the asymptotic rate of convergence
of the estimates in mean squared error, are given in equa-
tions (2.2.5), (2.2.29), and (2.2.30).. As these kernel
functions are not differentiable at the boundary of their

supports, smoothed versions were developed, yielding product

105
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kernels with components

15 2,2 2
Kot = 12 -y %, y? <2
35 y2. 2 2

Kz(x) = %? V273 (- % + y2 - % y4) , y2 < 3/2.

The kernel functions are depicted in Figure 4.1.1.

As Newton-like methods for optimization depend upon
the accuracy of their grédient information, and kernel
estimates of the'gradient may be expected to have appreci-
able sampling variability, Newton's method appears to be |
mismatched with the statistical problem of‘estimating modes,
particularly in high dimensions. However, high accuracy
in the gradient is essential only in the vicinity of the
mode, where gradient values near zero must be compared.

The algorithm retains its hill-climbing ability under much
rougher conditions than permit accurate placement of the
modes. In particular, a procedure incorporating Newton's
method techniques should be able to detect the presence of
multimodality even when the locations of the modes it esti-
mates are only approximate.

Simulation results will be presented which indicate that
a Newton's method phase, using the mean update to provide an
initial guess, often does correct the overt stalling prob-
lems of the mean update, and supplies better sensitivity

about the mode as well. The effectiveness of the Newton's
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Figure 4.1.1. Kernels for f and its Partial Derivatives
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procedure is greatest in low dimensions. Iﬁ high dimen-
sion, it has a negligible effect in the presence of well-
scaled, uncorrelated dispersion. However, in such cases
it "does no harm", and on data which is highly correlated
and has effectively less dimensionality, it retaiﬁs its use-

fulness, particularly with smaller neighbor sets.

4.2. Description of the Algorithm and Consistency

The general construction of a Newton or quasi-Newton

procedure is given in Algorithm 4.2.1.

. Algorithm 4.2.1

1. Compute Vf(xk) and terminate if stopping criteria are
met.

2. Compute Hk = sz(xk) or an approximation to it.

3. Factor Hk and perturb it if necessary to correct ill-
conditioning or insure positive definiteness.

4. Solve for the Newton step Hksk = -Vf(xk).

5. Decide whether to take the full Newton step, Xpp1 =
X + Sir OF backtrack to choose a shorter step in the

Newton direction.

Go to Step 1.

Note that the algorithm presented is for function minimiza-
tion; to apply it for finding modes of the estimated den-
sity, fn’ one minimizes -fn. A complete intrgduction to
Newton and quasi-Newton methods for unconstrained minimiza-

tion may be found in Dennis and Schnabel [1983], from which
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much of the following discussion is drawn.

Important features of the aigorithm from the standpoint
of assuring consistency are steps 3 and 5. These steps
"globalize" the Newton's method procedure; that is, they
insure that gradient values generated by the algorithm con-
verge to zero. The proof of this fact is contained in two
results of P. Wolfe [1969, 1971]. The linesearch routine,
invoked . from a location X attempts first to take a full
Newton step and then backtracks if necessary until a point

Xpep is found.which satisfies the conditions

[
. k+1 “k
R e

T
Vf(xk) sk
(4.2.1)

iy T
(11)  (VE(x ) =BVE(x ) " (%) 1=%) > 0,

for 0 < ¢ < B < 1. The first result of Wolfe simply states
that the conditions (4.2.1) can be satisfied simultaneously

if Vf(xk)Tsk < 0., The second result is as follows:

Proposition 4.2.1. Let f: B® + R be continuously dif-

ferentiable on RF and assume there exists Yy > 0 such that
[|VE(z)-VE(x) || < v ||z-x|| for every x,z ¢ P . Then, given
any x, Iﬁ’, if f is bounded below, there exists a

sequence {xk}, k=20,1,... obeying (4.2.1), and either

T
Vf(xk) dk <0

or

VE(x
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for each k > 0, where

Furthermore, for any such sequence, either

(i) Vf(xk) = 0 for some k > 0, or
T (4.2.2)

(ii) lim-—TFTTr—— =0
koo k2
Step 3 in Algorithm 4.2.1, by requiring positive definite-
ness of the matrix H, insures that each step direction is a
descent direction; in addition the prevention of ill-
conditioning in the Hessian approximation prevents the
step Sy from aéproaching orthogonality with the gradient.
It is now possible to give the main theoretical result
of this chapter, which states general conditions under which
the maximization of kernel density estimates by Algorithm
4.2.1 yields consistent estimates of the modes of a proba-

bility density function.

Theorem 4.2.1. Let f be a bounded, continuously differenti—

able probability density function in RP, and let {X(l),...
X(n)} be a sequence of n independent observations drawn from

1 be continuously differentiable and VK

£. Let K: ®® -+
be Lipschitz continuous on ]RF with constant Y. Suppose
that K satisfies the conditions (2.2.15) for estimating f,
and that for each i, i = 1,...,p, 8/3xi K(*) is a kernel

function satisfying conditions (2.2.15) for estimating
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a/axi f. In addition, suppose that the assumptions of
Proposition 2.3.2 hold regarding the characteristic func-
tion of K. Finally let {h(n)} be a sequence of real numbers
satisfying h(n) = Bn(s_;)/p for some B > 0 and s ¢ (2/3,1).
Let xg be the result of applying Algorithm 4.1.1 to the

kernel density estimate,

n '
5 K(h(n)‘l(x(J)-x)).
j=1

£ (%)= (nh(n)P)~t

Then Vf(x;) + 0 in probability as n + =,

Proof. Since £ is the constant multiple of a finite sum of
evaluations of K, fn inherits the differentiability of K

and an the Lipschitz continuity of VK. Due to the globa-
lizing measures in Algorithm 4.1.1, fn(xk+1) > fn(xk) and
conditions (4.2.1l) are satisfied for all k; thus by
Proposition 4.2.1, the gquasi-Newton algorithm-produces a
point x; at which an(x;) = 0. The rate of decrease in the
sequence {h(n)} satisfies both h(n) = O(n(s-l)/p), 1/2 <

s <1, and nh(n)3p + «, By the first condition, Proposition
2.3.2 holds, establishing uniform strong consistency of fn.
The second condition guarantees consistency in quadratic
mean of an as an estimator of Vf (cf., equation (2.2.19)).
Thus Proposition 2.3.5 holds and provides that Vf(x;) + 0

in probability as n » .

4,3. Implementation Notes

The stochastic nature of the function evaluations and
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the difficulty of assuring matched scales for function and
derivative estimates led to some special considerations in
the implementation of Algoxrithm 4.1l.1, and these are
described briefly here.

First, the magnitude of the density estimate in the
neighborhood of the mode is unpredictable a priori, but in
high dimensions will be very small unless a considerable
amount of correlation is present. For mode-finding the
estimates of f need only be consistently scaled, not true
in magnitude. The easiest way to change the scale of fn
or an is to multiply the kernel fﬁnction by a constant
factor. Since the mean update was used to provide an
initial guess for the Newton procedure, the procedure begins
with access to an easily evaluated preliminary density esti-
mate, and can scale to give this estimate a numerically
desirable value, such as 1.0.

Also, the smoothing parameters hi(n)-in the estimator
fn (2.2.16) may be édapted from the radius of the final
neighbor set of the mean update. The choice of smoothing
parameters is extremely important but difficult to quantify.
Reasons for making the choice based upon nearest neighbor
distances such as those obtained from the mean update are
presented in Section 2.2.4.

Theoreticalvprinciples for coordinating the smoothing
parameters for function and derivative estimates are not com-

plete. Analysis of mean squared error culminating in
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-1/p+4

expression (2.2.24) suggests that h(n) = O(n ) for

estimating £, h(n) = O(n-l/p+6) for gradient estimates, and

h(n) = O(n-l/p+8) for estimates of second partials, but in
practice these asymptotic rules are not very instructive.
Certain practical guidelines can be obtained by observing
the analogy between kernel functions Kl and K2 of expres-
sion (4.1.1) and central finite difference approximations
of derivatives. If a function f is twice continuously dif-
ferentiable and sz is Lipschitz continuous with constant

Y, and i1f finite difference quotients for first and second

partial derivatives are

gi(x) = [f(x+6ei) - f(x—Gei)]/26 (4.2.3)
and
aij(x) = [f(x+6(ei+ej)) - f(x+8(ei-ej))
- £(x-6(e;=e,)) + f(x-a(ei+ej))]/452,
then it is straightforwafd to show that in exact arithmetic,
lg; (x) - 5%; £(x)| < v(268)2/24

and

2
|aij -V f(x)ijl < Y(28) (5/3).

If € represents machine precision and n is an upper bound on
the relative error in evaluation of £, then a bound on the

total erxror in 9; is,
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2
e(8) = 2(n+§<)3f(X) + Y(;Z) ,

minimized by
(28)) % = 24 ) (nee (4.2.4)

Similarly, a bound on the total error in aij is

Ante) £%) | (5/3) y(26),

e(8) =
(26) 2

minimized whén
(267 = & EE (nee).

Now 26,/26, = 571/3 0.58; that is, the distance between
function evaluations in the Hessian finite difference
quotients should be abouf .58 times the separation employed
in first-order difference quotients. Taking the distance
from peak to valley in K1 and K, to measure the distance
betﬁeen function evaluations, the ratio of these distances
for K2 versus Kl is almost exactly .58. From the point of
view of finite difference approximation, then, Kl and K2
stand in optimal relation to one another as is; thus, it is
reasonable to use the same smoothing parameter for both
gradient and Hessian estimates. |

Relating smoothing parameters for estimation of f
and Vf is a bit more difficult. Substituting expression

(2.2.24) for optimal h(n) into (2.2.5) and collecting

terms, the mean squared error in fn(x) can be expressed as
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MSE(E_(x)) = (1 + %)[trace(vzf(x))lzh(n)4.

If a typical absolute error is of the order h(n)3, and this
is hypothetical but not unreasonable if h(n) is near unity
or smaller, then the relative error may be reasonably taken
as n = wh(n)3, where

‘ 2
o= (14 3 tracelpf), 2

P £(x)

In this case, by (4.2.4), assuming n >> ¢,

261 = w'h(n), (4.2.5)

where
w' = 2 31/3 trace(sz(x))Z/BY-l/3-

In other words, (4.2.4) suggests that the distance between
the two function evaluations be chosen proportipnal to the
smoothing parameter used for estimates of the density
function. Since w' cannot be estimated, the constant of
proportionality is an open choice, and in our implementa-
tion it was taken as unity.

Though an effort has been made to choose smoothing
factors with good theoretical properties, it is clear that
optimal choices depend upon characteristics of the popula-
tion density which will be inestimable in practice. Poorly
matched smoothing factors for first and second order deriva-

tive information are likely to distort the magnitude of the
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Newton step s,, even if the direction of the step is appro-
priate.' It has already been mentioned that a k-nearest
neighbor density assessment provides information about the
magnitude of f as well as offering smoothing parameters for
the kernel estimators. It also proved advantageous to
employ the k-ﬁeighbor set as a "trust region" for the
length of step to be taken. Letting Ty be the distance to
the k-th neighbor, and for two constants 0 < €y < Sy the
Newton step is expanded or contracted if necessary to
satis.fy.clrk < sl = c,ry. The upper bound c,r, con-
strains the algbrithm from extrapolating too far a model
based only upon the local sample contained within the
radius Ty The lower bound requires the algorithm to first
attempt a fairly long Newton step. This requirement is
motivated partially by the fact that standard optimization
implementations usually benefit by taking a full Newton
step whenever possible. In addition, early experience with
the Newton implementation revealed that the impact of local
oscillation in kernel (and other) density estimators is
mitigated by taking the longest step possible consistent
with condition (4.2.1).

Backtracking was conducted by estimating the density
at a lattice of points distributed at regular intervals
along the étep direction. Density estimates on any pre-
specified grid may be performed in.parallel with one pass

through the data. When the data set may be stored in high-
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speed memory, this parallelism is not especially signifi-
cant; however, when the data must be accessed from secondary
store, so that input/output dominates time requirements, the
savings from reducing data access are considerable.

Some testing was conducted with an alternate method
of linesearch intended to improve the accuracy and robust-
ness of the local quadratic model, at least along the one-
dimensional path chosen for the step direction. The method
was to fit a quadratic to the lattice of function evalua-
tions in the backtrack grid, observing that consecutive
error terms in the regression model are likely to be signi-

ficantly correlated. The model has the form

_ 2
Yi = £0(A3) = apA] + @}y + gy t+oey,

where Ai is the displacement of the i-th evaluation along
the step direction. If the error terms have variance-
covariance matrix I, or correlation matrix R, the least

square solution for the vector of quadratic coefficients
is

g = (TR~ LTr Ly,
where

y = (yl,---,ym)T,

A= Al Al 1
2
Am Am 1
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and m is the number of evaluations. An estimate of R was
obtained by modeling the sequence of function values as a
first order autoregressive process, in which ﬁij = Sli_jl,
where p is the estimated correlation coefficient of lag 1.
Once the coefficients q were obtained the next iterate would
be taken as the minimizer of the associated quadratic, sub-
ject to the upper step length bound obtained from the local
neighbor set.

An additional modification that was investigated was
to adjust the smoothing parameter h to the minimal value
for which the seguence of function values fn(Ai) would be
monotone or monotone on either side of a contained minimum,
after a median smoothing. The rationale for this step was
the observation of Chapter II that good smoothing para-
meters'typically yield density estimates just on the verge
of displaying pronounced local oscillation. The smoothing
parameter chosen aslabove is the least (and fn the least
biased estimate) consistent with identifying a single mode
in the viéinity of the current neighbor set. The notion is
similar to one discussed by Silverman [198l] in exploring
multimodality with Gaussian kernels.

The method of quadratic fits showed some promise in
resisting the noisiness of erratic density estimates,
limiting the influence of any compact clump of observations
from becoming too great. Fits using the autoregressive

model for estimating correlation in most cases conformed
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well to the shape of the population density, reducing the
effect of points at the boundaries of the sequence {Ai},
which often distorted standard least square fits. Never-
theless, the fitted quadratic continued to be strongly
influenced by the width of the window containing the lattice
of function evaluations, the location of the minimizer being
particularly effected. After some exploration of techniques
for selecting a window width for the lattice of evaluations,
it was concluded that the method of quadratic fits is too
difficult to control in practice, while the backtracking
method is effective and more sfable. Further exploration

of linesearch and smoothing strategies was rejected because
it became apparent that the fundamental limitation of the
Newton's method procedure was not in the conduct of the
linesearch but in the restriction of the search for a better
iterate to a specific one-dimensional path.

Finally, because of the uncertain scale in gradient
values and the problem of small scale oscillation in the
density estimate, the use of gradient values as a stopping
criterion proved impractical, and instead the stopping
criterion for the algorithm was based on the convergence of
successive iterates. A queue was maintained holding the
most recent six iterates, and from these iterates a "running
mean" was calculated. At the same time, a cumulative mean
was maintained of all iterates, beginning with the initial

guess. The algorithm was said to have converged if the
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relative change in either of these means fell below a
specified tolerance, with the relative change from the cur-

rent mean uc to the updated mean u+ defined as

-+

i—ufl/max(lugl,l.O)}.

A= max {|u
l<i<p

In addition, the algorithm halted if the linesearch routine
was unable to locate a point with lower function value

than the current iterate. 1In fact this latter condition was
the most frequent cause of algorithm termination, reflecting
perhaps the fact that kernel K0 is very nearly quadratic
except at the periphery of its support, so that jumps
directly to a local minimizer are common, but also sug-
gesting again that reliance on a single step direction
handicaps the algorithm in searching for a decrease in func-

tion wvalue.

4.4 Empirical Results

The Newton's method second phase was tested on éata
simulated from three unimodal distributions, an uncorrelated
Gaussian (GAUSS), a‘Gaussian with all correlations equal to
0.9 (R9GAUSS), and a multivariate Cauchy (CAUCHY). The
distributions and their simulation are discussed in Section
3.2,

Three methods of handling second-derivative information
were employed. The first was secant approximation of the
Hessian by the method (BFGS) of rank 2 updates. A good

reference on the secant method is Dennis and Schnabel [1983].
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The second methoa utilized kernel estimators for second-
order partial derivatives, as described earlier in this
chapter. The third method simply took the Hessian as the
identity matrix, in effect producing a steepest descent
technique. The reason for considering three methods was
simply to gain an empirical assessment of the quality of
the second-derivative information available to the Newton's
procedure. Secant approximations of the Hessian are
generally preferable to finite difference approximations
when .,the function evaluations are noisy, and thus there was
some question as to whether kernel estimation of second
derivatives should be avoided. The steepest descent tech-
nique was included as a touchstone to determine whether
either Hessian appfoximation yvielded any gain in the per-
formance of the algorithm.

Summaries of average MSE results obtained from 25
trials of the mean update and Newton algorithms are given
in Tables 4.4.1, 4.4.2, and 4.4.3. Each table .includes
results of tests in dimensions P = 1,2,3,4,5,10,15, and 20,
utilizing four neighbor set sizes. The sample size in all
cases was N = 100. Table 4.4.1 corresponds to the uncor-
related Gaussian, Table 4.4.2 to independent Cauchy variates,
and Table 4.4.3 to the highly correlated Gaussian. Each
table gives the average MSE for the mean update phase in
absolute form, and then expresses average values for the

Newton phase as a fraction of the mean update values.
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TABLE 4.4.1. GAUSS Average MSE, 25 Trials.

Ratio to Mean Update
Mean Kernel Steepest
Update Secant Hessian Descent
P=1
K= 10 2.217 .526 .599 .530
20 .9732 .525 .470 .547
30 .3899 .623 .666 .614
40 .1792 . 704 «.753 1,376
P=1 ,
K= 10 . 8268 .693 .422 . 720
20 .3383 .455 .384 .461
30 .1546 .644 .628 . 730
40 .08756 .660 .660 . 756
P=3 .
K= 10 .4727 .677 . 710 .698
20 .1720 . 895 .767 .769
30 .1024 .785 .760 .743
40 .06319 .648 .647 . 695
P=4
K= 10 .2811 .758 .688 .718
20 .1364 . 776 .738 .628
30 .06776 1,106 . 811 .843
40 .05737 .868 . 875 . 843
P=5
K= 10 .2476 . 855 .792 . 686
20 .1140 .970 . 830 .781
30 .07004 .909 .949 .908
40 .04531 .901 .979 .910
P=10
= 10 .1437 .657 1.000 .971
20 .08638 .558 1.000 .967
30 . 05477 . 746 1.000 .997
40 .03850 .948 1,000 .999
P=15
K= 10 .1608 1.000 1.000 l.000
20 .07246 1.000 1.000 1.000
30 .04393 1.000 1.000 1.000.
40 .03302 1.000 l.000 1.000
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TABLE 4.4.1. Continued.
Ratio to Mean Update
Mean Kernel Steepest
Update Secant Hessian Descent
P=20

K= 10 1371 1.000 1.000 1.000
20 .07116 1.000 1.000 1.000
30 .04390 1.000 1.000 1.000.

40 .03302 1.000 1.000 1.000
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TABLE 4.4.2. CAUCHY Average MSE, 25 Trials.

Ratio to Mean Update
Mean Kernel Steepest
Update Secant Hessian Descent
P=1 .
K= 10 13.43 .904 . 0054 .931
20 .9858 . 839 . 312 . 844
30 .1093 .559 .592 .486
40 .0471 . 717 1.156 4.576
P=2
K= 10 1.559 . 806 .169 .871
20 .0914 1.141 1.595 .876
30 .0663 .937 1,185 .859
40 .0545 .994 1.028 .994
P=3
K= 10 .6860 .703 .387 .785
20 .0644 1.491 1.100 1.032
30 .0601 1.090 «975 .999
40 .0625 .988 .940 .988
P=4 :
K= 10 1.054 . 966 .693 1.010
20 .0815 1.021 .980 .991
30 .0779 .939 «941 .999
40 .0670 .967 1.000 1.000
P=35 ‘
K= 10 .4864 « 797 .599 . 995
20 .1027 1.043 1.017 . 996
30 .0660 1.004 1.000 1.000
40 .0520 1.000 1,000 1.000
P=10
K= 10 .2574 1.000 1.000 l1.000
20 .1526 1.000 .1.000 1.000
30 1253 1.000 1.000 l1.000
40 .1316 1.000 1.000 1.000
P=15
K= 10 .3059 1.000 1.000 1.000
20 .2029 1.000 1.000 1.000
30 .1764 1.000 1.000 1.000
40 .1663 1.000 l1.000 1.000
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tinued.

Ratio to Mean Update

Mean Kernel Steepest
Update Secant Hessian Descent

P=20 .
K= 10 . 3822 1.000 1.000 1.000
20 .2500 1.000 1.000 1.000
30 .2070 1.000 1.000 1.000
40 .2229 1.000 1.000 1.000




TABLE 4.4.3.

RI9GAUSS Average MSE, 25 Trials.
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Ratio to Mean Update

Mean Kernel Steepest
Update Secant . Hessian Descent
P=1
K= 10 1.973. .599 .531 .662
20 .873 .504 .544 .549
30 .440 .484 . 791 .655
40 .206 .603 .636 1.719
P=2
K= 10 2.015 .541 .476 . 739
20 .823 .633 .562 .642
30 .391 . 809 . 799 .810
40 .222 .753 .775 .670
P=3
K= 10 1.913 .557 . 872 1.085
20 .702 .540 .464 .499
30 .259 .680 . 739 .626
40 .134 .680 1.246 .636
P=4
K= 10 1.975 .692 .658 .674
20 .680 .528 .699 .574
30 .321 . 736 . 917 .592
40 .135 697 .947 .672
P=35
K= 10 1.897 . 722 1.017 .785
20 .731 .702 .877 .687
30 .366 . 731 .983 . 772
40 .249 1.399 .992 . 877
P=10
K= 10 1.940 .691 1.000 . 804
20 .893 .695 1.000 .817
30 .435 . 815 1.000 1.077
40 .288 1.490 1.000 1.052
P=15
K= 10 1.758 . 742 1.000 1.099
20 . 844 . 790 1.000 .868
30 . 348 .743 1.000 1.175
40 .201 . 940 1.000 .981
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Continued.
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Ratio to Mean Update

Mean Kernel .Steepest
Update Secant Hessian Descent
P=20
K= 10 1.942 .835 1.000 1.097
20 .843 . 894 1.000 1.066
30 .389 .791 1.000 1.074
40 .134 . 996 1.000 1.140




128

A subset of the tabular information is also presented
in graphical form in Figures 4.4.1 through 4.4.4. Figure
4.4.1 displays the MSE results for the GAUSS distribution,
for neighbor sets of size K = 10 and K = 40 only. Figure
4.4.2 presents the anaiogous information based ﬁpon the
CAUCHY data. Figures 4.4.3 and 4.4.4 correspond to the
distribution R9GAUSS and together give the full range of
neighbor set sizes.l The figures have an orientation that
is transposed from.that of previous graphical displays;
dimension increases with fertical movement down the plot,
while the error measure increases with movement from left
to right across a line.

Some basic conclusions can be drawn from the summary
information. The Newton's method second phase has a clearly
beneficial impact on the performance of the mode-seeking
procedure. The impact is strongest in low dimensions and
in cases where the néighbor set size is small. As regards
the efficacy of second-order information, the results are
mixed. In dimensions 5 and below there is no strongly pre-
vailing pattern. The use of kernel estimated Hessians is
extremely successful on Cauchy data with K = 10 and overall
appears the most successful of the three procedures in
dimensions 1 and 2. 1In dimensions 3 through 5, particularly
with the correlated Gaussian data the secant method often
gives the best results. But there is nothing very conclu-

sive in these dimensions; in fact, taken as a whole neither
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FIGURE 4.,4,2
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of the two Hessian approximations has a meaningful advantage
over the steepest descent. The two small tables below give
the number of (dimension, neighbor set) pairs for which the
method labelling a row had lower average error than the
method heading a column. In the tables "S" indicates the
secant method, "K" indicates kernel estimated Hessians, and

"D" stands for steepest descent.

TABLE 4.4.4.

GAUSS RIGAUSS

S K D S K D
S 71 9 S 13 |9
K| 12 10 K| 7 9
D{10 |10 ' D| 10 |10

For both GAUSS and RI9GAUSS distributions, the steepest
descent method outperforms the secant method ten times, and
is outperformed nine. All the other pairwise comparisons
show even splits as well. Thus, in the lower dimensional
range, at least with the current methods of obtaining
second~-order information, and sample size N = 100, the quad-
ratic estimates have an unpredictable impact on the per-
formance of the search algorithm, and in most cases that
impact is only marginally salutary.

With increasing dimension, however, the secant approxi-
mations emérge as being decidedly superior to the other

techniques. This is particularly true in the case of the
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highly correlated data, where the secant method continues
to provide a noticeable, albeit decreasing improvement on
the mean update through dimension 20,

To get a more detailed understanding of the operation
of the Newton's algorithm we must look at the trials
individually. Figure 4.4.5 gives a variant of stem-and-
leaf plots of MSE values of 25 trials of the mean update
and secant method second phase, applied to independent
Gaussian data. The plots for the two methods are paired
and placed back-to-back, with univariate results on the left
and results in dimension 10 on the right. Neighbor sets of
size 20 were used in both cases. The individual trials may
be identified from their alphabetic symbols; the first trial
is marked "A", the twenty-fifth "Y".

The univariate results indicate how much more precise
and rapid a Newton's method procedure can be compared to the
mean update. Trials A, M, C, H, N, K, and B, ail with high
errors, are brought to an accuracy matching or exceeding
the best results of the mean update. Trial A, for example,
drops from a squared error of more than 1.5 to one of less
than 0.1 after relocation by the Newton phase.

At the same time, a number of poorly positioned points
(G, ¥, D, R, V) are untouched by the secant method. No
positions, however, are significantly worsened by the second
phase. This is not surprising in one dimension, since first

derivative estimates need only the correct algebraic sign to
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initiate movement in the right direction, and stopping
points for the univariate mean update are typically amid
clusters in the tail portions of the data set, so that
search away from the mode is likely only to bring a quick
halt. Unfortunately; the same "conservatism" cannot always
be relied upon in multiple dimensions.

The ten-dimensional results show a very favorable pat-
tern of performance for the secant method and indicate con-
siderable promise for a Newton-like algorithm in high
dimension, especially if previously discussed limitations
of our procedure can be removed. Individual relocations
with P = 10 are not as dramatic as with P = 1, but we should
keep in mind that the scales of the two plots in Figure
4.4.5 are not comparable; rather, average MSE values with
P = 10 fall below the univariate average by almost an order
of magnitude. Thus, the Newton's phase begins with quality
initial guesses, and it provides an improvement in the
accuracy of the initial guess consistently throughout the
trials. Only trials Q, C, and B féil to benefit from the
application of the second phase. The improvement in rela-
tively poor initial estimates (O, N) and relatively good
estimates (D, L, I) are alike emphatic.

A more mixed performance is exhibited in Figure 4.4.6,
which again gives back-to-back plots for the ;ymean update
and secant method, now observed on the distribution

RIGAUSS, in dimension 10 and with neighbor sets of size 20.
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In the figure a) the trials which undergo significant
change as a result of the Newton procedure are boxed.
Clearly the impact of the second phase is not as uniform

as in Figure 4.4.5b. In particular, significant change
occurs only for the mean update estimates which are already
good or moderately good, leaving the positions which most
need correction essentially as is.

As mentioned before, the Newton's procedure usually
terminated not by the designed stopping criterion, which
tested for accumulation of the sequence of iterates, but
because the linesearch procedufe, backtracking along the
specified step direction, failed to locate a better func-
tion value. In many cases, including most of the poor
initial estimates in Figure 4.4.6, this would happen on the
first or second iterate. In Figure 4.4.6b the same plot
as 4.4.6a is shown but with those trials boxed which com-
pleted at least four iterations of the Newton's procedure
before terminating. Of the ten trials so identified, six
showed marked improvement as pictured in Figure 4.4.6a, the
accuracy of the remaining four either improved slightly or
remained unchanged. Conversely, of the eight trials showing
significant improvement during the Newton phase, only two
(V, E) obtained the improvement in three iterations or less.
The obvious conclusion is that the algorithm must be kept
active casting out searches. The more it searches (more

iterations), the better the expected results.



139

This conclusion seems to be contradicted by the results
in Figure 4.4.7, which is identical in design to Figure
4.4.6, except that the algorithm was run with neighbor-
sets of size K = 40. There again the trials experiencing -
significant change in accuracy during the Newton phase,
and those having four or more iterations within that phase,
essentially coincide. Unfortunately, in this case all but
one of the significant location changes are detrimental.
Thus, it appears that the algorithm must guard against too
much movement, and of course this is true in principle;
however, the necessary controls have already been pro-
vided by conditions (4.2.1). In fact, the degraded accuracy
illustrated in Figure 4.4.7 as well as the "missed oppor-
tunities" of Figure 4.4.6 can be explained by immobility, or
lack of search activity, at the heaft of Algorithm 4.2.1.

The situation is similar to the problem of the
"resolution ridge" considered by Wilde [1964] and Brent
[1973] in minimization without derivative values. A sche-
matic illustration of £he problem is given in Figure 4.4.8,
which depicts typical level contours for a gquadratic (or
Gaussian) surface. Proceeding from the point (a), movement
along the path 1, which would be indicated by accurate
gradient information, leads to the optimizer of the func-
tion. However, with relatively minor deviation from that
search direction, as in path 2, the searchvfails to detect

any function value better than f(a). One can imagine the



10

)
Il

[D]

P

G

X W v R[L]C]
[T] o [X[T]

Y N

T S[J]A

OMHFETB

W X
[D] R V
I 0
ANSTY

BEFHMO

Significant Change

RI9GAUSS

P =10

(D]

P

G

x W[¥] R[E[C]
[T]e[®] T
Y N

‘T s[J]A

[OC]JMHFEB

140

P

G

w X
o] ® [¥]
I Q
ANSTY

B E F H M[O]

4 or More Iterations

Figure 4.4.7.



141

Figure 4.4.8.
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cone of ascent directions becoming more and more acute in
higher dimensions. A point (b) with reasonably accurate
gradient information will move quickly to the ridge (e.g.,
location (¢)). Degradation can occur with rough gradient
estimates, where the algorithm takes a step away from the

mode ((b) to (d)), and then is unable to identify an ascent

direction to recover.

Concluding Remarks

We have paid due to intrinsic difficulties in the
application of Newton-~like optimization techniques to the
problem of finding modes of a probabilitj density function.
Nevertheless, the widespread and occasionally outstanding
improvements that we have obtained upon the mean update by
making largely cosmetic modifications to a conceptually
deterministic technique are enough to sﬁggest to us that
further work on joining nonparametric density estimation
and Newton-like optimization is justified. The first effort
at repairing existing flaws must go toward replacing the
linesearch step with a search strategy that will perhaps
favor an indicated direction but will resort to full spatial
sweep when necessary. The ability of kernel estimation
procedures to evaluate a preselected lattice of points‘in
parallel will probably feature in such a strategy.

When we say "Newton-like" we mean that the algorithm
will make use of local quadratic (conceivably, other para-

metric) models of the density. A second topic for investi-
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gation is the construction of models considering the
stochastic nature of function and gradient evaluations upon
which they must be based. Kernel-estimated Hessians, of-
course, are one such device, but beyond dimension two, they
have not proved useful. Secant approximations, while their
influence has been limited in most of our simulations,

have had some success in high dimensions. It is likely that
if the search strategy is improved so that more observations
are made available to feed the approximations, the influence
of the secant method will likewise increase. Other con-

strained or adaptive fitting techniques may also be worth

considering.



V. WEIGHTED MEAN UPDATE

5.1. Derivation of the Procedure and Consistency Results

A multivariate kernel density estimate with product

kernel has the form

n p ) .

£ (x;h) = < [ I R(-L—)]. (5.1.1)
nhPi=1 4= |

A necessary condition for %n to have a mode at x, of course,

is that VEn(x) = 0. The k-th partial derivative of (5.1.1)

is given by

c
nhp+l i

[ o i
=
~

|

x

..

=g
=

(8/3xk)fn(x) = -

(5.1.2a)
In general (5.1.2) is difficult to summarize analytically.

However, if we use a univariate Gaussian kernel,

1 .2
1 -3t
K(t) = 73% e ’
Then since K'{t) = -tK(t),
(3/0%, ) £_(x) c ¢ ek T (xj(l)——_—}ii)l
k’*n nnP*Z goy ok TR D) h
(5-lo2b)
Now the kernel product
c P Xgl)—x.
T, (x;h) = —— T K(—l—H——l)

* nhP 4=1
depends upon the location x, the smoothing parameter h, and

upon the i-th sample point, but it is'independent of the
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coordinate with respect to which differentiation is per-

formed. Therefore, critical points of fn are those x for

which
- (1)
I ﬂi(ﬁ;h)x
. i=1
X = n (5.1.3)
Z w.(%;h)
i=1
or
%= 3w (%mx(d)
X= I wi(x;h)x , (5.1.4)
i=1
with
n ~
wi(x;h) = ﬂi(x;n)/( pX ni(x;h)) = ﬂi(x;thn(x;h)

i=1
being the relative contribution the sample point X(l) makes

to the density estimate at x. Expressed in matrix form,

(5.1.4) is
% = Xw(;h) | (5.1.5)
where
x = ), ., x),
and
w(x;h) = (wl(x;h),-..,wn(x;h))T.

Thus, critical points of fn are obtained as solutions to the

non-linear system of equations,

p(x;h) = x-Xw(x;h). (5.1.6)
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In one sense, the formulation above differs little from
the Newton-like approach of Chaptef IV, merely reexpressing
the optimization problem as a search for roots of the
grédient, and of course solutions of (5.1.6) may be obtained
from Newton or quasi-Newton equations solvers. However,
(5.1.6) presents the optimization of (5.1.1) with Gaussian
kernels in a format that reveals special structure which
may be exploitable computationally, and which will inform
the diagnosis and interpretation of computational results.

Specifically, (5.1.6) expreéses any mode estimate as a
weighted average of other members of the sémple, and also
demonstrates that the nonlinearity in the system to be
solved is contained entirely in the evaluation of these

weights. Weré (5.1.6) instead
¢ (x) = y-Xw(x)
with y a fixed vector, then (5.1.6) could be rewritten
p(w) = y~Xw; (5.1.7)

that is, as an underdetermined .linear regression pDrob-

lem with the weights Wi being functions of the data matrix.
It is likely tha£ solution techniques for 'similar problems
(e.g., iteratively re~weighted least squares) may be
adapted for (5.1.6) with considerable.computatiohal savings
over the methods of Chapter IV, particularly with'large

sample sizes. For example, X may be once decomposed into
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triangular or orthogonal factors and stored in factored
form for use in repeated least squares operations.
Generalized inverses for rank deficient least squares
problems commonly choose w as the minimum norm element of
the row space of X which satisfies XTXW = XTy; éuch a
strategy is particularly appropriate for mode estimation in
that weighting of sample observations is thereby constrained
to remain as nearly.uniform as possible. The norm of w at
mode estimates is ?elevant to the interpretation of the
estimates, since locationé which weight a small fraction
of observations heavily are more likely to be spurious,
while weights which are extremely uniform may indicate over-
smoothing. Thus, the weighting vector at solutions of
(5.1.6) may be useful in deciding which mode estimates to
accept and reject, or how many modes are present in all.
Rather than become involved in the implementation
details of solution hethods such as those discussed above,
we employed an algorithmically simpler fixed point method

based upon (5.1.4). A fixed bandwidth version of the pro-

cedure is given below:

Algorithm 5.1.la

Assume as input an initial guess X and a smoothing

parameter h;

Repeat until (stopping criteria are met)

LRy x (1) '
1 Wi(xclh)x (5.1-8)

b
Il
i o133

i
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end repeat

Return Ry
The weights are calculated as

n
w. (x;h) = wi(x;h)/.z ni(x;h) : (5.1.9)

1 i=1

m, (x:h) = exp{- ( [[x) x|l /n)?1.

The stopping criteria for the iteration were the same as
those described in the implementation notes of Section 472.

Motivated by Algorithm 3.1.1, and by the'reformulation
of (5.1.1) as a variable kernel density estimate, the
algorithm as implemented and used for testing followed the
update step (5.1.8) with calculations of a k-neighbor set.
The k-th neighbor distance was then used as the smoothing
parameter in the next evaluation of (5.1.8).

Though Monte Carlo simulations to be presented indicate
that the algorithm based on Gaussian kernels is superior in
most cases to the methods of previous chapters, the infinite
support of the kernel does counteract the local concentra-
tion needed for mode éstimation. The balance that the
tails provide may be largely responsible for the relative
success of the method. Nevertheless, one may wish to con-
trol the kernel support to resist having secondary modes
swamped by the aggregate influence of a dominant mode.

Let r., be a truncation radius and k, be the number of sample

T
observations falling within the distance T of the current
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iterate x. Let the data matrix be permuted so that X =
(x(l),...,x(n)) where llx(l)-xH < IIX(Z)—XH < eew <
1% x|

in three equivalent ways.

Then truncation of the kernel can be approached

a) Set wkT+l = wkT+2 =w, = 0, and rescale so that
lJwll; = 1 in (5.1.8);
b) Calculate the weights w; (or estimate fn(x)) using
1 2
- 5 llz]]

K(z) = c' e ozl <z

K(z) = 0 , otherwise;
c) Isolate the kT—neighbor set of x and ignore the

remaining observations.
Methods a) and b) eliminate the need for explicitly forming
the kT-neighbor set. At the same time, since the weights
w, are monotonicaliy decreasing functions of the distances
|lx(i)-xH » the weight vector w can identify the neighbor
sets of every size, and thus method a) can be used to adapt
the truncation according to the local distribution of
neighbor distances.

Incorporating the options of (1) nearest-neighbor
smoothing parameters, and (2) truncation of the kernel
support, the complete weighted mean procedure is given as

algorithm 5.1.1b.

Algorithm 5.1.1lb

Assume as input an initial guess X,
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and a smoothing parameter h /*.Not. option 1*/
and a neighbor set size k ; /*option 1*/

Repeat -until (stopping criteria are met)

if (option 1) then /*variable kerhel*/
determine the distance Ty of the k-th

nearest neighbor to Xoi

end if

Calculate the weight vector (w, (x_sh), i =1,...,n);

if (option 2) then /*truncate support*/
determine a minimum weight Wi

set all weights less than LA to zero;

rescale so that [[w|[; = 1;
end'if
X = g w, (x -h)X(i) ;
- : ? ’
c j=1 +7©
End repeat

Return Xc;

In this study option 1 is always invoked; option 2 is in

force only in a few instances in Chapter VI.

Lemma 5.1.1. Let X, and X, be successive iterates of

Algorithm 3.l.la, and let fn(xc;h) and fn(x+;h) be evalua-

tions of (5.1l.1l). Then either x, = x, or fn(x+;h) >
fn(xc;h). The proof of Lemma 3.l.1 relied on the fact that
the local model obtained from the associated density esti-

mate at X, was guadratic. Here, of course, K is not even
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concave. The technique of proof is similar'to one used by
Dutter [1975] in justifying the solution of multiparameter
location or regression problems by modified weights [Huber,
1981, Chapter 7]. The idea is to construct a negative

definite function which minorizes fn everywhere but coin-

cides with it at X, and which is minimized by X, .

Proof of I.emma 5.1.1. Assﬁme X, = xc. The above conditions

suggest that the minorant be tangent to fn at Xoe Holding

h fixed,
A ’ n . (1)
h i=1
| N ’ n .
= _92_ 2 (X(l)-X)Ki(x;h) .
h™ i=1
Define
(i)
. - X -X
where
V(1) = - £ Kk, (x_;h) |[t||? + K, (x_;h)
i 2 i c’ i cf
1 X(l)-'xc 2
+ 5 Ky (xsh) |l —5— (5.1.10)

1 2 1 i 2
Ry (rgim) (= F [l ? + =5l 1y,

and define

!

Qc(x;h) = C ui(x;h). (5.1.11)

I ~MB

i=1
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- Then

cl

VQC(X;h) = =5

(i) .
h i (x _X)Ki (xclh) ’

e 8

and clearly,

Q (x h) = £ (x_:h) ,

n c¢
VR ih) = VE (x;h)
and
vQ.(x,;h) = 0. (5.1.12)

In addition, each ui(x;h) is a quadratic in x, and by
expanding and summing over i one sees Qc(x;h) is a quadratic
in x with
4 A
vio_(x'h) = - S E(x_;h)I,
c h c

I being the appropriate identity matrix. Thus X, maximizes
Qc(-;h). In particular, Qc(x+;h) > Qc(xc;h) = fn<xc;h).
Finally we show that fn(x+;h) > Qc(x+;h); in fact,

that the inequality holds everywhere.

el n .
SE, Gerh) = Qo Gem) ] = T Ik (k) = wy G ],

1 1

and

Ki(x;h)-ui(x;h) Ki(xc;h){Ki(x;h)/Ki(xc;h)

2 2

- 1 —(_1_2_.) ( “x(i)_x - ”X(i)_x” )}

2h c”

K; (x_sh) {eF - (1+7)}, _ (5.1.13)
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& &

with 2n%t = [|xPox |2 - ) x®)ox))?

The term in brackets above is the remainder from the
first-order Taylor series expansion of the exponential;
thus

2
el - (l+1) = &% %T > 0,

for some w such that |w1'<12/2. Therefore Ki(x;h)-ui(x;h)>
0, implying %n(x;h) > Qc(x;h) for all x, hence %n(x+;h) >
En(xc;h), and the lemma is proved.

The monotonicity of the estimated function values

permits a straightforward consistency argument.

Theorem 5.1.1. Let f be a uniformly continuous, continuously

differentiable probability density function in E@’, and

let {x(i),...,x(n)} be a sample of n independent observa-
tions drawn from f£f. Lét xo be a starting point, independent
of n, for which f(xo) > 0. Then Algorithm 3.1l.la will
converge in a finite number of steps to a mode estimate,

x;, and if h is choéen as a function of n so that h = 0

and nhp+2 + ® as n + %, then Vf(x*n) +~ 0 as n » =,

Proof. From Lemma 5.1.1, £ (x,;h) > fn(xc;h) unless x,
X, and since fn(';h) is bounded, the sequence of function

values must converge to a finite limit. Moreover,
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fn(x+;h)-fn(xc;h) > Qc(x+;h)-QC(xc;h)

1
= Of VQc(xc+a(x+—xc);h)T(x+—xc)doc
? 1 n .
= C . (i) _ _ T _
= h2 d' iil Ki(xc,h)[x (xc+a (x+ xc))] (x+ xc)da
1 n .
_ < . (1) _ . e T,
= h2 d’ iil Ki(xc,h)[x ax, (1 a)xc] (x+ xc)da
C’. 1 T n
= ;5 d’ (l—a)(x+—xc) (x+-xc) .E Ki(xc;h)da
: i=1
2
I,X+—X “ A
= C .
STz Galxg i (5.1.14)

Thus ||x+-xc||2 < (2h /En(xo;h))Ign(x+;h)—%n(xc;h)l and
since the sequence of function values are converging the
iterates must also. Let x; be the limit of the sequence of
iterates. Then x; is a fixed point of (5.1.8) and solution
of (5.1.6) and an(x;;h) = 0. With h chosen as specified,
an(x;h) is consistent everywhere in quadratic mean (cf.,
equation 2.2.19). Thus, all the postulates of Proposition

2.3.5 apply, and Vf(x;) + 0 w.p.l.

5.2, Empirical Results

Testing of the weighted mean update was conducted with a
variety of distributions (symmetric, highly correlated
Gaussian, skewed and bimodal Gaussian mixtures). Except for

the bimodal mixtures, this is the same set of distributions
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used for testing the mean update: The distributions,
accuracy measures, and design of the simulations are
described in Section 3.2.

A first concern was to determine how the weighted mean
algorithm compared with the performance of the mean update,
which is discussed at length in Section 3.3. The MSE mea-
sure is used as a basis for comparison. If x* is a target

~

mode of the density, and x an estimate of that mode, then

(xi-x;)z,

I ~g

MSE (%) = &

i
where p is the dimension of the sample space. Twenty-five
trials of both the weighﬁed mean and mean updates were
performea on the five standard test distributions, and
average MSE values over the 25 trials obtained. Letting
M§E& and Egﬁu be the average MSE's for the weighted mean and
(unweighted) mean update, respectively, Table 5.2.1 gives
the ratio Egﬁw/ﬁgﬁu for all the test distributions and all
dimensions and neighbor set sizes in the trials. The trials
are éonducted with samples of size N = 100, and for this
sample size it is clear that, comparing the two updates

with same smoothing parameters head to head, the weighted
mean outperforms the mean update almost without exception.
The édvantage is particularly strong with the GAUSS, R9GAUSS,
and G2SKEWL data sets, where the hill-climbing ability of
the algorithm is the dominant factor in its success (cf.,

Section 3.3). The relative advantage of the weighted mean
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5.2.1. Ratio of Average MSE, Weighted Mean vs.
25 Trials, N = 100,

Mean Update,

GAUSS CAUCHY R9GAUSS
.635 .160 . 460
.329 .277 .387
.229 .252 . 366
.356 .506 .331
.276 .507 .413
.269 .587 .240
.308 .514 .222
.392 .571 .348
.303 .105 .153
.330 .761 .122
.377 .762 .190
.367 .740 .193
.231 .173 .401
.334 .582 .152
.373 .727 .292
.407 . 812 .434
.148 .294 .184
.154 .609 .258
.209 .565 .267
.319 .686 .384
114 .396 .212
.165 .665 .233
.244 .665 .289
. 318 .704 .205
.097 .458 .230
.170 .566 .140
.244 .686 .153
. 316 .742 .285

G2SKEWL G2SKEWR
.608 .356
.329 .346
.142. .349
.066 3.031
.497 .176
.170 .528
.273 .759
.174 .732
.125 .292
.046 .429
.10l .730
.245 .955
J111 .361
.073 .698
.163 .772
.317 1.377
.044 .283
.089 .507
.236 .974
.540 .954
.070 .237
.169 .492
.364 .807
.820 1.122
.091 .296
.213 .530
.386 .817
.512 1.068
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TABLE 5.2.1. Continued.

GAUSS CAUCHY RO9GAUSS G2SKEWL G2SKEWR

10 .094 .426 .181 .106 231
20 .172 .571 .145 . 241 485
30 . 257 . 647 . 241 .401 .662

40 .329 . 756 .394 .550 .818
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is also greatest with small neighbor sets, decreasing con-

sistently throughout the table as the neighbor set is

increased. On the symmetric distributions, this simply
reflects the rapid improvement of the mean update as
neighbor set is increased from a very sub-optimal level.

On asymmetric data degradation of the weighted mean method

is also a factor.

It may be misleading to judge the two updates by com-
paring only results obtained with matched smoothing para-
meters, since the effective béndwidth of the Gaussian
kernel is larger than that of the quadratic (3.1.1). A
more meaningful comparison, though one more difficult to
obtain, would be to compare best obtainable results with
the two methods. A partial development of such a comparison
is given in Table 5.2.2. This table contains the ratio
of average MSE valueé for both the mean update and weighted
mean update, compared to average MSE values fof the sample
mean. The test distribution is G2SKEWL, and results are
given based upon 25 trials with samples of size N = 100 and
N = 500.

The most striking patterns in the table are:

1) the marked improvement of the mean update with moderate
neighbor sets as sample size increases from 100 to 500
(hill-climbing difficulties are overcome) ;

2) the optimality of large neighbor sets for the mean

update;
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3) the optimality of small neighbor sets for the weighted
méan, with optimal neighbor set fraction k/N becoming
very small in high dimensions.

Except for certain instances of the weighted mean update,

Table 5.2.2 only supplies the direction for seeking optimal

parameter values; it does not directly indicate the best

attainable MSE ratios. However, from Figure 3.3.1l5 we

know that the optimal neighbor set for the mean update,

with N = 100, typically lies between k = 40 and k = 75,

and the ratios for the mean update in Table 5.2.2 with k =

40 and N = lOOlare probably near the best that can be

achieved. Since for consistency of the estimates, k/N

approaches zero as N goes to infinity, we would expect best

results from the mean update on G2SKEWL with N = 500 also
for k/N below .75; horeover, ratios with k/N = .40 should
be good indicators of best attainable results with the mean
update.

For the weighted mean update no such bracketing is
available. For N = 100 it appears that optimal smoothing
occurs with k > 40 for p = 1,2; k = 30 for p = 3,4; k = 20
for p = 5; and k < 10 for p > 5. For N = 500, best k is
below N/10 beginning with dimension 4. Performance reported
for the weighted mean update with G2SKEWL in high dimensions
is not thé best obtaihable, and it is likely that the mea-
sures of its high-dimehsional performance given in Table

5.2.2 can be significantly improved.



TABLE 5.2.2.

K/N = .10
.20
«30
.40

.10
.20
.30
.40

=

N

2z
li

.10
.20
.30
.40

el

N
=z
I

K/N = .10
.20
.30
.40

.20
. 30
.40

= 10

K/N = .10
.20
.30
.40

.10
.20
.30
.40

K/N

]

Mean
Update

G2SKEWL

N = 100

20.58

10.89
5.326
2.426

14.71

10.11
3.221
2.042

17.25
8.452
2.949
1.238

13.25
7.470
3.008
1.566

12,71
5.346
2.120

.990

9.518
4.055
1.953

.897

9.301
4.039
2.274
1.732

Weighted
Mean

G2SKEWL

N = 100

12.51
3.58
. 756
.159

7.303
1.714
. 880
«355

2.163
. 387
.298
. 304

1.476
.547
.490
.497

.562
.478
.500

.534

.662
.684
. 711
«735

. 844
.861
.878
.887

Average MSE, 25 Trials
(Ratio to Sample Mean).

Mean
Update

G2SKEWL

N = 500

16.007
8.075
1.881

.076

11.847
3.555
.180
.126

9.287
2.419
.189
.174

5.646
.843
.491
.208

6.266
.980
. 260
.201

3.379
.579
.421
.368

2.386
1.051
.721
.599
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Weighted
Mean

G2SKEWL
N = 500

.534
.166
. 056
.034

.281
.120
.090
117

.145
.121
.162
.227

.187
.218
.291
.369

.178
.234
. 306
.415

.508
.589
.641
.680

.694
. 736
.763
.786
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K/N
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.30
.40

TABLE 5.2.2.

Mean
Update

G2SKEWL

N = 100

8.286
3.666
2.205
l1.627

Weighted
Mean

G2SKEWL

N = 100

. 881
.883
.885
.894

Continued
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Mean Weighted
Update Mean
G2SKEWL G2SKEWL
N = 500 N = 500

2.579 . 737
« 905 . 770
.669 . 795
.629 . 815
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Nevertheless, the high-dimensional behavior of the

weighted mean update on G2SKEWL suggests that the influence:
of the tails of the Gaussian kernel is quite strong with the
range of smoothing parameters. reported in Table 5.2.2. This
influence casts doubts on the ability of the weighted mean
for exploring multimodality. To investigate the performance
of the updates in the presence of multiple modes, a set of
bimodal normal mixtures was generated. The bimocdal mixtures
are referred to as GZSEP, and defined by

f(x) = 0.3 ¢(x;-0.0526 1, I)
~ (5.2.1)

+ 0.7 ¢(x;2.4474 1, 1),
where ¢ (x;u,Z) is the normal density with parameter (u,Z),
I is the identity matrix of appropriate dimension, and
1l is the vector of all l1l's. G2SEP is obtained from G2SKEWIL

172 in determining the mean separa-

by removing the factor p
tion, and translating so that the secondary mode is at

the origin. For p = 1, G2SEP and G2SKEWL have the same
shape, but for p > 2, G2SEP is bimodal. The MSE value of
the major mode is (2.4474)2 = 5.99,.

In tests with G2SEP the initial guess supplied to the
updates is Xy = 0.5 }, a location which would normally be
identified with the nearer minor mode at the origin. The
simulations were conducted with samples of size N = 100,

once with the standard neighbor set range (k = 10, 20, 30,

40) and once with a smaller range (k = 2, 5, 10, 15). 1In
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addition a truncated version of the weighted mean was added
as one possibility for reducing tail influence. Truncation
occurred at the k-th neighbor, while the smoothing parameter
was set to h = % rk(x), rk(x) being the current k~th neigh-
bor distance. This produced univariate kernels equivalent
to a Gaussian truncated two standard deviations from the
mean. Results with G2SEP are summarized in Tables 5.2.3

and 5.2.4.

The MSE values in these tables indicate the average
distance of mode estimates from the minor mode. MSE values
around 6.0 are associated with the dominant mode, and large:
and intermediate MSE values do not necessarily indicate
ragged algorithmic performance. The results of Tables
5.2.3 and 5.2.4 are best considered in light of typical
frequency distributions of the MSE &alues produced during
the sequence of trials in the simulations. Histograms of
the MSE values produced by each of the updates acting on
G2SEP in dimension 5 are given in Figures 5.2.1 through
5.2.4, The neighbor sét sizes reported in the histograms
are k = 5, k = 10, k = 20, and k = 40, respectively. Sample
size was N =.100.

The three updates are based upon kernel estimates with
effective bandwidths that are greatest for the weighted
mean, and least for the truncated weighted mean. To put
it another way, the truncated weighted mean is the update

most influenced by a small number of points around the
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TABLE 5.2.3.

e

[{J N ]

I w

B w

Mean

Update

.2510
.2318
.2702
.3618

.2739
.2678
.2346
.2952

. 2155
.2022
.1366
<1177

2903
.2154
«1507
.1493

.2349
.1844
.1063
.07343

.2837
.1630
.1022
.08180

. 3328
.1644
.09711
.06432

G2SEP

Average MSE,

Weighted
Mean

. 2466
2774
. 3946
.8504

.2929

.5030
1.125
2.111

.2098

.2549

.4730
2.229

.3404

«5077

+ 5754
2.195

.2364

1077

.2726
1.494

.2413

.06391

.5359
1.970

.1053

.04992

.2718
1.225
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25 Trials.

Truncated
Weighted
Mean
a = .5

.2490
.2404
.2646
.4092

.2902
.4375
.3298
.5148

.2958
.3398
. 3504
.3002

.3217
.2995
.2399
.2038

.3352
.2983
<2137
.1766

.4134
.3520
.2596
.2077

.4571
.3899
.2641
.1942
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TABLE 5.2.3. Continued.

Truncated

Weighted
Mean Weighted Mean
Update Mean = ,5
. 3596 .05778 .5956
.1910 . 04557 .4861
.1203 2794 .3310
.07893 .2768 .2071




~ i

A~

~

~

~

~ I

~

=

o

10
20
30
40

I w

10

30
40

| N

10
20
30
40

il o

10
20
30
40

TABLE 5.2.4.

Mean
Update

.3637

.6371
1.360
3.257

.2245

.3706
1.537
4.192

.1964

.2856

.7158
2.496

.1622

.07911

.1590
2.441

1133

.05822

.07354
1.338

.1149
.06118
.05735
.9219

.1091
.05200
.07142
.7748

G2SEP Average MSE,

Weighted
Mean

. 7611
2.316
4,736
5.139

1.503
4.745
6.182
5.983

. 9155
3.643
5.592
6.007

.5605
5.284
6.055
5.996

.5124
3.353

 5.750

5.969

. 04977
2.170
5.757
5.977

.04317
2.956
5.825
6.043
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25 Trials.

Truncated

Weighted
Mean
o= ,5

. 3138
. 3902
. 9151
2.131

.2141

.4799
1.410
1.620

. 3275
.4054
.3179
.6051

3175
.1754
.07882
.04681

.2422
.1509
.06541
.04171

.2910
.1460
.06117
.04142

.2928
.1302
. 04990
.03227
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TABLE 5.2.4,

Mean
Update

.1001

.05938

.1024
1.199

Continued.

Weighted
Mean

.2776
2.654
4.580
5.746
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Truncated
Weighted
Mean
u’ = .5

. 3423
1397
.06074
.04010
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Figure 5.2.3.
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current iterate. The sample mean assigns equal weight to
all the members of the neighbor seﬁ, zexro elsewhere. The
full weighted mean distributes the weighting of its update
step over the entire sample. Thus, it is natural that with
small neighbor set sizes, as in Figure 5.2.1, the weighted
mean update exhibits the least variance of the three methods,
its truncated version the greatest.

The weighted mean is easily the most mobile of the
update methods. The truncated version reported in these
pages does not share these attributes, but the severity of
the truncation can be varied by controlliné the smoothing
parameters h, As staﬁed before, the tests reported here
took h as one-half of the k-th neighbor distance. Other
tests were made taking h as the full k-th neighbor distance,
and in this case the truncated version behaved almost
exactly as the nontruncéted version. A continuum of inter-
mediate responses is certainly available.

The full weighted mean provides the quickest and most
focused identification of a mode. Even in the case pictured
in Figure 5.2.2, where the weighted mean is attracted to
both modes a certain proportion of the time, the set of mode
estimates divides clearly into two groups, each clumped
more tightly and more accurately than the sets of mode
estimates obtained with the truncated.updates. in Figures
5.2.2 and 5.2.3 one can observe a migration of esﬁimates

from the minor to the major mode. This transfer is complete
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by Figure 5.2.4. Thus, the weighted mean appears to lose
touch with the subordinate mode more rapidly than the other
updates. Still, in all cases examined, it identifies
clearly one or both of the population modes. With k = 40,
for example, we still have evidence of a nearlynunbiased
mode estimate; the dominant mode has MSE of about 6.0, the
sample mean an MSE of 4.2.

The mean updaﬁe and truncated weighted mean are seen
lagging behind the.weighted mean, but going through essen-
tially the same stages. The differences that appear are,
first, that the truncated weighted mean is improving its
focus on the minor mode throughout, and secondly, that the
mean update is less definitive than the weighted mean. With
k = 30 (not shown) the mean update begins to migrate toward
the dominant mode. The migration is well-de&eloped in
Figure 5.2.4. With the mean update the transfer is more
blurred than with the weighted mean. More trials terminate
at intermediate locations divided between the two modes,

and neither of the modal clusters is as tight.

Concluding Remarks

Based upon our observations thus far, then, the
weighted mean should be preferred to the mean update. The
weighted mean update is far more effective at locating the
global mode of the distribution, in both unimodal and bi-
modal data. With tail influence controlled, either .by the

use of small smoothing parameters, or truncation of the
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weights, the weighted mean is also able to identify second-
ary modes with precision certainly comparable, and generally
superior, to that of the mean update.

By including the possibility of truncation combined
with control of the smoothing parameter, the weighted mean
acquires a degree of flexibility that is unattainable by the
mean update. For example, if we fix a radius T about the
current iterate, take h = T and truncate at the same
radius, the effect is equivalent to use of a Gaussian
kernel truncated at one standard deviation, which in turn
is virtually equivalent to the quadratic kernél underlying
the mean update. Maintaining the same truncation, and
taking h very large, we approach a uniform kernel. With
h much less than L the kernel is again essentially equiva-
lent to an unmodified Gaussian. Much more work remains to
be done before it will be clear how best to utilize this:
flexibility. Nevertheless, the presence of adaptive capa-
bility and potential self-governance (through examination
of the weights) is clearly an advantage. Without involving
himself in the issue of truncation, our experimentation has
indicated that the user can expect good results from the
full weighted mean with most reasonable choices of the
smoothing parameter, and by varying that parameter can con-
centrate on the global mode or press the search for addi-

tional local modes.



VI. MULTISTART ALGORITHM AND SUGGESTIONS FOR FURTHER WORK

6.1. Consideration of Previous Chapters and Introduction

The express goal of this investigation has been the com-
plete enumeration of the modes of probability density func-
tions, particularly high dimensional densities. This
includes recognition of unimodality where appropriate, deter-
mination of the number of modes when not, and accurate esti-
mates of location in either case. We have envisioned the
task as requiring effort at two levels. First is the
implementation of sensitive local stochastic optimization
procedures. Secondly, a "global," or supervisory strategy
is required for directing the application of the local
procedures and interpreting their results.

Our research thus far has been devoted primarily to the
development of good local optimization algorithms, and
related to this, if implicitly, good density estimation pro-
cedures. Local performance is the natural initial concern,
since identification of a local maximum of the density func-
tion is the primitive operation in the kind of exploration
of data structure we are proposing. The capabilities and
limitations of this primitive action define the potential
for a comprehensive exploration of modality.

Extensive testing with simulations of various distri-
butional characteristics directed us to seek refinements in

the mean update algorithm with which we began, and led to
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' the consideration of three classes of optimization procedures.
The methods are considered in detail in the preceding three
chapters, and their essential characteristics and utility

are discussed in the introductory and concluding remarks

of the associated chapters.

Here we .identify two'significant patterns which evolved
in the development of the local optimizers. The first trend
was the increasing attention paid to skew and bimodal mix-
tures once feasibility of the optimization effort was demon-
strated on standard unimodal distributions. Particular
geometries were isolated to test the discriminatory power of
the candidate mode estimators. For example, in tests with
the family of bimodal normal mixtures G2SEP, reported in
Chapter V, the mode estimators were constrained to begin at
a location poised between the two modes; moreover this was
a location associated more closely with the subordinate mix-
ture component, which accounted for an average of only thirty
percent of the probability mass. By comparison, the unimodal
mixture G2SKEW included a subordinate component with the
same thirty percent probability, and the ability of the mode
estimators to distinguish this structure from the bimodal
structure in G2SEP was examined. One of the orientations
chosen (G2SKEWLT) was intended to make the distinction most
difficult. Thus as testing proceeded it became increasingly
a matter of abstracting critical configurations arising in

the enumeration of multiple modes. By isolating these
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geometries we felt that we could explore the.behavior of

the complete mode enumeration process, and do so in the most
precise and economical way. Experience with a global imple-
mentation, to be presented in this chapter, éupports this
claim. |

The second major development in our study was the

movement toward adaptive local optimizers, as manifest in
the weighted mean and truncated weighted mean algorithms of
Chapter V. What is significant in these algorithms is the
recognition of a regression model implicit in the formation
.6f mode estimates, hence the identification of a problem
which is dual to the location problem. That is the deter-
mination of the weights wused to characterize the mode
(equivalently, the coefficients of the solved regression
model). The dual problem seems likely to us to be more
invariant and more amenable to analysis than other approaches
to the evaluation of mode estimates. Thus, it may be able
to supply the linkage needed between thé local and super-

visory components of a complete assessment of sample modality.

6.2, Multistart Algorithm

To investigate the potential of our local optimizers
for a comprehensive exploration of data structure, a basic
multistart driver was implemented and applied to the skew
and bimodal mixture distributions. The multisﬁart method is
probably the organization most frequently employed in multi-

variate searches for global optimizers (Rubinstein, 1981,
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. Chapter 7). The method is simply to run an iterative local
method from a sequence of starting points, (xl,xz,x3,...,xN),
producing a set of termination points T = (xf,xg,xg,...,xﬁ).
The global maximum is estimated as mix E(x;), where £ is the
exact or estimated objective function. For enumeration of
all local modes it will be necessary to identify clustering
of the elements of T. The multistart algorithm, despite its
expense, is well suited to mode estimation because the
sample observations immediately provide an appropriate set
from which to choose starting points.

Our multistart algorithm started once from every obser-
vation in the sample, and recorded the sequence of termina-
tion points, which then formed a set of observations of the
same cardinality and dimension as the original sample. The
algorithm.was run on distributions G2SKEW and G2SEP with
samples of size N = 100, with samples spaces of dimension
1,2,3,4,5,10,15, and 20, and of course various values of.the
control parameters. Summary statistics of repeated simula-
tions with G2SEP are presented later'(in Tables 6.2.1l.a and
6.2.1.b), but first some illustrative displays of the action
of the algorithms in dimension five are presented.

The displays require some explanation. What was sought
was an analogue of two-dimensional scatterplots, which would
indicate visually the clustering of sample observations or
mode estimates. This was accomplished by taking one

coordinate for the plots to be the line connecting the means
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of the component mixtures, and taking the other coordinate to
represent the length of the orthogonal projection onto that
line. A schematic diagram of the geometry of the plots is

given in Figure 6.2.1l. The rectangular box amounts

FIGURE 6.2.1. Schematic,Multivariate Scatterplots.

to a window on the sample space; with the bottom edge repre-
senting the line between the component means. The position
of the means are indicated by "X's" oversfruck on the border.
A point z with z with [[z-u |l = a; and [[z-u,|| =4, will
be placed at the location of the asterisk in the figure.
A sehse of scale can. be obtained by relation to the distance
between the means, dy = |[|uj-u,ll . ‘
Because many points may occupy the same print position in
the plots, a count is maintained of the occupancy of each
print position. If that count cannot be expressed with a
single digit, the greatest integer multiple of 10 is used
to index a character of the alphabet, and that character and
the one~digit remainder are overstruck. For example, "F"

overstruck with "3" marks the coincidence of 63 points at
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Figure 6.2.2.

Scatter of 100 Observations from G2SKEW, p=3>5
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Transformed Scatter, G2SKEW, p = 5

Figure 6.2.3.
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P =5

Transformed Scatter,

Figure 6.2.4.
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the indicated position. The single character "J" marks the
shared location of all 100 points.

To compare two plots, as in comparing the application of
two optimization methods to the same problem, one of the
plots may be flipped about the horizontal axis so that the
means appear on the upper edge of the window, and the two
plots may then be positioned together sharing the same mean
markers. In all cases where we compare algorithms using
adjacent scatter plots the mean update appears in the upper
window and the nontruncated weighted mean in the lower.

A five-dimensional sample of 100 observations from
G2SKEW is depicted in Figure 6.2.2. The mode of the density
is coincident with the left-most mean marker. The. sample
consists of 66'observatioﬁs generated from the major compo-
nent and 34 from the minor component of the mixture density.
This sample is the input to the multistart algorithﬁ whose
output is pictured in Figures 6.2.3 and 6.2.4. In Figure
6.2.3(a) the optimizations are conducted with a neighbor set
of sizé k = 2, and with neighbor sets of k = 5, 10, and 15
in Figures 6.2.3(b), 6.2.4(a), and 6.2.4(b) respectively.
Again, individual points in these plots are ;ermination
points for either the mean update or weighted mean update
starting at one of the sample points given in Figure 6.2.2,
and conducted upon that sample.

The pa;ameter value k = 2 is of course much too small

for the mean update, whose effect in Figure 6.2.3(a) is
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essentially to pair off nearest neighbors, leaving the scat-
ter of the sample unchanged. By comparison, though
considerable dispersion remains, the weighted mean performs

a more distinctive transfoimation of the raw sample. Thirty-
seven termination points are aligned together at one place,
with nine points in the diagonally adjacent print position.
Thus, there is already a tight cluster comprising about one-
half of the sample which gives evidence of the‘location of a
mode.

With k as low as five the coalescence of the mode esti-
mates generated by the weighted mean is complete and striking.
The weighted mean algorithm is emphatic in recognizing a .
single mode, whose location is estimated with good accuracy,
"increasing slightly as k is increased. Also as k is increased
there is a more gradual coalescence of the termination points
of the mean update, which admittedly is still not in its
optimal range. Though the number of termination.points
classified with the minor component mean drops from 31, with
k = 2, to 21, with k = 15, the mean update is clustering
about both of the component means. Since the subordinate
component represents an effect which would have important
subject matter implications, it may not be undesirable to
have attention drawn to it. However, for estimation of modes
per se, the two clusters are misleading.

Figure 6.2.5 depicts the raw five~dimensional sample

from the bimodal distribution G2SEPRT. For this distribution‘
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the major mode is coincidental with the right-most mean
marker, and the sample is composed of 40 observations from
the minor component, 60 from the major. Clearly, the
separation of the groups is greater here than in the unimodal
mixture. Output fromkthe mean and weighted mean updates are
presented invthe six successive panels of Figures 6.2.6
through 6.2.8 for parameter values k = 5,10,15,20,30, and 40,
respectively. We should note that the raw sample generated
for k = 30 and k = 40 was different than that used for the
smaller four parameter values. It included 26 observations
from the subordinate component, 74 from the other.

Certain of the trends evidenced in the sequence of
panels are predictable. Coalescence of the set of termina-
tion points increases with increase in the smoothing para-
meter. Up to some point this coalescence brings with it
clearef'identification of the modes. Beyond that point it
represents loss of detail. The demarcation point is higher
for the mean update than. for the weighted mean, and higher
still for the version of the truncated weighted mean which we
investigated. The results of the truncated weighted mean
are pictured in Figure 6.2.9, for k = 10,20,30, and 40.

Were the differences in the performance of the algorithms
solely differences in the range of desirable smoothing para-
meters there would be little reason to prefer one algorithm
above the other. However, there are further characteristic

differences which lead us to prefer the weighted mean.
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Transformed Scatter, G2SEP, P

Figure 6.2.6.
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p =235

Transformed Scatter,

Figure 6.2.7.
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Though clustering about two locations is certainly well
advanced by k=20 (see Figure 6.2.7(b)), the mean update does
not approach the degree of coalescence of the weighted mean
until k = 30 (see Figure 6.2.8(a)), and by this time as the
panel below with k = 40.makes clearer, the location of the
second cluster has already begun to drift away from the minor
mode. The weighted mean is able to achieve a high degfee of
coalescence without muddying the distinction between the
modes or displacing them from their true locations. Patterns
recognized by the weighted mean are recognized decisively,
and transitions which occur as the smoothing parameter varies
occur abruptly. Because of this the class of candidate
structures presented to the user (unimodal, bimodal,etc.)

are more cléarly laid out, and the decisions which the user
must make are better defined. In addition, the feedback
mechanism provided by the final weighting vector supplies

the user with diagnostic support for making those decisions.
Thus we shall reiterate our preference, all factors con-
sidered, for the use of the weighted mean algorithm.

The one reservation to be made regarding the full
weighted mean concerns its strong attraction to the dominant
mode, which perhaps makes the possibility of ignoring secon-
dary effects too great. To limit this attraction the method
of truncation described in Section 5.1 was considered, and
results of its performance displayed in Figure 6.2.9. With

such truncation much larger smoothing parameters are required,
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but with k = 40 the truncated weighted mean achieves nearly
the same resolution of the modes as that attainable with the
full weighted mean, and does so without biasing the estimates
of location. There is not sufficient evidence yet to con-
clude whether a full or truncated version of the weighted
mean algorithm is superior.

The scatter plots we have looked at thus far essentially
represent a single trial of the various algorithms. An idea
of the representativeness of these trials may be obtained
from Tables 6.2.1 (a) and 6.2.1 (b), which report summary
statistics for five such trials on the bimodal family of
distributions G2SEPRT. The first statistic report is COUNT1,
which is the number of termination points identified with the
subordinate mode. The eipected value of COUNT1 in the raw
sample is 30. The second statistic measures primarily the
degree of coalescence of the set of termination points.
Entitled PVNE, or proportion of variance not explained, it

is defined as:
L nfi)y2

-

Lo
%

=3

PVNE =
- §*)2

i—l
Can Y
b
[

. -
I MZEN M=z

where xX* is the mean of the set of termination points T, and
m(l) is the (known) mode of the distribution nearest to x;.
Because known modes are used PVNE also penalizes modal

clusters for drift from the true location.

In many cases, particularly in higher dimensions, and
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Mean Statistics of 5 Trials of the
Multistart Algorithm.

Nontruncated Truncated
Mean Update Weighted Mean Weighted Mean
Count 1 PVNE Count 1 PVNE Count 1 PVNE
33.6 .3199 30.8 .3231 32.6 .3384
33.2 .3152 28.4 .4808 33.0 .3288
32.4 .3519 18.8 .5120 33.0 .3774
26.4 .4682 4.2 - 28.4 .4894

33.0! .6597°! 7.0 - 15.6 -

7.8 - 0.0 - 14.6 -
31.4 .3194 28.2 .2319 30.2 . 3565
28.8 .2529 26.6 .1474 29.4 .2810
28.4 .1818 26.0} .07641 28.8 .2106
28.0 .1427 9.2 - 28.2 .1632
21.8 .3180 0.0 - 20.8 ,2789
12.0 - 0.0 - 29.0°! .0539!
32.8 .2879 31.4 .2130 33.6 .3567
31.6 .1867 29,2 .1350 32.6 .2609
31.4 .1294 29.02 .0392% 32.0 .2245
31.6 .1188 27.31 .0395! 31.8 .1840
20.8 1523 0.0 - 23.32 .16732
5.4 - 0.0 - 24. 3! .1741°
29.2 .2885 28.8 .1794 29.8 .3837
29.6 .1716 28.2 .1321 29.2 .2364
29.4 .1339 22.8 .0905 29.4 .1743
29.4 .1050 11.2 - 29.4 .1510
27.3%2 .06762 0.0 - 27.2 .1028
29, 3! .1014! 0.0 - 27.2 .0903

lAverage of 3 observations.
of 4 observations.

2Average
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Mean Statistics of 5 Trials of the
Multistart Algorithm.

Nontruncated Truncated
Mean Update Weighted Mean Weighted Mean
Count 1 PVNE Count 1 PVNE Count 1 PVNE
P=5
K= 5] 35,2 .2339 34.6 .1106 33.2 .3536
10 | 33.2 .1337 34.6 .0547 35.2 .2191
151 34.8 .0983 34.0 .0367 35.0 .1539
20| 35.0 .0757 30.8 .0363 35.0 .1204
30 ] 30.0 .0539 0.0 - 30.0 .0775
40 | 29.8 .1534 0.0 - 30.0 .0606
P=10 :
= 5| 27.2 .2216 27.0 .0318 27.2 .4000
10| 27.2 1221 26,4 . 0265 27.2 .2513
15| 27.2 .0843 23.8 .0272 27.2 .1507
20 { 27.2 .0634 22.3! .0267" 27.2 .1122
30 | 32.0 .0353 9.4 - 32.0 .0838
40 | 32.0 .1017 0.0 - 32.0 .0559
P=15
K= 51{30.8 .1893 30.6 .0241 30.8 .3908
10| 30.8 .1007 29.6 .0220 30.8 .2539
15| 30.8 .0700 28.0 . 0255 30.8 .1321
20 | 30.8 .0537 29.3? .0198% 30.8 .1011
30 | 31.4- .0338 7.0 - 31.4 .0599
40 | 31.4 .1277 0.0 - 31.4 .0413
P=20
K= 5| 30.4 .1808 30.4 .0172 30.4 .3839
10 | 30.4 .0914 30.4 .0159 30.4 .2854
15 | 30.4 .0574 30.2 .0154 30.4 .1492
20 | 30.4 .0418 27.4 .0162 30.4 .0963
30 | 29.6 .0346 7.8 - 29.6 .0453
40| 29.6 1722 0.0 - 29.6 .0325
'Average of 3 observations.

2Average of 4 observations.
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particularly with the full weighted mean, complete
coalescence to a single mode would occur, in which case the
measured PVNE would have no meaning. If this circumstance
occurred only once or twice out of the five trials, statis-
tics were reported on the basis of the remaining trials,

and that fact duly recorded.

The figures in Takle 6.2.1 confirm observations made
earlier. The full weighted mean collapses on the major
mode unless the neighbor set chosen is fairly small. How-
ever, it is effective over an acceptably wide range of
parameter values, and in that range the results are more
positive than any of the results obtained with the other
algorithms. The truncated weighted mean is still improving
at k = 40 and may match the performance of the full weighted

mean with a larger smoothing parameter, though that is

questionable.

6.3. Further Work

We have presented a working and analytically supported
algorithm for the analysis of modes, and one that we believe
is already successful in achieving reasonable goals set for
it. Further work remains, however, before that algorithm is
in a mature stage of development.

It is certainly desirable to seek improvement in the
computational efficiency of the algorithm. We have already
suggested the possible use of an imbedded regression model

to accelerate the convergence of the local optimizer. The
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elementary multistart algorithm we utilized wants refinement
to eliminate unnecessary redundancy; A strategy for
reducing the number of local optimizations is needed,
especially for applications with large samples. Also
parallelism in the operations may be exploited, for example,
by performing the update step on all sample points in unison,
or by employing two values .of the smoothing parameter
simultaneouély. A clustering procedure is needed to produce
a meaningful list of candidate mode estimates from the out-
put of the multistart algorithm. |

From a theoretical standpoint one would like to
identify the general properties which a weighting function
must satisfy to insure consistency of the update algorithm.
This would justify the use of weightings with a lesser com-
putational burden than the Gaussian-based weights used thus

far, such as weights drawn from the quartic kernel, K(x) =

(1-x2)2

, |x| < 1. The most pressing need, though, is

for a deeper understanding of the adaptive capabilities of
the'mode—seeking algorithm. Of particular interest is the
distribution of the regressive weighting vector in the
vicinity of a mode, which if known would greatly assist in

the choice of appropriate smoothing parameters, and in

assessing the significance of mode estimates.



APPENDIX

Generation of Equivalent Two-Component Gaussian Mixtures

For a Gaussian mixture with m components,
m
i=1

p;(x) = (2m) ™2 5 | T 2exp (- T (xmu) Tr ) 1,

we have
m -1
Vp(x) = - iil 0 P, (%) I, 7 (x-u,)
and
2 m -1 P.-1 -1
Vp(x) = i£1 a; P, (%) [Z, (x=y;) (x-ui) o=l

In a two-component mixture, critical points occur for x

satisfying
0 = a (xrz_l(x- ) + a,p (x)E-l(x—u )
1P1 1 M1 2P2 2 2/
Thus, if x is a critical point of the mixture density, there
exists a constant ¢ < 0 such that
-1 _ -1, _

If (uz-ul) is an eigenvector of both Zl and Z,+ then any
critical point must lie on the straight line passing through

the component means.

To see this, assume x is a critical point of p and
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decompose X as x = d + z, where d is the orthogonal projec-
tion of x onto the line determined by the mean vectors, and

sz = 0. For some t then, 4 = tul + (l-t)uz. Thus,

-1 -1
El (x—ul) = c I, (x-uz)

yields
2Tl (1-t) (o=py ) #2] = ¢ 2L [(=E) (- ) +2]
1 Hy™Hy, 2 Ha™Hy
orx
-1 -1, _ .1-t t _
(cZ2 =24 )z = [7\1— + c 7;] (u2 “1')’.

where Al and Az are eigenvalues of Zl and 22 respectively.
By the construction of z and the properties of eigenspaces
of symmetrid, positive definite matrices, z lies in a sub-
space which is invariant under both Zl and L,r OF under
their inverses, and Mo=Hy is orthogonal to this subspace.
Therefore z = 0.

In other words, for many two-component mixtures the
modality of the mixture is completely characterized by the
modality of the one-dimensional conditional density of
points lying on the line passing through the two mean
vectors. We used this observation to motivate a procedure
for generating mixtures in various dimensions which would be
equivalent as far as separation and definition of the modes
are coqcerned. The procedure begins with a prototype one-

dimensional density, and for each dimension n assumes that
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the covariance matrices Zl(n) and I,(n) are fixed in advance,
as well as the orientation of the mean vectors, which we
will write as

My (n) =y, (n)
” Hoy (n)"l-ll (n) ”

d(n)

The mixture density is written in the form

2 ai(n)
p(x) = I
i=1 (2m)%%, ()® |z, (n) |1/
) (1)
. 1l T -1
exp{~ —=—% (x-u;(n)) "I, (n) ~(x-u, (n))},
Zoi(n)2 i i i

and we restrict our attention to the line connecting the

means, parameterized as

U, (n) +u, (n) (W, (n)-u, (n)]
o) = 2—2 "~ 4 ps 2L T,

where for the moment the precise specification of the scale

factor § is left open.

With these conventions,

n/2

(2m)™ "p(¢(p)) =
oy (n) 1 2, , \T -1
= — 73 exp{- ———— (p§+1)“A(n) "I, (n) "A(n)}
oy (n) 7|2, (n) | 20, (n)
+ “a () expl- —2— (p8-1)24(n) "z, () Ta(n))
cz(n)nlzz(n)ll/2 20, (n) 2

with
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UZ(n)—ul(n)

A(n) = 5

wad , W= |[lu,(n)-uy(n)|| /2.

The mixture parameters over which we have control are

ul(n), az(n), cl(n), cz(n), and W. It is possible to formu-

late the above expression as an (unnormalized) one-

dimensional density, namely

1 1
o -1 82 o -5 @
Cp(p(p) = (2m~Y/2 c‘,—;e 2793 +G—§-e 2 L@
where
oo o, (n)
i Wog n) '

qi (n) = [dTZi(n)-ld]l/z ’

ai(n)

[}
i n-1

2 1/2 n-1
(2m) Wq, (n) |Z, (n) [ %0, (n)
The number of parameters may be reduced to three by taking

s 1 [01(“) C’2‘“’]1/2
7] ql(n) qz(n) ot

With this choice,

oo 0, (n) ql(n)]l/2

[ = l/cé ’
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o oial(n)
al - _Ii"_:l_._ . ’ (3)
(2m % o ™|z, (n) |12
' (1/01) ay (n)
“2 7 n-T '
1/2

(2m % o, (™5, () |

and p(¢(p)) has a quasi-symmetrical form. Accordingly, we
choose our prototype densities to have means evenly spaced
about the origin and variance which are multiplicative

inverses. Thus, a prototype will be of the form

) al __i (p+u)2 az _E(O-U)z
2 S 2'1/s
* = ——
v2m P (p) pe e + m‘ e .

We imitate the prototype by matching equation (2) with equa-
tion (4).

To match the equations, we first require
s = o! = [(g,(n)/0,(m) (q,®)/q, (n)) /2
1 1 2 92 93 '
or

cl(n) 2 ql(n)

o,(n) S q, (@) °
Note that the ratio ql(n)/qz(n) is fixed by the choices of

4, Zl(n), and Zz(n). Secondly, we want
ai/aé = al/az .

From the equations (3) then,
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Q

5 9y (n) o,(n) , [Z,(n)]
a, (n) 0;(n) [z, (n)]

1/2

L ] :

a; = (Oi)

hence
ay(n) ey 5(popy M) o ()] 4,
oy M)~ oy ° [qltnjl [|zl(n5|] :
‘Defining B = uz(n)/al(n), we take
al(n) = 1/(1+8),

ay(n) = 1 = a;(n) = B/(1+8).

Thus the mixing proportions al(n) and az(n) are determined
by
(i) the mixing proportions and variance parameter of the
prototype density,
(ii) the variance-covariance matrices of the multivariate
Gaussians, and
(iii) the orientation of the difference between the means,
d.
The mean separation W, as seems natural, is a function of
the mean separation in the prototype mixture. To match the
prototype we require, now, that

1 [cl(n)oz(n)

$ =5 ql(n)qz(n)]

=1
p L]
Substituting (5), we get

W= MS(oz(n)/qz(n)) = (u/s)(ol(n)/ql(n)).
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There is a free choice of the ratio oz(n)/qz(n). Suppose

cz(n)/qz(n) = ¢s. Then
W = uc; dz(n) = cqz(n)/s; ql(n) = scql(n).

To recapitualte, the procedure for generating equiva-
lent mixtures in arbitrary dimension is as follows:
1) choose a prototype twb—component univariate Gaussian
mixture, p*(p).
2) for each dimension n,

a) select Zl(n), Zz(n), d, and calculate
gy = [&a7r, a2, 1= 1,2

b) fix a constant ¢ and take

d,(n) = (c/s)q,(n)
ol(n) = scql(n)
W= |luyn) ~ |l /2 = ye.

¢) calculate

o = 22 2(nt1) T2 n |2, |/
% qp ()7 72y ()]

and take
al(n) = 1/(1+R) , az(n) = l—al(n).

Classification Analogue

As a commentary on the above generation procedure, we
may consider its relationship in specific cases to the two-

category calssification problem. If it is known that
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observations may arise from either of two populations,
each normally distributed with identical covariance matrices,
then the optimal discriminant function is linear, and has

the form WT(x-xo), where
-1
W=12 (ul-uz) '

Myt A0 (P (wy)/P(w,))
¥ = T2 T

- (Uy=uy) .
T e T I

P(wl) and P(wz) are prior probabilities, analogous to our
mixing proportions. The probability of classification error
is

P_ = P{W (x~x,) < 0|w,}P(w,) +

e 0 1 1

+ PAW (x=xg) > 0| wy}P(wy) .

Now, since WTx N N(WTul,WTZW),

T 1
P{W" (x-x,) < O0|w,} = ;e WOIW at
0 1 @E'(WTZW)l/Z e

WT (xo-ul)
wT w) L/?
= - S e

v2n -

2
—u”/2 du .

Substituting for W and Xy r we get

An(P(w,) /P(w,))
P{WT(x—xo) < Olwl} = P{z < -% (Q + 1 3 2 )} .
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where
- oy VEe=1l, o
Similarly,

a0 (P (w,) /P (0.))
(@ - 1Q 2 ).

N

P{WT(x-x0)>0|w2} = P{z >

In both cases, z represents a standard normal random vari-

able. Thus,

Zn(P(wl)/P(wz))

_ 1
P(w,) n(P(w,)/Plw,))
R | 1 2

The probability of misclassification remains constant if
Gaussian mixtures are generated so that P(wl) and P(wz)
are constant, and Q remains constant.

The requirement of identical covariance matrices
implies that cl(n),il(n) = oz(n)Zz(n). For simplicity we
may take Zl(n) ='22(n), in which case also ql(n) = qz(n).
Choosing the prototype to have equal variances, or taking

s = 1, yields

2 2
p*(p) = (ZW)_l/z[ule-(p+“) /2 + o, e—(p-u) /2]'

From equations (3), it follows that al(n)/az(n) = al/az.

Also, observing W = pc = u/ql(n),
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1

Q = (uy(a) =1y () T2 (m) ™ () (m) -1y ()

4wa) Tz (n) "L (way

2 2
4w q, (n)

4u2.

Thus, both the mixing proportions and the quantity Q are, as
desired, dimensionally invariant. Therefore, at least in
the case where a linear discriminant function is efficient,
and measuring the separation of the mixture components by
the optimal classification error rate, the mixture densities
generated by the procedure described in this appendix are

comparable irrespective of dimension.
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