RICE UNIVERSITY
Efficient and Accurate Simulation of Integrate-and-Fire
Neuronal Networks in the Hippocampus
by
Anthony Richard Kellems
A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Arts

APPROVED, THESIS COMMITTEE:

L

Steven }y Cox,\&d;dsor

Professor of Computational and Applied Mathematics

bz

3?«3/ C. Sorensen
h G. Harding Professor of Computational and Applied Mathematics

Nerve /O B>

%}nes J. Km.eflm
ssociate Professor of Neurobiology and Anatomy
University of Texas Health Science Center at Houston

WL

Mark P. Embree
Assistant Professor of Computational and Applied Mathematics

HousToN, TEXAS

MAy 2007

UMI Number: 1441828

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1441828
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Abstract

Efficient and Accurate Simulation of Integrate-and-Fire
Neuronal Networks in the Hippocampus
by

Anthony Richard Kellems

This thesis evaluates a method of computing highly accurate solutions for network
simulations of integrate-and-fire (IAF) neurons. Simulations are typically evolved
using time-stepping, but since the IAF model is composed of linear first-order ODEs
with hard thresholds, explicit solutions in terms of integrals of exponentials exist
and can be approximated using quadrature. The technique presented here utilizes
Clenshaw—Curtis quadrature to approximate these integrals to high accuracy. It uses
the secant method to more precisely identify spike times, thus yielding more accurate
solutions than do time-stepping methods. Additionally, modeling synaptic input with
delta functions permits the quadrature method to be practical for simulating large-
scale networks. I determine general conditions under which the quadrature method
is faster and more accurate than time-stepping methods. In order to make these
methods accessible to other researchers, I introduce and develop software designed

for simulating networks of IAF hippocampal cells.

Acknowledgements

I would first like to thank the members of my committee for their guidance,
especially my advisor Dr. Cox, who first introduced me to applied mathematics when
I was an undergraduate, and Dr. Embree, who has been the most instrumental in
shaping my applied mathematics career, and Dr. Sorensen and Dr. Knierim for their
assistance in preparing me for my defense.

I also thank Dr. Chip Levy and his lab members, Ben Hocking and Andrew Howe,
for their hospitality and dialogue when I visited the University of Virginia to meet
with them and discuss hippocampal simulations.

Thanks also to one of my best friends, Alana Abernathy, who not only has given
me support and inspiration but who is a student of cognitive science and has an
appreciation for the applications of my work.

Finally, I thank my family, foremost Mom and Dad, for their unending support
and love and for giving me the chances and opportunities to get to where I am now,

and I thank God for the gifts and talents He has given me.

Contents

1 Introduction 1
1.1 Motivation for Modeling Hippocampal Neurons 1

1.2 Approaches to Neuronal Modeling 4

2 Methods 9
2.1 The Integrate-and-Fire Model 9
2.1.1 Spike Rate Adaptation, 11

2.1.2 SynapticInput o 12

2.2 Solution Methods 15
2.2.1 Time-stepping 16

2.2.2 Analytic Solution Derivation 18

2.2.3 Quadrature Methods 21

2.2.4 Analytic Solution via Composite CC Quadrature 22

2.2.5 Spike Time Identification 23

2.2.6 Multi-Cell Solution via Quadrature 25

2.3 Modeling Synapses with Delta Functions 26
2.3.1 Modeling the EC/DG Layer 27

2.3.2 Delta-synapse Equations 28

2.4 Simulation Platform and Visualization Tools 31

3 Results 35
3.1 Single Neuron Dynamics 35
3.2 A Simple Function: The XOR Network 38
3.3 Efficiency and Accuracy of the Quadrature Method 39
3.3.1 Computational Complexity: Using Alpha Functions 40

3.3.2 Computational Complexity: Using Delta-synapses 44

3.3.3 Effect of STI Tolerances 47

3.3.4 Clenshaw—Curtis Quadrature vs. Gaussian Quadrature 48

3.4 Network Rhythmogenesis 50
3.5 Summaryof Results 54

4 Future Work 55
5 Conclusion 58

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Hippocampus with main regions indicated 2
Basic circuit diagram of a single integrate-and-fire cell 10
A small network with synaptic connections 13
Alpha function for a stimulated cell 14
Full circuit diagram of the IAF model 15
Synaptic connections in the delta-synapse model 28
Synaptic conductance functions in the delta-synapse model 29
The simulation GUI in MATLAB 32
The visualization GUI in MATLAB 33
Single neuron voltage trajectories and error curves 37
Error curves for a single neuron with spike rate adaptation 38
XOR firing and voltage plots 39
Errors vs. number of quadrature nodes for alpha function model . . . 41
Quadrature method errors and timings vs. N for alpha function model 43

Quadrature method errors and timings vs. N for delta-synapse model 45

Errors vs. number of quadrature nodes for delta-synapse model . .. 46
Voltage errors for neurons in oscillatory network 47
CC vs. Gaussian quadrature error plot 48
CC vs. Gauss—Lobatto quadrature error plot 49
Population oscillation from synchronized firing 50
Firing rates and power spectra for synchronized firing 51
Voltage errors for neurons in oscillatory network 52
Timestep distributions for quadrature method simulations 53

List of Tables

21
2.2

3.1
3.2

Integrate-and-Fire Model Parameters 16
Delta-synapse Conductance Function Parameters 30
Complexity of Quadrature Method Simulation: Alpha Function Model 43

Complexity of Quadrature Method Simulation: Delta-synapse Model 44

Chapter 1

Introduction

This thesis quantifies the efficiency and accuracy of quadrature methods for sim-
ulating networks of hippocampal neurons using the integrate-and-fire model. The
primary questions are, how accurately can individual voltage trajectories be resolved
during a network simulation, and how long does it take to resolve them? Using new
software that I developed specifically for hippocampal network simulations, I am able
to answer the aforementioned questions and provide a simulation platform for use

with future research.

1.1 Motivation for Modeling Hippocampal Neurons

Neurons in the brain form an interconnected network that gives rise to cognitive
functions, one of which is memory formation. This formation occurs in the hip-
pocampus, a brain region which has been studied extensively (Traub and Miles [25],
pp. 1-4). The inability to form new long-term memories is associated with damage
to the hippocampus, as has been demonstrated in human case studies and verified in

spatial memory experiments on rats (Johnston and Amaral [16], pp. 455-456). Not

only is the hippocampus of interest because of its connection to memory, but also be-
cause it is “the simplest type of cortex,” making it suitable for computational studies
(Traub and Miles [25], p. 1). However, simplicity in relation to other brain regions

does not mean that hippocampal simulations are in any way easy.

Figure 1.1: Hippocampus with main regions indicated (Byrne [9]). The cells that are modeled in
this thesis correspond to those located in Region CA3.

The hippocampus is divided into four main regions, depicted in Figure 1.1, each
responsible for a portion of the network dynamics. The entorhinal cortex (EC) sends
inputs to region CA3 and the dentate gyrus (DG); region CA3 contains recurrent
connections and also sends input to region CAl, which connects back to the EC
(Johnston and Amaral [16], p. 424). Estimates from rat hippocampal studies indi-
cate that about 300,000 cells comprise region CA1, 1,000,000 cells make up the DG,
200,000 cells comprise the EC, and about 200,000 cells comprise region CA3, and that
the density of recurrent connections within region CA3 is estimated at 2% (Ascoli
et al. [2]).

It is region CA3 which is of great interest because of this relatively high percentage

of recurrent connections. These connections appear to be responsible for generating
the neuronal firing patterns characteristic of epileptic seizures (Johnston and Amaral
[16], p. 457). Region CA3 also plays a role in generation of network oscillations, such
as the gamma rhythm observed in rats (Bragin et al. [6], Buzsaki et al. [8]).

In large-scale simulations of hippocampal networks it is typical to model only
region CA3 cells explicitly because recurrent connections are more prevalent than in
other regions, which can be modeled as feedforward black boxes (e.g., see August and
Levy [3], August [4]). Model neurons have a wide range of granularity, from highly
realistic single-cell models to less-realistic large-scale neuronal networks. Simulating
at any point on this spectrum requires sophisticated experimental techniques to obtain
reliable parameter estimates (e.g., see Hodgkin and Huxley [15]) and reliable cell firing
data (e.g., see Yoganarasimha et al. [30]), as well as development of models that can
be accurately solved.

This thesis simulates networks of region CA3 cells by using the integrate-and-fire
neuron model, which ignores the action potential generated by neuronal firings and
instead captures subthreshold dynamics. This model was first proposed by Lapicque
in 1907; over time it has been expanded to accommodate various cellular mechanisms,
but it still has the form of a linear ODE (Abbott [1]). The ultimate question is, can
realistic cognitive behaviors be reproduced by this model in a reasonable amount of
time? To answer this question requires techniques for solving the model equations

to be efficient and accurate. The results of this thesis quantify just how efficient and

accurate two solution techniques are when applied to IAF networks.

1.2 Approaches to Neuronal Modeling

The unavoidable reality of neuronal simulation is that the more realistic the model
is, the slower the simulation will be, and thus a variety of models and solution tech-
niques are used in practice. The integrate-and-fire (IAF) neuron is a simplified version
of a single cell that is useful because it captures spiking behavior without much com-
putational cost (Dayan and Abbott [12], p. 163). However, solving linear ODEs with
hard thresholds to high accuracy remains a difficult task due to discontinuities caused
by cell firings (Shelley and Tao [23]). Computational efforts have primarily focused
on time-stepping schemes, addressing either how to improve their accuracy (Shelley
and Tao [23]) or how to take advantage of their simplicity to facilitate simulations
(August and Levy [3]). However, recent work from 2007 claims that, depending on the
network topology, exact solution techniques provide statistically accurate solutions in
a fraction of the time required for time-stepping (Rangan and Cai [21]).

A biologically realistic model requires a spatial discretization of the cell into com-
partments, as was done by Traub and Miles in pioneering work in the early 1990s
(Traub and Miles [25]). In efforts to understand the dynamics of epileptic bursts,
Traub and Miles developed a 19-compartment model, but such detailed models as
this often preclude efficient large-scale network simulation because of the high com-

putational cost. To improve simulation speed, reduced multi-compartment models

have been developed, notably that of Pinsky and Rinzel (PR) (Pinsky and Rinzel
[20]). They divided the cell into a somatic and a dendritic compartment and showed
that such cells exhibit neuronal firing patterns that are very similar to those of the
more complex 19-compartment model of Traub and Miles.

In contrast to the IAF model, which is a single-compartment reduction, the equa-
tions that govern the PR model are continuous but coupled. No closed form solutions
exist, so they are approximated using high-order Runge-Kutta (RK) time-stepping.
For a desired accuracy this scheme generally permits larger timesteps than do lower
order methods. It would be useful to have such a scheme available for the IAF model,
but this cannot be done without losing accuracy unless modifications are made.

Discontinuities will relegate higher-order time-stepping methods to first order, but
interpolation schemes can be used to regain this lost accuracy. Linear interpolation
was first used to regain accuracy for second-order schemes (Hansel et al. [14]) and was
later generalized for higher-order schemes (Shelley and Tao [23]). If the IAF model
equations are sufficiently smooth, then spike times can be more accurately captured
by constructing an interpolating polynomial through recent data points and finding
where it crosses the threshold. This new spike time approximation is used to adjust
the post-spike voltage (Shelley and Tao [23]).

As an example of the effectiveness of this correction, a 128-neuron network simu-
lated using this technique in an RK 4th-order scheme can regain 4th-order accuracy

for a timestep of 0.5 x 1073 versus 107° for a first-order (Backward Euler) scheme

(Shelley and Tao [23]). While this is very useful, it relies upon continuity assump-
tions that may not hold for certain IAF equations, and for highly active or strongly
connected networks the timestep may need to be much smaller (Rangan and Cai [21]).

As an alternative to time-stepping, quadrature can be used to approximate the
analytic solution. Traditionally this approach is avoided because of the immense
computational cost associated with the quadrature routines. Rangan and Cai propose
a way to reduce computational complexity by taking advantage of the connectivity of
the network, paying particular attention to the visual cortex. This is a region where
neurons have strong local connections but sparse connections otherwise. When a cell
spikes, the spatial structure of the network is used to predict which cells are likely to
spike in response to this synaptic input (Rangan and Cai [21}).

Published results claim that 260,000-neuron networks can be simulated for 128 ms
in an hour on a laptop (Rangan and Cai [21]). This appears to require much more
storage than any laptop could have, but because neurons are only connected to their
neighbors on a two-dimensional lattice the memory requirements drop significantly,
as does the computational complexity. However, such a spatial network topology has
not been observed in the hippocampus, and computational resources force simulations
to use far fewer cells than occur in a real hippocampus.

As a consequence, depending on the size of the network, the density of connections
used in these simulations takes on a wide range of values. Traub and Miles used an

average connectivity of 0.2% in a 9,000-cell network ([25], p. 130), while Levy and

August used 10% connectivity for a 1,000 cell network ([3]). Hence even using a
very low connectivity would require a prohibitive amount of memory just to store the
connections, which seems to render Rangan and Cai’s approach infeasible, though
this has not yet been tested.

The only real drawback to the findings of Rangan and Cai is that they do not
present timing data for resolving voltage trajectories. Large-scale network simulations
in their paper show that statistical properties of the network can be captured in much
less time than required for time-stepping methods, but individual voltages and firing
times are not presented except for the case of a single neuron receiving input (Rangan
and Cai [21]). Although they claim that such solutions in large networks can be
achieved using a sufficiently small timestep, the lack of substantiating data makes it
unclear whether the speed gains from the algorithm still hold. In this thesis I clarify
the effect of the timestep on voltage accuracy of individual neurons in order to give
a better representation of the accuracy of the network simulation.

Accuracy of large network simulations becomes an issue when the goal is to get
IAF neurons to exhibit behaviors observed in real experiments. One such behavior,
temporal compression, is the spontaneous replay of a firing sequence, with the replay
occurring at a much faster rate than was experienced (August and Levy [3]). August
and Levy show that this compression can be achieved using a network of 1000 IAF
neurons (August and Levy [3]). However, it is not clear from their work whether the

replay is a numerical artifact or the true solution. Convergence analysis could not be

done because I was unable to reproduce their figures. Furthermore, their use of the
Forward Euler method with a 0.25 ms timestep appears dubious; this time-stepping
method is not stable for arbitrary timesteps, but the standard method, Backward
Euler, is unconditionally stable. It is because of discrepancies such as this that the
results in this thesis are useful, for if neuroscientists can use mathematically-sound
IAF simulation software, such as that presented here, then they will be more confident

in asserting the accuracy of their findings.

Chapter 2

Methods

The main focus of this chapter is twofold: construction of the integrate-and-fire
model, and solution methods for the resulting equations. Starting from the standard
leaky cell model, spike rate adaptation and synaptic input components are added
-to it to build the full model. I present two solution techniques, time-stepping and
quadrature, and discuss in detail how the latter is used to achieve highly accurate
solutions. The chapter concludes with my algorithm for simulating multi-cell networks

using the quadrature technique.

2.1 The Integrate-and-Fire Model

The basic leaky integrate-and-fire neuron has a simple ODE representation and
can be drawn as a circuit, depicted in Figure 2.1. Using Kirchhoff’s Current Law the

change in voltage for the kth cell is

while Vk(t) S V;gh

dVk

Ac,, 2k
“m =t

(t) = —Agr (Vi(t) — EL) + Linjk(t) (2.1)

end

10

The cell membrane has surface area A and capacitance per unit area ¢,,. The mem-
brane potential Vi(¢) is the voltage difference across the membrane, and it tends to
decay to its resting (reversal) potential £ when no external stimulus is applied. This
current leak is scaled by the conductance per unit area g;, which is the reciprocal of
Tm, the membrane resistance times area, r,,. An injected current I;,;x(¢) may stimu-
late the cell, thus inducing a change in Vj,. A hard threshold V}; is imposed so that if
Vi > Vi, at time ¢4, then cell k is said to have fired (or spiked) and instantaneously
Vi is set t0 Vyeser. A refractory period (a period after spiking during which the cell

remains at rest and receives no input) may also be imposed for 7t ms.

E
Linj k(1) L . 9L

Uin

Cm
| L out
[

Figure 2.1: Basic circuit diagram of a single integrate-and-fire cell. The voltage Vj is defined as
Uin — Uoyt- 1N this simple cell the leakage current flows through the top branch, while the capacitive
current flows through the bottom branch.

The rate at which Vj, decays to its resting potential is quantified by the membrane
time constant, 7,, = rmcm. The effect of injected current on the whole cell is charac-

terized by the total membrane resistance, R,, = 7,/A. Inserting these constants into

11

(2.1) yields the more elegant expression of the IAF model neuron:

avi

Tm— (t) = = (Vi(t) = EL) + RonIinji(t). (2.2)

Equation (2.2) is the fundamental IAF equation to which other currents may be
added to represent different biophysical properties of the cell. In this thesis I treat
two currents, one arising from spike rate adaptation and the other from synaptic

input, because they are the most commonly used in the literature.

2.1.1 Spike Rate Adaptation

Hippocampal pyramidal neurons receiving constant injected current do not fire
in a completely steady fashion, but rather the time between spikes increases slowly
until a steady rate of firing is reached. This adaptation is mediated by the flow of
potassium (K) ions through the membrane (Liu and Wang [18]) and can be achieved
in the model by including a conductance so that

avi

Tm (t) = =(Vi(t) = EL) — Tm8srax(t) (Vi(t) — Ex) + Rnlinjk(t), (2.3)

where E is the reversal potential due to Kt and g x(t) is the spike rate adaptation
conductance per unit area for cell k. Initially this conductance is zero, but whenever
the cell fires the conductance is instantaneously increased by some fixed amount Ag,,,.

Hence the equation is discontinuous and is given by

12

while Vk(t) S ‘/th

dGsra,
Tsra ;t k(t) = _gsra,k(t)- (24)
else
gsra,k(t) = gsra,k(t) + Agsra- (25)
end
Integrating (2.4) directly yields
gsra,k(t) = gsra,k(?k)e_(t_?k)/nm (26)

where t is the simulation time and % is the start time of the ODE (i.e. the last firing
time of cell k). This equation is only valid from the most recent spike time until the

next spike time.

2.1.2 Synaptic Input

The conductance which produces the richest variation in firing patterns for IAF
cells is that due to intercellular communication, or synaptic input. In a network of
neurons, each cell may connect to other cells via synapses, and each synapse can have
a different strength (weight) of connection. These connections are represented in the
matrix W, where W; is the weight from cell ¢ (presynaptic cell) to cell j (postsynaptic
cell).

Based on the general functions of neurons, two types of cells exist in this model:

excitatory and inhibitory. Excitatory cells tend to increase the postsynaptic cell’s

13

voltage, and hence their synaptic conductance will have a suprathreshold reversal
potential E.,, whereas inhibitory cells tend to decrease postsynaptic voltage and
have a subthreshold reversal potential E;,,. These potentials are represented by the

matrix F, where E;; is the reversal potential of the synapse from cell i to cell 7.

Wl 3

el<> W
\14’ 13
*

€2 424' U
Q_/W'

23

Figure 2.2: A 4-cell network with synaptic connections. Excitatory cells are white diamonds, and
the lone inhibitory cell is a black diamond. Arrows represent the direction of synaptic connections,
and the W;;; indicate the strength of each connection.

Firing of the presynaptic cell j causes a neurotransmitter to be released to the
postsynaptic cells, a process governed by a nondimensional “alpha function” «;(¢).
Though typical exponential forms for such functions are given in (Shelley and Tao

[23]), I use a variant that is normalized to give intuition about the biophysics:

®) {Mel‘(t‘Ei*tadfvi)/ 7= gspike occurred at
Q; = Ta

' (2.7)
0 otherwise

where ?] is the time of the most recent firing of cell j. The term t.4;; is used as an
adjustment so that «; starts from its value at the firing time. This adjustment time

is easily computed via Newton’s Method. Note that «;(t) is nonnegative, and from

14

the derivative

To Ta

el=(t=Fj+tag;;)/Ta t—1; + Ladj.j
al)(t) = Lo 2

it is clear that (2.7) peaks uniquely at a,(t) = 1 when t —¢; = 7,. Therefore,
«; is bounded by [0,1] so it can be interpreted as the relative measure of synaptic

conductance (see Figure 2.3).

Alpha Function

0.9+
0.8r
0.7F
0.6-
0.5r
0.4F
0.3F

0.2-

Relative Synaptic Conductance

0.1r

0 L " 1 L

40 60 80 100
Time (ms), T = 4

Figure 2.3: The alpha function with 7, = 4 for a cell that is stimulated by synaptic input. Notice
that the function peaks at 1, indicating saturation of neurotransmitter release. The firing times of
this cell are observed as the points at which the alpha function begins to increase.

Putting the above pieces together yields the synaptic input to cell k:
N
Lyna(t) = > Wikay (t)(Vilt) — Ejp). (2.9)
j=1

Since Isy, ks is a current per unit area, the synaptic weight Wy, is really a conductance

15

per unit area, and in fact it is interpreted as the maximum synaptic conductance from
cell j to cell k.

Thus the full integrate-and-fire model equation is

avi

Tm dt (t) = EL —_ Vk(t) - rmgsm,k(t)(Vk(t) — EK) —_ Tmlsyn,k(t) -+ Rfmjinj,k(t). (210)

This is shown schematically in Figure 2.4, and typical parameter values for this

mode] are given in Table 2.1.

EL | ar
I M

Linj i (t) ®
Vin

c
m v

t
11 O—
gsra,k (t)
— 0%

Ejy Wika;(t)

Figure 2.4: Full circuit diagram of a single integrate-and-fire cell. In this schematic only one
synaptic input, from cell j, is shown, but in reality there is one branch per synaptic input.

2.2 Solution Methods

The IAF model equations are linear ODE’s, and traditionally two techniques have
been used to approximately solve them. Nearly all practical work has been performed

using time-stepping because of its ease of implementation and speed. However, an-

16

Table 2.1. Integrate-and-Fire Model Parameters
Parameter Value Units Description
Vin —50 mV Threshold potential
Vieset —65 mV Reset potential
Er —65 mV Leakage potential
Ex -70 mV Potassium reversal potential
Ee, 0 mV Excitatory reversal potential
Ein —=70 mV Inhibitory reversal potential
Cm, 10 nF/mm? Membrane capacitance
T 1 MOmm? Membrane resistance
A 0.1 mm? Surface area of the membrane
Tm 10 ms Membrane time constant
Tera 10 ms Jsrq time constant
Ta 3 ms Synaptic time constant
Tinjk Varies nA Injected current to cell j
Agsra 3 puS/mm? Spike rate adaptation conductance increment
Wik Varies uS/mm? Synaptic weight from cell j to cell &

alytic solutions exist and can be approximated using quadrature, which is the main

focus of this thesis.

2.2.1 Time-stepping

Time-stepping methods partition the simulation domain [0,7] into subintervals

and approximate the solution over each of these subintervals. Partitioning is achieved

by choosing a timestep At and discretizing [0, T'] into a set of points t; = jAt, and the

approximation is computed using a finite difference approximation for the derivative

dVi/dt. Given the value Vi(t;), the next value Vi(t;41) is easily computed via the

time-stepping formula.

17

First-order schemes are commonly used in the neuroscience literature, and the
most basic time-stepping scheme is Forward Euler, which finds Vj(¢;4+1) by moving a
distance At along the line tangent to Vi (¢). Thus the derivative is approximated as

aVi () ~ Vi(tjr) — Va(t;)
dt At

(2.11)

and all other terms are evaluated at time ¢; so that (2.10) becomes

Vi(tir1) = Vi(ty)

Tm At = EL_Vk(tj)_ngsra,k(tj)(V;c(tj)"‘EK)—Tm-[syn,k(tj)+R'mIinj,k(tj)'
(2.12)
Solving for Vi (t;41) yields
m — At At
Vi(tjy1) = T—Vk(tj) + — (EL — Tmsrak(t;) (Vi(t;) — Bx)
" ™ (2.13)

- TmIsyn,k(tj) + RmIinjik(tj)) :

The spike rate adaptation function is discretized in the same manner.

An alternative first-order scheme can be found by discretizing the derivative as in
(2.11) but evaluating all other terms at the next timestep, i.e., at ¢;41. This leads to
the Backward Euler scheme

Vi(t;) + £Lq(ts41)

Viltsr) =
(tje1) 1+ f—nfp(tjﬂ)

(2.14)

18

where, for clarity, I define

N
p(t) =1+ ngsra,k(t) + Tm Z Wékaé(t) (215)
£=1
N
§(t) = BL + ExTmGerak(t) + Tm ¥ Wek0ie(t) Eor + RonTinj i (1). (2.16)
£=1

This method has an advantage over Forward Euler because it is unconditionally stable,
which ensures that, over a given interval, solutions will not grow unboundedly (Siili
and Mayers [24], p. 349).

Higher-order integrators exist, but dealing with the discontinuity due to firing lim-
its their effectiveness because the firing time is only known to O(At). Thus schemes
like classical Runge-Kutta will perform no better than first-order schemes unless they
are modified (Shelley and Tao [23]). I have chosen here to fully consider only first-
order schemes because higher-order methods do not perform well with discontinuous
synaptic conductances, which I will introduce in §2.3. I use Backward Euler for the

simulations in this thesis because of its stability property.

2.2.2 Analytic Solution Derivation

Observe that (2.10) only depends linearly on Vj. Defining

Pk(t) = i (1 + ngsra,k(t) + T Z ijaj(t))

T
™m j=1

(2.17)

m

1 n
Qk(t) = - <EL + EKngsra,k(t) + RmIinj,k(t) + T Z Vijaj (t)Ej)

Jj=1

19

allows (2.10) to be written in the general form of a first-order non-constant coefficient

ODE:

dVi
ﬂ(t) + P (t)Vi(t) = Qr(t).

(2.18)

It is a well-known result that this equation has a closed-form solution, which can be

obtained by using an integrating factor. Multiplying both sides of (2.18) by elio Pr(s)ds

gives

¢ 8)as dV y s)as

dt

The left-hand side is just a derivative
d ft Pr(s)ds ft Pi(s)ds
= [elo PRy)] = e PG 1),
and so integrating both sides with respect to ¢ from ¢, to t; gives

Vk(t)eftto Py(s)ds

to

t ty
: / Qu(t)elo I %qt
to

Evaluating the left-hand side yields

t tf
Vk(tf)eft‘;f Pele)ds _ 7 (1) = / Qk(t)ef‘t" Pr(9)ds gy,
to

(2.19)

(2.20)

(2.21)

(2.22)

20

which, upon solving for Vi(ts), becomes

t tr t
Vilty) = e~ Jid Pelthet (/ Qi (t)elo e gy Vk(to)) . (2.23)
to

The integral of P, can be evaluated explicitly because o; and gsrqx can be inte-

grated explicitly. Integrating (2.6) yields

o~

t -~ -~
/ gsra,k(s)ds = _Tsragsra,k(tk)(e—(t—tk)/‘rsm - e_(to_tk)/Tsra) (224)

to

where #;, is the time of cell k’s most recent spike: if cell k has not fired then #, = 0.
Now for the integral of o;. If f} = (0 then cell j has not fired and consequently

f:of a;(t)dt = 0. Otherwise it is clear that t; < to, so the integral of (2.7) is

ty ~ t—Ti 4ty g tr
/ a;(t)dt = [_<t — By o tagy + o)) (2.25)
to to
With these two integrals in hand the integral of B is
! 1 - - N
/ Pu(tdt = — (t — to — PmTsragsrak (tr) (e_(t_tk)/"'sra _ e—(to~tk)/7'sra)
-
‘o " (2.26)

to

n N (l_t—?z~+tadzv z') ¢
+7'mZij |:—(t—tj+tadj’j+7'a)€ To jl)
j=1

Substituting this into (2.23) reveals a difficulty in the analytic solution: evaluat-
ing (2.23) requires computing the integral of an exponential of an exponential, for

which no closed-form solution exists. This difficulty necessitates the use of numerical

21

quadrature, which is the focus of this thesis.

2.2.3 Quadrature Methods

Quadrature is a technique whereby nodes z; and weights w; are chosen so that

the sum of the weighted function values at the nodes approximates the integral, i.e.

n b
ijf(xj)z/ f(z)dz. (2.27)

Gauss-Legendre quadrature is the most accurate method in principle, since it opti-
mally chooses z; and w; to exactly integrate the highest-degree polynomial possible
(Trefethen and Bau [28]). The nodes in (2.27) are the eigenvalues of a Jacobi matrix
of dimension (n 4+ 1) x (n + 1), and the weights are w; = 2v]2’1, where v;; is the first
component of the eigenvector v;. This rule will exactly integrate a polynomial of
degree < 2n + 1 (Trefethen and Bau [28]).

An alternative method, Clenshaw—Curtis (CC) quadrature, uses Chebyshev points
as the nodes and optimally determines the weights. In this case the generic nodes,

lying in the interval [—1,1], are
Z; = Ccos (%) , 0<ji<n (2.28)

and the weights can be computed in O(nlogn) operations via the Fast Fourier Trans-

form (FFT) (Trefethen [26], Trefethen [27]). These nodes and weights can be shifted

22

to an arbitrary interval [a, b] via the formulas

~ b—a ~ b—a
Ti=at——(+z), @=—

This scheme exactly integrates polynomials of degree < n + 1, but it turns out that
as functions become less smooth, the accuracy of CC quadrature is about the same
as that of Gaussian quadrature (Trefethen [26]).

I chose to use CC quadrature for two reasons. The problem at hand is potentially
not very smooth; thus I expect that CC quadrature will yield about the same accuracy
as Gaussian quadrature. Also, in anticipation of exploring possibilities of adaptive
quadrature, CC is appealing because the cost of computing new weights is much lower

than for Gaussian quadrature.

2.2.4 Analytic Solution via Composite CC Quadrature

It is clear that (2.23) cannot be efficiently evaluated as written over the whole
interval [0, T] because of cell firings. The effect is twofold: first, since Vj(¢) is instan-
taneously reset to V,..: upon firing, this will affect the initial condition of the ODE
to be integrated; second, the synaptic input from cell k& to its postsynaptic neighbors
changes. The remedy is to use composite quadrature, whereby the domain [0,T] is
discretized into subintervals [¢;,¢;+1] of width At and (2.23) is evaluated over each

subinterval.

23

Knowing the value of Vj(¢;), the next value is computed as

ti+1 p

ti+1 t N\
Vi(tyg) = ey DO (Qu(t)elss O gy 4 Vk(tj)> . (2.30)
tj

AL
The term e 5 Tx®dt

is evaluated exactly using (2.26), and the integral involving
Qk(t) is approximated using CC quadrature. Now that the voltages can be accurately

computed, the next step is to accurately compute spike times.

2.2.5 Spike Time Identification

Small perturbations in the computed firing times of individual cells have the po-
tential to significantly impact the network as a whole, and thus it is critical to compute
spike times accurately. The algorithm that is traditionally used in the literature is
interpolation. I present a more accurate algorithm that uses the Bisection and Secant
Methods.

Assume for the interval [¢;,t;11] that Vi(t;) < Vin and Vi(t;41) > Vin. Then since
Vi(t) is continuous, Vi(ts) = Vi for some point ty, € [t;,t;41]. The goal of the Spike
Time Identification (STI) algorithm is to compute ¢;, as accurately as possible.

The Bisection Method is a robust, albeit slow, algorithm on [t;,¢;+1]. This con-
verges at a rate of (1/2)™, where m is the number of iterations. However, this
requires many evaluations of (2.30), which is expensive. Quadratic convergence could
be achieved by using Newton’s Method, but that requires evaluation of a derivative,

and since convergence is local there is no guarantee that Newton’s Method would

24

succeed.

My STI algorithm is actually a combination of two methods, with the goal of
achieving robustness and high accuracy with less computational effort. Two toler-
ances, €, and g, are chosen such that 0 < g, < g,. The Bisection Method is used
until |Vi(tm) — Vin| < &b, and then the Secant Method is used until |Vi(t;n) — Vin| < €.
Here the role of bisection is to get Vi(t) in an area where local convergence of the
Secant Method is achieved, and then superlinear convergence according to the golden
ratio %(1 +/5) is achieved. The apparent loss in order of convergence from Newton’s
Method to the Secant Method is offset by the fact that the Secant Method requires
no derivative evaluations and just one function computation at each iteration; hence
it is only és expensive as bisection.

Since function evaluations are expensive, a natural alternative is to construct an
interpolating polynomial p(t) over the interval [¢;,t;11] and to use one of the three
aforementioned rootfinding methods to compute the t;;. The advantage is that all of
the expensive work is in constructing p(t), while the rootfinding is easy. Also, since
p'(t) is easily computed, Newton’s Method is applicable. My implementation of this
STI algorithm constructs the cubic Hermite interpolating polynomial using Vi(t;),
Vi(t;), Vi(tj+1), and Vi(tj41), following the formula in (Shelley and Tao [23)). I first
use Newton’s Method, and if it fails then I use the Bisection Method. Evaluating p(t)
and p'(t) is inexpensive, so tolerances may be set very low with minimal impact on

simulation speed.

25

I chose to develop my STT algorithm because any desired numerical accuracy can
be obtained by tuning the tolerances, hence it offers the ability to compute a reliable
“exact” reference solution for error measurements, something that has been lacking in
the literature. Results in §3.3.1 also show that my algorithm offers better convergence

than the interpolation algorithm as the number of quadrature nodes is increased.

2.2.6 Multi-Cell Solution via Quadrature

In network simulations it is possible for multiple firings to occur simultaneously,
and each one can have an impact on the dynamics of other cells. For this reason
it is necessary to have an algorithm that can handle multiple firings properly. For
generality define K as the set of indices of cells that fired at ¢;,. Then the ODE system
for all cells is valid for all ¢ € [t;,t;5]. We can then reset Vi(ts), increment gspq x(tin),
and update a4 for all k € K, and start these ODE’s over with these new initial data.
This process of calculating the spike time and resetting the ODE’s can be continued to
obtain the solution for the time interval [t;, t;41] = [t;, ten) U[ten, teny] U+ - U tehge, tj41]
where there are K firing times in this interval.

This leads to the main algorithm for solving (2.10) over the interval [0, T] using

composite CC quadrature.

26

Algorithm 1: Exact Solution to Multi-Cell Network
Initialize network, set ODE’s
Compute and store default CC nodes (z) and weights (w)
for j = 1 to number of subintervals
while (just entered subinterval [t;,t;11]) OR (cells fired)
Determine t,,., the start of this subinterval
Shift CC z, w to [tpre, tj+1)
for k =1 to N (loop over all cells)
Compute Vi(t;4+1)
if Vi(tj+1) > Vig
Use STI algorithm to compute ¢ x
end
Determine K (identify cells that fired, if any)
if no cells fired
Accept Vi(t;4+1) for all cells and go to next subinterval
else
Compute earliest firing time ¢4;5; of all cells in K
Remove cells from K that did not fire at ¢ ;.4
Shift CC z, w to the interval [t,re, tfirst]
for k ¢ K
Compute Vi(tfirst)
for ke K
Set Vk(tfirst) = ‘/;eset
Increment gspqx(tfirst)
Compute o (t first)
Set firing time for ax as tspx = trirst
Compute adjustment time .4, for ai
end
end while
end for

2.3 Modeling Synapses with Delta Functions

The model described in §2.1 attempts to maintain realism by modeling the neuro-
transmitter release functions explicitly. However, this is expensive because the effect
of synaptic input on a given cell must be computed via a matrix-vector product.

An alternative technique is to replace (2.9) with synaptic input equations that de-

27

cay exponentially and experience instantaneous changes, as in (2.5), when synaptic
input occurs (Rangan and Cai [21]). This leads to a faster algorithm and allows for

inexpensive modeling of another piece of hippocampal anatomy, the EC/DG layer.

2.3.1 Modeling the EC/DG Layer

A small set of parameters governs the total behavior of the EC/DG layer, thus
eliminating the need to simulate individual EC/DG cells. The only data needed from
this layer are the spike times of EC/DG cells and what type of input (excitatory or
inhibitory) each spike is. A Poisson process is used to generate these spike trains.
Given the number of EC/DG cells, n.qy, and the rate of firing r (in Hz) of each cell,

the probability of a spike occurring is given by the exponential distribution

r

P= /\e_’\, A= mnecdg.

(2.31)

This distribution can be used to generate the feedforward spike times TJ-F by the
following formula:

TS = TF ~ log(p)/, (2:32)

where p is a uniform random number in [0,1]. This spike is randomly designated
as excitatory or inhibitory, based on the ratio n;/necqy, Where n, is the number of

excitatory EC/DG cells, and the CA3 cell that receives this spike is randomly chosen.

28

GAMPA
» o

) GNMDA
/ /’ GGABA

/\
\/

\\ - GAMPA

- GNMDA Y
GGABA -’

Figure 2.5: Diagram of synaptic connections in a 4-cell delta-synapse network. The white and
black diamonds are excitatory and inhibitory cells, respectively. Thick black arrows indicate that
cells e; and i3 both connect to cells es and i4. Dashed arrows indicate the receptors that are
activated when the presynaptic cells release neurotransmitter (i.e., when they spike). Thus it is
clear that excitatory cells influence only the AMPA and NMDA conductances, whereas inhibitory
cells influence only the GABA conductance.

2.3.2 Delta-synapse Equations

Instead of modeling the outgoing synaptic release for each cell, this technique
models the incoming synaptic conductances for each cell. Hippocampal cells are
influenced by two main neurotransmitters, glutamate and GABA. Glutamate binds
with AMPA and NMDA receptors on the postsynaptic cell to provide fast and slow
excitation, while GABA binds with GABA 4 receptors to provide inhibition (Johnston
and Amaral [16], pp. 439-442). Each neurotransmitter’s effect on cell k£ is modeled
by a conductance density Gg(t), where @ = {AMPA,NMDA, GABA}, so that Q
is the set of receptor types. As shown in Figure 2.5, excitatory cells release only

glutamate and thus they affect only AMPA and NMDA conductances, and inhibitory

29

cells release only GABA, and thus they affect only GABA, conductances. Hence at
time ¢ = T};, which is the jth spike time of neuron 7, the synaptic input from cell ¢
instantaneously increases Gf(t) by some amount Wf,g.

In addition to recurrent CA3 connections, external synaptic inputs from the en-
torhinal cortex and dentate gyrus drive hippocampal cells. In this thesis, these inputs
are combined into what is called the EC/DG layer. This layer of cells is a feedforward
component, meaning that it receives no input, and thus it is necessary to model only
the firing times of the EC/DG cells. The firing time of the jth EC/DG input of type
Q to cell k is denoted TZ,. When t = T,/ the EC/DG input instantaneously increases

the corresponding ()-conductance of cell & by some amount F, ,f? .

Synaptic Conductance Functions Neuron Potentials
%) [
< N s |
I 1g £ <
£ e . e
g wer]| 3 & 3
S 6.2} ¢ z % 4
'g GNMDA S o
(&) a2tk GGABA
e A P A -40
0 0
L N _70 N 0
) 2? 40 80 80 100 0 20 40 60 80 100
Time (Ms), T,,0,=2. Tamoa = 80 Tgaga =5 Time (ms), At=0.01, Exact CC

Figure 2.6: a) Synaptic conductance functions in the delta-synapse model. AMPA input from 4
EC/DG cells that fire at a rate of 500 Hz stimulates both cells. Cell 2 is excitatory and synapses
onto cell 1, but cell 1 is inhibitory and synapses onto itself. Notice in the left plot the fast and
slow decay rates for AMPA and NMDA, and notice that although the GABA conductance is large,
it also decays quickly. b) Voltages and spikes of each cell, shown here to provide context for the
conductance changes observed in (a).

The instantaneous nature of these inputs is modeled by a delta function, and the

Table 2.2. Delta-synapse Conductance Function Parameters

30

Parameter Value Units Description
eAMPA E.. mV AMPA reversal potential
eNMDA E.. mV NMDA reversal potential
¢GABA E;.n mV GABA reversal potential
TAMPA 2 ms AMPA decay time constant
TNMDA 80-100 ms NMDA decay time constant

TGABA 5 ms GABA decay time constant

WAMPA 0.1-1 uS/mm
WNMDA 0.001-0.1 uS/mm
WfABA 0.1-4 uS/mm
FAMPA 0.25 pS/mm

AMPA conductance density
NMDA conductance density
GABA conductance density

Feedforward AMPA conductance density

conductances decay exponentially, with associated time constants 79 (see Figure 2.6).

Hence the Q-type synaptic input to cell k is

dG?

— == +ZZW§:5 ~ Ty +ZFQ6 ~TE).

(2.33)

Note that (2.33) is a linear ODE, so using the general solution derived in §2.2.2, and

recalling that [6(¢t — T)f(¢t)dt

= f(T), yields

Gg(t) = Gg(to)e—(t—to)/fq + Z Z Wi%e—(t—Tij)/TQ + Z Fer_(t_Tkj)/TQ'

i jlto<Ty;<t jlto<TE <t
kj

(2.34)

31

Hence with these conductances, the term Iy, x(t) in (2.10) becomes

Lyni(t) =) G () (Vilt) — €9) (2.35)
Q

where €? is the reversal potential of the Q-type conductance. I apply the techniques
explained in §2.2 to solve the resulting voltage equations. Typical parameters for

these conductance functions are given in Table 2.2.

2.4 Simulation Platform and Visualization Tools

Efficient and accurate software is crucial for assessing viability of solution tech-
niques and evaluating performance of network simulations, but building such robust
code from scratch is tedious and error-prone. The software package developed here
implements numerical methods effectively and includes two GUI’s in MATLAB that
allow the user to generate and simulate networks quickly and to visualize the result-
ing data without having to write any code. The software includes both time-stepping
and quadrature methods, and it can simulate with either the standard alpha function
model or the delta-synapse model.

By combining powerful numerical methods with an interface designed specifically
for hippocampal modeling, this software should appeal to researchers and students
who simulate hippocampal networks. This software has a direct impact on the hip-

pocampus research group at Rice University because it finally provides a standard

32

simulation platform that is accessible to the group and that is tailored to its needs.
The software is flexible enough that it can be extended to include model types that
will be developed in the future.

Written in C++, this code utilizes matrix and vector routines from the PETSe
package (Balay et al. [5]). Though the code currently runs on a single processor, the

purpose of using PETSc is to ease the task of parallelizing the code in the future.

Network1.CC

LS . SomeBulter Spe
0 et scuen
[T005 . tewyom scuex
[T retactor

[T owpwmsneas
JITTT5 mxonel gty nny

Model Type ZDeka-symissebosdt | 7]
Astive Flle Network1 CC.iaf ————
Stases Bax 120y

Figure 2.7: The simulation GUI in MATLAB. Parameters are organized according to what type
of simulation will be run and what type of solution method will be used. Output files arc generated

automatically and they can be used to run simulations directly from the GUL

The simulation GUI (Figure 2.7) allows the user to set nearly all model parameters

33

and simulation properties, to choose from different types of stimulus currents, to
determine the network topology, and to control the solution method used. Some
features, such as creating custom network topologies, are not yet in the GUI, but are
available as auxiliary codes that any user acquainted with MATLAB can execute.
Some old features from a previous IAF model exist in the code and GUI, but they

remain because future work will make them available for the IAF models in this thesis.

Networkl CC

Comparison filename

- Networkl

Figure 2.8: The visualization GUI in MATLAB. The data analysis and plotting codes are orga-
nized as buttons: textboxes allow the user to set certain plotting options.

The visualization GUI (Figure 2.8) contains tools which let the user plot data in an
attractive and effective way in MATLAB. These tools plot various types of data, the
most important of which are firing patterns, voltage trajectories, spike rate adaptation
conductances, neurotransmitter release trajectories, synaptic conductances, and firing
rate information. In addition, given two voltage data files, the user can generate error

curves between these simulations to assess accuracy of different solution techniques

34

and to determine convergence of computed solutions.

It should be noted that I use three auxiliary codes to compute the initial quadra-
ture data. Two of these codes have been borrowed and modified from Prof. Nick Tre-
fethen (Trefethen [27], pp. 128-129). Gauss-Lobatto nodes and weights (see §3.3.4)

are computed using a modified version of Greg von Winckel’s code (von Winckel [29]).

Chapter 3

Results

The time-stepping and quadrature solution methods are assessed for speed and
convergence in this section. After establishing accuracy of the quadrature method for
the alpha function and delta-synapse models, I quantify the computational complexity
of Algorithm 1 with both types of STT algorithms. This complexity is compared with
that of Algorithm 2, and from this I offer theoretical and computational evidence to
favor choosing the Bisection / Secant STI algorithm over interpolation for the delta-
synapse model. Using this model, I close with a presentation of simulations that

demonstrate network rhythmogenesis.

3.1 Single Neuron Dynamics

The most basic measure of the performance of the solution methods for (2.10) is
the error between the computed voltages and the true voltages at each t;. The true
solution will not exist in closed-form for real-world problems, but certain assumptions
permit the voltages to be obtained exactly.

Assume that the network consists of a single neuron, and spike rate adaptation

35

36

and synaptic input are not present in the model. Also assume that the injected
current is constant (I;n;(t) = Ip). Then the exact solution for the interval [to, T] can

be obtained from (2.30) as

V(t) = e"t=9/ (— (B + Rlo) + V(t0)) = V(to). (3.)

This equation is valid up until the firing time t;,, which can be found in closed-form:

tth=—log< Vin — (B + Rinlo))

V(to) — (EL + Rnlo) (3.2)

Since gsr is not active, the cell will fire at multiples of ¢;;, and hence the true solution
for a driven single cell is known.

Figure 3.1 shows the computed voltage trajectories using the time-stepping method
and the quadrature method. In both cases At = 0.1, but observe that in the lower
plot the error is nearly machine precision for the quadrature method, whereas the
time-stepping method has quickly become completely inaccurate.

If spike rate adaptation is included in this network simulation, then it is not
possible to obtain the true solution without the use of quadrature, and thus exact
errors cannot be measured. However, since Backward Euler will converge to the true
solution as At — 0, the accuracy of the two solution methods in relation to each other
can be obtained. Errors in voltage trajectories between time-stepping simulations for

decreasing At and the CC method with fixed At = 0.1 ms are shown in Figure 3.2a.

37

Solutions for Neuron 0

-50 1 | I
< 1 1 [/]I ,’II ,ﬁl ,ﬁl —CC|
£ A A AT 1 1 ' oo -TS
py AT AR E I 1 1
> AR IR YRR A T 1
T _so 1M e 1Y Ve LY ! ! ' A fho
3 e | / ! ' RV ERTINAVIY
> 4] ! roe e Yo Y Y Y e
65 . . L LU) e Yy Ve fel
2 4 6 8 10 12 14 16 18 20
Time, At=0.1
Errors in Computed Voltages
S
t 100 /J_A__’__’_Hh
w ~——TSvs. True
% 10 = ==CCvs. True
§ B CNeommmyarmmy o aan
Lo . R . .)
0 2 4 6 8 10 12 14 16 18 20

Time (ms) sampled at At = 0.1
(TS=0.1, CC =0.1)

Figure 3.1: Single neuron voltage trajectories and error curves. a) The top panel shows the
computed voltage trajectories using the Clenshaw—Curtis quadrature technique (solid blue line) and
the Backward Euler time-stepping technique (dashed red line). b) The absolute error between the
exact solution (as given by equations (3.1)-(3.2)) and the computed solutions. Notice that the
time-stepping method loses a great deal of accuracy, whereas the quadrature method maintains near
machine-precision over the whole simulation.

Clearly the quadrature method is more accurate than the time-stepping method. The
simulation time for At = 107° ms was 98 seconds, while the CC method required just
0.05 seconds.

Using the delta-synapse model it is not possible to evaluate any closed-form solu-
tion exactly because the feedforward spikes are randomly generated. However, relative
error measurements can still be produced, as shown in Figure 3.2b. Once again the
quadrature method is highly accurate and requires just a fraction of the computation

time required for Backward Euler.

Error in BE vs. CC: single neuron with SRA

38

Error in BE vs. CC: single neuron with SRA, delta-synapses
10 T T

10'
= o
8 ' RN T
> >m o " |
Im T 10! , , \ ' ' O N
>>— 8 4 N TR d\ . l Woluoa R H
= > o2 ' RN SR VE A \,?x“, AT
g 5 ‘ [I ‘
n} =
Lé-l) o w0° \
3 2 o "\ Voo I'\ non
o At=le- S g0 N AR Vo el
2 ' At=te-1 & ' V! AP Ayt N 1.1
- 5 Bl =——at=te-1| Y T a oy)
2 ‘ - - -at=te-2 [(¥ et [L
< gt T oof |---atarez| ¥ ¢ M !
" - - At=1e-3 ! . v ’ ;
—t=te-d gl T armes D] i
- - =it=1e5 10°p | =——Ats1e-4 ’ i
10? -~ -at=te-5
0 2 4 6 8 10 12 14 16 18 20 107 n . N]
Time (ms) sampled at At = 0.1 4 2 10 12 s 18 2

4 6 8 14 1
(TS = see legend, CC =0.1) Time (ms) sampled atAt=0.1

Figure 3.2: Error curves for a single neuron with spike rate adaptation for synaptic input modeled
with a) alpha functions and b) delta-synapses. The plot on the left corresponds to a cell driven by
a 4 nA constant current, while the plot on the right corresponds to a cell driven by 40 EC/DG
AMPA cells with firing rate 500 Hz each. The absolute errors between the solutions computed via
time-stepping and quadrature are plotted for decreasing At in the time-stepping method.

3.2 A Simple Function: The XOR Network

Complex cognitive functions cannot be pursued without first verifying that the
model can reproduce much simpler functions. A function with both excitatory and
inhibitory dynamics is the XOR (exclusive or) function. Given two input cells ey and
e1, a third cell e; should fire only when one of the input cells fires, but not both. This
is only possible with an inhibitory cell i3 included in the model.

The network topology is given in the weight matrix

00 1 03
00 1 03

=100 0 o0 (3:3)
005 0

The first three rows of W correspond to e;, €3, and e3, the excitatory cells, and the

39

fourth row corresponds to the inhibitory cell iy. Using I;,;x(t) = 10 nA, the values
of the weights from cells e; and es; have been chosen so that when either of these
cells fires alone there will be sufficient stimulation to cause es to fire but not iy. A
successful simulation, computed via quadrature, is displayed in the firing diagram and

voltage traces of Figure 3.3. Similar results can be achieved using delta-synapses.

Neuron Potentials for XOR Network Voltage Errors for XOR Network

10°
- ¢ R N RUNSPRCERN SIUIDH
> TR
Q. h
s 3 10
>
£ =3 = I}
29 S 10¢
@ 5 g 1
g] i
% = 2o 10"
> 2
S
a -10
y 2 Neuron 0
<
i Neuron 1
-10 12 i
10 Neuron 2 !
40 | Neuron 3 '
10" 1 n
—70O T o o o w0 602 0 100 200 300 400 500 600
) Time (ms) sampled at At=0.1
Time (ms), At=0.1, Exact CC (ms) P

(Sim 1: BE = 0.001, Sim 2: CC =0.1)

Figure 3.3: Results of a simulation that successfully reproduces the XOR behavior. For this
simulation, a pulse of 10 nA current is delivered for 200 ms to cell ey, then for the next 200 ms the
same current is delivered to cell e, and finally for the last 200 ms both cells receive the same 10 nA
current. a) The lefthand plot shows voltages and spikes for each cell. Notice that when cell ¢4 fires,
the voltage for es is depressed and remains this way until the inhibitory conductance has sufficiently
decayed. The time constant is 7y, = 5 ms and the inhibitory weight is 50 S. b) The righthand plot
shows error curves for the computed voltages for each cell. The errors are measured with respect
to the quadrature method, and it is clear that 2-3 digit accuracy is maintained. However, the
time-stepping method required 31 seconds, while the quadrature method required just 2.4 seconds.

3.3 Efficiency and Accuracy of the Quadrature Method

To measure the efficiency of the quadrature method is to ask how expensive the

algorithm is in terms of arithmetic operations. For the purposes of this thesis, one

40

operation is defined as one +, —, X, or <+ operation. Though in reality evaluations
of trigonometric or exponential functions are more expensive, they are also treated
as single operations here because the point is to get a rough estimate of complexity.
With the computational complexity of the quadrature method derived, numerical
experiments demonstrate how my simulation software performs when key parameters

are changed.

3.3.1 Computational Complexity: Using Alpha Functions

The operation count for the analytic solution for a single cell, equation (2.30), is

described by two key terms:

ot tit1 t N
Vi) = ¢ Jo D0 Qut)els O a1yt | (3.4)
2]

. -
~

The outer exponential involves a definite integral, and (2.26) shows that this
computation is composed of three terms. The first two terms require O(1) operations.
The third term, the contribution to P, from synaptic input, involves a sum over the
number of cells, N. However, since ¢ € [0, 1] is the connectivity of the network, on
average each cell will have only ¢V synaptic inputs, and thus this term requires O(cN)
operations. Hence the first bracketed term of (3.4) costs O(1) + O(1) + O(cN) =
O(cN) operations.

The term in parenthesis in (3.4) is where the quadrature method is used. For

a single quadrature node both the exponential of P, and @, at the node must be

41

evaluated. From the preceding paragraph’s result, the exponential of P, requires
O(cN) operations, and using similar reasoning the formula for @ in (2.17) requires
O(cN) operations. Using Noe quadrature nodes, the total cost for the second term
is NocO(2¢eN) operations. This scaling is not detrimental, though, because results
displayed in Figure 3.4 indicate that only a small N¢c¢ is typically needed to obtain

high accuracy.

, Errors for Neuron O . Errors for Neuron 1
10° y " - 10 - —
——At=0.01
c
L 107} c v oAt=01
% ——At=1
L]
o 10 s
g 107
SR
810t
4
2 10
<)
5 o
10
o)
()]
5l
= ~14
S 107"t
S 10
107 . T 107" . N
0 5 10 15 20 0 5 10 15 20

Number of Quadrature Nodes

Figure 3.4: Errors in computed voltages versus the number of quadrature nodes used in the alpha
function model. An accurate reference solution is obtained by simulating a 2-cell, fully connected
network. The cells are stimulated with sinusoidal injected current over an interval of 100 ms using
Nee = 20 for a given At. This solution is compared to those computed by the quadrature method
with a range of No¢ values. The resulting curves demonstrate that even for large At only a small
number of quadrature nodes are needed to achieve near machine-precision accuracy.

For a network with N cells both of the above terms must be computed N times,
bringing the total computational complexity of one iteration of the CC quadrature

method to (Ncc + 1)O(2¢N?) operations. A full simulation for T ms with timestep

42

At thus requires = (N¢c + 1)O(2¢N?) operations. This is actually an underestimate
because the STI algorithm contributes a nontrivial cost.

Both of the STT algorithms must iterate to isolate the firing time of a single cell,
after which the voltage for all cells from [t;, ¢sirs] must be computed. One iteration
of the Bisection/Secant algorithm involves computing the voltage at the end of some
interval [t;, b], and hence it costs (Nge + 1)O(2¢N) operations per iteration.

The interpolation algorithm must evaluate the derivative of Vj, at the endpoints of
the interval before forming the interpolation polynomial. This task requires O(2¢N)
operations, but after that each step of the rootfinding method costs just O(1) opera-
tions.

The update of all cells once the earliest firing time is found is the same for both
methods: (Ngc + 1)O(2¢N?) operations. Dépending on the tolerances of each STI
method, the number of iterations to reach these tolerances will vary, but on average
each firing event will require the same number of iterations to isolate it. Let Sg and
Sr be the average number of iterations for the Bisection/Secant and Interpolation
algorithms, respectively. Assuming that there are F' distinct firing times during the
whole simulation then the estimate of the total cost of each STI algorithm is F'x
[(Avg. STI iterations) x (STI cost per iteration) + Update cost]. Combining this
with the basic cost of the simulation yields the approximate total computational
complexity, summarized in Table 3.1.

For networks of up to about 50 neurons, the quadrature method with At = 0.1

43

Table 3.1. Complexity of Quadrature Method Simulation: Alpha Function Model

Complexity (operations)

Total cost £ (Nee + 1)O(2eN?) 4 STI
STI: Bisection/Secant F x [Ss(Ncc + 1)O(2¢N) + (Nee + 1)O(2eN?)]

STI: Interpolation F x [S;0(1) + O(2cN) + (Nge + 1)O(2eN?)]

S

Avg. Error for Alpha Function Model Solution Method Timings for Parameter Sweep

s - 600
Neuron 0
£ BE vs. CC (Bis/Sec) — Neuron 1 - - -BE at=0.001
= CC.n=10.At=01¢ =01,¢ =16-13
'8 ’ ——Neuron 2 500 L} s
£ 1 | I~ CClinterp). n=10,at=0.1
<) o
s | 2
® v = 400
3.2 @
‘0T £
g -
3 § 300
C . 8
g- 10 5
z CC (Bis/Sec) vs. CC (Interp) | g- 200}
e Y S
TP . ;: &3
R N I R e AL S 100}
£ ﬂ,gx AW \";:‘){_/, RN EREL S | '
D | ‘ e ———— A L T
T ol . . L . . R 0 . .
10 20 30 40 S0 60 70 80 90 100 0 20 8 40 50 60 70 80 90 100
Neurons in Network Neurons in Network

Figure 3.5: Quadrature method errors and timings versus N, the number of neurons in the
network, for the alpha function model. a) Errors between the computed voltage solutions for the
time-stepping method vs. quadrature method with Bisection / Secant STI (solid lines) and for the
quadrature method with interpolation STI vs. Bisection / Secant STI (dashed lines). b) Computation
time (in seconds) for the different solution methods.

ms, £, = 0.1, and e, = 107!? outperforms the time-stepping method with At = 0.001
ms both in speed and in accuracy, as evidenced in Figure 3.5. The interpolation
STI algorithm cuts the computation time slightly as NV increases, but this gain is
negligible compared to the N? scaling observed. Over all simulations the quadrature

method is, as expected, more accurate than the time-stepping method, and the error

44

Table 3.2. Complexity of Quadrature Method Simulation: Delta-synapse Model

Complexity (operations)

Total cost L (Nee + 1)O(2fN) + STI
STI: Bisection/Secant F x [Ss(Nge + 1)O(2f) + (Nec + 1)O(2fN)]

STI: Interpolation F x [S$;0(1) + O(2f) + (Ncc + 1)O(2fN)]

between solutions computed using the two different STI algorithms maintains about
6 digits of accuracy. These results demonstrate that the interpolation procedure does
not save much time because it scales asymptotically as N2, and hence it makes more
sense to use a more accurate ST algorithm, namely the Bisection / Secant algorithm,

for a similar computational cost.

3.3.2 Computational Complexity: Using Delta-synapses

For the delta-synapse model the analysis is similar, but the results are much
more encouraging. The terms Py(t) and Qi(t) have no matrix-vector products, so
this reduces the complexity by an order of magnitude. First let f be the average
number of feedforward spikes per cell occurring in an interval. Following the above
procedure, the computational complexity for the delta-synapse model simulation is
L (Ncc+1)O(2fN). Similarly, the STT algorithms also require an order of magnitude
less work. As can be seen in Table 3.2, this implies that the time to simulate the

delta-synapse model scales linearly with /V, rather than quadratically for the alpha

45
function model, making this model more attractive computationally.

Average Voltage Error Solution Method Timings for Parameter Sweep

< E 1000
E ! soof | ——BE-at=001 ,
3 10 - - =BE at=0.001 e
£ E 80O} | = = =CC (Bis/Sec). At=0.1 .
30} 3 -~ ~CC (Interp), A1=01 /.
=z : @ 700 ’, 1
~ 4
=1 -2
S 10 BEvs. CC @ ’
& (Bis/Sec) E 6001 J/ ‘
Tt I " l
g 10 g 500 L.
(e} [N : = [
7 I} L s
% 1070 [, Ainately | £ a0 ,
g) Wi ; a s
- h ‘I —— Neuron 0 £ 300} Pl
g o3 e P
g 10 ——Neuron 1 | { (&} 4 P
200t -~ 7
2 " CC (Bis/Sec) vs. CC {Interp) Neuron 2 o - -
10 ——Neuron 3 100E e T e
T N /' ="
r ——Neuron 4 -
T 07 N " g T — L !
100 200 300 400 500 600 700 800 900 00 200 300 400 500 600 700 800 900
Neurons in Network Neurons in Network

Figure 3.6: Quadrature method errors and timings versus N, the number of neurons in the
network, for the delta-synapse model. a) Errors between the computed voltage solutions for the
Backward Euler time-stepping method vs. quadrature method with Bisection / Secant STI (solid
lines) and for the quadrature method with interpolation STI vs. Bisection / Secant STI (dashed
lines). b) Computation time (in seconds) for the different solution methods. Simulations were run
for 1000 ms. Networks consisted of 50% excitatory cells and 50% inhibitory cells in order to prevent
“seizure”, where nearly all cells fired in a period of just a few milliseconds. Though cells received
sparse EC/DG input, the cells that did spike connected to enough other cells that the recurrent
connections led to rapid synaptic input across the network.

As evidenced in Figure 3.6, the quadrature method with the delta-synapse model is
very efficient at simulating large networks, and in practice the time to run a simulation
with either STI algorithm is about the same. Hence the Bisection / Secant algorithm
is again preferred because it is more accurate. Additionally, the size of networks that
can be simulated increases by an order of magnitude.

The drawback to the delta-synapse model is that the delta functions introduce
discontinuities that make it more difficult for the quadrature method to accurately
approximate the inner integral of (2.23). A similar experiment as that used for the

alpha function model is performed, but the results in Figure 3.7 show that as N¢c¢

46

increases, the convergence rate is exponential, and indeed many nodes are required
in order to achieve near-machine precision relative accuracy for a given At. When
the interpolation STT algorithm is used, the computed solutions are less accurate (as
expected) but the accuracy also stagnates for Noc large enough, which limits the

performance of the interpolation scheme.

Bisection/Secant STI Algorithm _Interpolation STI Algorithm
10

107 E——

Solid = Cell 1 S~
g Dashed = Cell 2
8
B 10" 10"
(2]
®
Q
]
§ 10° | 10° +
e
v
> .
L 107y 107
g
@
g
2 -10| 10|
B0 [[—at=1 0
] —_—At=
o At=0.1
—At=001
107" . 1072

0 2

10 10
Number of Quadrature Nodes

Figure 3.7: Relative errors in computed voltages versus the number of quadrature nodes used.
As in Figure 3.4, an accurate reference solution is obtained by simulating a 2-cell, fully connected
network for 100 ms at a given At, but this time the cells are stimulated with spike trains from a
4-cell EC/DG layer with input rate 500 Hz. This solution is compared to those computed by the
quadrature method with a range of Noe values and with the two STI algorithms. In this case,
the errors in the computed solutions decrease logarithmically with Nee. Stagnation occurs for the
interpolation algorithm once Np¢ is large enough for a given timestep, but the Bisection / Secant
algorithm continues to converge as more nodes are used.

The implication is that, for small networks, in order to get the most accurate
solutions via quadrature, the computational complexity of the delta-synapse simu-

lation may scale poorly, thus making it as time-consuming as, or slower than, the

47

alpha function model simulation. For large networks this scaling should become less

significant.

3.3.3 Effect of STI Tolerances

Having established the efficiency and accuracy of the quadrature method as the
number of nodes and number of neurons are varied, it is important to quantify how
the tolerances affect the Bisection / Secant ST algorithm’s convergence. Consider the
single neurons that were used to assess accuracy in Figure 3.2. A reference solution
is computed with At = 0.01 ms, g, = 1078, and e, = 1013, This reference solution is
compared with solutions computed by varying ¢, for fixed &, as shown in Figure 3.8.
Ultimately, convergence to any desired tolerance ¢, is achieved, and thus g, can be

large, thus saving computation time.

Voltage Errors vs. STI Tolerances

—E= 1e-1

£b=1e—2
. g =1e-3
- §,= 1e-4

£ =165

Avg. Voltage Error vs. Reference Solution

0 -5 I—|O
ToIerg]nce e_for Secant?ﬂethod
Reference solution: CC,At=0.01, €, = 1e-8, e = 1e-13

Figure 3.8: Errors in the computed voltages of a single neuron with SRA turned on (see Figure 3.2
for parameters). Flat regions on these curves indicate that the desired tolerance has already been
reached; it does not imply any negative stagnation.

48
3.3.4 Clenshaw—Curtis Quadrature vs. Gaussian Quadrature
While quadrature methods can increase the accuracy of computed voltage solu-

tions, some quadrature methods are more appropriate than others for solving the IAF

equations. Specifically, the choice of integration nodes z; impacts the accuracy of the

computed solutions.

Comparison of Gauss and CC Quadrature

— Gauss nodes = 10
Gauss nodes = 100
10" | ~——Gauss nodes = 1000

Solid = Cell 1
Dashed = Cell 2

0 20 40 60 80
Time (ms), At=0.1, CC nodes = 10

Relative error vs. reference solution (CC)

100

Figure 3.9: Relative errors in computed voltages for Gaussian and Clenshaw -Curtis quadrature
schemes. Using CC quadrature with Noo = 10, a reference solution is obtained by simulating
a 2-cell, fully connected network for 100 ms with At = 0.1 and with stimulation from a 4-cell
EC/DG layer with input rate 500 Hz. This solution is compared to those computed using Gaussian
quadrature for various numbers of nodes. The errors between these solutions decrease as Gaussian
quadrature uses more nodes.

Typically, Gaussian quadrature has been used to compute the approximate solu-
tion to (2.10), but when compared to CC quadrature it actually performs worse for
this problem (see Figure 3.9). This result is counterintuitive, since Gaussian quadra-

ture will exactly integrate polynomials of higher degree than will CC quadrature.

49

Examining the nodes used in these schemes provides the remedy. In Gaussian
quadrature, the nodes lie in the interval (a,b); for CC quadrature, they lie in [a.b],
with the extreme nodes being o = a and z, = b. It turns out that forcing the
extreme nodes in Gaussian quadrature to be the endpoints of the integration interval
and optimally choosing the remaining n — 2 nodes, as in Gauss-Lobatto quadrature,
is more appropriate than standard Gaussian quadrature for some problems (Davis
and Rabinowitz [11], pp. 104-105; Golub [13]). Using Gauss-Lobatto quadrature
significantly reduces the discrepancy observed in Figure 3.9, so that 5-7 digits of

agreement are shown, as in Figure 3.10.

Comparison of Gauss-Lobatto and CC Quadrature

107" ¢
Solid = Cell 1
Dashed = Cell 2
107 ¢
6 ¥
— 10"
>
E
g 7
= N
g 10
(7]
L 0t
=
K
[}
T 0}
—— CC Nodes = 10, Lobatto nodes = 10
107'°k | ——CC nodes = 100, Lobatto nodes = 10
—— CC nodes = 10, Lobatto nodes = 100
10»” .

L L

0 20 20 60 80 100
Time (ms), At=0.1

Figure 3.10: Relative errors in computed voltages for Gaussian and Clenshaw Curtis quadrature
schemes. The same network as in Figure 3.9 is simulated for At = 0.1, but this time CC and
Gauss Lobatto quadrature schemes are compared for different numbers of nodes. Notice that the
errors are basically the same (5-7 digits of agreement) no matter if the same number of nodes is
used or if one quadrature method uses more nodes than the other (see the legend).

50

3.4 Network Rhythmogenesis

Simulations of large networks (usually more than a thousand cells) with inhibition
have shown that populations of neurons as a whole can fire in oscillatory patterns,
while single cells fire sparsely (Traub and Miles [25], pp. 164-5). This phenomenon,
known as network rhythmogenesis, has been produced in a variety of integrate-and-fire
models with alpha function synaptic inputs (Pinsky and Rinzel [20], Brunel and Wang
7). T present evidence that the quadrature method with the delta-synapse model
is an accurate technique for simulating large networks. Possible applications could
include using it to efficiently simulate rhythmogenesis once the proper conductance

parameter values are known.

Firing Pattern

700 800 900 1000

0 oo 200 300 400 500 600
Time (ms), Exact CC At=0.1

Figure 3.11: a) Firing diagram of a 100-cell network computed using the quadrature method.
Cells are randomly stimulated from a 200-cell EC/DG layer in which each EC/DG cell fires at 500
Hz. The population oscillations are observed as sparse bands of firing that occupy about 10-20 ms
time windows. These firings are synchronized, meaning that most cells fire at regular intervals. The
feedforward weights are FAMFA = 0.2, while synaptic weights are WAMPA = .2 WV MDA = (3,002,
WEABA = (0.8 (all have units xS/mm?).

Consider a network of 90 excitatory cells and 10 inhibitory cells, each with 10%
connectivity, and whose synapses all have strengths as given in Figure 3.11. A re-

fractory period of Tef = 2 ms is imposed after a cell spikes. The EC/DG layer is

o1

comprised of 200 AMPA-type cells which fire at a rate of 500 Hz. When the EC/DG
layer drives this network, synchronized population spiking results (Figure 3.11), akin
to that reported by Pinksy and Rinzel for their two-compartment model (Pinsky and
Rinzel [20]). However, unlike the PR model, the IAF model requires inhibition to

observe network oscillations, and the cells do not demonstrate bursting.

Network Firing Rate: bin window = 1 ms
T T T T T T

il M |
'J ’wm \AM \meW w-mwmmw MWM;;;%NA ‘WWU\M

1000
Tlme (ms) At—01 Exact CC

Network Firing Rate: bin window = 1 ms
T T T T T T

8
=]

8
=]

200
100 \

1 4
i ’UJWM\JWMWWJ ukM bl N wMWMMxMNMNqu% MWMM

100 700
Tnme (ms) At= 0 001 BE method
Power Spectrum of Network Firing Rate

Firing rate (Hz)

Power Spectrum of Network Firing Rate
o8-

08

07~

0.7

Max. power at 49 Hz

Max. power at 49 Hz 02

ol &Lﬂhx Mo s . s
0 50 100 150 300 450 500

] 50 100 150 200 250 300 350 400 450 500
Frequency (Hz) At 0.1, Exact CC Frequency (Hz), A t = 0.001, BE method

Figure 3.12: The top two plots show the firing rate of the network over time for the quadrature
and time-stepping methods. The general spiking pattern is captured well, and indeed the power

spectra (bottom two plots) associated with the firing rates from each solution method have the same

maximum power at 49 Hz, interpreted as the frequency of oscillation of the population.

The simulation is run for both solution techniques, using At = 0.001 ms for

Backward Euler time-stepping and At = 0.1 ms with Noe = 10 for quadrature. The

92

results show that for statistical measures of the network firing, the solution techniques
agree. The computed firing rates show that the qualitative behavior of the network
as a whole is captured well, and the power spectrum of these rates identify the same

oscillatory frequency of 49 Hz (see Figure 3.12).

, Voltage Errors over Rhythmogenesis Simulation

10 T T T ——— T

i | i
. Tt b ol

>
[S !
- .
= |
E
2]
g
E
@
= L
§ Neuron 0
= E
W Neuron 1
Neuron 2
Neuron 3 |7
Neuron 4
1 0'5 1 i 1 1 1 1 1 n 1
0 100 200 300 400 500 600 700 800 900 1000

Time (ms) sampled atAt=10.1
(Sim 1: CC =0.1 NCC =10, Sim 2: BE = 0.001)

Figure 3.13: Errors in the computed voltages of 5 neurons for the 100-cell oscillatory network.
The voltages of five neurons are monitored over the course of the simulation. For the first 150
ms there is 2-3 digit accuracy between the time-stepping and quadrature methods, but then the

accuracy decays. However, as evidenced in Figure 3.12, the qualitative behavior of the network is
the same despite differing individual voltage trajectories.

Results for the accuracy of individual neurons, however, do not show agreement
over large time intervals. The errors in the computed voltages for 5 neurons are shown
in Figure 3.13. The accuracy decays over the first 150 ms from 2-3 digits to 0-2 digits
for the rest of the simulation, with brief spots of slightly higher accuracy. Such decay
suggests that one method is producing more accurate results, but future work will be

necessary to assess which one is more accurate.

93

I hypothesize that the differences result from the manner in which EC/DG spikes
are taken into account in the quadrature method. In contrast to Rangan and Cai’s
approach, which computes the effect of the EC/DG spikes individually (Rangan and
Cai [21]), my approach evaluates over subintervals of length At and updates con-
ductances with all the EC/DG spikes that fired during this interval. Although this
approach introduces error, it speeds up simulations because the algorithm actually
takes timesteps of desired length At instead of much smaller intervals between EC/DG
spikes (see Figure 3.14). Therefore, using my approach, the results from convergence
analysis indicate that when EC/DG spikes are evaluated individually the true time

step can be significantly smaller than At.

Integration intervals used in the simulation

Integration intervals used in the simulation

——‘ 160 ——r

@
=]

Frequency of Occurrence
-
&

Frequency of Occurrence
®
3

o

=]
n
S

i
10" 10" 107" 10
Interval Length (ms), Desired interval: At=0.1 Interval Length (ms), Desired interval: At =0.1

0 L
10° 2 10 0° -4 10 107 ¢

Figure 3.14: Effective timesteps used in quadrature methods. These two plots show the distribu-
tions of timesteps over the course of a simulation with 500 Hz EC/DG input and a desired timestep
At = 0.1 ms. Note the x- and y-axis ranges in both plots. a) My approach yields a sharp distribution
of timesteps when the EC/DG spikes are included at the end of the interval. b) When the interval
of integration is adjusted to integrate between successive EC/DG spikes, the actual timesteps used
in the simulation must become smaller. Although (b) will compute voltages more accurately, it also
increases simulation time.

54

3.5 Summary of Results

The quadrature method generally outperforms the time-stepping method in re-
solving accurate voltage trajectories. Using the delta-synapse model instead of the
alpha function model reduces the computational complexity of the quadrature method
from O(N?) to O(N), thus facilitating the simulation of larger networks. Also, for
networks that are not highly active, there is little practical reason to choose interpo-
lation over the Bisection / Secant algorithm for STI for the delta-synapse model.

However, discontinuities inherent in the delta-synapses demand that, for the most
accurate solutions, the number of quadrature nodes be very large. The delta-synapse
model maintains statistical measures of accuracy, but the question is still open as to
whether voltage trajectories for long simulations can be resolved more accurately than
when computed via time-stepping. In addition, it is important to use a quadrature
rule that takes the endpoints of the integration interval as nodes, otherwise accuracy
may be lost.

The IAF neuron models and the numerical methods in this thesis are available in
the software package developed here, making it possible to simulate IAF networks in

an efficient, accurate, and practical manner.

Chapter 4

Future Work

Synaptic Modification

A natural extension of the ideas in this thesis is to use the quadrature techniques
to perform simulations that attempt to mimic cognitive functions. The hippocampus
is a critical anatomical structure for behaviors such as temporal compression and
trace conditioning, both of which involve memory formation (August and Levy [3],
Moyer et al. [19]). These behaviors have been reproduced in simpler McCulloch-Pitts
neuronal networks (Levy et al. [17]), and so it is natural to presume that behaviors
that are reproducible in less realistic models ought to be reproducible in more realistic
models. In order to test this hypothesis the IAF model must have some mechanism
for synaptic modification (“learning”). Implementing this feature in the model and
in the software will allow for exploration of cognitive functions with confidence in the

numerical results.

Application to Cluster Cutting
The simulation software developed in this thesis can generate test data that may

be used to evaluate the performance of cluster cutting algorithms used in hippocampal

55

56

recording analysis. Extracellular recordings in the rat hippocampus have shown that
certain cells fire when the rat’s head points in a certain direction (Yoganarasimha
et al. [30]). The recorded data is obtained by inserting a tetrode, which measures
the field potential at four locations, into the hippocampus of a live rat and taking
measurements during behavioral experiments. The challenge is to isolate individual
cell firings using the recorded data, a process called “cluster cutting”.

Cluster cutting algorithms are in constant development, and evaluating the effec-
tiveness of these algorithms requires many data sets (Schmitzer-Torbert et al. [22]).
Instead of using experiments, which are expensive and time-consuming to obtain,
using the simulation software in this thesis quickly provides voltage data that can be
used to generate surrogate data sets. The advantage of these data sets is that they do
not contain noise from other cells. Hence they can be used to determine how accurate

the cluster cutting algorithms are when given perfect data.

Model Reduction

Although the hippocampus does not appear to have any spatial topology that
can be used to accelerate simulations, the network dynamics may be reproducible
in a lower dimensional system. Rhythmogenesis, for example, is a property of the
network, not of individual neurons, and hence model reduction techniques may be
able to produce the same response without the need for constructing large networks.
This is a new but active area of research that has proven fruitful for other brain

regions, like the visual cortex (Cai et al. [10]), so it is reasonable to hypothesize that

57

model reduction could be put to use for the hippocampus.

Software Development

The software platform that I developed currently supports the models and meth-
ods used in this thesis, but other models and methods can be incorporated as well.
The hippocampus research group at Rice University has worked on models of varying
granularity, and it would be advantageous to have all these models available in one

common software package.

Chapter 5

Conclusion

Quadrature methods are accurate techniques to solve the integrate-and-fire model
equations, limited primarily by the size of the network and how active the network
is. The efficiency of the quadrature method depends upon how synaptic input is
modeled. Using delta-synapses to model synaptic conductances reduces the order of
complexity of the quadrature method from O(N) from O(N?), but the number of
quadrature nodes required to obtain a desired accuracy scales exponentially for this
model.

Network models that use alpha functions to model neurotransmitter release are
faster and more accurate than Backward Euler time-stepping for networks of about
50 neurons, while delta-synapse models are faster for up to 1000 neurons. Simulation
speed is also governed by the activity of the network. Networks with low rates of firing
can be efficiently simulated with quadrature, whereas networks prone to seizure can
slow this technique considerably. Interpolation procedures for spike time identification
offer little to no advantage for significantly speeding up simulations unless the network

activity levels are high. Hence using a more accurate scheme, such as the Bisection /

58

59

Secant STT algorithm proposed here, is more practical.

Integrate-and-fire models are deceptively simple, but even after 100 years there
is no definitively superior method for solving them. The best approach is to have
an assortment of numerical techniques and to know when to apply them to obtain
the best performance. This thesis not only identifies the size of networks for which
quadrature methods are the preferred solution methods, but additionally introduces
simulation software that implements these methods in a stable, accurate, and efficient

manner.

Bibliography

[1] L. F. Abbott. Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Research Bulletin, 50:303-304, 1999.

[2] G. A. Ascoli, L. Hunter, J. L. Krichmar, J. L. Olds, and S. L. Senft. Com-
putational neuroanatomy of the hippocampus. Accessed March 5, 2007. http:
//www .krasnow.gmu.edu/L-Neuron/index.html.

[3] D. August and W. Levy. Temporal sequence compression by an integrate-and-
fire model of hippocampal area CA3. Journal of Computational Neuroscience,
6:71-90, 1999.

[4] D. A. August. Sequence Learning by an Integrate-and-Fire Neural Network Model
of Hippocampal Area CA8. PhD thesis, University of Virginia, May 1997.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc home page.
Accessed July 26, 2006. http://www-unix.mcs.anl.gov/petsc/petsc-as/.

[6] A. Bragin, G. Jandd, Z. Nadasdy, J. Hetke, K. Wise, and G. Buzsdki. Gamma
(40-100 hz) oscillation in the hippocampus of the behaving rat. The Journal of
Neuroscience, 15:47-60, 1995.

[7] N. Brunel and X.-J. Wang. What determines the frequency of fast network os-
cillations with irregular neural discharges? I. synaptic dynamics and excitation-
inhibition balance. Journal of Neurophysiology, 90:415-430, 2003.

[8] G. Buzsdki, Z. Horvdth, R. Urioste, J. Hetke, and K. Wise. High-frequency
network oscillation in the hippocampus. Science, 256(5059):1025-1027, 1992.

[9] B. Byrne. Division of neuroscience. Accessed March 27, 2007. http://www.
neuroscience.bham.ac.uk/neurophysiology/research/hippocampus.htm.

[10] D. Cai, A. V. Rangan, and D. W. McLaughlin. Neuronal information encoding
and reduction of dimension in network dynamics. SIAM News, 40(2), March
2007.

[11] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic
Press, Inc., 2nd edition, 1984.

[12] P. Dayan and L. Abbott. Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. The MIT Press, 2001.

60

61

[13] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15(2):
318-334, April 1973.

[14] D. Hansel, G. Mato, C. Meunier, and L. Neltner. On numerical simulations of
integrate-and-fire neural networks. Neural Computation, 10:467-483, 1998.

[15] A. Hodgkin and A. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. Journal of Physiology, 117:
500-544, 1952.

[16] D. Johnston and D. G. Amaral. The Synaptic Organization of the Brain, chap-
ter 11, pages 417-458. Oxford University Press, 4th edition, 1998.

[17) W. B. Levy, A. B. Hocking, and X. Wu. Interpreting hippocampal function as
recoding and forecasting. Neural Networks, 2005.

[18] Y.-H. Liu and X.-J. Wang. Spike-frequency adaptation of a generalized leaky
integrate-and-fire model neuron. Journal of Computational Neuroscience, 10:
25-45, 2001.

[19] J. R. Moyer, R. A. Deyo, and J. F. Disterhoft. Hippocampectomy disrupts trace
eye-blink conditioning in rabbits. Behavioral Neuroscience, 104(2):243-252, 1990.

[20] P. F. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced
Traub model for CA3 neurons. Journal of Computational Neuroscience, 1:39-60,
1994.

[21] A. V. Rangan and D. Cai. Fast numerical methods for simulating large-scale
integrate-and-fire neuronal networks. Journal of Computational Neuroscience,
22:81-100, 2007.

[22] N. Schmitzer-Torbert, J. Jackson, D. Henze, K. Harris, and A. D. Redish. Quan-
titative measures of cluster quality for use in extracellular recordings. Neuro-
science, 131:1-11, 2005.

[23] M. J. Shelley and L. Tao. Efficient and accurate time-stepping schemes for
integrate-and-fire neuronal networks. Journal of Computational Neuroscience,
11:111-119, 2001.

[24] E. Siili and D. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press, 2003.

[25] R. D. Traub and R. Miles. Neuronal Networks of the Hippocampus. Cambridge
University Press, 1991.

[26] L. N. Trefethen. Is Gauss quadrature better than Clenshaw—Curtis? SIAM
Review, 2007.

62

[27] L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000.
[28] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[29] G. von Winckel. lglnodes.m. Accessed online April 3, 2007.
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.
do?objectId=4775\&objectType=File, 2004.

[30] D. Yoganarasimha, X. Yu, and J. J. Knierim. Head direction cell representations
maintain internal coherence during conflicting proximal and distal cue rotations:
Comparison with hippocampal place cells. The Journal of Neuroscience, 26(2):
622-631, January 2006.

