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Abstract

This paper proposes an alternate method for �nding several Pareto optimal points

for a general nonlinear multicriteria optimization problem� Such points collectively

capture the trade�o� among the various con�icting objectives� It is proved that this

method is independent of the relative scales of the functions and is successful in pro�

ducing an evenly distributed set of points in the Pareto set given an evenly distributed

set of parameters� a property which the popular method of minimizing weighted com�

binations of objective functions lacks� Further� this method can handle more than

two objectives while retaining the computational e�ciency of continuation�type algo�

rithms� This is an improvement over continuation techniques for tracing the trade�o�

curve since continuation strategies cannot easily be extended to handle more than two

objectives�
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� Introduction

A wide variety of problems arising in design optimization of engineering systems
inherently involve optimizing multiple performance criteria �see� for example� Eschenauer�
Koski and Osyczka ��� and Statnikov and Matusov ����	 For example� a typical bridge

construction design might involve simultaneously minimizing the total mass of the struc

ture and maximizing its sti�ness	 However� it is highly improbable that these con�icting
objectives would both be 
extremized� by the same design	 Hence the designer makes some
trade
o� among the con�icting objectives in choosing the �nal design	

In mathematical notation a multicriteria optimization problem can be loosely posed as�

�min
x�C

�F �x� �

�
�����
f��x�
f��x�

			
fn�x�

�
����� � n � �� � � � �MOP �

where
C � fx � h�x� � �� g�x� � �� a � x � bg�

F � �N �� �n� h � �N �� �ne and g � �N �� �ni are twice continuously di�erentiable
mappings� and a � ���f�	g�N � b � ���f	g�N � N being the number of variables� n the
number of objectives� ne and ni the number of equality and inequality constraints	

Since no single x� would generally minimize every fi simultaneously� a concept of op

timality which is useful in the multiobjective framework is that of Pareto optimality� as
explained below�

De�nition� The vector F ��x� is said to dominate another vector F ��x�� denoted F ��x� 
 F ��x��
if and only if fi��x� � fi��x� for all i � f�� �� � � � � ng and fj��x� � fj��x� for some j �
f�� �� � � � � ng	 A point x� � C is said to be globally Pareto optimal or a globally e�cient

point for �MOP� if and only if there does not exist x � C satisfying F �x� 
 F �x��	 F �x��
is then called globally non�dominated or non�inferior	

Computational methods for general nonlinear multicriteria optimization� including the
one described in this paper� can at best guarantee local Pareto optimality of the obtained
solution	 The de�nition of local Pareto optimality is very similar to its global counterpart�

A point x� � C is said to be locally Pareto optimal or a locally e�cient point for �MOP�
if and only if there exists an open neighborhood of x�� B�x��� such that there does not exist
x � B�x��TC satisfying F �x� 
 F �x��	

Pareto optimality will henceforth refer to local Pareto optimality unless quali�ed ex

plicitly	

The shadow minimum or utopia point� F �� is de�ned as the vector containing the
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individual global minima� f�i � of the objectives� i	e	�

F � �

�
�����
f��
f��
			
f�n

�
����� �

We assume here and henceforth the existence of a minimizer for each of our objectives	
The shadow minimum could thus be attained only in the rare case when a single x min

imizes all the objective functions	 However� in practical situations� the best we can hope
for is to get close to the shadow minimum and assure that there is an agreeable trade
o�
among the multiple objectives	

Very often in engineering applications the desired result helpful in facilitating design is a
whole collection of Pareto optimal points� representative of the entire spectrum of e�cient
solutions	 Thus ideally� the desired solution is the entire Pareto optimal set� which can
be obtained for some small problems that allow themselves to be treated parametrically�
resulting in closed
form expressions for the Pareto set �see Lin ����	 More recently� attempts
have been made to approximate the entire curve of Pareto optimal solutions in bi
objective
problems using techniques that trace the curve of parametrized optima �see Rakowska�
Haftka and Watson ���� Rao and Papalambros ���� Lundberg and Poore ����	

Another alternative acceptable in most applications is a discrete set of Pareto opti

mal points obtained by combining the multiple objectives into a single objective function
and minimizing the single objective over various values of the parameters used to combine
the objectives	 For example� it is possible to generate a set of Pareto optimal points by
minimizing a convex combination of the objectives� wTF �x�� over x � C� where w � �
�component
wise� and

Pn
i��wi � �� and performing the minimization for di�erent choices

of w �see� among many others� Koski �����	 In this article� we propose a new method for
generating Pareto optimal points which is at least as e�cient as these methods and� unlike
the techniques for tracing the curve of Pareto optimal solutions� can be applied to problems
with more than two objectives	

� Preliminaries

First let us introduce some terminology�

Convex Hull of Individual Minima �CHIM�� Let x�i be the respective global minimizers
of fi�x�� i � �� � � � � n over x � C	 Let F �i � F �x�i �� i � �� � � � � n	 Let � be the n� n matrix
whose ith column is F �i �F � sometimes known as the pay�o� matrix	 Then the set of points
in �n that are convex combinations of F �i � F �� i	e	� f�� � � � �n�

Pn
i�� �i � �� �i � �g� is

referred to as the Convex Hull of Individual Minima	

The set of attainable objective vectors� fF �x� � x � Cg is denoted by F � so F � C �� F �
i	e	� C is mapped by F onto F 	 The space �n which contains F is usually referred to
as the objective space	 The map of C under F in the objective space is often called the
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multi�loss map �bi�loss map� if n � ��	 We shall denote the boundary of F by �F 	 The set
of all Pareto optimal points is usually denoted by P	 The complete curve�surface of Pareto
minima �continuous or not� is often referred to as the trade�o� function �see p � Haimes�
Hall and Freedman �����	

CHIM�� Let CHIM� be the a�ne subspace of lowest dimension that contains the
CHIM � i	e	 the set f�� � � � �n�

Pn
i�� �i � �g	 Then CHIM� is de�ned as the convex

hull of the points in the intersection of F and CHIM�	 More informally� consider extend

ing �or withdrawing� the boundary of the CHIM simplex to touch �F � the 
extension� of
CHIM thus obtained is de�ned as CHIM�	

Henceforth� it shall be assumed that the objective functions have been de�ned with the
shadow minimum shifted to the origin� so that all the objective functions are non
negative�
i	e	� F �x� is rede�ned as�

F �x�� F �x�� F ��

We observe that in Fig	�� which shows the set F in the objective space� the point A is
F �� � B is F �� � O is the shadow minimum �and the origin�� the broken line segment AB is
the CHIM � while the 
arc� ACB is the set of all Pareto minima in the objective space!
alternately� the trade
o� curve	 In this �and any� problem with n � � �i	e	� bi
objective��
CHIM � CHIM�	 For n � � CHIM may not equal CHIM� as in the case shown in �g	 �	

f (x)

f (x)

A

B

C

1
O

2

Figure �� A typical bi
loss map

� Central Idea

NBI is a technique intended to �nd the portion of �F which contains the Pareto optimal
points	 In order to facilitate the introduction of the preliminary idea behind NBI the
discussion will assume that the vector of global minima of the objectives� F �� is available	
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Later in Section �	� it will be argued how not having global minima usually renders very
little injury to the technique	

The algebraic idea behind our approach will be motivated by means of a simple and
obvious idea� the intersection point between the boundary �F and the normal pointing
towards the origin emanating from any point in the CHIM is a point on the portion of �F
containing the e�cient points	 This point is also a Pareto optimal point unless it happens
to lie in a 
su�ciently concave� part of the boundary as shown in Fig	 �	 It certainly is
a Pareto optimal point when the trade
o� surface in the objective space is convex� which
happens in almost every application found in the literature	 If the trade
o� surface is not
convex� points in the concave part will still be obtained using NBI	 If these points in the
concave part are Pareto optimal this particular trait can be thought of as a merit of NBI
over minimizing convex combinations of objectives which fails to obtain points in the non

convex parts of the Pareto set �see Das and Dennis����	 If they are not Pareto optimal this
might be characterized as a disadvantage	 Nevertheless these points are useful even though
they are not Pareto optimal� since they help in constructing a smoother approximation of
the Pareto boundary	

It should be noted that the goal attainment method described in Gembicki � �� or a very
similar method in Schy and Giesy ����� ����� ���� and Schy� Giesy and Johnson ���� can also
be interpreted in terms of the geometrical idea used described above	

F*

P

N

Figure �� Boundary point obtained by NBI is not Pareto optimal

Now let us illustrate algebraically how any such boundary point can be found by solving
an optimization problem	 Given barycentric coordinates �� �� represents a point in the
CHIM 	 Let �n denote the unit normal to the CHIM simplex pointing towards the origin!
then �� " t�n� t � � represents the set of points on that normal	 The point of intersection
of the normal and the boundary of F closest to the origin is the global solution of the
following subproblem�
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max
x�t

t

s�t� �� " t�n � F �x� ���

h�x� � � �NBI��

g�x� � �

a � x � b �

The vector constraint �� " t�n � F �x� ensures that the point x is actually mapped by
F to a point on the normal� while the remaining constraints ensure feasibility of x with
respect to the original problem �MOP �	 Observe that if the origin is not shifted to F � the
�rst set of constraints should read �� " t�n � F �x�� F �	

The subproblem above shall be referred to as the NBI subproblem and written as NBI�
since � is the characterizing parameter of the subproblem�	 Solutions of these subproblems
will be referred to as NBI points	 The idea is to solve NBI� for various � and �nd several
points on the boundary of F � e�ectively constructing a pointwise approximation of the
e�cient frontier	

The goal attainment approach of Gembicki � �� or Schy and Geisy ����� ����� ���� results
in a similar subproblem where the equality constraints ��� in the NBI subproblem get re

placed by inequalities � F �x� � u" tv �	 However the work of Schy and Geisy was mainly
concerned with �nding one Pareto optimal point� so the concept of parametrizing the sub

problem to generate many Pareto points was not studied	 In their work� both the normal
vector �v� and the point of origin of the normal �u� are user
de�ned quantities� after setting
which one Pareto point can be generated	 On the other hand� NBI chooses a particular
parametrization of the point of origin of the normal in terms of the barycentric coordinates
� and keeps the normal direction �n �xed	 This particular parametrization plays a key role
in generating the even spreads of Pareto points demonstrated later	 Observe that unlike an
NBI point� the solution of a goal attainment problem is not constrained to lie on the normal	

As indicated earlier� all NBI points are not Pareto optimal points	 In biobjective prob

lems� for every Pareto optimal point there exists a corresponding NBI subproblem of which
it is the solution	 The same is true for n � �� with one di�erence� the coordinates of the
parameter vector � for NBI� may not be all non
negative	 As a simple example� suppose
F is a sphere in �� touching the coordinate axes	 Then the CHIM simplex is the trian

gle formed by joining the three points where the sphere touches the axes	 Quite clearly
CHIM 
� CHIM� so that there exist points in CHIM� nCHIM underneath which there
are Pareto optimal points on the sphere	 However since these points are not in CHIM �
they do not satisfy �i � �� �i	 Thus� by solving NBI� for

Pn
i�� �i � �� �i � �� �i� a

portion of the Pareto set might be overlooked for problems with n � �	 However� these
overlooked points are likely to be 
extremal� Pareto points lying near the periphery of the
Pareto surface and are not interesting from the trade
o� standpoint� which is our primary
goal	 Figure ��� illustrates a similar situation	 The reader interested in how these periph

eral Pareto points can be obtained can look in Das��� for such a technique interesting at
least from a theoretical standpoint	
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f1

f3

F*

F(x3*)

F(x1*)

F(x2*)

Figure �� There exist Pareto optimal points not obtainable using NBI

� Some details

��� Structure of �

The ith column of � is described by

���� i� � F �x�i �� F ��

Since fi�x
�
i � � f�i � clearly�

��i� i� � ��

Moreover� since x�i is the minimizer of fi�x� over x
�
j � j � �� � � � � n

��j� i� � �� j 
� i�

Thus a negative element in position �j� k� of � signi�es that x�k is not the global min

imizer of fk�x�� and fk�x

�
j� � fk�x

�
k�� i	e	� x

�
j improves on the current local minimum of

fk�x�	 This fortunate occurrence provides a better starting point x�j for minimizing fk�x�
and hence will lead to a better local minimum for f�k just by examining �	

��� Local versus global

As indicated earlier� most NBI points are guaranteed to be only locally Pareto optimal
points	 However� the components of the shadow minimum F � being global minima of the
objectives and the Pareto surface being convex is a su�cent� though far from necessary�
condition for the NBI points to be globally Pareto optimal	 In situations like the one shown
in �g	 � where the relevant part of �F is 
folded�� the NBI point obtained may not be the one
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furthest out on the boundary along that normal because the solution of the nonlinear NBI
subproblem is only guaranteed to be locally optimal	 Thus the NBI point is not globally
Pareto optimal	

O

Q
P

P*

Figure �� NBI started at Q converges to P �locally Pareto optimal�� whereas the corre

sponding globally e�cient point would have been P �	

Not being able to �nd globally Pareto optimal points is a drawback inherent in every
method which �nds a large number of e�cient points of MOP	 In homotopy methods� it
would involve �nding the global minimum of one of the two objectives in the very begin

ning	 In methods which �nd e�cient points by minimizing a single objective� only a global
minimum of the scalarized objective would correspond to a globally e�cient point	

Another important issue we had promised to deal with is the case when one or more
components of the shadow minimum F � consists of local but not global function minima	
Such a case results in a di�erent matrix � and more di�erent goals �� for the NBI sub

problems to improve on	 These goals may be conservative or ambitious depending on the
orientation of the incorrect CHIM relative to the CHIM formed using the true global
minimizers	 However having the 
incorrect ��� may not preclude the NBI point from being
a point on the e�cient frontier� as in case of Fig	 �	 Once the globally e�cient point P in
Fig	 � has been found� a trivial examination of its components reveals that the current x�� is
not the global minimizer of f� and provides a starting point� viz	 P� for restarting the NLP
to obtain a better local minimum of f�	 Then NBI can be restarted with this improved
estimate of F �	 Some �if not all� globally Pareto optimal points will be obtained in most
problems even if NBI is not restarted	 Some points which are not Pareto optimal may be
obtained if the targets �� are conservative as in Fig	 �	 In cases such as the one in Fig	 ��
it is possible that all globally Pareto optimal points may not be found using NBI and no
indication regarding the local optimality of the function minima may be obtained	

However� in situations like the ones in �g	 �� owing to the fact that the individual
function minima are only local� all the NBI points obtained are only locally Pareto optimal	

Computational experience �on more than just the problems mentioned here� shows that
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P

F*

Q

f1

f2

Figure �� NBI started at Q converges to globally Pareto optimal point P even though all
the function minima in the components of F � are not global minima

in cases where the global minima of the functions are not available at the onset� as NBI
proceeds� either some component of � turns out to be negative or a function value of a
particular objective is found that improves on its current local minimum value	 This is not
unusual given that the entire NBI procedure samples a large number of function values in
the objective space	

To conclude this discussion and provide a general abstraction� it should be mentioned
that whatever the components of F � may be� NBI obtains at least the �local� boundary
points dominated by F � unless F � is attainable� i	e	� F � � F 	 If F � � F � � has a column
of zeros and�or NBI obtains some �local� boundary point which dominates F �� providing
reason to re�ne F � and start NBI all over again	

��� Quasi�normal instead of normal direction

The idea of a family of normals intersecting the boundary is valid even if we do not have the
exact normal direction to the CHIM simplex� but some quasi�normal direction �n which has
negative components� i	e	 it points towards the origin	 
Shooting� a family of quasi
normal
rays towards the boundary also gets us our desired boundary points	 In practice we choose
our quasi
normal direction to be an equally
weighted linear combination of the columns of
�� multiplied by �� to ensure that it points towards the origin	 Explicitly�

�n � ��e�
where e is the column vector of all ones	

The quasi
normal component de�ned as above has the property that the NBI point
found for a certain � is completely independent of the scales of the objective functions	 In
other words� if NBI� is re
solved with the objective functions rescaled by arbitrary factors�
the NBI point found remains unchanged	 This fact will be proved later	
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F*

Figure �� Local minima in the components of F � might prevent NBI from obtaining Pareto
points from every part of the e�cient frontier

Given that � has non
negative components as discussed in the previous subsection� it
is clear that all components of �e are non
negative	

Even though a quasi
normal direction will be used in our computations� we prefer to
retain the name 
NBI�� rather than change it to something like 
QNBI� hoping this misnomer
would not be considered too harshly	

��� Further insight� NBI and Goal Programming

Since t is being maximized in the NBI subproblem and �� " t�n � F �x�� x � C� this
maximization subproblem attempts to �nd a feasible point x as far from a 
target� point
�� as possible� with �n � � �componentwise� guaranteeing non
increase in the components
of F �x� relative to the components of �� if the optimal value of t is non
negative	

This is similar to goal programming	 If we take the Pareto surface to be convex in the
objective space� 
equality goal programming�� can be thought of as NBI where the direction
�n is the negative of one of the canonical basis vectors ei �i	e	 with � in the ith position and
� in the rest�	 To be precise� the subproblem NBI� with �n � �ei has the same solution as
the following goal programming problem�

min
x

fi�x�

s�t� fj�x� � �����j�� j � �� � � � � n� j 
� i

x � C�

where �����j� denotes the jth component of the vector ��	
Though posing the goals as equalities is untraditional� this equality constrained goal

programming problem for obtaining a Pareto optimal point is discussed in Lin��� and ����	
In a future section NBI will be related to the traditional goal programming problem

using Lagrange
Multiplier theory without assuming that the Pareto surface is convex	

�Referring to goal programming where the goal constraints are equalities instead of inequalities�
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F* F*

Figure �� In the �rst case F � �F 	 Here� having local function minima in the components
of F � can cause NBI to �nd only locally Pareto optimal points	

��� E	ciently solving the subproblems

The following simple observation plays a key role in lowering the computational expense
involved in solving the NBI subproblems�

Consider parameter vectors � and �� such that � is 
close to� ��� i	e	� k� � ��k is 
small�
in some norm	 Then it is reasonable to expect that the solution �x�� t�� of NBI� and the
solution ��x�� �t�� of NBI�� are 
close to each other�	 Assume that we have solved NBI�� �rst
and already have the point ��x�� �t��	 Then with ��x�� �t�� as the starting point for solving
NBI�� the NBI subproblem solver can be expected to converge in relatively few iterations	
It is this aspect of our algorithm that gives it the �avor of a continuation
type method	

Since we already have the individual minima of the functions� i	e	� the vertices of the
CHIM simplex� we start at x�� and solve a 
nearby subproblem�� and then a subproblem
close to the one just solved� and so on	

Of course 
ordering the subproblems� may not be obvious for problems with more than
two objective functions� but can still be achieved� as described in the next section	

� Generating � and ordering the subproblems for more than

two objectives

In this section we shall describe a �data� structure which simultaneously enables the gener

ation of weights � and ordering the subproblems in a manner amenable not only to e�cient
solution but also to parallelization	

��� Generating �

Let us assume that for an n
objective problem� �j � � is the uniform spacing between two
consecutive �j values �i	e	� the 
stepsize� on the jth component of �� for j � �� � � � � n � �	
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For simplicity� let us also assume that �
��

is an integer	

The possible values that can be assumed by �� are

��� ��� ���� � � � � ���

Given a particular value of ��� de�nem� �
��
��
� Then the possible values of �� corresponding

to that value of ��� �i	e	 �� � m���� �all the �i�s must add up to �� are

��� ��� ���� � � � � k���� �

where k� � I�����
��

� � I���m���
��

��

Now de�ne m� � ��
��
� Then the possible values of �� corresponding to �� � m��� and

�� � m��� are
��� ��� ���� � � � � k���� �

where k� � I��������
��

� � I���m����m���
��

��

Thus� corresponding to �i � mi�i� i � �� � � � � j � �� the possible values of �j for j �
�� � � � � n� � are

��� �j � ��j � � � � � kj�j ��

where

kj � I�
��Pj��

i�� mi�i
�j

� �

Finally the last component of � is de�ned as

�n � ��
n��X
i��

�i �

The entire data structure above can be thought of as a tree where the number of children
varies with the node and generation	 Each generation or level represents a component of
� and each path from the root to the leaf represents a possible � vector	 However� a tree
structure is unnecessary for implementation! all that requires storage are the numbers �j 	
Nevertheless the tree is useful as a conceptual aid	

Of the subproblems generated by the weights in the above tree� n subproblems �with
� � ei� have already been solved in the course of �nding F �	 It should also be noted that
since �i

�j
is not necessarily an integer �i � j� the spacings between 
the last two� values of

�n may not be uniform	

��� Special case�

Equal stepsizes on all �i
Let �i � �� i � �� � � � � n� �

Also assume that �
�
� p is an integer	
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Asbefore�thepossiblevaluesof��are

��������������

Thenthepossiblevaluesof�jcorrespondingto�i�mi�i�i�������j��forj�������n��
are

�������������p�
j�� X
i��

mi���

Asbefore��n���Pn��
i���i�andnowallthe�nvaluesareuniformlyspaced	

Figure���showspartofthetreeof�valuesforn��and�����	
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Figure��Generating�forn��������

NumberofNBIsubproblems

Ingeneral�thenumberofNBIsubproblemsforagivennandagivenp�
�
�isgivenby

�n"p��
p

�
�

Inspiteofthefactthatweonlyintendtosolve
nearbysubproblems��thecomputational
costofsolvingahugenumberofnonlinearprogrammingproblemscanbequitedaunting	
Thismotivatestheneedforparallelization�aswillbementionedinthenextsection	

���Orderingthesubproblems

Eachpathfromtherootofthetree�thetopmostnode�toaleaf�amemberinthebot

tommostgeneration�representsauniqueweight�	Itshouldalsobeobservedthatthe
�vectorsarealreadyorderedonthebasisof
nearness�asonetraversesthetreebreadth

wise	Thusastrategyforpickingtheorderofthesubproblemscouldbetostartwith
theleftmostone�whichhas��enandisalreadysolved�andsolvethenextoneinthe
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�n�� generation �which is �n�� � �n��� �n � � � �n���� then the next one in the �n��
generation � �n�� � ��n��� �n � � � ��n���� and so on until all the subproblems for
�i � �� i � �� � � � � n � � have been solved	 Then we move to the next node in the �n��
generation �i	e	� with �i � �� i � �� � � � � n� �� �n�� � �n��� and visit all the children of this
node� with the starting points of the NBI subproblems chosen as the corresponding NBI
subproblem solutions at the previous node	

This is where the scope for parallelization comes in	 The solution of the �rst subproblem
at the second node in the �n�� generation did not have to wait until all the subproblems in
the �rst node were solved	 The �rst subproblem in the second node of the �n�� generation
with �n�� � �n��� �n�� � �n��� �n � � � �n�� � �n�� can be solved immediately after
solving the �rst subproblem in the �rst node with �n�� � �� �n�� � �n��� �n � �� �n��	
Thus the �rst subproblem in the second node can be solved in parallel with the second
subproblem in the �rst node� 			� and the kth subproblem in the second node can be solved
in parallel with the �k " ��th subproblem of the �rst node	 Further� the kth subproblem in
the third node can be solved in parallel with the �k " ��th subproblem of the second node�
with the solution of the kth subproblem of the second node as the starting point� and so
on	 This entire process of e�cient parallelization is one of the topics of future research	

� Relationship between the NBI subproblem and minimizing

a convex combination of the objectives

In this section we illustrate how the NBI subproblem is related to the popular method of
minimizing a convex combination of the objectives	 This demonstrates how to go back and
forth between the NBI parameter � and the convex combinations weight vector w for a
particular Pareto point	 The following discussion also demonstrates that corresponding to
every w there exists a � such that NBI� has the same solution as LCw� but the converse is
not true	 In other words� this proves that there might be points obtainable using NBI not
obtainable by minimizing convex combinations	

Given a Pareto point x�� the problem can be thought of as being constrained only by
the vector of equalities and binding inequalities and bounds at x�	 Let us denote this
augmented vector of equalities by �h�x�	 Let w � ��� � f�g�n� Pn

� wi � �� denote a
positive� convex weighting of the objectives	 The weighted linear combination problem for
obtaining a Pareto optimal point is then written as

min
x

wTF �x�

s�t� �h�x� � �� ���

The solution of the problem above will be referred to as an LC point� and the problem
denoted by LCw	 Part of the �rst
order necessary or KKT conditions for optimality of
�x�� 	�� for problem ��� is

rxF �x��w "rx
�h�x��	� � � � ���

��



Similarly� if � denotes the vector of parameters in NBI�� the NBI subproblem can be
written as

min
x�t

�t

s�t� F �x�� �� � t�n � �

�h�x� � � � ���

Part of the KKT condition for optimality of �x�� t�� 	����� 	����� is

rxF �x��	���� "rx
�h�x��	���� � � ���

�� " �nT	���� � ��

where 	��� � �n represents the vector of multipliers corresponding to the constraints
�� " t�n � F �x� � �� and 	��� � �ne denotes the multipliers of the equality constraints
�h�x� � �	

Claim�

Suppose �x�� t�� 	����� 	����� is the solution of NBI� and
Pn

� 	
����
i 
� �� Now de�ne the

components of the vector w as

wi �
	
����
iPn

� 	
����
i

�

Then� problem ��� with the above convex weighting vector w has the solution

�x�� 	� �
�Pn

� 	
����
i

	������

Proof�

Dividing both sides of ��� by the scalar
Pn

� 	
����
i and observing that �h�x�� � �� the

equivalence between ��� and ��� becomes obvious	

However� quite clearly� if for some i� the sign of 	
����
i is opposite to that of

Pn
� 	

����
i �

then the vector w has a negative component and does not qualify as a weight for problem
���	 In such a case� either the Pareto optimality of the NBI point �x�� t�� 	����� 	����� is
questionable� or the Pareto point lies in a nonconvex part of the Pareto set �Pareto points
in nonconvex parts of the Pareto set cannot be obtained by minimizing a linear combination
of the objectives�	

Just as the above analysis gives a method for obtaining w for problem LCw given the
corresponding solution of NBI�� one can also obtain the NBI point corresponding to a
given solution of problem LCw with very little e�ort	

Claim�

Suppose �x�� 	�� solves problem LCw	 Let � ��� t
�� be the solution of the �n"��� �n"��

linear system
�� " t�n � F �x��

��



nX
i��

�i � ��

Then �x�� 	�� corresponds to the solution of NBI� with � � ��� i	e	� the solution of NBI��
is

�x�� t�� 	���� �
w

wT �n
� 	���� �

	�

wT �n
��

Proof�
Let us divide ��� on both sides by wT �n	
This can always be done because� since w has nonnegative components �not all zero�

and �n has negative components� wT �n � �	 Observing that 	���� de�ned above satis�es
�nT	���� � �� it can be seen that the �rst part of the KKT conditions for NBI�� holds	
Further observing that� �h�x�� � � and �� " t�n � F �x��� the required equivalence between
LCw and NBI�� follows	

� Relationship between the NBI subproblem and goal pro�

gramming using multipliers

A solution to an NBI subproblem is also a solution to a goal programming problem given
that some assumptions holds	 This is elaborated on below� using the same type of multiplier
argument as used to relate NBI� to LCw	

Claim�

Suppose �x�� t�� 	����� 	����� is the solution of NBI�	 Suppose that the components of

	���� are all of the same sign with at least one nonzero component	 If 	
����
k is any such

nonzero component� then x� solves the following goal programming problem�

min fk�x�

s	t	 fi�x� � 
i��i 
� k

�h�x� � � ���

with goals 
i given by


i �

	
fi�x

��� if 	
���
i 
� �

any �nite number � fi�x
��� if 	

���
i � �

�i � f�� �� � � � � ng n fkg	

Proof�

Since �x�� t�� 	����� 	����� solve the NBI� subproblem� they must satisfy ���	 Given that

	
����
k 
� �� we can divide both sides of ��� and get

rxfk�x
�� "

i�nX
i���i ��k

rxfi�x
��
	
����
i

	
����
k

"rx
�h�x�

	����

	
����
k

� �

��



Now
�
����
i

�
����
k

� � because 	
����
i and 	

����
k are of the same sign	 Then with

�
����
i

�
����
k

as the

multipliers of the n� � inequality constraints in ���� the goals 
i satisfy complementarity
by de�nition� since


i � fi�x
�� whenever 	

����
i 
� �

� 	
����
i

	
����
k

�fi�x
��� 
i� � � �i 
� k

Moreover� since x� is clearly feasible for ���� �x��
�
����
i

�
����
k

� �
����

�
����
k

� solves �satis�es �rst order

necessary conditions for minimizer for� problem ���	

	 Proof of independence with respect to function scales us�

ing the quasi�normal

In this section we shall prove that the NBI point found using the quasi
normal �n and a
particular � is independent of how the individual functions are scaled	

Let the objective functions be scaled by positive scalars si as

fi�x�� sifi�x�� i � �� � � � � n�

In other words� if s is the vector with components si and S � diag�s�� then

F �x�� SF �x��

Consequently
rxF �x��rxF �x�S �

� � S� �

The quasi
normal direction �n � ��e after scaling becomes � �S�e	

Claim�

If �x�� t�� 	����� 	����� solves the unscaledNBI� �i	e	 with S � In�� then �x�� t�� S��	����� 	�����
solves� NBI� with the ith function scaled by si as above	

Proof�

Since �x�� t�� 	����� 	����� solves the unscaled NBI� �still with only equality constraints
as in the previous section��

rxF �x��	���� "rx
�h�x��	���� � �

�nT	���� � �

�� " t��n � F �x��

�Here �solves� means ��nds a stationary point of the nonlinear programming problem��

��



�h�x�� � ��

The �rst equation can be rewritten to state that the following holds�

�rxF �x��S��S��	����� "rx
�h�x��	���� � �� ���

The second equation implies
eT�T	���� � �

� eT�TSS��	���� � ��

Since S � ST � the above is the same as

�eT �S��T ��S��	����� � �� ���

The third equation can be rewritten as

�� " t��e � F �x��

� S�� " t�S�e � SF �x��� � �

Clearly� equations ������� and � � imply that �x�� t�� S��	����� 	����� solves NBI� with
the functions scaled by S	
�QED�

The above result does not depend on e being the vector of all ones and consequently
holds if �n is scaled by a factor� say� a normalization constant	

The above result suggests that no matter how disparately the di�erent functions might
be scaled� NBI with the quasi
normal �nds a set of points as if the functions were all scaled
to the same order of magnitude	


 Advantages of NBI

� Finds a uniform spread of Pareto points� Consider any method that attempts
to capture the shape of the Pareto surface by generating many points on the surface	
An important property that would make such a method desirable is that it should
generate an even spread of Pareto points� representative of all parts of the Pareto set�
and not clusters of points in certain parts which fail to provide a good idea of the
entire shape	 Given that we can only solve a limited number of nonlinear programming
subproblems and hence generate only a limited number of Pareto points� it becomes
crucial to have the points be spread as evenly as possible� so that a good approximation
of the Pareto surface is obtained by solving as few subproblems as possible	

In implementing NBI� various settings of the parameter � are chosen such that the
points �� form a uniformly
spaced grid on the CHIM simplex �this is achieved by
generating � as in Section �	��	 Since the NBI points are restricted to lie on a set of
parallel normals emanating from these 
uniformly spread� points� the projections of
the areas between neighboring NBI points on the CHIM are uniformly spread	 Thus
NBI can yield a good approximation of the Pareto surface by solving fewer nonlinear

��



programming problems than weighted convex combinations	 It is very di�cult to
guess the parameter settings for which weighted convex combinations yields a uniform
spread of Pareto points because the weights that correspond to an even spread depend
on the shape of the Pareto surface� as shown in Das and Dennis���	

The inter
relationship between the linear combinations subproblem and the NBI
subproblem provides more insight into why the linear combinations technique fails
to give a uniformly distributed set of Pareto optima	 By �xing the weights w in
subproblem LCw�in e�ect the multipliers of the corresponding NBI subproblem get
�xed� thus partly restricting the solution of the resultant subproblem	 Even if the
Pareto optima are uniformly distributed in the Pareto set� there is no reason why
the corresponding multipliers should be uniformly distributed	 More insight into the
failures of convex combinations can be found in Das and Dennis���	

However� the weights in the linear combinations approach are often very desirable
because they give an idea of the relative importance of the objectives	 Thus obtaining
the NBI points� which are uniformly distributed� and then �nding the corresponding
weights w for the NBI points can be quite insightful	

� Advantages over homotopy techniques� NBI improves over homotopy�continuation
techniques for tracing the curve of Pareto optimal solutions� like the one discussed in
Rakowska� Haftka # Watson ���� in the following respects�

� Applicable for more than two objectives� NBI is formulated to handle an ar

bitrary number of objectives	 On the other hand� for a multiobjective problem
with more than two objectives the homotopy parameter is not a scalar and the
associated di�erential equation is a system of nonlinear partial di�erential equa

tions with not readily available boundary conditions� rather than an ordinary
initial value problem� as in the case of two objectives	

� Does not require exact Hessian� Even for a bi
objective problem� solving the
homotopy initial value problem requires exact second derivative information �i	e	�
the Hessian of the Lagrangian�� whereas the NBI subproblem solver can use
any nonlinear programming technique	 Even if the NLP technique for the NBI
subproblem requires gradient information� secant methods for NLPs make exact
Hessians unneccesary	

� Bypasses tracking active sets� For problems with inequality constraints or ex

plicit bounds on variables� homotopy techniques need to keep track of the changes
in active sets of the inequality constraints or bounds meticulously in course of the
numerical integration� which can present di�culties if the number of inequalities
or bounds is large	 On the other hand� an interior point NLP solver used as the
NBI subproblem solver would handle this situation quite e�ciently� and will not
have a problem with frequent changes in the active set	

It must be noted though that points where the active set changes provide
important information to the designer	 However homotopy needs to keep track of
changes in active sets even in the uninteresting parts of the Pareto set� whereas
once the NBI points are found it is not di�cult to trace how the active set

��



changes along the Pareto surface by examining the binding inequalities at the
Pareto points	

� Does not assume connectedness or smoothness of the Pareto set� The homotopy
technique assumes that the Pareto curve is continuous and di�erentiable� and
also connected� to be able to integrate along the curve	 This is not the case with
NBI� though it might end up reporting some subproblems as infeasible if the
Pareto set is disconnected	

� NBI improves on other traditional methods like goal programming in the sense that
it never requires any prior knowledge of 
feasible goals�	 It improves on multilevel
optimization techniques from the trade
o� standpoint� since multilevel techniques
usually can only improve only a few of the 
most important� objectives� leaving no
compromise for the rest	

�� A Numerical Example

Below is a brief account of employing NBI techniques on a small bi
objective problem�
stated below�

min
x



f��x� � x�� " x�� " x�� " x�	 " x�


f��x� � �x� " �x� � x�
� " ���� �x	 � x
�

�

�

s�t� x� " �x� � x� � ���x	 " x
 � �

�x� � �x� " ���x� " ���x	 " ���x�
 � �

x�� " x�� " x�� " x�	 " x�
 � ���

NBI using the quasi
normal was run on the above problem with the evenly spread values
of � with � � ����	 The Pareto points thus obtained are tabulated below and plotted in
�g	 � ��

� 
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� Objective values
�	��� �	�� ��	���� � 
�	����
�	��� �	 �  	���� � 
�	����
�	��� �	 � �	���� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	���� � 
�	��� 
�	��� �	�� �	�� � � 
�	����
�	��� �	�� �	��� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	 ��� � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	  � � 
�	����
�	��� �	�� �	���� � 
�	����
�	��� �	�� �	���� � �	����
�	��� �	�� �	�� � � �	� ��
�	��� �	�� �	���� � �	����
�	 �� �	�� �	 ��� � �	����
�	 �� �	�� �	���� � �	� ��
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Efficient points obtained by minimizing convex combinations of objectives

Figure  � Pareto optimal vectors in the objective space using NBI and the method of convex
combinations respectively

The method of convex combinations was run thrice on the same problem� with the
weight vectors w assuming the same �� uniformly spread values as the w vector above	 The
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e�cient solution scheme� i	e	� starting the solution of a subproblem from the optimal point
of the 
nearest subproblem�� was used here as well	

When run on the original problem the minimizer of f��x� was found six times for six
di�erent w� and there was a considerable gap 
in the middle� of the Pareto set �see �g	� ��	

With f� scaled by �� the point found six times earlier was found only twice �i	e	� heavily
weighting the �rst objective made the minimizer move away from x��	�� but the Pareto
optimal vectors obtained were concentrated at the F �x��� end and no 
middle ground for
compromise� was captured	

With f� scaled by ��� the point repeated earlier was found only once� though the
clustering at the F �x��� end increased �see �g	�����	

The Pareto optimal vectors obtained using linear combinations are tabulated below�

Weights Objective values Objective values Objective values
�w�� w�� �original scale� �f� scaled by �� �f� scaled by ���

�	�� � �	�� ��	���� � 
�	���� ��	����� 
�	���� ��	����� 
�	����
�	�� � �	 � ��	���� � 
�	���� ��	����� 
�	���� �	����� 
�	����
�	�� � �	 � ��	���� � 
�	���� �	����� 
�	�� � �	����� �	����
�	�� � �	�� ��	���� � 
�	���� �	����� �	���� �	��� � �	����
�	�� � �	�� ��	���� � 
�	���� �	����� �	���� �	��� � �	����
�	�� � �	�� ��	���� � 
�	���� �	� ��� �	�� � �	����� �	����
�	�� � �	�� �	 ��� � 
�	���� �	� ��� �	���� �	����� �	����
�	�� � �	�� �	��� � 
�	���� �	����� �	�� � �	����� �	 ���
�	�� � �	�� �	���� � 
�	��� �	����� �	���� �	����� �	 ���
�	�� � �	�� �	��� � �	���� �	� � � �	���� �	����� �	  ��
�	�� � �	�� �	���� � �	� �� �	����� �	� �� �	����� �	����
�	�� � �	�� �	���� � �	���� �	����� �	 ��� �	��� � �	����
�	�� � �	�� �	���� � �	���� �	����� �	 ��� �	����� �	����
�	�� � �	�� �	���� � �	�� � �	����� �	���� �	����� �	�� �
�	�� � �	�� �	��� � �	��� �	�� �� �	���� �	����� �	����
�	�� � �	�� �	���� � �	�� � �	����� �	���� �	����� �	� ��
�	�� � �	�� �	� �� � �	���� �	����� �	���� �	����� �	����
�	�� � �	�� �	���� � �	 ��� �	����� �	� � �	����� �	����
�	 � � �	�� �	���� � �	���� �	����� �	���� �	����� �	����
�	 � � �	�� �	���� � �	���� �	����� �	���� �	����� �	����
�	�� � �	�� �	���� � �	���� �	����� �	���� �	����� �	����

Clearly the inability of the method of convex combinations in adequately capturing the
shape of the Pareto surface renders it fairly useless as a means of studying the trade
o�
between the con�icting objectives	

�� A truss optimization problem

Now we shall apply NBI to a truss optimization problem� a version of which has been
studied in Koski ����	 The problem involves optimizing the design of a pin
jointed linear
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Figure ��� Pareto optimal vectors in the objective space using the method of linear combi

nations on the problem with f� scaled respectively by � and ��

truss structure as shown in �g	 ����	
The problem is to �nd the optimal position of the vertical bar of �xed length L �the

bars on the edge get �xed and their lengths decided accordingly� between ��� and ��� of
the entire distance D and the optimal bar cross
sectional areas	 The angles � and 
 clearly
depend on the chosen location x	 Other optimization variables are the cross
sectional areas
of the bars� a�� a�� a�� allowed to vary between ���in� and ���in�	

The objectives to be considered for minimization are the total volume of the structure�
the displacement of the node and the absolute value of the stress in each of the three bars	
In the structure considered by Koski in ���� the location of the middle bar was �xed� so
that � and 
 were also �xed	 Also� his total volume was a linear function of the design
variables� unlike in our formulation where total volume is expressed as a�

L
sin �"a�L"a�

L
sin� 	

Without going into further details of the problem and the data involved� which can be
found in Das���� we present some Pareto plots for subsets of the �ve objectives mentioned
here	 Fig	 �� shows the Pareto curve for minimizing the square of nodal displacement and
the total volume with constraints on the absolute stresses in the three bars	 The apparently
unexpected gaps in the Pareto curve using NBI are points corresponding to which the
NBI subproblems were infeasible owing to discontinuities in the Pareto set introduced by
stringent stress inequalities	

Fig	 �� shows the Pareto curve for minimizing the stress in the right bar �the minimum
value of the stress was positive and hence the absolute sign was dropped� and the total
volume with constraints on the absolute stresses in the middle and left bars	

Given the individual minima and minimizers of the objectives at the outset� the number
of �oating point operations ��ops� required in solving the subproblems for minimizing the
stress in the right bar and the total volume using NBI and convex combinations for ��
parameter settings for each are shown in the table below�
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Figure ��� A truss structure under a suspended load and a wind load

NBI Convex Combinations
Number of distinct points �� ��

Number of �ops ��  ��� ��� �������� 
Flops per distinct point �������	�� �������	��

The above table shows that NBI takes about twice as many �ops but �nds about twice
as many distinct points� so that the number of �ops per Pareto point is almost the same
for the two methods �convex combinations wins marginally�	 But NBI yields a uniform
spread of points representative of all parts of the Pareto set and hence a better model of
the trade
o� curve for the same e�ective computational cost	

Finally� �g	 �� shows the Pareto surface obtained using NBI with stress in the left bar�
total volume and stress in the right bar as objectives	 The uniform stepsize � on each
component of � was chosen to be ��� and �� NBI subproblems were solved of which nine
failed to converge owing to infeasibility	 The whole process took about ��	� million �oating
point operations	

A more detailed engineering
oriented treatment of this problem with trade
o� studies
for more than the groups of objectives mentioned here can be found in Das ���	

�� Function scaling implicit in NBI

NBI using the quasi
normal component is una�ected by the function scales	 However�
as the functions get more disparately scaled� the Pareto set gets more 
stretched�� and
consequently the NBI points get further apart from each other	 Consequently solving an
NBI subproblem starting from the solution of the same nearby subproblem takes more
iterations to converge	 This was observed in the numerical example above and motivates

��
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Figure ��� Pareto curves for minimizing nodal displacement and total volume �cu	 ft	�
using NBI and convex combinations

the need to scale the functions properly to remove this disparity in scales	
Geometrically it can be perceived that if the vertices of the CHIM simplex are almost

equidistant from the origin� i	e	� the quantities

kF �x�j �� F �k� j � �� � � � � n

are almost equal� then the quasi normal direction �n is almost normal to the CHIM simplex	
This would achieve the 
minimally stretched� Pareto set we want and could also be a good
scaling for the problem in the sense that all the functions would be about the same order
of magnitude� and thus reduce possible ill
conditioning	

For the bi
objective problem� � is antidiagonal! thus a scaling that would achieve the
above is obvious�

f� � f�
f��x���

f� � f�
f��x

�
��
�

which gets each vertex of CHIM to be unit distance from the origin	

However� the solution may not be so transparent for more than two objectives� and it
may not be possible to get all the vertices exactly equidistant from the origin	 So now we
shall attempt to �nd function scalings di � � such that the functions scaled as

fi �
p
difi

will have the property that the variance among the scaled distances of the vertices from
the origin� i	e	

k
p
D�F �x�j �� F ��k�� j � �� � � � � n
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Figure ��� NBI points for minimizing stress in right bar and total volume �cu	 ft	�

will be minimized �D � diag�d�� d represents the vector with components di�	

Let vj � kpD�F �x�j �� F ��k�� i	e	�

vj �
nX
i��

di�
�
i�j�

where �i�j is the ith row jth column entry of the matrix �	

The mean square distance of the vertices is de�ned as

�v �
�

n

nX
j��

vj �
�

n

nX
i��

di�
nX

j��

��i�j��

The variance quantity to be minimized is given by

V �d� �
nX

j��

�vj � �v��!

i	e	�

V �d� �
nX

j��

f
nX
i��

di�
�
i�j �

nX
i��

di�
�

n

nX
j��

��i�j�g��

Let A be the matrix with components ai�j given by

ai�j � ��i�j �
�

n

nX
k��

��i�k�

Then

V �d� �
nX
j��

�
nX
i��

diai�j�
�!
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Figure ��� NBI points for minimizing stresses in left and right bars and total volume

i	e	�
V �d� � dTAATd � kAT dk��

This quadratic function is convex in d� and has an unconstrained minimizer at d � �	
Thus we shall demand a speci�c value of �v� which represents an average distance of the
CHIM simplex from the origin and is roughly the same order of magnitude as a typical
function value of any objective encountered in the computation	

Suppose we want a typical objective value to be � � which could be something like ��	
Then we would enforce

�v �
�

n

nX
i��

di�
nX

j��

��i�j� � �

along with a small lower bound on di	 Thus the optimization problem to be solved to obtain
our 
optimal� scales is

min
d

V �d� � dTAAT d

s�t�
nX
i��

di�
nX

j��

��i�j� � n�

di �� ���� � i � �� � � � � n�

Thus we can see how the matrix � suggests an 
improved scaling� of the objective functions�
which is a bonus in the NBI approach	

It is worth observing that using the mean distance as opposed to the mean square
distance in the last constraint would result in loss of convexity� hence the latter is preferred	
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�� Conclusion

A technique was presented for �nding Pareto optimal points of any smooth� constrained
multiobjective problem with any number of objectives� perhaps restricted only by considera

tions of computational expense	 The technique is e�cient and has several useful properties�
including that of obtaining an even spread of Pareto optimal points and invariance with
respect to function scaling	 This technique should be regarded as a tool for generating
points from which the user can select the �nal design and not one that actually helps the
user make that selection	

Further research is in progress regarding the implementational issues of parallelizing the
solution of the NBI subproblem	 Customized nonlinear programming techniques for solving
the NBI subproblem will also be investigated	

A public domain Matlab �	� implementation of NBI is available free of charge at
http���www	owlnet	rice	edu��indra�NBIhomepage	html	

�� Acknowledgments

Firstly the authors would like to thank the referees for pointing out various improvements in
the presentation of the material and presenting several insightful comments	 The authors
would also like to thank Paul Uhlig� Dept	 of Mathematics� Rice University for several
insightful discussions� Dr	 Jagannatha Rao� Dept	 of Mechanical Eng	� University of Hous

ton� for providing motivation and helpful comments� Dan P	 Geisy� NASA
Langley� for an
interesting conversation on his earlier work� Je�rey Hittinger� University of Michigan� Ann
Arbor for a helpful discussion on data structures and Sanjeeb Dash� Rice University� for
his algorithmic insights	

References

��� I	 Das	 Nonlinear Multicriteria Optimization and Robust Optimality	 Ph	D	 Thesis�
Dept	 of Computational and AppliedMathematics� Rice University� Houston� TX �����

�� �	

��� I	 Das and J	 E	 Dennis	 A Closer Look at Drawbacks of Minimizing Weighted Sums of

Objectives for Pareto Set Generation in Multicriteria Optimization Problems	 Dept	 of
Computational and Applied Mathematics Tech Report  �
��	 To appear in Structural
Optimization	

��� H	 Eschenauer� J	 Koski and A	 Osyczka	 Multicriteria Design Optimization� Berlin�
Springer
Verlag� �  �	

��� Roman B	 Statnikov and Joseph B	 Matusov	 Multicriteria Optimization and Engineer�

ing� New York� Chapman # Hall� �  �	

��� J	 G	 Lin	 Three Methods for Determining Pareto�Optimal Solutions of Multiple�

Objective Problems� Directions in Large
Scale Systems� pp	 ���
���	 Edited by Y	 C	
Ho and S	 K	 Mitter	 New York� Plenum Press� � ��	

��



��� J	 Rakowska� R	 T	 Haftka and L	 T	 Watson	 Tracing the E�cient Curve for Multi�

Objective Control�Structure Optimization� Computing Systems in Engineering	 Vol	 ��
No	 �� pp	 ���
���� �  �	

��� J	 R	 Rao and P	 Y	 Papalambros	 A Non�linear Programming Continuation Strategy

for One Parameter Design Optimization Problems� Proceedings of ASME Design Au

tomation Conference� Montreal� Quebec� Canada� Sept	 ��
��� � � � pp	 ��
� 	

��� B	 N	 Lundberg and A	 B	 Poore	 Bifurcations and Sensitivity in Parametric Program�

ming� Proceedings of Third Air Force�NASA Symposium on Recent Advances in Mul

tidisciplinary Analysis and Optimization� Sept	 ��
��� �  �� San Francisco� CA� pp	
��
��	

� � Florian W	 Gembicki	 Performance and Sensitivity Optimization� A Vector Index Ap�

proach� Ph	D	 Thesis� Dept	 of Systems Engineering� Case Western Reserve University�
� ��	

���� Albert A	 Schy and Daniel P	 Giesy	 Tradeo� Studies in Multiobjective Insensitive

Design of Airplane Control Systems� AIAA Guidance and Control Conference� Aug
��
��� � ��� Gatlinburg� TN	

���� Albert A	 Schy and Daniel P	 Giesy	 Multiobjective Insensitive Design of Airplane

Control Systems with Uncertain Parameters� AIAA Guidance and Control Conference�
Aug � 
��� � ��� Albuquerque� New Mexico	

���� Albert A	 Schy� Daniel P	 Giesy and K	J	 Johnson	 Pareto�Optimal Multi�Objective

Design of Airplane Control Systems in Proceedings of the � �� Joint Automatic Control
Conference� � ��� vol	 �� pp	 WP�
A� New York� American Automatic Control Council�
ASME	

���� Albert A	 Schy and Daniel P	 Giesy	 Multicriteria Optimization Methods for Design

of Aircraft Control Systems� In �Multicriteria Optimization in Engineering and in the
Sciences�� ed	 W	 Stadler	 � ��� Plenum Press� New York	

���� J	 Koski	 Multicriteria Truss Optimization� Multicriteria Optimization in Engineering
and in the Sciences	 Edited by W	 Stadler	 New York� Plenum Press� � ��	

���� Y	 Haimes� W	 Hall and H	 Freedman	Multiobjective Optimization in Water Resources

Systems� Amsterdam� Elsevier Scienti�c Publishing Co� � ��	

���� J	 G	 Lin	 Multiple�Objective Problems� Pareto�Optimal Solutions by Method of

Proper Equality Constraints� IEEE Transactions on Automatic Control� vol	 AC
���
no	�� October � ��� pp	 ���
���	

���� G	 A	 Katopis and J	 G	 Lin	 Non�inferiority of Controls under Double Performance

Objectives� Minimal Time and Minimal Energy� Proceedings of �th Hawaii Int	 Conf	
Syst	 Sci	� Honolulu� Hawaii� Jan � ��� pp	 �� 
���	

���� J	 G	 Lin	 Circuit Design under Multiple Performance Objectives� Proc	 � �� IEEE
Int	 Symp	 Circuits # Systems� San Francisco� CA� pp	 �� 
���� Apr	 � ��	

��


