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Abstract

VIBRATION OF THE FEMUR DURING
TOTAL HIP ARTHROPLASTY AND THE
APPLICATION OF A DYNAMIC VIBRATION
ABSORBER
by
Charles Ellis Ragan, IV

The problem of femoral vibration during the reaming process in total hip arthro-
plasty is examined. These vibrations are modeled as the transverse vibration of a
free-simple Euler-Bernoulli beam using a transfer matrix method which allows the
calculation of the frequency response of the beam. This method also allows for the
calculation of the response when a dynamic vibration absorber is attached. Based
on these calculations, a finite element model of the vibration absorber is developed
and then an experimental prototype of a damper which could be used during the
surgery is made. Tests are performed with real cadaveric femurs for cases with and
without the vibration absorber. Then the frequency response is calculated from these
experiments and compared with the calculated values. Based on these preliminary
results, it appears that by properly selecting a vibration absorber, the magnitudes of

the femoral vibrations can be significantly reduced.
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Term

A-P
CT
DOF
DVA
M-L
THA

accelerance
acetabulum
calcar
cancellous

cortical bone

greater trochanter
intramedullary
lateral

medial

receptance

INomenclature

Explanation

anterior-posterior

computed tomography

degree of freedom

dynamic vibration absorber

medial-lateral

total hip arthroplasty

output accelerance per unit force input,

typically plotted against frequency

“the large cup shaped cavity ...

in which the head of the femur articulates”

“the plate of strong tissue which strengthens

the neck of the femur”

“of a reticular, spongy, or lattice-like structure”

hard, dense bone comprising the outer layer of the femur
“a broad flat process at the upper end of the

lateral surface of the femur to which several

muscles are attached”

“within the marrow cavity of a bone”

“denoting a position farther from the median plane or
middle of the body or of a structure”

“pertaining to the middle; closer th the median plane or
the midline of a body or structure”

output displacement per unit force input, typically
plotted against frequency

damping , force/velocity

Young’s modulus (modulus of elasticity)

shear force



I “area moment of inertia of beam cross section

about beam’s neutral axis” [2]

k spring constant, force/length
m mass
M bending moment
Y,y displacement
zZ state vector, where
Zl']c: = {Fr Mr ¢ Yr F; My 6 Yi}k
@ slope of beam
¢ percent critical damping, where c., = 2v/mk

Note: the medical definitions are from [1]



Chapter 1

Introduction and Background

1.1 Brief History and Types of Hip Implants

Hip replacement surgery, or more accurately, total hip arthroplasty (THA), is the
replacement of the femoral head and the acetabulum with artificial components, as
indicated, in general, by the failure of the ball and socket joint due to bone dete-
rioration or fracture. The replacement of the head of the femur with a prosthesis
involves the removal of the femoral head and the insertion of a (generally) metal im-
plant into the femoral canal. An artificial femoral ball is attached to the end of this
implant, and this ball rotates in an artificial acetabular cup which is typically made of
high-density polyethelene and mounted into the patient’s acetabulum. The materials
of which both of these components are made, and the method of their attachment
to the existing bone, and the long term effects of these choices are the subjects of
considerable study and debate.

Of particular interest here is the method of affixing the femoral component to
the remaining bone, because deficiencies in all of the current methods are significant
motivators for this study. There are basically three systems at this time: cemented,
cementless, and custom. Clearly, the needs of each patient must be considered in
determining which method will be used, and each system has its own strengths and
weaknesses.

Cemented components were the first type used when Gliick performed the first

THA using ivory components in the 1890’s. In 1960 Sir John Charnley made a huge
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contribution to hip replacement surgery in when he began using methyl methacrylate
cement — a self curing acrylic cement which markedly improved the fixation of the
femoral component. Charnley began using this cement not merely as a glue, as others
had done, but as a "grout,” where it acted as the interface between the implant
and the bone around the entire surface of the implant. This thicker coat of cement
contributed to the higher success rate of his implants [3]. This technique is still in
use and frequently produces very good results, especially in the initial period after
implantation [4]. Some significant concerns do exist, however, such a the failure of
the cement over time, which leads to revision surgery with a much lower success rate
[5]; the potential systemic effects of acrylic bone cement [6] ; and the loss of bone due
to stress shielding because of the way in which the implant is secured [4]. See Figure
1.1 [6] for one of Charnley’s cemented implants.

Uncemented implants can be divided into two groups: press fit implants which
depend on friction, and therefore extensive contact, between the implant and the
bone, and bone-ingrowth implants which rely on the formation of new bone either
into pores or around geometric features on the implant’s surface. The drawback
to uncemented implants is that despite their potential for better long-term results,
given the elimination of the failure modes associated with the cement, their long-
term success is not yet proven [7]. This is due to the extreme necessity for rigid
initial fixation [8],{9]. Press fit implants depend on this mechanical rigidity from the
time of their insertion onward, while bone-ingrowth prostheses rely on it until new
bone is formed to further secure them in the femoral canal. It has been shown that
the distance between the hip and the bone seems to impact both the amount and

the speed of bone ingrowth into the prosthesis. Gaps over 2 mm appear to prevent



Figure 1.1: A Cemented Hip Implant

bone ingrowth, while gaps under 0.5 mm aid it noticeably [10]. Figure 1.2 shows an
uncemented implant [8].

Custom prostheses are those developed uniquely for an individual patient, gener-
ally by using computed tomography (CT) scan data in combination with computer
modeling software for the design and manufacture of the component [11]. The shape
of the implant is generally designed to maximize the “fit,” or agreement in shape
between the prosthesis and the existing bone, and the “fill,” or portion of the canal
occupied by the implant [11],[12], although there is significant variance in the ex-
act criteria used for the design [4]. The use of these custom components seems to
be particularly indicated when available non-custom components do not match the

patient’s bone geometry sufficiently well [11]. The potential disadvantages of these
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Figure 1.2: An Example of an Uncemented Femoral Implant

custom implants include concerns about the accuracy of the CT scans used to develop
the implant, and the higher cost of the custom components. In addition, some un-
dersizing of the implant may be unavoidable in order to make the implant insertable,

thus defeating the original purpose [13]. In Figure 1.3 a custom implant is shown.

1.2 Uncemented Surgical Procedure

The surgical procedure for inserting an uncemented prosthesis should be considered
in order to understand the mechanics and the implications of the methodology and
changes which may be suggested by the study. The particular technique recommended
by Engh and Bobyn is discussed here, although the general principles, particularly in

regard to the reaming of the femoral canal, remain the same. First, the surgeon makes



Figure 1.3: An Example of a Custom Hip Implant by Wright Medical

an incision along the lateral side of the patient’s buttock, and after detaching the
appropriate muscles and ligaments, removes the ball of the femur from the hip socket.
At this point, there is some variation in technique as to the order of the surgical
procedure, but Engh recommends that before the preparation of the acetabular region,
the pilot hole for the reamers which will eventually be used to size the femoral canal
be drilled [8]. Generally, however, the femoral head is removed prior to reaming the
canal, and this variation is an important point to consider for the purposes of this
study. Once the pilot hole is made and a high speed burr has been used to remove some
cortical bone from the greater trochanter, intramedullary reamers with successively
greater diameters are used to widen the canal in preparation for the implant. The

canal should be made exactly the same diameter as the cylindrical portion of the



femoral component. The goal of the reaming is to provide a tight fit for the distal
portion of the prosthesis into the cortical bone of the femur, as essentially all of the
distal cancellous bone is removed. The reamers are precisely sized to correspond to
the proper implant and have a rounded end so that no inadvertent cutting of the
cortical bone occurs and so that only the sides of the tool remove bone. Additionally,
the cutting surfaces extend for the entire length of the reamer so that the hole is a
constant diameter and to eliminate the potential for misalignment at the distal end of
the reamer once the canal had been widened proximally. Figure 1.4 is an illustration
of the proper reamers to use in contrast with one which will allow too much bone to
be removed from the canal [8]. It is this portion of the surgery which is emphasized
by this study.

After the femoral canal is prepared, appropriate measurements are made for the
alignment of the implant, and the head of the femur is removed, if this has not
been done already. Surgical chisels, burrs and rasps are used to remove bone in the
proximal femur and the femoral neck for the insertion of the upper, triangular portion
of the implant.

After a trial prosthesis, which is somewhat smaller than the actual one, is inserted
to provide the surgeon with a check for proper preparation, the actual prosthesis is
hammered into place. A tight fit is desired as has been discussed, but not so tight
that the femur is fractured [3].

In addition to the femoral component, a cup, typically made of a polyethelene
insert in a metal backing is inserted and firmly anchored into the patient’s acetabulum,

that is, the hip socket [§].
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Figure 1.4: Proper and Improper Reamers

1.3 Significance of Precision

As has been discussed, the precision of the fit of the femoral component into the
intramedullary canal is a critical factor in the successful outcome of the THA.
Underreaming can result in the fracture of the femur when the prosthesis is impacted

into its fina! position. Overreaming can lead to a number of negative consequences.



The gap between the bone and the implant can be too large to allow bony ingrowth. In
addition, even very slight motion of the prosthesis in the canal, known as micromotion,
can inhibit bony ingrowth in much the same fashion as motion at a fracture prevents
its healing [8]. Furthermore, this motion can cause the deterioration of the implant
itself [14], and this poses histological problems because of the potential health hazards
related to free metallicions from the alloys typically used in these implants, in addition
to the more obvious mechanical problems. The presence of these metallic particles
may lead to additional bone damage and resorption [15]. Micromotion has also been
linked to thigh pain in implant recipients [16].

In addition, if too much cortical bone is removed, the femur can be weakened and
this can also lead to fracture. These dangers obviously preclude both the oversizing
and undersizing of the canal. The vibrations produced by the reamer introduce
inaccuracies into the preparation of the canal, as seen in the next chapter, and it is
these vibrations which are the focus of this study and which present serious problems

for the THA patient.



Chapter 2

Previous and Related Work

This current work is the last in a three year study which has focused on the specific
concern of the vibration of the femur during the reaming operation which is done to
ready the femoral canal for the implant insertion. This study has also attempted to
provide a more general understanding of the mechanics of the reaming process and
the interaction between the cutting tool and the bone.

The results from the previous research which are of the most importance here are
the response characteristics of the femur to the forced vibration and the corresponding
dynamic model of the surgical process. Based on these measurements of natural
frequencies and and their corresponding mode shapes, one can construct a preliminary
mathematical simulation of these vibrations. As this model is tested and refined, the
effects of a dynamic vibration absorber (DVA) can be considered.

The dynamic behavior of the femur, its bending in the anterior-posterior (A-P)
and medial-lateral (M-L) directions and rotation about the proximal-distal axis, was
previously studied (at Truman Medical Center, Kansas City, Missouri) through the
measurement of accelerometer response to recorded impulses which correspond to low
band frequency excitation with known characteristics, and through accelerometer data
taken during simulated surgical reaming of the femoral canal. All of these experiments
were performed on cadaveric human legs. In addition to examining accelerometer
response and thus determining the transfer function and natural frequencies of the

femur, the reamed femoral canal was examined to determine the accuracy of the



10

reaming and to better evaluate the bending of the femur when excited by the reamer
[17].

Although it is difficult to characterize the behavior of the femur because of its irreg-
ular cross section, the complex boundary conditions in effect, the significant variation
between individuals [18] and the non-linear material properties of bone, certain con-
clusions and generalizations can be made based on the experimental data. Impulse
response testing showed that in the M-L direction the first natural frequency tends
to occur between 50 and 100 Hz. In the A-P direction, the first natural frequency
tends to occur between 100 and 300 Hz. Higher natural frequencies in the bending
modes occur above 400 Hz, and torsional modes also become apparent between 400
and 1200 Hz. There is significant variation between femurs, but these general trends
provide useful information [17]. Figure 2.1 is the transfer function from a femur stud-
ied in one of the earlier phases of this study. Reaming tests, in which an orthopedic
surgery resident performed the femoral reaming in a fashion typical of the actual
surgery, are also instructive in several ways. The first observation is that the use
of the smaller reamers, i.e. those under 13 mm in diameter, produces significantly
different effects than the use of larger reamers because they are removing the softer
tissues and the cancellous bone, which is an open celled material composed of inter-
connecting spicules, rather than the harder, denser cortical bone which makes up the
outer surface of the femur. The larger reamers begin removing cortical bone at an
average diameter of 13 mm and transmit more energy to the bone, much of it into
torsional modes, some into A-P modes, and relatively little into the M-L direction.
Interestingly, when the shape of the machined canal is examined by performing C-T
scans and by cutting the femur cross-sectionally, it is seen to be oval shaped with the

larger diameter in the A-P direction [17]. This oval shape seems to indicate that the
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Figure 2.1: Accelerance vs Frequency for Femur, from Previous Portion
of Study

most important effect on the accuracy of the surgery is the A-P vibration of femur
as the reamer is cutting the cortical bone.
The magnitudes of these vibrations are the most pronounced at low frequencies,

as seen for a vibrating system described by

mdzy(a:,t) dy(z,t)

d? T g T y(z,t) = f(t) (2.1)
then
- —iw Py 2 - 1a: 1 dPy 5
y =Y (z)e ™" and T =YY vielding y = T (2.2)

so the magnitude of the displacement, y, is equal to the measured acceleration divided
by the square of the frequency. Because higher natural frequencies have increasingly

smaller effects on displacement, the first one or two natural frequencies of the femur
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are of the most interest. Natural frequencies greater than 1KHz produce responses
of less than 10 microns, and can be neglected here [19].

Based on these general trends, a representation of a “standard” femur can be
developed in order to model its vibration characteristics and the effect of a damping
device mathematically. For this case, the first two natural frequencies are taken as
approximately 300 and 900 Hz. If the femur is considered to be a uniform Euler-
Bernoulli beam vibrating laterally in the A-P direction, it can be seen that these
natural frequencies correspond nicely to the theoretical ones, if realistic values for
the mechanical properties and dimensions of the femur are chosen, and if reasonable
assumptions about the boundary conditions are made. This analysis will be developed
in detail in the following chapter.

It is appropriate to briefly note that some work by other researchers has been
done in this area, although these results have been at times conflicting [20], and it is
hoped that this study will provide a solid foundation on which further research may

be built.
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Chapter 3

Analytical Model and Design of Damper

3.1 Euler-Bernoulli Beam Model

For an Euler-Bernoulli beam vibrating laterally in bending, the governing equation is

2 2 2
9 [Efa y] B (3.1)

922 |7 ba? e
where I, E, and m can vary with z and where y is a function of both z and ¢ [21].
Figure 3.1 shows the beam and its coordinate frame.

Assuming a separable solution y(z,t) = Y (z)f(t) yields

&2 [ &Y
= [EI dx(z“’)} — w?mY(z) = 0 (3.2)
d2
d_tf + W f(t) =0 (3.3)
E 1 \
|
Y

Figure 3.1: The Euler-Bernoulli Beam



14

Equation 3.2 has a solution of form

Y (z) = Cysin Bz + C; cos Bz + Cs sinh Bz + Cycosh Bz (3.4)
with
2
4 _Wm :
gr=2 (3.5)

The squares of the natural frequencies are the eigenvalues of such a system, and
for a given set of boundary conditions, the mode shapes, Y (z), which are the eigen-
functions, can be evaluated by solving the simultaneous equations which depend on

the results of standard beam theory. That is,

9%y d?Y ()

M = EI5= = BI———f(#) (3.6)
oM 0 0%y -
Pz " @ [Ela_] (3.1

If such a beam of length L is constrained against translation but not rotation at
one end and unconstrained in any way at the other end, it will be called a “simple-
free” beam. Based on the relations above, its natural frequencies can be derived by

solving the following set of simultaneous equations.

Y(0) =0 (3.8)
M(0)=0 (3.9)
M(L)=0 (3.10)
QL) =0 (3.11)

Given Equations 3.4, 3.6, and 3.7, and assuming a constant cross section and

uniform material properties these become
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—CoF+Cyf* =0 (3.13)
—C13%sin BL — C 8% cos BL + C3 8% sinh BL + C4B8% cosh BL = O (3.14)

—C1 8% cos BL + Cy83sin BL + C38% cosh BL + C4%sinh BL = 0 (3.15)

[21].
At this point it is convenient to either solve these equations via computer, or to
reference the complete solution tables for this problem published by Young and Felgar

[22] or condensed versions such as in [2]. These tables show that

_x: [BT
“n= Tz pS

(3.16)
where S is the cross sectional area of the beam and where X? = 15.41,49.96 for a
simple-free beam [2].

If £ = 20x10° Pa, which is at the upper end of the range of what is considered
to be the modulus of elasticity for bone [23] and p = 2000 kg/m3, which is an
adequate approximation of bone’s density, then a hollow cylinder of length L = 0.42
m with constant cross-section and d;=0.0214 m (27/32”) and d,=0.0254 (1") will
yield natural frequencies of wy; = 279.7 Hz and w, = 906.7 Hz. These frequencies
are in approximate agreement with those of the “standard” femur from the previous
chapter, based on these reasonable values for the physical parameters.

The assumption of simple-free boundary conditions is given some credibility by
this result, but these conditions are also descriptive of the surgical scenario. The
hip has been removed from the socket, and the head of the femur is unconstrained.
The knee joint is a hinge allowing rotation in the A-P plane, and although a member
of the surgical team attempts to keep the leg fixed by holding the knee during the

reaming of the femoral canal, it is reasonable to believe that the translational rotation
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will be more effectively constrained than rotation about the hinge joint. While this
is not a rigorous justification, it does give some insight into what is occurring, and
also provides a starting point from which to work.

Now that the problem has been simplified somewhat to the point that it can be
modeled analytically, a more sophisticated technique can be used to examine the
femur’s response. In addition, the effects of attached masses and DVA’s with spring,
mass, and dashpot components can be calculated. This technique is known as the
transfer matrix method, and it is an application of work first done by Holzer and
Mykelstad and later expanded by Pestel and Leckie [26]. First, however, a brief

summary of DVA theory is useful.

3.2 Summary of Dynamic Vibration Absorber Theory

The DVA is a secondary vibrating system which is attached to the primary system
under consideration. Correctly tuning it by adjusting its effective parameters, m, k,
and c, allows it to vibrate when the primary system is excited such that the motion
of the primary system is reduced or eliminated. In an ideal single degree of freedom

system when a vibration absorber is attached as in Figure 3.2, the equations become
myEy + (k1 + k2)z1 — keze = Fisinwt (3.17)
MaZqy — ko1 + ko2 =0 (3.18)

which has a solution of form
z1(t) = Xysinwt  and  z2(¢) = Xpsinwt (3.19)

which gives
kl + ]\72 - w2m1 —kg X1 F1 .l
—kz kg - w2m2 Xz 0 J
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and yields

X, = (kz — w2m2)F1

1= (k] + kg - wzml)(kz - wzmg) —_ k%
X (k2 F1)

2

= (kl -+ kg - wzml)(kg - wzmg) - k%

(3.20)

(3.21)

It can be seen from the numerator, that if &k, and m, are chosen such that \/:% =w
then X; = 0 [24].

When dashpots are included, the analysis becomes more complicated, and the
amplitude of the primary mass cannot be reduced to zero, but appropriate tuning
can considerably reduce the vibration of the primary mass at the forcing frequency,
although the peak at w will be shifted into two peaks at w; and ws, the exact shapes
of which are determined by the damping. Figure 3.3 shows how the peaks are shifted

by the absorber and the effect of damping [25].

Figure 3.2: A Single Degree of Freedom System with Vibration Absorber
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Figure 3.3: Frequency Response of 1 DOF system with DVA and Various
Damping Values

3.3 Transfer Matrix Method: Theory

For a vibrating system with a given state vector Z describing its condition at a point,
namely its displacement, angular rotation, bending moment, and shear force, the state

vector at another point in the system can be determined through the relationship,
Zxs1 = TeZy where ZE ={F M ¢ Yk (3.22)

provided that the transfer matrix T is known between points & and £ + 1. For a

system made up multiple elements, then [27]
ZN =Tn_1---T2Ti1Z; where ZI={F M ¢ Y} (3.23)

Pestel and Leckie [26] have computed transfer matrices for a number of different
mechanical elements, including beams, attached masses, and attached DVA’s, and

Seto [27] has used these matrices in the solution of a dynamic vibration absorber
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Figure 3.4: Simple-Free Beam with State Vector Z

problem. These transfer matrices provide an exact analytical solution to the problem,
rather than the approximate solution which would be reached through the use of finite
elements or another approximate computational method.

For details of their derivation see [26]. The following are the transfer matrices
used, in a somewhat different form than given in [27]. They are given in a form
with the first four rows corresponding to the real components of the state vector,
and the second four rows corresponding to the imaginary components. This would
be unnecessary were it not for the dashpot in the DVA which introduces imaginary
terms into the transfer matrices. It is more efficient computationally to then create

an 8x1 state vector with real and imaginary components, and to modify the transfer



matrix accordingly. The state vector Z is such that

ZE={Fr My ¢ Yr Fy M; o Yi}k

(3.24)

Each transfer matrix is a function of both the physical properties of the system and

the frequency at which it is excited.

Beam segment of mass m,; and length [: where
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with the defining relationships

Wy = kd/md
C = Cd/z\/mdkd
Np=u} (wﬁ - wz) + (2 wgw)?

Ni= :ZC wdwa

(3.30)

(3.31)
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D=- [(wg - w2)2 + (Qdew)z} [maw?® (3.36)

Attached mass of mass my:

100 —mu? 0 00 0 —
0 10 0 0 00 0
0 01 0 0 00 0
T = 0 00 1 0 00 0 (3.37)
0 00 0 1 00 —mew?
0 00 0 010 0
00 0 0 1 0
00 0 0 00 1

3.4 Transfer Matrix Method: Implementation

By applying these principles a FORTRAN computer program was developed which
reads in user defined attributes of a system composed of the three above element
types. The program calculates the element and the system transfer matrix for each
frequency in a range defined by the user. Given the system transfer matrix and the
simple-free boundary conditions, a sinusoidal excitation of magnitude 1 is applied at
the free end to simulate the vibrations induced by the reamer. Four of the resulting
equations are solved simultaneously for the real and imaginary components of the the
force and the slope at the simple support of the beam. These values are then inserted
back into the main equation to solve for displacement at the free end. This is done
for every frequency in the range, and because the exciting force is unity, the values

for displacement are also the values for receptance in m/N.
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(3.38)

(3.39)

(3.40)

The code was initially based on a program given in [2] and then modified based

n [27]. The full source code and input files are in Appendix A. For the “standard”

femur discussed earlier it produced the receptance plot for the free end of the beam

which is in Figure 3.5. Note the peaks at roughly 300 and 900 Hz. Because this is an
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Figure 3.5: Plot of Receptance vs Frequency for End of Beam, Without
DVA

analytical solution it agrees exactly with the the earlier calculated values and only
requires a single beam “element.”

Based on these predictions, multiple models of the same basic femur with varying
attached masses and DVA’s were run to get a good idea of how the beam’s response
would be effected. For example, the same fermur with an attached mass of m, = 0.0171
kg attached at the free end along with a DVA with m = 0.0036 kg, £ = 1.1734210*
N/m, and ¢ = 0,then the following response is obtained in Fig 3.6. Similarly, if the
DVA is changed such that { = .02, but all other properties remain the same, then
the response is in Figure 3.7 .

Utilizing these tests, the general properties of the necessary DVA can begin to

be formulated. An absorber with even a small amount of damping and a natural
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Figure 3.6: Plot of Receptance vs Frequency for End of Beam, With
Attached Mass and DVA

frequency approximately equal to the natural frequency which is desired to be elim-
inated should successfully eliminate almost all of the response at the first natural
frequency. It will also significantly reduce the response at the second natural fre-
quency. It is important to see that this occurs without introducing any new peaks

which, if created, would defeat the purpose of the absorber.

3.5 Development of Dynamic Vibration Absorber

Given that a DVA needs to meet the above criteria and also must be capable of being
mounted to the bone, several different factors must be considered. First, it must have

the correct mass and stiffness properties. Second, it should have a reasonably large (.
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Figure 3.7: Plot of Receptance vs Frequency for End of Beam, With
Attached Mass and Two Different DVA’s

Finally, it should be usable in a surgical environment without introducing too many
changes to the existing technique.

One of the first possibilities considered for the DVA was a cantilever beam which
could be adjusted to account for variations between different person’s femurs by
adding weights to the end of the beam. The properties of such a clamped-free can-
tilever can be calculated by using a program similar to the one used for the femur
itself. One problem with this design was a difficulty in securely affixing it to the
bone and making certain that no stiffness was lost at the interface between the beam
and the bone or in the intervening bracket which would be used to attach such a

cantilever. It is also difficult to control the amount of damping in a DVA like this,
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and only a limited amount will occur due to losses at interfaces and small material
nonlinearities. In addition, a beam hanging off to one side like this may introduce
additional rotational moments about the bone’s axis, and produce other undesirable
motions. A DVA like this could also be difficult to use in a surgical setting, making
its ultimate use merely theoretical.

The second design was significantly better in several ways. This design uses a
rubber ring which fits around the bone as the equivalent spring, and a metal exterior
ring as the equivalent mass. The high damping value of rubber is a significant benefit,
and although exact specifications for many types of rubber are difficult to obtain due
to the wide variety of custom rubber compounds, reasonably approximate values can
be readily obtained. Finite element models of various potential designs of this type
were made with Patran, and ABAQUS was used to calculate the natural frequencies
and modes. This process was repeated until 2 design was found which had a natural
frequency of approximately 300 Hz. In this design the inner rubber piece has an inner
diameter of 1.0 inch and an outer diameter of 2.0 inches, and the outer aluminum
part has an outer diameter of 2.25 inches. Both are 1 inch wide. See Figures 3.8 and
3.9 for illustrations of the damper and the output of the displacements calculated by
ABAQUS. Note that it is because master degrees of freedom were not defined that the
analysis does not show motion along only one axis. This is not important considering
the cylindrical symmetry of the damper.

If a DVA having these properties is mounted to the ideal simple-free beam con-
sidered earlier, it has a similar response. The receptance plot can be seen in Figure
3.10.

Based on this analysis a damper was then fabricated using a custom rubber by

Applied Rubber Technology. This actual damper varied somewhat with respect to




Figure 3.8: Patran model of DVA

the material preperties of the rubber due to difficulty in matching the desired density
and modulus of elasticity exactly. In the analysis, the rubber was assumed to have
a density of 1196 kg/m? and a2 Young’s modulus of 1500 psi. The material specifica-
tion sheets available from the supplier did not specify the density, which is probably
close to the assumed value, and the elastic modulus is given as 1958 psi. Aluminum
sleeves were fabricated according to the design specified in the analysis. The actual
application of the DVA required additional modifications which are discussed in the

next chapter.



Figure 3.9: Displacements of DVA as calculated by ABAQUS

3.6 Possible Modifications to the Beam Model

It is worthwhile to note that a simple-free beam will respond to a constant force at
any point along its length by rotating as a free body about its simply-supported end.
However, an oscillating force acting at a point is not going to produce such free-body
motion. Perhaps, though, given that it is desirable to completely exclude free body
motion from the model, as this is not what occurs during surgery, and also given that

the flesh surrounding the bone does act as some sort of spring support, it would be
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good to consider the system as a simple-free beam supported on an elastic foundation

with a stiffness per unit length of T
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This can be analyzed through the use of transfer matrices as above, where

co B [ g 0 0 0 0
le o pUe p2 0 0 0 0
acs 9_?1_ Co 4%‘ 0 0 0 0
ales acs ley Co 0 0 0 0
T = (3.41)
00 0 0 o fu pe ga
0 0 0 0 la o Bus po
0 0 0 0 acc % o e
0 0 0 0 ales acy gy co
with
s PSP =T , .
= { 3.42
g2 (3.42)
2
1
co = 5(coshﬂ + cos ) (3.44)
1 . .
a = ﬁ(smhﬁ + sin §) (3.45)
1
c2 = W(coshﬁ — cos f) (3.46)
1
cz = ﬁ(sinhﬁ — sin ) (3.47)

Interestingly, when this model is considered, the natural frequency peaks are not
shifted visibly, and their magnitudes are only changed slightly. (See Figure 3.11)
Therefore, it seems that the simple-free beam assumption has some merit, and the
effect of the elastic foundation (the surrounding flesh) is to prevent free-body rotation

from occurring.
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Chapter 4
Experimental and Data Processing Methods

Two types of experiments were performed. The first testing was done on whole cadav-
eric legs with the soft tissues largely intact such that the specimen closely resembled
a patient in real surgery, and the surgical conditions were simulated as well as pos-
sible. In the second type of test the soft tissues were completely removed and the
femur alone was studied while subjected to more reproducible boundary conditions.
In all tests the material was unembalmed as an additional measure to achieve material

characteristics as close as possible to those of living tissue.

4.1 Equipment

The primary equipment used to perform the testing consisted of Wilcoxon triaxial
accelerometers, a PCB instrumented hammer, an Analogic data acquisition board
mounted in an 80486 PC running Labtech Notebook data acquisition software. In
addition, signals from the accelerometers were passed through a set of active filters
with a cut off frequency of 10 Khz. To avoid aliasing, samples were taken at a rate

of 20 Khz.

4.2 In Situ Testing

Impact tests were performed on two cadaveric legs. Prior to the attachment of the ac-
celerometer the femoral head was removed in order to reproduce surgical conditions.

This is because the presence of the femoral head would clearly affect the vibrational
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characteristics of the bone. The accelerometer was attached to the femur by exposing
the bone and drilling and tapping a small hole into a firm part of the bone approxi-
mately 6 cm below the calcar. This is the first suitable spot for the anchoring of an
accelerometer, due to the brittleness of the bone and the irregularities of its surface
proximal to this position. The instrumented hammer was used to excite the femur
by striking it in the A-P direction at five marked intervals, 6 cm apart, along the
length of the femur. The excitation values of the accelerations measured by the ac-
celerometer in the hammer and the response measured by the accelerometer on the
femur were stored on the PC after passing through the anti-aliasing filters and data
acquisition card. Multiple tests at each point were performed to be certain that the
data was captured properly. Due to equipment limitations, each run could only last
0.4 seconds at the 20 Khz sampling rate. This required that for each test the femur
be struck repeatedly at a frequency in the neighborhood of 4 Hz to guarantee the
successful capture of an input and response.

The second of the femurs used for impact testing was also tested with a DVA
attached. Unfortunately, in order to attach the absorber additional thigh flesh was
required to be cut away from the bone, making the situation somewhat less like the
real surgical procedure, although it is not believed that this is a major contributor
to the vibratory characteristics of the femur, based on the tentative results seen
in Section 3.6 which seem to indicate that the stiffness of the elastic foundation
does not appreciably affect the response. The absorber was attached just below the
accelerometer, approximately 9 cm below the calcar cut, which was the first spot
where it would fit, due to the non-circular and irregular shape of the femur above this

point.
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The actual DVA used was not ideal and only approximately matched the speci-
fications of the Patran model. Specifically, both the inner and outer rings were cut
across the diameter so that they could be attached around the bone. The irregular-
ities of the most proximal portion of the femur prevent sliding the rings along the
axis of the femur. Consequently, a hose clamp was used to secure these pieces to the
femur. Finally, the rubber ring was not manufactured to fit the femur precisely, but
was modified to do so in the lab with a scalpel. These irregularities obviously affect
the exact characteristics of the DVA, but these tests are still useful for determining
if the vibration of the femur can be significantly reduced with the use of a vibration
absorber.

Reaming testing was done on only one femur because of difficulty in controlling
the boundary conditions. The reaming tests done were on the second femur and
actual surgical reamers were used in increasing sizes to ream the intramedullary canal.
Equipment availability limited the use of the reamers, and an electric drill, rather than

an air powered driver was used to power the reamers.

4.3 Testing of the Excised Femur

In order to compare the results of tests made under in-situ, and approximately surgi-
cal, conditions with results which would have greater reproducibility and less variation
due to changes in technique between surgeons and between researchers, tests were also
made on an excised femur as follows. The contralateral femur to that subjected to
impact and reaming tests was excised and cleaned so that tests under more repro-
ducible boundary conditions could be made. Tests were then performed subject to

free-free and simple-free boundary conditions. As in the previous impact tests, an
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accelerometer was mounted 6 cm below the calcar and the instrumented hammer was
used to strike the femur at six intervals along its length.

In the free-free tests a string was used to suspend the femur vertically so that free-
free conditions could be achieved. The string was tied to the femur such that a small
amount of rotational stiffness was provided to prevent the impacts from creating too
much swinging motion of the femur. Six locations along the length of the femur were
used as impact points, starting at the accelerometer (6 cm below the calcar cut) and
at five succeeding points, each 6 cm apart. The final impact point was 36 cm distal
to the calcar, and was an additional point not used in the in situ tests.

For the simple-free tests, a jig composed of a rotating shaft supported by bearings
mounted in a simple wooden frame was clamped to a lab table. The shaft was passed
through a hole drilled in the tibial condyles in order to simulate the hinge joint at
the knee. The other end of the femur was allowed to hang freely. Impact data was

taken at the same six points as for the free-free test.

4.4 Data Processing

After the accelerometer time histories were stored by the PC, they were transferred to
a UNIX workstation for analysis in MATLAB. The signals were normalized to remove
small voltage offsets produced by the data acquisition board. Fast Fourier Transforms

were then taken of each signal and the transfer function computed according to

_ FFT(0)

X =Frr

(4.1)

where O is the time history of the accelerometer mounted on the femur, and I is
that of the instrumented hammer. X(w) is the transfer function relating accelera-

tion response to a given acceleration input. Acceleration input, however, is equal to
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force input divided by a mass constant associated with the instrumented hammer.
Therefore, X(w) is seen to be equal to a constant times the accelerance. From the
accelerance, the magnitude of the receptance can be calculated simply by dividing by

2, as in Equation 2.2.

w

Finally, it is useful to compare the response at different points for a given exciting
force, although the data is actually the response at one point for a variety of different
exciting forces. The principle of reciprocity states that the response at a point A
produced by an exciting force at point B is equivalent to the response at B due
to an excitation at A. This principle allows the interpretation of data from a fixed
accelerometer with different excitation points to be interpreted as the more useful

response at multiple locations for a fixed exciting force. In the future discussion, this

is how the data is interpreted.
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Chapter 5

Experimental Results

5.1 1In Situ Impact Test Results
5.1.1 Without DVA

For each data acquisition run, the time histories of the response of the hammer, which
acts as the input function, and the response of all three axes of the accelerometer which
is mounted on the fernur, each of which are an output function, are recorded. Figure
5.1 shows one data set after the significant samples have been isolated. The large
peak is the impulse produced by the instrumented hammer, and the second largest
peaks are those from the A-P axis of the accelerometer. The remaining two channels
are the response in the M-L and axial directions.

A number of tests were performed at each point, and these results are generally
consistent for a given femur. Figures 5.2 and 5.3 demonstrate this. The differences in
the high frequencies are due to limitations in the applicable range of the accelerome-
ter’s frequency response.

The transfer function for each channel is calculated as in Section 4.4. Because pre-
vious work has shown that the most significant vibrations occur in the A-P direction,
the response along this axis was the main focus of the analysis. Plots of the transfer
function for this axis at each point along the femur show a number of notable items
about the dynamic response of each bone. The following figures show the transfer
function of the second femur for the low frequency range of 0 to 1500 Hz at each of

the “response” points along the length of the femur.
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Figure 5.1: Sample Data from Accelerometers

First, a significant peak occurs in the range between 250 and 300 Hz. This peak
is not visible at every measured point along the femur, but varies with location, as
would be expected for a bending mode. It is difficult to say with certainty that this is
the first bending mode of a simple-free beam, but it does share some characteristics
with such a mode. The second major peak which occurs between 650 and 800 Hz
also varies with location, but in a way different from the 300 Hz peak, giving further
credibility to the proposition that these are bending modes. The lack of response near
the middle of the femur seems to resemble a node like one which would be expected

for the second mode of a simple-free beam.
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Figure 5.2: Accelerance vs Frequency for Femur #1 at 15 cm Below
Calcar, Test #2

5.1.2 With DVA

When the DVA was placed approximately 9 cm below the calcar cut and the response
of the femur was measured, a noticeable reduction in response was observed. This is
particularly true at the 250 Hz peak, but is also quite evident at the 12 c¢cm response
point for the 667 Hz peak. At higher frequencies, the response is greater with the
damper, but it is important to remember that this is only for accelerance, and that
the displacement is negligible for these higher frequencies, as can be seen in Figure

5.7.
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Figure 5.3: Accelerance vs Frequency for Femur #1 at 15 cm Below
Calcar, Test #3

5.2 Reaming Test Results

The reaming tests results are primarily useful for demonstrating that a wide range
of frequencies are excited in the bone. The primary limitation to these tests is the
lack of certainty about the boundary conditions which are in effect and how these
compare to those in actual surgery. It can be seen in the following plots that most
of the energy is in the lower frequency range. In Figure 5.8, there is a medium sized
peak in the Fourier amplitude of the acclerometer reading in the 300 Hz region, and
a significant dip at 500 Hz which are both worth noting.The largest peak in this plot
occurs around 1100 Hz, but this peak begins to grow in the 600 to 700 Hz range.

It is apparent that significant energy exists in the region below 1500 Hz to excite
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almost any natural frequency in this neighborhood, with the possible exception of a
narrow region around 500 Hz. In the second plot, Figure 5.9, the reaming process
has progressed somewhat, and the peaks have shifted to the left slightly, but the 500

Hz dip remains in roughly the same place.

5.3 Testing of Excised Femur Without DVA
5.3.1 Subject to Free-Free Boundary Conditions

The plot of accelerance versus frequency when the excised femur is tested with free-
free boundary conditions is seen in Figure 5.10. The primary peak occurs at roughly

700 Hz, in a very similar position as for the in situ case. A smaller peak occurs at
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Figure 5.8: Fourier Amplitude of Accelerometer Reading when Femur
Excited by Reamer, run 38
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Excited by Reamer, run 40

some points along the femur at approximately 250 Hz, again similar to the in situ

case.

5.3.2 Subject to Simple-Free Boundary Conditions

When subjected to simple-free boundary conditions, the same femur has its most
significant response at essentially the same frequency as the in situ and free-free

cases. As in the other cases, a smaller peak also occurs around 250 Hz.



48

Accelerance vs Hz
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Figure 5.10: Accelerance vs Frequency (from top to bottom) at
6,12,18,24,30,36 cm, respectively, Excised Femur Subject to
Free-Free Boundary Conditions, Without DVA
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Figure 5.11: Accelerance vs Frequency (from top to bottom) at
6,12,18,24,30,36 c¢m, respectively, Excised Femur Subject to
Simple-Free Boundary Conditions, Without DVA



5.4 Testing of Excised Femur With DVA

The last case examined is the case of the same femur subject to simple-free boundary
conditions, with the same DVA attached in the same location as the in situ case. The
results are shown in Figures 5.12 and 5.13.

In comparing the results without and with a DVA, the most significant point is
that the absorber almost completely eliminates the 700 Hz peak at every measured
point along the femur. It is also important to note that the response with the vibration
absorber remains less than the response without it, even for the higher frequencies
where the in situ case showed larger response with the damper (see Figure 5.6).
This would indicate that nonlinearities in the in situ boundary conditions caused this

phenomenon.
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Figure 5.12: Accelerance vs Frequency (from top to bottom) at
6,12,18,24,30,36 cm, respectively, Excised Femur Subject to
Simple-Free Boundary Conditions, With DVA Mounted 9 cm
Below Calcar
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Chapter 6

Conclusions and Recommendations

Based on these results, several conclusions can be reached. Primarily, it does seem
possible to significantly alter the vibrations of the femur by the attachment of a vi-
bration absorber. This absorber will need to be tuned appropriately, and the degree
to which this can be readily done for patients in the operating room needs additional
investigation. Some standardization of the surgical technique appears to be necessary.
One major example of this is removal of the femoral head in relation to the reaming
process. Additionally, the boundary conditions during surgery need to be better un-
derstood, so that this vibration absorber can be properly tuned. Perhaps the surgical
technique could be altered so that the boundary conditions will be more reproducible.
This would allow both greater accuracy in analysis of a vibration absorber, as well
as more effective application of such an absorber. As these issues are addressed a vi-
bration absorber will have increasing usefulness in the reaming operation during hip
replacement surgery. One encouraging development is that it does not appear that
the cost of manufacturing a suitable vibration absorber is prohibitive. The materials
used were not costly and are readily machined to the necessary configuration, once
that is determined.

An interesting result which is unexpected is the similarity of the response of the
femur, whether subject to free-free or simple-free boundary conditions.This is some-
what puzzling as beam theory would indicate that the natural frequencies should be

different, but the fact that the same natural frequencies are important in all cases
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may simplify the development of a clinically useful vibration absorber, as it could
become less critical to perfectly understand the boundary conditions.

Future research in this area should focus on the boundary conditions and ways in
which changing or standardizing these boundary conditions could make a vibration
absorber more effective. Also, further work should be done to investigate making use
of the region around 500 Hz where the reamer does not appear to excite the femur
significantly. Perhaps part of the strategy in applying the DVA could be to shift the

natural frequency to this neighborhood.
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Appendix A

Source Code and Input Files for Beam Program

A.1 Program to Calculate Frequency Response of Simple-

Free Beam

program simp_res

implicit none

integer N,i,e_type(10),end_cond,Q

double precision E_b(10),Rho_b(10),S_b(10),I_b(10),L_b(10)
double precision M_att(10)

double precision M_s(10),I_s(10),K_s(10),R_s(10),zeta(10)
double precision w,winit,wstop,wincr

double precision A(8,8), T(8,8),T1(8,8)

double precision sub(4,4),bouncon(4),forc_ang(4)

double precision Yfree_i,Yfree_r,Ymag
open(1l,file="full.out’)

write(*,*)"enter # elements"
read(*,*) N

do 50 i=1,N
write(*,*)"Type of element",i

write(*,%*)"1 is beam, 2 is attached mass,

$3 is suspended element"

10
50

read(*,*)e_type(i)

continue

do 500 i=1,N

if (e_type(i).eq.1) goto 100
if (e_type(i).eq.2) goto 200
if (e_type(i).eq.3) goto 300



100 write(*,*)"beam element",i," Young’s Modulus"
read(*k,*) E_b(i)
write(*,*)"beam element",i," Mass Density"
read(*,*) Rho_b (1)
write(*,*)"beam element",i," Cross Sectional Area"
read(*,*) S_b(i)
write(*,%)"beam element",i," Mom of Inertia
read(¥,%) I_b(i)
write(*,*)"beam element",i," Length"
read(*,*) L_b(i)

goto 450

200 write(*,*)"attached mass"
read(*,*) M_att(i)
goto 450

300 write(*,*)'"susp element",i," mass"

read(*,*) M_s(i)

write(*,*)"susp element",i," Rotary Inertia"
read(*,%) I_s(i)

write(*,*)"susp element",i," stiffness"

read(*,%) K_s(i)

write(*,*)"susp element",i," rotary stiffness"
read(*,*) B_s(1)

write(*,*)"susp element",i," value for zeta (damping)"

read(*,*) zeta(i)

goto 450
450 continue
500 continue

* Enter end conditions
write(*,*)"System end conditiomns, left-right:"
write(*,*)"1:C-C 2:C-F 3:C-S 4:F-F 5:F-S 6:5-S 7:S-F"
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read(*,*) end_cond

*Sweep through frequencies and find respounse

write(*,*)"Initial frequency of sweep in rad/s (must be >0)"
read (*,*)winit

write(*,%)"Final frequency of sweep in rad/s"

read (*,*)wstop

write(*,*)"Increment frequency of sweep in rad/s"

read (*,*)wincr

de 1000 w=winit,wstop,wincr

do 600 Q=1,N

if (e_type(Q).eq.1) call beamxfn(Q,E_b,S_b,L_b,I_b,Rho_b,w,A)
if (e_type(Q).eq-2) call attxfn(Q,M_att,w,A)
if (e_type(Q).eq-3) call suspxfn(Q,K_s,M_s,zeta,w,A)

* call subroutine to set matrix T equal to matrix 4, if Q=1
if(Q.eq.1) call set_eq(4,T)

* else call subroutine to premultiply matrix T by matrix A,
* return prod in T1

if(Q.ne.1) then

call matmult(A,T,T1)

call set_eq(T1,T)

end if

600 continue

* form sub matrix for simple-free beam
sub(1,1)=T(1,1)



* X ¥ ¥ ¥ *

* X ¥ ¥ X *

sub(1,2)=T(1,3)
sub(1,3)=T(1,5)
sub(1,4)=T(1,7)
sub(2,1)=T(2,1)
sub(2,2)=T(2,3)
sub(2,3)=T(2,5)
sub(2,4)=T(2,7)
sub(3,1)=T(5,1)
sub(3,2)=T(5,3)
sub(3,3)=T(5,5)
sub(3,4)=T(5,7)
sub(4,1)=T(6,1)
sub(4,2)=T(6,3)
sub(4,3)=T(6,5)
sub(4,4)=T(6,7)

form free end boundary conditioms,
real force of magnitude 1 is bouncon(3)
bouncon(1l)=imaginary force component,
bouncon (3)=real force comp
bouncon(2)=imaginary moment component,
bouncon (4)=real moment comp
bouncon(1)=0.D0
bouncon(2)=0.D0
bouncon(3)=1.D0
bouncon(4)=0.D0

call DLSLRG(4,sub,4,bouncon,l,forc_ang)

forc_ang 1is vector containing force and
angle at simply-supported end

for simple-free beam

force_ang(1)=imag force comp at S end,
force_ang(3)=real force comp at S end

force_ang(2)=imag angle comp at S end,



* force_ang(4)=real angle comp at S end

Yiree_i=T(4,1)*forc_ang(1)+T(4,3)*forc_ang(2)+
$T(4,5)*forc_ang(3)+T(4,7)*forc_ang(4)

Yiree_i=T(4,1)*forc_ang(1)+T(4,3)*forc_ang(2)+
$T(4,5)*forc_ang(3)+T(4,7)*forc_ang(4)

Yiree_r=T(8,1)*forc_ang(1)+T(8,3)*forc_ang(2)+
$T(8,5)*forc_ang(3)+T(8,7)*forc_ang(4)

Ymag=dsqrt((Yfree_i**2.D0)+(Yfree_r**2.D0))

write(1,1100)w,Ymag,Yfree_i,Yfree_r
write(1l,%)

1000 continue
1100 format(1X,4(E14.6,2X))

end
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subroutine set_eq(IN,0UT)
implicit nomne
double precision IN(8,8), 0UT(8,8)

integer 1i,j

do 50 i=1,8
do 45 j=1,8
0UT(i,j)=IN(1,])
45 continue
50 continue

end
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subroutine idenmat (ANY)
implicit none

double precision ANY(8,8)
integer i,j.k

do 30 i=1,8

do 20 j=1,8

ANY(i,j)=0.D0
20 continue

30 continue

do 50 k=1,8
ANY(k,k)=1.D0
50 continue

end
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* subroutine to premultiply matrix T by matrix A,return prod in T1
subroutine matmult(4,T,T1)
implicit none
double precision A(8,8), T(8,8), T1(8,8)
double precision partl, part2, part3, partéd
double precision part5, part6, part7, part8
integer f,g

do 50 £=1,8
do 45 g=1,8

parti=A(f,1)*T(1,g)
part2=A(f,2)*T(2,g)
part3=A(f,3)*T(3,g)
part4=A(f,4)*T(4,g)
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part5=A(£,5)*T(5,g)
part6=A(f,6)*T(6,g)
part7=A(f,7)*T(7,g)
part8=A(£,8)*T(8,g)

T1(f,g)=parti+part2+part3+part4+partS+part6+part7+parts

45 continue
50 continue
end
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subroutine beamxfn(Q,E_b,S_b,L_b,I_b,Rho_b,w,4)

implicit none

integer Q,j,k

double precision E_b(10),Rho_b(10),S_b(10),I_b(10),L_b(10)
double precision w,w2,A(8,8)

double precision B2,B,B_1_4,B_L,EI

w2=w*%*2.D0

B2=w2+*S_b(Q)*Rho_b(Q) /(I_b(Q)*E_b(Q))
B=dsqrt (B2)

B_1_4=dsqrt(dsqrt(B2))
B_L=B_1_4*L_b(Q)

EI=E_b(Q)*I_b(Q)

A(1,1)=(dcosh(B_L)+dcos(B_L))/2.D0
A(1,2)=-B_1_4*(dsinh(B_L)-dsin(B_L))/2.D0O
A(1,3)=EI*B*(dcosh(B_L)-dcos(B_L))/2.D0
A(1,4)=-EI*B*B_1_4*(dsinh(B_L)+dsin(B_L))/2.D0

A(2,1)=-(dsinh(B_L)+dsin(B_L))/(2.0%B_1_4)



50
100

150
200

250
300

A(2,2)=A(1,1)
A(2,3)=-EI*B_1_4*(dsinh(B_L)-dsin(B_L))/2.D0
A(2,4)=A(1,3)

A(3,1)=(dcosh(B_L)-dcos(B_L))/(2.DO*EI*B)
A(3,2)=-(dsinh(B_L)+dsin(B_L))/(2.DO*EI*B_1_4)
A(3,3)=A(1,1)
A(3,4)=-B_1_4*(dsinh(B_L)-dsin(B_L))/2.D0

A(4,1)=-(dsinh(B_L)-dsin(B_L))/(2.DO*EI*B*B_1_4)
A(4,2)=A(3,1)
A(4,3)=A(2,1)
A(4,4)=A(1,1)

do 100 j=5,8
do 50 k=1,4
A(j,k)=0.DO
continue

continue

do 200 j=1,4
do 150 k=5,8
A(j,k)=0.DO
continue

continue

do 300 j=1,4

do 250 k=1,4
A(j+4,k+4)=A(j,k)
continue

continue

end
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subroutine attxfn(Q,M_att,w,A)
implicit none

integer Q

double precision M_att(10),w,A(8,8)

call idenmat(A)

A(1,4)=-(M_att(Q))*(wx*2.D0)
A(5,8)=A(1,4)

end
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subroutine suspxfn(Q,K2,M2,zeta,w,A)
implicit none

integer Q

double precision A(8,8), K2(10), M2(10),w
double precision omd,zeta(10),Nr,Ni,dencm

double precision denoml, denom2, denom3

call idenmat(4)

omd=dsqrt ((K2(Q)/M2(Q)))

Nr=(omd**2.D0)*( (omd**2.D0) - (wk*2 .D0) )+
$((2.D0*zeta(Q)*omd*w) *%*2.D0)

Ni=2.DO*zeta(Q)*omd* (w#*x3.D0)

denomi=( (omd**2.D0) -~ (w*%2.D0) ) **2 . DO

denom2=(2.D0*zeta (Q) *omd*w) **2 .DO

denom3=M2(Q) * (wx*2.D0)

denom=-1.D0*(denomi+denom?) /denom3

A(5,8)=Nr/denon
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A(5,4)=Ni/denom
A(1,8)=-1.DO*Ni/denom
A(1,4)=Nr/denom

end
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subroutine matprint (ANY)
implicit none
double precision ANY(8,8)

integer 1,j

do 50 i=1,8
write(*,100) (ANY(i,j),j=1,8)

50 continue
write(*,*)
100 format (1X,8(E8.2,1X))

end
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A.2 Sample Input File for Beam Without DVA

1

1

20.D9
2000.D0O
1.4598D-04
1.0076D-08
0.48D0

7

100.D0O
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8100.D0
1.D0

A.3 Sample Input File for Same Beam with DVA

3

1

2

3

20.D9
2000.D0
.4598D-04
.0076D-08
.48D0
.0171D0
.0036D0
.DO
.1734D4

.DO
.DO

N O O O O O O =

100.D0
8100.D0
1.P0
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