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Financial markets often feature interactions between agents who do not have the

same amount of information about a financial asset. The presence of asymmetric in-

formation in financial market interactions has significant implications for equilibrium

outcomes, and can account for the behavior observed in certain empirical puzzles.

In the first chapter, I study the formation of a firm’s capital structure. I show

that asymmetric information between firms and investors causes firms to signal their

quality to the market via their debt issuance decisions. In contrast to the previous

literature, I show that this setting can result in high quality firms borrowing less than

low quality firms. An effect similar to that of credit rationing drives this result. This

finding can explain the zero leverage puzzle, i.e. some high quality firms use almost

no leverage; as well as the negative correlation between profitability and leverage and

findings of no (or negative) announcement effects for debt issuance.

In the second chapter, I construct a model of informed trading through a public

exchange and a dark pool, where the informed trader has price impact. In this

model, the dark pool makes the price less accurate by reducing the quantity of public

exchange trading from the informed agent. This reduction in trade is due to the fact

that the informed agent can profit from the dark pool, but only if he does not make

the price on the public exchange too accurate.
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In the third chapter, which is co-authored with Kerry Back, we examine the case of

traders with differing private values for an asset such that there are gains to trade. We

show that if traders are unwilling to display liquidity due to the information revealed

by orders, then an opportunity to trade in the dark can be welfare enhancing. We

introduce a dark mechanism into a model of two-sided bargaining with incomplete

information and strategic delay. Traders delay displaying liquidity even further when

it is possible to trade in the dark, but the net effect of trading in the dark is to

accelerate trade and increase welfare.
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Chapter 1

Debt Signaling and Capital Structure Puzzles

1.1 Introduction

Strebulaev and Yang (2013) document what they call the zero-leverage puzzle: 22% of

large, public, US firms use either no leverage or leverage of less than 5%. Strebulaev

and Yang make some observations about the properties of low leverage firms: these

firms pay substantially higher dividends, are more profitable, pay higher taxes, issue

less equity, and have higher cash balances than comparable firms.

In light of this evidence, an explanation for why firms have lower leverage than

predicted by standard models cannot merely predict a lower level of leverage for the

average firm. Instead, the explanation must account for why some firms use almost

no leverage at all. Furthermore, the explanation must account for why these zero

leverage firms seem to be healthier firms than their higher leverage counterparts.

In this paper, I offer an explanation for the zero leverage puzzle. I show that if

the firm has more information about its future prospects than the market, then high

quality firms adopt not only lower leverage than in the full-information case, but also

lower leverage than low quality firms. Firms do this to signal their prospects to the

market and thereby obtain better terms for their debt.

I show that the key economic force behind this result is similar to the intuition

behind credit rationing. The phenomenon of credit rationing as studied by Stiglitz

and Weiss (1981) occurs when borrowers cannot get funding from a bank despite
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being willing to pay more than the interest rate the bank is offering. The reason the

bank is unwilling to raise its interest rate is twofold. First, the safe borrowers are

unwilling to pay a high rate of interest. Second, the unsafe borrowers will continue to

want to borrow, since they do not expect to have to repay the loan because of their

high likelihood of bankruptcy. This adverse selection results in high interest and a

pool of borrowers that are only of low type.

Although my paper has a signaling model instead of screening model, the intuition

is closely linked. In my model, high type firms are more sensitive to changes in their

no-default payoff when they borrow, due to the fact that they have to repay the

debt with high probability. As a result, they choose to borrow less than the optimal

full information amount (rather than more) in order to signal their creditworthiness.

In contrast, low type firms who face a high probability of default are less sensitive

to changes in their no-default-state payoff. This difference in sensitivity drives a

separating equilibrium in which high type firms borrow less than low type firms.

My finding is the opposite result from most of the literature on the effects of

asymmetric information on leverage. This literature, which begins with Ross (1977),

shows that higher leverage ratios should be associated with better quality firms.∗

This appears inconsistent with the findings of Strebulaev and Yang (2013) as well

as findings that there is no (or a negative) announcement effect of debt issuance on

stock prices.†

My model is based on the trade-off theory of capital structure. A manager selects

∗See Harris and Raviv (1991) and Klein, O’Brien, and Peters (2002) for surveys.
†See Dann and Mikkelson (1984), Eckbo (1986), and Mikkelson and Partch (1986) for no an-

nouncement effect and Howton, Howton, and Perfect (1998) for negative announcement effect. Fur-
thermore, studies by Rajan and Zingales (1995), Frank and Goyal (2003) and Fama and French
(2002) find a negative cross-sectional relationship between leverage and profitability, which is the
opposite of the result one would expect if high quality firms use more leverage than low quality
firms.
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a level of debt for a firm which faces the possibility of default. This bankruptcy

possibility is endogenous in that higher levels of debt increase the likelihood of default.

Debt provides a tax shield, and the manager borrows to reduce the firm’s tax burden.

The market does not know the type of the firm, and as a result it infers the firm type

from the debt level the firm is taking on. One crucial distinction between my model

and much of the previous literature is that because firms have nonzero borrowing levels

in the full information case, a manager can engage in costly signaling by lowering the

firm’s debt level. Other models in the literature (discussed below) have no incentive

for the firm to hold debt in the full information case, and as a result firms in those

models cannot credibly signal anything to the market by not borrowing.

In this general trade-off framework, I provide conditions under which the equilib-

rium relationship between debt and firm quality is negative. A key assumption which

is consistent with these conditions is that the rate at which firms lose equity value as

they borrow more is higher for high types than for low types. This assumption takes

the form of a restriction on the cross partial derivative of equity value. It is consistent

with the credit rationing intuition: higher types care more about states where they

have to pay back debt because they consider these states more likely. As a result,

the expected future value of equity decreases faster for higher types as borrowing is

increased.

I next develop two specific models inside this framework, one a single period model

based on Merton (1974) and one based on the capital structure model of Leland

(1994). I show that each model produces the negative relationship between debt and

firm type. I then demonstrate that each model satisfies the cross derivative of equity

assumption: equity value decreases in borrowing at a faster rate for high types. I also

detail how this cross derivative property is driven by the credit rationing force, i.e.,
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it results from high type firms caring more about their no-default state payoffs.

Since the theoretical literature on this subject predicts the opposite result, it is

natural to wonder under what circumstances a positive relationship between firm

quality and leverage emerges. In my general framework I also provide conditions

under which a positive relationship can emerge. These conditions concern a penalty

for bankruptcy in my model that accrues only to the manager. This penalty may be

thought of as reputation effects and other damages to the manager’s career in the

event that the manager takes a firm bankrupt. In the Merton and Leland models, it

turns out that for low values of the penalty, the negative correlation, credit-rationing

type equilibrium is the outcome. But, for larger values of the penalty, a positive

correlation equilibrium emerges.

These findings predict that among managers who do not expect to lose much from

a bankruptcy beyond their loss of compensation, high quality firms should borrow less

than low quality firms. Using CEO tenure as a proxy for lack of expected loss from

bankruptcy, this prediction is consistent with additional findings in Strebulaev and

Yang, who show that firms with longer CEO tenure are more likely to have almost

zero leverage.

The reason for the positive correlation equilibrium is straightforward: high type

managers borrow more because they face less risk of paying the penalty than low

type managers would for the same level of borrowing. The unwillingness of low type

managers to face the bankruptcy penalty risk drives the separating equilibrium. This

is the same mechanism behind Ross’s result. His model also features a bankruptcy

penalty for the manager, and this penalty is the only force driving the separating

equilibrium in his model.

I show that whether a manager has short-run or long-run incentives also mat-
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ters for determining whether a positive or negative equilibrium relationship emerges.

My model features compensation schemes for the manager which contain weighted

averages of both long-run and short-run values for equity. That is, the manager’s

compensation is a weighted average of what the market thinks the firm’s equity is

worth at the time (based on the manager’s behavior) and on the true value of equity

(based on the firm’s type). I show that even with a tax advantage for debt, there

can never be an equilibrium where high type firms borrow less than low type firms if

managers are compensated only on the short-run value of equity. This comes from the

fact that the negative relationship is driven by the cross derivative property discussed

above. This property concerns changes in equity across the true, long-run value of

firm equity. If the manager does not care about this, then the effect disappears.

This also highlights another difference between my model and the model of Ross.

In Ross, the manager receives compensation based on the short-run value of equity

alone.

The fact that compensation based on the long-run value of equity is more likely

to produce the negative leverage-type relationship is also consistent with Strebulaev

and Yang’s finding that firms with higher CEO ownership (meaning the CEO would

care more about the long-run value) are more likely to have almost zero leverage.

In the next subsection, I review the literature related to my model. I then develop

a general model of the trade-off theory of optimal capital structure with signaling in

section 2. In sections 3 and 4, I show two examples of this model. The first is a simple,

single period model based on Merton (1974) while the second is based on Leland

(1994), which is easier to calibrate and compare with the literature. For reasonable

parameter values, this Leland-based setup can match Strebulaev and Yang’s finding

that 22% of firms have leverage of 5% or less. In section 5, I summarize my model’s
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empirical predictions, and in section 6, I provide more details on how the negative

relationship between type and leverage emerges.

1.1.1 Related Literature

Models of the trade-off theory of optimal capital structure include Leland (1994) and

Goldstein et al. (2001). These models (particularly Leland (1994)) are the source of

the low-leverage puzzle: the stylized fact that average leverage ratios are lower than

the leverage ratio produced in the typical calibration of these models. Goldstein, Ju

and Leland’s paper introduces additional forces into the Leland (1994) setup which

help lower the high leverage ratio predicted by the earlier model. However, as pointed

out above, they do not account for Strebulaev and Yang’s finding that some firms

borrow a great deal less (rather than just a little bit less) than is predicted by theory.

Papers that attempt to explain the Strebulaev and Yang finding include Lotfaliei

(2016) and Lazzati and Menichini (2015). Lotfaliei (2016) suggests that the result

can be explained by the option value of waiting to issue debt. While the option

value of waiting likely contributes to the almost-zero leverage phenomenon, it also

implies that almost-zero leverage firms are prepared to issue debt in the near future.

This seems at odds with Strebulaev and Yang’s finding that almost-zero leverage is

a persistent phenomenon.

Lazzati and Menichini (2015) suggest that the result can be explained by a more

detailed model of taxes and investment. They develop a dynamic model of financing

and investment decisions, where managers choose a trajectory for book assets and

borrowing. Book assets reduce the tax burden of the firm through operating costs

and capital depreciation deductions. In their model, firms hold zero leverage when

they have high non-debt tax deductions.
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In the Myers and Majluf (1984) model, an investment opportunity requires fi-

nancing in order to be pursued. In their environment, firms develop a pecking-order

approach to financing. The model predicts firms should favor leverage more as a

result of asymmetric information. Dybvig and Zender (1991) shows that when the

optimal contract for the manager is used in this setting, the capital structure of the

firm turns out to be irrelevant. Both these papers assume no taxes.

A key difference between the model of Ross (1977) and my own model is that in

Ross, the Modigliani-Miller theorem holds conditional on information. That is, the

value of the firm is independent of the capital structure. This fact plus the manager

penalty for bankruptcy means that absent asymmetric information, all firm types

would use zero debt. In contrast my model includes a tax advantage for debt, so that

the firm has a nonzero optimal leverage ratio even with complete information. As

discussed earlier, since the debt level is non-zero in the first-best case, the manager

can use reductions in leverage as a signal, whereas this is impossible in Ross.

Besides Ross, there are many other papers in the theory literature on capital

structure that examine the effects of asymmetric information. Nearly all of these

papers say in one form or another that more debt finance and/or less equity financing

is a signal of higher firm quality, which is the same prediction as Ross.

Blazenko (1987) contains a model that follows Ross but removes the private man-

ager penalty. In this model, the manager chooses whether to use all equity financing

or all debt financing to fund an investment opportunity. Instead of Ross’s private

penalty, the manager has an end of period wealth level based on firm performance,

and risk averse preferences. If the manager is sufficiently risk averse, a separating

equilibrium emerges in which the use of equity financing signals a lower probability

of project success to the market than debt financing. Like in Ross and in contrast to
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my own model, Modigliani-Miller holds conditional on information and the manager

never uses debt in the full information case.

Heinkel (1982) contains a model which produces a costless signaling equilibrium

under an assumption that high value firms necessarily have riskier debt. In the model

both debt and equity are issued, and because of the trade off between debt and

equity value, convincing the market that a firm has higher value debt also convinces

the market that the equity is of lower value. Heinkel defines high quality firms as

firms with safe debt. These firms use more debt financing. Again, Modigliani-Miller

holds conditional on information.

Poitevin (1989) develops a model of a new entrant to the market who uses capital

structure decisions to signal its type. The high type follows a strategy of borrowing

enough that the low type would go bankrupt if it mimicked the high type.

A crucial similarity between all the models following Ross, besides predicting high

type firms use more leverage, is that none of them include taxes. This removes a key

incentive to have debt in the full information case, and thereby reduces the ability of

a firm to engage in costly signaling by borrowing less. For a firm to signal credibly,

it must do something costly to itself. If firms already prefer to have no leverage, low

levels of borrowing cannot be used as a signal.

An exception to this is the model in Ravid and Sarig (1991). That paper contains

a model with a tax advantage for debt. Despite this, it still produces the result that

high type firms borrow more. The model does not have a bankruptcy penalty as in

Ross, however, it does contain a component that appears to act like this penalty: a

distress financing cost. Specifically, firms pay both coupons and dividends, and it is

optimal to obtain costly emergency financing in order to support dividend payment

when cash falls short. Thus, the firm pays a distress financing penalty when it is
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close, but not quite at default. This is similar to Ross’s extra cost of bankruptcy

and the authors even note that although they refer to their cost as “cost of distress

financing,” the cost could include any cost associated with low levels of income. This

feature seems to drive the model toward the same outcome as Ross.

One exception to the general pattern in this literature is Brick, Frierman, and Kim

(1998), who have a model with risk-neutral investors and asymmetric information

about the variance of cash flow, but full information about the mean. They find that

lower variance (which would indicate a higher quality firm) predicts higher leverage.

The paper by Geelen (2017) has an asymmetric information setup in which firms

select a time and quantity of debt to issue. In his model, zero leverage can arise for

high type firms as the firm waits for the market to treat it as a high type. This waiting

leads to the inference that the firm is high type based on either learning (from a noisy

signal of firm quality) or from the fact that the firm is engaging in (costly) waiting

in the debt market. Although this paper likely explains some of the zero leverage

puzzle, it implies that firms maintain zero leverage only temporarily while they wait

for the market to infer their type. This would seem to contradict the persistence of

the zero leverage phenomenon.

1.2 Model

1.2.1 Manager Compensation

The model consists of a single firm which is one of a continuum of possible types, along

with a competitive market for securities trading where the firm’s debt and equity are

valued. A firm’s type is given by a parameter µ ∈ [µmin, µmax], which determines

the average value of the firm’s cash flow. Only the manager of the firm knows the



10

1

Firm Learns
Its Type

2

Firm
Offers Debt

3

Market Infers
Type

4

Payoff Realized

Figure 1.1 : The game starts with the manager learning the firm’s type. The manager then issues
debt. The market forms a belief about the firm from the manager’s debt issuance decision. Finally,
the manager receives compensation.

firm’s value for µ. The firm’s cash flow is exogenous to the model and is subject to

a corporate tax τc, which gives the firm an incentive to issue debt. The timing

of information and debt issuance is illustrated in Figure 1.1. First, the game starts

and the manager learns the firm’s type µ. Second, taking market beliefs as given,

the manager chooses an amount of debt to issue. Next, the market observes the level

of debt offered by the firm and forms a belief µ̂ about the true type µ of the firm.

Finally, the manager’s compensation is realized.

I now describe the manager’s payoff function. There are three prices which deter-

mine the manager’s compensation. The first is the market price of the debt issued

by the firm, which is denoted by D(µ̂, F ), where µ̂ is the market’s belief for the value

of µ, and F is the face value of the debt. To offer debt, the firm must pay a cost

of issuance given by qD(µ̂, F ) for some constant 0 < q < 1. The firm pays the face

value of its debt using the cash flow. If the cash flow is not enough to pay the face

value, the firm defaults, and the debtholders receive whatever cash the firm has, less

bankruptcy costs.

The second price is the market price of equity, denoted by E(µ̂, F ). The equity

of the firm is a security which pays the firm’s cash flow less taxes and the face value

of debt, unless the firm defaults in which case it pays nothing.

The final price is the true value of equity S(µ, µ̂, F ), which gives the value of
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equity as computed by the manager, using the manager’s knowledge about the true

value µ. This is in contrast to E(µ̂, F ) which gives the price of equity under the

market’s belief µ̂ about the firm’s type. E and S are related to each other through

the relation

E(µ, F ) = S(µ, µ, F )

for all µ. That is, if the market has the correct belief µ̂ = µ, then the market price

of equity is equal to the true value of the firm.

The manager’s compensation is proportional to the value of the firm, which is given

by the proceeds raised from the debt issue plus the value of equity. For the value of

equity, the manager receives compensation based on a combination of long and short

run incentives. This is intended to mirror the realities of executive contracts. The

manager’s long run incentives come from receiving compensation based on the true

value of equity S(µ, µ̂, F ). A manager whose compensation is based only on this true

value of equity is completely committed to increasing the true value of firm even if the

market can be misled (at least in the short term) as to the firm’s type. The manager’s

short run incentives come from receiving compensation based on the market price of

equity E(µ̂, F ). A manager receiving compensation based on this market perception

of the value of equity can receive higher compensation from it if the market believes

the firm to be of a higher type than it actually is.

The manager’s compensation from equity consists of a weighted average of these

two types of incentives, with weight given by θ ∈ [0, 1], so that the equity based
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portion of the manager’s compensation is

θS(µ, µ̂, F ) + (1− θ)E(µ̂, F ).

Finally, the manager faces a personal penalty, which does not accrue to the share-

holders, in the event of a bankruptcy. This penalty is given by C(µ, µ̂, F ).

All together, the manager receives compensation proportional to

Π(µ, µ̂, F ) = θS(µ, µ̂, F ) + (1− θ)E(µ̂, F ) + (1− q)D(µ̂, F )− C(µ, µ̂, F ).

1.2.2 Asymmetric Information

As stated earlier, only the firm knows the true value of µ and µ̂ denotes the market

belief about µ. The firm must make a decision about what face value F of debt to

issue. The price it receives for this F depends on µ̂. Let µ̂(·) be a function denoting

the market’s belief about µ for each possible value for F . The firm takes the market

belief mapping as given and solves

max
F∈R+

Π(µ, µ̂(F ), F ).

I only consider separating equilibria in this paper.‡ Such an equilibrium is defined as

follows.

Definition 1.1 A separating equilibrium is a 1-1 mapping F : [µmin, µmax] → R+,

and a mapping µ̂ : R+ → [µmin, µmax], such that

‡Pooling equilibria often do not survive belief refinements in general. For example the D1 refine-
ment discussed in Ramey (1996) eliminates pooling equilibria in the signaling games he considers.
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1. Given market beliefs µ̂(·), F (µ) solves the type µ firm’s problem for all µ ∈

[µmin, µmax],

2. Investors have rational expectations, that is, µ̂ = F−1 over the range of F .

The above definition describes a single object, a function F (·), which gives the

face value selected by a firm for each possible firm type. An appendix details how this

object is computed.§ The method consists of solving a differential equation obtained

from the manager’s first order condition

F ′(µ) = −Π2(µ, µ, F (µ))

Π3(µ, µ, F (µ))

(where Πi denotes the partial derivative of Π with respect to the ith argument) with

boundary condition F (µmin) = F0, where F0 is the full information equilibrium face

value offered by a firm of type µmin. This boundary condition is obtained by noting

that in any separating equilibrium, the lowest type firm must take the same action

as it does in the full information case.

The differential equation as described cannot be solved since at the boundary

condition Π3 = 0. Thus, to solve the ODE, I first solve the inverse ODE

µ′(F ) = −Π3(µ(F ), µ(F ), F )

Π2(µ(F ), µ(F ), F )

with the boundary condition that µ(F0) = µmin. This degeneracy is present in the

ODE because the ODE is consistent with two possible solutions, each with a different

sign for their first derivative. That is, the ODE has one solution with a positive

§See Mailath (1987) and Mailath and von Thadden (2013) for a thorough analysis of these types
of games.
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slope and one solution with a negative slope. To determine which solution gives

the equilibrium behavior, a second order condition is checked, which verifies that

the behavior assigned to each type by the solution maximizes that type’s objective

function. Additional details about this computation are provided in the appendix.

We will see that both positive and negative slopes are possible in equilibrium.

1.2.3 Results on the Relationship Between Type and Borrowing

This section provides some results on the forces that determine the equilibrium slope

of F . The proofs are provided in the appendix. In what follows CF denotes the partial

derivative of C with respect to F , and Cµ̂F denotes the partial of CF with respect to

µ̂, with similar meanings for EF , EFµ, and so on.

Proposition 1.1 Assume:

1. θ = 0, that is, the manager has only short-run incentives,

2. Π2 > 0, that is, it is better to be perceived as high type,

3. −CFµΠ2 − CFCµ̂µ > 0 evaluated along (µ, µ, F (µ)).

Then for any equilibrium F , F ′ ≥ 0.

Proposition 1.1 gives a condition under which the equilibrium, if it exists, must

have a positive slope (i.e. high types issue more debt than low types) when θ = 0.

One way to understand the condition −CFµΠ2 − CFCµ̂µ > 0 is that it resticts CFµ

to have a negative sign that is large in magnitude. CFµ < 0 implies that the rate at

which firms’ expected penalties increase as F increases is higher for low types than

for high types. It is a natural feature for C to have since it should follow from lower

types being more likely to go bankrupt for any given debt level than high types.
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Proposition 1.1 highlights the effect of short run incentives in models of asym-

metric information: under the assumptions of the proposition, when the manager is

compensated only on the current market belief about the value equity, a negative

relationship between between leverage and firm quality cannot emerge.

Proposition 1.2 Assume

1. θ = 1, that is, the manager has only long-run incentives,

2. C ≡ 0, so that there is no bankruptcy penalty for the manager,

3. Π2 > 0, that is, it is better to be perceived as high type,

4. SFµΠ2 − SFSµ̂µ < 0 evaluated along (µ, µ, F (µ)).

Then for any equilibrium F , F ′ ≤ 0.

Proposition 1.2 gives conditions under which an equilibrium, if it exists, has neg-

ative slope i.e., high types borrow less than low types. Proposition 1.2 holds if, for

instance, SFµ, SF , Sµ̂µ < 0. SF < 0 just says that equity becomes less valuable the

more cash flow is promised to debtholders. Sµ̂µ < 0 says that the rate of gain in eq-

uity value as a firm is percieved to be of higher type is lower for high types. SFµ < 0

says that the rate at which firm equity value decreases as it increases the size of its

debt decreases (i.e. gets more negative) as type increases. This last assumption is

what leads to the credit rationing outcome, i.e. it follows from high type firms caring

more about payoffs in non-default states than low type firms. The importance of this

feature in determining the equilibrium slope is discussed extensively in section 6.

The condition that C ≡ 0 in Proposition 1.2 ensures that the forces producing the

outcome in Proposition 1.1 are not present. This highlights the role of the manager’s
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bankruptcy penalty in producing the positive relationship between firm quality and

leverage. In the following sections, I will show that while small values for C continue

to produce negative slopes for F , larger values reverse the sign of the slope.

In order to obtain additional results, I must specify particular details for the cash

flow, taxes, and prices. In the next sections I present two examples of how this can

be done: one with price formulas from a single period model of capital structure

and endogenous default based on Merton (1974), and one based on the endogenous

default model of Leland (1994). The Merton based model gives a simple setting in

which the results discussed in the introduction can be presented, while the example

based on the Leland model can be more readily compared to other calibrations in the

literature.

1.3 Signaling in a Merton Model

1.3.1 Model

The example in this section is based on Merton (1974). The model consists of two

dates, t = 0, 1. At t = 0, the firm offers zero-coupon debt with face value F , which

pays off at the end of the period t = 1.

The cash flow of the firm takes the form of a random variable Yt representing after

tax cash. Y0 is a constant and Y1 is a lognormal random variable with mean exp(µ).

At t = 1, the value of equity in the firm, if the firm is solvent, is

Y1 + τc(F −D(µ̂, F ))− F, (1.1)

where τc is the corporate tax rate (recall that Y1 is after-tax cash flow) and F−D(µ̂, F )

is imputed interest so that τc(F − D(µ̂, F )) represents the tax benefits of interest
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payments. If (1.1) is negative, then the firm defaults, and the value of equity is zero.

The value of debt at t = 1 is F if the firm is solvent. Otherwise, the debtholders

receive the salvage value of the firm, given by (1−α)Y1 where α represents bankruptcy

costs.

In the above specification, equity is a call option with strike price F − τc(F −

D(µ̂, F )) and underlying payoff Y1, and debt is a combination of digital options. The

Black-Scholes option pricing formula can used to value both the equity and the debt.

Finally, the manager’s bankruptcy penalty is a fixed amount L, so that C(µ, µ̂, F )

is given by L times the risk neutral probability of default.

I provide details for these formulas in the appendix. With these explicit formu-

las for the functions in the general model of section 2, I can compute equilibrium

outcomes.

1.3.2 Results

The Merton based model produces an equilibrium where high type firms borrow

more than low type firms. This equilibrium is for a subset of the possible values of

the bankruptcy penalty of L. Specifically, L must be large in order to produce this

relationship. This finding is consistent with Ross.

For values of the bankruptcy penalty L that are small, the model produces the

opposite result. High type firms borrow less than low type firms. As discussed

earlier, this result is more consistent with the empirical evidence in Strebulaev and

Yang (2013), Fama and French (2002) and others.

In the positive slope equilibrium, I find that increasing the weight in the manager’s

compensation on short-run incentives increases the level of borrowing.
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Calibration Parameters

Risk free rate r 0.045
Cash flow volatility σ 0.25
Bankruptcy costs α 0.05

Debt issuance costs q 0.01
Corporate tax rate τc 0.35
Market price of risk λ 0.35
t = 0 cash flow Y0 1
Largest type µmax 0.13
Smallest type µmin 0

Table 1.1 : r, σ, and λ enter the Merton model through terms defined in the appendix. The remainder
of these parameters are defined at the beginning of this section. These parameter values were selected
to be similar to those used in the Leland based example in order to facilitate comparisons. The choice
of values in the Leland example are discussed in that section.

Baseline Outcome

The differential equation produced by the Merton model can only be solved numeri-

cally. Details about this computation are provided in the appendix. In producing the

solution I use the parameter values listed in Table 1.1. These values are set to be sim-

ilar to the ones I use for the Leland based example in order to facilitate comparisons.

I discuss the selection of these parameter values in the Leland section.

Figure 1.2 shows the equilibrium for bankruptcy penalty L = 0.2 and θ = 1 (recall

this value of θ means the manager cares only about the long run stock price). The

full information level of borrowing is graphed along with the asymmetric information

equilibrium for comparison. The figure is consistent with the result of Ross (1977) in

that borrowing is increasing in type. The force that creates this relationship is the

same here as in Ross. When a high type firm borrows more, it does not increase its

risk of paying the penalty L to the same degree that a low type would if it borrowed

the same amount. Thus, higher types borrow more.
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Figure 1.2 : The equilibrium solution to the ODE for the Merton based model with L = 0.2, θ = 1,
and parameters from Table 1.1. The full information face value is computed by setting µ = µ̂ in the
manager’s maximization problem and solving for the optimal face value.
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Figure 1.3 : Equilibrium leverage ratios for L = 0.2, θ = 1, and parameters from Table 1.1.
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Figure 1.4 : Equilibrium for convex combinations of the price and true value of equity, with L = 0.22
and parameters from Table 1.1. Different values of θ represent different weights on short and long
run incentives for the manager.

Figure 1.3 shows the equilibrium leverage ratios in for the separating equilibrium

and the full information equilibrium. These are computed from the formula

D(µ̂, F )

D(µ̂, F ) + E(µ̂, F )
,

which in the model represents the market leverage ratio. The same pattern displayed

in Figure 1.2 is reflected in the leverage ratio: high type firms borrow more than low

type firms, again in keeping with the findings of the previous theoretical literature on

the subject.

The Effect of Short-Run Incentives

The solution presented in Figure 1.2 shows the outcome for the case where θ = 1, that

is, the manager has only long-run incentives. By varying the value for θ, we will be

able to see the effect of increasing the manager’s incentive for short-run performance.

Figure 1.4 shows the equilibrium borrowing schedule for a range of values for θ.
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Observe that the amount of borrowing increases as θ decreases. This is because as

weight gets placed on the short-run incentive term, the reward for mimicking a high

type now includes a benefit to one’s equity value, not just one’s debt value, so the cost

of signaling must be increased to prevent deviations. Indeed, it turns out that the

value of L required to sustain an equilibrium when profit depends on the short-run

price of equity is higher than when profit depends on the long-run value for the same

reason. That is, when the benefit to deviating is higher, if L is not sufficiently large

then low types can never be persuaded not to mimic high types, except perhaps at

borrowing levels that high types would be unwilling to engage in.

Ross (1977) has a payoff function for managers that depends only on the short-run

price of equity. In my model, this situation is represented by the case θ = 0. As can

be seen from Figure 1.4, this case has the highest amount of equilibrium debt.

Negative Leverage-Type Relationship

The results of the previous subsection reproduce the insight of Ross (1977) and the

subsequent literature on asymmetric information and borrowing levels in both the

direction of the relationship and the general economic force behind the result. As

I discussed earlier, these results do not appear to be in keeping with a broad range

of empirical findings on leverage ratios. I now show how my model can obtain the

opposite relationship between type and leverage.

The results in Figure 1.5 show the equilibrium for the case where L = 0.01 and θ =

1. The solution to the ODE depicted in the graph is the negative slope solution. This

is because the second order condition test discussed in the appendix reveals that for

these parameter values, the positive slope solution gives a minimum to the manager’s

problem, rather than a maximum. As is clear from the graph, the relationship between
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Figure 1.5 : Equilibrium debt levels with a negative slope. This graph gives the negative slope
solution to the ODE for L = 0.01, θ = 1, and parameter values given by Table 1.1. The second
order condition shows that for this value of L, the negative slope solution is the equilibrium.

type and borrowing level is reversed from the relationship in the case where L is larger.

Figure 1.6 depicts the leverage for the borrowing schedule show in Figure 1.5. The fact

that this negative slope equilibrium is associated with low values for L is consistent

with findings in Strebulaev and Yang (2013) on CEO tenure. Specifically, if a CEO

has a long tenure at a firm (and thus a low L, since the CEO’s career is established),

that firm is more likely to have almost-zero leverage. Furthermore, if θ = 0 and L

is small there is no equilibrium; in order to get a negative slope equilibrium θ must

be high. This is consistent with Strebulaev and Yang’s finding that CEOs who have

higher levels of ownership in their firm are more likely to have zero leverage.

The changes in the two solutions to the ODE as L is changed do not show how the

model goes from having a positive slope equilibrium to a negative slope equilibrium.

Rather, the changes that cause the equilibrium solution to flip happen in the second

order condition. Mailath and von Thadden (2013) contains the following result as
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Figure 1.6 : Equilibrium leverage ratios associated with the model solution in Figure 1.5.

part of theorem 6 in their paper.

Theorem 1.1 If F is an equilibrium solution, then

F ′(µ)Π2(µ, µ, F (µ))
d

dµ

{
Π3(µ, µ̂, F (µ̂))

Π2(µ, µ̂, F (µ̂))

} ∣∣∣∣
µ̂=µ

≥ 0 (1.2)

for all µ ∈ [µmin, µmax].

This result is obtained from the second order condition for local optimization.

In this model Π2 is positive, thus, the third term determines the sign of the first

term in the product. The third term is the rate of change in the marginal rate of

substitution between face value and market belief, evaluated for rational beliefs. The

full implications of this term are discussed in section 6. For now, I plot this term in

Figure 1.7 for three different values of L.

Figures 1.8, 1.9, and 1.10 plot the corresponding ODE solutions. The solution

used is the negative slope solution. For L = 0.01 the graph lies below zero. This is
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Figure 1.7 : Plot of the rate of change in the MRS with respect to type along the equilibrium
schedule. Figures 1.8, 1.9 and 1.10 show the solutions computed to produce each line above.
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Figure 1.8 : Negative slope solution to the ODE for L = 0.07.
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Figure 1.9 : Negative slope solution to the ODE for L = 0.04.
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Figure 1.10 : Negative slope solution to the ODE for L = 0.01.
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in keeping with the result: the F used in the graph is the negative solution, and the

second order condition verifies that it is the equilibrium.

As L is increased to 0.04, the MRS derivative crosses zero and has some values

above zero, and some below. For this L, the second order condition for both solutions

to the ODE show that neither is an equilibrium; there is no equilibrium for this value

of L.

The final graph for L = 0.07 shows an MRS that is positive, this is inconsistent

with F ′ < 0 and so the negative slope solution cannot be an equilibrium. Indeed,

for this case, the second order condition shows that the positive slope solution is the

equilibrium.

The economic forces that create this negative slope are discussed in detail in a

later section. The basic intuition is as follows. When a firm is of low type, it does not

care that much about its payoff in states of the world in which it does not default,

since it anticipates that these states occur with relatively lower probability compared

to states of the world in which the firm defaults. As a result, a low type firm is

relatively unconcerned with making promises to pay in states of the world where it

is solvent. Thus, if a low type firm borrows more, it loses equity value at a slow rate.

Conversely, a high type firm cares a lot about its payoff in states of the world in

which it doesn’t default, since it anticipates that it is very likely it will end up in

such a state at the end of the period. As a result, the equity value of a high type

firm goes down quickly as it borrows more. Combined with the effect on the low

types, this means that a high type firm cannot hope to convince a low type firm

not to mimic it by borrowing more. Since borrowing less than the full information

amount is costly, the high type firms choose to signal their quality by decreasing their

borrowing instead.
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This intuition is similar to the economic force behind credit rationing studied by

Stiglitz and Weiss (1981). Credit rationing occurs because if a bank were to ration

credit by increasing the borrowing rate, high type firms who don’t want to pay a lot

of interest would leave, while low type firms who expect to default and not have to

pay the interest anyway would be happy to stay in the high interest borrowing pool.

The equilibrium with negative slope is not possible in the model of Ross (1977).

This is because the Ross model has the Modigliani-Miller result conditional on infor-

mation. The value of the firm does not depend on capital structure. The manager in

Ross’s model cares only about the short-run value of the firm, and the bankruptcy

penalty. If there is symmetric information, then the manager would prefer to have

zero debt so as to avoid the risk of the penalty, regardless of type. Since less debt

is the preference of every type, a manager cannot prove the firm is of high quality

by borrowing less; all firm types would be happy to mimic a firm borrowing nothing.

Therefore, separation with a negative slope is impossible.

Although the results of this subsection produce the relationship between leverage

and type implied by the data, the level of borrowing in the negative slope case is still

quite high. For some types and some values for L, it can be that the level of borrowing

in the negative slope case is higher than the level of borrowing in the positive slope

case. This is because as L increases it decreases the optimal full information level

of borrowing. In both equilibrium types, the level of borrowing remains well above

observed leverage ratios. For this reason, I introduce the more realistic model of

Leland (1994) in the next section. It turns out that this model produces almost-zero

leverage ratios for high types, in keeping with the findings of Strebulaev and Yang

(2013).
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1.4 Signaling in a Leland Model

1.4.1 Model

The Merton model illustrates the main result of this paper in the simplest possible

setup. However, a more realistic setup is required for calibration. Therefore, I now

introduce a model based on Leland (1994).

The model follows the same exact setup as the Merton model, except that the

values for debt and equity are those given by Leland’s model. An appendix reviews

the details. Here I sketch an outline of what the model looks like. The pricing is done

by specifying a stochastic discount factor process (SDF) of the form

dM

M
= −rdt− λdB,

where r is the risk-free rate, λ is a constant, and B is a standard Brownian motion.

Time is continuous with an infinite horizon. Before the first period, the firm offers

a perpetuity with coupon rate c. In this example, the perpetuity rate c takes the place

of the face value F from the general model development and Merton based example.

The concept remains the same.

The cash flow Y is now a process satisfying

dY

Y
= µdt+ σdB, Y0 = given.

Once again, firm types differ in their value for µ ∈ [0, r+λσ), which now describes the

drift of the process Y , and is restricted to lie in a particular range to ensure stability

in the infinite horizon setting. Again, only the firm knows its true value.

There is a proportional tax τc on corporate earnings. Whatever is left over after
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interest and tax is paid to shareholders as a dividend. The instantaneous dividend is

thus

(1− τc)(Yt − c)dt.

As is common in models of this kind, the event Yt < c is permitted, and when this

happens, it is understood to mean that the shareholders add cash to the firm to cover

interest payments, and the firm receives tax credits.

The firm can elect to declare bankruptcy at any time t ∈ [0,∞). When it does,

and the bondholders receive the equity value of the firm, less a fraction lost in the

bankruptcy process, given by α ∈ (0, 1). The optimal bankruptcy rule takes the form

of a threshold that represents a hitting time for the firm value process.

Just like in the Merton model, the Leland model gives formulas for the price of

debt D`(µ̂, c), equity E`(µ, c), and true equity value S`(µ, c) (in the Leland model S`

does not depend on the market belief µ̂). For the bankruptcy penalty in the Leland

based model, C`(µ, c) represents L times the price a unit of account at the time of

default (and like S` it does not depend on µ̂). Formulas for these prices are obtained

from the theory of perpetual options and are given in the appendix.

1.4.2 Results

The Leland based model cannot produce an equilibrium where high type firms borrow

more than low type firms, even for very high values of bankruptcy penalty L. I find

that for high values of L, an equilibrium does not exist.

For low values of L, the Leland based model produces the same result as the

Merton based model in that high type firms borrow less than low type firms. Fur-
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Calibration Parameters

Risk free rate r 0.045
Cash flow volatility σ 0.25
Bankruptcy costs α 0.05

Debt issuance costs q 0.01
Corporate tax rate τc 0.35
Dividend tax rate τd 0.2

Interest income tax rate τi 0.35
Market price of risk λ 0.35

Initial value for cash flow Y0 1

Table 1.2 : τd and τi represent income taxes and are defined in the appendix discussion of the model.
The remainder of the parameters are defined at the beginning of this section. These parameter values
are taken from the calibration used in Goldstein et al. (2001). That paper does not contain a value
for λ, since it works with the risk neutral price process of a single firm type. As λ is analogous to
the Sharpe ratio of a claim to the firm’s cash flow, it is selected to reflect an average Sharpe ratio
in the market. Cochrane (2005) contains a discussion of Sharpe ratio estimates at various horizons.

thermore, under the calibration that I use, the model has high type firms using almost

zero leverage, which is consistent with Strebulaev and Yang (2013).

Calibration

Once again, the differential equation giving the equilibrium signaling behavior can

only be solved numerically. In producing the solution I use the parameter values listed

in Table 1.2. These parameters are taken from the calibration used in Goldstein et al.

(2001), so that the quantitative effect of the force in my model can be easily compared

with other trade-off theory model predictions. There is one parameter which does not

come from Goldstein et al. (2001), and that is the market price of risk λ. Goldstein,

et al. do not need a value for λ since they work with the risk neutral price process

of a single firm type. My model requires a value for the market price of risk so that

the prices of different firm types can be compared to each other. λ is essentially

the Sharpe ratio of the firm’s cash flow. Cochrane (2005) contains a discussion that
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includes Sharpe ratio estimations, and the number I have chosen for λ is near the

middle of the numbers he gets for average Sharpe ratios over different time horizons

(see table 20.5 in Cochrane (2005)).

Once λ, σ and r are specified, the Leland model can only admit a certain range of

values for µ while remaining stable over the infinite horizon. The interval [0, r + λσ)

is this range, and I permit firm types to be any value from this interval.

Positive Type-Leverage Relationship in the Leland Model

The Leland model does not appear to be able to sustain a positive slope equilibrium

for even large values of L. This is true for a range of parameter values beyond the

ones in the calibration in Table 1.2. In both example models, increasing L alters the

local single crossing condition as discussed in the Merton example. However, in the

Leland example, before the condition has been altered to the point where it produces

a positive equilibrium slope, the level of L is so high that it implies the lowest types

should not use any debt financing.

Negative Leverage-Type Relationship

Figure 1.11 graphs the solution to the ODE for the Leland-based model for L = 0.0005

and θ = 1, using the calibration discussed earlier. The second order condition confirms

that the negative slope solution to the ODE is the equilibrium.

Figure 1.12 shows the equilibrium leverage ratio for each firm type. We see that

as the type increases the leverage ratio decreases. Furthermore, the graph shows

that with a 22% share of firms in the market with drift parameters greater than

approximately .09, the model matches the low leverage percentages in Strebulaev

and Yang (2013). For comparison, the model of Goldstein et al. (2001) produces a
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Figure 1.11 : The Equilibrium solution to the ODE for the Leland based model with L = 0.0005
and θ = 1, and parameters from the calibration in Table 1.2. The full information value is computed
from the formula for optimal coupon in Leland’s original model.
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Figure 1.12 : Equilibrium leverage ratios for L = 0.0005, θ = 1 and parameters from Table 1.2.
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leverage ratio of 49.8% from their static model base case and 37.14% in their dynamic

model base case.

While the model does not produce the prediction of exactly zero leverage for any

firm type, such a prediction could be obtained by introducing a small fixed cost of

issuing debt. For the highest type firms that already benefit very little from the small

amount of debt they issue, this would make issuing zero debt the optimal solution.

1.5 Empirical Predictions

My model produces a key novel empirical implication from the two qualitative possi-

bilities for the equilibrium. If firms were to be grouped according to a proxy variable

for L, (that is, something that measures negative repercussions for managing a firm

that goes bankrupt that are only felt by the manager for the firm) then among firms

with low values for L, high type firms should borrow less than low type firms. For

firms with high values for L, the relationship should be the opposite, high type firms

should borrow more than low type firms.

The prediction that (for low values of L) high type firms borrow less than low type

firms offers an explanation for the finding in Rajan and Zingales (1995), Frank and

Goyal (2003) and Fama and French (2002) that leverage and profitability are nega-

tively correlated. Previous models on asymmetric information and capital structure

have mostly predicted the opposite of this relationship.

The interaction between L and type could help to reconcile a range of empirical

facts. For example, although Strebulaev and Yang (2013) suggest that almost-zero

leverage firms appear to be of high quality, Bessler, Drobetz, Haller, and Meier (2013)

make the case that after controlling for some things, the actual number of high quality

zero leverage firms is small.
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Additionally, although Howton et al. (1998) find a negative announcement ef-

fect for debt issuance, the papers by Dann and Mikkelson (1984), Eckbo (1986),

and Mikkelson and Partch (1986) find a statistically insignificant effect. My model

suggests that announcement effects for debt issuance can be positive or negative de-

pending on the value for L. Firms with high L should have positive debt issuance

effects, and firms with low L should have negative debt issuance effects.

Equilibrium borrowing increases as the risk free rate r increases. It decreases as

the market price of risk λ and the volatility σ increase. These comparative statics

could be used in an empirical study to further validate the model.

1.6 Understanding the Result

In this section, I discuss in detail the features of the model that produce the equi-

librium relationships presented in the previous sections. The forces that produce the

positive relationship between type and leverage are straightforward and similar to

Ross and other papers. I therefore focus on discussing the negative slope case, where

the bankruptcy penalty L = 0 or is very small, and θ = 1, that is, incentives are

based on long-run performance only.

Intuitively, one might expect the slope to be positive. That is, one might hypoth-

esize that higher type firms can take on more debt and will therefore use this greater

capacity to pay for debt as a way of discouraging low type firms from mimicking them.

We see that instead the opposite happens. To understand the result, consider Figure

1.13, which shows a graph of the value of equity as a function of the coupon offered

for two firm types in the Leland model. For completeness, I also show a graph of the

same relationship for the Merton model in Figure 1.14, which shows the same qualita-

tive relationship as in the Leland model. Consider a candidate separating equilibrium
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Figure 1.13 : This graph shows the value of equity for a given coupon value in the Leland model.
The high type has µ = 0.1 and the low type has µ = 0.03.
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Figure 1.14 : This graph shows the value of equity for a given face value in the Merton model. The
high type has µ = 0.1 and the low type has µ = 0.03.
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where the high type borrows so much that the low type would default if it mimicked

the high type (but not so much that the high type itself defaults). Suppose the low

type still wanted to deviate and mimic the high type. It would get the same debt as

the high type in this deviation, so the only difference between the payoffs of the two

types is shown in the figure. The key question is this: can the high type persuade the

low type not to mimic it by borrowing more? The answer is clearly no. Since the low

type will already default, borrowing more costs nothing. By contrast, the high type

still has some equity value to lose, so the move to borrow more is costly for it. We

see the opposite of the single-crossing condition of signaling theory holds: the signal

costs the high type more than it costs the low type.

Now consider a point where neither firm is in default. Can the high type increase

its coupon payment to persuade the low type not to mimic it? Again the answer is no.

Observe that the slope of the high type equity curve is steeper at every point on the

x-axis when compared with the low type. Figure 1.15 makes this point by graphing

the derivatives of the functions displayed in Figure 1.13. The magnitude of the high

type derivative is always larger than the magnitude of the low type derivative. This

means that the amount of equity lost for a unit change in coupon is always greater

for the high type. Thus, if the high type can endure a larger coupon, the low type

can certainly endure it as well. Therefore, the high type cannot persuade the low

type not to mimic it by borrowing more than is optimal.

Now consider the strategy of borrowing less than is optimal. In this case, the

signs of the differentials are all reversed. The cost of decreasing the amount of coupon

offered is that the firm receives less cash from debt. This cost is partially offset by

equity gains. If we again picture a deviation from a candidate separating equilibrium,

with the low type attempting to mimic the high type, then both types of firm lose the
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Figure 1.15 : This graph shows the derivative of equity with respect to coupon. The high type has
µ = 0.1 and the low type has µ = 0.03.

same amount of debt if the high type borrows less. But the equity offset is not the

same, and in the case of the high type, it gains back more equity per unit of coupon

given up than the low type does. Thus, by moving the coupon in this direction, the

high type can hope to outrun the low type.

We can gain additional perspective by attempting a more analytical approach. I

do this with the Leland model version, since the perpetual option formulas do not have

the fixed point problem for debt value that the Merton model has. As discussed in

the Merton model example, Mailath and von Thadden (2013) show that the following

local version of the signal-crossing property holds as a simple consequence of the

second order condition for separating equilibrium:

c′(µ)Π`
2(µ, µ, c(µ))

d

dµ

(
Π`

3(µ, µ̂, c(µ̂))

Π`
2(µ, µ̂, c(µ̂))

) ∣∣∣∣
µ̂=µ

≥ 0.

For my model, Π`
2 is positive. Therefore, we may deduce that equilibrium c′ is per-
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mitted to be negative only because the third term in the above expression is negative

as well. Since Π`
2 is positive and does not, in fact, depend on µ (that is, on the true

parameter value), this means that the fact that

d

dµ

(
Π`

3(µ, µ̂, c(µ̂))

Π`
2(µ, µ̂, c(µ̂))

) ∣∣∣∣
µ̂=µ

= Π`
13(µ, µ, c(µ)) ≤ 0

is the property of the model that drives the result. This property says that an increase

in type causes the derivative of profit with respect to coupon to decrease. Since for

θ = 1

Π`
3(µ, µ̂, c) = E`

c(µ, c) + (1− q)D`
c(µ̂, c).

we have that

Π`
13(µ, µ̂, c) = E`

cµ(µ, c).

That is, the property in question is exactly the relationship between the derivatives

of equity with respect to coupon for high and low types discussed earlier.

It is natural to ask what part of the model setup produces this property. Calcu-

lations from the Leland model discussed in the appendix show that

Ec(µ, c) = −1− τeff

r

(
1−

(
xD(µ, c)

X0(µ)

)γ(µ)
)
.

The definition of the various functions in the above expression can be obtained in the

appendix. What is important is that this expression can be interpreted as the price

of paying the amount (1− τeff)/r until the first time the process X drops below xD.
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The fact that the derivative of this expression with respect to µ is negative is the

same thing as saying that the price of such a payoff decreases and µ increases. That

is, the price of such a payoff goes down as the likelihood of crossing xD goes down.

Thus, we see that the fact that Π`
13 ≤ 0, which drives the whole result, comes

from the fact that a high type expects to be paying the coupon for a longer time than

a low type.

1.6.1 A General Interpretation

The explanation for the result of the Leland-based model appears to suggest that the

effect is tied to the particular nature of perpetuities. The fact that the Merton-based

model also generates the result shows that this thinking is misguided. What, then, is

common between the models and gives the result?

The notion of a “long time until default” from the Leland model has the inter-

pretation of a “high probability of not defaulting at t = 1” in the Merton model. In

both models, these cases mean that what happens when the firm is not in default is

of greater significance. That is, when the firm considers the prospect of default to be

remote, then it is much more sensitive to changes in the payoff it receives in states of

the world in which it is not in default. It is for this reason that the magnitude of the

high type’s derivative with respect to equity is larger than that of the low type’s: the

high type cares more about what happens when it doesn’t default because it considers

that outcome relatively more likely than the low type does.

This is the sense in which my model exhibits a similar phenomenon to credit

rationing. When the interest rate is high, low quality borrowers remain since they do

not anticipate having to repay the loan with a very high probability.
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Figure 1.16 : This graph shows the equity derivatives in the Merton model for the upward sloping
equilibrium. The high type has µ = 0.1 and the low type has µ = 0.03.

1.6.2 Comparison with the Positive Slope Case

In figure 1.16, I plot the derivatives for the Merton model with L = 0.2, a value

which produces a positive slope. In the model with a nonzero penalty, the terms in

the derivative are equity plus the expected penalty. Observe that the situation is

completely reversed from that of the low penalty case. That is, the low type has a

larger derivative magnitude over the relevant range. This is because higher borrowing

puts the firm closer to the manager penalty, but does so faster for lower types. This

faster increase is enough to overcome the qualitative difference in equity derivatives

noted in the low penalty case.

The economic intuition for what happens in the high penalty case with upward

slope is that, in contrast to the low penalty case, if the low type borrows less (more) in

order to mimic the high type, it gets the benefit (cost) of decreasing (increasing) the

expected penalty for bankruptcy. For high penalty levels this is enough to reverse the

effects of the equity derivative discussed in the low penalty case. When the penalty is

set too small to reverse the equilibrium slope, this change to the expected bankruptcy
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penalty is not enough to overcome the effect.

1.7 Conclusion

The theoretical literature on asymmetric information and capital structure has long

maintained that there should be a positive relation between firm quality and leverage,

and that firms issue debt to signal that they are of high quality. This result is

not supported by the empirical evidence, particularly the results of Strebulaev and

Yang (2013). In this paper I show that this theoretical work misses a few crucial

modeling assumptions which can completely reverse the prediction, thereby bringing

the results into closer alignment with the empirical literature. I also show what

drives the results of the existing theory and what parameter values and assumptions

are needed to produce either the positive or negative debt-quality relationship, which

provide predictions about when one can expect a positive relationship between debt

and quality of a firm and when one can expect a negative relationship.
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Chapter 2

Strategic Trading in the Presence of a Dark Pool

2.1 Introduction

Trading securities through platforms that passively match hidden buyers and sellers

at public exchange prices, via dark pools, has become a staple of modern securities

trading. Industry estimates for the share of US equity consolidated volume trades

cleared on dark pools range from 12% in mid-2011 (Zhu, 2014) to 37% in June 2014

(Comerton-Forde & Putnins, 2015). The use of dark pools to trade securities comes

with a now well-known concern: if trading takes place without setting a price, and if

those who do set prices do not adjust their prices based on these trades, then what

stops the prices that are set from becoming grossly inaccurate?

In this paper I produce an answer to the question of whether dark pools harm

price discovery. In my model I find that they do indeed reduce the accuracy of prices,

and that this inaccuracy is made worse by high variance in asset payoffs.

This result is driven by the fact that when a dark pool is present, the informed

trader uses it to clear as many orders as she can. When she expects to receive a payoff

from orders cleared on the dark pool, she trades less aggressively on the lit exchange in

order to protect the price per trade she receives on the dark pool. This is in contrast

to the case where there is no dark pool, and the informed agent worries only about

her price impact on lit exchange trades. The added concern of price impact reducing

dark pool profits increases her incentive to reduce trading on the lit exchange in order
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to reduce the expected loss in profit per trade through price impact.

My model is based on the static model of Kyle (1985). Like in that paper, trades

in my model clear at a price set by dealers that is conditioned on net order flow,

and this order flow is made up of trades from both strategic and noise traders. The

informed trader anticipates that her order will push the price away from her, and

adjusts her trading accordingly. My model includes an additional strategic trader

who has no information as to the value of the asset, but has a trading need that must

be cleared. Like the informed trader, this uninformed liquidity trader has access to

the lit exchange and the dark pool. The presence of the uninformed trader in the

market allows some of the liquidity in the dark pool to be endogenous.

I show that the partial endogenity of the liquidity on the dark pool through the

presence of the uninformed trader makes a difference in the equilibrium outcome.

When the price impact of trades increases, the uninformed agent places more trades

on the dark pool in order to avoid the costs of price impact. This increases the

potential profit available to the informed agent on the dark pool, and she further

reduces her trading in the lit exchange in expectation of receiving a larger payoff

from the dark pool.

My result helps to explain the empirical finding by Comerton-Forde and Putnins

(2015) that for high levels of dark pool trading volume, reduced form measures of

price inefficiency go up. In my model, this happens when the uninformed agent

expects a large price impact. In this case, he places more orders on the dark pool,

and the average number of dark trades increases. As discussed above, this causes the

informed agent to reduce the intensity of her trading on the lit exchange, and causes

further reduction in price discovery. Thus, higher levels of dark trading correspond

to higher levels of price inefficiency.



44

My paper produces the opposite conclusion on dark pools and price discovery

from the conclusion reached in Zhu (2014). In that paper, Zhu finds that dark pools

improve price discovery. Zhu’s model differs from my own in two important ways.

First, his model is based on a setup in which agents’ trades cannot have price impact.

Second, the agent’s in Zhu’s model are infinitesimal so that even if they did have

price impact, they would not take their price impact into account, since each agent

by himself would not impact the price. These two differences drive the difference in

predicted outcome between my model and Zhu’s.

In the next subsection, I discuss some results in the existing literature related to

my model. In section 2, I detail the model. In section 3, I discuss some preliminary

results that help in understanding and solving the model. Section 4 contains the main

results of the paper.

2.1.1 Related Literature

Theoretical Research

Among the few but rapidly growing selection of papers that model dark pools, the

paper by Zhu (2014) (already mentioned above) is closest to my own. Zhu explicitly

attempts to answer the same questions about price discovery, in a model with a

continuum of informed and uninformed traders, and a single dealer who sets a bid-

ask spread. In his model, the dealer sets the bid-ask spread before the agents trade,

so that no agent can have price impact, in contrast to my own model. In Zhu’s work,

each trader trades a unit order and faces the trade off of receiving the midpoint price

on the dark pool versus certain execution on the lit exchange.

Zhu finds that dark pools improve price discovery, by causing more uninformed

traders to leave the lit exchange than informed traders, so that the signal-to-noise
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ratio on the exchange improves. The agents in this model post the entirety of their

unit order to either the dark pool or the lit exchange, so that in equilibrium they only

receive payoff from one trading venue. This fact is another source of the difference

between my result and Zhu’s.

The working paper by M. Ye (2012) also models a dark pool and considers price

discovery. Ye’s model is also an extension of the model in Kyle (1985), which incorpo-

rates a dark pool and has an order submission cost for both exchanges. In contrast to

my own model, Ye does not permit uninformed traders to choose between dark and

lit venues, so that dark pool clearance probabilities are completely exogenous. The

relevancy of this assumption comes from the fact that the uninformed trade would

not want to trade in the dark pool if he only ever cleared against the informed trader

in the dark. Ye also concludes that dark pools reduce price discovery.

The paper by Hendershott and Mendelson (2000) studies the trading strategies

of agents who have access to dealer markets and crossing networks. In their model,

dealer spreads are set once and do not change. Each agent has only one unit to

trade, and informed traders who go to the crossing network in equilibrium have the

opportunity to come back and take the old exchange prices if their order does not

clear on the crossing network. Hendershott and Mendelson find ambiguous results for

the effect of dark pools on price discovery.

Additional theoretical models of dark pools include the working paper of L. Ye

(2016), who extends Zhu’s model to include noisy, heterogeneous private signals. L.

Ye finds that dark pools improve price discovery when private signals are precise, but

impede price discovery when signals are noisy.

The papers by Buti, Rindi, and Werner (2015) and Degryse, Van Achter, and

Wuyts (2009) contain theoretical models of dark pools, but these papers address



46

other questions instead of price discovery.

Empirical Research

There is also an empirical literature studying the effects of dark pools of various

measures of market quality. The paper by Comerton-Forde and Putnins (2015) studies

the effect of dark trading on price discovery. They find that dark trades appear to be

less informed than lit trades, and that at low levels of volume (as a percent of total

volume) dark trading does not harm and may help informational efficiency. But, as

mentioned above, they find that informational efficiency is harmed by high levels of

dark trading.

The paper by Foley and Putnins (2016) studies a natural experiment involving

dark pools. They find evidence that dark limit orders appear to improve information

efficiency, but do not find consistent evidence that dark mid-point crossing systems

(which is the kind of dark pool I have in my paper) significantly affect market quality.

The paper by Garvey, Huang, and Wu (2016) also finds that dark orders have

lower information content. Additional papers studying the effect of dark trading on

market quality measures of various kinds include Nimalendran and Ray (2014), Ready

(2013), Kwan, Masulis, and McInish (2015), Menkveld, Yueshen, and Zhu (2017), and

Buti, Rindi, and Werner (2011).

2.2 Model

The model is based on the static model in Kyle (1985). There is a single asset

having payoff V , a binary random variable, symmetrically distributed about zero with

support {−v, v}. Orders for the asset are placed before the price is set; in equilibrium

agents will anticipate what prices will be required for each possible realization of
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orders. Each order by the informed and uninformed trader is drawn from the extended

real line R̄.

The model differs from Kyle in that the traders also have access to a dark pool.

If an agent submits an order to the dark pool, it clears only if another agent posts

an order in the opposite direction. If the orders are not for equal opposite quantities,

then the larger order is filled up to the amount that can be cleared against the smaller

order, that is, there is partial clearing. If an order is cleared, the price paid is the

price for the asset set by the dealer on the exchange.

There are four types of agents, the informed trader, the liquidity trader, the dealers

and the noise traders. The uninformed trader is motivated by an exogenous trading

interest Z, which is also a binary random variable, symmetric about zero and with

support {−z, z}. I will restrict attention to symmetric equilibria, in the sense that the

behavior of each of the two strategic agents when V or Z has one realization will be

-1 times the behavior under the other realization. For this reason, I will describe the

informed agent’s decision problem under the case where V = v and the uninformed

agent’s problem for the case where Z = z, to simplify the exposition.

I will now describe each agent type in turn, starting with the dealers.

2.2.1 The Dealers’ Problem

The dealers are exactly as in the Kyle model. They are risk neutral and move after

everyone has placed their trade, competing on price as in a Bertrand game, which

results in competitive prices. They observe net order flow (but not the individual

components of the net order flow) and choose a price based on this variable. The net

order flow is the sum y = xe + αe + zn of the orders placed on the exchange by the

informed trader (xe), the liquidity trader (αe) and the unstrategic, uninformed noise
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traders zn.

Since they are risk neutral and faces no budget constraint, competition will result

in a price p(y) equal to the expected value of the asset payoff V , conditional on the

order flow y, i.e. p(y) = E[V |y].

2.2.2 The Noise Traders

There is a single random variable zn governing the noise traders in the lit exchange, as

is standard in these kinds of models. zn will be a mean zero normal random variable

with some standard deviation σzn . The full support of zn means that no outcomes

have zero probability of occurring, and so I avoid the need to consider off-equilibrium

path beliefs for nodes of zero probability and their refinements.

There are also noise traders present in the dark pool. These traders post random

orders to both sides of the market, and can arrive before either the informed or

uninformed trader or in between traders, so that their orders can clear against one

of the two strategic traders before the other arrives at the dark pool. Under the

assumption that the random variables determining the behavior of the noise traders

are independent from the rest of the model, these possibilities can all be modeled

with just a few parameters. All the processes that produce outcomes for the noise

traders in the dark pool are assumed to have bounded support.

θ1 represents the probability that the uninformed trader clears an order when on

the opposite side of the market from the informed trader, times the average fraction

of his order that will be cleared in such an event. This summarizes the net effect of

both the informed trader and the noise traders on the dark pool. Given Z, there is a

probability of 1
2

that the uninformed agent ends up on the opposite side of the market

from the informed trader. I show in lemma 2.1 that the informed agent always posts
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an order large enough to clear all possible orders on the dark pool. This means that

in equilibrium we must have θ1 = 1
2
.

θ2 represents the probability that the uniformed trader clears his order when on

the same side of the market as the informed trader, times the average fraction of his

order that will be cleared in such an event. In this case, he is certain to be trading

only with noise traders. For consistency, it must be that 0 ≤ θ2 ≤ 1
2
.

The random variables that produce θ1 and θ2 include those that determine who

arrives to the dark pool first, whether each strategic player trades with noise traders

and how much, and which side of the market each strategic player is on. These

together determine a random variable, which depends on each type’s strategy, that

determines how much of the uninformed agent’s order gets cleared on the dark pool.

The variance of this random variable is important for determining the uninformed

agent’s payoff. Let γα2
d denote the variance, where αd is the size of the order the

uninformed agent posts to the dark pool. In principle, this variance depends on the

size of the order posted by the informed agent as well, but for reasons that I will

discuss later, we will only look at equilibria in which the informed agent posts the

same quantity to the dark pool.

θ3 represents the probability that the informed agent clears his order against the

uninformed agent in the dark pool, times the average fraction of the uninformed

agent’s order that is unfilled in such an event. I will show that only the uniformed

agent makes a nontrivial decision as to the quantity he trades on the dark pool, and

as such the likelihood that his order is waiting in the dark pool when the informed

agent’s order arrives must be explicitly modeled. For consistency, it is required that

0 ≤ θ3 ≤ 1
2
, since there is equal probability that the informed agent is on the same

or opposite side of the uninformed agent’s trading interest.
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θ4 represents the probability that the informed agent clears against noise traders

in the dark pool. Let N be the average size of noise orders conditional on this event.

Note that the events described by θ3 and θ4 are not mutually exclusive.

2.2.3 The Informed Trader

There is a single informed trader who observes the true payoff of the asset V before

the other players do. She selects a quantity xe to trade on the lit exchange and a

quantity xd to trade on the dark pool. In equilibrium, the informed trader takes

the dealer’s pricing rule p(·) as given, and her payoff from her activities on the lit

exchange is

E[xe(V − p(y))|V ].

On the dark pool, the informed agent must consider the probability that her order

xd is cleared. There are two agents who can take the other side of this order, namely

the uninformed liquidity trader and noise traders on the dark pool. As discussed

above, these events happen with probability θ3 and θ4 respectively. The event that she

trades against the uninformed trader happens when the uninformed trader’s dark pool

trading strategy αd(Z) is negative (indicating a sale; recall that we are considering

the case where V = v > 0). The order that is filled is the minimum of the informed

trader’s order and the orders in the dark pool. The total payoff from dark pool

activity for the informed trader is

E[(V − E[p(y)|αd(Z) < 0])θ3(min{xd, |αd|}(1− θ4) + min{xd, |αd|+N}θ4)

+ (V − E[p(y)])θ4(1− θ3)N |V ].
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Taken all together, the informed agent’s problem is to solve, given p(·), αe and αd

max
xe,xd∈R̄

xe(v − E[p(y)|V ])

+ (v − E[p(y)|αd(Z) < 0, V ])θ3(min{xd, |αd|}(1− θ4) + min{xd, |αd|+N}θ4)

+ (v − E[p(y)|V ])θ4(1− θ3)N,

where ye = xe + αd(Z) + zn. Notice that xd enters the objective function only in the

term for the payoff of dark pool activities, and that this term is nondecreasing in |xd|

provided xd has the same sign as E[(V − E[p(y)|αd(Z) < 0])|V ].

2.2.4 The Liquidity Trader

There is a single liquidity trader, who represents a large, liquidity motivated agent,

where large means large enough to have price impact. At the start of the game, a

liquidity need Z is realized. Specifically , Z has support {−z, z} and is a binary

random variable that determines a quantity that the liquidity trader needs to buy

(or sell) for unspecified operating needs. These needs are represented by a quadratic

penalty for failing (in expectation) to obtain the desired portfolio. Let α∗(αd, xd(V ))

be a random variable governing the quantity of the security traded on the dark pool.

As discussed earlier, this variable has mean (θ1 + θ2)αd and variance γα2
d. It depends

on the uninformed trader’s own action, the action of the informed trader, and the

noise traders in the dark pool. The ex ante penalty for failing to obtain the desired
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liquidity position is

−E[(Z − αe − α∗(αd, xd(V )))2|Z] = −Var[Z − αe − α∗(αd, xd(V ))|Z]

− (E[Z − αe − α∗(αd, xd(V ))|Z])2

= −γα2
d − (z − αe − (θ1 + θ2)αd)

2.

The liquidity trader is not indifferent to the price he faces for clearing his trades. The

payoff from using the lit exchange to clear an order of αe is

E[αe(V − p(y))|Z].

In trading on the dark pool, the uninformed trader receives the following payoff from

the price of his trades

E[(V − p(y))|V = −v, Z]αdθ1 + E[(V − p(y))|V = v, Z]αdθ2.

The liquidity trader’s problem is to solve, given p(·), xe(V ) and xd(V )

max
αe,αd∈R̄

E[αe(V − p(y))|Z] + E[(V − p(y))|V = −v, Z]αdθ1 + E[(V − p(y))|V = v, Z]αdθ2

− γα2
d − (z − αe − (θ1 + θ2)αd)

2

where y = xe(V ) + αe + zn.

2.2.5 Equilibrium

An equilibrium in this model is a price rule p : R → R mapping realizations of the

order flow y into a price p ∈ R; and strategies xe : {−v, v} → R̄, xd : {−v, v} →
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R̄, αe : {−z, z} → R̄, αd : {−z, z} → R̄, mapping the possible realizations for V and

Z to the action space R̄ for the dark and lit exchanges; such that:

1. Given the strategies xe(·), xd(·), αe(·), αd(·), we have p(y) = E[V |y],

2. Given the pricing rule p(·), and the liquidity traders strategies αe(·), αd(·),

xe(·), xd(·) solves the informed trader’s problem,

3. given the pricing rule p(·) and the informed trader’s strategies xe(·), xd(·),

αe(·), αd(·) solve the liquidity trader’s problem.

I will restrict attention to equilibria which are symmetric in the sense that xe(v) =

−xe(−v), xd(v) = −xd(−v), αd(z) = −αd(−z) and αe(z) = −αe(−z).

2.3 Solving the Model

I begin with a lemma that will simplify the analysis. The proof is provided in the

appendix.

Lemma 2.1 In any equilibrium, and for either possible realization of V , if xd < 0 is

optimal then so is xd = −∞, and if xd > 0 is optimal then so is xd =∞.

The informed trader would be indifferent between 0 and and any element in R̄ in

the case where 0 is optimal.

Note that, if the informed trader takes a strategy αd > 0 as given, then since

xd > αd will not be fully cleared, she is indifferent among xd ∈ [αd,∞]. If the

uninformed agent then takes this as given, he is also indifferent among [xd,∞]. It is

thus conceivable that different levels of dark pool activity could emerge simply from

agents believing that there will be only some particular amount of liquidity available

on the dark pool. Since lemma 2.1 implies that for each of these equilbria the informed
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agent would be willing to trade more, I will restrict attention to only those equilibria

where the informed agent posts a “large” order to the dark pool, in the sense that

xd ≥ αmax + Nmax. One could imagine that in reality, and especially in a dynamic

setting, the informed agent might anticipate that other traders could come along and

post orders to the dark pool and so there would be no sense in limiting his (the

informed trader’s) ability to take advantage of these orders as well. This restriction

will simplify the computation of equilibrium, since now the informed agent’s decision

with respect to the dark pool reduces to choosing only which side of the market he

will be on, and the uninformed agent faces a simpler set of potential outcomes for

each of his possible actions on the dark pool. The following lemma determines the

side of the market the informed trader is on; the proof is provided in the appendix.

Lemma 2.2 In any equilibrium, the informed agent will buy on the dark pool when

V = v and sell with V = −v.

The only difficulty in solving the model is computing the payoffs of strategies,

since both the informed and uninformed agents must compute an expectation of

p(xe(V )+αe(Z)+zn), which for zn involves integrating p against a normal density. As

far as I am aware, this integral can only be computed numerically. The computational

details are provided in the appendix.

2.4 Results

I find that dark pools harm price discovery, and that this harm is more severe the

greater the volatility in the fundamental value of the asset. I show this increase in

severity is caused by the increase in the sensitivity of the price to order flow when

the fundamental value has higher volatility.
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Figure 2.1 : This graph depicts the equilibrium trading strategies of the informed and the uninformed
agent, as a function of the standard deviation of the fundamental value of the asset.

Since the model can only be solved with numerical evaluations, I must select

some parameters. For the following analysis, I set the standard deviation of zn to

be σzn = 3, and the trading interest Z takes values −5 and 5. For the dark pool

trading probabilities I use θ1 = 0.5, θ2 = θ3 = θ4 = 0.25, N = 5 and γ = 0.3. In the

results that follow I will show a comparative static where I compute equilibrium for

different values of v, which run from 1 to 5. For documentation, I mention that the

equilibria were computed from payoffs that used a 5-node Gauss-Hermite quadrature

to the compute the integral for zn.

2.4.1 Trading Strategies

Figures 2.1 and 2.2 graph the equilibrium strategies of the informed and liquidity

trader over a range of values for |V |. For each point on the horizontal axis, a point

on the xe line represents the magnitude of trade on the lit exchange executed by the
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Figure 2.2 : This graph depicts the equilibrium trading strategies of the informed and the uninformed
agent when no dark pool is present, as a function of the standard deviation of the fundamental value
of the asset.

informed agent. As these equilibria are symmetric, this tells us everything we need

to know about the behavior of the informed agent on the lit exchange. Likewise, the

αe line graphs the magnitude of the strategies used in equilibrium by the liquidity

trader. Again, by symmetry this tells us both his strategies when Z is positive and

when Z is negative. The same applies for the dark pool strategies of the uninformed

trader, which are shown by the αd line.

To understand what the graph represents, consider Figure 2.2 first. This represents

the strategies in an economy with no dark pool. We see that the quantity traded is

decreasing in the standard deviation of V for both the informed and the uninformed

agent. In the case of the uniformed agent, the only way the standard deviation of V

impacts his behavior is through the pricing rule p(·).

Figure 2.3 graphs the equilibrium pricing rule for each of the equilibria that make

up the graph in Figure 2.1 (the graph for the pricing rule without the dark pool is
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Figure 2.3 : This graph plots the equilibrium pricing rule for a range of different values for the
standard deviation of fundamental value of the asset. As the color changes from dark red to light
yellow, the value of the standard deviation increases.
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Figure 2.4 : This graph plots the derivative of the equilibrium pricing rule. As the color goes from
dark red to light yellow, the value of the standard deviation increases.
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similar). As the color changes from red to yellow, the standard deviation of V changes

from low to high. Figure 2.4 shows the first derivative of p(·). What we see in these

graphs is that the first derivative of p(·) is increasing with the standard deviation of

V . This means that the price becomes more sensitive to fluctuations in the order

flow, the larger the standard deviation of V is. There is a something of an analogy

here with Kyle’s lambda, which in Kyle (1985) is the first derivative of the pricing

function with respect to order flow. In Kyle’s model, this expression can be explicitly

computed as σv/(2σz), where σv is the standard deviation of private information.

Thus the direction of this comparative static is similar to Kyle’s model.

As a result of this increasing sensitivity, the informed agent lowers his trading

activity on the lit exchange, to improve the price he receives. This also happens to

the uninformed agent, who tries to reduce the cost of his trades when the price is

sensitive by lowering his trades as well.

Now consider Figure 2.1. Here a dark pool is available. This allows the uninformed

agent to make up the penalty he pays for lowering his lit trades by posting some orders

to the dark pool. As a result, as the standard deviation of V increases, he lowers his

lit trades at a much faster rate. The informed agent also lowers his trading activity

at a faster rate. For him, as the uninformed agent leaves the lit exchange there is

less noise hiding his trades from the dealers, and there is also more profit from the

dark trades, the worth of which decreases as the price gets more accurate. Both these

effects would tend to decrease his incentive to trade on the lit exchange.
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Figure 2.5 : The graph plots the root mean square error (RMSE) of the equilibrium pricing rule, as a
measure of the accuracy of the price, for different values of the standard deviation of the fundamental
value of asset.

2.4.2 Price Discovery

The Root Mean Squared Error of Prices

To analysis the question of price discovery, I compute the root mean square error

(RMSE),
√

E[(V − p(y))2], of the pricing function for the model with a dark pool

and the model without a dark pool and compare them in Figure 2.5. The dark pool

makes the price uniformly less accurate across the parameter values considered.

Comparison Model

To help explain what is going on in Figure 2.5, I have computed the RMSE for the

equilibria from a new model and plotted these RMSEs in Figure 2.6. In this new

model, the dealers, and hence the pricing rule p(·) are exactly the same as before.

Also, the uniformed trader’s problem is exactly as before. But, the informed trader’s
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Figure 2.6 : In this graph, the root mean square error (RMSE) is plotted for pricing rules, but with
the addition that in the case where a dark pool is present, the informed agent makes no money from
his dark trades. The point of the graph is to illustrate that the two lines are exactly the same.

problem has been altered in that he is not able to trade on the dark pool. Thus, all

his profits must come from lit trading alone.

Discussion

This comparison pinpoints the source of the difference between the two economies.

It might be thought that the informed agent would post smaller orders to the lit

exchange because there is less noise to hide in when a dark pool is available, and that

this decreased activity is the source of the reduced price accuracy. Figure 2.6 shows

this is not true, since in that economy the uninformed agent continues to reduce

his presence on the lit exchange, but the price accuracy is the same as in the case

without the uninformed agent using a dark pool. This is consistent with the Kyle

model, where the RMSE can be computed explicitly. In that model, it is a function

of the standard deviation of V alone; the standard deviation of the noise drops out
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Figure 2.7 : This graph depicts dark pool trading with no profit for the informed trader from her
dark trades. Included for completeness.

completely.

Instead of this, what causes the reduced accuracy is the reduction in informed

trading due to the desire of the informed trader to keep up the value of his dark

trading. As the standard deviation of V increases, the value of her dark trades

increases, and pushing the price on the lit exchange toward greater accuracy reduces

the value of those dark trades. To protect these trades, she decreases her lit trading

slightly.

Figure 2.7 graphs the strategies as before for the case where the informed trader

is not permitted to trade on the dark pool and the uninformed trader gets his dark

orders cleared exogenously. We see that when a dark pool is present, she decreases

his trading compared to the case where the is no dark pool, but not as much as in

the case in Figure 2.1 where she is profiting in expectation from dark trades.
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2.4.3 Comparison to Zhu (2014)

The results in the analysis from the previous section differ markedly from those in

Zhu (2014). Two key differences between the two models account for this. First,

agents in Zhu’s model do not have price impact. The game has an initial price set

before agents trade, so agents in Zhu’s model take as given a single price, as opposed

to my model where they take as given a function of their behavior that gives the

price. Both this assumption and the fact that agents in Zhu’s model are infinitesimal

result in the effect that no single agent acts as if he can change the price by himself.

As a result, there is no chance of the mechanism through which price discovery is

harmed in my model arising in Zhu’s model, since it is precisely the informed agent’s

impact on the price that alters the equilibrium price’s accuracy in the presence of a

dark pool.

Second, as Zhu does have a continuum of traders of each type in his model, there is

competition between traders of the same type, a feature that is absent in my model. In

particular, the fact that there are many informed traders each with exactly the same

information enters prominently into the informed agent’s decision in Zhu’s model.

Since the informed traders know which side of the dark pool their fellow informed

traders are on, they expect the likelihood that their order clears on the dark pool to

be lower than does an uninformed trader who can only assign equal probability to

either side of the market being heavier than the other. This effect is important in

producing Zhu’s conclusions.
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Figure 2.8 : This figure shows the expected profit of the informed trader over a range of standard
deviations for V . It can be seen from this figure that the informed agent prefers the world with the
dark pool in it.

2.5 What Do the Traders Prefer?

I have shown that the presence of a dark pool harms price discovery in that the RMSE

of the price as a predictor of value after trades are executed is higher when a dark

pool is present. Although the two strategic traders in the model do not rely on this

price, one can still ask whether they prefer to be in the market with the dark pool or

without the dark pool.

Figure 2.8 shows the expected profit for the informed agent over different values for

the standard deviation of V and Figure 2.9 shows the same thing for the uninformed

trader. These figures show that both traders prefer to have a dark pool present. This

result is sensable since both traders’ profits are adversely affected by price impact,

and the dark pool provides both traders with an opportunity to avoid this cost, and

opportunity which both traders choose to take advantage of in equilibrium.
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Figure 2.9 : This figure shows the expected profit of the uninformed trader over a range of standard
deviations for V . It can be seen from this figure that the uninformed agent prefers the world with
the dark pool in it.

I choose to focus on the narrow question of price discovery because, among other

things, I have not modeled the agents who are relying on the accuracy of the price.

In order to assess the welfare effects of the presence of a dark pool beyond the narrow

conclusion about price dicovery, these agents would have to be modeled as well. This,

plus the fact that the model contains “noise” traders, means that the above results

on expected profit should not be taken as a conclusion about the welfare effects of

dark pools. The expect profits of the traders help to show why the equilibrium turns

out the way it does.

2.6 Comparative Statics

Table 2.1 shows comparative statics for the three strategies in the model. The first

line shows an increase in the standard deviation of the order that the uninformed

trader needs to fill. The uninformed trader increases his trading on both venues to
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Comparative Statics

Parameter Informed lit uninformed lit uninformed dark

Liquidity Need |Z| ↑ ↑ ↑
Lit Noise Std. Dev. σn ↑ ↑ ↓

Same Side Clear θ2 ↓ ↓ ↑
Informed Faces Uninformed θ3 ↓ ↑ ↓

Informed Faces Noise θ4 ↓ ↑ ↓
Mean Noise Size N ↓ ↑ ↓

Order Clear. Var. γ ↑ ↑ ↓

Table 2.1 : This table shows the response of each of the strategies employed by the strategic agents
to a change in a parameter. The basline case is same one being used throughout the paper, and the
comparison is for an increase in the given parameter.

clear this larger order. This increases the amount of noise in the order flow and

thereby permits the informed agent to post a larger order to the lit exchange.

Increasing the standard deviation σzn of the noise trader order flow on the lit

exchange zn decreases the price impact of trades conducted by the strategic traders,

so they both use the lit exchange more.

Increasing θ2 increases the average fraction of the uninformed agent’s orders that

are cleared in the dark when he is on the informed side of the market. This increase

makes the dark pool more attractive, so he reduces his lit exchange trading and

increases his dark pool trades. This reduction in lit trading causes the informed

agent to reduce her trading on the lit exchange in order to keep the balance between

noise and signal in y optimal for the informed agent.

Increasing θ3, θ4, and N increases the size of the order the informed agent can

expect to be cleared on the dark pool. With a larger order clearing in the dark, she

has a bigger incentive not to push the price toward the accurate level, and so she

further reduces her trading on the lit exchange. This has the effect of making the lit

exchange more attractive to the uninformed agent, and so he moves some of his dark
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orders onto the lit exchange.

Finally, increasing γ increases the variance of the order that the uninformed agent

actually gets cleared in the dark pool. Since the uninformed agent pays a quadratic

cost for failing to meet his target Z, he acts risk adverse with respect to his final order

size. This causes him to deal with this greater variance in final order size cleared by

reducing his reliance on the dark pool and increasing his lit exchange trades (note

that the size of the order he clears on the lit exchange is always certain).

2.7 Conclusion

In this paper I constructed a simple model of informed and uninformed agents with

price impact and access to a dark pool, and showed how the resulting strategic con-

siderations lead to a deterioration in price discovery. As the uninformed agent uses

the dark pool to get better prices, the informed agent reduces his lit trading in order

to improve profits from dark trades, which reduces price discovery.

Although a more complete study of dark pools is necessary to understand their

full impact on markets, these findings give some credibility to regulatory concerns

about the negative effect of dark pools on price-finding mechanisms in the market.
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Chapter 3

Posted Prices versus Posted Orders
∗

3.1 Introduction

Traders do not like to reveal their trading intentions. A variety of market practices and

market structures have been created to make it easier for traders to avoid disclosing

their intentions. Examples include hidden or iceberg orders, dark pools, and workups

and matching sessions.† We model a situation in which a trader, in order to get

better terms, prefers not to disclose how strongly he desires to trade. Consequently,

the trader delays providing liquidity, producing delays in trade execution. In this

environment, we include an opportunity to trade at a posted price. Liquidity in the

posted-price mechanism is not revealed ex ante, so participating in the mechanism

is an alternative to displaying liquidity. Our model is motivated by workups in the

interdealer market for U.S. Treasury bonds, described by Duffie and Zhu (2017). In

workups, trading in the limit order book is suspended momentarily and the price is

frozen whenever there is a transaction, and traders can submit orders to transact

at the frozen price. An obvious question is why traders who are willing to trade at

∗This is joint work with Kerry Back (Rice University).
†Dark pools execute approximately 14% of total U.S. equity volume, and hidden orders on lit

markets account for another 8% (Rosenblatt Securities, October, 2018). Duffie and Zhu (2017)
describe workups in U.S. Treasury markets and matching sessions in markets for corporate bonds
and credit default swaps. They cite Fleming and Nguyen (2018) that workups account for around
half of total trading volume on the largest U.S. Treasuries trade platform, and they cite Collin-
Dufresne, Junge, and Trolle (2017) that matching sessions and workups account for 70% of trading
volume on a particular swap execution facility.
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the workup price did not do so beforehand, by submitting limit orders at that price.

The answer to that question in our model is that posting orders reveals information

leading to terms of trade that are worse than the posted price.

In the model, the opportunity to trade at a posted price arrives at a random date,

and the posted price is also drawn randomly (rather than being a previous transaction

price or a price from a lit market). Traders simultaneously and without coordination

submit demands/supplies to the mechanism, and matching orders are executed at the

posted price. Importantly, the mechanism in the model has not been fine tuned to

maximize welfare gains. However, it does improve welfare. This is true despite the

fact that the mechanism exacerbates the original friction that we study—the trader

becomes even more reluctant to post an order when he may later have an opportunity

to trade at a posted price. Despite the original friction becoming worse, the net effect

of the mechanism is to increase aggregate gains from trade.

An interesting example regarding the effects of displaying liquidity is the sanction-

ing by FINRA of Trillium Brokerage in 2010. Trillium was censured and fined, and

multiple individuals were suspended from the securities industry, because Trillium’s

traders entered orders to create “a false sense of buying or selling pressure,” inducing

other market participants to enter orders to execute against limit or-

ders previously entered by the Trillium traders. Once their orders were

filled, the Trillium traders would then immediately cancel orders that

had only been designed to create the false appearance of market activity.

. . . ‘Trillium’s trading conduct was designed to improperly bait unsuspect-

ing market participants into executing trades at illegitimately high or low

prices for the advantage of Trillium’s traders,’ said Thomas R. Gira, Exec-

utive Vice President, FINRA Market Regulation (FINRA News Release,
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September 13, 2010).

The traders at Trillium apparently believed that other market participants attempt

to exploit the information in displayed liquidity.‡ Likewise, in our model, displaying

liquidity leads to exploitation—displaying liquidity early in our model signals a strong

desire to trade, which is exploited by the trader’s counterparty.

Our model is a variation of the model of strategic delay in bargaining due to

Admati and Perry (1987) and Cramton (1992), who build on the alternating-offers

bargaining game of A. Rubinstein (1982). We consider a buyer and seller who have

different valuations for an asset. For simplicity, we assume the seller’s valuation is

known, and the seller initially offers the asset at a price he chooses, without knowing

the buyer’s valuation. The buyer can respond by accepting the offer or by delaying an

arbitrary amount of time before making a bid. An early bid signals a ‘weak’ bidder,

that is, a buyer with a high valuation who has a lot to lose by delaying acquisition

of the asset. As Admati and Perry (1987) and Cramton (1992) show, the Rubinstein

analysis implies that once the buyer has signaled his valuation, trade must take place

at the midpoint of the buyer’s and seller’s valuations. Thus, greater delay, which

signals a lower valuation, leads to a better price for the buyer. The buyer trades off

the better price against the costs of delay. Eventually, trade takes place, but there is

a welfare loss due to the delay. The possibility of trading at a posted price causes the

buyer to delay even more before making a bid, but considering both trades made in

the mechanism and trades made when the buyer bids, the net effect is to reduce the

costs due to delay. This is a welfare gain.

‡The activity in which Trillium was alleged to have engaged is called spoofing. Another example
is the trader Navinder Sarao, who was criminally charged by the U.S. Department of Justice for
alleged spoofing that contributed to the flash crash in May 2010 (Miedema & Lynch, 2015). We
thank Markus Baldauf for suggesting this example.
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The welfare gain in our model can be understood in terms of the costs of signaling.

If all trades are by posted orders, then patient buyer types separate themselves from

impatient types by incurring the costs of delay. When we add the opportunity to trade

at a posted price, two things happen. One is that the costs of signaling increase. It

becomes more difficult for patient types to separate themselves from impatient types

prior to the arrival of the posted price opportunity, so they incur greater costs of

delay. However, trading at a posted price creates partial pooling—multiple buyer

types are able to trade at the same price. The buyer types who are pooled avoid

signaling costs. While these two forces operate in opposite directions, the net effect

is for costs to fall and welfare to rise.§

The model we develop has implications beyond market microstructure. Consider,

for example, a company bargaining with a labor union. Suppose the company has

an offer on the table, and the union is delaying responding, perhaps engaged in a

strike, in order to signal its strength. An arbitrator could play the role of the posted

price mechanism in our paper, proposing a resolution which both parties can accept

or reject. This can result in pooling of types of the labor union, reducing signaling

costs and hastening an agreement.¶

3.2 Literature Review

Our conclusion about the welfare benefits of trading at posted prices is the opposite

of that reached by Antill and Duffie (2018), who address the same question in a very

different model. In their model, traders optimally use the posted-price mechanism

(’size discovery sessions’), but overall welfare is reduced by the presence of the mech-

§We thank Ron Giammarino for suggesting that we emphasize this interpretation.
¶We thank Hernan Ortiz-Molina for suggesting this application.
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anism. The ‘normal’ market mechanism in Antill and Duffie’s model is a sequence

of batch auctions. The friction in this market is that each trader is concerned with

price impacts and hence trades less than he would in a Walrasian environment. The

posted-price mechanism facilitates trade by making it possible to avoid price impacts.

However, traders respond to the posted-price mechanism by reducing trades in the

normal market so much that the net effect is actually to lower welfare.

We model a different friction than that modeled by Antill and Duffie, and we

obtain a different result. The batch auctions in the Antill-Duffie model constitute

the market mechanism recommended by Budish, Cramton, and Shim (2015). One in-

terpretation of the Antill-Duffie result is that posted-price mechanisms would not be

welfare improving if the Budish-Cramton-Shim market reforms were adopted. How-

ever, that leaves open the question of whether such mechanisms improve welfare when

the normal market mechanism is an open limit order book. Because orders are submit-

ted simultaneously and batched in the Antill-Duffie model, the issues with displaying

liquidity do not arise there. There are at least two issues with displaying liquidity.

One is the ‘sniping’ risk addressed by Budish, Cramton, and Shim. The other is the

information revealed by displayed liquidity, captured in the Trillium example and in

our model. In our model, the posted-price mechanism is welfare enhancing, because

it makes it possible to trade without revealing information ex ante.

Our conclusion about the welfare benefits of posted-price mechanisms is the same

as that reached by Duffie and Zhu (2017), but we reach the conclusion for very

different reasons. Duffie and Zhu assume the mechanism occurs only at date 0, so

there is no issue of traders reducing their trades in the normal market (which is again

a sequence of batch auctions) in anticipation of trading in the mechanism later. In

contrast, our buyer does delay his bid even more when there is a possibility of trading
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at a posted price later. However, the social cost of this further delay is more than

offset on average by the social benefits of trading at a posted price.

There are many papers on dark pools, but we do not know of any papers that

model the dark pool as a device to avoid information leakage. Many model the

lit market as a dealer market, in which investors cannot post orders (for example,

Hendershott and Mendelson (2000); Degryse et al. (2009)). Usually, the traders in

these models only want to trade one unit, which they do either through a market or-

der or in the dark pool. Because they trade only once and do not post visible orders,

there is no possibility of information leakage. Many papers on dark pools include

noise traders (for example, M. Ye (2012)) or assume that trades in the dark pool are

crossed against unmodeled traders, which makes welfare analysis problematic (for ex-

ample Bieklagk, Horst, and Moreno-Bromberg (2019)). Other papers assume traders

are infinitesimal and hence are unconcerned with either price impact or information

revelation (for example, Zhu (2014)).

One paper on dark pools that does make a welfare claim is Buti, Rindi, and

Werner (2017). They argue that dark pools reduce welfare, which is the opposite

of our finding. Theirs is a four-date model in which a single trader arrives at each

date. If a seller arrives at date 1 and posts an offer at the inside ask, then a seller

who arrives at date 2 may choose to submit to the dark pool to avoid being behind

the first seller in time/price priority (further price improvement beyond the inside

ask is not possible in their model). Submitting to the dark pool avoids the tick size

constraint—it creates a possibility of trading at the spread midpoint, which is between

ticks and is therefore a price at which an order cannot be posted in the book. Unlike

our paper, the Buti et al. paper is not focused on informaton leakage. In fact, the

seller in the above example who went to the dark pool would prefer that it be lit, so
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any buyer who arrives at dates 3 or 4 would know that liquidity was available. The

only friction in the limit order book in the Buti et al. model that trading in the dark

could solve is the tick size constraint. In our model, there is an informational friction

that trading at a posted price can and does mitigate.

3.3 Model and Overview

We model the trade of a single unit of an asset, held initially by an agent called the

seller. The asset may possibly be traded to an agent called the buyer. It is common

knowledge that the seller’s value for the asset is 0. The buyer’s value for the asset

is denoted by b and is uniformly distributed on [0, 2]. If a trade eventually occurs at

price p at date t, then the present value of the seller’s gain from trade is e−rtp, and

the present value of the buyer’s gain is e−rt(b − p), for a constant r. The discount

rate r embodies not just the interest rate but also other factors creating an urgency

to trade, including the risk that the market may move and valuations may change

before trade occurs. We do not model that risk, except for considering aversion to

it as partially underlying the parameter r. When trade occurs, the gain from trade

is the difference between the buyer’s and seller’s valuations, which is simply b. The

maximum possible expected gain from trade is the mean of b, which is 1. As we show

below, trade always occurs in our model. However, there is an inefficiency due to

delay.

At date 0, the seller offers the asset at a price p that he chooses. The buyer

chooses whether to accept this offer. If he declines it, then he has the opportunity to

submit a bid at a later date—a date that he chooses. The assumption that the seller

does not make a new offer before the buyer bids is motivated by the idea that the

seller should not want to compete against himself.
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At an exponentially distributed time τ , if the buyer and seller have not already

traded by τ , then they are confronted with an opportunity to trade at a random

price q drawn from the uniform distribution on [0, 1]. The price q is observed by both

the buyer and seller, and then they choose simultaneously whether to participate. If

both choose to participate, then trade occurs at the price q. The buyer and seller

learn nothing if they do not participate, and learn whether their order executed if

they do participate. If the seller chooses to participate, but the buyer does not, then

the seller learns that the buyer did not, which is informative to the seller about the

buyer’s valuation. After such an event, the game continues as before from this new

information state. For simplicity, we assume the posted-price mechanism occurs only

once. Let λ denote the parameter of the exponential time, so the probability of arrival

in an instant dt is λ dt. If either the buyer or seller chooses not to participate in the

mechanism, then both parties resume waiting until the buyer makes a bid. Thus, the

buyer is still ‘on the clock’ in our model.

In equilibrium, trade always occurs. If the buyer has a sufficiently high valuation,

then he will accept the seller’s initial offer. If he does not, then there are three

possibilities: (i) the buyer makes a bid before the posted-price mechanism arrives,

and the bid is accepted by the seller, (ii) the buyer does not make a bid before the

mechanism arrives, and trade occurs in the mechanism, (iii) the buyer does not make

a bid before the mechanism arrives, trade does not occur in the mechanism, and after

an additional delay the buyer makes a bid that is accepted by the seller.

The general form of the equilibrium is that at each date t there is some buyer

type b = ξ(t) who would bid at that date. Thus, the seller can infer the buyer’s

valuation from the timing of the bid. Of course, the function ξ(·) must be incentive

compatible—no type of buyer can benefit from bidding at the time the seller expects
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some other type of buyer to be bidding. For a given price p, the dollar loss due to

discounting is higher for higher buyer types, so higher types are less patient. Thus,

ξ(·) will turn out to be a decreasing function.

In the formal game, there are alternating offers—when the buyer makes a bid, the

seller can reject it and then later make another offer, and so on. There is a minimum

amount of time ∆ that must pass between offers. However, we are interested in the

limit as ∆ → 0. The subgame following the posted-price mechanism with no trade

is the same as a subgame in Cramton (1992), because we assume the mechanism can

only occur once. This game is the A. Rubinstein (1982) alternating-offers bargaining

game with one-sided incomplete information and with endogenous delay beyond ∆.

With a minimum delay of ∆ > 0 between orders, if a buyer bids and reveals his value

b, then his equilibrium bid is B such that the seller is indifferent between (i) accepting

the bid and (ii) rejecting the bid and submitting an ask A after the minimum delay

of ∆. Thus, B = e−r∆A. Likewise, if the seller makes an offer, it is such that the

buyer is indifferent between accepting it and rejecting it and making a new bid after

the minimum delay, which implies b− A = e−r∆(b−B). The solution to this pair of

equations is

A =
b

1 + e−r∆
, B =

e−r∆b

1 + e−r∆
. (3.1)

In the limit as ∆ → 0, we have A = B = b/2. If a buyer of type b submits a bid at

a time t when a different buyer type b′ should have bid, then the bid is b′/2, and the

resulting profit of the buyer is e−rt(b− b′/2). The reason the bid has to be b′/2 is that

the seller will reject any lower bid, thinking the buyer is of type b′ and then quote the

ask of b′/2 as just described. The seller continues this behavior indefinitely. Hence,

b′/2 is the best price the buyer can get after bidding when b′ should have bid. This
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is the sense in which moving early—when b = ξ(t) is higher—leads to worse terms

of trade for the buyer. The seller’s inference about the buyer’s valuation when the

buyer displays liquidity by making a bid results in an incentive to delay bidding.

Optimal behavior is easily determined in the posted-price mechanism, given that

the Cramton equilibrium is expected to be followed if there is no trade in the mecha-

nism. We take into consideration that the information state can change as a result of

the mechanism: If the seller chooses to participate, but the buyer does not, then the

seller learns that the buyer did not participate and may therefore revise his estimate

of the buyer’s type downwards.

We derive the equilibrium strategies before the mechanism arrives. As in the

subgame following the mechanism, if a bidder with valuation b bids prior to the

arrival of the mechanism, then the buyer bids b/2 in the limit as ∆ → 0. The

reasoning above leading to the pair of equations (3.1) has to be modified only by

including the possibility of trading in the mechanism if it arrives in the time period

of length ∆. For example, the ask price is such that the buyer is indifferent between

accepting it on the one hand, and, on the other, rejecting it and either trading in

the mechanism if it arrives in the time period of length ∆ or making a bid after ∆

has passed. These considerations produce equations that differ from (3.1) only by

including the value of possibly trading in the mechanism. Since the probability of

trading in the mechanism during a time period of length ∆ goes to zero as ∆ goes to

zero, we again obtain A = B = b/2 in the limit.

The fact that buyer bids b/2 implies that the buyer will accept the seller’s initial

offer p (or a posted price q) if and only if b ≥ 2p (or b ≥ 2q). The reason is

straightforward. Let x denote the marginal buyer value, so the buyer accepts the

offer if and only if b ≥ x and is indifferent if b = x. Following a rejected offer, we
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enter a signaling game, in which the buyer signals by the time of his bid. It is always

true in a separating equilibrium of a signaling game that the ‘worst’ type (here, the

most impatient type of buyer) realizes his full-information value. The action that

produces the full-information value must be optimal, because no worse inference can

be made than that the buyer is the worst type. So, the highest valuation buyer

must bid immediately following the mechanism, that is, the buyer of type x bids x/2

immediately. Because he is indifferent about accepting the offer on the one hand

and rejecting it and bidding x/2 immediately, it must be that the offer is x/2, which

means that the marginal type x is twice the offer.

While bid prices are not affected by the posted-price mechanism, the timing of bids

is very much affected. The bidder delays his bid even more because of the possibility

of trading in the mechanism. Because each bidder type delays longer, bidding at any

particular time signals an even higher valuation than when the mechanism does not

exist. Thus, the friction that bidding signals a high valuation and consequently leads

to an unfavorable price is worsened by the presence of the mechanism.

One feature of our model that deserves a bit more explanation is the assumption

that the price in the mechanism is drawn from (0, 1) even though the buyer’s value

is distributed on (0, 2). We make this assumption because of the fact that the buyer

bids b/2. Even if the seller quoted an unreasonable price at date 0 which the buyer

rejects with probability one, the buyer could still bid 1 immediately afterwards, which

the seller would accept. Thus, the buyer would never to agree to pay a price higher

than 1 in this model. We could have assumed prices in the mechanism are drawn

from (0, 2), but then the mechanism would be irrelevant half of the time. In fact,

we will see that the seller’s initial offer is 0.75 or smaller, and trade never occurs in

this model at prices above 0.75. We discuss making our mechanism a bit smarter,
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drawing prices from a subset of (0, 1), in Section 3.7.

3.4 Equilibrium with Only Posted Orders

If there is no possibility of trading at a posted price (λ = 0), then the solution to

our model is given by Cramton (1992). Suppose that if the seller’s initial offer is

rejected then he believes that the buyer’s value is uniformly distributed on [0, x] for

some x ≤ 2. Then, if the buyer’s value is b ≤ x, he bids at the date t satisfying

e−rt =
b

x
. (3.2)

Note that the equilibrium discount factor (3.2) is independent of the discount rate r.

Each buyer type has to incur a certain cost in order to separate from higher buyer

types. If the discount rate r is lower, then the buyer has to wait a longer time t in

order to incur the cost, exactly offsetting the lower r. Both the buyer and the seller

realize a gain of b/2 when trade occurs, so the discounted gain from trade for each

trader is b2/(2x). The expected discounted gain of each trader conditional on b ≤ x

is ∫ x

0

b2

2x
· 1

x
db =

x

6
. (3.3)

As discussed above, the buyer will accept the seller’s initial offer if b ≥ 2p, so

we can take x = 2p in the above. The probability of the offer being accepted is

(2− 2p)/2 = 1− p. Thus, using (3.3) with x = 2p, the seller’s expected gain from an

offer at p is

(1− p) · p+ p · 2p

6
= p− 2

3
p2 .

The optimal price is p = 3/4, producing an expected gain of 3/8. The buyer accepts
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the seller’s initial offer, gaining b − 3/4, if b ≥ 3/2 and otherwise gains b2/(2x) =

b2/(4p) = b2/3. Thus, the buyer’s expected gain is

1

2

∫ 3/2

0

b2

3
db+

1

2

∫ 2

3/2

(
b− 3

4

)
db =

7

16
.

The total expected discounted gain from trade for the buyer and seller is 3/8+7/16 =

13/16.

The efficient outcome in this model is for trade to occur at date 0, producing a

gain of b. So, the maximum possible expected discounted gain from trade is E[b] = 1.

It follows that there is a welfare loss of 3/16 due to delays in trading when there is

no opportunity for trading at a posted price. In the next section, we will see that the

possibility of trading at a posted price reduces this welfare loss.

Figure 3.1 shows how the seller’s inference about the upper bound on the buyer’s

valuation evolves over time when there is no possibility of trading at a posted price.

At date 0, if the seller’s initial offer is rejected, the seller infers that b ≤ 2p = 3/2.

From (3.2) with x = 2p = 3/2, we see that at each time t, the buyer should have bid

prior to t if b > 3e−rt/2. Thus, if the buyer does not accept the seller’s initial offer

and has not bid prior to t, then the seller can infer that b ≤ 3e−rt/2.
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Figure 3.1 : Seller’s Inference with Only Posted Orders
The upper boundary of the shaded area specifies the type of buyer who should bid at each date t,
when trading is only by posted orders. At each date t, if the buyer has not bid by t, the seller infers
that the buyer’s value is uniformly distributed over the shaded vertical slice at t.
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3.5 Equilibrium with Posted Prices

We describe the equilibrium of our model here, deferring proofs to the appendix. We

start from the end of the game and work backwards to describe equilibrium strategies.

For our main results, we invoke a parametric assumption that the arrival rate of the

mechanism is not too high. Specifically, assume λ < 8r. We discuss higher arrival

rates in Section 3.7.

3.5.1 Trading After the Posted-Price Mechanism

Suppose the posted price mechanism arrives and there is no trade in it. The subgame

following this event is the same as in Cramton. Letting x denote the seller’s perceived

upper bound of the support of b after the mechanism, the buyer’s bidding rule for

b ≤ x is given in (3.2). The buyer’s expected value for b ≤ x is b2/(2x), and the

seller’s expected value is given in (3.3). If, out of equilibrium, b > x, then the optimal

action for the buyer is to bid x/2 immediately, producing a value of b− x/2.

3.5.2 Equilibrium Behavior in the Posted-Price Mechanism

We use the values attained in the subgame following the mechanism to derive optimal

behavior in the mechanism.

Proposition 3.1 Suppose the mechanism arrives and the seller believes the buyer’s

value is distributed on [0, x]. Let q denote the price in the mechanism. The following

are true for all buyer valuations b ∈ [0, 2], including b > x.

(a) If q < x/2, then it is optimal for the buyer to participate in the mechanism if

and only if b ≥ 2q.

(b) If q > x/2, then it is never optimal for the buyer to participate in the mechanism.
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It is optimal for the seller to participate when q > x/4 and to not participate when

q ≤ x/4.

With the notation of the proposition, if the buyer had bid an instant before the

mechanism arrived, then the seller would have insisted on a price of x/2. However,

the seller will accept x/4 in the mechanism. The reason is that a bid just before the

mechanism would reveal information about the buyer’s type, namely that the buyer

is the most impatient type to have not yet bid. This information is disadvantageous

to the buyer. The mechanism creates pooling of buyer types. Given a price q ∈

(x/4, x/2), all buyer types b between 2q and x get execution in the mechanism at q.

These buyer types avoid additional costs of signaling that would have been incurred

in the absence of the mechanism.

If the mechanism arrives and q < x/4 or q > x/2, then both the buyer and

seller know ex ante that there will be no trade. The seller learns nothing about the

buyer’s type, either because he does not participate (q < x/4) or because he knows

ex ante that the buyer will not participate (q > x/2). In either case, the signaling

game described in the previous subsection commences with the upper bound x on

the buyer’s valuation being the same as the upper bound prior to the mechanism.

However, if q > x/4 and b < 2q < x, then the seller participates and the buyer does

not, and the seller learns that the buyer’s type is below 2q. In this case, the signaling

game described in the previous subsection commences with x = 2q.

Figure 3.2 illustrates a possible path of the game. Prior to the arrival of the

mechanism, the seller’s inference about the buyer’s type is based on the equilibrium

bidding function that is described below. The figure illustrates the case q > x/4 and

b < 2q < x. The seller gains information when there is no trade in the mechanism.

The additional delay after the mechanism is determined by the Cramton bidding rule
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(3.2).
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Figure 3.2 : A Sample Path
In this example, the date τ at which the posted-price mechanism arrives is such that the seller has
inferred by that date that b ≤ 1 (buyers with values b > 1 should have bid prior to τ). At this time,
all prices q > 0.25 are acceptable to the seller, even though the seller would have required a price of
0.5 if the buyer had bid just before t. The realized posted price in this example is q = 0.3. All buyers
with values b > 0.6 will accept the price. Thus, all buyers with valuations 0.6 < b < 1 get pooled
at the price q = 0.3. In this particular example, b = 0.4, so the buyer does not participate in the
mechanism and instead later bids 0.20 after an additional delay defined by (3.2), with x = 2q = 0.6.
In this figure, r = 1.
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Based on Proposition 1 and the values in the subgame following the mechanism,

we can calculate the expected gains from trade for the buyer and seller at the time

of the mechanism, discounted to the time of the mechanism, by integrating over q.

This produces the following.

Proposition 3.2 Suppose the mechanism arrives and the seller believes the buyer’s

value is distributed on [0, x]. Given equilibrium behavior, the seller’s value at that

time, unconditional on the price q of the mechanism, is

x

6
+

x2

288
. (3.4)

The buyer’s value unconditional on q is δ(b, x), where, for b, x ∈ (0, 2),

δ(b, x) =





b2

2

(
1
x

+ 2 log(2)−1
4

)
if b < x/2 ,

b2

2

[
1
x

+ 1
2

+ 1
2

log
(
x
b

)]
− bx

4
+ x2

32
if x/2 < b < x ,

b− x
2

+ x2

32
x < b .

(3.5)

Figure 3.3 plots δ(b, x) as a function of x for a fixed value of b. The dotted line

shown in Figure 3.3 is a lower bound on the buyer’s value that can be achieved by

bidding x/2 immediately after the mechanism. The difference between the buyer’s

value δ(b, x) and this lower bound is due to three things: (i) the possibility of trading

in the mechanism, (ii) the possibility that there will be no trade in the mechanism

but the seller’s perceived maximum value will fall as a result of the lack of trade, and

(iii) the possibility that there will be no trade in the mechanism and the buyer will

delay bidding after the mechanism to get a better price than x/2.
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Figure 3.3 : Buyer’s Value in the Posted-Price Mechanism
In this figure, r = 1, λ = 6, and b = 1. This is the function x 7→ δ(b, x), which is the expected
value for the buyer when the posted-price mechanism arrives, unconditional on the price q in the
mechanism, given that x is perceived by the seller to be the maximum possible buyer valuation. In
equilibrium, we always have x ≥ b, so the area to the right of x = 1 is what occurs on the equilibrium
path. The dotted line is the plot of b− x/2 = 1− x/2.

3.5.3 Incentive Compatibility and the Equilibrium Bidding Rule

When the seller makes an initial offer at price p, all buyer types b ≤ 2p reject it, and

plan to bid b/2 at some date t if the posted price mechanism does not arrive before

t. Let t = θ(b |p) denote the date at which type b plans to bid, for b ≤ 2p. Let ξ(· |p)

denote the inverse of θ(· | p), so b = ξ(t | p) is the type of buyer who bids at date t.

For p ∈ [0, 1], b ∈ [0, 2], and b′ ∈ [0, 2p], define

L(b, b′ |p) =

(
b− b′

2

)
e−(r+λ)θ(b′|p) + λ

∫ θ(b′|p)

0

e−(r+λ)tδ(b, ξ(t |p)) dt . (3.6)

This is the value of the game to the buyer at date 0 if he rejects the seller’s initial

offer at price p, his valuation is b, and he adopts the strategy of type b′. The first

term in the function L is the gain from a bid of b′/2 at the time θ(b′ |p) multiplied by
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the probability that θ(b′ |p) < τ , that is, the buyer bids before the mechanism arrives.

The second term is the value of the game to the buyer when the mechanism arrives,

integrated over the arrival time density of the mechanism up to the time θ(b′ |p), and

discounted back to date 0.

An incentive compatibility condition, following the seller’s initial offer at price p,

is, for b ≤ 2p,

L(b, b |p) = max
b′≤2p

L(b, b′ |p) . (3.7)

The maximization is over b′ ≤ 2p, because higher buyer types accept the seller’s initial

offer. This condition says that any buyer type who in equilibrium rejects the seller’s

initial offer would not prefer to mimic any other buyer type that rejects the seller’s

initial offer. The first-order condition for (3.7) is

∂L(b, b′ |p)
∂b′

∣∣∣∣
b′=b

= 0 .

This is a differential equation in θ. By solving the differential equation, we arrive at

the following equilibrium θ and ξ.

Define

c =
λ

16r
<

1

2
. (3.8)

For any x, define

K(x) =
x

1− cx . (3.9)

Our parametric assumption λ < 8r implies 1 − cx > 0 for all x ≤ 2. The following

defines the time t = θ(b |p) at which the buyer of type b ≤ 2p bids:

e−rθ(b|p) =
K(b)

K(2p)
. (3.10)
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Notice that (3.10) is of the same form as (3.2), but with b and x replaced by K(b)

and K(x) respectively. The inverse of θ is

ξ(t |p) =
1

c+ ert/K(2p)
. (3.11)

The differential equation we solved is a necessary condition for equilibrium. In the

proof of the following, we establish sufficiency, that is, we verify second-order condi-

tions.

Proposition 3.3 For any p ∈ [0, 1],

(∀ b > 2p) b− p ≥ max
b′≤2p

L(b, b′ |p) , (3.12a)

(∀ b ≤ 2p) L(b, b |p) = max
b′≤2p

L(b, b′ |p) ≥ b− p , (3.12b)

when L, θ and ξ are defined by (3.7), (3.10), and (3.11).

The function L and the incentive compatibility conditions are illustrated in Fig-

ures 3.4 and 3.5. Figure 3.6 shows the equilibrium bidding function θ(· |p), where p is

the seller’s equilibrium initial offer price (which we derive below). Figure 3.6 shows

that delay is longer due to the presence of the mechanism, and it shows that delay is

longer when the arrival intensity of the mechanism is higher.
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Figure 3.4 : Incentive Compatibility
In this figure, r = 1, λ = 6, b = 1, and the seller’s initial offer is p = 0.75. The plot is of the function
b′ 7→ L(b, b′ |p), which is the value of the game to the buyer at date 0 if he rejects the seller’s initial
offer at price p, his valuation is b, and he adopts the equilibrium strategy of type b′. The maximum
of the function occurs at b′ = b = 1. The left panel shows the function over the range [0, 2p]. The
right panel zooms in on a portion of the x axis near b′ = 1 to better show that the maximum occurs
there.
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Figure 3.5 : Buyer’s Decision at Date 0
In this figure, r = 1 and λ = 6, and the seller’s initial offer is p = 0.75. The dashed line plots b− p,
which is the value of accepting the initial offer. The solid curve is the value L(b, b |p). Buyer types
b < 2p should reject the seller’s initial offer.
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Figure 3.6 : Equilibrium Delay
This is the equilibrium delay function t = θ(b | p) with r = 1, where p is the seller’s equilibrium
initial offer price. The figure shows that the bidder delays longer when there may be an opportunity
to trade at a posted price. The plot is truncated at b = 2p, because bidders with values above 2p
accept the seller’s initial offer at p and hence trade at date 0.
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3.5.4 Initial Offer Price

Knowing the buyer’s behavior, we can compute expected gains from trade for the

seller and use that to determine the price at which the seller offers the asset at date

0. As with the buyer’s gains, we compute the seller’s expected discounted gain from

trade by integrating over an arrival time density. In this case, we use the arrival time

of τ ∧θ(b |p), where b is viewed as uniformly distributed on [0, 2p]. The value depends

on the perceived upper bound of the distribution of b.

Proposition 3.4 If the seller offers the asset at any price p < 1, then the seller’s

expected discounted gain from trade is (1−p)p+pJ(2p) where, for x ∈ [0, 2], we define

J(x) =
λ+ 3r

6rxK(x)1+λ/r

∫ x

0

K(u)2+λ/r du− λ

72rxK(x)1+λ/r

∫ x2

0

K(
√
u)2+λ/r du .

(3.13)

If the seller offers the asset at any price p ≥ 1, then the seller’s expected discounted

gain from trade is J(2). The seller’s equilibrium initial offer is at the price p < 1 that

solves

max
p≤1

(1− p)p+ pJ(2p) . (3.14)

The possibility of trading at a posted price is attractive to the buyer and makes

him less likely to accept the seller’s initial offer. Consequently, the seller cuts the

price when there is a possibility of trading later at a posted price. This is illustrated

in Figure 3.7.
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Figure 3.7 : Initial Offer Price
The seller’s initial offer price is p = 0.75 when there is no possibility of trading at a posted price
(λ = 0). It is smaller when there is a possibility of trading at a posted price, and it is a decreasing
function of the arrival intensity λ of the posted-price mechanism. In this figure, r = 1.
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3.6 Welfare Gains from Posted Prices

The maximum possible gain from trade in this model is 1. This could be achieved if

the buyer could make a take-it-or-leave-it offer. In the alternating offers framework,

take-it-or-leave-it offers are ruled out by subgame perfection. Efficiency could also be

achieved if the buyer’s value were common knowledge. In that case, in the alternating

offers game (as the time interval between offers shrinks to zero), the outcome is for

the seller to offer the asset at b/2, which is accepted by the buyer.

In this model, with only posted orders, the total gain from trade is 13/16, as

discussed in Section 3.5. Hence, the welfare loss due to private information and

delayed trading is 3/16. Figure 3.8 shows the fraction of this welfare loss that is

eliminated by the possibility of trading at a posted price. When the arrival intensity

of the mechanism is high, as much as 5% of the welfare loss is eradicated. This is a

relatively small number, but the mechanism has not been optimized. It only occurs

once, and the price is randomly drawn from (0, 1).

The welfare gains are due to trade being accelerated. The acceleration is not

uniform across buyer types. Figure 3.9 shows how the expected discount factor e−rt

in the model with posted prices compares to the expected discount factor in the

model without posted prices. The average across b of this difference in expected

discount factors is the expected welfare gain. More trade occurs at date 0 with

posted prices, because the seller’s equilibrium offer price is lower. This implies that

the most impatient types who do not trade at date 0 in the model without posted

prices also trade faster than without posted prices, because those types are not the

most impatient when there is less trade at date 0. Low buyer types also trade faster in

the model with posted prices, either because they trade in the mechanism or because

the inferred maximum buyer type falls when there is no trade in the mechanism.
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Figure 3.8 : Total Welfare Gain
This plots the extra expected discounted total gains from trade, relative to the model without the
possibility of trading at a posted price, as a fraction of the welfare loss of that model compared to the
efficient outcome. The model without posted-price trading generates total expected gains from trade
of 13/16 with a welfare loss of 3/16, so the plot is (’expected discounted total gains from trade’ −
13/16)/(3/16).

The acceleration or delay of trade affects the buyer and seller equally. However,

pooling of buyer types in the mechanism leads to better prices for the buyer and

worse prices for the seller, because trade takes place only if q < b/2. Hence, even

buyer types that experience delays on average compared to the posted orders model

benefit on average from posted prices. Figure 3.10 shows the gains achieved by the

buyer. All buyer types benefit from posted orders.

Figure 3.10 shows expected discounted gains as a fraction of the buyer’s valuation.

In the complete information Rubinstein benchmark, trade takes immediately at a

price of b/2, so the buyer gains half of his valuation. As the figure shows, buyers with

high valuations do better in this model than in the Rubinstein benchmark, because

they trade at the seller’s initial offer price. Recall that the buyer types who trade
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Figure 3.9 : Expected Discount Factors
This plots the ratio of E[e−rt | b] for the model with posted prices (λ > 0) to the same expectation
without posted prices (λ = 0), where t denotes the date of trade—either at date 0, after date 0 but
before the mechanism arrives, in the mechanism, or after the mechanism. In this figure, r = 1.

at the initial offer are those for which p < b/2. Buyers with valuations such that

p > b/2 do worse than in the complete information setting. Figure 3.10 shows the

gains achieved by the buyer in this model, relative to the b/2 benchmark.

The seller actually does a little worse when there is a possibility of trading at a

posted price, because he accepts a lower price than b/2 for the buyer types who get

pooled in the posted-price mechanism. However, total gains from trade seems to be

the right variable to focus on, because traders will sometimes find themselves in the

role of the seller and sometimes in the role of the buyer.
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Figure 3.10 : Buyer Welfare
This is the buyer’s equilibrium expected discounted gain from trade relative to his valuation of the
asset. The line at 1/2 represents the Rubinstein alternating-offer outcome, where, when the buyer’s
value b is common knowledge, he earns b/2. Buyers with values b > 2p∗ accept the seller’s initial
offer p∗ and earn b − p∗ > b/2. Buyers with values b < 2p∗ reject the offer and earn less than b/2.
The possibility of trading at a posted price increases the buyer’s expected gains from trade.
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3.7 Smarter Mechanisms

There are several simple ways to design the mechanism better, all of which lead to

larger welfare gains. One possibility is to draw the price from the interval [x/4, x/2]

when x is perceived as the upper bound of the buyer’s value distribution. This is

motivated by Proposition 1, which shows that trade never occurs except when q is in

this range. This change increases the probability that trade occurs in the mechanism.

The assumption actually simplifies the calculations somewhat. Assuming λ < 4r, the

buyer type b that bids at date t is

b = 2pe−(r−λ/4)t .

The inverse function is

t =
log(2p/b)

r − λ/4 .

This is the same as the Cramton solution of the posted-orders model except that r

is replaced by r− λ/4. This shows immediately that delay is greater when there is a

possibility of trading at a posted price. The seller’s value function (3.13) becomes

J(x) =

(
1

6
− 11

72
· λ

λ+ 6r

)
x .

The equilibrium initial offer price is

p =
18λ+ 108r

35λ+ 144r
.

It is easy to verify numerically that aggregate gains from trade are higher in this

model than when the price in the mechanism is drawn from [0, 1].
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Another simple improvement is to have the mechanism occur immediately after

the seller’s initial offer. Assume the price in the mechanism is drawn uniformly from

[0, 1]. With the mechanism immediately following the seller’s offer, we can no longer

conclude that the marginal buyer type who accepts the seller’s offer is b = 2p. If the

seller’s offer is rejected, the expected discounted gain from trade from a buyer of type

b when the maximum buyer type is perceived to be x is δ(b, x) from (3.5). Thus, the

marginal buyer type for the seller’s offer is the solution x to δ(x, x) = x − p. The

solution of this equation is x = 8(1−
√

1− p/2). This is true if p < 7/8. There is no

marginal buyer if p > 7/8, because the buyer always rejects such high seller offers.

The seller chooses the initial offer price p ≤ 7/8 to maximize

2− x
2
· p +

x

2
·
(
x

6
+

x2

288

)
, (3.15)

where x = 8(1 −
√

1− p/2) The factors in expression (3.15) are, respectively, the

probability of the buyer accepting the seller’s offer, the seller’s gain from the offer

being accepted, the probability that the buyer rejects the seller’s offer, and the ex-

pected discounted gain from trade when the mechanism begins, using Proposition 2

for the last factor. Again, it is easy to verify numerically that aggregate gains from

trade are higher in this model than in the main model in the paper.

Another way to increase welfare gains is to increase the arrival rate of the mech-

anism. For our main results, we assumed λ/r < 8. Now, assume λ/r ≥ 12. There

is an equilibrium in which all buyer types who do not accept the seller’s initial offer

wait for the mechanism to arrive instead of bidding prior to the mechanism. If the

perceived upper bound on the buyer’s type is x, then a buyer of type b ≤ x who waits
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for the mechanism to arrive earns expected discounted gains from trade equal to

λ

λ+ r
δ(b, x) ,

where δ is defined in (3.5). Set k = (λ + r)/λ. The buyer type that is indifferent

about accepting the seller’s initial offer is the type x that solves δ(x, x)/k = x − p.

The solution to this equation is

x = 8
(

2k − 1−
√

(2k − 1)2 − kp/2
)
.

Similar to the situation in the previous paragraph, the seller chooses the initial offer

price p to maximize

2− x
2
· p +

x

2
· 1

k
·
(
x

6
+

x2

288

)

with this definition of x. A belief that supports this equilibrium is that any buyer

who bids before the mechanism arrives is of type x. We can show numerically for

λ/r ≥ 12 that x > 2p; equivalently

x

2
< x− p =

δ(x, x)

k
,

which means that deviating to bid before the mechanism arrives is suboptimal given

this belief. The welfare gains are higher in this model than in our main model, and,

as λ/r → ∞, the equilibrium converges to the equilibrium when the mechanism is

held immediately after the seller’s offer.

Finally, another way to improve the mechanism is to run it immediately after

the seller’s initial offer and to optimize the price in the mechanism. The optimal

price is the one that maximizes the probability of trade. With the mechanism using
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a fixed price and following the seller’s initial offer immediately, the initial offer is

essentially irrelevant. Ignoring it, the upper bound on the buyer’s value going into

the mechanism is x = 2. From Proposition 1, we need q ≥ x/4 to induce the seller

to participate in the mechanism. Lower prices increase the probability of the buyer

participating, so the price that maximizes the probability of trade is x/4 = 1/2. The

buyer participates if b ≥ 1. Using (3.3) for the expected discounted gains of the buyer

and seller when b < 1, we obtain total expected discounted gains from trade of

1

2

∫ 2

1

b db+
1

2

(
1

6
+

1

6

)
=

11

12
.

This is higher than in any of the other models. Note that with a mechanism price

of 1/2, it is useless for the seller to offer the asset at a higher price initially, and the

seller does not wish to offer it at a lower price (because the seller’s optimal initial

price in the posted-orders model is 3/4). So, the seller might as well offer the asset

at a price of 1/2 (or anything higher).

3.8 Conclusion

We model the friction that trade may be delayed due to traders not wanting to post

orders, because orders reveal information. An opportunity to trade at a posted price

enhances welfare. The magnitude of the welfare increase is small in the model, but

the mechanism in the model has not been optimized. For example, prices are drawn

uniformly from (0, 1), even though trade never occurs in the model at prices above

3/4, and as time passes the range of prices at which trade might take place shrinks

even further. As explained in the previous section, there are better designs that

increase the welfare gains.
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Gains from trading at a posted price are not evenly distributed in the model—

the seller whose value is known at date 0 loses, and the buyer whose value is private

information gains. We could have just as well assumed that the buyer’s value is known

at date 0 and the seller’s value is unknown. The equilibrium would be symmetric to

the equilibrium derived in this paper. The general result is that the trader whose

value is known loses and the trader whose value is private information gains, when

a possibility of trading at a posted price is introduced. In aggregate, the traders

gain. Our view is that any given trader might sometimes be in the role of the trader

whose value is known and might sometimes be in the role of the trader whose value

is private information, so average or total gains should be the primary consideration

in evaluating the market structure.

Our model is a subgame of a more general model in which the values of both parties

are private information until one party makes an offer/bid and thereby reveals his

value. Our conjecture is that both parties gain from being able to trade at posted

prices in this more general model, but that is a topic for future study.
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Appendix A

Addendum to Chapter 1

A.1 Equilibrium Computation and the Second Order Condi-

tion

The restriction that defines the equilibrium F amounts to what is called incentive

compatibility for truth-telling. That is, the equilibrium F must be such that no firm

has an incentive to try to be perceived as a type different from its own given the level

of borrowing it would have to undertake in order to do this. This condition can be

stated mathematically as

F (µ) ∈ argmax
y∈R+

Π(µ, F−1(y), y) ∀ µ ∈ [µmin, µmax]. (A.1)

The incentive compatibility condition in (A.1) contains a maximization problem which

can be written as

max
µ̂∈[µmin,µmax]

Π(µ, µ̂, F (µ̂)). (A.2)

This problem has first order condition

Π2(µ, µ̂, F (µ̂)) + Π3(µ, µ̂, F (µ̂))F ′(µ̂) = 0.
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Condition (A.1) imposes the following equilibrium requirement on the first order

condition

[
Π2(µ, µ̂, F (µ̂)) + Π3(µ, µ̂, F (µ̂))F ′(µ̂)

]∣∣∣∣
µ=µ̂

= 0.

This requirement gives us a differential equation for F :

Π2(µ, µ, F (µ)) + Π3(µ, µ, F (µ))F ′(µ) = 0.

An initial condition for this differential equation is supplied by the following gen-

eral lemma which is well-known in the signaling literature. I include the proof for

completeness.

Lemma A.1 In the above asymmetric information separating equilibrium model sup-

pose Π2 > 0. Then the type µ = µmin must get its full information outcome F0.

Proof A.1 Suppose F−1(F0) = µ′ 6= µmin. Then we have

Π(µmin, µ
′, F0) > Π(µmin, µmin, F0) ≥ Π(µmin, µmin, F (0)),

which contradicts condition (A.1). Thus, we must have F (µmin) = F0.

To summarize, the equilibrium outcome is given by the solution to the following

differential equation problem

Π2(µ, µ, F (µ)) + Π3(µ, µ, F (µ))F ′(µ) = 0, (F, µ) ∈ R+ × [µmin, µmax],

F (µmin) = F0.
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However, this problem can only produce a degenerate solution, since the coefficient

on the derivative, namely Π3, is equal to zero at the initial condition. Therefore, the

problem is solved by solving the inverse problem

µ′(F ) = −Π3(µ(F ), µ(F ), F )

Π2(µ(F ), µ(F ), F )
µ(F0) = µmin.

As discussed previously, the ODE has two solutions, one with a positive slope and one

with a negative slope. The positive slope solution is obtained by solving the inverse

ODE forward from the initial condition, while the negative slope solution is obtained

by solving the inverse ODE backward. In both examples, the ODE solution can only

be computed numerically. Once a solution has been obtained, the function can be

inverted to produce F (·).

I check whether the solution is an equilibrium directly, by checking if it solves the

firm’s maximization problem in (A.2). I do this by determining numerically whether,

for each µ on a grid of points in [µmin, µmax], Π(µ, µ, F (µ)) > Π(µ, µ̂, F (µ̂)) for each

µ̂ on the grid. That is, I check whether, given F (·), any firm type has a profitable

deviation from truth-telling.

The Figures A.1 and A.2 show an example of this test. They plot the profit

function Π for a manager of a firm in the Merton based model with L = .2. For

this value of L, the positive slope solution is the equilibrium, while the negative slope

gives a minimum for each firm type. The vertical line indicates on the x-axis the type

of the firm, which in equilibrium would also be the type the firm should select to solve

(A.2). Figure A.1 shows these graphs for the positive slope F (·) while A.2 shows the

same graphs for the negative slope F (·). It is clear that, for at least the type shown

in the graphs, the negative slope graph assigns a profit minimizing action, so that the
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negative slope F (·) cannot be an equilibrium. In order to determine that the positive

slope F (·) is an equilibrium, the condition depicted in A.1 must be checked for a full

grid of types from [µmin, µmax].

A.2 Merton Model Details

The market prices are produced by an exogenously specified stochastic discount factor

M = exp

(
−r − 1

2
λ2 − λB1

)
,

where r is the continuously compounded risk free rate, and λ is a constant. This

produces a price for a type µ firm’s cash flow at t = 0:

V0(µ) = exp (µ− r − λσ) .

To price the equity note that the time 1 equity payoff is that of a European call option

with strike price F−τc(F−D(µ̂, F ) and underlying payoff Y1. In a two-date model the

M. Rubinstein (1976) representative agent framework gives the Black-Scholes option

pricing formula for options, and so the price of the equity E(µ, µ̂, F ) at time t = 0 is:

E(µ, µ̂, F ) = V0(µ)Φ(h(µ, µ̂, F ) + σ) + e−rΦ(h(µ, µ̂, F ))(τc(F −D(µ̂, F )− F ),

where Φ is the standard normal c.d.f. and h(µ̂, µ) is given by

h(µ, µ̂, F ) =
log(V0(µ)) +

(
r − σ2 1

2

)
− log(F − τc(F −D(µ̂, F )))

σ
.
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The time 1 payoff of debt is the sum of a digital option and a share digital, which

both have straightforward valuations in the Black-Scholes framework. The resulting

price is

D(µ̂, F ) = e−rFΦ(h(µ, µ̂, F )) + (1− α)V0(µ)Φ(−h(µ, µ̂, F )− σ).

Note that the above expression is not explicit for D, as D is in the function for h. In

order to obtain a price for debt given a face value F , one must numerically search for

a fixed point in D.

The function C(µ, µ̂, F ) is L times the risk neutral probability of default. This

probability is given by Φ(−h(µ, µ̂, F )).

A.3 Leland Model Details

In this section I supply some more details from Leland’s 1994 model.

A.3.1 Model and Pricing

First, I note that I have the following structure for taxes. The agents participating

in the market for bonds and equities are subject to taxes on the income they obtain

from holding these securities. Specifically there is

• τi, a tax on the income obtained from coupon payments,

• τd, a tax on the income obtained from dividend payments.

To simplify the notation, I define a variable τeff by the relation

(1− τeff) = (1− τd)(1− τc).
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In this way, the after-tax dividend income of stockholders at time t can be written

as (1 − τeff)(Yt − c). I shall now briefly outline the pricing formulas for E and D

obtained in Leland (1994). Define the constant δ = r + σλ − µ. Let B∗ denote a

Brownian motion under the risk-neutral probability induced by the SDF process M .

It is straightforward to show that the value of the cash flow process of the firm at any

time t, Yt, is given by Xt = Yt/δ, and that the process X defined by this equation

solves the SDF

dX

X
= (r − δ)dt+ σdB∗.

For a given value of µ, the model is exactly the same as the model of Leland (1994),

and as Leland details in his paper, the decision to enter bankruptcy takes the form

of a hitting time for X, specifically the first time X ends up below some threshold.

Denote the optimal default threshold for X by xD. Leland further shows that the

process that gives the value of debt for each time t, D, before the first time X hits

xD, is given by the value of the coupon, received until bankruptcy, plus the value of

equity, obtained at bankruptcy. The value of D when X0 < xD is simply whatever

the debtholders can recover after the default. Thus, we have

Dt =





(1−τi)c
r

[
1−

(
xD
Xt

)γ]
+ (1− α)(1− τeff)xD

(
xD
Xt

)γ
for Xt > xD

(1− α)(1− τeff)Xt for Xt ≤ xD

, (A.3)

where γ is the absolute value of the negative root of the quadratic equation for the

power term of the fundamental ordinary differential equation of perpetual option
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pricing. Explicitly, γ is the absolute value of the negative root of

1

2
σ2γ2 +

(
r − δ − 1

2
σ2

)
γ − r = 0. (A.4)

Similarly, Et for Xt > xD is shown to be given by the value of holding the cash flow

process until bankruptcy, minus the value of the coupon c until bankruptcy, and of

course 0 after bankruptcy:

Et =





(1− τeff)
[
Xt − xD

(
xD
Xt

)γ]
− (1−τeff)c

r

[
1−

(
xD
Xt

)γ]
. for Xt > xD

0 for Xt ≤ xD

(A.5)

Evaluating (A.3) and (A.5) at t = 0 gives formulas for the price of debt and equity.

As in Leland (1994), I assume that the default bound xD is picked to maximize E0

alone. We can compute a first order condition for this maximization problem:

xD =
γ

1 + γ

c

r
. (A.6)

This bound is computed from an objective function that does not contain the man-

ager’s personal bankruptcy penalty, under the assumption that the board of directors

would force bankruptcy decisions to be made without regard for the manager’s per-

sonal incentives. Using the same perpetual option theory framework as in Leland,

the bankruptcy penalty C`(µ, c) is given by

C`(µ, c) = L

(
xD
X0

)γ
.

The term multiplying L is the price of paying a single unit of account at the first time

Xt ≤ xD.
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A.3.2 Computation of Ec

It can be shown that the derivative of E with respect to c over the region where the

firm is solvent is given by

Ec(µ, c) = −1− τeff

r

(
1−

(
xD(µ, c)

X0(µ)

)γ(µ)
)
.

A.4 Proofs

Proof A.2 (Proof of Proposition 1.1) If F is an equilibrium strategy, then in-

equality (1.2) must hold. For θ = 0, the third term in that inequality is

−CµF
Π2

− CFCµ̂µ
(Π2)2

,

which is strictly positive under the assumptions of the proposition. Inequality (1.2)

implies that F ′ ≥ 0 as claimed.

Proof A.3 (Proof of Proposition 1.2) This proof is the same as for Proposition

1.1 with S in place of C.
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Appendix B

Addendum to Chapter 2

B.1 Proofs

Proof B.1 (Proof of Lemma 2.1) Suppose first that xd > 0 is optimal. From the

discussion following the statement of the informed trader’s maximization problem,

we see that xd must have the same sign as E[V − E[p(y)|αd(Z) < 0]|V ]. Given this

we know that the expression is nondecreasing in xd. To be specific, I note that first

we must have

xd ≥ αmax
d +Nmax, (B.1)

where

αmax
d = max{αd(z), αd(−z), 0},

and Nmax is the maximum of the support of the random variable determining the

size of orders from noise traders faced by the informed agent in the dark pool. The

inequality in (B.1) holds since if xd < αmax
d + Nmax, then a costless profit can be

made by setting xd = αmax
d + Bmax, so we must have at least xd = αmax

d + Nmax. If

xd ≥ αmax
d , the largest possible quantity that can be cleared is equal to αmax

d +Nmax,

so the informed trader is indifferent among any xd ∈ [αd,∞]. The case of xd < 0 is

similar.

Proof B.2 (Proof of Lemma 2.2) Since the price p(y) is the expected value of a
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random variable, it is a convex combination of V ’s support, and thus we have

−v ≤ p(y) ≤ v ∀ y.

More to the point, if we rearrange this expression we have that

(V − p(y)) ≥ 0 if V = v

−(V − p(y)) ≥ 0 if V = −v

∀ y. In particular, since the above relations hold ∀ y they hold for all strategies

xe, αe and αd, in equilibrium or otherwise. We already know from lemma 2.1 and the

discussion following it that quantity is determined and the only remaining decision

for the informed trader with respect to the dark pool is which side of the market he

will be on. The above relations make it clear that if he is not on the buy side when

V = v and on the sell side when V = −v, then no matter what any of the other

strategies are he can make a costless increase in his payoff by switching. This gives

the result.

B.2 Equilibrium Computation

In this section I detail a method for computing equilibria in my model.

To begin, consider the informed agent’s decision. Using lemmas 2.1 and 2.2 the
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objective function for the informed agent simplifies to

max
xe,xd∈R̄

E[xe(V − p(y))|V ]

(V − E[p(y)|αd(Z) < 0, V ])θ3(|αd|(1− θ4) + (|αd|+N})θ4)

+ (V − E[p(y)|V ])θ4(1− θ3)N,

which produces the first order condition (FOC)

V − E[p(y)|V ]− xeE[p′(y)|V ]− E[p′(y)|αd(Z) < 0, V ]θ3(|αd|+Nθ4)

− E[p′(y)|V ]θ4(1− θ3)N = 0,

where y = xe + αe(Z) + zn.

The FOC for the uninformed agent’s problem is

αe : − E[p(y)|Z]− αeE[p′(y)|Z]− E[p′(y)|V = −v, Z]αdθ1 − E[p′(y)|V = v, Z]αdθ2

+ 2(Z − αe − (θ1 + θ2)αd) = 0,

αd : E[(V − p(y))|V = −v, Z]θ1 + E[(V − p(y))|V = v, Z]θ2 − 2γαd

+ 2(θ1 + θ2)(Z − αe − (θ1 + θ2)αd) = 0.

We can solve for αd explicitly:

αd =
E[(V − p(y))|V = −v, Z]θ1 + E[(V − p(y))|V = v, Z]θ2 + 2(θ1 + θ2)(Z − αe)

2γ + 2(θ1 + θ2)2
.

This allows us to characterize the optimal αd as a function of αe.

We now have two equations, namely the FOC for αe and xe, and two unknowns,
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αe and xe themselves. Any symmetric equilibrium strategies must satisfy these equa-

tions. Furthermore, if a given αe and xe satisfy these equations, then this determines

the strategies employed when V and Z are negative, as well as αd for both possible

values of Z.

The final piece is the functional form for p(·). There are four possible combinations

of realizations of symmetric equilibrium strategies for the informed and uninformed

agents. Let φ1 be the density of a normal distribution with mean given by −αe − xe
and standard deviation σzn . In the same way let φ2 be the normal density for variable

with mean αe − xe, φ3 for −αe + xe and φ4 for αe + xe. Then we have

E[V |y] =
φ1(y)∑4
i=1 φi(y)

(−V ) +
φ2(y)∑4
i=1 φi(y)

(−V ) +
φ3(y)∑4
i=1 φi(y)

V +
φ4(y)∑4
i=1 φi(y)

V.

For any symmetric equilibrium, the above function must give the form of p(·). It

remains only to determine the magnitude of xe and αe.

If we allow p(·) to be expressed as a function of xe and αe, as it is, then the FOCs

for each type represent two equations in two unknowns. Suppose a solution is found.

Then we will have a solution to the first order conditions of both agents, for the case

where each agent takes the other’s (optimizing) behavior as given, and takes as given

a pricing function which in turn takes each agent’s strategy as given. Also, if the

dealers take as given that each agent is playing a symmetric strategy, it is easy to

show that p(·) is an odd function, which immediately gives that −xe and −αe solve

the agent’s problems for the case of V = −v and Z = −z, respectively. In short, we

will have an equilibrium, provided the extrema found by the FOCs are maxima in

the respective problems.

We can use a Quasi-Newton type method to solve for these solutions. The second
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order conditions must be checked for each agent since there are roots to the above

system which do not correspond to maxima.



115

Appendix C

Addendum to Chapter 3

C.1 Proofs

Proof C.1 (Proof of Proposition 1) First, consider the buyer. If the buyer does

not participate, then, based on the conjectured behavior of the buyer, the seller infers

that the buyer’s type is bounded above by min(x, 2q). Consider item (a). From the

Cramton solution of the subgame following the mechanism, the value of that subgame

to the buyer is b2/(4q) if b ≤ 2q. Hence, it is optimal for the buyer not to participate

if b2/(4q) > b− q. Notice that

b2

4q
− b+ q =

(b− 2q)2

4q
.

Thus, the buyer should not participate if b < 2q and is indifferent to participating if

b = 2q. Whenever b ≥ 2q, the optimal decision in the signaling game following the

mechanism is to bid immediately at price q, so he is indifferent about participating

in all of these cases.

In case (b), the value of the subgame following the mechanism is b2/(2x) if b ≤ x,

and we have

b2

2x
>
b2

4q
≥ b− q ,

so it is optimal for the buyer not to participate. If b > x, then the optimal decision in

the signaling game following the mechanism is to bid immediately at price x/2 < q,
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so it is again optimal for the buyer not to participate.

Now, consider the seller. From the Cramton solution of the subgame following

the mechanism, the value of not participating is x/6. We know that no buyer types

b ≤ x will participate if q ≥ x/2. Thus, the seller is indifferent about participating if

q ≥ x/2. Suppose q < x/2 and the seller participates. Buyer types b > 2q participate,

so the seller earns q with probability (x − 2q)/x. With probability 2q/x, the buyer

does not participate, and the seller learns that b ≤ 2q. The expected value to the

seller in this circumstance is q/3. Therefore, the expected value of participating is

(x− 2q)q

x
+

2q2

3x
= q − 4q2

3x
. (C.1)

Applying the quadratic formula, we see that this is greater than x/6 for q between

x/4 and x/2, and it is less than x/6 for q < x/4.

Proof C.2 (Proof of Proposition 2) From the proof of the previous proposition,

the value for the seller conditional on q is





x/6 if q < x/4 ,

q − 4q2/(3x) if x/4 < q < x/2 ,

x/6 if q > x/2 .

Therefore, the value for the seller unconditional on q is

(x
4

) x
6

+

∫ x/2

x/4

(
q − 4q2

3x

)
dq +

(
1− x

2

) x
6

=
x2

288
+
x

6
.

Now, we compute the buyer’s value. Suppose first that b ≤ x. Then, the value
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for the buyer conditional on q, is





b2/(2x) if q < x/4 ,

b− q if x/4 < q < b/2 ,

b2/(4q) if b/2 < q < x/2 ,

b2/(2x) if q > x/2 .

Thus, the value to the buyer unconditional on q is

(x
4

) b2

2x
+

∫ x/2

x/4

(
1{q<b/2}(b− q) + 1{q>b/2}

b2

4q

)
dq +

(
1− x

2

) b2

2x
.

If b < x/2, then the first indicator function in the integral above is identically zero

over the range of integration. In this case, the expected value to the buyer is

b2

2x
− b2

8
+

∫ x/2

x/4

b2

4q
dq =

b2

2

(
1

x
+

2 log(2)− 1

4

)
.

If x > b > x/2, then the expected value to the buyer is

b2

2x
− b2

8
+

∫ b/2

x/4

(b− q) dq +

∫ x/2

b/2

b2

4q
dq =

b2

2

[
1

x
+

1

2
+

1

2
log
(x
b

)]
− bx

4
+
x2

32
.

Now, suppose that b > x. Then, if the seller does not participate, the buyer

earns b − x/2. Hence, he earns b − x/2 if q < x/4. If x/4 < q < x/2, then the

buyer participates—from part (a) of Lemma 1—and the seller also participates, so

the buyer earns b− q. If q > .x/2, then the buyer bids x/2 immediately following the
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mechanism and earns b− x/2. Thus, if b > x, the buyer earns





b− x/2 if q < x/4 or q > x/2 ,

b− q if x/4 < q < x/2 .

Integrating over q gives an expected value of

b−
(x

4
+ 1− x

2

) x
2
−
∫ x/2

x/4

q dq = b− x

2
+
x2

32
.

This confirms that the expected value to the buyer is δ(b, x).

Proof C.3 (Proof of Proposition 3) For convenience, we drop the p from θ(· |p)

and ξ(· |p). First, consider b ≤ 2p. We will verify (3.12b).

Step 1a. First we show that the maximum in b′ in (3.12b) is attained at

b′ = b. We have

∂L(b, b′ |p)
∂b′

= e−(r+λ)θ(b′)

[
−(r + λ)

(
b− b′

2

)
dθ(b′)

db′
+ λδ(b, b′)

dθ(b′)

db′
− 1

2

]
. (C.2)

To prove optimality, it suffices to show that the derivative is positive for b′ < b and

negative for b′ > b. From the definition of θ, we have

dθ(x)

dx′
= −K

′(x)

rK(x)
= −K(x)

rx2
= − 1

rx− rcx2
.

Hence, it suffices to show that

(r + λ)(b− x/2)− λδ(b, x)

rx− rcx2
− 1

2
(C.3)
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is positive for x < b and negative for x > b, where we set x = b′ ≤ 2p. Our parametric

restriction λ < 8r guarantees that x− cx2 > 0, so what we need to show is that

(r + λ)
(
b− x

2

)
− λδ(b, x)





> (rx− rcx2)/2 if x < b ,

< (rx− rcx2)/2 if x > b .

Equivalently,

(r + λ)
(
b− x

2

)
− rx− rcx2

2





> λδ(b, x) if x < b ,

< λδ(b, x) if x > b .

Using the definition of δ, we see that this is equivalent to

r + λ

λ

(
b− x

2

)
− rx− rcx2

2λ





< b2

2

(
1
x

+ 2 log(2)−1
4

)
if b < x/2 ,

< b2

2

[
1
x

+ 1
2

+ 1
2

log
(
x
b

)]
− bx

4
+ x2

32
if x/2 < b < x ,

> b− x
2

+ x2

32
if b > x ,

For b < x/2, both terms on the left-hand side are negative, and the right-hand

side is positive, so the inequality holds. To evaluate the other two cases, observe that

the left-hand side can be written as

b− x

2
+
r

λ

(
b− x

2

)
− r

λ
· x

2
+
rcx2

2λ
= b− x

2
+
r

λ
(b− x) +

x2

32
.

The desired inequality clearly holds for b > x. Now consider the case x/2 < b < x.
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We need to show that

b2

2x
+
b2

4
+
b2

4
log
(x
b

)
− bx

4
− b+

x

2
− r

λ
(b− x) > 0 .

This expression is zero at x = b, so it suffices to show that its derivative with respect

to b is negative over the range x/2 < b < x. Thus, we need to show that

b

x
+
b

2
log
(x
b

)
− 1− r

λ
< 0

for x/2 < b < x. Set z = b/x, so 1/2 < z < 1. What we need to show is that

z − zx

2
log z − 1− r

λ
< 0 .

Because x ≤ 2 and −z log z > 0, we have

z − zx

2
log z − 1− r

λ
< z − z log z − 1− r

λ
.

The right-hand side of this is negative at z = 1, and its derivative with respect to z is

− log z > 0, so it is negative for 1/2 < z < 1. This completes the proof of the desired

inequality for x/2 < b < x.

Step 1b. Now, still assuming b ≤ 2p, we need to verify that L(b, b |p) ≥ b− p.

A straightforward calculation shows that

dL(b, b |p)
db

≤ 1 .

Therefore, b−p−L(b, b |p) is an increasing function of b. To show that b−p−L(b, b |

p) ≤ 0 for b ≤ 2p, it suffices to show that p − L(2p, 2p | p) = 0. This follows
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immediately from the definition of L and the fact that θ(2p) = 0.

Step 2. Now, assume b > 2p. We will verify (3.12a). To do this, we compare

the buyer of type b to the buyer of type 2p. From (3.12b), we know that the buyer

of type 2p finds it optimal to accept the seller’s initial offer, earning a gain of p.

Consider any buyer type b′ ≤ 2p that the buyer might mimic. Let φ denote the

random transaction date and π the random price that the buyer of type b′ realizes.

Because the buyer of type 2p does not find it optimal to mimic, we know that

2p− p ≥ E[e−rφ(2p− π)] .

Hence,

b− p = (b− 2p) + (2p− p) ≥ b− 2p+ E[e−rφ(2p− π)]

= E[e−rφ(b− π)] + E[(1− e−rφ)(b− 2p)]

> E[e−rφ(b− π)] .

Therefore, the buyer of type b is better off accepting the seller’s initial offer rather

than mimicking any buyer of type b′ ≤ 2p.

Proof C.4 (Proof of Proposition 4) The seller’s offer p is accepted and he earns

p if b > 2p, which occurs with probability 1−p. With the complementary probability

p the offer is rejected and the signaling game begins with the buyer’s value believed

to be b ≤ min(2p, 1). We want to compute the value of the signaling game to the

seller when the supremum of b at date 0 is any y ≤ 2.

We need the density of the first arrival of the buyer bidding and the mechanism;

that is, we want to compute the density from the seller’s point of view of the random
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time τ ∧ θ(b), assuming b is regarded as uniformly distributed on [0, y] at date 0.

Define ξ from (3.11) replacing 2p with y. For any date t,

P(τ ∧ θ(b) ≤ t) = 1− P(τ > t)P(θ(b) > t)

= 1− e−λt ξ(t)
y

Hence, the density is

e−λ(t)ξ(t)

y

(
λ− ξ′(t)

ξ(t)

)

Conditional on the arrival time being t, the probability that the mechanism arrived

is

λ

λ− ξ′(t)/ξ(t)

and the probability that the buyer bid is

−ξ′(t)/ξ(t)
λ− ξ′(t)/ξ(t) .

Given that the value to the seller of the mechanism is ξ/6 + ξ2/288, and the value to

the seller of the buyer bidding is ξ/2, the value of the signaling game to the seller is

∫ ∞

0

e−(r+λ)t ξ(t)

y

[
λ

(
ξ(t)

6
+
ξ(t)2

288

)
+

(−ξ′(t)
ξ(t)

)(
ξ(t)

2

)]
dt

=
1

y

∫ ∞

0

e−(r+λ)t

[
λξ(t)2

6
+
λξ(t)3

288
+
rξ(t)2

2
− rcξ(t)3

2

]
dt .

We used the fact that −ξ′/ξ = r − rcξ to obtain the last line. We can simplify these

integrals by making the change of variables u = ξ(t) to compute the integrals of ξ2
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and the change of variables u = ξ(t)2 to compute the integrals of ξ3. Given u = ξ(t),

we have

ξ′ = −rξ(1− cξ) = −rertξ2/K(y) ⇒ −K(y)

r
e−rt du = ξ(t)2 dt .

Furthermore, ξ(0) = y, and ξ(∞) = 0, and the inverse of ξ is θ—defined in (3.10)

with x∗ = y—so

∫ ∞

0

e−(r+λ)tξ(t)2 dt =
K(y)

r

∫ y

0

e−(2r+λ)θ(u) du

=
K(y)

r

∫ y

0

(
K(u)

K(y)

)2+λ/r

du

=
1

rK(y)1+λ/r

∫ y

0

K(u)2+λ/r du

Likewise, the change of variables u = ξ(t)2 implies

−K(y)

2r
e−rt du = ξ(t)3 dt

which produces

∫ ∞

0

e−(r+λ)tξ(t)3 dt =
K(y)

2r

∫ y2

0

e−(2r+λ)θ(
√
u) du

=
1

2rK(y)1+λ/r

∫ y2

0

K(
√
u)2+λ/r du

We conclude that the value of the signaling game to the seller—given that y is the
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supremum of the value of b at date 0—is

1

y

(
λ

6
+
r

2

)(
1

rK(y)1+λ/r

)∫ y

0

K(u)2+λ/r du

+
1

y

(
λ

288
− rc

2

)(
1

2rK(y)1+λ/r

)∫ y2

0

K(
√
u)2+λ/r du (C.4)

This simplifies to J(y) defined in (3.13). Therefore, the value of the game to the seller

is J(2p) if p ≥ 1 and (1− p)p+ pJ(2p) if p < 1.
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