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Abstract. We present a new method that allows a fully automated si-
multaneous determination of the structure factor and the parameters of the
Contrast Transfer Function (CTF) and noise function. No previous knowl-
edge of the structure factor or of the CTF parameters is assumed. Our
approach is based on the new precise mathematical formulations of the prob-
lem as constrained nonlinear least squares that treats the structure factor
as a set of undetermined variables, as well as the CTF parameters, and on
the interior-point algorithm that satisfies the inequality constraints on the
bounds.
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1 Introduction

Transmission Electron Microscopy is one of the primary techniques used to
determine macromolecular structure (such as for proteins and viruses). Since
the microscope is not a perfect optical system, the projected images are not
exact representations of the sample particle. This effect is quantified as the
contrast transfer function (CTF) of the microscope. In order to allow optimal
image correction it is necessary to approximate the parameters of both the
CTF and a noise function, as well as the structure of the particle. The
density information recovered from this corrected image is thus improved.
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Currently, the parameter identification process performed in the laboratories
is tedious, time consuming, requires a lot of user interaction and uses ad-hoc
procedures.

We present a method for determining the CTF and noise function by
estimating their parameters while simultaneously determining the structure
factor. We propose two new mathematically sound formulations based on
two key ideas: (i) the use of multiple data sets and (ii) the explicit imposi-
tion of bounds on the parameters. We treat the problem as a constrained
nonlinear least-squares minimization problem where we demand that the
corrected structure factor be the same in different micrographs of the same
molecule. Combined with a functional form for the CTF and background
noise, this provides sufficient information to simultaneously determine the
CTF parameters and the corrected structure factor of the molecule.

We construct a numerical algorithm for solving this problem using a new
interior-point mathematical methodology, which deals efficiently with the
bounds on the variables.

The paper is organized as follows. In section 2, we present background
material. We describe the model for the CTF, noise and the total intensity
of the signal observed on the micrograph, describe the current “manual”
approach to the structure factor and parameter determination problem. In
section 3, we present the new mathematical formulations of the problem and
the algorithm that allows efficient solution of the problem. In Section 4, we
present numerical results that demonstrate the effectiveness of our approach.
Finally, we present our conclusions in Section 5.

2 Background

Transmission electron microscopy, along with X-ray crystallography, is one of
the primary techniques used to study molecular structure. There are several
advantages in using electron cryo-microscopy. In X-ray crystallography phase
of the X-ray wave cannot be determined directly, therefore the image in real
space is impossible to regenerate because of the absence of phase information
necessary for the inverse Fourier transform. It is difficult to crystallize large
molecules. Determining the correct crystallization process for a new protein
may take months or even years. The biggest advantage of electron microscopy
is the collection of the image in real space. In X-ray crystallography the
challenge is to recover the lost information, which is not an issue in electron



microscopy.

Image formation in electron microscopy is a complex process. The raw
images are not faithful representations of the particle [4]. The microscope
induces artifacts that need to be corrected.

The basis of image formation is the interaction of the electrons with the
object. The theory of image formation states that the wave function at the
diffraction plane of an electron lens is the Fourier transform of the object’s
projected potential function (electron density function); and that the image
intensity at the image plane of an electron lens is linearly related to the inverse
Fourier transform of the wave function at the diffraction plane convoluted
with a Contrast Transfer Function (CTF) of the microscope.

Erickson and Klug (1971) and Hawkes [5] present how instrumental mod-
ifications of the signal induced by the electron microscope can be modeled,
within certain limitations, in terms of the Contrast Transfer Function (CTF).

CTF correction is the first part of image processing. Each particle image is
two-dimensionally Fourier transformed, then the set of images is incoherently
averaged (that is, the Fourier intensities are averaged) to reduce the noise.
The final average is then rotationally averaged to produce a function of radius
only. Each micrograph is characterized by a signal intensity curve which
varies with spatial frequency.

2.1 Contrast Transfer Function, Noise, And
Total Intensity Model

The Contrast Transfer Function for microscope is traditionally modeled by
CTF(s) = Amp x e (/1 — C2 siny(s) + Cy cos y(s)),

where s is the spatial frequency, Amp is the overall amplitude, and C is the
amplitude contrast factor that describes the relative amount of elastic and
inelastic scattering. It depends on the specimen and the microscope in use.

The term /1 — C% sin~y(s) describes the phase contrast and the C4 cos(s)
term describes the absorption (i.e. amplitude contrast). The term e~ Bs” ig
an envelope function.

Theoretically, information is transferred in a wide range of spatial fre-
quencies. The increasingly rapid oscillations of CTF make it difficult to
exploit all of the high frequency information. In practice, as we go toward

higher spatial frequencies, the CTF is damped, limiting the resolution. This
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effect can be described by the envelope function e=?". Various sources con-

tributing to the envelope function fall-off include electron microscope factors,
specimen movement, photographic emulsion, digital scanner, the specimen
itself. Even the skills of the microscope operator (e.g. waiting for too long
to take a picture or not getting the defocus right) affect the envelope func-
tion fall-off. The known theoretical form for the envelope function is fairly
complex. All of the parameters for the full envelope function cannot be de-
termined unambiguously. Empirically, e~ B%” functional form fits the data
within the bound of error in many cases. A simple envelope function is not
sufficient for very clear data because it is difficult to fit both the second peak
and right-hand part of the signal intensity curve.

Parameter B is a microscope dependent factor. It is weakly dependent on
the defocus but in the current model it is considered to be independent. The
factor y(s) is the phase shift in reciprocal (Fourier) space for phase contrast
microscopes:

C,107 235

v(s) = —2m( + 5000 x Az\s?), (1)

he :
Nl
the wavelength of the electrons in the beam, V' is the microscope voltage (in
kilovolts), EyV is the rest mass of the electron, h is Plank’s constant, and ¢
is the speed of light; Az is the defocus value.

This dependence of the phase shift on spatial frequency (1) has long been
known to give a good agreement with data from the microscope in the absence
of astigmatism. In practice, if astigmatism is present, or if the micrograph is
corrupted otherwise (such as by specimen drift), the micrograph is undesir-
able for the purpose of the CTF parameter determination. Therefore, we can
assume there is no astigmatism present and we can use the above expression
for the phase shift (1).

One can rewrite the CTF as:

CTF(s) = Ampe (/1 - C% sin(y(s)) + Ca cos(7(s)))
— Ampe " (sin(y(s) + 0)) 2)

where (Y is the spherical abberation of the microscope, A =

where sin(f) = C'4. The parameter used in our computations is # = arcsin(C4).
The functional form of the noise intensity is empirical. It includes effects
of many different sources and it fits data obtained from several different
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microscopes well.
Noise Intensity(s) = ng e (7/2n48)"—m/s-nas (3)

where njs is the squared amplitude of the noise. Since the noise is additive and
(empirically) incoherent with regards to the true signal, the total intensity
of the signal observed on the micrograph may be expressed by:

TI(s) = CTF(s)*F(s) + Noise Intensity(s), (4)

where Noise Intensity is the squared average of white random noise, and F(s)
is the unknown structure factor of the particles (squared Fourier transform
of the projected density).

There are four unknown parameters which characterize the CTF: the mi-
croscope dependent parameter B, the amplitude contrast C', the defocus Az,
and the overall amplitude of the signal Amp. Also there are four unknown
parameters describing the noise n;,7 = 1...4. These model parameters need
to be determined, along with the vector of the structure factor values F(s).

The following requirements bound the parameters. All the parameters
are nonnegative, with the exception of the defocus Az. Parameter B is
practically strictly positive; otherwise, the envelope function is equal to one
and there is no damping effect. Parameter C'4 varies between zero and one,
typically 0 < C4 < 0.2. There are soft bounds on Az: -5 < Az < 5.

The determination of F(s) as a function of spatial frequency is a difficult
problem. In case F(s) in unknown, it must be determined by demanding that
it is consistent between different defocus settings.

2.2 “Manual” Curve-Fitting Procedure for the CTF
Parameter Estimation Problem

Currently, the parameter identification process is done by “manually” fitting
the model to the measured data through trial and error (see, for example,
[1]). First, one assumes that the structure factor values are all ones. Then,
one guesses the parameter values based on the physical characteristics of the
CTF and noise functions and applies an unconstrained local optimization
method to obtain a fit. The current CTFEF and two noise parameters fitting
procedure goes as follows. For large wave-numbers the intensity is entirely
comprised of noise. By plotting the intensity, the coefficients ns and n,
of Noise Intensity = nz e™"2% are fitted. To manually fit the data, noise



is fitted first from the tail of the curve and the zero points. When one
determines the CTF “by hand”, the positions of the zeroes of the CTF are
measured and fitted to a chart of the CTF characteristics. The four noise
parameters can easily be used up to fit the peak but one should avoid using
the degrees of freedom for this purpose. If the data is not very clear, the noise
parameters can be defined from the tail of the curve. Otherwise, “manual”
fitting becomes almost impossible. Currently, the boundaries are enforced
by manually restricting the parameter choice to sensible values.

If the fit does not look right or the parameters are out of range, then the
guessing and fitting procedures are repeated again until a fit is acceptable.
From the fitted parameter values, one computes a set of corresponding struc-
ture factor values. Since the structure factor values should be the same for
different data sets for the same particle, the fitting procedure requires going
back and forth many times between different data sets and parameter values
in order to obtain consistent structure factor values.

Other disadvantages of the “manual fitting” approach include the lack of
a sound and precise measure for the quality of obtained parameter values and
the quality of fit, the excessive sensitivity to the noise intensity parameters,
no effective enforcement of parameter bounds, and the inflexibility of accom-
modating new parameters in the model. Previous attempts (Zhu et al. [12])
at automating the parameter estimation process mimic the “manual fitting”
approach, hence sharing similar flaws.

The fitting routine does not work well if the envelope function is narrow,
or if the defocus and/or other parameters fall out of a smaller subset of the
parameter space. It also fails in the presence of distinguished peaks in the
high frequency area.

If the structure factor is available from X-ray scattering, it is used in the
fitting. Even then, the fit might not be very accurate. Figure 1 illustrates the
best “manual” data fit for the Human Fatty Acid Synthase when the struc-
ture factor known from X-ray scattering is used and a fit used our automated
method that will be described in the next section. In the plot for the auto-
mated fit the data is represented by asterisks (*) and the fit is represented
by a solid line. We can see that in most cases the fit is accurate. When the
X-ray data is absent, the fitting becomes even harder. The approach that
we propose in the next chapter will not only allow us to perform the data fit
with the structure factor being unknown, but often allows to have a better
fit. One of the reasons for a more accurate fit is that there are more degrees
of freedom when the structure factor is not fixed (even to a ’good’ value).
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Figure 1: Comparison of the “manual” data fit with the known structure
factor (left) and of the fully automatic data fit with the unknown structure
factor (right) for human fatty acid synthase.

The attempts of fitting include the “intelligent” (similar to manual) fitting
algorithm and a gradient-descent like method.

Zhu, Penczek, Scroder, and Frank [12] proposed an “intelligent” fitting
method, which uses zeros of the CTF to determine the defocus and amplitude
contrast parameters. The method uses the information from the peaks of the
signal intensity curve to define amplitude. The authors do not specify the
details of determining the envelope function and noise parameters.

3 Mathematical Formulation of the Problem

We propose two new formulations of the problem. Both are constrained
nonlinear least squares that simultaneously determine the structure factor
and the Contrast Transfer Function parameters. This new approach requires
multiple data sets and finds all the unknown parameters corresponding to all
the involved data sets at once.

We consider the functional form of the Contrast Transfer Function and
Noise Intensity function as defined in (2) and (3), respectively. Corresponding
to each data set there are eight unknown parameters in the CTF and noise
function and an unknown vector of structure factor values whose size is that of



the data set. If only one data set is used, then the system is underdetermined.
This is why it is the current practice, where a single data set is used at a
time, to fix the structure factor vector to some value while fitting the other
model parameters.

A key observation is that if one uses multiple data sets, then it becomes
possible to determine the unknown model parameters, along with the vector
of structure factor values which is invariant among different data sets that are
generated for the same particle. This approach is feasible because multiple
date sets for the same particle are easy to generate in electron microscopy
(and are already available for other purposes).

This approach offers considerable advantages and it will be discussed in
detail in this chapter. However, we have discussed it in preliminary form at
meetings and conferences, e.g. [9], (see also [7]).

We propose to minimize the sum of the squares of the residuals arising
from fitting the model to multiple data sets concurrently. The data sets are
of the same size, and the minimization is subject to the appropriate bounds
on all variables. Thus we estimate the vector of the structure factor values
for the sample particles, as well as the parameters of the Contrast Transfer
Function and incoherent background (noise) to fit the experimental data.

The CTF and structure factor determination problem can be viewed as a
constrained (because of the bounds on the variables) nonlinear least-squares
problem. In this problem we fit the total intensity model which is nonlinear in
the parameters, as defined in (4), to the total intensity of the signal observed
on the micrograph. Usually the data set contains several hundred points.

We chose to formulate the problem as a nonlinear least-squares problem,
ie.

m

win /(2) = SRE)TRE) = 53 n() )

TER™
i=1
where m > n, the residual function
R:R" — R

is nonlinear in z, and 7;(x) denotes the ith component of R(z). If R(zx) is
linear, (5) is a linear least-squares problem. If one is attempting to fit the
data (s;,v;),7 = 1,2,...,m, with a model M(z,s) that is nonlinear in z,
then the nonlinear least-squares problem consists of choosing x so that the



fit is as close as possible in the sense that the sum of squares of the residuals
ri(x) = M(x,s;) — y; is minimized. Typically, m is much larger than n.
It is also possible to use the [; norm

m

ful@) =) Iril

=1

or the [, norm

Joolw) = max |ri]
to evaluate the quality of the fit. The choice of the sum-of-squares measure
for data fitting is justified by statistical considerations (see, for example,
[2]). The ls norm is not as good in statistical sense as I, norm or /; norm.
Of the three norms we prefer the least-squares formulation also because the
objective function is differentiable only when using the /s norm and not in
the the other two cases.

Note that the objective function is highly nonlinear due to the physics
involved in creating the model.

It is possible that the constrained solution is not at the bounds of the
feasible region, however, an optimum may be outside the constrained region
and removing the constraints may lead to a solution outside of the range of
meaningful values.

3.1 Formulations for the Simultaneous Structure
Factor and Contrast Transfer Function Parameter
Determination

It is convenient to use the following notation for the unknown parameters:
Z; :ni,i: 1,2,...,4,

where n; are the parameters of the noise intensity function (3), and the rest
are the parameters of the CTF (2):

xrs = Amp, 1¢ = —Az +5, 17 = arcsin(Cy), xs = B.

In contrast with the “manual” approach to parameter estimation, param-
eters Az, B, and Amp cannot be viewed as unconstrained and the values



cannot be simply discarded if they are out of the range of meaningful values.
Therefore we introduce a vector of upper bounds b, corresponding to the
vector of unknown parameters. The upper bound values are soft. They are
determined empirically. The defocus parameter Az is the only parameter
that can have negative values. For convenience, we can shift it to ensure
nonnegativity without affecting the formulation. Therefore we consider all
the parameters to be nonnegative.
Let us introduce the following notation.

e p is the number of different defocus data sets available for the same
particle, usually 5 or 6;

e m is the number of points in each data set, usually several hundred;

e 1 is the number of unknown CTF and noise parameters for each data
set; in the current model n = §;

e x; is the unknown vector of CTF and noise parameters for jth data
set, ¢; € RN

T
e x is a vector composed of vectors x;, T = : ,x € NP

Lp

e b; is a given vector of upper bounds for the CTF and noise parameters
xj, bj € N"; upper bounds are the same for each data set, i.e., bj= b;
Vi,j €1,2,...,p;

b,
e b is a vector composed of vectors b;, b = : ,b e P,
bp

e y is the unknown vector of structure factors, y € R™;
e ctf(x;) is the unknown CTF vector for jth data set, ctf(x;) € R™;

e noise(x;) is the unknown noise intensity vector for jth data set, noise(x;) €

R

e {; is the vector of total intensity of the signal observed on the micro-
graph; t; € R™.
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Based on the model of total intensity of the signal observed on the mi-
crograph (4), we can now formulate our problem as

1 D
{,%1;1 3 ; |diag(ct f(x;))%y + noise(x;) — t;]|3
0<x<b xechm (6)
y >0, yehm,

where noise(:) : R" = R™, ctf(-) : R" = R™, t; e R™,j=1,...,p.
Let us denote

D(x;) = diag(ctf(z;))*, D(w;) € R™™,j=1,...,p

c(x;) = —noise(x;) + tj, c(x;) e R™, j=1,...,p.

) from the objective function, (6) can

Omitting the multiplier constant (3

then be rewritten as

min 37, D)y — el
0<x<b, xechm (7)
y>0,yeRm
or as
D(z;) c(z1)
min : Y= :
D(z,) c(p)
0<z<b xzchm

2

We have proven mathematically that the nonnegativity constraint on y can
be removed if the upper bound on the noise amplitude parameter is less than
the total intensity and if

(D D(=)%)i = (Y diag(ctf(x;))"); # 0 (8)

i=1 j=1
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A zero entry on the diagonal of the above matrix can occur for some i €
1,2,...,m only if for some s, ctf(x;) = 0 in all p data sets. In practice, this
situation is highly unlikely because we use different defocus micrographs and
it is improbable that the zeros of the CTF functions will coincide. However,
one has to ensure that (8) is not equal to zero. It is possible that the values
of (8) are very small, causing numerical problems when dividing by (8). The
solution y* of (7) can be expressed in terms of x:

v'(@) = (3 Dl@;)) ™ (3 Dley)ele;) )

or, component-wise,

‘() = > di(z)ci(z;)
v D difxy)?

where d;(x;) is the ith diagonal element of D(z;) and ¢;(x;) is the ith ele-
ment of ¢(z;). The non-negativity condition on y*(2) no longer needs to be
enforced since d;(x;) > 0, c(x;) > 0.

Using the expression for y* (10) we propose the second equivalent for-
mulation of the problem. We have proven that if (7) has a local minimizer
(z*,y*) and

(10)

O D(x)*)i#0 Viel2,....m

j=1
then y* satisfies (9), namely
P

P
y' = (Q_ D)) (D D(x))e(=))) (11)
j=1 j=1

We demonstrated that we can treat the structure factor vector y and
the CTF and noise parameters x together, as independent variables, or, y
can be treated as a variable dependent on x, so that the explicit variable y
can be eliminated, leaving fewer variables in the problem formulation. An
additional advantage of the second formulation is that no initial guess for
the of linear variables y is required. Another observation is that the Hessian
approximation matrix is nearly singular when we use the first formulation
and the Gauss-Newton method to solve it. A disadvantage of the second for-
mulation is that the function, its Jacobian and Hessian calculations become
very cumbersome.
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3.2 The Algorithm

We have formulated the problem as nonlinear least squares with simple bound
constraints. With these more sophisticated formulations, we need more so-
phisticated numerical algorithms. An important issue is how to handle the
bound constraints. To address this, we will employ interior-point methods, a
class of relatively new methods that have enjoyed great success as constrained
optimization algorithms in the last decade, in terms of both their theoreti-
cal properties and practical performance. The strength of the interior-point
methods lies in their ability to treat inequality constraints effectively (see,
for example, [3, 10, 11]).

The interior-point methods can be described as follows. Consider a non-
linear programming problem (NLP), which in its most general form is the
optimization of an objective function f(x) over some space x € X, subject
to constraints on the variable x. The system of optimality conditions for
the problem is formulated. The system is then perturbed to avoid certain
numerical problems. Then damped Newton’s method is applied until opti-
mality conditions are satisfied. It is necessary to damp the Newton’s step in
order to satisfy the inequality constraints on the variables, which in our case
are the upper and lower bound constraints on the CTF and noise parameters
and on the structure factor.

The Newton Interior-Point Algorithm
Choose a feasible initial guess.

For £k =0,1,2,... do

STEP 1. Test for convergence: If a convergence criterion is satisfied then
exit.

STEP 2. Update the perturbation parameter.

STEP 3. Solve for perturbed Newton step.

STEP 4. Adjust step-length to ensure feasibility with respect to inequality
constraints.

STEP 5. Adjust step-length for globalization.

STEP 6. Update unknowns.

EndFor.

The interior-point methods are known for their good local convergence
properties and global convergence properties for convex programming prob-
lems. We investigate specific primal-dual interior-point methods that best
exploit the special structure of the problem at hand. We conduct extensive
numerical experiments to find the best combination of the many factors that
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leads to a reliable and efficient algorithm. The results appear in Section 4.

We proposed a Newton interior-point algorithm that can be easily modi-
fied to Gauss-Newton or Levenberg-Marquardt interior-point algorithm. We
have also developed mathematical theory (see [8]) that proves the conver-
gence of the algorithm, confirming that it is a good choice in combination
with the proposed formulations of the problem.

4 Numerical Experimentation

We have developed an efficient algorithm for the numerical solution of the
problem, which can be used as a base for an automated routine for the deter-
mination of the structure factor and the CTF and noise function parameters.
We construct an algorithm based on interior-point methodology in order to
treat bound constraints efficiently. In this section we report our numeri-
cal experience. The computational work was done on a SUN Ultrasparc 2
Workstation running SunOS 64 megabytes of memory and with a 200 MHz
processor. The programs were written in Matlab and run under Version 5.1.

Recall that the first formulation deals with the CTF and the noise param-
eters and the structure factor values as independent variables. In the second
formulation the structure factor is implicit. Our implementation can be eas-
ily modified to use Newton’s or Levenberg-Marquardt method instead of the
Gauss-Newton method. If Newton’s method is desired, the user needs to sup-
ply second derivative information, which is avoided if either the Levenberg-
Marquardt method or the Gauss-Newton method is used.

The problem is badly scaled due to the difference in magnitude of the vari-
ables. We have scaled the variables, however the numerical experimentation
showed that scaling B did not effect the computational results significantly.

The code was tested on the standard test set ([6]) as well as test problems
created by us.

4.1 User-Supplied Information

The user of the code needs to provide files with the input data: spatial
frequency s and corresponding measured total intensity of the signal T1(s)
for 5 data sets for each particle. Spatial frequencies s (data points) are the
same for a given particle from the same microscope for different defocus data
sets. The sharp peak of the signal intensity curve near s=0 represents an
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artifact of the microscope, which must be ignored in the fitting procedure.
Therefore the data corresponding to (0,0) and points before the first peak
are excluded from the data fitting process. The range to be ignored must
be determined. If the peak is wide, the choice has to be made as to which
part of the peak to disregard. For certain data, peaks do represent valuable
information. Generally, the fitting starts at the spatial frequency roughly
equal to the inverse of the particle size, because for smaller spatial frequencies
the useful information is lost.

Some of the noise parameters are very close in value, which contributes
to singularity. To fix the linear dependence of the columns containing nearly
same values, we can fix the noise parameters (reducing the number of vari-
ables), as well as some other parameters that are likely to be similar, such
as amplitude contrast parameter Cy.

4.2 Initial Guess

The issue of finding a good initial guess for the variables is an important
one. We are concerned with having good initial guess firstly, for the values of
CTF and noise parameters, and secondly, for the vector of structure factor
values.

It is a challenge to come up with a good initial guess for the vector of
structure factor values. There is often no biological insight into such initial
guess. The reason is that, if there is an information about structure factor
from X-ray scattering, these values are just plugged in to find the values of
CTF and noise parameters. If no such information is available then it is hard
to suggest a reasonable value One option for a structure factor initial guess
is to assume that it is a unit vector, solve the resulting (smaller) nonlinear
least-squares problem and use Vg;,}év L as an initial guess. Another possi-
bility is to use e~¢"tX¢ gince the structure factor vector mapped against
spatial frequency roughly has an exponential shape. We have experimented
with several heuristic initial guesses for the vector of structure factor val-
ues, such as exponential form and different constant values. It seems that
independently of the starting estimate the final answers are consistent.

The use of the second formulation of the problem, where the linear vari-
ables, i.e. the structure factors, are implicit, allows one to avoid providing
an initial guess for the vector of structure factor values.
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4.3 Numerical Results

The results of our numerical experience are summarized in Table 1. The first

Table 1: Computational results for the sample particles.

| Type of Particle | n | f | lIF] | Rel | CPU |
Human Fatty Acid Synthase | 103 | 0.53338 | 0.056952 | 0.005 | 22.3
Herpes Virus Particles 279 | 3.7729 0.30941 0.013 | 1405.1
a-crystallin A 107 | 0.057627 | 0.0032962 | 0.0005 | 167.91
a-crystallin AB 104 | 3.5288 0.19409 | 0.0339 | 76.860
a-crystallin B 266 | 2.2884 1.1472 0.008 | 1261.1

column gives the particle type. The n column gives the dimension of the
problem, which equals to the size of the vector of structure factor values (i.e.
the size of one data set) plus 40 (i.e. the number of the unknown CTF and
noise function parameters for 5 data sets). The third column gives the final
objective function value. The forth column states the value of the residual of
the optimality system for the problem, that was described in Section 3.2, at
the termination of the algorithm. The value indicates how close the algorithm
is to the optimal solution. Zero value would indicate an exact minimum was
reached, however that is more often than not is precluded by the numerical
artifact of the problem The fifth column provides a relative error, defined as
the ratio of the objective function value to the size of the vector of unknowns.
It gives a better feel for the quality of the fit that the absolute value of the
objective function reported in the third column. Last column gives the total
computing time in CPU seconds that algorithm took.

The Figures 1, 2, and 3 illustrate the fit obtained with the use of our
formulation and algorithm for human fatty acid synthase, herpes simplex
virus (HSV-1), and a-crystallin AB. For a-crystallin AB the plot in the top
left corner of each figure shows 5 distinct data sets that need to be fitted for
each particle. The other plots show the data, represented by asterisks (*),
and the fit, represented by a solid line. We can see that in most cases the fit
is accurate. The quality of the fit increases as the points, corresponding to
the low frequency part of the data curve are excluded. The current model
does not always capture the phenomena responsible for the peaks if the data
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Figure 2: Fully automatic data fit with the unknown structure factor for the
herpes simplex virus (HSV-1).

The results in Table 1 were produced using the first formulation of the
problem. The second formulation, while a worthwhile idea, is more difficult to
implement. Levenberg-Marquardt approach was used in the final calculations
since it allows to reduce the numerical errors caused by ill-conditioning.

5 Conclusions

We consider an important problem in electron microscopy. The previous
attempts to solve this problem were unsatisfactory. We mathematically for-
mulate the problem in two related but different ways as a nonlinear least-
squares problem with simple bounds. Our first formulation is a mixed linear-
nonlinear least-squares problem, where the residual function is linear in the
variables representing structure factors and nonlinear in the others. Taking
advantage of the linearity, we propose the second formulation, that reduces
the number of variables, perhaps, at the cost of an increase in the nonlinear-
ity of the problem. The second formulation does avoid the need for an initial
guess of the structure factor values.

Our code features a number of advantages over the currently practiced
“manual” approach.
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It simultaneously fits the CTF and noise parameters and the estimates
the structure factor values.

The quality of fit can be precisely judged from the objective function
value.

Our fitting procedure can successfully fit the model to the data over a
greater range of spatial frequencies than the “manual” procedure.

It is easy to incorporate changes in the model. Currently there are 8
unknown parameters for each data set, as well as a vector of structure factor
values, whose size equals that of the data set. As was previously discussed
(see Section 2.1), there is interest in making the model more complicated to
account for the currently underrepresented phenomena. One of the first such
changes, would, perhaps, be the more complicated model of the envelope
function, currently modeled as a simple Gaussian. There is no conceptual
difficulty in adding as many parameters as desired to the model of the enve-
lope function or to any other part of the model.

The user can take advantage of Gauss-Newton, Levenberg-Marquardt, or
Newton’s method, when using the algorithm.

The objective value obtained by algorithm is very low in most cases,
indicating a close fit of model to the data. In cases, when is was not reduced
to a small value, we were attempting to fit the peaks of the intensity curve,
that are not described by the current model. Removing points to the left of
the peak led to an accurate fit with low objective function values.

We developed an algorithm for this class of problems. It is based on
interior-point methodology which deals efficiently with the inequality con-
straints. We also take advantage of the special structure of our problem.
Interior-point approach is combined with the Gauss-Newton method, which
is especially successful on zero- and small-residual problems. We would like
to point out that our implementation allows for the Levenberg-Marquardt
method to be used. Newton’s method also can be used, i.e. we can use the
second derivative information, if desired.

Our numerical experimentation confirms that our approach is successful
and demonstrates a good fit of the model to the data.

The proposed method of the simultaneous structure factor and CTF pa-
rameter determination is effective, minimizes user interaction and does not
require any previous knowledge about the particle, making it an ideal choice
for when neither X-ray crystallographic nor X-ray scattering data is available.

18



5 data sets for alpha crystallin AB; s4<=s<=s67, or .002<=s<=.0335

Alpha crystallin AB data 08 fit

Spatial Frequency (Inverse Angstroms)

Spatial Frequency (Inverse Angstroms)

Figure 3: Fully automatic data fit for a-crystallin AB.
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