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Abstract� We present a new method that allows a fully automated si�
multaneous determination of the structure factor and the parameters of the
Contrast Transfer Function �CTF� and noise function� No previous knowl�
edge of the structure factor or of the CTF parameters is assumed� Our
approach is based on the new precise mathematical formulations of the prob�
lem as constrained nonlinear least squares that treats the structure factor
as a set of undetermined variables� as well as the CTF parameters� and on
the interior�point algorithm that satis�es the inequality constraints on the
bounds�
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� Introduction

Transmission Electron Microscopy is one of the primary techniques used to
determine macromolecular structure �such as for proteins and viruses�� Since
the microscope is not a perfect optical system� the projected images are not
exact representations of the sample particle� This e�ect is quanti�ed as the
contrast transfer function �CTF� of the microscope� In order to allow optimal
image correction it is necessary to approximate the parameters of both the
CTF and a noise function� as well as the structure of the particle� The
density information recovered from this corrected image is thus improved�

	



Currently� the parameter identi�cation process performed in the laboratories
is tedious� time consuming� requires a lot of user interaction and uses ad�hoc
procedures�

We present a method for determining the CTF and noise function by
estimating their parameters while simultaneously determining the structure
factor� We propose two new mathematically sound formulations based on
two key ideas
 �i� the use of multiple data sets and �ii� the explicit imposi�
tion of bounds on the parameters� We treat the problem as a constrained
nonlinear least�squares minimization problem where we demand that the
corrected structure factor be the same in di�erent micrographs of the same
molecule� Combined with a functional form for the CTF and background
noise� this provides su�cient information to simultaneously determine the
CTF parameters and the corrected structure factor of the molecule�

We construct a numerical algorithm for solving this problem using a new
interior�point mathematical methodology� which deals e�ciently with the
bounds on the variables�

The paper is organized as follows� In section �� we present background
material� We describe the model for the CTF� noise and the total intensity
of the signal observed on the micrograph� describe the current 
manual�
approach to the structure factor and parameter determination problem� In
section �� we present the new mathematical formulations of the problem and
the algorithm that allows e�cient solution of the problem� In Section �� we
present numerical results that demonstrate the e�ectiveness of our approach�
Finally� we present our conclusions in Section ��

� Background

Transmission electron microscopy� along with X�ray crystallography� is one of
the primary techniques used to study molecular structure� There are several
advantages in using electron cryo�microscopy� In X�ray crystallography phase
of the X�ray wave cannot be determined directly� therefore the image in real
space is impossible to regenerate because of the absence of phase information
necessary for the inverse Fourier transform� It is di�cult to crystallize large
molecules� Determining the correct crystallization process for a new protein
may take months or even years� The biggest advantage of electron microscopy
is the collection of the image in real space� In X�ray crystallography the
challenge is to recover the lost information� which is not an issue in electron
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microscopy�
Image formation in electron microscopy is a complex process� The raw

images are not faithful representations of the particle ���� The microscope
induces artifacts that need to be corrected�

The basis of image formation is the interaction of the electrons with the
object� The theory of image formation states that the wave function at the
di�raction plane of an electron lens is the Fourier transform of the object�s
projected potential function �electron density function�� and that the image
intensity at the image plane of an electron lens is linearly related to the inverse
Fourier transform of the wave function at the di�raction plane convoluted
with a Contrast Transfer Function �CTF� of the microscope�

Erickson and Klug �	��	� and Hawkes ��� present how instrumental mod�
i�cations of the signal induced by the electron microscope can be modeled�
within certain limitations� in terms of the Contrast Transfer Function �CTF��

CTF correction is the �rst part of image processing� Each particle image is
two�dimensionally Fourier transformed� then the set of images is incoherently
averaged �that is� the Fourier intensities are averaged� to reduce the noise�
The �nal average is then rotationally averaged to produce a function of radius
only� Each micrograph is characterized by a signal intensity curve which
varies with spatial frequency�

��� Contrast Transfer Function� Noise� And

Total Intensity Model

The Contrast Transfer Function for microscope is traditionally modeled by

CTF�s� � Amp� e�Bs
�

�
q

	� C�
A sin ��s� � CA cos ��s���

where s is the spatial frequency� Amp is the overall amplitude� and CA is the
amplitude contrast factor that describes the relative amount of elastic and
inelastic scattering� It depends on the specimen and the microscope in use�
The term

p
	� C�

A sin ��s� describes the phase contrast and the CA cos ��s�

term describes the absorption �i�e� amplitude contrast�� The term e�Bs
�

is
an envelope function�

Theoretically� information is transferred in a wide range of spatial fre�
quencies� The increasingly rapid oscillations of CTF make it di�cult to
exploit all of the high frequency information� In practice� as we go toward
higher spatial frequencies� the CTF is damped� limiting the resolution� This
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e�ect can be described by the envelope function e�Bs
�

� Various sources con�
tributing to the envelope function fall�o� include electron microscope factors�
specimen movement� photographic emulsion� digital scanner� the specimen
itself� Even the skills of the microscope operator �e�g� waiting for too long
to take a picture or not getting the defocus right� a�ect the envelope func�
tion fall�o�� The known theoretical form for the envelope function is fairly
complex� All of the parameters for the full envelope function cannot be de�
termined unambiguously� Empirically� e�Bs

�

functional form �ts the data
within the bound of error in many cases� A simple envelope function is not
su�cient for very clear data because it is di�cult to �t both the second peak
and right�hand part of the signal intensity curve�

Parameter B is a microscope dependent factor� It is weakly dependent on
the defocus but in the current model it is considered to be independent� The
factor ��s� is the phase shift in reciprocal �Fourier� space for phase contrast
microscopes


��s� � ����Cs	�
���s�

�
� ������z�s��� �	�

where Cs is the spherical abberation of the microscope� � � hcp
V ���E�V

is

the wavelength of the electrons in the beam� V is the microscope voltage �in
kilovolts�� E�V is the rest mass of the electron� h is Plank�s constant� and c

is the speed of light� �z is the defocus value�
This dependence of the phase shift on spatial frequency �	� has long been

known to give a good agreement with data from the microscope in the absence
of astigmatism� In practice� if astigmatism is present� or if the micrograph is
corrupted otherwise �such as by specimen drift�� the micrograph is undesir�
able for the purpose of the CTF parameter determination� Therefore� we can
assume there is no astigmatism present and we can use the above expression
for the phase shift �	��

One can rewrite the CTF as


CTF�s� � Amp e�Bs
�

�
q

	� C�
A sin���s�� � CA cos���s���

� Amp e�Bs
�

�sin���s� � ��� ���

where sin��� � CA� The parameter used in our computations is � � arcsin�CA��
The functional form of the noise intensity is empirical� It includes e�ects

of many di�erent sources and it �ts data obtained from several di�erent
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microscopes well�

Noise Intensity�s� � n� e
�������n�s���n�

p
s�n�s� ���

where n� is the squared amplitude of the noise� Since the noise is additive and
�empirically� incoherent with regards to the true signal� the total intensity
of the signal observed on the micrograph may be expressed by


TI�s� � CTF�s��F�s� � Noise Intensity�s�� ���

where Noise Intensity is the squared average of white random noise� and F�s�
is the unknown structure factor of the particles �squared Fourier transform
of the projected density��

There are four unknown parameters which characterize the CTF
 the mi�
croscope dependent parameterB� the amplitude contrast CA� the defocus �z�
and the overall amplitude of the signal Amp� Also there are four unknown
parameters describing the noise ni� i � 	 � � � �� These model parameters need
to be determined� along with the vector of the structure factor values F�s��

The following requirements bound the parameters� All the parameters
are nonnegative� with the exception of the defocus �z� Parameter B is
practically strictly positive� otherwise� the envelope function is equal to one
and there is no damping e�ect� Parameter CA varies between zero and one�
typically � � CA � ���� There are soft bounds on �z
 �� � �z � ��

The determination of F�s� as a function of spatial frequency is a di�cult
problem� In case F�s� in unknown� it must be determined by demanding that
it is consistent between di�erent defocus settings�

��� �Manual� Curve�Fitting Procedure for the CTF

Parameter Estimation Problem

Currently� the parameter identi�cation process is done by 
manually� �tting
the model to the measured data through trial and error �see� for example�
�	��� First� one assumes that the structure factor values are all ones� Then�
one guesses the parameter values based on the physical characteristics of the
CTF and noise functions and applies an unconstrained local optimization
method to obtain a �t� The current CTF and two noise parameters �tting
procedure goes as follows� For large wave�numbers the intensity is entirely
comprised of noise� By plotting the intensity� the coe�cients n� and n�
of Noise Intensity � n� e

�n�s are �tted� To manually �t the data� noise

�
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is �tted �rst from the tail of the curve and the zero points� When one
determines the CTF 
by hand�� the positions of the zeroes of the CTF are
measured and �tted to a chart of the CTF characteristics� The four noise
parameters can easily be used up to �t the peak but one should avoid using
the degrees of freedom for this purpose� If the data is not very clear� the noise
parameters can be de�ned from the tail of the curve� Otherwise� 
manual�
�tting becomes almost impossible� Currently� the boundaries are enforced
by manually restricting the parameter choice to sensible values�

If the �t does not look right or the parameters are out of range� then the
guessing and �tting procedures are repeated again until a �t is acceptable�
From the �tted parameter values� one computes a set of corresponding struc�
ture factor values� Since the structure factor values should be the same for
di�erent data sets for the same particle� the �tting procedure requires going
back and forth many times between di�erent data sets and parameter values
in order to obtain consistent structure factor values�

Other disadvantages of the 
manual �tting� approach include the lack of
a sound and precise measure for the quality of obtained parameter values and
the quality of �t� the excessive sensitivity to the noise intensity parameters�
no e�ective enforcement of parameter bounds� and the in�exibility of accom�
modating new parameters in the model� Previous attempts �Zhu et al� �	���
at automating the parameter estimation process mimic the 
manual �tting�
approach� hence sharing similar �aws�

The �tting routine does not work well if the envelope function is narrow�
or if the defocus and�or other parameters fall out of a smaller subset of the
parameter space� It also fails in the presence of distinguished peaks in the
high frequency area�

If the structure factor is available from X�ray scattering� it is used in the
�tting� Even then� the �t might not be very accurate� Figure 	 illustrates the
best 
manual� data �t for the Human Fatty Acid Synthase when the struc�
ture factor known from X�ray scattering is used and a �t used our automated
method that will be described in the next section� In the plot for the auto�
mated �t the data is represented by asterisks ��� and the �t is represented
by a solid line� We can see that in most cases the �t is accurate� When the
X�ray data is absent� the �tting becomes even harder� The approach that
we propose in the next chapter will not only allow us to perform the data �t
with the structure factor being unknown� but often allows to have a better
�t� One of the reasons for a more accurate �t is that there are more degrees
of freedom when the structure factor is not �xed �even to a �good� value��
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Figure 	
 Comparison of the 
manual� data �t with the known structure
factor �left� and of the fully automatic data �t with the unknown structure
factor �right� for human fatty acid synthase�

The attempts of �tting include the 
intelligent� �similar to manual� �tting
algorithm and a gradient�descent like method�

Zhu� Penczek� Scroder� and Frank �	�� proposed an 
intelligent� �tting
method� which uses zeros of the CTF to determine the defocus and amplitude
contrast parameters� The method uses the information from the peaks of the
signal intensity curve to de�ne amplitude� The authors do not specify the
details of determining the envelope function and noise parameters�

� Mathematical Formulation of the Problem

We propose two new formulations of the problem� Both are constrained
nonlinear least squares that simultaneously determine the structure factor
and the Contrast Transfer Function parameters� This new approach requires
multiple data sets and �nds all the unknown parameters corresponding to all
the involved data sets at once�

We consider the functional form of the Contrast Transfer Function and
Noise Intensity function as de�ned in ��� and ���� respectively� Corresponding
to each data set there are eight unknown parameters in the CTF and noise
function and an unknown vector of structure factor values whose size is that of
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the data set� If only one data set is used� then the system is underdetermined�
This is why it is the current practice� where a single data set is used at a
time� to �x the structure factor vector to some value while �tting the other
model parameters�

A key observation is that if one uses multiple data sets� then it becomes
possible to determine the unknown model parameters� along with the vector
of structure factor values which is invariant among di�erent data sets that are
generated for the same particle� This approach is feasible because multiple
date sets for the same particle are easy to generate in electron microscopy
�and are already available for other purposes��

This approach o�ers considerable advantages and it will be discussed in
detail in this chapter� However� we have discussed it in preliminary form at
meetings and conferences� e�g� ���� �see also �����

We propose to minimize the sum of the squares of the residuals arising
from �tting the model to multiple data sets concurrently� The data sets are
of the same size� and the minimization is subject to the appropriate bounds
on all variables� Thus we estimate the vector of the structure factor values
for the sample particles� as well as the parameters of the Contrast Transfer
Function and incoherent background �noise� to �t the experimental data�

The CTF and structure factor determination problem can be viewed as a
constrained �because of the bounds on the variables� nonlinear least�squares
problem� In this problem we �t the total intensity model which is nonlinear in
the parameters� as de�ned in ���� to the total intensity of the signal observed
on the micrograph� Usually the data set contains several hundred points�

We chose to formulate the problem as a nonlinear least�squares problem�
i�e�

min
x�Rn

f�x� �
	

�
R�x�TR�x� �

	

�

mX
i	


ri�x�
� ���

where m � n� the residual function

R 
 �n �� �m

is nonlinear in x� and ri�x� denotes the ith component of R�x�� If R�x� is
linear� ��� is a linear least�squares problem� If one is attempting to �t the
data �si� yi�� i � 	� �� � � � � m� with a model M�x� s� that is nonlinear in x�
then the nonlinear least�squares problem consists of choosing x so that the

 



�t is as close as possible in the sense that the sum of squares of the residuals
ri�x� � M�x� si�� yi is minimized� Typically� m is much larger than n�

It is also possible to use the l
 norm

f
�x� �
mX
i	


jrij

or the l� norm

f��x� � max

�i�m

jrij

to evaluate the quality of the �t� The choice of the sum�of�squares measure
for data �tting is justi�ed by statistical considerations �see� for example�
����� The l� norm is not as good in statistical sense as l� norm or l
 norm�
Of the three norms we prefer the least�squares formulation also because the
objective function is di�erentiable only when using the l� norm and not in
the the other two cases�

Note that the objective function is highly nonlinear due to the physics
involved in creating the model�

It is possible that the constrained solution is not at the bounds of the
feasible region� however� an optimum may be outside the constrained region
and removing the constraints may lead to a solution outside of the range of
meaningful values�

��� Formulations for the Simultaneous Structure

Factor and Contrast Transfer Function Parameter

Determination

It is convenient to use the following notation for the unknown parameters


xi � ni� i � 	� �� � � � � ��

where ni are the parameters of the noise intensity function ���� and the rest
are the parameters of the CTF ���


x� � Amp� x� � ��z � �� x� � arcsin�CA�� x
 � B�

In contrast with the 
manual� approach to parameter estimation� param�
eters �z� B� and Amp cannot be viewed as unconstrained and the values
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cannot be simply discarded if they are out of the range of meaningful values�
Therefore we introduce a vector of upper bounds b� corresponding to the
vector of unknown parameters� The upper bound values are soft� They are
determined empirically� The defocus parameter �z is the only parameter
that can have negative values� For convenience� we can shift it to ensure
nonnegativity without a�ecting the formulation� Therefore we consider all
the parameters to be nonnegative�

Let us introduce the following notation�

� p is the number of di�erent defocus data sets available for the same
particle� usually � or ��

� m is the number of points in each data set� usually several hundred�

� n is the number of unknown CTF and noise parameters for each data
set� in the current model n �  �

� xj is the unknown vector of CTF and noise parameters for jth data
set� xj � �n�

� x is a vector composed of vectors xj� x �

�
��
x

���
xp

�
�� �x � �pn�

� bj is a given vector of upper bounds for the CTF and noise parameters
xj� bj � �n� upper bounds are the same for each data set� i�e�� bj� bi

�i� j � 	� �� � � � � p�

� b is a vector composed of vectors bj� b �

�
��
b

���
bp

�
�� � b � �pn�

� y is the unknown vector of structure factors� y � �m�

� ctf�xj� is the unknown CTF vector for jth data set� ctf�xj� � �m�

� noise�xj� is the unknown noise intensity vector for jth data set� noise�xj� �
�m�

� tj is the vector of total intensity of the signal observed on the micro�
graph� tj � �m�

	�



Based on the model of total intensity of the signal observed on the mi�
crograph ���� we can now formulate our problem as

min
x�y

	

�

pX
j	


kdiag�ctf�xj��
�y � noise�xj�� tjk��

� � x � b� x � �pn ���

y 	 �� y � �m�

where noise�
� 
 �n � �m� ctf�
� 
 �n � �m� tj � �m� j � 	� � � � � p�
Let us denote

D�xj� � diag�ctf�xj��
�� D�xj� � �m�m� j � 	� � � � � p

c�xj� � �noise�xj� � tj� c�xj� � �m� j � 	� � � � � p�

Omitting the multiplier constant �

�
� from the objective function� ��� can

then be rewritten as

min
x�y

Pp
j	
 kD�xj�y � c�xj�k��
� � x � b� x � �pn ���

y 	 �� y � �m

or as

min
x�y

�������

�
��
D�x
�

���
D�xp�

�
�� y �

�
��
c�x
�
���

c�xp�

�
��

�������

�

�

� � x � b� x � �pn

y 	 �� y � �m�

We have proven mathematically that the nonnegativity constraint on y can
be removed if the upper bound on the noise amplitude parameter is less than
the total intensity and if

�

pX
j	


D�xj�
��i � �

pX
j	


diag�ctf�xj��
��i �� � � �

		



A zero entry on the diagonal of the above matrix can occur for some i �
	� �� � � � � m only if for some s� ctf�xj� � � in all p data sets� In practice� this
situation is highly unlikely because we use di�erent defocus micrographs and
it is improbable that the zeros of the CTF functions will coincide� However�
one has to ensure that � � is not equal to zero� It is possible that the values
of � � are very small� causing numerical problems when dividing by � �� The
solution y� of ��� can be expressed in terms of x


y��x� � ��

pX
j	


D�xj�
����
�

pX
j	


D�xj�c�xj�� ���

or� component�wise�

y�i �x� �

Pp
j	
 di�xj�ci�xj�Pp

j	
 di�xj��
� �	��

where di�xj� is the ith diagonal element of D�xj� and ci�xj� is the ith ele�
ment of c�xj�� The non�negativity condition on y��x� no longer needs to be
enforced since di�xj� 	 �� c�xj� 	 ��

Using the expression for y� �	�� we propose the second equivalent for�
mulation of the problem� We have proven that if ��� has a local minimizer
�x�� y�� and

�

pX
j	


D�xj�
��i �� � � i � 	� �� � � � � m

then y� satis�es ���� namely

y� � ��

pX
j	


D�x�j�
����
�

pX
j	


D�x�j�c�x
�
j�� �		�

We demonstrated that we can treat the structure factor vector y and
the CTF and noise parameters x together� as independent variables� or� y
can be treated as a variable dependent on x� so that the explicit variable y
can be eliminated� leaving fewer variables in the problem formulation� An
additional advantage of the second formulation is that no initial guess for
the of linear variables y is required� Another observation is that the Hessian
approximation matrix is nearly singular when we use the �rst formulation
and the Gauss�Newton method to solve it� A disadvantage of the second for�
mulation is that the function� its Jacobian and Hessian calculations become
very cumbersome�
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��� The Algorithm

We have formulated the problem as nonlinear least squares with simple bound
constraints� With these more sophisticated formulations� we need more so�
phisticated numerical algorithms� An important issue is how to handle the
bound constraints� To address this� we will employ interior�point methods� a
class of relatively new methods that have enjoyed great success as constrained
optimization algorithms in the last decade� in terms of both their theoreti�
cal properties and practical performance� The strength of the interior�point
methods lies in their ability to treat inequality constraints e�ectively �see�
for example� ��� 	�� 		���

The interior�point methods can be described as follows� Consider a non�
linear programming problem �NLP�� which in its most general form is the
optimization of an objective function f�x� over some space x � X� subject
to constraints on the variable x� The system of optimality conditions for
the problem is formulated� The system is then perturbed to avoid certain
numerical problems� Then damped Newton�s method is applied until opti�
mality conditions are satis�ed� It is necessary to damp the Newton�s step in
order to satisfy the inequality constraints on the variables� which in our case
are the upper and lower bound constraints on the CTF and noise parameters
and on the structure factor�

The Newton Interior�Point Algorithm
Choose a feasible initial guess�
For k � �� 	� �� � � � do
STEP 	� Test for convergence
 If a convergence criterion is satis�ed then
exit�
STEP �� Update the perturbation parameter�
STEP �� Solve for perturbed Newton step�
STEP �� Adjust step�length to ensure feasibility with respect to inequality
constraints�
STEP �� Adjust step�length for globalization�
STEP �� Update unknowns�
EndFor�

The interior�point methods are known for their good local convergence
properties and global convergence properties for convex programming prob�
lems� We investigate speci�c primal�dual interior�point methods that best
exploit the special structure of the problem at hand� We conduct extensive
numerical experiments to �nd the best combination of the many factors that
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leads to a reliable and e�cient algorithm� The results appear in Section ��
We proposed a Newton interior�point algorithm that can be easily modi�

�ed to Gauss�Newton or Levenberg�Marquardt interior�point algorithm� We
have also developed mathematical theory �see � �� that proves the conver�
gence of the algorithm� con�rming that it is a good choice in combination
with the proposed formulations of the problem�

� Numerical Experimentation

We have developed an e�cient algorithm for the numerical solution of the
problem� which can be used as a base for an automated routine for the deter�
mination of the structure factor and the CTF and noise function parameters�
We construct an algorithm based on interior�point methodology in order to
treat bound constraints e�ciently� In this section we report our numeri�
cal experience� The computational work was done on a SUN Ultrasparc �
Workstation running SunOS �� megabytes of memory and with a ��� MHz
processor� The programs were written in Matlab and run under Version ��	�

Recall that the �rst formulation deals with the CTF and the noise param�
eters and the structure factor values as independent variables� In the second
formulation the structure factor is implicit� Our implementation can be eas�
ily modi�ed to use Newton�s or Levenberg�Marquardt method instead of the
Gauss�Newton method� If Newton�s method is desired� the user needs to sup�
ply second derivative information� which is avoided if either the Levenberg�
Marquardt method or the Gauss�Newton method is used�

The problem is badly scaled due to the di�erence in magnitude of the vari�
ables� We have scaled the variables� however the numerical experimentation
showed that scaling B did not e�ect the computational results signi�cantly�

The code was tested on the standard test set ����� as well as test problems
created by us�

	�� User�Supplied Information

The user of the code needs to provide �les with the input data
 spatial
frequency s and corresponding measured total intensity of the signal TI�s�
for � data sets for each particle� Spatial frequencies s �data points� are the
same for a given particle from the same microscope for di�erent defocus data
sets� The sharp peak of the signal intensity curve near s�� represents an
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artifact of the microscope� which must be ignored in the �tting procedure�
Therefore the data corresponding to ����� and points before the �rst peak
are excluded from the data �tting process� The range to be ignored must
be determined� If the peak is wide� the choice has to be made as to which
part of the peak to disregard� For certain data� peaks do represent valuable
information� Generally� the �tting starts at the spatial frequency roughly
equal to the inverse of the particle size� because for smaller spatial frequencies
the useful information is lost�

Some of the noise parameters are very close in value� which contributes
to singularity� To �x the linear dependence of the columns containing nearly
same values� we can �x the noise parameters �reducing the number of vari�
ables�� as well as some other parameters that are likely to be similar� such
as amplitude contrast parameter CA�

	�� Initial Guess

The issue of �nding a good initial guess for the variables is an important
one� We are concerned with having good initial guess �rstly� for the values of
CTF and noise parameters� and secondly� for the vector of structure factor
values�

It is a challenge to come up with a good initial guess for the vector of
structure factor values� There is often no biological insight into such initial
guess� The reason is that� if there is an information about structure factor
from X�ray scattering� these values are just plugged in to �nd the values of
CTF and noise parameters� If no such information is available then it is hard
to suggest a reasonable value One option for a structure factor initial guess
is to assume that it is a unit vector� solve the resulting �smaller� nonlinear

least�squares problem and use
p
TI�NI
CTF � as an initial guess� Another possi�

bility is to use e�const�s� since the structure factor vector mapped against
spatial frequency roughly has an exponential shape� We have experimented
with several heuristic initial guesses for the vector of structure factor val�
ues� such as exponential form and di�erent constant values� It seems that
independently of the starting estimate the �nal answers are consistent�

The use of the second formulation of the problem� where the linear vari�
ables� i�e� the structure factors� are implicit� allows one to avoid providing
an initial guess for the vector of structure factor values�
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	�� Numerical Results

The results of our numerical experience are summarized in Table 	� The �rst

Table 	
 Computational results for the sample particles�

Type of Particle n f kFk Rel CPU

Human Fatty Acid Synthase 	�� ������ �������� ����� ����
Herpes Virus Particles ��� ������ ������	 ���	� 	����	
	�crystallin A 	�� �������� ��������� ������ 	����	
	�crystallin AB 	�� ����  ��	���� ������ ��� ��
	�crystallin B ��� ���  � 	�	��� ���� 	��	�	

column gives the particle type� The n column gives the dimension of the
problem� which equals to the size of the vector of structure factor values �i�e�
the size of one data set� plus �� �i�e� the number of the unknown CTF and
noise function parameters for � data sets�� The third column gives the �nal
objective function value� The forth column states the value of the residual of
the optimality system for the problem� that was described in Section ���� at
the termination of the algorithm� The value indicates how close the algorithm
is to the optimal solution� Zero value would indicate an exact minimum was
reached� however that is more often than not is precluded by the numerical
artifact of the problem The �fth column provides a relative error� de�ned as
the ratio of the objective function value to the size of the vector of unknowns�
It gives a better feel for the quality of the �t that the absolute value of the
objective function reported in the third column� Last column gives the total
computing time in CPU seconds that algorithm took�

The Figures 	� �� and � illustrate the �t obtained with the use of our
formulation and algorithm for human fatty acid synthase� herpes simplex
virus �HSV�	�� and 	�crystallin AB� For 	�crystallin AB the plot in the top
left corner of each �gure shows � distinct data sets that need to be �tted for
each particle� The other plots show the data� represented by asterisks ����
and the �t� represented by a solid line� We can see that in most cases the �t
is accurate� The quality of the �t increases as the points� corresponding to
the low frequency part of the data curve are excluded� The current model
does not always capture the phenomena responsible for the peaks if the data
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curve� Therefore� the user can decide how may points to exclude from the
�tting process to get the optimal �t�
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Figure �
 Fully automatic data �t with the unknown structure factor for the
herpes simplex virus �HSV�	��

The results in Table 	 were produced using the �rst formulation of the
problem� The second formulation� while a worthwhile idea� is more di�cult to
implement� Levenberg�Marquardt approach was used in the �nal calculations
since it allows to reduce the numerical errors caused by ill�conditioning�

� Conclusions

We consider an important problem in electron microscopy� The previous
attempts to solve this problem were unsatisfactory� We mathematically for�
mulate the problem in two related but di�erent ways as a nonlinear least�
squares problem with simple bounds� Our �rst formulation is a mixed linear�
nonlinear least�squares problem� where the residual function is linear in the
variables representing structure factors and nonlinear in the others� Taking
advantage of the linearity� we propose the second formulation� that reduces
the number of variables� perhaps� at the cost of an increase in the nonlinear�
ity of the problem� The second formulation does avoid the need for an initial
guess of the structure factor values�

Our code features a number of advantages over the currently practiced

manual� approach�
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* 



It simultaneously �ts the CTF and noise parameters and the estimates
the structure factor values�

The quality of �t can be precisely judged from the objective function
value�

Our �tting procedure can successfully �t the model to the data over a
greater range of spatial frequencies than the 
manual� procedure�

It is easy to incorporate changes in the model� Currently there are  
unknown parameters for each data set� as well as a vector of structure factor
values� whose size equals that of the data set� As was previously discussed
�see Section ��	�� there is interest in making the model more complicated to
account for the currently underrepresented phenomena� One of the �rst such
changes� would� perhaps� be the more complicated model of the envelope
function� currently modeled as a simple Gaussian� There is no conceptual
di�culty in adding as many parameters as desired to the model of the enve�
lope function or to any other part of the model�

The user can take advantage of Gauss�Newton� Levenberg�Marquardt� or
Newton�s method� when using the algorithm�

The objective value obtained by algorithm is very low in most cases�
indicating a close �t of model to the data� In cases� when is was not reduced
to a small value� we were attempting to �t the peaks of the intensity curve�
that are not described by the current model� Removing points to the left of
the peak led to an accurate �t with low objective function values�

We developed an algorithm for this class of problems� It is based on
interior�point methodology which deals e�ciently with the inequality con�
straints� We also take advantage of the special structure of our problem�
Interior�point approach is combined with the Gauss�Newton method� which
is especially successful on zero� and small�residual problems� We would like
to point out that our implementation allows for the Levenberg�Marquardt
method to be used� Newton�s method also can be used� i�e� we can use the
second derivative information� if desired�

Our numerical experimentation con�rms that our approach is successful
and demonstrates a good �t of the model to the data�

The proposed method of the simultaneous structure factor and CTF pa�
rameter determination is e�ective� minimizes user interaction and does not
require any previous knowledge about the particle� making it an ideal choice
for when neither X�ray crystallographic nor X�ray scattering data is available�
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Figure �
 Fully automatic data �t for 	�crystallin AB�
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