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Abstract

Quantum Simulation of the Hubbard Model:

Higher Symmetry Fermions and New Architectures

by

Eduardo Ibarra Garćıa Padilla

Over the past few decades, quantum simulation with ultracold atoms in optical lattices

has proven to be a useful tool for understanding many-body Hamiltonians. One of

its primary directions is the experimental study of the Fermi Hubbard Model (FHM),

which aims to capture the fundamental properties of cuprate superconductors and

has produced a wide range of intriguing phenomena, including the metal-to-Mott

insulator transition, antiferromagnetism, strange metallicity, pseudogap physics, and

is frequently used in the study of superconductivity. In recent years, new kinds of

quantum simulators have emerged, and in particular we focus on two of them: 1)

quantum simulators that study high symmetry fermions in optical lattices, and 2)

optical tweezer arrays which provide a bottom-up approach to engineering the FHM.

The first class of emerging quantum simulators utilizes alkaline-earth-like atoms

(AEA’s) – which have large nuclear spin I (such as 173Yb and 87Sr) – to engineer the

SU(N = 2I+1) symmetric FHM, where N = 2, . . . , 10. The second class corresponds

to quantum simulators based on optical tweezer arrays which combine deterministic

single tweezer ground state loading and tunneling coupled sites. Both classes of

quantum simulators are interesting on their own. For example, the SU(N) FHM is

generating a lot of interest due to its connections to multiorbital solid state systems

and theoretical predictions of rich phase diagrams which exhibit exotic phases of mat-

ter, including unusual ones like spin liquids. On the other hand, optical tweezer arrays

have gained a lot of attention since they can be used to study arbitrary geometries

and access very low-entropy samples.

This thesis reports on the numerical study of both quantum simulation architec-
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tures. Results of the SU(N) FHM at finite temperature, for different fillings and

interaction strengths that span the non-interacting to the strongly interacting limit

are obtained using Determinant Quantum Monte Carlo, Exact Diagonalization, and

Numerical Linked Cluster Expansion. In particular, we focus on how thermodynamic

and magnetic observables, such as the number of on-site pairs, energy, entropy, spin

correlations, and structure factors depend on N , the interaction strength U/t, tem-

perature T/t, and the anisotropy of tunneling rates. Our results demonstrate that

in a homogeneous square lattice with one particle per site on average, thermody-

namic observables as a function of temperature obey a universal scaling with N , and

that short-range antiferromagnetic correlations are stronger for larger N and in lower

dimensions. In addition, we present theory-experiment comparisons where possible,

where we perform thermometry and provide a precise characterization of the equation

of state of the SU(N) FHM. Our results emerge as a tool to perform thermometry in

experiments from theory-experiment comparison and also provide guidance for future

experiments with AEAs in optical lattices.

Additionally, we present calculations using numerically precise discrete variable

representation methods for two-dimensional stroboscopic tweezer arrays and com-

pare the outcomes with experimental data. We quantify the effects of stroboscopic

potentials on Hubbard parameters like the interaction strength U and the tunneling

t in optical tweezer arrays and illustrate how heating from the stroboscopic potential

relies on strobe frequency. Our calculations enable evaluation and optimization of

two-dimensional tweezer array experiments.

An important milestone of the results of this thesis corresponds to the record

temperatures and entropies achieved with these quantum simulation architectures:

1) the coldest fermions ever created in nature in absolute temperature and in cold

atoms, and 2) the lowest entropy per particle fermions ever created, albeit in a so-far

small system.
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CHAPTER 1. QUANTUM SIMULATION

A ROUTE TO STUDY MANY-BODY PHYSICS

Chapter 1

Quantum simulation

A route to study many-body physics

Los cient́ıficos dicen que estamos hechos de

átomos, pero a mı́ un parajito me dijo que estamos

hechos de historias.

Eduardo Galeano

In this chapter we present the many-body problem of strongly correlated matter

and how quantum simulation with ultracold atoms presents a route to study it.

1.1 Strongly correlated materials

The field of condensed matter physics studies the physical properties of matter, i.e.

the many-body problem of interacting electrons in a solid. One can think of a neutral

solid as positively charge nuclei that form a periodic structure, known as lattice, and

their corresponding negatively charged particles (electrons). The ions are heavy and

mainly remain in their place, providing an electrostatic potential to the electrons.

The electrons in turn have kinetic energy, which allows them to delocalize in the

lattice and interact with the ions and with other electrons via the Coulomb potential.

Although some physical properties of matter can be explained by knowing a priori

the microscopic laws that describe the ensemble of particles, there are other phenom-

ena that arise from the organization of the many and cannot be predicted or antici-

pated from such a priori knowledge. In the words of Philip Anderson, the idea that

More is Different [1]: “The behavior of large and complex aggregations of elementary

particles, it turns out, is not to be understood in terms of a simple extrapolation

of the properties of a few particles. Instead, at each level of complexity entirely
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new properties appear, and the understanding of the new behaviors requires research

which I think is as fundamental in its nature as any other”.

In other words, it is the collective emergent phenomena of the ensemble of inter-

acting particles that gives rise to the myriad of important, interesting, and puzzling

problems that we observe. For example, the only similarity magnetism, superconduc-

tivity, insulation and strange metallicity have is that all of these fascinating properties

arise from the behavior of electrons in a lattice.

1.1.1 The many-body problem of electrons in a lattice

The microscopic physics that governs condensed matter systems is contained in the

many-body wavefunction that is a solution to the many-body Hamiltonian [2],

H = Hions +Helectrons +Hions−electrons, (1.1)

where Hions describes the subsystem of ions, Helectrons the subsystem of electrons and

Hions−electrons the electrons-ions interaction. These terms are given by,

Hions =
∑
I

PI
2

2MI

+
1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
= Kions + Vions (1.2)

Helectrons =
∑
i

pi
2

2m
+

1

2

∑
i ̸=j

e2

|ri − rj|
= Kelectrons + Velectrons (1.3)

Hions−electrons = −
∑
i,I

ZIe
2

|ri −RI |
= Vions−electrons (1.4)

where electrons are denoted by lowercase subscripts, coordinates ri, charge e and

mass m, while nuclei are denoted by uppercase subscripts, coordinates RI , charge

ZIe, and mass MI .

In Eq. (1.1) only the the kinetic energy of the ions can be neglected Kions, since it

is proportional to 1/MI . For the most part we can neglect this term and focus on the

eletronic problem with fixed nuclei, since we also know that the equilibrium positions
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of the ions RI define a crystal lattice ∗. Under these justified approximations, the

interaction of nuclei with each other is a constant that can be added to the zero

of energy. Thus, the essential Hamiltonian for describing interacting electrons in a

lattice consists of the kinetic energy of the electrons, their interaction with the ions

and the electron-electron interaction,

H = Kelectrons + Velectrons + Vions−electrons. (1.5)

Although we are able to state such equation, solving it is not an easy task. This is

because the problem does not allow for analytic solutions (except for certain specific

cases, such as some one-dimensional problems) given the complicated terms in the

Hamiltonian, and also because the Hilbert space grows exponentially fast rendering

numerical simulations unable to deal with the exponentially large number of degrees

of freedom.

1.1.2 The rich physics of strongly correlated matter

To first approximation, one can consider the non-interacting system, i.e. drop the

Velectrons and understand the band structure of the solid in question. Such a crude

simplification is enough to understand the basic principles of metals, semiconductors

and band insulators. As interactions are adiabatically introduced into the system, the

principle of adiabatic continuity comes into play. This principle states that one can

understand a complicated, interacting system by studying a simple non-interacting

∗This is the adiabatic Oppenheimer approximation and it is valid as long as m/MI ≪ 1 and
lattice vibrations relative to the equilibrium positions are small, i.e. ∆R/a ≪ 1 (where a is the
lattice spacing), which holds for temperatures much below the Debye temperature T/ΘD ≪ 1. The
essence of the Oppenheimer approximation lies in the large separation of scales of the velocities of
the electrons vF (Fermi velocity) and the ions (vion), vion ∼ (m/MI)

3/4vF . When m/MI ≪ 1 the
ions can be treated as essentially static relative to the electrons, which then allows us to solve for the
electronic motion assuming fixed ion positions [3]. For light nuclei (such as hydrogen and helium),
or at T/ΘD ≳ 1 ionic motion is substantial and cannot be neglected. The ions do exhibit oscillations
around their equilibrium positions and the energy of these oscillations is quantized, i.e. phonons.

One could then write the Vions = V
(0)
ions + Vphonon, where the first term describes the bonding in the

solid and the second one the lattice dynamics [4].
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system that contains the essential nature of the original system. In other words,

according to this principle, the low-energy excitations of an interacting system are

weakly-interacting quasiparticles that are closely related to the constituent particles

of the original system.

The most clear example of the principle of adiabatic continuity is Fermi’s Liq-

uid Theory (FLT) [5], where one starts from a non-interacting Fermi Gas and then

adiabatically introduces interactions between particles. There is a one-to-one corre-

spondence between the non-interacting system and the Fermi liquid, an even though

many-body interactions exist among the constituent particles, by considering quasi-

particles renormalized by the interactions, one can treat them as independent par-

ticles. In doing so, even strongly interacting Fermi systems are simplified and an

understanding of the properties can be obtained by studying the properties of the

emerging quasiparticles. Some important examples of where FLT has been success-

fully applied are liquid 3He, electrons in metals at low temperatures, and in the core

of neutron stars [6].

However, despite FLT being a powerful tool and is recognized for its accomplish-

ments, it’s also known for the phenomena if fails to explain, such as unconventional

superconductivity that goes beyond the BCS framework, and topological semimetals

induced by the Kondo interaction [7]. In these materials, known as strongly correlated

matter, the physics of the interacting electrons does not have an effective description

in terms of non-interacting quasiparticles, but instead of quasiparticles with different

effective masses, weights and quantum numbers. Following the perturbative approach

of adiabatically introducing interactions, if the system reaches a critical point and ex-

periences a phase transition, the principle of adiabatic continuity no longer holds.

Strongly correlated matter are clear examples of emergent phenomena where FLT

fails and it is very challenging to establish a link between the microscopic degrees of

freedom and the collective low-energy excitations. To make this statement more pre-
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cise, conventional metals, semiconductors, band insulators, and semimetals of band

theory are materials in which the Helectrons in this sense can be considered weak. In

these materials, their electronic states are mainly built of s and p electrons which

are fairly delocalized, and their kinetic energy dominates over the electron-electron

interaction. In contrast, materials such as transition metal oxides, heavy fermion

materials and iron pnictide high temperature superconductors, the Helectrons plays a

central role in the determination of their physical properties. In these materials, the

electronic states are primarily built from d and f orbitals, which are more localized,

and it is the competition between kinetic and potential energies that gives rise to

quantum magnetism and superconductivity [8].

The field of strongly correlated matter is fertile for discovery due to the complex

interplay between the lattice structure, kinetic energy, the electron-electron interac-

tion, and the spin and orbital degrees of freedom (see Fig. 1.1). For these reasons it

has developed rapidly in the last few decades, with the synthesis of a large number of

exciting materials exhibiting rich physics like topological properties, quantum critical

points and exotic superconductivity [7, 9, 10].

Figure 1.1 : Strongly correlated materials. Examples of strongly correlated mate-
rials and how interactions between their low-energy degrees of freedom and symmetry
lead to different properties. Figure reprinted with copyright permission of Ref. [7].
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1.2 Ultracold atoms

Historically, the field of Atomic, Molecular and Optical physics dealt only with atoms

and or diatomic molecules (perhaps polyatomic if one was feeling very adventurous).

However in the last decades, with the development of laser cooling techniques and

the capabilities to engineer arbitrary optical potentials [11], the field of quantum

simulation was was born [12]. Here one uses engineered quantum systems to real-

ize many-body models (analogous to the ones used in Condensed Matter) that are

extremely hard to solve due the Hilbert space explosion (exponential growth with

system size) and the fact that interactions are not necessarily small and perturbative

approaches fail [see eq. (1.1)].

A prototypical example of quantum simulation is using ultracold fermionic atoms

in an optical lattice to realize the SU(2) symmetric Fermi-Hubbard model (FHM) [13–

17], where atoms in two different hyperfine states emulate spin-1/2 particles. These

experiments’ high degree of control and tunability allows the quantum simulators to

tune the lattice geometry, energy scales, and lattice fillings. This has recently led

to observations of striking phenomena into this long-studied problem, such as the

characterization of Mott Insulating phases [18, 19], the observation of antiferromag-

netism [20,21], the measurement of charge and spin transport properties [22,23], and

new insights like the structure of string correlations and the influence of holes on

magnetic correlations [24].

1.2.1 The power of quantum simulation

In the past few decades the field of quantum simulation has seen a rapid growth

of its technological capabilities. Of particular interest are the the development of

quantum gas microscopes [16,17] along with spin-dependent imaging techniques [25]

which allow access to the microscopic states of the Hamiltonian. By having access

to snapshots of the spin and density distributions, experiments have direct access
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to correlation function that are not directly accessible in solid state systems [26,

27]. These snapshots provide spin-dependent single atom detection with near unity

detection efficiency in optical lattices [25], which essentially provide a “photograph”

of the microscopic arrangement of particles and holes in the system. Such images

permit the direct calculation of correlation functions and structure factors, and can

be fed into neural networks to extract transition temperatures and elucidate phases

of matter which might not have simple order parameters or ordered phases [26,28,29]

In addition, as opposed to condensed matter systems, quantum simulators with

ultracold atoms are extremely clean, i.e. there are no defects of imperfections (which

on their own are very interesting), which allows for the study of effective models,

such as the Fermi-Hubbard model, and aim to gain insight of strongly correlated

matter. Furthermore, the high degree of control permits to explore the phase diagram

and if desired introduce disorder or arbitrary potentials into the model, which have

important implications on many-body localization [30].

For completeness is important to mention that quantum simulators are not re-

stricted to the Fermi-Hubbard model. For example, quantum spin models can be

studied in optical lattices with Rydberg interactions [31], or with trapped ion plat-

forms [32]. Other architectures, such as Rydgberg atom arrays, have been used to

study dimer models which exhibit interesting topological phases [33].

1.2.2 The challenges of quantum simulation

Despite the power and tunability of ultracold atom quantum simulators, it exhibits

certain drawbacks and challenges. The most important ones related to cooling, equi-

libration, and methods to characterize their behavior.

At first glance it sounds counterintuitive that ultracold atoms have a cooling prob-

lem. The underlying issue is that although experiments on a daily basis create the

coldest matter in the world (∼ nK), these samples are still at temperatures above
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the relevant energy scales where novel phases of matter appear. In the context of the

system exhibiting quantum mechanical properties we present the degeneracy densi-

ties and temperatures for different systems in Table 1.1. In the case of electrons in a

metal, the densities correspond to roughly Avogadro’s number and it needs a quan-

tum mechanical description at room temperatures (∼ 300 K). On the other hand,

ultracold atomic gases require temperatures below the µK to exhibit quantum me-

chanical behavior and reaching such low temperatures is vital for accessing the power

quantum simulators offer.

System Density Tc [K]

H2 gas 1019 5× 10−2

4He liquid 1022 2.17
Electrons in a metal 1022 104

Ultracold atomic gas 1014 < 10−5

Table 1.1 : Degeneracy temperatures of different physical systems [34,35].

In the context of quantum simulation, where these cold atomic gases are loaded

into optical lattices or tweezers to emulate many-body Hamiltonians, experiments are

trying to push the temperatures below the bandwidth (∼ nK) and below temperatures

where superexchange, magnetism, and possible superfluidity becomes important (≲

100pK) [36]. There are intense efforts to develop and implement cooling protocols to

reach lower temperatures [37,38], as well as the creation of new quantum simulation

architectures, such as optical tweezers [39, 40] which would allow for the exploration

of systems at lower temperatures. Along these lines, the results of this thesis discuss

our contributions to this question, where the quantum simulators explored represent

1) the coldest fermions ever created in nature in absolute temperature and in cold

atoms (kBT/t ∼ 0.1) [41], and 2) the lowest entropy per particle fermions ever created,

albeit in a so-far small system (∼ 0.2kB) [40].

Since we are interested in understanding equilibrium properties of the quantum

mechanical Hamiltonians (although there are exciting directions regarding driven and
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out-of-equilibrium physics [42]), one issue that appears is the separation of timescales

between the lifetime of experiments (a few seconds) and tunneling rates (∼ 10’s of

ms). As temperatures are lowered, timescales of interest become longer as well, and

reaching equilibrium is harder. The problem is particularly bad at low temperatures

and near fillings where the systems are insulating, the transport is exponentially slow.

Finally, quantum simulation needs techniques to characterize the different phases

of matter the engineered Hamiltonian might support. The development of experimen-

tal techniques to access correlation functions and response functions † is of paramount

relevance to understand the the physics.

Here I would like to mention that these issues are not unique to experimental

techniques, but also theoretical ones. As we will discuss later in the thesis, numerical

techniques also have to overcome problems that hinder access to low-temperature

physics and equilibration problems (like non-ergodicities). Finally, as theorists is our

interest to understand which observables, order parameters, and correlation functions

are of interest to characterize novel states and behaviors and provide guidance and

comparison to experiments.

1.3 Thesis Outline

In this thesis we focus on two classes of emerging quantum simulators: those that use

alkaline-earth-like atoms to engineer the SU(N) Fermi-Hubbbard model, and those

using optical tweezer arrays. The thesis is organized as follows:

Chapter 2 introduces the FHM in its original SU(2) symmetric form and discusses

under which approximations is valid. This is then followed by a presentation of some

of its properties and a series of experimental and theoretical results.

Chapter 3 presents the generalization of the FHM to N components, with an

†In the case of one- and two-dimensional optical lattices quantum gas microscopes allow to access
real-space correlations. However in higher dimensions, this is not possible and indirect techniques
such as Bragg spectroscopy are required [20].
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enhanced SU(N) symmetry. We present a discussion of its symmetries, important

limits such as the non-interacting, the single-site, and the Heisenberg limit. This is

then followed by a review of the relevant literature.

Chapter 4 gives an introduction to the physics of alkaline-earth-like atoms which

are used to engineer the SU(N) FHM in optical lattices, since they present natural

SU(N) symmetric interactions in their ground state.

Chapter 5 gives an overview of the numerical techniques we have used to answer

questions about the thermodynamic and magnetic properties of the SU(N) FHM. This

chapter covers high-temperature series expansions, exact diagonalization, numerical

linked cluster expansion and determinant Quantum Monte Carlo.

Chapters 6-10 present the results of this work. We have presented a project per

chapter, as follows.

Chapter 6 presents the results of studying an anisotropic FHM, which characterizes

the thermodynamic and magnetic properties of the two-dimensional (2D) to three-

dimensional (3D) crossover. This project demonstrates that at a fixed interaction

strength U/t, the magnetic structure factor can be enhanced relative to both 2D and

3D results, but that such enhancement occurs at U/t below those for which the Néel

temperature is largest. Furthermore, our results suggest a possible cooling protocol

for atoms in optical lattices in which the dimensionality is adiabatically changed from

3D to 2D.

Chapter 7 presents the results of the SU(N) FHM in the two-dimensional square

lattice, where we explore its thermodynamic properties as a function of N . An impor-

tant finding of this project is the unexpected feature that thermodynamic observables

as a function of temperature obey a universal scaling with N above the superexchange

energy, which can be explained with a second order numerical linked order expansion.

Chapter 8 presents the results of studying the SU(N) FHM in optical lattices

where we explore short-range antiferromagnetic correlations as a function of N and
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dimensionality. This project shows that nearest-neighbor antiferromagnetic correla-

tions are stronger for larger N and in lower dimensions. Moreover, theory-experiment

comparison allows us to infer the temperature to be lowest achieved for a cold atom

Fermi-Hubbard model.

Chapter 9 presents the results of studying Fermi gases in optical tweezer arrays

where we focus on theoretically understanding heating effects induced by the ex-

perimental techniques. This project demonstrates the use of a strobing protocol to

generate tunneled coupled two-dimensional lattices. An important conclusion of this

work is the creation of the lowest entropy per particle fermions ever.

Chapter 10 presents the results of ongoing work, which have not been published

yet, but that are under preparation. These include: the precise measurement and

characterization of the equation of state of the SU(N) FHM, the study of magnetic

correlations for SU(3) fermions in square lattices, and the study of Hubbard param-

eters in optical tweezers.

Chapter 11 provides a big picture summary of our work and gives and outlook of

the future directions that will be explored.

Finally, the Appendices A- C present a series of useful information to people in

the group regarding details of the Determinant Quantum Monte Carlo.
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1.4 Publications arising from this work

1.4.1 Publications in chronological order

• Thermodynamics and magnetism in the 2D-3D crossover of the Hubbard model,

Eduardo Ibarra-Garćıa-Padilla, Rick Mukherjee, Randall G. Hulet, Kaden

R. A. Hazzard, Thereza Paiva, and Richard T. Scalettar, Phys. Rev. A 102,

033340 (2020) [43].

• Universal thermodynamics of an SU(N) Fermi-Hubbard Model, Eduardo Ibarra-

Garćıa-Padilla, Sohail Dasgupta, Hao-Tian Wei, Shintaro Taie, Yoshiro Taka-

hashi, Richard T. Scalettar, and Kaden R. A. Hazzard, Phys. Rev. A 104,

043316 (2021) [Editors’ Suggestion] [44].

• Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard

model, Shintaro Taie*, Eduardo Ibarra-Garćıa-Padilla*, Naoki Nishizawa,

Yosuke Takasu, Yoshihito Kuno, Hao-Tian Wei, Richard T. Scalettar, Kaden R.

A. Hazzard, and Yoshiro Takahashi, arXiv:2010.07730 (accepted at Nat. Phys).

*This authors contributed equally to this work [41].

• A two-dimensional programmable tweezer array of fermions, Zoe Z Yan, Ben-

jamin M Spar, Max L Prichard, Sungjae Chi, Hao-Tian Wei, Eduardo Ibarra-

Garćıa-Padilla, Kaden R. A. Hazzard, and Waseem S Bakr, arXiv:2203.15023

(accepted at Phys. Rev. Lett.) [40].

1.4.2 Manuscripts under preparation

• Precise measurement and characterization of the equation of state of the SU(N)

Fermi-Hubbard model. In collaboration with Simon Folling’s group at LMU,

Germany.

• Mott transition and magnetism of SU(3) fermions in a square lattice.
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• The Quantum Critical point of the SU(3) Fermi-Hubbard Model.

• Hubbard parameters in optical tweezers.
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Chapter 2

The Fermi-Hubbard model

Los poetas, como los ciegos, pueden ver en la os-

curidad.

Jorge Luis Borges

In this chapter we introduce the Fermi-Hubbard Model (FHM) in its original spin-

1/2 SU(2) symmetric form, discuss some its properties, and present a review of its

exploration with quantum simulators.

In the words of Assa Auerbach in his book Interacting Electrons and Quantum

Magnetism [8]: “Many theorists have devoted a considerable part of their careers

to the Hubbard model. Nevertheless, it remains a source of much fascination and

bewilderment. Perhaps it is because the Hubbard model is the simplest many-particle

model one can write down, which cannot be reduced to a single-particle theory”.

The FHM is an effective model that plays a pivotal role in the understanding of

strongly correlated fermionic many-body systems. This is partly because it contains

the minimal ingredients that are necessary to describe the behavior of strongly inter-

acting electrons in a periodic lattice, capturing the essential features of real materials;

and also because it exhibits a variety of canonical correlated phases of matter. It is

central to condensed matter physics, as it accounts for many phenomena observed in

solid state systems, for example it exhibits a metal-to-insulator crossover (for which

conventional band theory predicts a metallic state), long-range antiferromagnetic or-

der and charge density waves. Moreover, in the two-dimensional square lattice it

is extensively studied in the context of stripe ordering, pseudogap physics, strange

metallicity, and d-wave superconductivity [45–50].
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2.1 The Hamiltonian

The FHM is defined by the grand-canonical Hamiltonian,

H = −t
∑
⟨i,j⟩

∑
σ=↑,↓

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ − µ
∑
i

∑
σ=↑,↓

niσ, (2.1)

where c†iσ(ciσ) is the creation (annihilation) operator for a fermion with spin σ on site

i = 1, 2, ..., Ns, and niσ is the number operator. t is the hopping amplitude between

nearest-neighbor sites i and j, U is the interaction strength and µ is the chemical

potential controlling the fermion density (see Fig. 2.1).

Figure 2.1 : Fermi Hubbard Model. In its SU(2) symmetric form the Fermi
Hubbard Model consists of spin-1/2 particles living on a lattice (denoted by red and
blue) that can tunneling to nearest neighboring sites with hopping amplitude t. When
two atoms of different color occupy the same site, this raises the energy by U . The
filling fraction is controlled by the chemical potential µ.

Despite is apparent simplicity, the FHM only allows for analytic solutions in spe-

cial limits such as in one-dimension, where a series of techniques can be used [8]:

Bethe Ansatz, bosonization, Luttinger liquid theory, and perturbative renormaliza-

tion group, just to mention some. In higher dimensions, controlled approximation

schemes and numerical techniques such as those discussed in Chapter 5 have been
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used to gain insight about its physics.

2.1.1 How to get the FHM?

In Chapter 1 we introduced the many-body Hamiltonian for interacting electrons

[eq. (1.1)]. We then discussed how we can focus only in the problem of interacting

electrons by considering the ions fixed in place, arriving to eq. (1.5) that had three

terms involved: The kinetic energy of the electrons, the interaction of the ions with

the electrons, and the electron-electron interaction. The problem can be then written

in the following form,

H = H0 +Hint, (2.2)

where H0 is the single-particle Hamiltonian that consists of the electron’s kinetic

energy and the potential generated by the crystalline lattice. H0 describes a single

electron moving a periodic potential and is given by,

H0 =
∑
σ=↑,↓

∫
drψ†

σ(r)

[
− ℏ2

2m
∇2 + Vion(r)

]
ψσ(r), (2.3)

where ψ†
σ(r)[ψσ(r)] is the field operator that creates [annihilates] an electron with

spin σ at site r. Now, the electron-electron interaction is the long-range Coulomb

interaction ∝ e2/r. There is however a large collective screening of the core and

valence electrons. Much of the screening effect is to renormalize the effective electron

ion-potential Vion [8]. Therefore the interactions are taken to be,

Hint =
1

2

∑
σ ̸=τ

∫ ∫
drdr′ψ†

σ(r)ψ
†
τ (r

′)Velectrons(r− r′)ψτ (r
′)ψσ(r). (2.4)

In order to write this Hamiltonian in terms of the creation and annihilation op-

erators c†iσ and ciσ, we use the band structure energies ϵα,q and Bloch wave functions

(which are solutions to the single particle Hamiltonian) to construct the maximally
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localized Wannier states wα
i , with lattice index i and band index α ∗. The Wannier

states form a basis and allow us to write the field operators in the following form,

ψ†
σ(r) =

∑
i,α

wα∗
i c

†
αiσ. (2.5)

With these expressions, the field operators in the Hamiltonian are replaced by Wan-

nier operators and eq. (2.2) is now written as,

H = −
∑
σ

∑
α,β

∑
i,j

tαβij c
†
αiσcβjσ +

∑
σ ̸=τ

∑
α,β,γ,η

∑
i,j,k,l

Uαβγη
ijkl c

†
αiσc

†
βjτcγkτcηlσ, (2.6)

−tαβij =

∫
drwα∗

i

[
− ℏ2

2m
∇2 + Vion(r)

]
wβ

j =
1

V

∑
q

eiq·(ri−rj)ϵα,qδα,β (2.7)

Uαβγη
ijkl =

1

2

∫ ∫
wα∗

i (r)wβ∗
j (r′)Velectrons(r− r′)wγ

k(r
′)wη

l (r). (2.8)

So far it seems we have not simplified the problem but complicated it. However as

we will discuss in the following paragraphs, these expressions will simplify.

2.1.1.1 Tunneling matrix elements

Let us start with eq. (2.7). The first thing to notice is that there is no matrix element

to go between states in two different bands δα,β. This indicates that the first term in

eq. (2.6) is now,

H1 = −
∑
σ

∑
α

∑
i,j

tαijc
†
αiσcαjσ. (2.9)

Then we will focus only in a single band model, the lowest band α. In order to justify

ignoring the matrix elements tαij for higher bands, the following conditions must hold:

• The Fermi surface lies within a single conduction band.

• The temperature must be small compared to the energy gap between the bands.

∗We leave the derivation of Bloch and Wannier states for Chapter 4 where we discuss the physics
of alkaline-earth-like atoms in optical lattices.
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• The interaction energy is also small compared to the energy gap between bands.

Under these approximations, the single band model is,

H1 = −
∑
σ

∑
i,j

tijc
†
iσcjσ. (2.10)

It is convenient to split this expression into i = j and i ̸= j,

H1 = −
∑
σ

∑
i ̸=j

tijc
†
iσcjσ −

∑
σ,i

Viniσ, (2.11)

where we have defined the on-site potential Vi = tii. If one assumes translational

invariance Vi is indepedent from i and V is therefore a constant that corresponds to

the mean energy of the band that just offsets the chemical potential µ †.

The final thing to notice is to take the tight-binding limit, where one retains

a minimal set of short-range bonds tij on the lattice. This is justified since the

hopping matrix elements depend on overlap integrals of the Wannier states, which

are exponentially small. In the single band Hubbard model we only keep the nearest-

neighbor terms ⟨i, j⟩ and neglect the others, ‡.

H1 = −t
∑
σ

∑
⟨i,j⟩

c†iσcjσ − µ
∑
σ,i

niσ. (2.12)

2.1.1.2 The interaction term

Let us now focus on the interaction term eq. (2.8),

Uαβγη
ijkl =

1

2

∫ ∫
wα∗

i (r)wβ∗
j (r′)Velectrons(r− r′)wγ

k(r
′)wη

l (r). (2.13)

†As we will see in Chapter 9, for optical tweezer arrays, Vi ̸= V since translational invariance is
not present.

‡This approximation is justified for optical lattices with lattice depths ≳ 5ER [51]. It is however
important to mention that next-nearest neighbor tunneling amplitudes play an important role in
the ground state properties of the FHM, where there is a competition between stripe order and
superconductivity [52].
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This expression seems very daunting at first, but owing to the small overlap of the

Wannier states which are centered on different lattice positions, the matrix element

i = j = k = l predominates. In addition, in order to only consider a single band

α = β = γ = η the on-site interaction U = 2Uiiii must be small compared to the

energy gap between bands §. In this case, the interaction term now reads as

H2 = U
∑
i

c†i↑c
†
i↓cj↓cj↑ = U

∑
i

ni↑ni↓. (2.14)

Putting together eqs. (2.12) and (2.14), one obtains eq. (2.1), the Fermi-Hubbard

Hamiltonian.

2.2 Symmetries of the Fermi Hubbard Model

The Fermi Hubbard Model exhibits a series of symmetries of interest. The first one

is a global U(1) symmetry which reflects a global charge conservation, i.e. the total

particle number Nptcl =
∑

i,σ niσ is conserved. The second one is a global SU(2)

symmetry which corresponds to spin isotropy, and the generators of the group are

the spin permutation operators ¶, which in the SU(2) case correspond to:

S+ =
∑
i

S+
i =

∑
i

c†i↑ci↓ (2.15)

S− =
∑
i

S−
i =

∑
i

c†i↓ci↑ (2.16)

Sz =
1

2

∑
i

(
c†i↑ci↑ − c†i↓ci↓

)
(2.17)

§If this condition is not met, then the single band model no longer holds and corrections to the
interaction energy term and the hopping terms need to be incorporated. See for example Ref. [53]
for a discussion of the validity of the FHM with ultracold atoms in optical lattices.

¶Although the generators of the group are hermitian linear combinations of the spin permuta-
tion operators, it is customary in the literature to refer to the spin permutation operators as the
generators.
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All the generators of the algebra commute with the Hubbard Hamiltonian [eq. (2.1)],

and therefore the system exhibits an SU(2) symmetry. Particularly, not only the total

number of particles is conserved by the Hamiltonian, but the populations of each spin

component. In other words, there are no spin-flip terms.

One other type of symmetry that is worth discussing is the Particle-Hole Sym-

metry (PHS) in a bipartite lattice. In a bipartite lattice the set of lattice sites can

be divided into two sublattices A and B, such that sites in sublattice A only has

neighbors that are members of B and viceversa (see Fig. 2.2).

Figure 2.2 : Bipartite lattices. a) One-dimensional linear chain. b) Square lattice.
c) One-dimensional Lieb lattice. d) Two-dimensional Lieb lattice. e) Honeycomb
lattice. The solid lines denote tunneling amplitudes between lattice sites. In bipartite
lattices members of the A sublattice (red) only have members of the B sublattice
(blue).

In bipartite lattices one can perform the following transformation, named particle-

hole transformation (PHT),

cjσ → ηjc
†
jσ, (2.18)

where η = ± on alternate sublattices. Under this transformation (which obeys the

canonical fermionic anticommutation relationships),

niσ → 1− niσ, (2.19)

c†iσcjσ → ηiηjcjσc
†
iσ = c†iσcjσ. (2.20)
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From this expressions one infers that the kinetic energy part of the Hamiltonian

is invariant under such transformation and is therefore convenient to rewrite the

interaction term in a way which is PHS as well. This is done by considering the term

U

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
= Uni↑ni↓ −

U

2
(ni↑ + ni↓) +

U

4
, (2.21)

that is invariant under the PHT and only differs from the original interaction term

by a trivial shift in the chemical potential and an overall additive constant to the

energy. Thus, the PHS version of the Hubbard model is,

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑
i,σ

niσ. (2.22)

In this form one notices that in this form the only part of the Hamiltonian that is

not invariant under a PHT is the one associated to the chemical potential, except

µ = 0 where the Hamiltonian is particle hole symmetric. This has profound and

useful consequences for the computation of observables of interest. For example, the

density ρ = ⟨n⟩ =∑σ⟨nσ⟩ is given by

ρ(µ) = 2− ρ(−µ), (2.23)

which implies that half-filling, i.e. ρ = 1, occurs at µ = 0 for all values of T/t

and U/t. This has also important implications for computational methods such as

Determinant Quantum Monte Carlo, where at half-filling is free of the sign problem,

rendering low temperature calculations feasible [54, 55]. However, some of the most

important questions regarding the FHM lie away from this point. As we will see in

section 3.1, the SU(N) FHM can also be rewritten in PHS form in bipartite lattices

and we will present observables of interest and their expressions after the PHT.

For further details on the FHM we refer to the reader to Refs [48, 49].
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2.3 Quantum simulation of the Fermi Hubbard Model

The interest in the Fermi-Hubbard model arose from the desire to understand the

physics of electrons in solids. Much of the appeal in the FHM stems from its rel-

evance in connection the cuprate high-temperature superconductors. These high-Tc

superconductors shared a layered structure which containts copper-oxygen planes [56].

Physicists have gain insight into the low energy physics of these planes studying the

two-dimensional (2D) square lattice FHM. The phase diagram of the FHM mirrors

many of the features observed in the T−doping plane ‖ cuprates phase diagram (see

Fig. 2.3). Simulations of the FHM in the 2D square lattice have found regions of

the phase diagram where antiferromagnetism, stripes, pseudogap, strange metallicity,

Fermi liquid, and d-wave superconducting correlations are observed.

However, given the simplified nature of the FHM, we do not expect it will fully

describe the cuprates. For example, the Hubbard model is a single orbital model,

while copper-oxygen planes contain d and p orbitals, necessitating the consideration

of at least three orbitals, as well as nonlocal hopping and interaction terms [49].

On the other hand, quantum simulators with ultracold atomic gases are well de-

scribed by the FHM (as we will see in Chapter 4). In these systems, a series of

experiments have been performed in one-dimensional chains [59–61], two-dimensional

lattices [21,62,63], and three-dimensional cubic lattices [20]. Experiments have mea-

sured spin correlation functions [20,21,59], explored the pseudogap region for attrac-

tive interactions [64], studied how the presence of holes affects quantum magnetism

[65, 66]. Furthermore, experiments are not limited only to static quantities, but also

transport measurements of the spin and charge degrees of freedom have been per-

formed probing the strange metallic region of FHM [22, 23]. Some of these results

are illustrated in Fig. 2.4 where experiments in two-dimensional optical lattices with

‖In condensed matter, hole or electron doping occurs by chemical substitution. In this case,
since different ions are introduced this not only increases/decreases the number of carriers in the
material, but also might induce structural distortion [57]. In this thesis when we refer to doping this
corresponds to hole-doping and we neglect any structural changes of the lattice.
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Figure 2.3 : Phase diagram of the copper oxides. Temperature vs hole
doping phase diagram. It exhibits antiferromagnetism (AF), pseudogap, strange
metal, charge density wave (CDW) and d-wave superconductivity (d-SC). On-
set temperatures of spin, charge, and superconducting fluctations are denoted by
TS,onset, TC,onset, TSC,onset, respectively. TN corresponds to the Néel transition tem-
perature and Tc the superconducting transition temperature. T ∗ corresponds to the
crossover temperature to the pseudogap. The red striped area indicates the presence
of fully developed charge order. Arrows in the x-axis denote quantum critical points
for superconductivity and charge order. Figure reprinted with copyright permission
of Ref. [58].
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quantum gas microscope capabilities have gained insight into the phase diagram by

measurement of static and dynamic quantities [21–23, 27, 62, 63, 65–70]. The chal-

lenges to cool further down and access the temperature scales where charge desnsity

waves and d-wave superconductivity still remains. Possible architectures to overcome

the temperature scales are quantum simulators with higher symmetry fermions [?,71]

and optical tweezer arrays [39, 40] as we will discuss in Chapters 8 and 9.

Figure 2.4 : Exploration of the SU(2) FHM phase diagram with ultracold
atoms. Results from a series of experiments in the two-dimensional square lattice
FHM model are depicted by stars and lines. These experiments span the proposed
phase diagram of the FHM: Mott insulator (MI), antiferromagnet (AFM), pseudogap
(PG), charge density wave (CDW), d-wave superconductor (d-SC), strange metal, and
Fermi liquid (FL). Results in the three-dimensional cubic lattice from Randy Hulet’s
group at Rice (Ref. [20]) are also presented for completeness. Figure reprinted with
copyright permission of Ref. [24].
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2.4 Summary

In this chapter we introduced the Fermi Hubbard in its original spin-1/2 SU(2) sym-

metric form. We discussed how it is the simplest interacting model one can write for

electrons in a solid. We discussed the conditions for which this single band model is

valid, i.e. the on-site interaction U , temperature and energy must be smaller than

the energy gap between the lowest and first excited band. We also discussed the

symmetries of the FHM, including the U(1) global symmetry, the SU(2) spin sym-

metry, and the particle-hole symmetry. Finally we presented its connection to the

cuprate superconductors and the achievements of quantum simulation in quantum

gas microscopes.
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Chapter 3

The SU(N) Fermi-Hubbard Model

En esta tierra en donde puedo caminar

Bajo la dirección que le ponga a mis pasos

Siempre habrá tiempo para venirle a cantar

Por ser lo más que sé ofrecer como regalo.

Hoy hace un buen d́ıa. Fernando Delgadillo

In the previous chapter we introduced the Fermi-Hubbard Model (FHM) in its

original SU(2) symmetry form and discussed some its properties and expected phase

diagram. In this chapter we follow a similar approach and introduce the SU(N)

FHM and its properties, in particular the SU(N) symmetry and the particle hole

symmetry. Finally we present a literature review of a series of theoretical predictions

and experimental results of the SU(N) FHM.

3.1 The SU(N) Hamiltonian

As we discussed in Chapter 2, the Fermi-Hubbard Model (FHM) is central to con-

densed matter physics, as it accounts for many phenomena observed in solid state

systems such as the Mott insulating phase, long-range antiferromagnetic order, super-

conductivity and charge density waves [45–47]. Its generalization, the SU(N) FHM,

features larger spins and enhanced symmetry, and it is defined by the grand-canonical

Hamiltonian,

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
i,σ ̸=τ

niσniτ − µ
∑
i,σ

niσ, (3.1)
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where c†iσ(ciσ) is the creation (annihilation) operator for a fermion with spin σ =

1, 2, ..., N on site i = 1, 2, ..., Ns, and niσ is the number operator. t is the hopping

amplitude between nearest-neighbor sites i and j, U is the interaction strength and

µ is the chemical potential controlling the fermion density (see Fig. 3.1).

Figure 3.1 : SU(N) Fermi Hubbard Model. In its SU(N) symmetric form the
Fermi Hubbard Model consists of particles living on a lattice with spin color (denoted
by red, blue, green, etc...) that can tunneling to nearest neighboring sites with
hopping amplitude t. The number of colors is N . When m atoms of different color
occupy the same site, this raises the energy by Um. The filling fraction is controlled
by the chemical potential µ.

The SU(N) FHM provides insight into important strongly correlated systems since

it is a simple limit of multiorbital models describing transition-metal oxides [72–74],

and is an important generalization of the SU(2) FHM since it exhibits the possibility

of phenomena such as antiferromagnetism, superconductivity, nematic order, valence

bond and the spin-liquid phases [73,75–79].

3.2 Symmetries of the SU(N) Fermi Hubbard Model

The SU(N) FHM exhibits symmetries similar to its SU(2) counterpart. Similarly to

the SU(2) FHM, it has a global U(1) symmetry that reflects a global charge conser-
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vation, which means the total particle number Nptcl =
∑

i,σ niσ is conserved. It also

presents a global SU(N) symmetry that corresponds to the spin isotropy, and the

generators of the group are the spin permutation operators,

Sσ
τ =

∑
i

Sσ
τ (i) =

∑
i

c†iσciτ , (3.2)

that satisfy the SU(N) algebra,

[Sσ
τ , S

α
β ] = δσβS

α
τ − δταS

σ
β . (3.3)

All generators of the algebra commute with the Hamiltonian [eq. (3.1)] and therefore

the system exhibits and SU(N) symmetry. Similarly to the N = 2 case the popula-

tions of each spin component are conserved since Sσ
σ = Nσ =

∑
i c

†
iσciσ =

∑
i niσ.

In a similar fashion to the SU(2) FHM, the SU(N) FHM can be rewritten in a

PHS form

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
i,σ ̸=τ

(
niσ −

1

2

)(
niτ −

1

2

)
− µ

∑
i,σ

niσ. (3.4)

Under this transformation the shift in the chemical potential is µ→ µ+(U/2)(N−1)

and the overall additive constant to the energy can be neglected. Under the PHT,

the sign of µ gets reversed and one can derive the following relationships.

• Density ρ = ⟨n⟩ =∑σ⟨nσ⟩

ρ(µ) = N − ρ(−µ), (3.5)

which implies that half-filling, i.e. ρ = N/2, occurs at µ = 0 for values of T/t

and U/t.
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• Number of onsite pairs D = 1
2

∑
σ ̸=τ ⟨niσniτ ⟩

D(µ) =

(
N

2

)
+ (1−N)ρ(−µ) +D(−µ). (3.6)

• Kinetic energy K = −t∑⟨i,j⟩,σ⟨c†iσcjσ + c†jσciσ⟩

K(µ) = K(−µ). (3.7)

And the total energy is given by E(µ) = K(µ)+UD(µ). With these expressions, one

only needs to compute the results for positive values of µ to recover the quantities

for −µ without the need of further calculations.

For further information on the SU(N) group, we refer the reader to Refs. [80,81].

3.3 Some important limits

3.3.1 The non-interacting limit U = 0

The non-interacting limit is one of the useful initial steps to understand the physics

of the SU(N) FHM. Not only is it the basis for introducing the interaction as a per-

turbation, but also allows for debugging numerical techniques. In the non-interacting

limit U = 0 and the Hamiltonian reads as,

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
− µ

∑
i,σ

niσ, (3.8)

and has a simpler expression in the momentum basis crσ = 1
Ns

∑
k e

−ik·rckσ, where

k = 2π
Ns
(n1, n2, n3) with ni ∈ 1, . . . , Ns. With the previous relations, the Hamiltonian

is simply given by,

H =
∑
k,σ

(ϵk − µ)nkσ, (3.9)
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where the energy dispersion for cubic lattices is,

ϵk = −2t
∑
xi

cos(kxi
), (3.10)

where i can run from {1}, {1, 2} or {1, 2, 3}, depending on dimensionality.

In this case, one can write analytic expressions for the observables of interest. Let

D be the dimensionality. In this case, thermodynamic quantities in the thermody-

namic limit are,

ρ =
N

(2π)D

∫ π

−π

1

1 + eβ(ϵk−µ)
dDk, (3.11)

E =
N

(2π)D

∫ π

−π

ϵk
1 + eβ(ϵk−µ)

dDk, (3.12)

D =

(
N

2

)
ρ2, (3.13)

F =
1

β

N

(2π)D

∫ π

−π

ln
[
1 + 1 + e−β(ϵk−µ)

]
dDk− µρ, (3.14)

S = βE + F, (3.15)

which correspond to the density, energy, energy, number of onsite pairs, free energy,

and entropy, respectively.

In addition, one can compute correlation functions. Of particular relevance are

the spin-spin and density-density correlation functions. The spin-spin correlation

function is given by,

Cs(x,y) =
∑
σ ̸=τ

[
⟨nxσnyσ⟩ − ⟨nxσnyτ ⟩

]
. (3.16)

Here is useful to note that, assuming translation invariance, if the spin-populations

are balanced and therefore the SU(N) symmetry is present, the disconnected part

of the correlator, i.e. ⟨nxσ⟩⟨nyσ⟩ − ⟨nxσ⟩⟨nyτ ⟩ vanishes and therefore it is irrelevant

whether it is included.
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The density-density correlation function is defined as,

Cd(x,y) = ⟨nxny⟩ − ⟨nx⟩⟨ny⟩ =
∑
σ,τ

⟨nxσnyτ ⟩ − ρ2

=
∑
σ ̸=τ

⟨nxσnyτ ⟩+
∑
σ

⟨nxσnyσ⟩ − ρ2. (3.17)

For simplicity we define C̃d = Cd + ρ2:

C̃d = ⟨nxny⟩ =
∑
σ ̸=τ

⟨nxσnyτ ⟩+
∑
σ

⟨nxσnyσ⟩. (3.18)

Therefore, in order to access Cs and C̃d, we need to compute the following expectation

values:

⟨nxσnyσ⟩ = ⟨c†xσcxσc†yσcyσ⟩

=
1

N2
s

∑
pkqs

ei(p - k)·xei(q−s)·y⟨c†pσckσc†qσcsσ⟩, (3.19)

⟨nxσnyτ ⟩ = ⟨c†xσcxσc†yτcyτ ⟩

=
1

N2
s

∑
pkqs

ei(p - k)·xei(q−s)·y⟨c†pσckσc†qτcsτ ⟩, (3.20)

where we have explicitly separated the cases σ = τ and σ ̸= τ .

We can compute the expectation values using Wick’s theorem for fermions,

⟨ABCD⟩ = ⟨AB⟩⟨CD⟩ − ⟨AC⟩⟨BD⟩+ ⟨AD⟩⟨BC⟩. (3.21)
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Therefore,

⟨c†pσckσc†qσcsσ⟩ = ⟨c†pσckσ⟩⟨c†qσcsσ⟩+ ⟨c†pσcsσ⟩⟨ckσc†qσ⟩

= ⟨nkσ⟩⟨nqσ⟩δp,kδq,s + ⟨npσ⟩
(
1− ⟨nkσ⟩

)
δp,sδq,k (3.22)

⟨c†pσckσc†qτcsτ ⟩ = ⟨c†pσckσ⟩⟨c†qτcsτ ⟩+ ⟨c†pσcsσ⟩⟨ckτc†qτ ⟩

= ⟨nkσ⟩⟨nqτ ⟩δp,kδq,s. (3.23)

With these results the σ ̸= τ case (σ, τ) is,

⟨nxσnyτ ⟩ =
1

N2
s

∑
pkqs

ei(p - k)·xei(q−s)·y⟨nkσ⟩⟨nqτ ⟩δp,kδq,s

=
1

N2
s

∑
kq

⟨nkσ⟩⟨nqτ ⟩

=
( ρ
N

)2
. (3.24)

Now the (σ, σ) term is given by,

⟨nxσnyσ⟩ =
1

N2
s

∑
pkqs

ei(p - k)·xei(q−s)·y
[
⟨nkσ⟩⟨nqσ⟩δp,kδq,s + ⟨npσ⟩

(
1− ⟨nkσ⟩

)
δp,sδq,k

]
=

( ρ
N

)2
+

1

N2
s

∑
kq

ei(q - k)·(x−y)⟨nqσ⟩
(
1− ⟨nkσ⟩

)
=

( ρ
N

)2
+

ρ

N
δr,0 −

[
1

Ns

∑
q

eiq·r⟨nqσ⟩
][

1

Ns

∑
k

e−ik·r⟨nkσ⟩
]

=
( ρ
N

)2
+

ρ

N
δr,0 −

∣∣∣∣ 1

(2π)D

∫ π

−π

eik·r

1 + eβ(ϵk−µ)
dDk

∣∣∣∣2 (3.25)

For all the previous expressions we used the SU(N) spin permutation symmetry

and the fact that the correlation functions do not depend on the particular x and y

but just their difference r = x− y.
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With these results, Cs and C̃d in the non-interacting limit are,

CU=0
s (r) = N(N − 1)

[
δr,0

ρ

N
−
∣∣∣∣ 1

(2π)D

∫ π

−π

eik·r

1 + eβ(ϵk−µ)
dDk

∣∣∣∣2] (3.26)

C̃U=0
d (r) = ρ2 + ρδr,0 −N

∣∣∣∣ 1

(2π)D

∫ π

−π

eik·r

1 + eβ(ϵk−µ)
dDk

∣∣∣∣2 (3.27)

These results will be useful to diagnose numerical techniques and to understand the

effects of introducing interactions. Plots of some of these quantities are presented in

Chapter 7 and Appendix C.

3.3.2 The atomic limit t = 0

Another useful limit corresponds to the case of a single site or when we set the

tunneling to zero (t = 0) and the system is a series of independent sites. In this case,

the Hamiltonian in its PHS form reduces to,

H =
U

2

∑
i,σ ̸=τ

(
niσ −

1

2

)(
niτ −

1

2

)
− µ

∑
i,σ

niσ, (3.28)

and its eigenenergies are,

ϵ0(n) =
U

2
n(n− 1)− µn, (3.29)

where n is the number of particles on the site [and recall that in the PHS form

µ→ µ+ (U/2)(N − 1), which we are omitting for simplicity]. The partition function

for the single site is given by,

z0 =
N∑

n=0

(
N

n

)
e−βϵ0(n) (3.30)

For simplicity, let us define y = e−βU and x = eβµ. Written like this, the partition

function is:

z0 =
N∑

n=0

(
N

n

)
y

1
2
n(n−1)xn, (3.31)
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and the free energy in the grand canonical ensemble is Ω0 = − 1
β
ln z0. In this limit,

thermodynamic quantities are,

ρ0 = ⟨n⟩0 =
1

z0

N∑
n=0

n

(
N

n

)
e−βϵ0(n), (3.32)

D0 =
1

2
⟨n(n− 1)⟩0 =

1

z0

N∑
n=0

(
N

2

)(
N

n

)
e−βϵ0(n), (3.33)

E = UD, (3.34)

S = ln(z0) + β(E − µρ). (3.35)

The atomic limit calculation is the zeroth-order high temperature series expansion in

t/T and we will discuss corrections to it to second order in (t/T )2 in Chapter 5. Several

plots of the atomic limit are presented in Chapters 7 and 10 and in Appendix C.

3.3.3 The Heisenberg limit

Another important limit of the SU(N) FHM is the limit t/U ≪ 1 and one particle per

site ⟨n⟩ = 1 where the system is effectively described by the quantum spin Heisenberg

Hamiltonian. Ref. [82] presents a detailed discussion on how to obtain the spin-1/2

Heisenberg Hamiltonian from the SU(2) FHM. Here we will present the main idea

and introduce the concept of superexchange for a two-site system following Ref. [8].

Starting from eq. 3.1, and only focus on the kinetic K̂ and interaction energy terms

Û in the Hamiltonian. For U/t ≫ 1, the interaction energy term dominates, and

therefore we can use it as our zeroth-order Hamiltonian. The ground state manifold

for two sites is 2N -fold degenerate and we will denote it as,

{GS} = |σ1, σ2⟩, (3.36)

where σi can take one of the spin flavor values, i.e. σi = 1, 2, · · · , N , and i = 1, 2.
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The energies of the doubly occupied sites are higher by U than the multiplet state

[eq. (3.36)]. When we introduce the tunneling term perturbatively, we have to do it

to second order. The first-order term in perturbation theory in K̂ takes one particle

from one site and puts it on top of the other one on the other site. This term takes

us out of the ground state manifold. When we consider the second-order term in the

degenerate perturbation theory, it allows us to construct and effective Hamiltonian,

⟨a|H(2)
eff |b⟩ = −⟨a|K̂

(
1− P̂GS

V̂

)
K̂|b⟩ = −

∑
m ̸={GS}

⟨a|K̂|m⟩ 1

⟨m|V̂ |m⟩
⟨m|K̂|b⟩, (3.37)

where a, b denote states in the ground state subspace {GS}, and P̂GS is the projection

operator onto the ground state manifold, which means that states |m⟩ contain higher

occupancies. We can visualize the effects of the terms in the sum in Table 3.1 where

the allowed paths (first two rows) each yield a contribution −t2/U . Note that there

are some paths that are blocked by Pauli exclusion principle (last row).

Initial state K̂ 1/V̂ K̂ Final state

|σ, τ⟩ → |στ, 0⟩ → |σ, τ⟩
|σ, τ⟩ → |0, στ⟩ → |σ, τ⟩
|σ, σ⟩ → 0

Table 3.1 : “Exchange paths” in the Heisenberg model.

The operators that connect these initial and final states can be written in terms

of the spin permutation operators Sτ
σ(i). Therefore one can write the effective Hamil-

tonian in the ground state subspace as an isotropic antiferromagnetic Heisenberg

exchange:

HHeisenberg = J
∑
⟨i,j⟩

∑
σ,τ

Sτ
σ(i)S

σ
τ (j), (3.38)

where J = 4t2/U is the superexchange energy ∗. In the U/t≫ 1 limit and one particle

∗The simplest way of seeing this is the following: The only terms contributing in ⟨m|V |m⟩ all have
energy U , therefore we can replace this term by U . We are then left with Heff = −(1/U)PGSK

2PGS .
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per site on average the system is a Mott insulator where the energy is lowered by

the virtual process of double occupation, called superexchange. In the Heisenberg

Hamiltonian only spin interactions are present and is a paradigmatic model to study

quantum magnetism.

3.3.4 The large-N limit

The last limit worth mentioning is the large-N limit. The 1/N (or more adequately

1/S) expansion technique was first used to understand spin-1/2 systems that exhibit

SU(2) spin symmetry [83–86]. In this case, one reduces the role of quantum fluctua-

tions by considering the classical limit of magnets with large spin S. In doing so, the

expectation value of the spins acquires a definite value with a small variation around

this saddle point and thus the 1/S expansion provides a method to therefore obtain

mean field theories.

In the 1/S expansion, the relevant operators are the raising and lowering operators

S±, which only connect two possible values of the spin projections, and therefore as

S increases the variance of the spin projection falls off as 1/S. In contrast, for the

SU(N) case even though 1/N is small, the spin permutation operators connect all

possible values of the spin projection and therefore quantum fluctuations are relevant

and play a major role in the ground state spin structure. For this reason, in the

SU(N) case the variance does not go like 1/N .

The 1/N expansion is not a perturbative expansion in the interaction or the

tunneling, but instead is a saddle point expansion that preserves the spin symmetry

of the Hamiltonian [8,87] †. For more information, Ref. [86] provides a comprehensive

Let us now focus on K2, which for two sites can be written as t2
∑

σ,τ c
†
1σc

†
1τ c1τ c2σ +h.c. In the case

of N = 2 this term can be rewritten as −t2(n1n2 + 4S1 · S2). Since the number of particles is fixed
to ⟨n⟩ = 1 by the projector operator, the first term is a constant and can be dropped. The effective
Hamiltonian is now (4t2/U)S1 ·S2, where the superexchange energy scale J = 4t2/U naturally arises.
It is customary in the literature to work only with the spin permutation operators instead of S, and
for that reason we present the Heisenberg Hamiltonian in terms of those in the main text.

†For the purposes of this thesis, we consider it useful to make a differentiation between the cases,
therefore for the case of SU(N) symmetric models we will used the term 1/N expansion, while for
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review of the large-N expansion technique.

3.4 SU(N) FHM and Heisenberg models

So far we have discussed important properties and limits of the SU(N) FHM. In this

section we will present its application in the condensed matter community and then

connect with previous theoretical and numerical results regarding the model.

3.4.1 Wait, aren’t electrons spin-1/2?

In our description of the SU(2) FHM we stated it is single orbital model used to

describe electrons in a solid, and that electrons are spin-1/2 particles. The SU(N)

FHM is a limit of multi orbitals models such as the ones used to describe transition

metal oxides [72–74]. In our discussion of the SU(N) FHM, we mentioned we have N

spin colors or flavors, which in the context of quantum simulation with alkaline-earth-

like atoms correspond to the nuclear spin projections mI as we will see in Chapter 4.

In order to make the connection with the problem of electrons in a solid, we need to

take one step back and recall that an electron that is bound to or nearly localized

on an specific site has three attributes: charge, spin, and orbital (the shape of the

electron cloud in a solid). In the SU(2) FHM case we considered a single orbital and

the spin degree of freedom which is invariant under SU(2) rotations. Multi orbital

models correspond to models in which higher orbitals are now included and if the

Hubbard parameters are independent of the spin and orbital degrees of freedom,

then the Hamiltonian is SU(N) symmetric. It is worth noting that such enhanced

symmetry is a crude approximation in solid state systems, where interactions between

different orbitals may vary over 10% or more [73]. On the other hand, for ultracold

atomic experiments the SU(N) symmetry holds down to many orders of magnitude

as we will discuss in the next chapter.

the case of SU(2) with enlarged spins, we will refer to it as the 1/S expansion to make the underlying
spin symmetry explicit and clear.
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3.4.2 Previous studies

Historically, the study of SU(N) quantum magnetism was originated from the math-

ematical technique of large-N expansions [8]. The large-N expansion was used in

Ref. [83] to study the Coqblin-Schrieffer Hamiltonian ‡, in Ref. [84] SU(N) antifer-

romagnetic quantum spin chains, and in Ref. [85] for the Heisenberg model. More

recently, an SU(4) spin-valley symmetry was observed in graphene [90] and twisted-

bilayer graphene [91–96] which has attracted broader interest to study Hamiltonians

with enhanced symmetry.

It has been however, the possibility of exploiting the inherent SU(N) symme-

try of alkaline-earth-like atoms what has attracted more attention to the SU(N)

FHM [97–101]. In the last decade, a series of theoretical predictions and state-of-

the art numerical calculations of the ground state physics have been performed for

different values of N .

One of the first pioneering works was Ref. [102,103], where renormalization group

and mean-field theory results of the SU(N) FHM in the two-dimensional square lat-

tice at weak to moderate interactions observe that at half-filling there is a tendency

to break the SU(N) symmetry (see Fig. 3.2). For N = 3 at half-filling, the SU(3)

symmetry breaks by forming a flavor-density wave, in which two flavors prefer one

sublattice with equal density, the third flavor goes predominantly on the other sublat-

tice, and the staggered magnetization does not add up to zero. Their results suggest

that for N ≤ 6, there is a strong tendency towards breaking the SU(N) symmetry

with staggered two-sublattice real space dependence. On the other hand for N > 6

they predict a staggered flux state, in which there are particle currents.

‡The Coqblin-Schrieffer model has been used to understand rare-earth solids. In this model,
itinerant fermions and an impurity are both N -fold spin degenerate, and thus the Hamiltonian has
an SU(N) symmetry [88,89].
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Figure 3.2 : Half-filling SU(N) FHM states. a) AFM spin-density wave forN = 2.
b) Flavor-density wave for N = 3. c) Staggered flux state for N = 6 (arrows indicate
the particle currents). Figure reprinted with copyright permission of Ref. [102].

Since then a series of results of the SU(N) FHM were obtained which predict

the existence of a variety of interesting and exotic phases for different values of N ,

fillings, and interaction strengths. Results for the N = 3 FHM are presented in

Refs. [104–112] (see Fig. 3.3 as an example). Results for N = 4 at quarter filling are

given in Refs. [113, 114]. Results for even values of N at half-filling are shown in

Refs. [77,78,115–122]. Results for one-dimensional chains are displayed in Refs. [123–

129] (see Fig. 3.4 as an example). Results in the SU(N) Heisenberg limit are exhibited

in Refs. [75,76,130–139].

The richness of the model is well illustrated by studies in the Heisenberg limit,

where it is predicted to exhibit several phases of matter with novel and difficult-to-

explain properties depending on the value of N . For example, Ref. [75] studied Mott

insulators in the two-dimensional square lattice and in the large-N limit found a chiral

spin liquid ground state with topological order [140]. Furthermore, the dependence

of the ground state order with N does not follow a simple pattern as illustrated by

Refs. [130–132] (see Fig. 3.5), where N = 2 exhibits a checkerboard pattern with

2-sublattice structure [21], the N = 3 a 3-sublattice structure [130], the N = 4 breaks

the translational symmetry and forms dimers [132], the N = 5 forms a flavor-ordered

pattern [131].
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Figure 3.3 : Magnetic phases at 1/3-filling in the SU(3) FHM. Schematic
of results for a cubic lattice as a function of temperature. As temperature is low-
ered the system evolves from a paramagnetic phase (PM) to a 2-sublattice anti-
ferromagnetic (AFM) structure which is either a color-density wave (CDW2) or a
color-selective antiferromagnetic state (CSAF). As the temperature is lowered even
further, a 3-sublattice structure develops. Figure reprinted with copyright permission
of Ref. [107].
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Figure 3.4 : Spin structure factor in 1D optical lattices for the SU(N) FHM.
Results for N = 3 and N = 4 are presented as a function of temperature at density
⟨n⟩ = 1 and U/t = 8. As the temperature is lowered magnetic correlations start to
develop with an onset of peaks at 2kF (kF is the Fermi wavevector) at T/t ≲ 0.15.
Figure reprinted with copyright permission of Ref. [127].

Figure 3.5 : Ground state dependence on N in the Heisenberg limit. a) N = 2
exhibits a 2-sublattice (2-SL) structure. b) N = 3 displays a 3-SL. c) N = 4 breaks
translational symmetry and froms dimers that teselate the lattice. d) N = 5 exhibits
a long-ranged flavor ordered pattern. Figures reprinted with copyright permission of
Refs. [130–132].
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3.5 Quantum simulation of the SU(N) Fermi Hubbard Model

The field of quantum simulation with alkali atoms has yielded numerous important

results regarding the SU(2) FHM as we discussed in Chapter 2. In a similar fashion,

in recent years state-of-the-art experiments with ultracold 173Yb in 3D optical lattices

(OL) have:

• Successfully achieved the SU(6)-symmetric Mott insulator state [71] where ex-

periments compared results for N = 2 and N = 6. Of particular relevance these

results illustrate that the final temperature in the lattice after adiabatic loading

(i.e. total number of particles and entropy are conserved) is lower for N = 6

than for N = 2 (Fig. 3.6b) and that for the lowest temperature achieved in each

case, only the N = 6 case develops a robust Mott plateau at the center of the

trap with an entropy per site close to ln(N), and the entropy gets pushed onto

the metallic state near the edge of the cloud (Fig. 3.6c).

Figure 3.6 : SU(N) Mott Insulators. a) Onsite pairs production rate for Nptcl =
1.9× 104, U/6t = 10.4 b) Temperatures of the Fermi gases after adiabatic loading in
the lattice as a function of the initial temperature. c) Density and entropy profiles at
the lowest temperatures indicated by squares in b). Figure reprinted with copyright
permission of Ref. [71].

• Explored the equation of state of the 3D SU(3) and SU(6) FHMs [141]. These

experiments measured the density as a function of the chemical potential (Fig. 3.7)

for different values of the interaction strength U/t. These results highlight that

for U ≪ t, the system is metallic and can be approximately described by the

non-interacting theory (Fig. 3.7a), whereas for U ≫ t, the single site limit
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is a good approximation and can provide a good interpretation of the data

(Fig. 3.7b). However, for interactions of the order of the bandwidth U ∼ W ,

the system is a strongly correlated many-body state and at the time of publi-

cation on 2016 there were no numerical techniques to compare against. As we

will see in Chapter 10, we have been collaborating with this group to provide a

precise characterization of the equation of state of the SU(N) FHM.

Figure 3.7 : Equation of State (EoS) of the SU(N) FHM. Density as a function
of the chemical potential for N = 3 (red diamonds) and N = 6 (blue squares) Fermi
gases in a 3D lattice. Here t∗ = W the bandwidth of the 3D lattice. a) U/t∗ = 0.128
b) U/t∗ = 0.89 c) U/t∗ = 3.6. Solid lines are fits to the non-interacting Fermi gas
EoS for densities below 0.5. Dashed lines are a second-order high temperature series
expansion to extract the temperature (in green for N = 2 for comparison). Figure
reprinted with copyright permission of Ref. [141].

• Observed nearest-neighbor antiferromagnetic (AFM) correlations in a Fermi gas

with SU(4) symmetry in a dimerized OL [142] (see Fig. 3.8). The importance

of these results are twofold. First, at a fixed entropy per particle AFM nearest-

neighbor correlations are enhanced for N = 4 compared with N = 2; and

second, it set up the basis for the experimental technique to measure nearest-

neighbor spin correlation functions in lattices with uniform tunnelings. This

technique is called singlet-triplet oscillation (STO) and was used for the results

we will present in Chapter 8 where we collaborated with this experimental

group.
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Figure 3.8 : Nearest-neighbor AFM correlations in a dimerized lattice. Nor-
malized STO amplitude, which is related to the nearest-neighbor spin correlation
function as a function of the intradimer tunneling td. U/h = 3.0 kHz, t ∈ [28.0, 100]
Hz, and tyz/t ∈ [1.7, 1.0]. Figure reprinted with copyright permission of Ref. [142].

• Detected flavor-selective localization in an SU(3) Fermi gas [143]. These results

illustrate that by breaking the SU(3) symmetry using two-photon Raman tran-

sitions, the number of on-site pairs is suppressed at as the Raman couplings

are introduced, and that the double occupancies are now flavor-dependent (see

Fig. 3.9). Exploring the spin-imbalanced SU(N) FHM or the SU(N) FHM un-

der symmetry breaking fields is an immediate question of interest to the field.
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Figure 3.9 : State selective correlations. γ(12) measures the number of atoms
forming doublons in the |12⟩ channel, normalized by the total number of atoms form-
ing doublons. In the absence of Raman couplings (Ω = 0) the results agree with
the N = 3 symmetric expectation value (dotted line). As Ω is increased, the SU(3)
symmetry is broken and γ(12) diminishes, approaching zero as Ω ≈ D = 6t. Results
are presented at U = 2.6D. Figure reprinted with copyright permission of Ref. [143].
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3.6 Summary

In this chapter we introduced the SU(N) symmetric Fermi-Hubbard model. We

discussed its symmetries and important limits such as the non-interacting (U = 0),

the single-site (t = 0), the Heisenberg (U/t ≫ 1, ⟨n⟩ = 1), and the large-N limit.

Then we presented previous theoretical/numerical results for different values of N

to illustrate the richness of the model and we concluded by presenting the major

experimental results with quantum simulation with ultracold quantum gases.
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Chapter 4

Alkaline-earth-like atoms in optical lattices

Las vidas no empiezan cuando las personas nacen,

la vidas empiezan más tarde.

La balsa de piedra. José Saramago

In this chapter we discuss why the SU(N) Fermi Hubbard Model (FHM) describes

alkaline-earth-like atoms (AEAs) in optical lattices. To do so, we first give a summary

on the electronic structure of AEAs, which exhibit a large nuclear spin I and a natural

SU(N = 2I +1) symmetry in the ground state. Then we provide a derivation of why

the SU(N) Fermi Hubbard Model is a good description of AEAs atoms in a optical

lattice. This chapter is inspired and adapted from Refs. [51,144–146].

4.1 A primer on Alkaline-Earth-like atoms

In this section we provide a short introduction to the physics of AEAs, which are used

to engineer the SU(N) FHM. First we provide a short discussion of their electronic

structure and then comment on why interactions are SU(N) symmetric.

4.1.1 Electronic structure

Alkaline-Earth-like atoms correspond to the elements that exhibit completely full

inner shells and have two outer valence electrons in a filled s-shell. Due to the filled

inner shells, the two valence electrons are primarily responsible for the chemical and

electronic properties of these atoms.

AEAs are the elements that belong to group-II of the periodic table, such as Be,

Mg, C, Sr, Ba, and Ra; but also the rare-earth element Yb. Experiments with AEAs

have mainly utilized 87Sr (I = 9/2) and 173Yb (I = 5/2) and for such reason we
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will mainly focus only on these two. Given that most of our experimental collabora-

tors work with Yb (Yoshiro Takahashi in Kyoto and Simon Fölling in Münich), all

examples given in this section will correspond to Yb, except where explicitly stated.

The electronic configuration of Yb is a filled f- and s-shell. Yb exhibits an elec-

tronic structure with spin-singlet (S = 0) and spin-triplet (S = 1) manifolds. Its

level structure is described in the LS-coupling scheme, where coupling between the

total orbital angular momentum L and the total spin of the valence electrons S gives

the total electronic angular momentum J = L + S. A detailed scheme of the level

structure for Yb with the most relevant optical transitions is shown in Fig. 4.1.

Zeeman slower/
Imaging
λ = 399 nm
γ = 28.9 MHz

MOT
λ = 556 nm
γ = 182 kHz

Repumper
λ = 1389 nm
γ = 310 kHz

1P1

1S0

3P2

3D1

3P0

3P1

6s2

6s6p

6s6p

5d6s

Yellow “clock” transition
λ = 578 nm
γ ~ 10 mHz

Singlet manifold Triplet manifold

:

: |e⟩

|g⟩

173Yb

mF -5/2 -3/2 -1/2 +1/2 +3/2 +5/2

Figure 4.1 : Electronic structure of Yb. Most relevant optical transitions to
excited states are indicated by solid arrows. Figure kindly shared by the Fölling
Group at Ludwig-Maximilians-Universität München.
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The ground state of Yb is a spin singlet 1S0 with J = 0, i.e. no total electronic

angular momentum. This has profound implications on the properties of the ground

state, since in this case the total angular momentum of the atom F is given only by

the nuclear spin I (F = I). As we will see in the next section this decoupling of the

nuclear spin degree of freedom from the electronic structures is what gives rise to the

SU(N) symmetric nature of interactions for the fermionic isotopes 171Yb and 173Yb,

which possess a nuclear spin I = 1/2 and I = 5/2, respectively. In contrast, their

bosonic counterparts 168Yb, 170Yb, 172Yb, 174Yb, and 176Yb have I = 0. On the other

hand, one immediate consequence appertaining to the electronic structure is that the

ground state does not exhibit a hyperfine structure, since I ·J = 0. In addition, given

that the only magnetic moment of the ground state steams from the nuclear spin,

the Yb atom in the ground state is almost completely insensitive to magnetic fields

because fermionic and bosonic isotopes have a weak or zero nuclear magnetic moment,

respectively. In the case of fermions, the magnetic moment arising from the nuclear

spin is virtually irrelevant since the nuclear magneton µN is approximately 2000

times smaller than the Bohr magneton µB of the electron, due to the large proton-

to-electron ratio. This has relevant consequences in how interactions can be tuned

for 173Yb atoms since magnetic Feshbach resonances (which are generally used for

tuning the s-wave scattering length between two hyperfine states in alkali-atoms [11])

are experimentally unavailable as they would require extremely high magnetic fields

that are not attainable in the laboratories.

One final remark about AEAs is that there are two metastable states, the 3P0

state and the 3P2 state. For Yb, the
3P0 state has a lifetime τ ≈ 20 seconds, and also

has no total angular momentum (J = 0) like the ground state 1S0, which also leads

to SU(N) symmetric interactions due to the decoupling of the nuclear spin from the

electronic structure. This metastable state can be useful to realize the Kondo lattice

model, and, as we will discuss in further chapters, to probe the SU(N) FHM.
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4.1.2 SU(N) symmetric interactions

As discussed in the previous section, the ground state 1S0 and the metastable state 3P0

exhibit perfect decoupling of the nuclear spin from the electronic structure because

there is no hyperfine structure (I · J = 0) since J = 0. In these states, the spin is

protected inside the nucleus and it is not affected by the physics occurring at the

electronic cloud distance scales. This has a startling effect on the characteristics

of atomic collisions because, aside from Pauli exclusion, nuclei can only influence

collisions through hyperfine coupling to the electron angular momentum ∗.

In dilute atomic gases at low-temperatures (therefore low-energy collisions), scat-

tering properties are predominantly elastic binary collisions, and are well character-

ized by the s-wave scattering length. In this case, and for single component bosons

or spin-1/2 fermions, is possible to model the collisions with the following pseudo-

potential,

V (r) =
4πℏ2

m
aδ(r) (4.1)

named the Fermi contact potential, where ℏ is the reduced Planck’s constant, m is

the mass of the colliding atoms, and a is the scattering length. For fermionic gases

with N = 2I + 1 spin components, this expression in generalized to [147],

V (r) =
4πℏ2

m

N−2∑
Ft=0,2,...

aFtδ(r)PFt , (4.2)

where PFt is the projector on states with even total spin Ft = 0, 2, 4, . . . , N − 2 of the

atom pair. In s-wave scattering collisions the spatial wave function is symmetric, and

because the total wavefunction has to be antisymmetric, the spin wave function has to

∗One could in principle argue that magnetic dipole-dipole interactions between the nuclear spin of
the two atoms should affect collisions. However this coupling is negligible. For example, in Ref. [97]
the interaction energy between two magnetic dipole moments as a large as 10µN at a distance of 10
nm (substantially smaller that the confinement obtained in an optical lattice site) corresponds to a
frequency smaller that one Hertz. In contrast, the on-site interaction energy is of the order of kHz,
from the induced dipole-dipole interactions of the electronic clouds.
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be antisymmetric only states with even total spin Ft can contribute to the scattering.

Because of this, a total of N/2 scattering lengths aFt are needed to characterize all

the available s-wave collision channels.

Due to the rotational invariance of the inter-atomic potential, there is an underly-

ing SU(2) symmetry associated with the scattering processes. As we will see, AEAs

possess an SU(N) symmetry, which corresponds to a higher symmetry group than

the one just arising from rotational invariance.

Let us take a look at the situation when two atoms in states |F,m1⟩, |F,m2⟩ and

total spin |Ft,mt = m1 +m2⟩ collide. The initial state |F,m1⟩|F,m2⟩ will couple to

a different spin combination |F,m3⟩|F,m4⟩ via the pseudopotential

⟨F,m4;F,m3|V (r)|F,m1;F,m2⟩ = (4.3)

=
2F∑

Ft,Ft′=0

Ft′∑
mt′=−Ft′

Ft∑
mt=−Ft

CFtmt
Fm1Fm2

C
Ft′mt′
Fm3Fm4

⟨Ft′ ,mt′ |V (r)|Ft,mt⟩

=
4πℏ2

m
δ(r)

N−2∑
Ft′′=0,2,...

aFt′′

2F∑
Ft,Ft′=0

Ft′∑
mt′=−Ft′

Ft∑
mt=−Ft

CFtmt
Fm1Fm2

C
Ft′mt′
Fm3Fm4

⟨Ft′ ,mt′|PFt′′
|Ft,mt⟩,

where CJM
j1m1j2m2

are the clebsh-Gordan coefficients. Since PFt =
∑Ft

mt=−Ft
|Ft,mt⟩⟨Ft,mt|,

⟨Ft′ ,mt′ |PFt |Ft,mt⟩ =
Ft′′∑

mt′′=−Ft′′

δFt′ ,Ft′′
δFt′′ ,Ftδmt′ ,mt′′

δmt′′ ,mt (4.4)

Incorporating this result in eq. (4.3) and simplifying one obtains,

⟨F,m4;F,m3|V (r)|F,m1;F,m2⟩ =
4πℏ2

m
δ(r)

N−2∑
Ft=0,2,...

Ft∑
mt=−Ft

aFtC
Ftmt
Fm1Fm2

CFtmt
Fm3Fm4

.

(4.5)

From this expression we notice that momentum conservation ensures that the to-

tal spin Ft and its projection mt are conserved during the collision †, but the spin

†Since mt = m1 +m2 = m3 +m4.
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projection of the individual atoms is not. In other words, in general, when atoms

with definite spin projections collide, these couple to all scattering channels with

non-vanishing clebsh-Gordan coefficients and other spin states become populated ‡.

For AEAs, since the nuclear spin is decoupled from the electronic structure its

influence in the scattering process is simply reduced to Pauli exclusion principle, and

in this case aFt = a∀Ft, i.e. the scattering lengths are equal for all possible Ft

pairs [97]. Using the orthogonality relationships of the Clebsch-Gordan coefficients∑
J

∑
M CJM

j1m2j2m2
CJM

j1m1′j2m2′
= δm1,m1′

δm2,m2′
one obtains that in contrast to the gen-

eral case of collisions, for AEAs the spin projection mF of each colliding atom is

preserved and thus spin relaxation to other mF states is forbidden. Mathematically,

this means that the interaction will be SU(N) symmetric, i.e. it will be invariant

under SU(N = 2I +1 = 2F +1) transformations and the interaction pseudopotential

will be given by eq. (4.1) for all possible pairs of spin projections.

Theoretical estimates for the SU(N) symmetry breaking of AEAs have been given

in Ref [97]. For the ground state 1S0 the variation in the scattering length for different

nuclear spins is of the order δagg/agg ∼ 10−9, while for the excited metastable state

3P0 these are of order δaee/aee ∼ δa±eg/a
±
eg ∼ 10−3 §, since the perfect decoupling is

slightly broken by the admixture with higher-lying P states with J ̸= 0.

4.2 Ultracold atoms in optical lattices

Most of the results presented in this thesis appertain to the study for fermions in

optical lattices. Optical lattices are produced by the interference of off-resonant

counter-propagating laser beams, creating a standing wave where atoms are trapped

in the resulting periodic potential via the AC Stark shift [148]. Atoms are trapped

‡For example, for F = 3/2, the collision of two atoms in the state |m1,m2⟩ = |3/2,−3/2⟩ couples
to both |3/2,−3/2⟩ and |1/2,−1/2⟩. The only exception of spin combinations that are stable during
collisions are the states |m1,m2⟩ = | ± F,±F ∓ 1⟩.

§agg refers to scattering processes between two atoms in the ground state, aee for atoms in the
excited state, and a±eg refer to one atom in the excited state and the other one in the ground state
in their triplet (+) or singlet (-) configuration. In the gg and ee they must be in the singlet state.
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in the maxima of intensity for blue detuned traps and at the minima for red detuned

traps. These lattices provide a periodic potential, for which standard procedures dis-

cussed in several textbooks [149,150] are available to treat the non-interacting limit.

On the other hand, results for optical tweezers require other tools, since the lack of

periodicity hinders the benefits of using Bloch states. We start by considering the

one-dimensional case, followed by a discussion of maximally localized Wannier states.

Then we proceed to construct the Fermi-Hubbard Hamiltonian in second quantiza-

tion. We defer the discussion of ultracold atoms in optical tweezers for Chapter 10.

4.2.1 One-dimensional periodic potential

The Hamiltonian that describes a single particle of massm in a periodic one-dimensional

optical lattice is ¶,

H0 = − ℏ2

2m

∂2

∂x2
+ V0 sin

2(kx), (4.6)

where k = 2π/λ = π/a, λ is the wavelength of the laser used to generate the op-

tical lattice, and a = λ/2 is the lattice spacing. It is convenient to introduce the

recoil energy ER = ℏ2k2/2m (which is the natural energy scale for ultracold atom

experiments). Defining v0 = V0/ER, the Hamiltonian is now rewritten as,

H0 = − 1

k2
∂2

∂x2
+ v0 sin

2(kx). (4.7)

Furthermore is useful to express sin2(kx) in terms of its Fourier components,

H0 = − 1

k2
∂2

∂x2
+
v0
4

(
2− e−2ikx − e2ikx

)
. (4.8)

Because of the translational symmetry of the Hamiltonian, the solutions to the

Schrödinger equation are the Bloch states, which are written as a product of a plane

¶We restrict ourselves to the one-dimensional case, since in higher dimensions the problem for
simple cubic lattices can be separated along each axis.
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wave and a function that preserves the periodicity of the potential,

ϕα,q(x) = eiqxuα,q(x) = eiqx
∑
ℓ∈Z

cα,q,ℓe
i2ℓkx (4.9)

where α is called the band index and q is the quasimomentum. The kinetic energy

term of the single-particle Hamiltonian is

− 1

k2
∂2

∂x2
ϕα,q(x) = eiqx

∑
ℓ

(
2ℓ+

q

k

)2
cα,q,ℓe

i2ℓkx, (4.10)

and so acting the Hamiltonian on the Bloch states to solve for the stationary states

one obtains,

H0ϕα,q(x) =
∑
ℓ

[(
2ℓ+

q

k

)2
+
v0
4

(
2− e−2ikx − e2ikx

)]
cα,q,ℓe

i2ℓkxeiqx

=
∑
ℓ

([(
2ℓ+

q

k

)2
+
v0
2

]
cα,q,ℓ −

v0
4
cα,q,ℓ−1 −

v0
4
cα,q,ℓ+1

)
ei2ℓkxeiqx

= ϵα,qϕα,q(x)

= ϵα,q
∑
ℓ

cα,q,ℓe
i2ℓkxeiqx, (4.11)

which translates into the following set of equations,

[(
2ℓ+

q

k

)2
+
v0
2

]
cα,q,ℓ −

v0
4
cα,q,ℓ−1 −

v0
4
cα,q,ℓ+1 = ϵα,qcα,q,ℓ, (4.12)

that can be expressed in matrix form as,

∑
ℓ

hℓ,ℓ′cα,q,ℓ = ϵα,qcα,q,ℓ′ , (4.13)
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with

hℓ,ℓ′ =



(
2ℓ+ q

k

)2
+ v0

2
if ℓ = ℓ′

−v0
4

if ℓ = ℓ′ ± 1

0 otherwise

(4.14)

This is an infinite linear system of equations which determines the coefficients cα,q,ℓ.

One then truncates the number of equations and numerically calculates the eigenval-

ues and eigenvectors to obtain the dispersion relationship of the bands. Due to the

periodicity of the potential, one only needs to consider the quasimomenta in the first

Brillouin zone, i.e. q ∈ [−π/a, π/a] for the description of the band structure.

In Fig. 4.2 we present the result of the band structure calculation for the lowest

three bands for different lattice depths. In the absence of the lattice potential the

dispersion relation corresponds to the free particle one. As one increases the lattice

depth, energy gaps open and the band structure emerges.

−1 0 1

q[π/a]

0

2

4

6

8

10

12

14

16

ε q
/E

r

0Er

α
1
2
3

−1 0 1

q[π/a]

0

2

4

6

8

10

12

14

16

ε q
/E

r

2Er

−1 0 1

q[π/a]

0

2

4

6

8

10

12

14

16

ε q
/E

r

6Er

−1 0 1

q[π/a]

0

2

4

6

8

10

12

14

16

ε q
/E

r

8Er

−1 0 1

q[π/a]

0

2

4

6

8

10

12

14

16

ε q
/E

r

12Er

Figure 4.2 : Band structure in a 1D optical lattice I. Results for the lowest
three energy bands are presented here for different lattice depths, which is indicated
by the shaded area. An energy gap opens and increases with lattice depth. Figure
obtained adapting the software in Ref. [146].

Fig. 4.3 illustrates that as the lattice depth in increased, the bands become nar-

rower and the energy gaps between the bands increase.
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Figure 4.3 : Band structure in a 1D optical lattice II. Results for the lowest
three energy bands are presented as a function of the strength of optical lattice in
units of the recoil energy. Figure obtained adapting the software in Ref. [146].

4.2.2 Wannier states

Although the delocalized Bloch states are solutions to the problem of a particle on a

periodic potential, it will be more convenient to describe the physics of the system in

a localized basis. Such a basis is formed by the Wannier states. In a lattice with Ns

sites, for the α-th band, a localized state centered around the xj site is given by the

Fourier transform of the Bloch states,

wα(x− xj) = wα
j (x) =

1√
Ns

∑
q

e−iqxjϕα,q(x), (4.15)

where the sum is over all allowed quasimomenta. Now, since [H0, π̂] = 0, where π̂

is the parity operator, the Bloch states have definite parity. In other words, the

Bloch states ϕα,q(x) and ϕα,q(−x) have the same eigenenergies, and therefore one can

construct symmetric and antisymmetric eigenstates ϕ±
α,q(x) =

1√
2
[ϕα,q(x)± ϕα,q(−x)]

and the proper way to construct the maximally localized Wannier functions is to

consider the the symmetrized and antisymmetrized Bloch states instead, i.e.

wα
j (x) =

1√
2Ns

∑
q

e−iqxjϕ±
α,q(x), (4.16)
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where in Ref. [151] it is shown that the maximally localized Wannier states are ob-

tained with the antisymmetric term for the odd bands and with the symmetric term

for the even bands.

In Fig. 4.4 we present the Wannier states for different lattice depths. We can

see that the Wannier states become more localized as the lattice depth increases,

resulting in states with smaller common domains between adjacent sites and thus a

decrease in the probability amplitude for a particle to tunnel between them. As the

Wannier states become more localized, this also implies that the on-site interaction

will be larger, since, on average, two particles in the same site will be closer to one

another.

−3 −2 −1 0 1 2 3

x/a

−0.5

0.0

0.5

1.0

1.5

2.0

w
α j
(x

)

1ER
4ER
6ER
10ER

Figure 4.4 : Wannier states in a 1D optical lattice. Wannier states for the lowest
energy band α = 1 of the sinusoidal lattice potential (shaded gray) localized at the
origin (xj = 0) are presented for different lattice depths. Figure obtained adapting
the software in Ref. [146].

4.2.3 The nearest-neighbor tight-binding model

One can rewrite the Hamiltonian H0 in second quantization using the Wannier states

in the following form,

H0 = −
∑
i,j

tij

(
c†icj + c†jci

)
, (4.17)
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where the tunneling amplitude tij between sites i and j is,

tij = −
∫
dxw∗

i (x)H0wj(x), (4.18)

and we only considered the lowest energy band (and therefore dropped the band

index). Since the Wannier functions become more and more localized as the lattice

depth increases, only the tunneling matrix element between neighboring sites ⟨i, j⟩

has a significant contribution ‖. This can be seen in Fig. 4.5 where we present different

tunneling matrix elements as a function of the lattice depth. Beyond nearest-neighbor

tunneling amplitudes can be safely ignored for lattice depths V0 ≳ 5ER [51].
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Figure 4.5 : Tunneling matrix elements in a 1D optical lattice. Results for
nearest-neighbors and beyond nearest-neighbors are presented as a function of lattice
depth. Figure obtained adapting the software in Ref. [146].

In this limit, the Hamiltonian simplifies to,

H0 = −t
∑
⟨i,j⟩

(
c†icj + c†jci

)
. (4.19)

Since all spin flavors σ see the same lattice, this last expression is valid for all σ,

which can take the values of the different nuclear spin projections mI . Then the

‖The on-site potential Vi = tii is also relevant, but can be dropped since it corresponds to an
overall shift in the chemical potential µ, and therefore can be absorbed in that term.
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kinetic energy term of the N flavors can be given as,

H0 = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
, (4.20)

with σ = 1, . . . , N .

4.2.4 The interaction term

The interaction between atoms is determined by the 2-body interaction previously

described in this chapter. Restricting ourselves to a single band (working under the

assumption that the energy gap between the lowest two bands is large compared to

the interaction energies) the interaction term in second quantization is,

Hint =
∑

(σ,τ )̸=(γ,β)

∑
i,j,k,m

Uijkmc
†
iσc

†
jτckγcmβ, (4.21)

where

Uσ,τ ;γ,β
ijkm =

1

2

∫
dx

∫
dx′w∗

iσ(x)w
∗
jτ (x)Vσ,τ ;γ,β(x− x′)wkγ(x)wmβ(x

′). (4.22)

Since Vσ,τ ;γ,β(x−x′) = (4πℏ2a/m)δ(x−x′)δσβδτγ for AEAs in their ground state, this

expression simplifies to

Uijkm =
1

2

4πℏ2

m
a

∫
dxw∗

iσ(x)w
∗
jτ (x)wkτ (x)wmσ(x), (4.23)

which is independent of the (σ, τ) pair. Furthermore, we restrict ourselves to a single

site, i.e. i = j = k = m because of the exponentially small overlap of the Wannier

functions which are centered on different sites. In this case we only need to consider
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the on-site interaction term U = 2Uiiii,

U =
4πℏ2

m
a

∫
dx|wi(x)|4, (4.24)

where we have dropped the spin label since Wannier functions are independent of σ.

Therefore, the interaction Hamiltonian now reads as,

Hint =
U

2

∑
σ ̸=τ

∑
i

c†iσc
†
iτciτciσ, (4.25)

or in terms of the number operators niσ = c†iσciσ,

Hint =
U

2

∑
i,σ ̸=τ

niσniτ . (4.26)

4.2.5 Hamiltonian describing AEAs in optical lattices

Putting together the results from the last two sections, the Hamiltonian in the grand-

canonical ensemble that describes AEAs in their ground state that interact via s-wave

scattering in an optical lattice is given by,

H = H0 +Hint −
∑
σ

µσNσ

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
i,σ ̸=τ

niσniτ −
∑
i,σ

µσni,σ. (4.27)

In the case of spin-balanced mixtures, i.e. ⟨Nσ⟩ = Nptcl/N , the chemical potentials

µσ = µ ∀σ and the Hamiltonian corresponds to the SU(N) Fermi Hubbard Model,

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
i,σ ̸=τ

niσniτ − µ
∑
i,σ

ni,σ. (4.28)
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Therefore, when AEAs are loaded into an optical lattice these are well described by

the SU(N) FHM.

4.3 Summary

In this chapter we discussed the electronic and scattering properties of alkaline-earth-

like atoms (AEAs). We discussed how SU(N) symmetric interactions are a conse-

quence of a shielding of the nuclear spin from the electronic cloud in states with total

vanishing electronic angular momentum. Finally, we presented how AEAs in optical

lattices are well described by the SU(N) Fermi-Hubbard model.
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Chapter 5

Numerical techniques

No conoćıan el mar y se les antojó más triste que

en la tele, pájaros de Portugal sin dirección ni

alpiste ni papeles.

Pájaros de Portugal. Joaqúın Sabina

Although there are a series of useful techniques in one dimension (d = 1) that can

be used to gain insight into the SU(N) FHM (such as the Bethe Ansatz [126, 152]),

in higher dimensions and in particular for larger N , one has to resort to perturba-

tion theory, mean-field approaches or numerical techniques to gain information about

phases and phase transitions in this model. Numerical techniques such as Quantum

Monte Carlo (QMC) methods have proven to be crucial in extracting information

about strongly correlated fermions. In this section we discuss perturbative approches

such as high-temperature series expansions, and numerical methods like Exact Diag-

onalization, Numerical Linked Cluster Expansion, and Determinant Quantum Monte

Carlo, with an emphasis on the last one.

5.1 High-Temperature Series Expansion

Controlled perturbative approaches are a useful tool in understanding the physics

of models. For example, the Heisenberg model can be obtained from the Fermi-

Hubbard model in the t/U ≪ 1 limit in a second order expansion in the tunneling,

where one realizes that the relevant energy scale that controls the spin interactions

is the super-exchange energy J = 4t2/U [82]. On the other hand, high-temperature

series expansions (HTSE) start from the atomic-limit or single site solution, where

analytic solutions are available and perturbatively introduce the tunneling in a t/T
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expansion [153–155]. The zeroth-order HTSE corresponds to t = 0 and the next

non-vanishing order is of 2nd order, i.e. O(t/T )2.

In the HTSE, the unperturbed Hamiltonian is

H0 =
U

2
n(n− 1)− µn (5.1)

and we treat the kinetic energy term as the perturbation,

K = −t
∑
⟨ij⟩,σ

(
c†i,σcj,σ + c†j,σci,σ

)
. (5.2)

To second order (the first order term vanishes), the partition function is [156]:

Z = Z0

[
1 +

∫ β

0

dτ1

∫ τ1

0

dτ2⟨K̃(τ1)K̃(τ2)⟩0
]
= Z0(1 + χ), (5.3)

where K̃(τ) = eτH0Ke−τH0 (i.e. written in the interaction picture). The free energy

is,

Ω = − 1

β
lnZ = − 1

β
ln [Z0(1 + χ)] = − 1

β
lnZ0 −

1

β
ln(1 + χ) ≈ Ω0 +∆Ω, (5.4)

where we used ln(1 + χ) ≈ χ if χ≪ 1,

∆Ω = − 1

β

∫ β

0

dτ1

∫ τ1

0

dτ2⟨K̃(τ1)K̃(τ2)⟩0. (5.5)

Now, following Ref. [156] the correction to the free energy is therefore given by,

− β∆Ω =
∑
q,p

e−βEq⟨q|K|p⟩⟨p|K|q⟩I(∆) =
∑
q,p

e−βEqKqpKpqI(∆), (5.6)
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where ∆ = Eq − Ep,

I(∆) =

∫ β

0

dτ1e
∆τ1

∫ τ1

0

dτ2e
−∆τ2 =


1
2
β2, ∆ = 0

1
∆2

(
eβ∆ − 1− β∆

)
, ∆ ̸= 0.

, (5.7)

and q corresponds to the basis of the unperturbed Hamiltonian, in this case, the

product of single-site terms.

Working out all the terms in eq. (5.6) (which are not many since the perturbation

only couples nearest-neighboring sites and the matrix elements are of the formKqpKpq

imposing constraints on the sums over nearest-neighbor sites), one arrives to the

following expression [71,141]:

−β∆Ω = zN

(
βt

z0

)2
[
1

2

N∑
n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2

− 1

βU

∑
n̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2
[n(n−1)+(m−1)(m−2)]

n−m

]
.

(5.8)

For simplicity and in order to keep the following calculations tidy, we define F [f(n,m)],

and G[f(n,m)] as,

F [f(n,m)] =
1

2

N∑
n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2f(n,m) (5.9)

G[f(n,m)] = − 1

βU

∑
n̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2
[n(n−1)+(m−1)(m−2)]

n−m
f(n,m)

(5.10)

Using this notation we get can rewrite the correction to the free energy as,

− β∆Ω = zN

(
βt

z0

)2
(
F [1] +G[1]

)
. (5.11)
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And the corrections to the density ⟨∆n⟩ and the number of on-site pairs ⟨∆D⟩ are

given by,

⟨∆n⟩ = zN

(
βt

z0

)2
(

− 2⟨n⟩0
(
F [1] +G[1]

)
+ F [2n− 1] +G[n+m− 1]

)
, (5.12)

⟨∆D⟩ = zN

(
βt

z0

)2
(

− 2⟨D⟩0
(
F [1] +G[1]

)
+ F [(n− 1)2]

+G

[
n(n− 1) + (m− 1)(m− 2)

2

])
. (5.13)

where ⟨n⟩0, and ⟨D⟩0 correspond to the atomic limit solution (t = 0).

HTSE have been used to study the SU(N) FHM in the square lattice [157], the

honyecomb lattice [158], and the infinite-U limit to explore the SU(N) Nagaoka-

Thouless ferromagnet [159]∗. In this work, we compute thermodynamic observables

with zeroth- and second-order HTSE to understand their behavior in the T ≳ t

regime and test the convergence of other numerical techniques. Results of HTSE are

presented in Chapters 7 and 10 where we derive and plot expressions for different

thermodynamic observables of interest.

5.2 Exact Diagonalization

Ideally, in the absence of analytic solutions to the FHM, one would like to be able

to construct the Hamiltonian matrix and then diagonalize it. However exact diago-

nalization (ED) of the SU(2) FHM is not easy due to the Hilbert space explosion: it

grows as 4Ns , where Ns is the number of lattice sites. This problem aggravates for

the SU(N) FHM, since the Hilbert space grows as 2NNs (see Table 5.1).

State of the art calculations with Exact Diagonalization can solve the SU(2) FHM

in a lattice with 12-14 sites. For 10 sites, the N = 2 Hilbert space contains 106

states, in contrast for N = 6 the Hilbert space contains 1012 more states, rendering

∗Other studies that rely on perturbative approaches to study itinerant ferromagnetism in dilute
SU(N) Fermi gases are presented in Refs. [160,161].
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N Ns Hilbert space

2 10 106

3 10 109

4 10 1012

6 10 1018

Table 5.1 : Hilbert space explosion

it almost impossible to perform those calculations. However, we have implemented

and performed ED calculations in small lattices over a reduced Hilbert space and

perform finite-size scaling to gain information the physics of the SU(N) FHM. For

computational efficiency, we exploit two aspects of the SU(N) symmetry. Particle

number conservation for each spin flavor

[Nσ, H] = 0, (5.14)

with Nσ =
∑

j njσ(j) where njσ = c†jσcjσ and the translation symmetry (in the

case of periodic boundary conditions) allow us to block-diagonalize the Hamiltonian.

Furthermore, the method exploits the spin permutation symmetries,

[Sσ
τ , H] = 0 ∀σ, τ = 1, . . . , N. (5.15a)

with

Sσ
τ =

∑
i

Sσ
τ (i) =

∑
i

c†iσciτ . (5.15b)

which relate many of the sectors of the Hamiltonian, and therefore one needs to

diagonalize each sector only once (see Fig. 5.1).

In addition to the exact symmetries, we employ a physically motivated basis state

truncation, which we systematically converge and works best for large U/t. First, the

Hilbert space only includes states with total particle number lesser or equal to a fixed
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Figure 5.1 : Exact Diagonalization. a) The SU(N) FHM corresponds to a matrix
(blue colors correspond to non-vanishing matrix elements). b) Applying the spin
particle conservation and translation invariance the matrix is now block diagonal.
c) Exploiting the spin permutation symmetry, different sectors of the Hamiltonian
are identical, so one only needs to diagonalize each sector once (the gray block is
related to the blue one by spin permutation). By employing these symmetries, larger
system sizes can be considered. For example, in the case of SU(6), the largest system
size we can solve considering the full Hilbert space is 4 sites. In contrast, using the
symmetries we can solve for 6 sites.

particle number Nmax. Second, it omits states where the on-site energy of the cluster

is larger than Ecut. Results at large U/t for densities ⟨n⟩ ≲ 1 are well converged since

the number of doublons and higher occupancies are very small in such regime. This

for example, allows us to solve the SU(6) FHM for 8 sites. We will present ED results

in Chapters 7 and 8.

It is worth mentioning that if one is only interested in the ground state and low

energy states of the model (or only a particular subset of the eigenstates), one can use

the Lanczos method rather than diagonalizing all sectors of the Hamiltonian [162,163].

5.3 Numerical Linked Cluster Expansion

Thermodynamic properties of the SU(N) FHM can be evaluated with Numerical

Linked Cluster Expansions (NLCE) [164]. In the NLCE extensive properties in a

lattice are evaluated by performing a weighted sum of their value in all possible
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clusters c embeddable in the lattice; specifically,

P (L)/Ns =
∑
c∈L

L(c)WP (c) (5.16)

where P (L) is the property evaluated on the entire lattice L, Ns is the number of

lattice sites, L(c) is the number of ways that the cluster c can be embedded in the

lattice (up to translation invariance), and WP (c) is defined as

WP (c) = P (c)−
∑
s⊂c

WP (s). (5.17)

Because eq. (5.16) is an infinite sum over all clusters, the key idea of the NLCE is

to truncate this sum to clusters of small size and evaluate properties on each cluster

using ED (see Fig.5.2). We then truncate the sum over clusters based on the number

of sites, performing calculations up to n-site clusters (n-th order NLCE).

Figure 5.2 : Numerical Linked Cluster Expansion. In NLCE one solves the
SU(N) FHM in clusters of different sizes that are embeddable in the lattice of interest.
Results of thermodynamic observables are then obtained as a weighted sum of the
observables measured in each cluster. Figures reprinted with copyright permission of
Ref. [164].

The convergence of the ED/NLCE with system size/order of the calculation can

be understood by thinking of the procedure as a perturbation series in the correlation

length ζ/L: If the correlation length is smaller than the length of the system with

Ns sites (ζ < L) an L-order ED/NLCE calculation will be able to capture the ther-
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modynamic properties of the system. In contrast, when long-range order develops

in the system and ζ ≳ L, results from the ED/NLCE are not reliable. It has been

demonstrated that NLCE is much more accurate than an exact diagonalization (ED)

that uses the same number of (or even more) sites [164] †. In addition, the NLCE

self-diagnoses its accuracy, with converged results expected when adjacent orders give

nearly the same answer.

Using NLCE with the ED procedure described in Sec. 5.2 allows for the exploration

of thermodynamic quantities in larger system sizes and works best in the large U/t

limit, where the Hilbert space truncation can be applied in the ED method. We will

present NLCE results in Chapters 7 and 10.

5.4 Determinant Quantum Monte Carlo

One of the most useful numerical techniques to study strongly correlated matter

has been Determinant Quantum Monte Carlo (DQMC) [54, 165–170]. In particular,

for d > 1 in SU(2) FHM, where it is not exactly solvable, DQMC has provided

useful information about the different phases this model exhibits [171,172]. Moreover,

DQMC also allows for the exploration of relatively large systems, in comparison with

ED and NLCE. To demonstrate its importance, DQMC has provided key input in the

interpretation of experiments and is extensively used for precise thermometry of the

SU(2) FHM using ultracold atoms in OLs [20], compare spin correlations [68], and

calculate transport properties [22], amongst other examples.

Monte Carlo methods rely on performing importance sampling of configurations

weighted by a given probability distribution [173]. This importance sampling can

be implemented with algorithms such as Metropolis-Hastings [174]. For a given sys-

tem or Hamiltonian H, the main task is to importance sample exp(−βH), where

†The faster rate of convergence of the NLCE can be understood in the sense that by performing a
weighted average, one can mitigate finite-size effects more efficiently. However, it is worth mentioning
that even though ED is less accurate than NLCE in the temperature regime in which it converges,
below this temperature the ED can reproduce the correct qualitative trends while the NLCE diverges.
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β = 1/kBT , kB is the Boltzmann constant and T is the temperature. In this section

we first describe the basics of DQMC for the SU(2) FHM and then discuss how we

generalized it for N > 2. For more in-depth details on Monte Carlo methods such

as the Metropolis-Hastings algorithm, properties and Markov chain and detailed bal-

ance, we refer the reader to Refs. [173–176]. For further details on Quantum Monte

Carlo methods we refer the reader to [167]. It is important to mention that most

of my knowledge of DQMC I learned it from Richard Scalettar and the following

section describing DQMC for the SU(2) FHM is inspired from some of his notes on

the subject [168–170].

5.4.1 DQMC for N = 2

For the SU(2) FHM given in eq. (2.1), the kinetic and chemical potential terms are

bilinear in fermion operators and can be easily diagonalized; however the interaction

term, quartic in fermion operators, cannot be diagonalized in the single particle basis.

The standard way of computing the partition function is to discretize β in L imaginary

time slices β = L∆τ via the Trotter-Suzuki decomposition [54],

Z = Tr
[
e−βH] ≈ Tr

[
L∏

ℓ=1

e−∆τKe−∆τV

]
, (5.18)

where K contains the kinetic and chemical potential terms, while V is the interaction

term; and introduce, for each imaginary time slice ℓ and each lattice site i, a discrete

Hubbard Stratonovich (HS) transformation that replaces the on-site interaction by a

fluctuating Ising field si(ℓ) coupled to the magnetization [54],

e−U∆τ(ni↑− 1
2)(ni↓− 1

2) =
1

2
e−U∆τ/4

∑
si(ℓ)=±1

eλsi(ℓ)(ni↑−ni↓), (5.19)

where coshλ = exp(U∆τ/2). By doing so, now Z is a product of exponentials

of bilinear terms in the fermion operators and can be traced out, leaving us with
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a partition function expressed as the product of two determinants where the trace

needs to be taken over the auxiliary Ising fields {s}:

Z = Tr{s}C1 det [M↑({s})] det [M↓({s})] , (5.20)

where C1 is a constant and will be irrelevant for the Monte Carlo method and

Mσ({s}) = 1 +Bσ
1B

σ
2 . . . B

σ
L−1B

σ
L, (5.21)

Bσ
ℓ = e−∆τKσe−Vσ(ℓ), (5.22)

Gσ
ij(ℓ = L) = ⟨ciσc†jσ⟩ = [Mσ({s})]−1

ij . (5.23)

Here Gσ is the single particle Green’s function for fermion with spin σ, and Kσ and

Vσ(ℓ) are the kinetic and potential energy terms given by,

Kσ =
∑
i,j

c†iσkijcjσ, (5.24)

Vσ(ℓ) = σ
∑
i

λniσsi(ℓ), (5.25)

where kij has the shape,

kij =



−µ −t 0 . . .

−t −µ −t . . .

0 −t −µ . . .

...
...

...
. . .


. (5.26)

We have then expressed the grand partition function as a sum over Ising spins of

a product of determinants. If the quantity under the trace were positive definite, it

could be used as a Boltzmann weight to perform importance sampling over the Ising
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configurations:

ρ({s}) = 1

Z
C1 det [M↑({s})] det [M↓({s})] . (5.27)

In other words, if
∏

det > 0, it is a probability distribution that we can sample

from. This is the underlying principle of DQMC. There are, however, cases where∏
det < 0. In these cases, DQMC faces a significant challenge known as the fermion

sign problem [55]: Let’s define c = {s} and p(c) = det [M↑({s})] det [M↓({s})]. If we

write p(c) = sign(c)|p(c)|, where sign(c) = ±1 to keep track of the sign of p(c), the

expectation value of an observable A is replaced by an average weighted by |p(c)| [54],

⟨A⟩p =
∑

c p(c)A(c)∑
c p(c)

=

∑
c sign(c)|p(c)|A(c)∑

c sign(c)|p(c)|
=

⟨signA⟩
⟨sign⟩ |p|

. (5.28)

If the average sign is small, longer runs are necessary in order to compensate for the

strong fluctations in ⟨A⟩p. We need at least ⟨sign⟩−2 more runs in order to obtain

similar statistical accuracy as for ⟨sign⟩ ≈ 1 [54]. It is important to mention that most

of the great successes of DQMC have been in special cases where the algorithm is sign

problem free. One of this cases is at half-filling (⟨n⟩ = 1), where one can prove using

the particle-hole transformation that det[M↑({s})] = exp[−λ∑i,ℓ si(ℓ)] det[M↓({s})],

and therefore ρ({s}) ≥ 0 for U ≥ 0, rendering the calculation free of the sign problem

and thus allowing to perform calculations down to very low temperatures [54].

5.4.1.1 The algorithm

In the previous section we discussed how in DQMC one can construct a probability

distribution one can importance sample and mentioned how the sign problem arises.

Here we briefly describe how the algorithm is used to generate Hubbard-Stratonovich

configurations and how are observables computed in the method.
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Steps of the algorithm

• Initialize the Hubbard-Stratonovich field {s}, that is a Ns × L matrix, with

entries ±1 set to randomly (recall Ns is the number of lattice sites and L is the

number of imaginary time slices).

• Monte Carlo Loop

(a) Set (ℓ, i) = (L, 1)

(b) Perform the (ℓ, i) loop

1. Propose a new configuration {s′} by flipping the Ising spin at site i.

2. Compute the Metropolis-ratio

rℓ,i =
ρ({s′})
ρ({s}) =

det [M↑({s′})] det [M↓({s′})]
det [M↑({s})] det [M↓({s})]

(5.29)

3. Define the Metropolis acceptance-ratio α({s} → {s′}) = min(1, rℓ,i).

4. Accept or reject the configuration with probability α.

If the new configuration is accepted the Green’s function for the time

slice needs to be updated, not just the ii element. One can

– Iterate the “old” Green’s function via the formula,

Gσ
jk → Gσ

jk − bσj c
σ
k , (5.30)

where

bσj =
Gσ

ji

1 + cσi
(5.31)

cσk = −
(
e−2σλsi(ℓ) − 1

)
Gσ

ik + δik
(
e−2σλsi(ℓ) − 1

)
(5.32)
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– Or compute it from scratch (generally this has to be done after

several iterations, to reduce systematic errors).

5. Update the interaction energy matrix Vσ(ℓ)

6. Go the next site in the same imaginary-time slice, until all sites have

been visited (ℓ, i) = (L, i+1). After all spatial sites i of the imaginary

time slice ℓ = L have been updated, change the Green’s functions via:

Gσ(L− 1) = Bσ,LG
σ(L)[Bσ,L]

−1 (5.33)

(c) Go to the next imaginary time slice (ℓ, i) = (L− 1, 1).

• Repeat steps (a)-(c) for the desired number of warm-up steps (i.e. number of

sweeps needed to equilibrate to the probability distribution).

• After warm up steps, repeat (a)-(c) for the desired number of measurement

steps. During these sweeps, perform physical measurements.

The algorithm as previously stated scales in CPU time as N4
sL. This is due to

reevaluating det [M({s})] that takes N3
s operations, and we have to do it NsL times.

However we can reduce the scaling to N3
sL, since we are only flipping one Ising spin

at a time, and therefore we can calculate a simpler expression that relates to the

Green’s functions ‡:

rℓ,i =
det [M↑({s′})] det [M↓({s′})]
det [M↑({s})] det [M↓({s})]

= R↑
ℓ,iR

↓
ℓ,i, (5.34)

Rσ
ℓ,i = 1 + (1−Gσ

ii(ℓ))
(
e−2σλsi(ℓ) − 1

)
(5.35)

Computing observables

The expectation value of operators is obtained by sampling the corresponding

Green’s function over the Hubbard-Stratonovich configurations. Here is important to

‡This simplification is an application of the “Sherman–Morrison” formula.
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highlight that in the present approach the fermionic particles only interact with the

auxiliary fields, so that Wick’s theorem holds for a fixed configuration of the Ising

fields. This means that, all expectation values of interest can be calculated in terms

of the single-particle Green’s functions. Some observables of interest are

• The occupation number ⟨niσ⟩ = 1−Gσ
ii

• The double occupancy ⟨ni↑ni↓⟩ =
(
1−G↑

ii

)(
1−G↓

ii

)
• The spin-spin correlation function ⟨S+

i S
−
j ⟩ = −G↑

jiG
↓
ij

5.4.1.2 Non-ergodicities (sticking) and numerical instabilities

Besides the existence of the sign problem as previously discussed, we need to pay

attention to a series of other subtleties:

• At low temperatures the product of matrices required in constructing the Green’s

functions becomes numerically unstable at low temperatures (and gets worse at

strong couplings). This issue arises from the fact that the product of matrices

involved in computingM has a very high ratio of largest to smallest eigenvalue,

so computing its inverse G =M−1 requires numerical stabilization procedures.

Such instability can be overcome by using the “Space-Time Formulation” or by

performing a “Matrix-Decomposition Stabilization” [54].

When numerical instabilities arise, the “wrapping” process to update the Green’s

function after all the sites in a single imaginary time slice ℓ have been updated

[see eq. (5.33)] becomes less reliable and carries larger systematic errors. So in

addition to having to incorporate more complex methods to numerically multi-

ply matrices on a machine of finite precision, one has to compute from scratch

the Green’s function at every imaginary time slice.

• At large couplings, DQMC exhibits ergodicity problems, which generally trans-

late into something known as sticking : states with fixed occupation numbers
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for each spin flavor break the SU(2) symmetry, i.e. ⟨n↑⟩ ̸= ⟨n↓⟩. Sticking is

a major issue for quantities such as the spin-spin correlation function and the

structure factor. This problem is overcome for the SU(2) FHM by performing a

global move that flips the Ising spin on site i for all imaginary time slices [177].

This global move effectively permits sampling the different regions of the phase

space with the largest Boltzmann weights, but that are separated by regions of

small weights, which makes it hard for a Monte Carlo trajectory to cross them.

5.4.2 DQMC for N ≥ 2

Having set up the basics of the DQMC algorithm for N = 2 we now proceed to

explain how we generalized it to N > 2. Our approach was to introduce N(N − 1)/2

real auxiliary fields, one for each interaction term (see Fig. 5.3),

e−U∆τ(niσ− 1
2)(niσ′− 1

2) =
1

2
e−U∆τ/4

∑
sσσ′
i (ℓ)=±1

eλs
σσ′
i (ℓ)(niσ−niσ′ ). (5.36)

Figure 5.3 : Determinant Quantum Monte Carlo. In this technique one maps
the Quantum Mechanical problem into a classical one via the Hubbard-Stratonovich
configuration. Then one stochastically samples the Ising fields configurations and
compute observables of interest. This mapping has the drawback know as the sign
problem that arises from the fermionic nature of the original Hamiltonian. In the case
of N > 2, in our current approach, we introduce N(N − 1)/2 auxiliary fields, one for
each interaction term.
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It is important to mention that the choice of decoupling is not unique. In previous

work performed by Congjun Wu and Fakher Assaad’s groups [77, 78, 178, 179], they

apply DQMC to the half-filled SU(4) and SU(6) FHM by using an exact discrete

complex HS decomposition. Here a single complex auxiliary field is coupled to the

charge channel rather than the magnetization channel. This complex decomposition

has the benefit of being sign-problem free at half-filling, i.e. ⟨n⟩ = N/2, but its

performance for odd values of N has not yet been explored.

Our choice of decoupling has advantages and disadvantages. First of all it al-

lows us to immediately generalize a previous SU(2) DQMC code. Second, we can

study, in principle, the SU(N) FHM for any value of N . One question of importance

corresponds to how the efficiency of the algorithm is affected by the choice in the

decoupling, in particular at experimentally relevant densities ⟨n⟩ ≲ 1. For our choice

of decoupling, no one has yet explored the efficiency of the algorithm around the

experimentally accessible fillings, while for the complex decoupling all results are at

half-filling, except Ref. [178] where authors explored the quarter-filling case for even

N §.

On the other hand, a couple of caveats are present. For our choice of decoupling

the partition function is now a product of N determinants (see Appendix A for more

details). Although the Metropolis-Hastings algorithm can handle this by introducing

one extra loop that goes through all the HS fields sσσ
′

i (ℓ), there are two issues to ad-

dress. First, having more determinants increases the chances of having combinations

that will yield a negative product, therefore aggravating the sign problem. Second,

despite the fact our HS transformation decouples each interaction term by pairs, the

N(N − 1)/2 auxiliary Ising fields couple asymmetrically to the spin flavors. Such

asymmetry can have consequences in the efficiency of the global moves and sticking ¶

§For large N , like 6, the half-filled case is out of reach experimentally due to three-body losses.
For N = 4 the half-filled case can be of interest experimentally, but three-body losses might start to
become relevant too.

¶For SU(N), the global move used for N = 2 is not as efficient due to the asymmetry in the
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(see Appendix B for more details). For details on the tests we performed to diagnose

the convergence of the DQMC method, these are presented in Appendix C.

5.5 Summary

In this chapter we presented the different analytical and numerical techniques we

used in the study of the SU(N) FHM. Such techniques have their own benefits and

drawbacks, which also determine the regions where they all perform best (see Ta-

ble 5.2) and provide a way not only to compare techniques where possible (which is

a good way to test convergence and look for systematic and/or coding errors), but

also provide complimentary strengths to study the model in different temperature,

interaction and filling regimes.

Technique Abbrv Dimension U/t

Exact Diagonalization ED 1D ≳ 8
Numerical Linked Cluster Expansion NLCE 2D/3D ≳ 8
Determinant Quantum Monte Carlo DQMC 2D/3D ≲ 8

Table 5.2 : Parameter space where different numerical techniques perform best.

Before we summarize the numerical techniques discussed in this chapter, we men-

tion, for completeness, that other numerical techniques exist. One of them is Di-

agrammatic Quantum Monte Carlo which has been previously used to explore the

SU(2) FHM [180–182], but has not been applied to the SU(N)-symmetric version.

For N = 2 although low temperatures T/t ∼ 0.025 can be achieved with Diagram-

matic QMC, only small interaction strengths can be reached U/t ∼ 4 [181]. Another

technique is Projector QMC which has been applied to one dimensional systems [127]

and two dimensional square lattices at half-filling [77,78], but only provides T = 0 re-

sults and is a variational approach. In addition, there is single-site Dynamical Mean

quadratic interaction decoupling, but in practice we found it works fairly well. As a future project,
finding the most efficient global moves for SU(N) will improve the performance of our code and
further mitigate the sticking problem.
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Field Theory (DMFT) which can provide insight to the physics, but breaks down

around T/t ∼ 1 [183,184].

Coming back to the methods here presented, in general, ED results perform best

in small lattices, making it the ideal choice for 1D systems. In addition, the system

sizes that can be computed can be increased if one works in the large U/t limit and

considers ⟨n⟩ ≲ 1, where the Hilbert space can be truncated.

Then one can build upon the ED to perform NLCE calculations, which allows one

to consider larger system sizes and with more accurate results in the regime where it

is converged. NLCE will be most powerful, i.e. higher orders will be accessible, when

one works in the large U/t limit.

On the other hand, HTSE allow for the analytical exploration of results in the

T ≳ t limit, where relevant physics already develops, such as the Mott-Insulator

transition. These results have been used to diagnose when higher-order processes

in the tunneling become relevant, and as a way to gain insight of the physics and

benchmarking results.

Finally, we presented DQMC, which allows for the the exploration of relatively

large systems, in comparison with ED and NLCE. This method is exact in the non-

interacting limit U = 0 and although the sign problem and the sticking worsen as U/t

is increased, a wide range of interactions strengths can still be explored U ∈ [0, 12] to

T ∼ 0.5t ‖ in different geometries.

‖Or even lower temperatures in special cases, for example some cases at half-filling where particle-
hole-symmetry (PHS) is present and there is no sign problem [55].



80
CHAPTER 6. THERMODYNAMICS AND MAGNETISM IN THE 2D-3D

CROSSOVER OF THE HUBBARD MODEL

Chapter 6

Thermodynamics and magnetism in the 2D-3D

crossover of the Hubbard model

The truth of the story lies in the details.

The Brooklyn Follies. Paul Auster

This chapter is adapted from publication:

Thermodynamics and magnetism in the 2D-3D crossover of the Hubbard model,

Eduardo Ibarra-Garćıa-Padilla, Rick Mukherjee, Randall G. Hulet, Kaden R.

A. Hazzard, Thereza Paiva, and Richard T. Scalettar, Phys. Rev. A 102, 033340

(2020) ∗.

The realization of antiferromagnetic (AFM) correlations in ultracold fermionic

atoms on an optical lattice is a significant achievement. Experiments have been

carried out in one, two, and three dimensions, and have also studied anisotropic

configurations with stronger tunneling in some lattice directions. Such anisotropy

is relevant to the physics of cuprate superconductors and other strongly correlated

materials. Moreover, this anisotropy might be harnessed to enhance AFM order. In

this Chapter we numerically investigate, using Determinant Quantum Monte Carlo,

a simple realization of anisotropy in the 3D Hubbard model in which the tunneling

between planes, t⊥, is unequal to the intraplane tunneling t. This model interpolates

between the three-dimensional isotropic (t⊥ = t) and two-dimensional (t⊥ = 0) sys-

tems. We show that at fixed interaction strength to tunneling ratio (U/t), anisotropy

can enhance the magnetic structure factor relative to both 2D and 3D results. How-

ever, this enhancement occurs at interaction strengths below those for which the Néel

∗Complete article, including text, figures, and tables reprinted with copyright permission of
Ref. [43].
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temperature TNéel is largest, in such a way that the structure factor cannot be made to

exceed its value in isotropic 3D systems at the optimal U/t. We characterize the 2D-

3D crossover in terms of the magnetic structure factor, real space spin correlations,

number of doubly-occupied sites, and thermodynamic observables. An interesting

implication of our results stems from the entropy’s dependence on anisotropy. As the

system evolves from 3D to 2D, the entropy at a fixed temperature increases. Cor-

respondingly, at fixed entropy, the temperature will decrease going from 3D to 2D.

This suggests a cooling protocol in which the dimensionality is adiabatically changed

from 3D to 2D.

6.1 Introduction

Quantum simulation uses engineered quantum systems, such as ultracold atoms in

lattices, to realize many-body models of interest in ways that offer powerful control

over the system and probes of its physics [12,16,17]. A prototypical example is using

fermions in an optical lattice as an optical lattice emulator (OLE) to realize the Fermi-

Hubbard model [14,15,18,20,185–188]. Such simulations allow experiments to flexibly

tune the kinetic and interaction energies, lattice geometry, and lattice filling, and in

principle use this control to study antiferromagnetism (AFM), superconductivity,

pseudogap, and strange metal behavior, for example.

AFM is intriguing in its own right and is a natural first step to more exotic

phases [22, 69, 189]. AFM in cold atoms has been studied in bosonic atoms [190],

spin-1/2 ions [191, 192], in highly anisotropic lattices [60, 67, 142, 193], and in other

more recent theoretical work [172, 194–198]. In a fermion OLE, spin-selective Bragg

scattering observed AFM correlations at temperatures down to 1.4TNéel in a three-

dimensional (3D) cubic lattice [20], where TNéel is the Néel temperature (the critical

temperature for AFM ordering), with an accompanying characterization of the Mott

insulator equations of state [19]. In addition, quantum gas microscopy [199–206]
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has provided direct observation of correlations beyond nearest-neighbors, through

real-space imaging of AFM order in one [59] and two [21, 62, 63] dimensions. As

we will elaborate on later, dimensionality plays an important role in the transition

temperature to the antiferromagnetic phase, being equal to zero in 2D, but finite in

3D.

Although OLEs are giving us new insights into quantum matter, there are also

significant challenges. Of particular relevance here is that, although experiments

have achieved spin correlations which extend across the finite 2D lattice [21], so far

experiments have not reached sufficiently low temperatures or entropies to observe a

long-range ordered AFM phase in a regime where TNéel > 0, i.e. where correlations

would persist to long range as the system size is increased arbitrarily. In order to

achieve this goal, several cooling protocols exist. One that has received a lot of

attention from both theory and experiment is to use spatial subregions as repositories

for excess entropy, allowing for lower temperatures in other regions [21,37,38,67,207],

but reaching the Néel temperature, and below, remains an outstanding challenge.

Anisotropic systems that have larger tunneling rates in some directions than oth-

ers offer potentially richer varieties of physics than simple 1D, 2D, or 3D cubic lattices.

Anisotropic systems are relevant to real materials, as discussed below, while also sug-

gesting a route to achieving longer-range AFM order. Specifically, it is known that

2D systems offer stronger nearest neighbor correlations for a given entropy than 3D

systems [67, 193], making them favorable to search for short-ranged AFM. However,

true long-range order cannot develop at T > 0 in 2D due to the Mermin-Wagner

theorem, in contrast to 3D. Thus a potential scenario for anisotropic lattices that

interpolate between 2D and 3D is that they retain the strong AFM correlations asso-

ciated with 2D planes, while being able to develop long-range order by virtue of the

interplane tunnelings.

This Chapter explores the evolution of AFM correlations in the half-filled repulsive
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Hubbard model across the 2D-3D crossover using Determinant Quantum Monte Carlo

(DQMC) [165,166]. DQMC [19–22,63,68,172,208–210] and other numerical solutions

of the Hubbard model [such as numerical linked-cluster expansion (NLCE) [20,63,68],

dynamic mean-field theory (DMFT) [22, 211–213], density matrix renormalization

group (DMRG) [126], and diagrammatic QMC [214, 215]] have provided key input

in the interpretation of experiments and, in particular, in the determination of tem-

perature. In this Chapter, the evolution of AFM correlations is characterized as a

function of both temperature T and entropy S, to allow for a deeper understanding

of the optimization of AFM at fixed S.

An important conclusion is that, for interaction strength U less than (roughly)

the 2D bandwidth, the long-range AFM correlations at a given temperature or en-

tropy, measured by the magnetic structure factor at the k⃗ = (π, π, π) wavevector,

are maximized in lattices which straddle dimensionality. Although anisotropy can

increase the structure factor at small U , it never exceeds the value in the isotropic

3D system evaluated at the optimal U . Similar conclusions were reached in Ref. [60]

for the 1D-3D crossover using a dynamical cluster approximation (DCA).

In addition to the possibility of achieving AFM in OLE, an understanding of di-

mensional crossover is relevant to strongly correlated materials [216]. Perhaps the

most important example is the cuprate superconductors, layered materials for which

the superexchange coupling J⊥ = 4t2⊥/U between planes is several orders of magni-

tude lower than the in-plane superexchange J = 4t2/U [217, 218]. Despite this large

anisotropy, J⊥ is crucial to the physics, since in a purely 2D geometry TNéel = 0.

The remainder of this Chapter is organized as follows: Section 6.2 presents the

Hubbard Hamiltonian and defines the observables we consider. Section 6.3 presents

the details of the DQMC simulation. Section 6.4 presents the main results. Section 6.5

concludes.
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6.2 The anisotropic Fermi-Hubbard model

In this study we numerically investigate using DQMC a simple realization of an

anisotropic SU(2) half-filled FHM, in which the tunneling between two-dimensional

(2D) planes t⊥ is different from the intraplane tunneling t. This model interpolates

between the 2D (t⊥ = 0) and the three-dimensional (3D, t⊥/t = 1) systems. This

anisotropic Hamiltonian is depicted in Fig. 6.1 and is given by,

H =− t
∑

⟨i,j⟩∥,σ

(
c†iσcjσ + c†jσciσ

)
− t⊥

∑
⟨i,j⟩⊥,σ

(
c†iσcjσc

†
jσciσ

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
, (6.1)

where t⊥/t ∈ [0, 1], and ⟨i, j⟩∥ (⟨i, j⟩⊥) denote in-plane (out-of-plane) nearest-neighbors.

We have set µ = 0 which ensures half-filling, i.e. ⟨ni⟩ = ⟨ni↑⟩ + ⟨ni↓⟩ = 1 occurs for

all values of U/t, T/t, t⊥/t. We set Boltzmann’s constant kB = 1 throughout.

=#
="

x
y

z

t

t? U

Figure 6.1 : Anisotropic Fermi-Hubbard Model setup. Red and green spheres
denote fermionic atoms in different spin-1/2 projections in a 3D anistropic lattice.
Atoms can be in either | ↑⟩, | ↓⟩ states using two different hyperfine states of ultracold
atoms. The intraplane nearest-neighbor tunneling is t, the interplane hopping ampli-
tude is t⊥, and the on-site interaction is U . By controlling t⊥/t the 2D-3D crossover
is achieved.
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We are interested both in the thermodynamics, e.g. energy and entropy, how the

temperature T changes with t⊥ at fixed entropy S, and also with the behavior of the

real space spin-spin correlation function c(r⃗ ) = c(ρ, z) (where ρ is the magnitude of

the in-plane components of r⃗), in particular the in-plane c||(ρ) and out-of-plane c⊥(z)

correlation functions, as well as the magnetic structure factor S(q⃗ ):

c(r⃗ ) =
〈 (
nr⃗0+r⃗,↑ − nr⃗0+r⃗,↓

) (
nr⃗0,↑ − nr⃗0,↓

) 〉
,

c||(ρ) = c(ρ, z = 0),

c⊥(z) = c(ρ = 0, z),

S(q⃗ ) =
∑
r⃗

eiq⃗·r⃗ c(r⃗ ), (6.2)

where these averages are taken in thermal equilibrium at fixed temperature T and

chemical potential µ = 0. The structure factors can diagnose long range order. At

half-filling, the Fermi surface is nested for any t⊥, so that the ordering wavevector is

always (π, π, π) regardless of the degree of anisotropy. For that reason we focus on

the AF structure factor S
(
q⃗ = (π, π, π)

)
, which we denote Sπ. In addition, Ref. [219]

contains a mean field theory study of the crossover from 3D to 2D considered here,

including careful treatment of finite-size and shell effects to ensure the correct ordering

wavevector is captured at all densities.

6.3 Details of the DQMC

The averages of thermal equilibrium observables of Eq. (6.1) are evaluated with

DQMC [171] in 10× 10 (for t⊥ = 0) and 6× 6× 6 (for t⊥ > 0) lattices. In addi-

tion we also computed results in 4× 4× 4 and 8× 8× 8 lattices to analyze finite-size

effects in the structure factor. In this method, the introduction of a space- and imagi-

nary time-dependent auxiliary field allows tracing over the fermion degrees of freedom

analytically. The auxiliary field is then sampled stochastically. To achieve accurate
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results, we obtain DQMC data for 20-50 different random seeds for T/t ≤ 1 and for

1-10 different random seeds for T/t > 1. In each realization, 500 sweeps updating the

auxiliary field at every lattice site and imaginary time are performed for equilibration

and 5000 sweeps for measurements. For each Monte Carlo trajectory measurements

of the ⟨SzSz⟩ and ⟨SxSx⟩ correlation functions are made. These are equal on average

by the SU(2) symmetry, and both are included in the statistics. The inverse temper-

ature interval (0, β) is discretized in steps of ∆τ with a Trotter step ∆τ = 0.05/t for

U/t = 4, 8 and ∆τ = 0.04/t for U/t = 12. The number of global moves per sweep,

which update all the imaginary time slices at a given lattice site, to mitigate possible

ergodicity issues [177], is set to 2 for U/t = 4, 8 and to 4 for U/t = 12.

Estimates of other systematic errors – Trotter and finite-size error – show that the

predominant error is statistical, arising from the finite number of measurements. In

the following section, error bars are reported as the standard error of the mean for all

results. For U/t = 12, where the inverse temperature discretization error is expected

to be worst, we can gain insight into the magnitude of this error by considering the

difference of the results obtained with Trotter steps ∆τ = 0.04/t and ∆τ = 0.05/t.

This difference is below 2.5% for all observables of interest, comparable to the statis-

tical error in many cases. This discretization error is even smaller for the other two

values of U/t considered. Finite-size errors for thermodynamic quantities and nearest-

neighbor correlations are estimated by taking the difference between results obtained

in cubic lattices with sides of length L = 4 and L = 6 in 3D. These differences are

≲ 5%. At high temperatures and away from the optimal anisotropies, i.e. well above

the Néel temperature, the error in the structure factor is similar, but for T ≲ TNéel,

the structure factor is sensitive to longer-ranged correlations, including those between

sites separated by distances comparable to L. Here, finite-size effects can be more

significant, ∼ 50% in our calculations. (Indeed, below TNéel, the difference in Sπ in

a finite and infinite system is infinitely large, and a different extrapolation scheme
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would be necessary to infer the L = ∞ results.). Results for the structure factor at

low temperatures where it has become independent of temperature should therefore

be interpreted with some care. However, we expect the conclusions of this Chaper

to remain. A detailed study of finite-size effects in the structure factor can be found

in Refs. [215,220], where careful finite-size scaling techniques are used to extract the

Néel temperature in 3D. For more discussion of the finite-size effects in the 2D-3D

crossover, see section 6.5.2.

6.4 Results

This section shows the main results of this Chapter. We calculate several observables

as functions of T/t, U/t, and t⊥/t: the spatial correlation functions c||(ρ) and c⊥(z),

the AFM structure factor Sπ, the double occupancy D = ⟨ni,↑ni,↓⟩, the contributions

to the specific heat C(T ) from the interaction and kinetic energies, and the entropy

per site S/N – where N denotes the number of sites. All of these observables contain

important information about the physics and can be measured in experiments with

ultracold atoms. The double occupancy is a key measure of the Mottness and insulat-

ing nature of the system, and the correlations and structure factor give information

about the magnetic phase diagram. The thermodynamic observables give informa-

tion about the ordering of the state – its spatial coherence (kinetic energy) and to

what extent degrees of freedom are capable of fluctuating (the entropy and specific

heat). The entropy is usually obtained by ramping from a weakly interacting gas

near-adiabatically, and the entropy of the weakly interacting gas can be determined

by thermometry. As the temperature is often not directly experimentally accessible

in strongly interacting systems, understanding the dependence of observables on S is

crucial.
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6.4.1 Spin correlations

Figure 6.2 : Spin correlations of the anisotropic FHM. (a) Interplane c⊥(z) and
intraplane c∥(ρ) spin correlations as a function of distance for different values of the
interaction strength U/t and the anisotropy t⊥/t. Insets show the same plot on a log
scale.

Figure 6.2 shows the out-of-plane and in-plane spatial correlations for different

values of U/t, T/t and t⊥/t. First, let’s focus on the first row of panels (a) and

(b), which corresponds to U/t = 4. The spatial correlations are larger at small T/t,

showing clear in- and out-of-plane AF oscillations as a function of distance. At the

lowest T/t considered in Fig. 6.2, T/t = 0.167, both c||(ρ) and c⊥(z) indicate a strong

antiferromagnetic ordering extending to several lattice sites. The insets, which present

the correlations on a log scale, demonstrate that for the two high temperature sets

both c||(ρ) and c⊥(z) have an exponential decay associated with a correlation length

ξ, while the low temperature data reaches a constant value, an indicator of larger

correlation length ξ and the onset of long-range order. As one might expect, the
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strength of the correlations increases as the correlation length increases. All of these

trends are similar for the U/t = 8 and U/t = 12 data, but both spatial correlations

exhibit stronger AF correlations than for U/t = 4.
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Figure 6.3 : Nearest-neighbor spin correlations of the anisotropic FHM.
cNN
⊥ = c⊥(z = 1) and cNN

∥ = c∥(ρ = 1) as functions of temperature for different values

of the interaction strength U/t and the anisotropy t⊥/t.

Now let’s focus on how the the low temperature data for panels (a) and (b) evolves

with t⊥/t. As t⊥/t increases, the between-plane correlations get stronger while the in-

plane correlations get slightly weaker. The effect on in-plane correlations is strongest

for U/t = 4 and nearly negligible for U/t = 8, 12.

In Fig. 6.3 we plot the in-plane and out-of-plane nearest-neighbor spatial corre-

lations, cNN
|| and cNN

⊥ , as functions of temperature T/t at various t⊥/t. Both corre-

lation functions get enhanced at small T/t and large U/t. Similar to the trends of

longer-ranged correlations shown in Fig. 6.2, we see that at large U/t, the in-plane

correlations weakly depend of t⊥, but diminish as t⊥ is increased at weak couplings,

while the out-of-plane correlations strongly depend on the anisotropy for all interac-
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tion strengths. As expected cNN
⊥ → 0 when t⊥ → 0, indicating that the 2D planes are

decoupled.

6.4.2 Structure factor I
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Figure 6.4 : AFM structure factor of the anisotropic FHM. Sπ as a function
of interplane hopping t⊥/t for different temperatures T/t at U/t = 4 (top panel),
U/t = 8 (middle panel), and U/t = 12 (bottom panel). At weak coupling, the
structure factor increases with anisotropy, i.e. as t⊥/t decreases from 1.

Figure 6.4 presents the structure factor Sπ vs t⊥/t at various temperatures. The

U/t = 4 data clearly show that at each temperature, Sπ is largest between 2D and 3D.
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In contrast, for U/t = 8 and 12, the largest Sπ occurs at the isotropic point t⊥ = t.

Although the U/t = 8 data is consistent with Sπ being maximized at t⊥/t = 1, it is

rather independent of t⊥/t for t⊥/t ∈ (0.5, 1.0) at the lowest temperatures considered,

T/t ≤ 0.167. Moreover, the maximal Sπ at U/t = 4 is smaller than the isotropic Sπ

for U/t = 8; if one’s goal is simply to maximize Sπ – irrespective of U/t – there is no

advantage to using anisotropy.

The behavior of Sπ as a function of t⊥/t at different interaction strengths, as

displayed in Fig. 6.4, has a simple explanation. In a 3D cubic lattice, Sπ is maximized

around U/t ∼ 10 [221]. One effect of anisotropy is to change the average tunneling to

be somewhere between t and the smaller t⊥, and thus one would expect anisotropy

to decrease the effective tunneling, teff, and increase the effective U/teff compared to

U/t. This change qualitatively explains why Sπ is maximized around t⊥/t ∼ 0.4 for

U/t = 4, while is maximized near the isotropic point at U/t = 8, 12.

Figure 6.5 shows the AF structure factor Sπ versus temperature T/t at different

t⊥/t. Structure factors at all values of t⊥/t and U/t grow as temperature is low-

ered. Generally, the onset of growth of the structure factor begins at the largest

temperature for U/t = 8, although this U/t at which growth onsets can depend on

anisotropy. For example, for small t⊥/t, U/t = 4 has a similar temperature for the

onset of correlations.

6.4.3 Thermodynamics

Figure 6.6 plots the double occupancy D = ⟨ni,↑ni,↓⟩ as a function of temperature,

and displays three essential parts. Imagine starting at high temperature and cooling

the system down. As the temperature is lowered, first the double occupancy D goes

down. Then, as the temperature is lowered further, it increases (in every case except

the 2D U/t = 4). Finally, as the temperature is lowered even further, D saturates, or

in some cases, such as U/t = 4, it begins to decrease.
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Figure 6.5 : AFM structure factor of the anisotropic FHM. Sπ as a function
of temperature T/t for different interplane hopping t⊥/t. For U/t = 4 at low T/t, as
anisotropy is introduced, Sπ grows by almost a factor of two down to t⊥/t = 0.25.
For very strong anisotropy, t⊥/t = 0.125, Sπ comes down and approaches the 2D
limit. For U/t = 8, 12, Sπ decreases with anisotropy. This decrease will overwhelm
the benefits of adiabatic cooling (described later; see e.g. Fig. 6.10).
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The first feature, the high temperature decrease of D upon cooling, is straightfor-

ward to understand. At temperatures T ≳ U , eigenstates with significant numbers of

double occupancies will be created, while at temperatures below this, the eigenstates

relevant to the µ = 0 state will have only a small admixture of doublons, at least for

reasonably strong interactions.

The second feature is more interesting, and arises from spin-ordering. We can

gain a simple understanding of this starting from the U ≫ t limit. For temperatures

T ≪ U , we can think of the states as essentially having a single particle per site

with small admixtures of other states. The relevant states in the relevant sector are

just determined by their spin configurations. AFM aligned spin configurations will

have energy ∝ −t2/U per site lower energy than FM aligned spins. Therefore, as the

temperature is lowered below T ≲ −t2/U , the AFM aligned states become favored.

Now consider the doublon content of these two classes of states. The number of

doublons in the state with FM aligned spins is small (zero if all the spins are exactly

aligned) since Pauli exclusion prevents tunneling. In contrast, there is an admixture

∝ (t/U)2 of doublons in the AFM state; it is precisely this admixture which allows

some delocalization of particles that lowers the energy of the AFM states relative

to the FM ones. Therefore, as the temperature is lowered, the AFM states are

increasingly favored and the number of doublons increases by an amount ∝ (t/U)2.

(This is why, in general at low temperature, the increase in D is accompanied by a

lowering of the kinetic energy.) We note that a simple place to check this argument

is in a two-site system, where the calculation can be done analytically.

These arguments provide an understanding of the decrease in D as T is lowered

below U and its small increase (in almost all cases) when T ≲ t2/U . This also explains

some of the dependences on parameters. For example, the low-temperature value of

D decreases as U/t increases, and increases with t⊥. However, some features remain

unexplained: Why does D at U/t = 4 decrease again with decreasing temperature
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at sufficiently low temperatures? And why is there no (visible) increase in D with

decreasing temperature for the one set of parameter values (U/t = 4 for t⊥ = 0). A

simple theory capturing these more refined features and dependences could provide

powerful insights into the Hubbard model’s physics, and our data will be an excellent

test for any candidate theories.
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Figure 6.7 : Specific heat of the anisotropic FHM. C = dE/dT for U/t = 4, 8, 12
at different values of t⊥/t. For U/t = 8, 12 the low temperature peak associated with
spin degrees of freedom is reduced by anisotropy, while U/t = 4 shows the opposite
effect.
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The specific heat as a function of temperature is a useful thermodynamic observ-

able, showing peaks that characterize the entropy reduction as degrees of freedom

reorganize and cease to fluctuate. In particular, there is a two-peak structure, shown

in Fig. 6.7, where at large U/t one peak is associated with the charge (i.e. den-

sity) and the other with the spin degree of freedom. It is even more informative to

break its contributions into the interaction energy (P = UD) and kinetic energy (K)

contributions.

Reference [222] examined the contributions dP/dT and dK/dT to the specific heat

in the 2D Hubbard model. One reason this is useful is that the interaction energy

directly captures the charge fluctuations of freedom, while the kinetic energy is closely

related to the spin degree of freedom (at least at large U/t). For U/t = 10, the high

T charge peak originated in dP/dT (moment formation) and the low T spin peak in

dK/dT was related to moment ordering. However, although the two peak structure

in C was clearly evident at U/t = 2, the high T peak came from dK/dT and the low

T peak from dP/dT . (The designation of these peaks as charge and spin thus clearly

becomes inappropriate as U gets small.) At U/t = 10, in addition to the high T peak,

dP/dT also had a negative dip at lower T . This has also been observed in the 1D

Hubbard model [223] and dynamical mean field studies [224].

We show a similar decomposition of the specific heat into dP/dT and dK/dT in

Figs. 6.8 and 6.9 †. Figure 6.8 shows the interaction energy contribution to the specific

heat, dP/dT . The U/t = 8 and the U/t = 12 data have a high temperature charge

peak and a negative dip at lower T/t, associated with the increase in interaction

†In order to take derivatives in an unevenly spaced dataset, we have used three-point differentia-
tion rule with a O(h2) error, where h is the spacing between the variable differentiated with respect
to:

f ′(x) =

[
xi − xi+1

(xi−1 − xi)(xi−1 − xi+1)

]
f(xi−1) +

[
2xi − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)

]
f(xi)

+

[
xi − xi−1

(xi+1 − xi−1)(xi+1 − xi)

]
f(xi+1).

Error bars are obtained by error propagation and treating the errors in quadrature.
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Figure 6.8 : Potential energy contribution to the specific heat of the
anisotropic FHM. dP/dT with P = UD the interaction energy as a function of
temperature for U/t = 4, 8, 12 at different values of t⊥/t.
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energy which occurs with the formation of AF order. For U/t = 8 the negative dip

increases by more than a factor of two moving away from 3D, while for U/t = 12

the magnitude of the dip decreases moving away from 3D, and the dip shifts to lower

T/t as the system becomes more 2D. Although U/t is constant, U/t⊥ increases as

t⊥ decreases; the more pronounced dip can thus be explained by an increase in the

effective interaction strength. Finally, for U/t = 4 the low temperature peak in dP/dT

leads to the low temperature peak in the specific heat.
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Figure 6.9 : Kinetic energy contribution to the specific heat of the
anisotropic FHM. dK/dT with K the kinetic energy as a function of tempera-
ture for U/t = 4, 8, 12 at different values of t⊥/t.
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The low temperature spin peak in dK/dT can be seen in Fig. 6.9 for U/t = 8 and

U/t = 12. It is mostly independent of t⊥/t although the peak position moves down in

T/t as the system becomes more 2D. For U/t = 4 the peak is replaced by a broader

bump that moves to higher T/t as t⊥/t decreases.

Together, dK/dT and dP/dT combine to form the characteristic two peak struc-

ture of the specific heat seen in Fig. 6.7. For strong couplings U/t = 8, 12 the low

T peak in the specific heat comes from the kinetic energy peak, and the role of the

interaction energy is to reduce the height of the peak. For U/t = 4 we can see that

both dP/dT and dK/dT give a positive contribution to the low T peak in the specific

heat.

The interpretation of the multi-peak structure of the specific heat data is compli-

cated by the possibility that the spin-ordering peak might itself be split owing to the

presence of two distinct superexchange energy scales, J and J⊥. For J⊥ < J stochas-

tic series expansion (SSE) studies of the 2D-3D crossover of the spin-1/2 Heisenberg

model [225] have shown the existence of a broad peak from short range 2D order,

as well as a sharper 3D ordering peak whose height diminishes as J⊥/J decreases.

Resolving these structures is already challenging for the spin model, even though the

SSE approach scales linearly with the number of spins N and system sizes as large as

N = 3× 104 were investigated, and is not possible for the more challenging itinerant

Hubbard model studied here.

The entropy as a function of temperature has, in principle, similar information

to the specific heat, but the physics is less directly apparent, as seen in Fig. 6.10.

We compute the entropy by integrating dS = dQ/T = C/T dT , with C = dE/dT the

specific heat. Integrating by parts, that integral can be rewritten in terms of the

energy E,

S(T ) = 2 log(2) +
E(T )

T
−
∫ ∞

T

E(T ′)

T ′2 dT ′. (6.3)

In practice, we obtain DQMC results up to a temperature cutoff Tcut = 250t and use
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the leading order high temperature series term (t = 0) in the integral in Eq. (6.3) for

T > Tcut to accelerate convergence ‡.
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Figure 6.10 : Entropy of the anisotropic FHM. S versus temperature for different
interplane hopping t⊥. Adiabatic cooling is observed as t⊥ is decreased for all values
of the interaction strength.

‡The error in the entropy calculation due to the finite value of the temperature cutoff Tcut was
estimated by comparing the results obtained with Tcut/t = 100, 250. The difference between those
two is below 3.5 × 10−4 for all interaction strengths, temperatures, and values of t⊥ considered in
this manuscript.
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Figure 6.10 shows the entropy per site S/N versus T/t for different t⊥/t at U/t =

4, 8, 12. Systems with small t⊥/t have larger S for a given T/t. For U/t = 4, S(T ) for

different values of t⊥/t begins to become distinct at T/t ≲ 5, and then again become

independent of t⊥ at T/t ≲ 0.1. For U/t = 8, 12, the dependence on t⊥/t is negligible

until T/t ≲ 0.5. Decreasing t⊥/t at fixed entropy lowers the temperature.
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Figure 6.11 : Low-T peak location in the anisotropic FHM. Top panel: T ∗,
defined as the position of the small-temperature peak in C; lower panel S∗ = S(T ∗)
as a function of t⊥/t. Lines in the upper panel are linear fits to the data, while lines
in the lower panel are the average of the datasets.

We define the temperature for the low-T peak in C(T ) as T ∗. For t⊥/t = 1 and

U/t = 8, T ∗ closely coincides with the Néel temperature; while for U/t = 4, T ∗ is

nearly in agreement with the upper bound given by Ref. [215]. For U/t = 12, we do

not know of literature where finite-size scaling is done to extract TNéel. For the 2D

system, TNéel = 0 due to the Mermin-Wagner theorem, but in contrast T ∗ ̸= 0. It is

also useful to define S∗ = S(T ∗). Figure 6.11 shows T ∗ and S∗ as functions of t⊥/t.
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For U/t = 8 and U/t = 12, T ∗ increases with t⊥/t, signaling that the formation of

strong AF correlations moves to lower T as t⊥/t is decreased. For U/t = 4, on the

other hand, T ∗ is almost independent of t⊥/t.
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Figure 6.12 : AFM structure factor of the anisotropic FHM. Sπ as a function
of entropy S for different interplane hopping t⊥/t. At weak coupling Sπ grows as one
moves adiabatically away from the isotropic 3D limit down to t⊥/t = 0.375 and then
comes back down.

In the strong-coupling (Heisenberg) limit of the 2D-3D crossover, TNéel/J is known

[217] to go as TNéel ∼ −1/lnα for α ≪ 1, with α = J⊥/J . The isotropic case, α = 1,

has the highest transition temperature TNéel/J ∼ 0.946 [226]. TNéel decreases slowly
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with α over most the range from 0 to 1, then rapidly drops to zero as α → 0. Similar

trends are observed for T ∗ in Fig. 6.11 for large U/t, where the results indicate that

although T ∗ is on the same order as the 3D value at weak t⊥/t, it still reaches is

largest value at the isotropic point t⊥ = t. On the other hand, this strong coupling

behavior does not extend to weaker coupling, as the U/t = 4 data demonstrate in

Fig. 6.11, where T ∗ is nearly independent on anisotropy. A possible explanation

for this behavior is that for small U/t band structure effects such as the van Hove

singularity in the 2D density of states become relevant.

6.4.4 Structure factor II

Previous work [184] examined short-range magnetic order in different dimensions

and concluded that for strong couplings their onset occurs at a common (dimension

independent) entropy, roughly S/N ∼ ln 2. This result is in agreement with Fig. 6.12

for U/t = 8, 12, where the onset of growth of the structure factor begins around

S/N ∼ ln 2. That trend, however, does not extend to smaller U/t, as the U/t = 4

panel in Fig. 6.12 shows.

The reduction in Sπ with anisotropy at U/t = 8, 12 overwhelms the benefits of

adiabatic cooling, as seen in Fig. 6.12. At fixed entropy, Sπ is reduced by anisotropy.

In contrast, at U/t = 4, Fig. 6.12, Sπ can be enhanced by more than a factor of two

by reducing t⊥/t away from the 3D limit. As discussed previously, however, the value

is never as large as the maximum attained for U/t = 8 in the isotropic case at the

same entropy.

6.5 Conclusions

Although anisotropy enhances magnetism at U/t = 4, the structure factor is smaller

than it is for larger U/t at the isotropic point t⊥ = t. Furthermore, despite some

adiabatic cooling when reducing t⊥ for large U/t, Sπ remains roughly the same for
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t⊥/t ∈ (0.5, 1.0) for U/t = 8, and diminishes with anisotropy for U/t = 12, so there

is no benefit in using anisotropy.

The study of anisotropy in the tunneling of the Hubbard model, and its strong-

coupling Heisenberg limit, is of interest beyond OLE. QMC simulations of bilayer

Hubbard [227] and Heisenberg [228] models in which t⊥ ̸= t or J⊥ ̸= J have ex-

plored quantum phase transitions between AF and singlet phases relevant to heavy

fermion magnetism, as well as studied s±-wave superconductivity [229–231]. Sim-

ilarly, the possibility of enhanced transition temperatures to magnetic order at the

2D surface of bulk 3D materials has been investigated [232, 233]. Finally, analogous

issues concerning the effect of inhomogeneous intersite tunneling occur in the con-

text of optimizing d-wave pairing in the 2D Hubbard Hamiltonian. In that case, a

model of 2× 2 plaquettes [234] with internal hopping t and coupled by interplaquette

hopping t′ was suggested to have an optimal tunneling for pairing which occurs at

t′ < t, away from the isotropic limit [235–242]. The interest in anisotropic tunnelings

also extends to the attractive Hubbard model as well. For example, in Ref. [243]

a layer of disconnected attractive Hubbard sites coupled to a metallic layer shows

that although the superconducting critical temperature Tc exhibits a maximum as

function of the interlayer tunneling, the highest Tc is still smaller than the maximal

Tc of the uniform 2D attractive Hubbard model. The results presented in the present

paper provide additional information in this broader context, both by quantifying

how AF evolves for layered materials, and also by providing further insight into how

the strong correlation physics interplays with anisotropy.

6.5.1 Anisotropy as a mean to cool

Finally, a possible application of our results is to design a cooling protocol, relying on

the results of Fig. 6.10 that show a system at a fixed entropy will get colder as t⊥/t is

reduced, specially for strong interactions. By exploiting inhomogeneity, this effect can
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be used to cool systems with an arbitrary t⊥/t, even isotropic 3D systems, as follows.

First, load the atoms into a 3D lattice. Now adjust the lattice depth of the system

in a carefully constructed inhomogeneous way; for simplicity think of two regions:

R, an entropy reservoir we will sacrifice to cool the system, and S, the system we

want to cool and study. In R, we adiabatically lower the z-direction lattice depth Vz.

This spatially inhomogeneous lattice depth could be engineered using, for example, a

spatial light modulator (however, implementing the spatially-modulated anisotropy

will be more challenging than a spatially-modulated trapping potential). The now-

anisotropic R can carry extra entropy at a given temperature, as per Fig. 6.10, so

entropy will transport to this region from S as the system reaches thermal equilibrium

at a new temperature. At the temperatures plotted for U/t = 12, the entropy per

particle in region S can be reduced by a factor of 2. Finally, one can cool and study

S with an arbitrary t⊥/t this way by applying an optical barrier to turn transport off

between S and R, and then adiabatically change Vz in the S region to give the desired

t⊥/t. This cooling method bears similarities to other entropy redistribution protocols

[21, 37, 38, 207, 244–253] but overcomes some difficulties. In particular, schemes that

rely on metal reservoirs created by changing the local potential, rather than lattice

anisotropy, suffer at large U/t from the fact that the metals created this way are bad

metals, therefore they carry significantly less entropy, than, e.g., a non-interacting

metal. Our protocol also has some similarities to the conformal cooling suggested in

Ref. [254], but allows one to cool the full Fermi-Hubbard model in a practical way,

rather than just the Heisenberg limit.

6.5.2 Finite-size effects

As mentioned in Section 6.3, for the energy, kinetic energy, interaction energy (number

of doublons), nearest neighbor spin correlations, and entropy, finite size errors (as

measured by the difference between L = 4 and L = 6 calculations) are ≲ 5%. It is
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the correlations at distances comparable to the system size that are affected; other

than these, Sπ is thus the only observable that is affected, and only when the system is

near or below the Néel temperature so that the correlations at separations comparable

to the system size are appreciable.

In order to give an estimate of the finite-size effects for the different values of t⊥/t

and U/t, we present S
(L)
π and S̃

(L)
π = S

(L)
π /L3 as a function of U/t, t⊥/t and T/t in

L× L× L cubic systems. We note that for T > TNéel we have Sπ → constant ̸= 0 as

L→ ∞ and S̃π → 0, while for T < TNéel we have Sπ → ∞ and S̃π → const.

Fig. 6.13 presents Sπ at T/t = 0.2 as a function of t⊥/t for different system sizes,

while Tables 6.1 and 6.2 report S̃π for two T/t presented in Fig. 6.4. The U/t = 8, 12

panels exhibit the same behavior seen in Fig. 6.4, i.e. Sπ is maximized when t⊥ ∼ t.

For t⊥/t ≳ 0.5, Sπ grows roughly proportional to L3, suggesting that the system is

below TNéel, and that the numerics provides a reasonable estimate of S̃π. In contrast,

the U/t = 4 panel demonstrates that Sπ is maximized at the 2D-3D crossover, in

agreement with the results presented in Fig. 6.4 although the location of the maxi-

mum depends significantly on the system size. The scaling looks neither like a the

simple L-independent Sπ expected in large systems for temperature above the Néel

temperature, nor the L-independent S̃π expected for large systems below the Néel

temperature. Previous results in the t⊥/t ≪ 1 limit [255], and in 3D [215], place

TNéel ≲ 0.2 for U/t = 4; therefore this absence of a simple scaling on L is expected at

T/t = 0.2. A detailed study of finite-size effects, as was done in [215,220] in 3D, and

for larger system sizes than in the present Chapter is required to precisely determine

TNéel in the 2D-3D crossover. This task is out of the scope of the Chapter, but our

results will provide a useful starting point for such calculations.
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Figure 6.13 : Finite size effects in the anisotropic FHM. AFM structure factor
Sπ as a function of interplane tunneling t⊥/t at T/t = 0.2 for different cubic lattices
with sides of length L. We note that the L = 8 calculations are substantially more
computationally expensive because – defining Nsites = L3 to be the number of sites –
the computational cost scales as O(N3

sites) = O(L9).
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U/t t⊥/t S̃
(4)
π S̃

(6)
π |S̃(6)

π − S̃
(4)
π |

4

0.125 0.06 0.04 0.03
0.25 0.10 0.08 0.02
0.375 0.11 0.09 0.02
0.5 0.11 0.08 0.03
0.75 0.11 0.06 0.05
1 0.09 0.05 0.04

8

0.125 0.09 0.05 0.04
0.25 0.12 0.09 0.03
0.5 0.20 0.17 0.03
0.75 0.22 0.18 0.04
1 0.21 0.17 0.04

12

0.125 0.09 0.05 0.04
0.25 0.11 0.08 0.03
0.5 0.20 0.16 0.04
0.75 0.26 0.19 0.06
1 0.25 0.21 0.04

Table 6.1 : Finite-size effects in the structure factor I. Structure factor S̃
(L)
π in

cubic lattices with sides of length L at T/t = 0.125.

U/t t⊥/t S̃
(4)
π S̃

(6)
π S̃

(8)
π |S̃(6)

π − S̃
(4)
π | |S̃(8)

π − S̃
(6)
π |

4

0.125 0.05 0.02 0.01 0.03 0.01
0.25 0.06 0.03 0.02 0.03 0.01
0.375 0.07 0.04 0.02 0.03 0.02
0.5 0.07 0.04 0.02 0.04 0.02
0.75 0.08 0.03 0.02 0.05 0.01
1 0.07 0.02 0.02 0.04 0.00

8

0.125 0.08 0.04 0.04
0.25 0.09 0.06 0.04
0.5 0.17 0.14 0.03
0.75 0.21 0.17 0.05
1 0.21 0.17 0.04

12

0.125 0.07 0.03 0.04
0.25 0.08 0.03 0.05
0.5 0.14 0.09 0.05
0.75 0.21 0.17 0.04
1 0.26 0.19 0.08

Table 6.2 : Finite-size effects in the structure factor II. Structure factor S̃
(L)
π

in cubic lattices with sides of length L at T/t = 0.2.
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CHAPTER 7. UNIVERSAL THERMODYNAMICS OF AN SU(N)

FERMI-HUBBARD MODEL

Chapter 7

Universal thermodynamics of an SU(N)

Fermi-Hubbard model

Se trabaja con imaginación, intuición y una verdad

aparente; cuando esto se consigue, entonces se lo-

gra la historia que uno quiere dar a conocer. Creo

que eso es, en principio, la base de todo cuento, de

toda historia que se quiere contar.

Juan Rulfo

This chapter is adapted from publication:

Universal thermodynamics of an SU(N) Fermi-Hubbard Model, Eduardo Ibarra-

Garćıa-Padilla, Sohail Dasgupta, Hao-Tian Wei, Shintaro Taie, Yoshiro Takahashi,

Richard T. Scalettar, and Kaden R. A. Hazzard, Phys. Rev. A 104, 043316 (2021)

[Editors’ Suggestion] ∗.

The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in

strongly correlated fermionic many-body systems. In the one particle per site and

strongly interacting limit U/t≫ 1, it is effectively described by the Heisenberg Hamil-

tonian. In this limit, enlarging the spin and extending the typical SU(2) symmetry

to SU(N) has been predicted to give exotic phases of matter in the ground state,

with a complicated dependence on N . This raises the question of what — if any

— are the finite-temperature signatures of these phases, especially in the currently

experimentally relevant regime near or above the superexchange energy. We explore

this question for thermodynamic observables by numerically calculating the thermo-

∗Complete article, including text, figures, and tables reprinted with copyright permission of
Ref. [44].
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dynamics of the SU(N) FHM in the two-dimensional square lattice near densities of

one particle per site, using determinant Quantum Monte Carlo and Numerical Linked

Cluster Expansion. Interestingly, we find that for temperatures above the superex-

change energy, where the correlation length is short, the energy, number of on-site

pairs, and kinetic energy are universal functions of N . Although the physics in the

regime studied is well beyond what can be captured by low-order high-temperature

series, we show that an analytic description of the scaling is possible in terms of only

one- and two-site calculations.

7.1 Introduction

The Fermi-Hubbard model (FHM), in its original spin-1/2, SU(2) symmetric form

[24,47–49], plays a central role in the understanding of strongly correlated fermionic

many-body systems. This is in part because it is one of the simplest models that

captures essential features of real materials, and in part because it exhibits a variety

of canonical correlated phases of matter. In the two-dimensional (2D) square lattice,

it displays a metal-to-insulator crossover as well as magnetic order, and it is widely

studied in the context of d-wave superconductivity [46,50,52,171,256].

Its generalization, the SU(N) FHM, features larger spins and enhanced symme-

try, and it provides insight into important strongly correlated systems. First, it

is a simple limit of multi-orbital models such as those used to describe transition

metal oxides [72–74], graphene’s SU(4) spin-valley symmetry [90], and twisted-bilayer

graphene [91–96]. Second, the SU(N) FHM is predicted to display a variety of inter-

esting and exotic phases even in very special limits, such as: the conventional N = 2

FHM, the N = 3 FHM [102–111], the N = 4 FHM at quarter filling [113, 114],

even values of N at half-filling [77, 78, 115–121], special N → ∞ limits [8, 83–86], 1D

chains [123–129], and the Heisenberg limit for N = 3, 4, 5 [73, 75, 76, 102, 130–136].

This richness is well illustrated by numerical studies of the Heisenberg limit, which
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describes the situation where the average number of particles per site is ⟨n⟩ = 1

and the interactions dominate the kinetic energy (U ≫ t, with notation discussed

below). Already in this simple limit and additionally in the simple 2D square lattice,

the model is predicted to exhibit several phases of matter with novel and difficult-

to-explain properties depending on the value of N . The dependence of the ground

state order with N does not follow a simple pattern. This raises the question of

whether and how this complicated N -dependence manifests in the finite-temperature

properties.

Although the SU(N) FHM is a crude approximation to real materials, it has been

realized to high precision by loading alkaline earth-like atoms (AEAs) into an optical

lattice (OL). Fermionic AEAs (such as 173Yb and 87Sr) feature an almost perfect

decoupling of the nuclear spin I from the electronic structure in the ground state,

which gives rise to SU(N = 2I + 1) symmetric interactions with deviations predicted

to be of order O(10−9) [97, 98, 257–259]. For that reason, by selectively populating

nuclear spin projection states mI of AEAs and loading them into an OL, experiments

can engineer the SU(N) FHM with N tunable, from 2, 3, . . . , 10.

In recent years, experiments with 173Yb in OLs have probed the SU(N) FHM’s

interesting physics: The Mott insulator state for SU(6) in three dimensions [71], the

equation of state for SU(3) and SU(6) in three dimensions [141], nearest-neighbor

antiferromagnetic (AFM) correlations in an SU(4) system with a dimerized OL [142],

nearest-neighbor SU(6) AFM correlations in OLs with uniform tunneling matrix el-

ements in one, two, and three dimensions [41], and recently a flavor-selective Mott

insulator for SU(3) [143]. Furthermore, employing quantum gas microscopy [12, 16,

17, 21, 62, 65, 66] to discriminate finite temperature analogs of the variety of pro-

posed ground states [75–78, 130–133] via direct observation of long-ranged correla-

tions [41, 205, 206, 260] is expected to reveal a wealth of physics. All of these ex-

perimental efforts make an understanding of the 2D square lattice thermodynamics
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urgent.

In contrast with most previous work that focused on the Heisenberg limit, in this

work we study the SU(N) FHM at finite temperature and for a range of interaction

parameters, including far from the Heisenberg limit, a regime that is both interesting

and experimentally important. We calculate and analyze thermodynamic properties

of the model as a function of N , the interaction strength U , and the temperature T .

We numerically explore the evolution of the energy, number of on-site pairs †, and

kinetic energy, as well as their derivatives in the 2D square lattice SU(N) FHM at

1/N filling, i.e., one particle per site on average.

Some of the quantities we compute, such as the number of on-site pairs are imme-

diately measurable in experiment, while others such as the kinetic energy and total

energy are of fundamental importance and also may also become accessible. For exam-

ple, Ref. [261] experimentally determined the energies of a Bose-Hubbard model. In

that work the kinetic energy was measured by analyzing time-of-flight images and the

interaction energy was measured by site-resolved high-resolution spectroscopy. These

techniques can be also used for the FHM. Additionally, in a quantum gas microscope

the number of on-site pairs can be spatially resolved by generalizing the technique

used in Ref. [262] to AEAs. This would require employing an optical (rather than

magnetic) Stern-Gerlach technique to split the different spin flavors into different

layers, followed by detection by single-site fluorescence. Additionally, access to total

density fluctuations in a bilayer quantum gas microscope, as done in Refs. [263,264],

provides a route to realize thermometry without the need to comparison with numer-

†The number of on-site pairs and the double occupancy are equivalent in the SU(2) Fermi-
Hubbard model due to Pauli exclusion principle. However, for N > 2 this is not the case. The
number of on-site pairs D counts the pairs of particles per site and is what controls the interaction
energy UD, while the double occupancy most naturally refers to the probability of configurations
with exactly two particles per site, or to summing probabilities of all configurations with two or more
particles per site. Either one of these is distinct from the number of on-site pairs D. Computing the
number of double occupancies thus requires the calculation of density fluctuations, i.e., terms of the
order ⟨nx⟩ with x ∈ [2, N ], which are computationally more expensive and experimentally harder to
access.
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ical simulations.

We also present some selected results as a function of chemical potential µ. Re-

sults are obtained using the determinant Quantum Monte Carlo (DQMC) and Nu-

merical Linked Cluster Expansion (NLCE) methods. Here and throughout we set

Boltzmann’s constant to kB = 1.

Although the ground state has a complicated N -dependence, we find that for tem-

peratures above the superexchange energy T ≳ J = 4t2/U , the energy, the number

of on-site pairs, and the kinetic energy depend on N in a particularly simple way,

obeying a simple, analytic dependence on N .

Even though a simple scaling at very high temperatures would be unsurprising

— since a low-order high-temperature series expansion (HTSE) would be expected

to be accurate and to produce analytic expressions that plausibly would show simple

N -dependence — such expansions are insufficient to explain our findings. The HTSE

is accurate only for T ≳ 4t, while the universal scaling persists to temperatures

T ≳ 4t2/U that are much lower when U ≫ t. At such temperatures the HTSE is not

only inaccurate, but diverges.

Despite the failure of the HTSE to fully explain the observations, a simple explana-

tion is possible by recognizing that correlations are short-ranged in this temperature

regime. We show that in this limit, the second order NLCE accurately reproduces

the results and the N scaling relation. Furthermore, under controlled approximations

in the J ≪ T ≪ U regime one can analytically evaluate the pertinent contributions

based on the NLCE, and with this explain the observed universal scaling with N

to zeroth order in βJ . This demonstrates the utility of the NLCE framework for

analytic calculations, beyond its typical application in numerical calculations. These

observations show that the one- and two-site correlations control the physics deep in

this regime.

The remainder of this Chapter is organized as follows: Section 7.2 presents the



114 7.2. MODEL AND METHODS

SU(N) Hubbard Hamiltonian, defines the observables we consider, and presents de-

tails of the numerical and analytical methods used. Section 7.3 presents the main

results, and Section 7.4 concludes.

7.2 Model and Methods

7.2.1 The SU(N) Hubbard Hamiltonian and observables

The SU(N) FHM is defined by the grand canonical Hamiltonian

H = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + h.c.

)
+
U

2

∑
i,σ ̸=τ

niσniτ − µ
∑
i,σ

niσ, (7.1)

where c†iσ (ciσ) is the creation (annihilation) operator for a fermion with spin flavor

σ = 1, 2, ..., N on site i = 1, 2, ..., Ns in a 2D square lattice, Ns denotes the number of

lattice sites, niσ = c†iσciσ is the number operator for flavor σ, t is the nearest-neighbor

hopping amplitude, U is the interaction strength, and µ is the chemical potential that

controls the fermion density.

We are interested in thermodynamic quantities such as the number of on-site pairs

D =
1

Ns

∑
i

[
1

2

∑
σ ̸=τ

⟨niσniτ ⟩
]
, (7.2)

the kinetic energy per site

K =
1

Ns

〈
− t

∑
⟨i,j⟩,σ

(
c†iσcjσ + c†jσciσ

)〉
, (7.3)

the energy per site E = ⟨H/Ns + µn⟩ (where n =
∑

σ niσ), and the entropy S.

We present these observables and the derivatives dE/dT , dK/dT , and UdD/dT as

functions of T/t for different values of the interaction strength U/t either as a function

of chemical potential µ/t or at fixed density ⟨n⟩ = (1/Ns)
∑

i,σ⟨niσ⟩ = 1. We also
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show the compressibility κ = d⟨n⟩/dµ as a function of µ for various T/t, U/t, and N .

These observables provide valuable knowledge about the physics: the number of on-

site pairs is a useful measure of the Mott insulating nature of the system, the kinetic

energy of its spatial coherence, and the entropy and specific heat provide information

about the temperature scales at which various degrees of freedom cease to fluctuate.

7.2.2 Numerical methods

To calculate the thermodynamic observables, we employ two numerical techniques,

DQMC [165, 166] and NLCE [164, 265], which have complementary strengths, and

compare in some cases with low-order analytic HTSE and the non-interacting limit.

The DQMC and NLCE are often the numerical methods of choice for the SU(2) FHM

in the finite-temperature regime studied in ultracold matter [20, 22, 63, 67, 68], and

we use our extensions of these methods to SU(N) systems [41]. Generally speaking,

the DQMC will perform best at weak to intermediate interactions, while the NLCE

performs best at strong interactions; we present both methods where both are viable.

7.2.2.1 Determinant Quantum Monte Carlo (DQMC)

Averages of the thermal equilibrium observables are evaluated with DQMC on 6× 6

lattices by introducingN(N−1)/2 auxiliary Hubbard-Stratonovich fields, one for each

interaction term ‡. In this method, the inverse temperature β is discretized in steps of

∆τ with a Trotter step ∆τ = 0.05/t for U/t = 4, 8 and ∆τ = 0.04/t for U/t = 12. In

order obtain accurate results, we obtain DQMC data for 40−60 different random seeds

for T/t ≤ 4 and for 2− 10 different random seeds for T/t > 4. For each Monte Carlo

trajectory we perform 2000 warm up sweeps and 8000 sweeps for measurements §.

In addition, the number of global moves per sweep to mitigate possible ergodicity

‡Previous work applied Determinant Quantum Monte Carlo for the SU(2N) Fermi-Hubbard
model at half-filling, i.e. ⟨n⟩ = N/2, using an alternative Hubbard-Stratonovitch decomposition.
This alternative decomposition is free of the sign problem at half-fillling for SU(2N) [77,78,178,179]

§A sweep updates all the auxiliary fields at every lattice site and imaginary time slice.
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issues [177] is set to 2 for U/t = 4, 8 and to 4 for U/t = 12. These global moves update,

at a given lattice site, all the imaginary time slices that couple two spin flavors.

DQMC results presented in this Chapter are obtained by computing the weighted

average and weighted standard error of the mean of the results obtained by using

different random seeds. We use the inverse squared error of each measurement as their

weight. Results obtained using a uniform weight for all measurements yield consistent

results but with larger error bars (∼2-4 times larger). Estimates of systematic errors

are obtained for N = 6 at U/t = 12 (Trotter) and N = 6 at U/t = 4 (finite-size),

where they are expected to be worst. We estimate the Trotter error by comparing

the results obtained with ∆τ = 0.04/t and ∆τ = 0.05/t. Their difference is below 4%

for all observables of interest at T/t = 0.5. This discretization error is even smaller

at higher temperatures and for the other two values of U/t considered. Finite-size

errors are estimated by comparing results for different thermodynamic quantities in

4 × 4 and 6 × 6 lattices. At T/t = 0.5 their differences are ≲ 6.5% for U/t = 4 and

≲ 5.7% for U/t = 12.

7.2.2.2 Calculation of specific heat and entropy in DQMC

For DQMC data we evaluate the specific heat and entropy in two ways. In the first

approach, we numerically differentiate the energy to obtain the specific heat ¶, and

we compute the entropy by integrating dS = dQ/T = C/T dT , with C = dE/dT the

¶We used the three-point differentiation rule

f ′(x) =

[
xi − xi+1

(xi−1 − xi)(xi−1 − xi+1)

]
f(xi−1) +

[
2xi − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)

]
f(xi)

+

[
xi − xi−1

(xi+1 − xi−1)(xi+1 − xi)

]
f(xi+1),

with error O(h2) where h is the maximum spacing of adjacent xi. Statistical error bars are obtained
by error propagation.
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specific heat. Integrating by parts, S can be rewritten in terms of the energy E,

S(T ) = S∞ +
E(T )

T
−
∫ ∞

T

E(T ′)

T ′2 dT ′, (7.4)

where S∞ is the entropy at fixed density in the limit when T → ∞ (see Appendix 7.4.1

for more details).

The DQMC becomes unreliable at T below the superexchange scale J . In this

regime the statistical noise increases due to the sign problem, severely limiting cal-

culations. In addition to presenting the DQMC calculations directly, we also show

results obtained from fitting and from differentiating this smooth fit function, which

can reduce the noise at the cost of potentially biasing the data. For the energy, we

fit to the simple functional form [222,266],

E(T ) = E(0) +
M∑
k=1

cke
−βk∆, (7.5)

with fitting parameters ck, ∆, and E(0). The number of parameters ck, M , is chosen

to be around 6-12 (slightly less than one-third of the data points to be fit), which is

similar to Refs. [222,266]. We smooth the 10 lowest temperature data points using a

moving average with a three-point window fitted with a local first-order polynomial

(Savitzky–Golay filter). Then the data are fit with Eq. (7.5), by choosing the fitting

parameters that minimize

Ξ2 =
1

Np + 1

(
Np∑
n=1

[
E(Tn)− En

]2
+

[
S∞ −

M∑
k=1

ck
k∆

]2)
, (7.6)

where Np is the number of data points, and En is the DQMC energy at Tn. The

first term ensures a good fit of the data, while the second term regularizes the fit

and ensures that S → 0 as T → 0 by enforcing the constraint S∞ =
∫∞
0

C(T ′)
T ′ dT ′ =
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∑M
k=1

ck
k∆

‖. A similar procedure is used to obtain fits for the number of on-site pairs

and the kinetic energy: Each dataset is fit using the same form as Eq. (7.5), subject

to the constraint that the derivative of their sum obeys the specific heat sum rule.

Results obtained from fitting remove the noise providing smooth guides to the

eye. By construction they also satisfy important physical features such as sum rules.

However, fitting necessarily biases the results and should be interpreted with caution.

Care is especially warranted in the high-noise regimes (mainly occurring in the deriva-

tive data at the lowest temperatures presented) where the fits are used to extrapolate

the data. Nevertheless, the fits suggest interesting features and trends that may help

guide future low-temperature calculations and experiments.

7.2.2.3 Numerical Linked Cluster Expansion (NLCE)

Thermodynamic observables are computed using a fifth-order site expansion NLCE.

We briefly derive and present this algorithm, which is reviewed in Ref. [164]. Extensive

properties in a lattice are evaluated by performing a weighted sum of their value in

all possible clusters c embeddable in the lattice; specifically,

P (L)/Ns =
∑
c∈L

L(c)WP (c) (7.7)

where P (L) is the property evaluated on the entire lattice L, Ns is the number of

lattice sites, L(c) is the number of ways that the cluster c can be embedded in the

lattice (up to translation invariance), and WP (c) is defined as

WP (c) = P (c)−
∑
s⊂c

WP (s). (7.8)

‖An equal weight on regularization and fitting terms is enough to ensure that S → 0 as T → 0
with an error ≲ 10−2 for all N and U/t.
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Eq. (7.7) follows directly from the definition of theWP (c). Eq. (7.7) is an infinite sum

over all clusters, and the key idea of the NLCE is to truncate this sum to clusters of

small size (different variants use different measures of size) and evaluate properties on

each cluster using exact diagonalization (ED). Here we truncate the sum over clusters

based on the number of sites, performing calculations up to five site clusters, which

shows good convergence (see Appendix 7.4.2).

The Hilbert space dimension increases rapidly with N , limiting the size of clusters

that can be included in the expansion, and we use multiple methods to reduce the

computational cost in order to reach five-site clusters for SU(6). The most straight-

forward is to account for the SU(N) symmetry, in particular its abelian symmetries

(the N conserved flavor numbers) and the flavor permutation symmetry. Addition-

ally, for N = 6, we truncate the Hilbert space in the Fock basis using two criteria: (1)

We include only basis states with a number of particles below a cutoff value (chosen

to be six, which is one larger than the number of sites in the largest cluster), and

(2) We include only basis states whose interactions energy is less than a cutoff value

(chosen to be 3U). These choices provide highly accurate (several decimal places)

results over the temperature and density ranges of interest in this Chapter, though at

high temperatures or densities they can break down. Appendix 7.4.3 provides details

of these truncations and the calculations’ convergence.

The NLCE is much more accurate than an exact diagonalization (ED) that uses

the same number of (or even more) sites. At all temperatures considered, the five-

site NLCE calculations are dramatically more accurate than 3× 2 ED calculations in

either periodic or open boundary conditions to quite low temperatures. In fact, at

least for temperatures where the NLCE is convergent and the density ⟨n⟩ = 1 case

that is our main focus, even a two-site NLCE calculation outperforms the 3× 2 ED,

despite requiring enormously fewer computational resources. We note that this is, to

our knowledge, the first application of NLCE to the SU(N) FHM. The convergence
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with expansion order and comparisons with ED are discussed in Appendix 7.4.2.

The NLCE self-diagnoses its accuracy, with converged results expected when ad-

jacent orders give nearly the same answer. Results in this Chapter are presented for

the highest order computed and the NLCE data are cutoff at temperatures where the

three highest consecutive orders deviate more than 2%.

7.2.2.4 Low-order high-temperature series expansions (HTSE)

It is useful to compare computed observables against simple analytic zeroth- and

second-order high temperature series in t/T [155]. The region of validity of the HTSE

to any order is T ≳ t, yielding unphysical results for T ≲ t.

7.3 Results

This section presents our main results, the calculation of several thermodynamic ob-

servables and analysis of features observed in them, especially their striking universal

N -dependence. Specifically, we calculate the number of on-site pairs D, the kinetic

energy K, the energy E, the entropy S, the specific heat C and the contributions to

it from the interaction and kinetic energies UdD/dT , and dK/dT , respectively, all

defined previously. Mostly we focus results at a density ⟨n⟩ = 1, but some results

are also presented as a function of chemical potential µ/t which causes the density to

vary.

This section is organized as follows: Section 7.3.1 presents the µ/t-dependence

of ⟨n⟩, D, the compressibility κ = ∂⟨n⟩/∂µ, and the determinantal sign. The fol-

lowing subsections present the U/t, T/t, and N dependence of D (Section 7.3.2),

K (Section 7.3.3), and E (Section 7.3.4). Section 7.3.5 presents the scaling collapse

demonstrating the universal N -dependence of E, D, and K. Section 7.3.6 presents

the temperature derivatives. Finally Section 7.3.7 presents the U/t, T/t, and N

dependence of S. Results in Sections 7.3.2 to 7.3.7 are all at unit density.
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7.3.1 Density, number of on-site pairs, compressibility, and determinantal

sign dependence on chemical potential µ/t
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Figure 7.1 : Density’s, number of on-site pairs’, compressibility’s, and de-
terminantal sign’s dependence on chemical potential. Panels (a-e) compare
observables for N = 2, 3, 4 for U/t = 8 at T/t = 0.5 as functions of the chemical
potential (µ − µ0)/t, where ρ(µ0) = 1. (a) Density; there is a clear softening of the
Mott plateau as N increases. (b) Number of on-site pairs. (c) Compressibility. (d)
Derivative of the number of on-site pairs with respect to the density as a function of
density. (e) Average sign. (f) Density (solid) and average sign (dashed) vs (µ−µ0)/t
for different values of T/t for N = 6 at U/t = 12. Shaded regions correspond to error
bars.

Figs. 7.1(a-b) show the dependence of density ρ = ⟨n⟩ and number of on-site pairs

D on the chemical potential. These are particularly important quantities because

typical experiments on ultracold atoms use smooth traps, and the µ-dependence of

the observables is related to their spatial dependence by the local density approxi-

mation [11]. These are also among the most straightforward observables to measure,

and have been explored experimentally as a function of U/t, N , µ/t, and T/t in

Refs. [71, 141].

The density as a function of chemical potential shows a Mott plateau – a region

of µ over which the density is nearly constant – when the temperature is T ≲ U , as

shown in Fig. 7.1(a), signaling the incompressible and insulating nature of the system.
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At fixed temperature, the Mott region becomes less sharply defined as N increases.

This is expected, as increasing N allows for more density fluctuations at a given

energy and thus a more compressible system at a fixed temperature [as corroborated

by Fig. 7.1(c)]. This behavior is also observed for U/t = 12 at the same temperature

(not shown here as to not overcrowd Fig. 7.1). The general trend is already seen in

the second order HTSE [155] and was observed experimentally in Ref. [141].

Although the Mott plateau softens with increasing N , appearing only as a subtle

shoulder for N = 4 at U/t = 8 and T/t = 0.5, if one plots dD/dρ as a function of ρ,

there is a quite sharp and clear signature of the Mott plateau for all cases, as shown

in Fig. 7.1(d).

We also show the average determinantal sign, which characterizes the sign prob-

lem, one of the fundamental limitations to quantum Monte Carlo calculations of

interacting fermions [55,267,268]. For the type of Hubbard-Stratonovich decomposi-

tion used in the current study for DQMC, we find the average sign decreases (i.e. the

sign problem worsens) overall as N increases and as the temperature is lowered [see

Figs. 7.1(e-f)]. On top of this, the sign problem is worse for the metallic phase than

the Mott insulating phase at a fixed temperature. Figures 7.2(a) and 7.3(a) show

that at fixed T/t, increasing U/t worsens the sign problem in the metal, but improves

it in the insulator in the currently studied temperature regime. The N = 2 case is

free of the sign problem at half-filling, and therefore ⟨sign⟩ = 1 when ⟨n⟩ = 1 for all

values of U/t.

Finally, the U/t dependence of κ for different N is displayed in Figs. 7.2(b) and

7.3(b). As the U/t increases, the system becomes more incompressible where ⟨n⟩ = 1,

highlighting the insulating nature of the system. Our results are in agreement with

qualitative trends identified in previous dynamical mean-field theory (DMFT) re-

sults [269].
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Figure 7.2 : Determinantal signs’ and compressibility’s dependence on in-
teraction strength I. (a) Average sign (b) Compressibility vs (µ − µ0)/t, where
ρ(µ0) = 1 for U/t = 8 (full markers) and U/t = 12 (open markers) for N = 2, 3, 4 at
T/t = 0.5.
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Figure 7.3 : Determinantal signs’ and compressibility’s dependence on in-
teraction strength II. (a) Average sign (b) Compressibility vs ρ, for U/t = 8 (full
markers) and U/t = 12 (open markers) for N = 2, 3, 4 at T/t = 0.5.
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7.3.2 Number of on-site pairs at unit density: dependence on U/t, T/t,

and N

The number of on-site pairs D decreases as temperature is lowered, almost always

followed by an increase at the lowest temperatures. These features show clear trends

with U/t and N as shown in 7.4. The trends with U/t are that, as the temperature

is lowered, (1) D is suppressed from its high-temperature value at a temperature

scale T ∼ U , and (2) D increases at a much lower temperature that decreases with

increasing U/t. Also, as expected, overall larger U/t leads to smaller D, most strongly

in the temperature window between the two features discussed previously. The trends

with N are also clear: (1) as N increases, D increases, (2) the temperature at which

the low-T increase of D occurs is roughly independent from N except for U/t = 8,

where is higher for larger N , and (3) the increase of D as the temperature is decreased

through the lower temperature feature is larger for larger N . For sufficiently large

U/t, the dependence on N is weaker, as shown in Fig. 7.4(a). These features will be

explained below.

Although the temperatures are not extremely low, T ≳ 0.1t, the qualitative fea-

tures are not captured with a low-order HTSE, as shown in Fig. 7.4(a), which diverges

from the true results at T/t ∼ 3 or larger. Furthermore, for the temperature regions

where NLCE and DQMC are well converged, both methods are in good agreement,

supporting the validity and convergence of the different approaches.

The T , N , and U dependence of D can be qualitatively understood by consid-

ering the two-site, two-particle (TSTP) system, which was employed to understand

similar features in the N = 2 anisotropic lattice calculations of Ref. [43]. We begin

by describing the T dependence. For T ≳ U , eigenstates with energy ∼ U and a

large fraction of double occupancies are occupied. As the temperature is lowered

below U , the eigenstates dominated by one-particle-per-site configurations have the

largest Boltzmann weight and have small admixture of doublons, thus explaining the
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Figure 7.4 : Number of on-site pairs D versus temperature.(a) Each panel
compares D for N = 2, 3, 4, 6 for a fixed U/t at ⟨n⟩ = 1. (b) Each panel compares D
for U/t = 4, 8, 12, 15.3, 20, 40 for a fixed N . Solid markers are DQMC, open markers
are NLCE, dashed lines are the zeroth order HTSE, and solid lines are fits of Eq. (7.5)
to the DQMC data down to the lowest Tn point. Thinner dash-dotted lines come
from the fit in the extrapolated regime T < min(Tn), where {Tn} is the data set of
temperatures where DQMC results are obtained.

high-temperature decrease of D upon cooling. The more interesting low-temperature

increase of D is explained by considering the physics in this sector dominated by

one-particle-per-site configurations. In this sector, these low-energy eigenstates are

approximately “SU(2) singlets” on the two sites [∝ (|σ, τ⟩ − |τ, σ⟩) with σ ̸= τ ] or

“SU(2) triplets” [∝ (|σ, τ⟩+ |τ, σ⟩) where τ and σ may be equal]. The “singlet” states

include an admixture ∝ (t/U)2 of doublons, which allows for some delocalization, low-

ering the kinetic energy and therefore lowering the energy of singlet states relative to

the triplet ones, which have no admixture of doublons. Therefore, as the temperature

is lowered below the energy scale splitting the singlet and triplet configurations, the

system populates the singlet states and the number of double occupancies increases

until it saturates. This low-temperature population of SU(2) singlets also leads to
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the antiferromagnetic correlations observed in Ref. [41].

The dependence of D on N can also be understood in this picture, by considering

the number of available ways to form double occupancies. Since the number of possible

configurations of m particles on a single site is
(
N
m

)
, the number of on-site pairs is

enhanced for N > 2 for all values of the interaction strength and temperature due to

thermal fluctuations and quantum fluctuations (tunneling) ∗∗.

This argument provides an understanding of the overall trends of D with T and

N , but the U = 4t, N = 2 curve is worth further consideration as the sole curve that

does not show the low-temperature increase. The reason for this is not obvious: that

a low-temperature rise would be smaller for small N is explained above, but that it

actually turns from a rise to a decrease is not. We note that this is likely a special

feature of not only N = 2 and small U/t, but also 2D systems, as when the system

is perturbed away from 2D a low-temperature rise in D appears [43]. As such, it is

natural to conjecture it is related to Fermi surface nesting (see Fig. 7.5), which is

most important at small U/t, and which is perfect only for N = 2.
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Figure 7.5 : Fermi surface for N = 2, 3, 4, 6 in the 2D square lattice at ⟨n⟩ = 1.

∗∗In the T → ∞ limit, at ⟨n⟩ = 1, the number of on-site pairs is given by D∞ = 1
2

∑
σ ̸=τ ⟨nσ⟩⟨nτ ⟩ =(

N
2

)
1

N2 = 1
2

(
1− 1

N

)
, where we used that ⟨nσ⟩ = ⟨n⟩/N because of the SU(N) symmetry.
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7.3.3 Kinetic energy at unit density: dependence on U/t, T/t, and N
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Figure 7.6 : Kinetic energy vs temperature. Each panel compares K for N =
2, 3, 4, 6 for a fixed U/t at ⟨n⟩ = 1. Solid markers are DQMC, open markers are
NLCE, dotted lines correspond to the non-interacting limit, and solid lines are fits of
Eq. (7.5) to the DQMC data down to the lowest Tn point. Thinner dash-dotted lines
come from the fit in the extrapolated regime T < min(Tn), where {Tn} is the data
set of temperatures where DQMC results are obtained.

The kinetic energy K shows features at similar energy scales as D, as shown

in Fig. 7.6. At high temperatures, the kinetic energy vanishes, and decreases as

the temperature is lowered, in close agreement with the non-interacting calculations

(described momentarily) until T ∼ U . At T ≲ U the kinetic energy becomes smaller

in magnitude than the non-interacting limit by an amount that increases with U .
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Finally, at the lower temperature scale on whichD rises again, the kinetic energy drops

significantly, signaling the same tunneling processes that create doublons, explained

at the end of Sec. 7.3.2.

The non-interacting limit’s behavior is straightforward to understand: for N = 2

and ⟨n⟩ = 1, the Fermi surface is a perfect square (Fig. 7.5), and as N is increased

this shrinks and becomes circular. Thus the kinetic energy decreases as N increases.

Fig. 7.6 shows the non-interacting limit results (dotted lined)

K =
1

(2π)2

∫
BZ

ϵk⃗d
2k

eβ(ϵk⃗−µ) + 1
, (7.9)

where the integral is over the Brillouin zone and ϵk⃗ = −2t(cos kx + cos ky) is the non-

interacting dispersion (setting the lattice constant to unity). The chemical potential

µ is determined numerically to give ⟨n⟩ = 1/(2π)2
∫
BZ
d2k/(eβ(ϵk⃗−µ) + 1) = 1.

7.3.4 Total energy at unit density: dependence on U/t, T/t, and N

The total energy E = UD + K (Fig. 7.7) shows features simply related to D and

K. However, a new and surprising feature appears in E: the curves for different

N cross at a temperature and energy (T ∗, E∗) with t < T ∗ < U . Fig. 7.8 shows

that T ∗ first decreases then increases as a function of U/t, while E∗ first increases,

then decreases. In Section 7.3.5, we will see that this crossing is a consequence of an

even more dramatic phenomena — a universal collapse upon rescaling over a broad

temperature range.

The existence and qualitative trends of the crossing can be understood again by

the system with two sites and two particles (TSTP), and can be quite accurately

described by the second order NLCE, whose only inputs are the one- and two-site

exact diagonalization calculations (a point we will revisit in Sec. 7.3.5).

Within the TSTP, the crossing occurs when E∗ = 0, indicating that for all N ’s,
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Figure 7.7 : Energy vs temperature. Each panel compares E for N = 2, 3, 4, 6 for
a fixed U/t at ⟨n⟩ = 1. Solid markers are DQMC, open markers are NLCE, solid lines
are fits of Eq. (7.5) to the DQMC data down to the lowest Tn point. Thinner dash-
dotted lines come from the fit in the extrapolated regime T < min(Tn), where {Tn}
is the data set of temperatures where DQMC results are obtained. Vertical regions
in black indicate the temperature window where the different N curves intersect.
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their kinetic and interaction energies cancel each other at the same T ∗ (see Appendix

7.4.3 for details). When we include higher particle numbers in the two-site problem,

there is a small contribution to the energy from eigenstates that present multiple dou-

ble occupancies and/or higher-than-double occupancies. Their contribution accounts

for a constant positive shift in the energy for all N ’s, implying that the crossing oc-

curs at E∗ > 0. The second order NLCE is a linear combination of the one-site and

two-site results. The one-site result contributes another constant positive shift for all

N ’s to E. Together, the second order NLCE clearly reproduces the trends displayed

in Fig. 7.8, where we present E∗ and T ∗ as a function of the interaction strength.
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Figure 7.8 : Interaction dependence of the energy crossing. Temperature (red
circles) and energy (blue squares) where the curves for different N cross in Fig. 7.7.
Error bars correspond to the width of the crossings. Dashed lines correspond to the
second order NLCE.

7.3.5 Universal N-dependence of energy, number of on-site pairs, and

kinetic energy

In this section, we show that the crossing point of E vs T for all N in Fig. 7.7 is

actually a consequence of a much stronger universal scaling relation that determines

the N -dependence of all the observables studied here to temperatures well below the
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crossing temperature (though not arbitrarily low), down to a temperature comparable

to the superexchange energy 4t2/U . We find that the energy satisfies

E(T,N) = E(T,∞) + (1/N)E1(T ) (7.10)

for some E1(T ) independent of N over a broad range of temperature. This is shown

in Fig. 7.9 by a universal collapse of appropriately constructed quantity Ẽ, and we

will discuss the features of this collapse more momentarily. First, to understand Ẽ’s

construction, note that Eq. (7.10) is equivalent to

Ẽ(T,N) ≡ E(T,N)− (1/N)E1(T ) (7.11)

being independent of N , since the right hand side is simply E(T,∞). Fig. 7.9 plots

this Ẽ, taking

E1(T ) =
E(T,N1)− E(T,N2)

(1/N1)− (1/N2)
(7.12)

for N1 = 2 and N2 = 3. When Eq. (7.10) is satisfied, the E1(T ) obtained would be

the same for all choices of N1 and N2; we choose N1 = 2 and N2 = 3 as they are

the least noisy datasets and span the largest range of temperatures, but the overall

collapse is observed independent of this choice. The analysis of scaling is inspired by

similar scalings discovered in the spectra of strongly correlated materials in Ref. [270].

We observe that Eq. (7.10) has the form of a first order Taylor expansion of E(T,N)

in 1/N ; from this point of view, the remarkable aspect of the data collapse is that (in

an appropriate temperature window) it accurately describes the physics even when

1/N is not small (e.g. for N = 2).

Figure 7.9 shows that Ẽ is independent of N at temperatures T ≳ J ≡ 4t2/U

for all U studied here, and therefore E(T,N) has the simple N -dependence given

by Eq. (7.10). Below T ∼ J , Ẽ no longer collapses, signaling a more complicated
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N -dependence. One consequence of the universal scaling is that the thermodynamics

in this temperature regime can be obtained for any N from the results for N = 2 and

3 (or any two N). This is convenient for several reasons: The Hilbert space of SU(2)

is more manageable for numerical calculations, and because numerical methods such

as DQMC are free of the sign problem at ⟨n⟩ = 1 for SU(2).
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Figure 7.9 : Universal dependence of energy on N . Ẽ vs temperature for several
N at fixed U/t = 4, 8, 12 at ⟨n⟩ = 1. Solid lines correspond to numerical data: DQMC
for U/t = 4, 8, 12 and NLCE for U/t = 40. Shaded regions correspond to error bars
obtained by error propagation in Eq. (7.11). Dashed lines correspond to second-order
HTSE calculations and dotted lines correspond to second-order NLCE. Solid vertical
lines indicate the temperature where the different N curves intersect, and dotted
vertical lines indicate the superexchange energy J .

One natural attempt to explain the observed scaling would be the HTSE, since

this is expected to be accurate at high temperatures; however, although Ẽ calculated
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with the second-order HTSE collapses, it deviates strongly from the data at T ≲ 5t

[Fig. 7.9], so it cannot explain the collapse to the lowest temperatures observed (0.1t

to t, depending on the value of U). In contrast, as Fig. 7.9 shows, the second-order

NLCE’s Ẽ not only collapses, but accurately reproduces the numerical results for

all temperatures where the collapse occurs, thus providing a simple and effectively

complete calculational tool to obtain the scaling, albeit not an analytic one. That

the second-order NLCE reproduces the data in the scaling regime allows us to infer

characteristics of the physics. The first thing to notice is that the second-order NLCE

can capture one- and two-site nearest-neighbor correlations, but no longer-ranged cor-

relations. Thus, one-site physics and nearest-neighbor correlations suffice to capture

the physics in the regime where collapse occurs. This provides interesting insight into

the physics, and explains why the collapse occurs at T ≳ J : this is the characteristic

energy scale for correlations in the ⟨n⟩ = 1 system (at least when U/t is large) and

thus longer range correlations only develop at temperatures below J . Note that this

also lets us understand why the collapse is not captured by the second-order HTSE:

this misses two-site correlations that are O(βt)3 or higher. Such non-perturbative

effects are strong in the regime 4t2/U ≲ T ≲ t and not easily captured at any order

of the HTSE, which diverges for T ≲ t.

By examining the second order NLCE and simplifying it by taking advantage of the

range of temperatures being considered, we can also arrive at an analytic explanation

of the scaling phenomena. Although NLCE is typically used as a numerical method, at

low-enough order and in simplified limits, it may provide simple analytic expressions.

Indeed, in the present case, we show in Appendix 7.4.4 that the energy in the second-

order NLCE in the temperature range 4t2/U ≪ T ≪ U is given, to zeroth order in

βJ , by

E(T, U,N) ≈ −J +
1

N
J. (7.13)

We note the additional condition that T ≪ U not previously noted; indeed, there
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are small deviations of the data from collapsing in the T ∼ U regime. Finally,

when T ≫ U the collapse is again recovered, since K → 0 and D ∝ 1/N in that

regime. In summary, the parametrically accurate collapse for the two separate regimes

4t2/U ≪ T ≪ U and T ≫ U is interpolated to a quite accurate collapse, though not

parametrically so, for all T ≫ 4t2/U , as seen in the data.

Although we only analytically show the scaling of Eq. (7.10) to leading order in

J/T and T/U (i.e., deep in the J ≪ T ≪ U regime), numerics seems to indicate

the collapse holds beyond this. Explaining this is an open problem. Despite lacking

a simple analytic formula, the second order NLCE reproduces all of the behavior,

offering a simple predictive theory for the thermodynamics in the T ≳ J regime.
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Figure 7.10 : Universal dependence of number of on-site pairs and kinetic
energy on N . (a) D̃ (b) K̃ vs temperature for several N at fixed U/t = 4, 8, 12
at ⟨n⟩ = 1. Solid lines correspond to numerical data: DQMC for U/t = 4, 8, 12
and NLCE for U/t = 40. Shaded regions correspond to error bars obtained by error
propagation in analogs of Eq. (7.11). Dashed lines correspond to second-order HTSE
calculations and dotted lines correspond to second-order NLCE. Dotted vertical lines
indicate the superexchange energy J .
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The observables D and K show a similar universal N -dependence, satisfying

analogs of Eq. (7.10), as demonstrated in Fig. 7.10(a-b) by showing the collapse

of D̃ and K̃ defined analogously to Ẽ. These are also reproduced by the second order

NLCE and its analytic simplifications in the temperature window of interest. The

U/t = 4 results exhibit a window around T = t where the second-order NLCE weakly

breaks the collapse (< 4%), but is then recovered at lower temperatures around

T/t = 0.2, where the DQMC data collapse too. Why the U/t = 4 results collapse

even for T ≲ 4t2/U remains an open question and merits further exploration.

7.3.6 Temperature derivatives at unit density: C = dE/dT , UdD/dT , and

dK/dT
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Figure 7.11 : Specific heat versus temperature. (a) Each panel compares C for
N = 2, 3, 4, 6 for a fixed U/t. (b) Each panel compares C for U/t = 4, 8, 12, 15.3, 20, 40
for a fixed N . Solid markers are DQMC, open markers are NLCE, dotted lines
correspond to the non-interacting limit, dashed lines are the zeroth-order HTSE, and
solid lines come from the fit (7.5) to the DQMC data in Fig. 7.7 down to the lowest
Tn point. Thinner dash-dotted lines come from the fit in the extrapolated regime
T < min(Tn), where {Tn} is the data set of temperatures where DQMC results are
obtained. Dotted vertical lines indicate the superexchange energy J .
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Figure 7.12 : Contributions to the specific heat vs temperature. Each panel
compares (a) dP/dT (b) dK/dT for N = 2, 3, 4, 6 for a fixed U/t. Solid markers are
DQMC, open markers are NLCE, and solid lines come from the fit (7.5) to the DQMC
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come from the fit in the extrapolated regime T < min(Tn), where {Tn} is the data
set of temperatures where DQMC results are obtained. Dotted vertical lines indicate
the superexchange energy J . Dotted vertical lines indicate the superexchange energy
J .

We now present the derivatives of the energy E, interaction energy P = UD,

and the kinetic energy K. The specific heat (dE/dT ) as a function of temperature

is a valuable thermodynamic observable since its peaks indicate temperatures below

which the entropy is significantly reduced as degrees of freedom reorganize and cease

to fluctuate.

The specific heat as a function of temperature [see Fig. 7.11(a)] presents a two-peak

structure for N = 2; for other N a high-temperature peak is present in all cases, and

in most an upturn occurs at lower temperatures, necessitating a second peak at lower

temperatures beyond the range of our calculations since C → 0 as T → 0. At least at

large U/t, the origin of the high-temperature peak is associated with freezing of the

charge fluctuations as the temperature is lowered, while the low-temperature peak is
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associated with the onset of spin correlations, as has been shown for N = 2 [43, 222]

and will be evident from our results on dP/dT and dK/dT . For strong interactions,

the high-temperature peak is closely in agreement with the results of the zeroth-order

HTSE and is roughly independent of N , with just small changes of amplitude at small

U/t. The upturn of C as T/t is lowered towards a presumable low-temperature peak

(though not directly accessible in the data for N ≥ 3) depends on N and U/t. The

upturn seems to grow with N , and it generally decreases with U/t, although at the

lowest temperatures, there may be a complicated non-monotonic dependence. The

extent to which the trends of the upturn are either a reflection of the temperature at

which the low-T peak occurs or result from changes in the amplitude of the low-T

peak cannot be assessed with the current data, and is an interesting question for

future theory and experiment.

The final feature of the specific heat that we analyze is motivated by the finding

in Ref. [222] that the specific heat versus temperature curves cross around T/t ≈ 1.6

for all U/t ∈ [1, 10] for N = 2. Fig. 7.11(b) shows that this remains true for other

values of N , with nearly the same value of the crossing temperature. However, we

note that this crossing only occurs for U/t ≲ 10, and fails for U = 15.3t and larger.

The physical significance of this crossing is unclear. Several Refs. [222, 271–275]

have seen this crossing in two dimensions (in square, honeycomb, and asymmetric

[t↑ ̸= t↓] Hubbard models) at (C∗, T ∗) ≈ (0.34, 1.6t) but all are at relatively small

U/t. For small U/t Ref. [272] shows that the presence of such high-T crossing arises

if one approximates two parameters as small: 1/d (where d is the dimension) and the

integral over the deviation of the density of states from a constant value [270].

Examining the contributions dP/dT and dK/dT to the specific heat helps disen-

tangle the contributions to the specific heat of the charge and spin degrees of freedom.

In Fig. 7.12(a) the dP/dT data for U/t ≥ 8 exhibit a high-T charge peak and a nega-

tive dip at lower T/t for all N . For such interactions, the high-T peak in the specific
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heat comes from dP/dT . For U/t = 4 and N = 2 there is a low-T peak in dP/dT ,

which gives rise to the low-T peak in the specific heat. For U/t = 4 and N > 2, the

fits suggest the existence of a dip and then a peak as temperature is lowered; however

drawing firm conclusions here requires further studies.

In Fig. 7.12(b), the dK/dT data for all values of the ineraction strength are positive

and exhibit a low-T peak, or a low-T upturn which implies the existence of a peak

since dK/dT → 0 as T → 0. The magnitude of the upturn or peak increases with

N . For U/t ≥ 8 the low-T peak (or upturn) in the specific heat arises from the spin

degree of freedom, seen in dK/dT [Fig. 7.12(b)]. Together dP/dT and dK/dT give

Fig. 7.11(a). These results complement the ones presented in Refs. [43, 222], which

demonstrate that for N = 2, at small U/t the low-T peak arises from dP/dT as

opposed to dK/dT in the large U/t limit. The results presented here imply the same

conclusion for all N studied in this work: at large U/t the low-T peak arises from

dK/dT and the high-T peak from dP/dT , while at small U/t the low-T peak comes

from dP/dT and the high-T peak from dK/dT .

7.3.7 Entropy at unit density: dependence on U/t, T/t, and N

Figure 7.13(a) shows the N -dependence of the entropy per site as a function of T

for each U/t studied. For all values of the interaction strength we observe that

for temperatures above the superexchange energy, at fixed entropy, the system with

larger N is at a lower temperature. These results are in agreement with [155, 276],

highlighting that gases adiabatically loaded into an optical lattice in this regime will

have a significantly lower temperature as N is increased. For U/t = 4 this cooling

seems to occur for all values of T/t and N . However, for U/t ≥ 8, the curves roughly

collapse below T ≲ 4t2/U , at least for N > 2, suggesting that for 2D square lattices,

the dramatic benefits in cooling to the superexchange energy scale will be less effective

when cooling well below this scale. We note that this doesn’t rule out the cooling
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with increasing N persisting to arbitrarily low temperatures in other geometries, for

example as been shown in 1D chains [127].
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Figure 7.13 : Entropy per site vs temperature. (a) Each panel compares
S/Ns for N = 2, 3, 4, 6 for a fixed U/t. (b) Each panel compares S/Ns for
U/t = 4, 8, 12, 15.3, 20, 40 for a fixed N . Solid markers are DQMC, open markers
are NLCE, and solid lines come from the fit Eq. (7.5) to the DQMC data in 7.7 down
to the lowest Tn point. Thinner dash-dotted lines come from the fit in the extrapo-
lated regime T < min(Tn), where {Tn} is the data set of temperatures where DQMC
results are obtained. Dotted vertical lines indicate the superexchange energy J and
solid vertical lines indicate the temperature where the different U/t curves intersect.

Figure 7.13(b) shows the same entropy per site’s U -dependence as a function

of T for each N studied. For each N there is a crossing at finite temperature for

all U/t. The location of this crossing occurs at higher entropy and T for larger

N . The existence of a crossing in the entropy curves for different U/t for N =

2 follows from the presence of a crossing in the specific heat [222, 271–275], given

that C(T, U) = T [∂S(T, U)/∂T ]. Our results demonstrate that such behavior is still

present for N > 2.
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7.4 Conclusions

We have explored the evolution of thermodynamic observables of the SU(N) Fermi-

Hubbard model as a function of temperature T , interaction strength U/t, and the

number of flavors N at ⟨n⟩ = 1. DQMC and NLCE provide accurate results over a

wide range of temperatures, including temperatures roughly an order of magnitude

below the tunneling t, with the exact value depending on N and U/t. Neither method

is able to access arbitrarily low-temperatures, but the obtained results are far beyond

what is accessible to low-order HTSE methods or ED, which have serious inaccuracies

even at T ≳ 5t. The DQMC and NLCE agree where their regimes of convergence

overlap, further boosting confidence in the accuracy of the numerics. Some results

were also presented in Fig. 7.1 for the dependence of ⟨n⟩, D, and average determinantal

sign as a function of µ/t, as well as quantities derived from these.

A striking finding is the existence of a simple scaling law with N for T ≳ J

for E, D and K. We show that this observed scaling can be reproduced by the

second-order NLCE, which takes as input only one- and two-site correlations and

information about the lattice geometry, and in the appropriate regime this provides

analytic expressions for the observed results. Furthermore, we show that this regime is

well beyond the second-order HTSE. Although the numerics cannot provide accurate

results to arbitrarily low temperature, accurate results for E, K, and D are attained

for all N studied to temperatures where strong correlations are present. For example,

the temperatures reached for all N are slightly lower than recent experiments on the

2D SU(2) FHM [21] that observed correlations that spanned the entire (∼ 15-site

wide) system. Short-ranged correlations in the SU(6) FHM have been observed in

Ref. [41], and longer-ranged correlations will be an interesting subject for future work.

For example, Ref. [138] found a unifying pattern for all N in the Heisenberg limit

at high temperatures: spin correlations are organized in shells of equal Manhattan

distance and for N = 3, they evolve from a two sublattice structure to a three
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sublattice structure as temperature is lowered. The thermodynamic results provided

here provide a foundation for studying such phenomena.

Furthermore, the exploration of the specific heat and its contributions provided

additional information about the N dependence of the degrees of freedom that fluctu-

ate in the temperature regime studied, and the specialness of the N = 2 case, possibly

due to the perfect nesting. Our results show that the behavior of C, UdD/dT , and

dK/dT are all qualitatively similar for all N , with only the location and height of

peaks shifting. The high temperature peaks (at T ∝ U) are roughly independent

of N , while the low-temperature behavior shows a dependence on N . The details

of the latter are difficult to resolve with current numerical capabilities, and point to

interesting future numerical and experimental directions.

Finally, the results for the entropy have important implication for the observed

dramatic cooling of SU(N) FHM systems as N is increased at fixed entropy [71,127,

155, 276], which has been designated Pomeranchuk cooling. This has been impor-

tant for achieving the lowest temperatures in Fermi-Hubbard models by using SU(6)

gases [41]. Although this effect was shown theoretically at T ≳ t using a HTSE [155]

and experimentally [41, 71] and theoretically in 1D down to much lower tempera-

tures [127], our results here indicate that as one reaches very low temperatures, the

cooling as N increases becomes less pronounced in 2D square lattices. In particular,

Fig. 7.13(a) suggests that when in the regime with T well below the superexchange

energy 4t2/U , the temperature may be nearly independent of N at fixed entropy.

However, this conclusion is reached in a regime where the noise in the numerical re-

sults is large and systematic effects may not be fully under control, so further work

will be important to settle this question. Moreover, this is a lattice- and parameter-

dependent phenomenon, as it is known in 1D chains that the cooling with increasing

N persists to arbitrarily low temperatures [127].
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7.4.1 Chemical potential and entropy at fixed density when T → ∞

In order to compute the entropy using the results from DQMC at fixed density ⟨n⟩

using Eq. (7.4), we need to know a priori what is the entropy when T → ∞. This

depends on the chemical potential at T → ∞, which we can analytically determine

from the condition that ⟨n⟩ is fixed. As T/t → ∞, the zeroth-order HTSE captures

the behavior of ⟨n⟩ and it can be used with the condition ⟨n⟩ = ρ to determine

the chemical potential. When T ≫ U , the density is ρ = 1
Z

∑
n n
(
N
n

)
eβµn, defining

Z =
∑

n

(
N
n

)
eβµn. Then

ρ =
d logZ

d(βµ)
(7.14)

=
d

d(βµ)

[
log
[
(1 + eβµ)N

]]
(7.15)

= N
eβµ

1 + eβµ
. (7.16)

Solving for βµ, we obtain

βµ(N, ρ) = ln

(
ρ

N − ρ

)
. (7.17)

Using this result in the zeroth-order HTSE for S gives the T → ∞ entropy per site

S∞(N, ρ):

S∞(N, ρ) = ln

[
N∑

n=0

(
N

n

)(
ρ

N − ρ

)n
]
− ρ ln

(
ρ

N − ρ

)
, (7.18)

= N ln

(
N

N − ρ

)
− ρ ln

(
ρ

N − ρ

)
. (7.19)
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7.4.2 Convergence of NLCE as number of sites increases, and comparison

with ED

We investigate the convergence of the NLCE with expansion order, and we demon-

strate that it is significantly more accurate than ED, even when the ED is performed

on larger clusters (and therefore requires more computational resources) than the

NLCE. We focus on two cases: U/t = 0 which offers an analytic solution for compar-

ison [Fig. 7.14(a)] and U/t = 15.3 [Fig. 7.14(b)], both for ⟨n⟩ = 1. Fig. 7.14(a) shows

that the six-site (3 × 2) ED calculations for U = 0, whether with open-boundary

or periodic boundary conditions, has noticeable deviations from the exact analytic

result at temperatures T/t ≲ 20. Even the very low-order two-site NLCE converges

accurately to much lower temperature, T/t ≲ 3. Increasing the order of the NLCE

calculation leads to results that converge down to still lower temperature. Note that

the NLCE calculation is self-diagnosing: even without appealing to the analytic re-

sult, the NLCE demonstrates its accuracy when adjacent NLCE orders agree with

each other. For example, when the order four and order five results closely agree

with each other, then they also agree with the analytic result. This is consistent with

earlier findings in other models [164, 277]. It is worth mentioning that ED results

may still provide valuable information: at low-T the NLCE fails dramatically, and

while the ED may not be quantitatively accurate, it may still reproduce qualitative

features.

Now we show similar results for U/t = 15.3 where no analytic result is available.

The self-diagnosis of the NLCE demonstrates the convergence of two-site NLCE to

T ∼ 0.4t, and lower temperatures upon increasing the order. Again, the NLCE

converges down to a much lower temperature than the ED, which shows significant

deviations due to finite-size effects already at T/t ≳ 2. These results show that even

numerically inexpensive NLCE calculations (two or three sites) accurately converge

to much lower temperatures than the much more expensive six-site ED.
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Figure 7.14 : Convergence of NLCE with expansion order vie and compari-
son with ED. Energy vs T/t at ⟨n⟩ = 1 for (a) U = 0 (b) U = 15.3t for SU(2) and
SU(3). The ED is evaluated in a 3 × 2 lattice for both open and periodic boundary
conditions. (a) The NLCE converges to the analytic result (the solid line) to much
lower T/t than either of the ED results. (b) The NLCE curves converge to each other
at much lower temperatures than the ED curves collapse on each other or on the
NLCE results, signaling that the NLCE converges to significantly lower temperatures
than the ED.
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7.4.3 Basis truncation in the NLCE

The Hilbert space dimension for the SU(N) system imposes a severe limit on ED and

NLCE if implemented naively, and this difficulty increases dramatically with N : the

Hilbert space dimension is 2NNs , where Ns is the number of lattice sites, reaching a

nearly intractable dimension of 224 already for SU(6) at four sites. Accounting for the

SU(N) symmetries ameliorates this considerably, but the basic difficulty remains.

To alleviate these problems for N = 6 where the difficulties are worst, we employ

a basis truncation scheme for the ED used in the NLCE; this truncation was first

introduced for ED in Ref. [41], and it can provide accurate results with negligible

truncation error in the physical regime we consider, ⟨n⟩ ≲ 1, U/t ≳ 1, and T/U not

too large. To understand this scheme, note that eigenstates with significant weight on

flavor-number basis states with large interaction energy will be highly suppressed in

the thermal average by the Boltzmann factor for that eigenstate. Thus we restrict the

basis states to those with interaction energy less than or equal to pU for a constant p

that we choose to obtain sufficient accuracy while remaining computationally feasible.

In addition, by a similar logic, we restrict the maximum number of particles in the

cluster. In this Chapter, we choose p = 3 and a maximum particle number of six

(one more particle than the maximum number of sites used in the NLCE), and the

truncation error is negligible at low-T but increases as T increases (details below).

Fig. 7.15 illustrates the accuracy of NLCE with maximum particle number restric-

tion, and also the new numerical issues the truncation introduces, by comparing re-

sults for maximum number of particles equal to six, eight and ten and the unrestricted

result for SU(3) at U/t = 15.3 and ⟨n⟩ = 1. Results are plotted to temperatures a bit

past where the truncations are accurate so that the effects of this restriction are visi-

ble. The feature apparent from the truncation is that as the temperature is increased,

the results with particle number restriction deviate from the correct answer. This is

expected: as temperature is increased, the Boltzmann weight on basis states with
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Figure 7.15 : Convergence of NLCE with restriction of maximum number of
particles. Energy vs T/t plot at U = 15.3t for SU(3). Different curves are different
NLCE orders from two to five, and restriction of maximum number of particles to six,
eight and ten, as indicated in the legend. The divergence of NLCE at low temperature
is due to the finite order of the expansion, while the divergence at high temperature
is due to particle number truncation.
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more particles increases. A less obvious feature is that the temperature above which

the restriction fails to be accurate actually decreases as the NLCE order increases.

This is because the NLCE relies on cancellation of finite-size errors when combining

results from many clusters to obtain accurate results, and the number of clusters used

increases with NLCE order, and thus so does the required level of cancellation. The

truncation of maximum number of particles interferes with the exact cancellation,

and is magnified by the NLCE procedure by an amount that grows with the number

of contributing clusters. Thus, there is a finite window over which the NLCE results

are highly converged: the particle number truncation constrains the results to being

accurate below some temperature, while the finite-size clusters used in the NLCE

constraint the results to being accurate above some temperature. For the SU(3) re-

sults [Fig. 7.15] this window is roughly from T/t = 0.2 to 1 for maximum number of

particles of six and five-site NLCE, as seen through comparison to the results without

the restriction. We also observe that the NLCE self-diagnoses its failure due to this

restriction similar to how it diagnosed the failure due to the finite number of clusters

used: when results with different particle number truncations agree, the calculation

is accurately converged.

Fig. 7.16 illustrates the effects of the interaction-energy-based basis truncation

on top of maximum particle number restriction to six by comparing the results for

p = 3 and p = 4 truncations to the nontruncated result for SU(3) at U/t = 15.3. The

additional effects are negligible for NLCE orders four and five. This is not surprising

since for a five-site cluster a particle number restriction of six already discards most

states with highly occupied sites (doublons and higher) and a further restriction of

basis states with interaction energy < 3U serves mainly to discard triplon and and

higher states which have very small Boltzmann weights in the region of interest. Thus,

this additional truncation significantly reduces computational time, while introducing

negligible additional numerical errors. The self-diagnosis of the NLCE is apparent
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here as well, which we use to analyze the N = 6 results, where results without

truncation are unavailable [Fig. 7.16 (bottom)]. When adjacent orders and different

truncations agree, the NLCE is converged. We see the same trends for N = 6 as for

N = 3, and a similar region of convergence for the five-site NLCE. The results in this

Chapter thus use p = 3 and particle number restricted to six in the results for N = 6.

Naturally, the value of U affects the region of convergence significantly. The size of

the temperature region of convergence increases with U . For U ≤ 8t, there is barely

any region of convergence for these choices of the truncation parameters, and hence

we cannot get converged results for the SU(6) system from the fifth-order NLCE with

our truncation.

7.4.4 Second order NLCE calculation for J ≪ T ≪ U . Energy crossing

and 1/N dependence

In this section we focus on two things: explaining the existence of an energy crossing

(as seen in Fig. 7.7) and demonstrating the 1/N scaling observed in the limit J ≪

T ≪ U . As mentioned in previous sections in this Chapter, the second order NLCE

captures such behavior, but this does not admit a general analytic formula. However,

analytic formulas can be obtained in the J ≪ T ≪ U regime.

The second order NLCE in the square lattice is E = 4E(2) − 3E(1), where E(x) is

the energy per site in an x-site system. First we demonstrate that for J ≪ T ≪ U

the one-site problem does not contribute to the energy, then we calculate the energy

in the relevant particle sectors in the two-site problem, and finally we present results

for their linear combination, i.e. the second order NLCE.
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7.4.4.1 One-site problem

In the one-site problem, the partition function is given by

Z(1) =
N∑

n=0

(
N

n

)
e−βϵ0(n), (7.20)

where ϵ0(n) = U
(
n
2

)
− µn. The density ρ(1) is

ρ(1) = ⟨n⟩ = 1

Z(1)

N∑
n=0

n

(
N

n

)
e−βϵ0(n), (7.21)

while the energy E(1) is

E(1) = ⟨H + µn⟩ = 1

Z(1)

N∑
n=0

U

(
n

2

)(
N

n

)
e−βϵ0(n). (7.22)

Because T ≪ U , we can obtain an analytical approximate expression for the

chemical potential µ0(T, U,N) that fixes the density to ρ = 1 by only considering the

zero-, one-, and two-particle sectors. This expression is exact for N = 2, but is only

true to leading order in T/U for N > 2, since it truncates eigenstates with triplons

and higher occupancies. The solution for µ0 is given by

µ0(T, U,N) =
U

2
+

1

2
T ln

[
2

N(N − 1)

]
, (7.23)

and the energy in this limit is

E(1) =
Ue−βU/2

2 +
√

2N
N−1

≈ 0. (7.24)

Therefore we have shown that in the βU ≫ 1 limit the second-order NLCE in the

square lattice is determined by the two-site result, E = 4E(2).
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7.4.4.2 Two-site problem

The Hilbert space of the two-site problem is 4N , and analytically diagonalizing such

matrix — even if exploiting particle number conservation for each spin component

and spin permutation symmetry — is not possible. However, not all particle sectors

need to be considered since βU ≫ 1 and ⟨n⟩ = 1. Under these two conditions, and to

leading order in βJ , we can use the chemical potential from Eq. (7.23) in the two-site

calculation. This ensures that at ⟨n⟩ = 1 only the two-site two-particle sector (TSTP)

contributes, since all other sectors are ∝ e−βU , and therefore negligible.

In the TSTP, there are N states where two particles of the same flavor sit on sites

1 and 2. Since these are Pauli blocked from hopping, and there is no U contribution,

they constitute N independent one dimensional subspaces of energy ϵ = 0, giving

rise to a contribution N in the partition function. Furthermore, there are
(
N
2

)
choices

where the flavors of the two particles are different. Since the hopping conserves flavor,

these form independent four-dimensional subspaces with levels identical to the usual

N = 2 spectrum in the one spin-up and one spin-down sector. Therefore, in the

TSTP the partition function Z(2) and energy per site E(2) are given by:

Z(2) = N +

(
N

2

)
Z2, (7.25)

E(2) =
1

2

(
N

2

)
E2, (7.26)

Z2 =
4∑

n=1

exp(−βϵn), (7.27)

E2 =
1

Z

4∑
n=1

ϵn exp(−βϵn), (7.28)

where ϵn are the eigenvalues of the two-particle sector with different spin component,

i.e. σ ̸= τ . These eigenvalues are ϵn = {0, U, U/2±
√
16t2 + U2}.

First, an energy crossing for different values of N as a function of T/t at a fixed

U/t in the TSTP occurs when Eq. (7.26) is equal to zero, i.e. E2 = 0, to demand the
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N -independence of the energy. The temperature at which the crossing occurs is the

solution to the following trascendental equation:

0 = Ue−βU +
U

2

1 +
√

1 +

(
4t

U

)2
 e−β U

2

[
1+

√
1+( 4t

U )
2
]

+
U

2

1−
√
1 +

(
4t

U

)2
 e−β U

2

[
1−

√
1+( 4t

U )
2
]
. (7.29)

That this equation has solutions demonstrates the existence of a crossing point, and it

qualitatively explains the trends of T ∗/t with U/t, although it deviates quantitatively

from the results in Fig. 7.8.

Now we demonstrate the 1/N scaling for J ≪ T ≪ U , where the second-order

NLCE shows unconditionally that the collapse occurs in this regime. We present

results for E, but analogous results can be obtained for D and K. The energy in the

TSTP is given by Eq. (7.26),

E(2) (T, U,N) =
1

2

(
N
2

)∑4
n=1 ϵn exp(−βϵn)

N +
(
N
2

)∑4
n=1 exp(−βϵn)

. (7.30)

Since U ≫ t, the ϵn have simple expressions ϵn = {0, U, U+J,−J}. Because βU ≫ 1,

E(2) is given to leading order by

E(2) (T, U,N) ≈ 1

2

(
N
2

) (
−JeβJ

)
N +

(
N
2

)
(1 + eβJ)

,

=
1

2

−JeβJ
N+1
N−1

+ eβJ
. (7.31)

Finally, since in the J ≪ T ≪ U limit E = 4E(2), the second order NLCE to

zeroth order in βJ ≪ 1 is

E (T, U,N) ≈ −J +
1

N
J. (7.32)
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This demonstrates that the scaling Eq. (7.10) holds in the regime 4t2/U ≪ T ≪ U ,

when t/U ≪ 1 to zeroth order in βJ .
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CHAPTER 8. OBSERVATION OF ANTIFERROMAGNETIC CORRELATIONS

IN AN ULTRACOLD SU(N) HUBBARD MODEL

Chapter 8

Observation of antiferromagnetic correlations in an

ultracold SU(N) Hubbard model

The superiority of the symmetrical flower is re-

flected in a greater production of nectar, and that

nectar has a higher sugar content. Symmetry

tastes sweet.

Symmetry: A Mathematical Journey.

Marcus Du Sautoy

This chapter is adapted from publication:

Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model,

Shintaro Taie*, Eduardo Ibarra-Garćıa-Padilla*, Naoki Nishizawa, Yosuke Takasu,

Yoshihito Kuno, Hao-Tian Wei, Richard T. Scalettar, Kaden R. A. Hazzard, and

Yoshiro Takahashi, arXiv:2010.07730 (accepted at Nat. Phys). *This authors con-

tributed equally to this work ∗.

Mott insulators are paradigmatic examples of strongly correlated physics from

which many phases of quantum matter with hard-to-explain properties emerge. Ex-

tending the typical SU(2) spin symmetry of Mott insulators to SU(N) is predicted to

produce exotic quantum magnetism at low temperatures. In this work, we experimen-

tally observe nearest-neighbor spin correlations in a SU(6) Hubbard model realized

by ytterbium atoms in optical lattices. We study one-dimensional, two-dimensional

square, and three-dimensional cubic lattice geometries. The measured SU(6) spin

correlations are enhanced compared to the SU(2) correlations, due to strong Pomer-

∗Complete article, including text, figures, and tables reprinted with copyright permission of
Ref. [41].
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anchuk cooling. The experimental data for a one-dimensional lattice qualitatively

agrees with our theoretical calculations, with an error of at most 30%, without any

fitting parameters. Detailed comparison between theory and experiment allows us

to infer the temperature to be the lowest achieved for a cold atom Fermi-Hubbard

model. For two- and three-dimensional lattices, the experiments reach entropies be-

low the regime where our calculations converge, highlighting the importance of these

experiments as quantum simulations.

8.1 Introduction

A recurring question in many-body quantum systems is how the competition of kinetic

and interaction energies determines ground state quantum phases. The quantum

fluctuations play an essential role in determining the ground state spin structure,

which may differ drastically from the mean-field prediction. The SU(2) Hubbard

model has long been a prototypical system to study these effects, and Hubbard models

with an enlarged SU(N) symmetry have attracted great interest.

The study of SU(N) quantum magnetism historically originated from the mathe-

matical technique of large-N expansions [8, 83, 84, 86]. More recently, understanding

N > 2 systems has attracted broader interest, due to the expectation that such sys-

tems will display a wide array of exotic physics [76,130–134,138]. Although N can be

large, quantum fluctuations remain important since SU(N) symmetry prevents spins

from becoming classical [8, 257].

Although theoretical models with SU(N) symmetry also have been discussed in

connection with real physical systems such as transition metal metal oxides [72, 73]

and graphene’s SU(4) spin-valley symmetry [90], the introduction of the symmetry is

just a rough approximation. In contrast, an intrinsic SU(N) nuclear spin symmetry

[97, 98, 257, 258] is realized in fermionic isotopes of alkaline-earth-metal-like atoms

(AEAs), providing unique opportunities for quantum simulation experiments of the
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SU(N) Fermi-Hubbard Model (FHM) [75,85,102,143,178,278]. The SU(N = 2I +1)

FHM can be implemented by loading an AEA with nuclear spin I in an optical lattice.

This model is given by the Hamiltonian

H = −t
∑
⟨i,j⟩,σ

c†iσcjσ +
U

2

∑
i,σ ̸=τ

nσ(i)nτ (i)− µ
∑
i,σ

nσ(i), (8.1)

where ciσ (c
†
iσ) denotes the fermionic annihilation (creation) operator for site i, nσ(i) =

c†iσciσ is the number operator and µ is the chemical potential that controls the density.

The flavor index σ labels the projection quantum number of the nuclear spinmI . Here

we employ 173Yb, and mI is −5/2,−3/2, . . . ,+5/2. The tunneling amplitude t and

the on-site interaction U do not depend on σ, giving rise to the SU(N) symmetry.

An important characterization of strongly correlated states is provided by their

spin correlation functions. For the SU(2) Hubbard model, antiferromagnetic (AFM)

correlations were first observed in dimerized lattices [67], in un-dimerized three-

dimensional (3D) lattices using Bragg spectroscopy [20], and in one- and two-dimensional

(1D and 2D) lattices using quantum gas microscopy [21, 59]. However, correlations

in a uniform SU(N) Hubbard model have not been previously observed. Although

observing long-ranged correlations would be essential to characterize phases of matter

and their phase transitions, nearest-neighbor spin correlations are already of great in-

terest. In many models, the most rapid change of nearest neighbor correlations with

temperature can be a proxy for the critical temperature, and short-ranged correlations

are a key ingredient in pairs formations in cuprate and iron-pnictide superconductors,

where short-ranged magnetic correlations appear to be essential for the pairing. In

this work, we observe the nearest-neighbor AFM spin-correlations in an SU(6) 173Yb

Fermi gas loaded in 1D, 2D, and 3D optical lattices, and measure them as a function

of initial entropy in a harmonic trap. These experimental results are compared with

the theoretical calculations with no fitting parameters.
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Figure 8.1 : Experimental setup. (a) SU(6) Hubbard systems realized in various
configurations of a 3D optical lattice. Spin components are labeled by the nuclear spin
projection quantum numbermI . (b) Schematic of the experiment. After preparing the
equilibrium state and freezing all the tunneling processes, a spin-dependent potential
gradient is applied to drive STOs. Subsequently, every two adjacent lattice sites are
merged into single sites of the detection lattice, followed by photoassociation which
removes atom pairs in antisymmetric spin states. (c) Typical examples of SU(6)
STO signal measured for the 1D chain lattice. The spin-correlation signal for the
nearest-neighbors along the chain axis and along the inter-chain direction are shown
in the upper and lower graphs, respectively. Atom numbers are normalized by the
total atom number without molecular association processes, and the deviation from
unity represents the fraction of singlet states at each time. The initial entropy per
particle is 1.45kB ± 0.05kB, and the interaction strength is U/t = 15.3(5). The error
bars represent the standard deviation for the 6 independent measurements. (d) STO
measurement with optical Stern-Gerlach (OSG) spin separation. Top: Absorption
image of the OSG experiment. The image is taken after 5ms time-of-flight. Bottom:
Time evolution of the spin population during STO. The solid lines are the fits with
the two-frequency model in Eq. (8.10). A spin imbalance of 3% is evaluated from the
independent measurement with full 6-spin separation. The error bars represent the
standard error of the mean for the 3 independent measurements.
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8.2 Experimental setup

Figure 8.1(a) depicts our physical system. The SU(6) Fermi gas of 173Yb with atom

number Nptcl = 2.4(1) × 104 is adiabatically loaded into 1D chain, 2D square, and

3D cubic lattices that are constructed by a primary optical lattice operating at 532

nm (see Methods). The 1D chain and 2D square lattices are created by introducing

strong tunneling anisotropy into the cubic lattice. The inter-lattice tunneling is less

than 5% of intra-lattice tunneling t, and is much smaller than the other energy scales

in the system. In our previous work [142] we measured the spin correlation of SU(4)

fermions loaded into a double-well system in which the nearest-neighbor correlation

is artificially enhanced by strong dimerization. However, in the present work, the

SU(6) fermions are loaded into uniform lattices in 1D, 2D, and 3D in which there is

no trivial enhancement of spin correlations due to dimerization.

One can utilize the technique of singlet-triplet oscillations (STO) [67, 279] in an

optical superlattice to measure the nearest-neighbor correlations, including for SU(N)

Fermi gases [142]. The principle of the STO measurement is illustrated in Fig. 8.1(b).

Tunneling is frozen except between pairs of adjacent lattice sites along the measure-

ment axis, which are merged into single sites of a detection lattice which has twice the

lattice spacing. Here we utilize the fact that s-wave photoassociation (PA) only asso-

ciates pairs of atoms with a spatially symmetric wavefunction, and thus is only sensi-

tive to spin antisymmetric states in each detection site since the total wavefunction is

antisymmetric. Associated molecules quickly escape from the trap, resulting in atom

loss. Application of a spin dependent potential gradient before the merging process

drives oscillations of spin symmetry, enabling us to also detect spin symmetric states.

In this way, we measure the fraction of both “singlet” and “triplet” states formed

within nearest-neighbor lattice sites. The detected SU(N) counterpart of the SU(2)

double-well singlet is a
(
N
2

)
-fold multiplet with the form (|σ, τ⟩ − |τ, σ⟩)/

√
2 (σ ̸= τ

represents one of the N flavors). Similarly, the double-well triplet is extended to a
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[(
N
2

)
+N

]
-fold multiplet, among which

(
N
2

)
states with the form (|σ, τ⟩+ |τ, σ⟩)/

√
2

(σ ̸= τ) are detected by our scheme while σ = τ is not. In the following, we rep-

resent the fraction of atoms forming these “singlet” and detectable “triplet” by Ps

and Pt0, respectively. These are not to be confused with SU(N) singlets and triplets,

which are N -body entangled states [72]. The STO measurement is valid only if the

contribution from multiple occupancies can be neglected. For that reason, we set the

central density to unit filling and the interaction to be sufficiently strong to suppress

double occupancies in the primary lattice. This also maximizes the Pomeranchuk

cooling effect because the maximum spin entropy lnN can be realized only in singly

occupied sites. The presence of holes results in double wells containing only a single

atom and does not affect STOs.

As a measure for the nearest-neighbor spin correlation, we consider a singlet-triplet

imbalance defined as

I =
Ps − Pt0

Ps + Pt0

. (8.2)

In addition, we consider a normalized STO amplitude

A = Ps − Pt0 (8.3)

as an alternative measure. As long as the SU(N) symmetry holds, A is proportional

to the spatial integration of the SU(N) spin correlation function CNN [126] (see

Methods),

CNN =
∑
σ ̸=τ

[
⟨nσ(i)nσ(i+ 1)⟩ − ⟨nσ(i)nτ (i+ 1)⟩

]
, (8.4)

where nσ(i+1) is a shorthand we use throughout for number operators at a nearest-

neighbor of i. In the trap, A will be significantly reduced compared to the uniform

unit filled case because of the low density at the edge of the sample, and incorporating

the effect of the harmonic confinement is important to compare calculations of A with
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experiments. Note that the singlet and triplet fractions can be determined if we know

both I and A.

Figure 8.1(c) shows a typical STO signal measured in a 1D chain lattice. To create

the spin dependent potential gradient, we utilize linearly polarized laser light close to

the 1S0 → 3P1 resonant frequency (see Methods). As a result, STOs are driven for

the spin pairs with different |mI | (= 1/2, 3/2, and 5/2), resulting in three different

STO frequencies. The ratio of these frequencies ω 1
2
− 3

2
: ω 3

2
− 5

2
: ω 5

2
− 1

2
= 1 : 2 : 3

is determined by the Clebsch-Gordan coefficients and does not depend on detuning

(see Methods). We analyze the STO signal assuming the SU(N) symmetry, namely,

that all spin combinations equally contribute to correlations. Along the chain axis,

we obtain a singlet-triplet imbalance of I = 0.674± 0.052, indicating the large AFM

correlation (CNN < 0). On the other hand, correlations between chains are zero

within the error bar (I = 0.01 ± 0.01) as expected from the negligible inter-chain

tunneling.

To verify the expected SU(6) symmetry, we observe the time evolution of each

nuclear spin component during STOs. After the standard STO process (driving STO,

merging double-wells, and applying PA), lattice potentials are adiabatically ramped

down in 6 ms to suppress momentum spread. Then we turn off the optical trap,

followed by the application of the optical Stern-Gerlach (OSG) beam for 0.2 ms.

The OSG light source is identical with that for the gradient beam for driving STO,

with nearly 3 times higher intensity. Therefore the OSG beam is π-polarized and

distinguishes only spin components with different |mI |. Figure 8.1(d) shows analysis

of the spin distribution. The behavior is well reproduced by the two-frequency model

(see Methods), indicating that the STO scheme is working as designed. The fit to

oscillations of the |mI | = 1/2 cloud seem slightly worse than the others. This is due

to the stronger deformation of the cloud and possibly spin-flips caused by the photon

scattering from the OSG laser. We confirm that the deviation of each spin population
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from the balanced mixture is about 3% and this does not affect the following results.

8.3 Results

8.3.1 Antiferromagnetic nearest-neighbor spin correlations

Figures 8.2(a) and (b) show the nearest-neighbor correlations for 1D and 3D lattices

as a function of entropy per particle, with a dramatic enhancement of SU(6) spin cor-

relations compared to the SU(2) correlations in the 1D system. The total entropy S is

inferred from a time-of-flight measurement of the weakly interacting gas before lattice

loading. The on-site interaction is fixed to U/t = 15.3(5) for all lattice configurations,

which is determined from the band calculation with measured lattice depths. In this

strongly interacting regime, an important scale is the maximum spin entropy per par-

ticle for a singly-occupied site, given by s
(N)
spin = kB lnN . Näıvely, ignoring the spatial

inhomogeneity of the trap, a sample with S/Nptcl < s
(N)
spin is expected to reach the

temperature regime where the spin-correlations emerge. For SU(6), s
(6)
spin = 1.79kB,

while for SU(2), s
(2)
spin = 0.69kB, and N = 6 systems are therefore expected to show

significantly enhanced correlations, which is interpreted as the enhancement of the

Pomeranchuk effect due to large spin [71,127,128]. Our microscopic theory confirms

this simple picture, and the observed data show reasonable agreement with theoretical

predictions by exact diagonalization (ED) for 1D and determinantal quantum Monte

Carlo (DQMC) for 3D, without any fitting parameters.

Here, we suggest a possible origin of the small observed deviation between the

theory and experiment. Given the extensive tests we have done on our codes and

experiments, we consider an actual error in the calculations or the experiments un-

likely. The remaining possibility is the fundamental differences between the model

being simulated and the atomic system being measured. On the computational side,

we have carefully investigated Trotter errors, finite size effects, and the use of the lo-

cal density approximation (Methods). Calculations assume that loading is adiabatic,
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Figure 8.2 : Entropy dependence of the nearest-neighbor correlations of
the SU(N) FHM at U/t = 15.3. Entropy dependence of (a) the normalized STO
amplitude A and (b) the singlet-triplet imbalance I in 1D and 3D lattices are shown.
Green squares, red circles, and blue triangles represent the experimental data for
SU(6) 1D, SU(6) 3D, and SU(2) 1D systems, respectively. Solid (dashed) lines are
the result of ED (DQMC) calculations. The horizontal error bars represent standard
deviation of the 10 entropy measurements, and the vertical error bars are extracted
from the fitting errors in the analysis of the STO signal. Shaded areas represent
uncertainty from systematic and statistical errors of the numerical methods (for more
details, see Methods), and the possible systematic error (20%) in the total atom
number measurement, summed linearly . (c)-(e) Observables as a function of distance
to the center of the trap for the 1D system with trap parameters as in the experiments
calculated by ED. (c) Particle number per site, (d) entropy per site, and (e) nearest-
neighbor spin correlation per site as a function of Rresc/a, where the rescaled radii are

Rresc =
√∑

a=x,y,z(ωara/ω)2, a = 266 nm is the lattice constant, and ω = (ωxωyωz)
1/3

is the geometric mean of the trapping frequencies, for N = 6 at U/t = 15.3 in an
L = 8 site chain at kBT/t = 0.1, 0.5, and 1.0. These temperatures correspond to
S/NptclkB = 1.75, 2.17, and 2.54, respectively.
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while non-adiabatic loading of the atoms to the lattice may play some role in the

experiments. For the 1D SU(6) case, measured correlations in the low entropy region

are smaller than the theoretical curve by ∼ 30%, and it is plausible the main source

of the discrepancy is the non-adiabaticity of the lattice loading. We estimate the

amount of heating to be 0.2kB around the lowest temperature (Methods). For the

higher entropy region in 1D SU (6) case, on the other hand, measured correlations

are larger than the theory predictions. Although experiments start with a weakly

interacting gas, it is possible that some of the initial correlations are frozen during

lattice loading, which could be a source of small remaining discrepancies between the

experimental results and theory.

Figures 8.2(c)-(e) show theoretically calculated trap profiles of atom number, en-

tropy, and nearest-neighbor spin correlations per site for a 1D system. A rigid Mott

plateau is well-developed at kBT/t ∼ 0.5, and spin correlation rapidly develops for

lower temperature. Estimation of the temperature obtained in our experiment is

discussed in the next section.

8.3.2 Extracting temperature in an optical lattice by theory-experiment

comparison

The present experiments cannot directly measure the temperature at the very low

entropies studied here. However, for the 1D systems, the temperature can be inferred

by comparing experiment and theory. In 1D, the lowest temperature achieved in

the experiments is kBT/t = 0.096± 0.054± 0.030, obtained from the experimentally-

measured singlet-triplet imbalance I at S/NptclkB = 1.45 ± 0.05 (see Fig. 8.5). The

first error bar is an estimate of the finite-size error given by the difference between

the finite-size extrapolation to the thermodynamic limit and the 8-site result. The

second error bar comes from the experimental uncertainty on the correlations. This

is lower than the state-of-the-art temperatures reported in cold atom FHM systems
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[20, 21, 62, 63, 141]. Estimates based on A rather than I are similar (see Methods).

The theory and experiment agreement in 1D suggests the reliability of the experiment

in higher dimensions where numerics fail and quantum simulation via experiment is

crucial.

For comparison, at the same entropy, the SU(2) system is at kBT/t = 1.008 ±

0.073±0.001, or to obtain the same singlet-triplet imbalance, the SU(2) system should

be at S/NptclkB = 0.499± 0.136± 0.120. Since the state-of-the-art averaged entropy

per particle for SU(2) experiments with alkali atoms is around 1kB [21], this suggests

an experimental advantage for SU(N) systems in obtaining highly correlated states

in optical lattices.

8.3.3 Dependence on lattice dimensionality

In addition to the dependence on N , the correlations significantly depend on dimen-

sionality, with the 1D case exhibiting the largest correlations as shown in Figs. 8.3(a)

and (b). This behavior is similar to previous studies in an SU(2) system [43,60, 193]

and can be understood at sufficiently high-temperatures. In this regime, correla-

tions depend only on temperature, not dimension (this intuitive result can be proved

with a high temperature expansion), and decrease with increasing temperature. Ad-

ditionally, decreasing dimension decreases the bandwidth and thus at fixed entropy

decreases the temperature [as seen in Fig. 8.3(b)]. Together, these imply that correla-

tions decrease as the dimensionality is increased. The situation at lower temperatures

is expected to be more complicated, but the numerics indicate that this simple con-

clusion remains true. Constructing simple arguments for the low temperature regime

remains an interesting challenge.

In Fig. 8.3(a), we plot the singlet-triplet imbalance measured through 1D-2D and

2D-3D crossovers with the same initial condition. We measure the correlations along

the z axis and change the ratio of tz to the tunneling t⊥ of the initially weak link.
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At both the maximum and minimum tz/t⊥ and at the intermediate point tz/t⊥ = 1,

we set U/tz = 15.3. Lattice geometry is smoothly changed between the above three

points (see also Methods). We find that spin correlations monotonically decrease as

the lattice is deformed from 1D to 2D. For the 2D-3D crossover, the difference is

smaller but the trends of decreasing correlations with increasing dimensionality are

still visible. The correlation quickly drops for tz/t⊥ < 1 and becomes undetectable,

as expected.

Figure 8.3 : Dimension dependence of the spin correlations.(a) Left: Spin
correlations of an SU(6) Fermi gas as the lattice dimensionality is tuned by lattice
anisotropy from 1D to 2D. Correlations along the z axis are measured. Lattices are
deformed from x-chains (blue circles) and y-chains (red squares) to z-chains with
U/t = 15.3, via the 2D square lattice with same U/t. Right: Measurement in 2D-
3D crossover. Three possible 2D square lattices are connected via the isotropic 3D
cubic lattice at U/t = 15.3. The initial entropy is S/NptclkB = 1.4± 0.1 for both
experiments. (b) Entropy per particle, normalized STO amplitude, and singlet-triplet
imbalance for N = 3 in L-site chains and a 4× 4× 4 cubic lattice for U/t = 8. Note
that the results for 1D L = 4 and L = 7 are nearly identical.

Numerical calculations show a similar trend. Although DQMC has difficulty in

obtaining reliable results for 3D systems at the low temperatures where significant

correlations develop for U/t = 15.3 and N = 6, it can calculate the properties of 3D

systems for U/t = 8 and N = 3 to low temperature where significant correlations

develop. Because we are considering a smaller N we calculate ED results without

using the basis state truncation for 1D L-sites chains with L = 4–7. Figure 8.3(b)

presents the computed entropy per particle and the spin correlations. Although these

are not directly the conditions in the experiments, they do show the same trend of
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correlations decreasing with increasing dimension.

DQMC results for N = 6 are only presented at temperatures above T/t = 1, owing

to a strong sign problem below this temperature, as well as the onset of nonergodicities

in the Monte Carlo sampling in this region. The sign problem is particularly strong

in the metallic region, where large errors in the observables appear for several values

of the chemical potential. Ref. [44] provides more details on how the sign problem

depends on U/t and µ/t.

8.4 Discussion

We find that the measured nearest-neighbor AFM correlations agree broadly with the

theory with no fitting parameters for all temperatures in 1D, and at temperatures

where converged theoretical results can be obtained in 3D. In our work for 3D lattices,

we have entered the region where converged theoretical calculations are unavailable

and quantum simulation manifests its usefulness.

While we successfully demonstrate the lowest temperature achieved in the FHM

in our 1D optical lattice experiment, there is still room for reaching even lower tem-

peratures, for example by engineering spatial redistribution of entropy [21].

The STO measurement presented here is also applicable to spin imbalanced cases

by introducing proper oscillation functions. On the other hand, the spin structures

measured in this work are limited to the SU(2)-type nearest-neighbor singlets and

triplets. In general SU(N) systems, more nontrivial spin states arise. For example,

the SU(N) singlet given by the fully antisymmetric combination of N spins plays an

essential role in SU(N) antiferromagnets. Probing such multi-spin entanglement will

be an important experimental challenge. Measuring the long range correlations is

also of interest. One of the most important questions that has not been uncovered

yet is whether the long-range ordering persists in the SU(N) system. Measuring

long range correlations will be feasible by using a quantum gas microscope with spin-
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selective detection technique. State-of-the-art numerical and analytic calculations,

with the use of approximations, have proposed a variety of possible ground states

such as flavor-ordered patterns and valence bond solids, among others [76, 130–134,

138]. Experiments are now poised to discriminate finite temperature analogs of such

proposed states.

8.5 Methods

8.5.1 Sample preparation

A degenerate Fermi gas of 173Yb is prepared by evaporative cooling in a crossed dipole

trap operating at 532 nm. The optical lattice also has the wavelength 532 nm and

the simple cubic geometry. The additional detection lattices at 1064nm along the

z and x axes are used only for STO measurement. In the main result obtained in

Fig. 8.2, the optical lattices are ramped up to s = (sx, sy, sz) = (7.0, 7.0, 7.0) for the

3D cubic lattice, (6.1, 20.0, 6.1) for the 2D (xz-) square lattice, and (20.0, 20.0, 5.0)

for the 1D (z-)chain lattice. Here, sx,y,z are the lattice depths in units of the recoil

energy ER = ℏ2(2π/λ)2/2m with atomic mass m and the wavelength of the lattice

laser beams λ = 532 nm. In the dimensional crossover experiment shown in Fig. 8.3,

the lattice geometry is smoothly changed in the form s = (1− p)s1+ ps2 (0 < p < 1),

where s1 and s2 take the values given above for definite dimensionalities, as well as

(6.1, 6.1, 20) for 2D (xy-) square and (5.0, 20.0, 20.0) for 1D (x-) chain lattices. The

dipole trap together with the optical lattice creates an overall harmonic potential for

the sample, whose trap frequencies are (ωx′ , ωy′ , ωz) = 2π × (102, 44, 155) Hz for the

3D lattice, 2π × (105, 49, 158) Hz for the 2D lattice, and 2π × (107, 54, 162) Hz for

the 1D lattice. The principal axes of the trap x′ and y′ are tilted by 45 degrees from

the lattice axes x and y, within the horizontal plane. For the experiment shown in

Fig. 8.6, the trap frequency weakly depends on U/t with the variations within 10%.

Entropies of atomic gases are numerically calculated using the temperature ob-
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tained by fitting Thomas-Fermi distribution to time-of-flight images of harmonically

trapped samples. The effect of the repulsive interaction is evaluated within mean-field

theory, which predicts entropies up to 6% higher than that the non-interacting gases.

The effect of interaction during cloud expansion causes an additional systematic er-

ror in entropy, which is estimated to be smaller than 10%. Trap anharmonicity is

also evaluated and we conclude that the correction is no more than 5% of the pure

harmonic value.

Non-adiabatic heating is observed during the lattice loading process. We compare

the spin correlations after the normal loading and the “round-trip” process in which

we once decrease the lattice down to the minimum depth where evaporation is neg-

ligible, followed by ramping up again. This results in the decrease of singlet-triplet

imbalance by 50-60% for all lattice configurations, corresponding one-way heating of

0.2kB per atom in the 1D case. This is consistent with the widely used method of

measuring the entropy increase after the gas loaded to and released from the lattice

potential, which in our case implying the heating is 0.15-0.35kB.

8.5.2 SU(6) singlet-triplet oscillations

To generate a spin-dependent potential gradient, we apply an optical Stern-Gerlach

laser beam close to the 1S0 → 3P1 resonance. The detuning of +2.6 GHz from the

F = 5/2 → 7/2 transition is selected to minimize the ratio of the photon scattering

rate to the differential light shifts.

The STO signal is analyzed by comparing the total atom number with the number

of atoms remaining after removing singlets by photoassociation via the resonance that

is located at −812 MHz from the 1S0 → 3P1 (F = 7/2) transition [142]. Assuming

that the SU(6) symmetry is not broken, the functional form of the time evolution of
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remaining atom number is

N(t) = −a exp(−t/τ) [cosωt+ cos 2ωt+ cos 3ωt] + b, (8.5)

with fitting parameters a, b, τ and ω. The oscillation frequency ω is determined from

the differential light shift of each spin pair. In general, a differential light shift of a pair

(mI ,m
′
I) is of the form

∑
F ′ f(δF ′)[C(F ′,mI) − C(F ′,m′

I)], where f is a function of

the detuning δF ′ from the excited hyperfine states F ′ and C(F ′,mI) is the transition

strength. The constant frequency ratio (ω, 2ω, 3ω) follows from the fact that, for

linear polarization, [C(F ′,mI) − C(F ′,m′
I)] can be reduced to the separated form

C ′(F ′)R(mI ,m
′
I). Photon scattering and inhomogeneity of the gradient due to the

Gaussian shape of the OSG beam with intensity ∼ 15W/cm3 cause a decay of STO

signal, which is described by the exponential decay term in Eq. (8.5). The gradient

beam propagates along the y axis and the measurement along the z axis is chosen to

suppress the effect of inhomogeneity.

Among the
(
6
2

)
= 15 spin combinations relevant to STO, linearly polarized light

gives rise to the differential light shifts for 12 combinations with different absolute

values of mI . The remaining 3 combinations with the same |mI | do not show STO.

Therefore the singlets formed by these pairs are always removed by PA during STOs

and the corresponding triplets always remain in the trap. Taking this fact into ac-

count, the singlet and triplet fractions in the SU(6) case are expressed as

Ps =
1

Nptcl

[
Nptcl −D + 3a− b

]
, (8.6)

Pt0 =
1

Nptcl

[
Nptcl −D − 9a

2
− b

]
. (8.7)

where Nptcl is the total atom number without PA and D is the number of atoms

on doubly occupied sites (typically less than 3% of Nptcl) which are independently
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measured without merging and STO processes. Multiple occupancies higher than

double are negligibly small. PA light causes also one-body loss induced by photon

scattering, which gives rise to an overestimate of two-body PA loss. In the presence

of one-body loss, the substitution N(t) → eγτPAN(t) is required in analyzing STO,

where γ is the one-body loss rate and τPA is PA pluse duration. In our experiment,

γ is found to be 0.3% of the PA rate and the correction to N(t) is typically 1%. In

the SU(2) case the STO is a simple sinusoid, and the analogous expressions are

Ps =
1

Nptcl

[Nptcl −D + a− b] , (8.8)

Pt0 =
1

Nptcl

[Nptcl −D − a− b] . (8.9)

An atom with specific |mI | can show STOs with two possible frequencies. With

OSG separation, the time evolution of the atom number in each separated cloud N|mI |

is described by the two-frequency oscillation

N|mI |(t) = −a exp(−t/τ)
[
cosω|mI |,1t+ cosω|mI |,2t

]
+ b, (8.10)

with oscillation frequencies

(ω|mI |,1, ω|mI |,2) =


(ω, 3ω) |mI | = 1/2

(ω, 2ω) |mI | = 3/2

(2ω, 3ω) |mI | = 5/2.

(8.11)

Figure 8.1(d) in the main text agrees well with these behaviors of Eq. (8.10), con-

firming the validity of the present analysis of STO.
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8.5.3 Numerical calculations for homogeneous systems

Determinantal Quantum Monte Carlo (DQMC) and exact diagonalization (ED) cal-

culations are used to obtain the values of the thermodynamic quantities, including

the density, entropy, and nearest-neighbor spin correlation function for homogeneous

systems. These results are used to compute the properties for the trapped system

using the local density approximation (LDA), which is described below.

ED results were obtained in L-site chains by performing full diagonalization over

a reduced Hilbert space (described below) and using finite-size scaling. For compu-

tational efficiency, we exploit two aspects of the SU(N) symmetry. Particle num-

ber conservation for each spin flavor [Nσ, H] = 0 with Nσ =
∑

j nσ(j) and the

translation symmetries allow us to block-diagonalize the Hamiltonian. Furthermore,

we exploit the spin permutation symmetries [Sσ
τ , H] = 0 ∀σ, τ = 1, . . . , N with

Sσ
τ =

∑
i S

σ
τ (i) =

∑
i c

†
iσciτ which relate many of the sectors of the Hamiltonian, and

therefore one needs to diagonalize only one representative from each sector.

In addition to the (exact) symmetries, we employ a basis state truncation, which

we systematically converge. First, the Hilbert space only includes states with total

particle number lesser or equal to a fixed particle number Nmax. Second, it omits

states if the total on-site energy (the energy associated with the presence of multiple

occupancies in the cluster) is larger than Ecut. We present results obtained from

Nmax = L+ 1 and Ecut = U for L = 5–7 and Nmax = L for L = 8. Figure 8.7 shows

that the results for the STO amplitude versus entropy with these truncations are

converged to ∼ 10−5.

DQMC results for 4×4 square and 4×4×4 cubic lattices were obtained by in-

troducing N(N − 1)/2 auxiliary Hubbard-Stratonovich fields, one for each interac-

tion term niσniτ . It is noted that previous works applied DQMC to the half-filled

SU(2N) FHM using a different, discrete complex Hubbard-Stratonovich decomposi-

tion [77, 78]. Following our new approach, DQMC calculations for fillings below 1.5
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particles per site at U/t = 15.3 can be obtained reliably for temperatures kBT ≥ t.

At lower temperatures, correlation functions become inaccessible to DQMC owing

to sign and ergodicity problems. DQMC data were obtained for 5 different random

seeds, each with 8000 sweeps through the lattice and the N(N − 1)/2 auxiliary fields

for equilibration and 10000 sweeps for measurements. The inverse temperature was

discretized as β = L∆τ with a Trotter step of ∆τ = 0.025/t. Results are obtained in

µ − T grids with dµ = 0.25 and dT given by the Trotter step for all integers L ≥ 2.

These results are linearly interpolated prior to computing the entropy and using the

local density approximation. The entropy per site is computed as the integral of the

specific heat, which by thermodynamic relations can be rearranged to

s(µ, T ) = N log(2) +
f(µ, T )

T
−
∫ ∞

T

f(µ, T ′)

T ′2 dT ′, (8.12)

where f = ϵ−µn, and ϵ and n are the energy and particle number per site, respectively.

In order to accelerate convergence, we obtain DQMC results up to a temperature

cutoff Tcut and use the leading order high temperature series term (t = 0) in the

integral in Eq. (8.12) for T > Tcut.

8.5.4 Local density approximation

Local values of thermodynamic quantities and correlation functions are obtained using

the local density approximation (LDA), which replaces intensive observables at a

spatial location r with their value in a homogeneous system with chemical potential

µ(r) = µ0 − V (r), where µ0 is the global chemical potential and V (r) is the external

confinement. Applied to the total particle number and to total entropy, this gives

Nptcl =

∫
d3r

a3
n(µ0 − V (r), T ) (8.13)

S =

∫
d3r

a3
s(µ0 − V (r), T ) (8.14)
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where n/a3 and s/a3 are the density and entropy density calculated for the homoge-

neous system. The variables that can be measured experimentally are Nptcl and S

rather than µ0 and T , but, given the homogeneous functions n(µ, T ) and s(µ, T ), the

µ0 and T can be obtained from Nptcl and S by numerically solving Eqs. (8.13)-(8.14).

As derived below, the singlet-triplet oscillation (STO) amplitude A and imbalance

I are related to the correlation CNN , defined in Eq. (8.4), and to the correlation

⟨n(i)n(i+ 1)⟩ by

A = − 1

Nptcl

[CNN ]tot , (8.15)

I =
2A

1
Nptcl

[n(i)n(i+ 1)]tot + A
(8.16)

in the LDA, where we define

[O]tot =

∫
d3r

a3
⟨O(µ(r), T )⟩. (8.17)

In practice we calculate plots of observable versus T or S as follows. First, we

calculate a list of points (T, µ0) where µ0 is obtained by solving Eq. (8.13) for given T

and the particle number Nptcl measured in experiment. Then for each such obtained

(T, µ0), we calculate S and other trap-summed observables of interest. In this way,

we plot trap-summed observables as a function of T . Details on the grid used and

discretization error introduced are given below.

8.5.5 Trap geometry

Due to the large atomic mass of Yb, the effect of gravity is severe for our optical trap,

especially in the final stage of evaporative cooling [see Fig. 8.4 (a)]. To include the

anharmonic effect in our LDA calculation, we evaluate the density of state (DOS)
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defined as

D(E) =
∂Σ

∂E
, Σ(E) =

∑
lattice sites i

Θ
(
E − Ṽ (ri)

)
, (8.18)

where Ṽ (ri) is the full external potential at the site i except the periodic part forming

optical lattices. Note that this DOS function becomes exact only in the atomic limit

t → 0, but is always valid for the use in the LDA integral described below. Trap-

summed observables are calculated using Eqs. (8.13-8.17). These integrals over space

are then rewritten as integrals over energy with the DOS,

[O]tot =

∫
dED(E)⟨O(µ0 − E, T )⟩. (8.19)

In the harmonic approximation, the DOS is given by

D(E) =
2π

a3

(
2

mω̄2

)3/2

E1/2 (8.20)

where ω̄ is the geometric mean of the trap frequencies.

In Fig. 8.4(b), we plot the evaluated DOS for the 3D cubic lattice. In calculating

Eq. (8.18), we exclude the spatial region outside the potential barrier, where Ṽ be-

comes a uniformly decreasing function along the direction of gravity [see Fig. 8.4(a)].

In the low energy region the DOS is well reproduced by the harmonic approxima-

tion. As energy increases, the DOS starts to exceed the harmonic prediction due

to the nearly flat potential where the optical potential gradient is competing with

the gravitational one. For even higher energies, the DOS falls below the harmonic

approximation because the contribution is limited only from the upper half of the

trap. The difference between the results calculated in the harmonic approximation

and using the full potential is small, never larger than 2.4× 10−2 for the normalized

STO amplitude and imbalance in the range of entropies presented in the main text.
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Figure 8.4 : Trap anharmonicity. (a) Full external potential (optical + gravity)
profile along the direction of gravity z. The shaded region is excluded from the
calculation of DOS. (b) Density of states calculated from the external potential for
the 3D cubic geometry. The corresponding harmonic approximation is also shown.
The atoms are sensitive only to the density of states for E/t ≲ 10.
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8.5.6 Singlet-triplet oscillation amplitude and imbalance

In the limit where there are no multiple occupancies, the populations in the singlet

and triplet states psστ (i) and p
t0
στ (i) for an STO with spin components σ and τ in the

dimer located on sites i and i+1 are given by the expectation value of the projection

operators,

P̂ s
στ (i) =

1

2

(
c†i,σc

†
i+1,τ − c†i,τc

†
i+1,σ

)
×
(
ci+1,τci,σ − ci+1,σci,τ

)
, (8.21)

P̂ t0
στ (i) =

1

2

(
c†i,σc

†
i+1,τ + c†i,τc

†
i+1,σ

)
×
(
ci+1,τci,σ + ci+1,σci,τ

)
. (8.22)

Note that these refer to SU(2) singlets involving components σ and τ rather than

SU(N) singlets. It is useful to introduce spin-1/2 operators Sz
στ (i) = [nσ(i)−nτ (i)]/2

for the pair of states σ and τ . By the SU(N) symmetry the population difference and

sum are equal to [67]

psστ (i)− pt0στ (i) =− 4⟨Sz
στ (i)S

z
στ (i+ 1)⟩, (8.23)

psστ (i) + pt0στ (i) = +
1

2
⟨n(i)n(i+ 1)⟩ − 2⟨Sz

στ (i)S
z
στ (i+ 1)⟩. (8.24)

The fractions of atoms forming singlets Ps = Ns/Nptcl and triplets Pt0 = Nt0/Nptcl are

obtained from a sum over each dimer in the lattice, or equivalently (1/2)
∑

i · · · , and

all the possible σ-τ spin pairs,

Ps =
2

Nptcl

[
1

2

∑
i

(
1

2

∑
σ ̸=τ

psστ (i)

)]
, (8.25a)

Pt0 =
2

Nptcl

[
1

2

∑
i

(
1

2

∑
σ ̸=τ

pt0στ (i)

)]
. (8.25b)
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Therefore the global STO amplitude is

A = Ps − Pt0 =
∑
i

∑
σ ̸=τ

[−4⟨Sz
στ (i)S

z
στ (i+ 1)⟩

2Nptcl

]
, (8.26)

which in terms of the nσ(i) is

A = −
∑
i

∑
σ ̸=τ

[⟨nσ(i)nσ(i+ 1)⟩ − ⟨nσ(i)nτ (i+ 1)⟩
Nptcl

]
= − 1

Nptcl

∑
i

CNN(i). (8.27)

The STO imbalance I is defined as

I =
Ps − Pt0

Ps + Pt0

(8.28)

so

I =
2A

1
Nptcl

∑
i⟨n(i)n(i+ 1)⟩+ A

, (8.29)

where ⟨n(i)n(i + 1)⟩ is the density-density correlation function. Eqs. (8.27-8.29)

directly yield Eqs. (8.15) and (8.16).

8.5.7 Thermometry in 1D

In Fig. 8.5 we present how we determine the lowest temperature achieved in the 1D

experiments (kBT/t = 0.096 ± 0.054 ± 0.030). Estimates based on A rather than I

give similar result. The estimate based on the lowest entropy prior to lattice loading

predicts somewhat lower temperature, although still consistent within error bars. A

small increase in temperature could result from non-adiabatic effects during the lattice

loading. In Fig. 8.6, we show the interaction dependence of the spin correlations. The

tendency toward larger discrepancy between theory and measurement with larger

interactions (equivalent to deeper lattice depths) suggests that heating is important
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for deeper lattices.

0.4 0.5 0.6 0.7 0.8
STO imbalance I

0.00

0.05

0.10

0.15

0.20

0.25
k
B
T
/t

Iexp = 0.674± 0.052

(a)

L = 5

L = 6

L = 7

L = 8

fss

0.2 0.3 0.4 0.5 0.6
Normalized STO amplitude A

Aexp = 0.381± 0.030

(b)

1.0 1.2 1.4 1.6 1.8 2.0
S/NptclkB

(S/NptclkB)exp = 1.424± 0.173

(c)

I A S

(d) exp error

fss error

Nptcl error

total error

Figure 8.5 : Temperature of a 1D SU(6) Fermi gas at U/t = 15.3. The vertical
dashed lines indicate the range of the largest experimentally measured STO imbalance
in 1D that is consistent with error bars. The temperature of this datapoint is inferred
from the finite-size scaling curves and the results are summarized in panel (d). The
fss error is a conservative estimate of the finite-size error, the difference between the
finite-size scaled results and the L = 8 site chain. The exp error comes from the
experimental uncertainty on the correlations.

8.5.8 Exact diagonalization error estimates

Errors for the exact diagonalization results arise from two sources: finite-size error

and truncation of the Hilbert space using the on-site energy and maximum particle

number criteria. Figure 8.8 presents the normalized STO amplitude and imbalance

for SU(2) and SU(6) in 1D for different system sizes L = 5, . . . , 8, as well as the finite-

size extrapolation. Results in the main text are presented after finite-size scaling at

fixed entropy per particle, which is performed by fitting the results for L = 5, . . . , 8

to OL = O∞ +m/L with O∞ and m as fitting parameters. Validity of the Hilbert

space truncation is tested by varying the energy cutoff Ecut as well as the maximum

particle number Nmax. Figure 8.7 demonstrates that for the interaction strengths

considered herein, the truncation is extremely accurate, with no visible differences for

any parameters.
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Figure 8.6 : Interaction dependence of the nearest neighbor correlations.
Behavior of (a) STO amplitude and (b) singlet-triplet imbalance in 1D and 3D lat-
tices are shown. Experimental data is shown for SU(6) systems with initial entropy
S/NptclkB = 1.4± 0.1. The error bars are extracted from the error of fit in the anal-
ysis of the STO signal. Solid lines are the result of exact diagonalization calculations
for S/NptclkB = 1.4, and the error bars correspond to the sum in quadrature of the
finite-size error and the basis-state truncation error. The inset presents the entropy
per particle extracted by fitting it to reproduce the experimentally measured spin
correlations. Results saturate at S/NptclkB = 1.818± 0.005. Error bars in the inset
come from the experimental uncertainty on the correlations.



180 8.5. METHODS

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

S/NptclkB

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

S
T

O
am

pl
it

ud
e
A

Ecut = U , Nmax = 5

Ecut = U , Nmax = 6

Ecut = 2U , Nmax = 5

Ecut = 2U , Nmax = 6

Ecut = 2U , Nmax = 7

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

S/NptclkB

10−7

10−6

10−5

|A
(2
,7

)
−
A

(1
,5

)|
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that exceed the maximum particle number Nmax are disregarded. There is no visible
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8.5.9 Determinantal Quantum Monte Carlo error estimates

DQMC results have several sources of error, which are estimated and presented in

Table 8.1 for SU(6) and U/t = 15.3, and for SU(3) at U/t = 8 in Table 8.2. All error

estimates are presented after the adiabatic loading calculation obtained by calcula-

tions for a 4× 4× 4 lattice at kBT/t = 1 unless explicitly stated otherwise. In this

section we will briefly discuss how each error source was estimated.

The largest and most-difficult to quantify error comes from finite-size effects. As a

proxy, we estimate finite-size effects in two different ways. Our first estimate is a spot-

check comparison between the 3×3×3 and 4×4×4 systems at fixed T/t and density.

We obtain CNN(4× 4× 4) = −0.096± 0.004 and CNN(3× 3× 3) = −0.125± 0.005

at the lowest temperature T/t = 1 for a homogeneous system at ⟨⟩ = 1, and this

error rapidly decreases with increasing temperature. We note that this error may

be dominated by the error of the smaller 3 × 3 × 3 system rather than reflecting

the smaller error in the 4 × 4 × 4 system. Our second estimate is by studying 2D,

and taking the difference between the 4× 4 results and the 6× 6 results for the full

computations of LDA-averaged observables. Larger system sizes, in particular in 3D,

remain inaccessible at present.

The inverse temperature discretization error is estimated as the difference of the

results obtained with Trotter steps ∆τ = 0.025 and ∆τ = 0.05.

The entropy per site s at temperature T is given by Eq. (8.12). Errors in the

calculation of s arise from by the finite value of the temperature cutoff Tcut. This

error was estimated in the homogeneous case by comparing the results obtained with

kBTcut/t = 500, 800, 1000.

Errors in numerical integration procedures such as the local density approximation

summing of observables in the trap and the computation of the entropy are estimated

by varying the coarseness of the µ-T integration grids. Such estimations were obtained

by coarsening them by a factor of two and comparing the results.
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Statistical errors are presented for both the homogeneous case and after adiabatic

loading for 5 different random seeds. These errors are presented as the standard error

of the mean.

Error source (homogeneous) S vs T A vs T I vs T

Finite Tcut 1.3× 10−4 – –
Statistical 1.2× 100 1.8× 10−1 8.6× 10−2

Error source (in the trap) S vs T A vs S I vs S

Finite size (2D) 1.8× 10−2 1.1× 10−2 2.4× 10−2

Trotter-step 1.8× 10−2 4.6× 10−3 9.5× 10−3

µ grid coarseness 6.9× 10−3 7.2× 10−3 1.5× 10−2

T grid coarseness 1.4× 10−2 2.4× 10−3 5.3× 10−3

Statistical (adiabatic loading) 1.0× 10−2 1.6× 10−3 3.2× 10−3

Table 8.1 : Error estimates for the DQMC calculation at U/t = 15.3. Errors
are presented at kBT/t = 1. Most errors decrease with increasing temperature.
Results in the homogeneous case correspond to the worst case over all µ and T .

Error source S vs T A vs S I vs S

Trotter-step 3.2× 10−2 7.8× 10−4 2.1× 10−3

µ grid coarseness 7.8× 10−4 1.6× 10−4 5.2× 10−4

T grid coarseness 1.3× 10−1 1.8× 10−3 4.9× 10−3

Statistical (adiabatic loading) 2.0× 10−4 5.0× 10−5 1.2× 10−4

Table 8.2 : Error estimates for the different error sources involved in the
DQMC calculation for U/t = 8. We report the largest error in the whole range of
temperatures/entropies considered. The T grid coarseness error for S vs T monoton-
ically increases from 2.0× 10−2 at kBT/t = 0.64 to the value reported in the table,
1.3× 10−1, at kBT/t = 4.
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CHAPTER 9. A TWO-DIMENSIONAL PROGRAMMABLE TWEEZER ARRAY

OF FERMIONS

Chapter 9

A two-dimensional programmable tweezer array

of fermions

En los ojos de la gente puede verse lo que verán,

no lo que han visto

Novecento. Alessandro Baricco

This chapter is adapted from publication:

A two-dimensional programmable tweezer array of fermions, Zoe Z Yan, Benjamin

M Spar, Max L Prichard, Sungjae Chi, Hao-Tian Wei, Eduardo Ibarra-Garćıa-

Padilla, Kaden R. A. Hazzard, and Waseem S Bakr, arXiv:2203.15023 (under review

at Phys. Rev. Lett.) ∗.

We prepare high-filling two-component arrays of tens of fermionic 6Li atoms in

optical tweezers, with the atoms in the ground motional state of each tweezer. Using a

stroboscopic technique, we configure the arrays in various two-dimensional geometries

with negligible Floquet heating. Full spin- and density-resolved readout of individ-

ual sites allows us to post-select near-zero entropy initial states for fermionic quan-

tum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hub-

bard plaquette, demonstrating all the building blocks for realizing a programmable

fermionic quantum simulator.

9.1 Introduction

Ultracold atoms in optical tweezer arrays have become a popular platform for quan-

tum simulation, computation, and metrology [280]. The tweezer platform has re-

∗Complete article, including text, figures, and tables reprinted with copyright permission of
Ref. [40].
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cently witnessed rapid breakthroughs, ranging from the development of precise optical

clocks [281,282] to the demonstration of entangling operations [283–286]. The realiza-

tion of defect-free arbitrary geometries [287,288], in particular in two dimensions, has

paved the way for studying rich quantum many-body physics with localized Rydberg

atoms, including frustrated spin models on a triangular lattice [289,290], topological

phases in a zig-zag chain [291], and quantum spin liquids with atoms placed on the

links of a kagome lattice [292].

The versatility of tweezer arrays has also been extended to systems of itinerant

atoms where quantum statistics play a role [39,293–297]. In particular, tunnel-coupled

arrays have been realized for small systems of bosonic [293] and fermionic [39,294–296]

atoms in one dimensional arrays. If these experiments can be scaled, they would con-

stitute a bottom-up approach toward quantum simulation that complements optical

lattice experiments with quantum gas microscopes, which currently lie at the fore-

front of studying one- and two-dimensional Hubbard models [22–24, 59, 62, 63, 65, 68,

298,299]. The difficulty of reconfiguring microscope experiments has led to an almost

exclusive focus on physics in square lattices (Ref. [300] is a recent exception). Pro-

grammable Hubbard tweezer arrays would allow the extension of site-resolved studies

to arbitrary lattice geometries that bring additional ingredients into play, including

frustration, topology, and flat-band physics.

Hubbard tweezer arrays may also provide a route to address another major chal-

lenge for optical lattice experiments: the preparation of low-entropy phases of fermions.

In optical lattice experiments, the entropy of the gas is limited by evaporative cool-

ing, which is hindered by poor efficiencies at low temperatures. Entropy redistri-

bution schemes relying on the flow of entropy away from gapped phases have been

proposed [245, 301] and experimentally explored [38], but they have not resulted in

significant reduction of achieved temperatures for correlated phases.

Here we show that stroboscopic optical tweezer arrays can be used to prepare
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fermionic systems with arbitrary two-dimensional (2D) geometry and entropies com-

parable to those achieved in optical lattices, with the additional advantage of being

able to further reduce the entropy through post-selection. This is possible due to sev-

eral features particular to this platform. First, in loading a tweezer from a degenerate

Fermi gas, the tweezer acts as a “dimple trap,” wherein the local Fermi temperature

(TF) is significantly higher than in the bulk gas. Since the fraction of atoms loaded

into the tweezers is low, the temperature of the system remains approximately fixed

to the bulk gas’s temperature, but the tweezers’ phase space density is enhanced.

Furthermore, the occupancy of the lowest level of each tweezer (given by the Fermi-

Dirac distribution) is close to unity. This enables the preparation of a state with two

atoms in the ground motional state (one per spin state) on every tweezer with high

fidelity, as first demonstrated in Ref. [302]. Second, the system can be evolved from

the band insulator into a correlated state via an adiabatic ramp-on of additional sites,

taking advantage of independent tunability of each lattice site. We have previously

shown that this technique can be used to prepare a state with antiferromagnetic cor-

relations in an eight-site Fermi Hubbard chain [39]. We extend this approach to 2D

and show that any pre-ramp entropy in the system can be effectively eliminated by

post-selection on the atom number in each spin state. Post-selection is enabled by

spin- and density-resolved readout [59,262], which we implement in a bilayer imaging

scheme.

9.2 Experimental setup

The experimental cycle, including tweezer loading, is the same as detailed in Ref. [39].

Tweezers are loaded from a bulk Fermi gas at T/TF ≈ 0.2 that is a balanced mixture of

the lowest and third lowest hyperfine ground states (|↑⟩, |↓⟩, respectively). Our scheme

for generating 2D arrays uses two crossed acousto-optical modulators [Fig. 9.1(a)].

The tweezers are produced using light with a wavelength of 780 nm, and their waist
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at the atoms is 1000+180
−140 nm. Radiofrequency tones for both AOMs are generated

by a two-channel arbitrary waveform generator, with a tone separation of 8MHz

corresponding to a tweezer spacing of 1350 nm in the atom plane. The aperture size

and bandwidth of the modulators currently limit us to ∼ 9 tweezers in each direction.

The beat frequency of neighboring tweezers is > 100 times larger than typical tweezer

depths, leading to negligible parametric heating.
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Figure 9.1 : 2D stroboscopic tweezer technique and lifetimes. (a) Two crossed
acousto-optic modulators spaced in a 4f configuration generate the array. (b) Il-
lustration of the principle of stroboscopic array generation of an 8-site ring. For a
strobe frequency fs, each column of the array is turned on for a quarter of the period
1/fs, generating a time-averaged potential shown in (c). (d) Lifetime of an atom in
the ground vibrational state of a tweezer versus strobe frequency, with the red point
at 0 kHz indicating the non-strobed lifetime. The dashed line shows the theoretical
prediction, and grey shading indicates the systematic uncertainties on the tweezer
waist. The inset shows an example of a decay curve of population in the ground state
for fs =513 kHz with an exponential fit.

Homogenizing the tweezer depths is particularly challenging for 2D arrays gener-

ated using crossed AOMs. A common approach used in Rydberg tweezer experiments

is to apply a static set of frequencies consisting of nx and ny tones for the x- and

y- directional AOMs, respectively. This generates a rectangular array of nxny sites;

however, the nx+ny degrees of freedom from the signal strength of each tone are

insufficient to independently tune the depth of each tweezer. Better homogeneity can

be achieved by tuning the relative phases of the tones, but the typical resultant inho-
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mogeneity still exceeds 1%. Tunnel-coupled arrays have more stringent requirements

for homogeneity, since the energy offsets in tweezers of typical depth ∼ h×50 kHz

must be controlled to within tunneling energies of ∼ h×250Hz, or better than 0.5%.

To homogenize arrays to within this precision and produce arrays with arbitrary

geometry, we introduce a stroboscopic tweezer technique. We generate the array

one column at a time, with different y−directional tones applied in every timestep

[Fig. 9.1(b)]. Effectively, the atoms experience a time-averaged potential of concate-

nated 1D arrays, as long as the strobe rate fs far exceeds the tweezers’ harmonic trap

frequencies. As the typical axial (radial) trap frequencies are around 2.5 (15) kHz,

we need strobe rates over an order of magnitude higher to avoid significant Floquet

heating of the atoms.

We verify that the stroboscopic scheme is compatible with long lifetimes in the

tweezer ground vibrational state with the following study. We measure the depen-

dence of the lifetime in the lowest vibrational state on fs in a two-site strobed array,

varying the strobe rate from 163-1083 kHz (see Section 9.4.1). Higher frequencies

are inaccessible due to limitations on the AOM response rate, set by the speed of

sound and beam size in the crystal. We also compare the lifetimes to that of a static

(non-strobed) tweezer, which is limited by background gas collisions and off-resonant

photon scattering due to the trapping light. Consistent with expectations, the lowest

strobe rates give the shortest lifetimes in the ground state [Fig. 9.1(d)]. Measure-

ments and numerics using a discrete variable representation (DVR) method [303,304]

(see Section 9.4.2) both indicate that Floquet heating decreases exponentially with

increasing fs and is negligible for fs ≳ 250 kHz, although the numerics underestimate

the threshold frequency range below which severe heating occurs by ∼ 18%.
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9.3 Results

We demonstrate loading the arrays with band insulators of fermions with high fi-

delity using the stroboscopic method. These band insulators serve as low entropy

initial states for fermionic quantum simulation. As proofs-of-principle, we implement

a rectangular 5× 5 array, 21-site Lieb plaquette, triangular 4× 5 array, and an 8-site

octagonal ring (Fig. 9.2, see more details in Section 9.4.3). The tweezers are homoge-

nized using a density balancing algorithm where the number of required experimental

shots is almost independent of the array size [39]. In these examples, the sites are

not tunnel-coupled due to the large separations. Readout is accomplished by trans-

ferring the atoms into a 2D lattice of 752 nm spacing, which oversamples the tweezer

array, and performing Raman sideband cooling on the |↑⟩ atoms after removal of

the |↓⟩ atoms [39, 68] with a detection fidelity of 98.5%. Throughout these different

geometries, the loading fidelity of a single spin averages to 92%/site, corrected for

imaging infidelity, indicating a low entropy of loading in the array. As in previous

work [39, 302], the tweezer depths are chosen so the predominant type of defect in

each tweezer is a missing particle rather than an extra one in a higher motional state.

In these data, we only measure one of the spin states in a given experimental shot,

due to the problem of light-assisted collisions, which necessitates the removal of the

other spin state before imaging [25].

To circumvent this problem and obtain full density- and spin-resolution, we adopt

a high-fidelity bilayer imaging scheme [262, 264, 305, 306], which also allows the re-

duction of entropy upon post-selection. Bilayer density- and spin-readout was first

accomplished in fermionic quantum gas microscope experiments in a superlattice

charge-pumping scheme [262]. Our method is conceptually similar but involves no

superlattice (Fig. 9.3). Starting with tweezer-trapped atoms, we adiabatically turn

off the tweezer and turn on a 2D lattice of 1064 nm to 60 ER and a vertical trap fre-

quency of 1.2 kHz in 5ms. The magnetic field is brought to 572G, where we perform
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(a) (b) (c) (d)

10 μm

Figure 9.2 : Examples of band insulators of different geometries. Showing (a)
rectangular 5× 5, (b) 21-site Lieb plaquette, (c) 4× 5 triangular, and (d) octagonal
ring arrays. Only |↑⟩atoms are imaged and the sites here are not tunnel-coupled. The
top row shows single shots with perfect filling of the |↑⟩ state, and the bottom row
shows average images. Deviations of the atom positions in the single-shot images are
due to quantization onto the lattice for imaging. Average fillings of |↑⟩ are (93, 92,
91, 89)%, accounting for imaging fidelity of 98.5%, out of (411, 254 , 275, 100) shots.

a spin-flip of |↑⟩ to the second-lowest hyperfine state, |↑̃⟩, with an efficiency exceeding

99%, and then decrease the field to near 0G. Atoms in |↑̃⟩ and |↓⟩ have a greater dif-

ferential magnetic moment than those in |↑⟩, enabling the Stern-Gerlach separation of

these populations to ∼ 9µm using a z-magnetic gradient of 168 G/cm in the 2D lattice

at a depth of 280ER. We turn on two lightsheet potentials [68]–highly anisotropic

beams, each with z-directional trap frequencies of 26 kHz–and linearly ramp their

vertical separation to 25µm for imaging. We measure a combined transport and spin

identification fidelity of 98.7%. Finally, we image the atoms using Raman sideband

cooling simultaneously in both layers, with the 2D lattice depth at 2500ER and the

two lightsheet z-trap frequencies at 70 kHz. Resulting fluorescence is collected by

a high numerical aperture objective with atoms in the two planes focused onto two

different active areas of a CCD camera. Imaging fidelity is 98% (97%) for the layer
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of |↑̃⟩ (|↓⟩) atoms.

Bilayer imaging enables reduction of the effective entropy associated with the

initial state of the tweezer array (the band insulator) through post-selection. The

initial entropy per particle of the tweezer ensemble, assuming independent tweezers

and single-band occupation, is given by

S

⟨N⟩ = −kB
p

(
p log p+ (1− p) log(1− p)

)
. (9.1)

where p is the probability to load one spin on a site. With a typical loading efficiency

of p=0.907(3), the array starts with 0.34(1) kB per particle, with entropy entering

from microstates with undesired holes. By selecting only images with the population

per spin state equal to the number of loading tweezers, we can effectively choose a

subsample with S=0. Importantly, this post-selection criterion eliminates the initial

state entropy even after changing the filling of the system (by introducing additional

tweezers) to prepare a correlated state. The post-selection criterion can be relaxed to

use more images from the experiment at the cost of introducing additional initial state

entropy. This tradeoff is illustrated in Figs. 9.3(g-h) for a 3×5 array in which |↑⟩ and

|↓⟩ had average p=0.914(3) and 0.900(3), respectively (not accounting for imaging

fidelity). Out of 972 images, 12% had perfect filling of 15 fermions of each species.

However, even keeping images with up to two holes, or over 50% of shots, still results

in a low entropy of 0.17(1) kB per particle, which is favorable compared to state-of-the-

art optical lattice experiments that range from 0.25-0.5 kB per particle [21,22,38,307].

While post-selection can be used to reduce the effective entropy of the initial

state to near zero, subsequent ramps to correlated states will inevitably introduce

additional entropy. Numerical simulations of the dynamical ramps in small systems

indicate this extra entropy should be low for defect-free initial configurations. For

example, for the ramp used in our previous work with an eight-site chain [39], the
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Figure 9.3 : Bilayer imaging procedure and entropy reduction through post-
selection. (a) Atoms in |↑⟩ (yellow) and |↓⟩ (blue) are initially trapped in the tweez-
ers, then adiabatically loaded into (b) a 2D lattice with vertical waist of 75µm, where
|↑⟩ is transferred to |↑̃⟩ (red). (c) A magnetic field gradient is applied to separate the
spins in the vertical direction, after which (d) two lightsheet potentials turn on to fix
the z-positions. (e) The lightsheets are further separated to 25µm separation. Raman
sideband imaging commences, producing simultaneous images of both spin states. (f)
shows a single shot image of |↓⟩ and |↑̃⟩ originally from a 3× 5 rectangular array. (g)
Probability distribution versus number of atoms in each spin state over 972 shots.
Here, all images with doublons (65 shots) were not used. (h) By post-selecting on the
maximum number of holes, effective entropy can be reduced by varying amounts.
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ramp is expected to have introduced an additional entropy of 0.04 kB per particle

when starting with a defect-free state, but the presence of even a single localized hole

would lead to a significant entropy increase of 0.2-0.3 kB per particle depending on the

position of the hole. The entropy reported in Fig. 9.3(h) should therefore be treated

only as a lower bound for future experiments.

Post-selection on spin and density in this context should be distinguished from the

context of optical lattice-based quantum gas microscopy measurements. For example,

in a recent study with a fermionic microscopes [307], spin- and density- readout en-

abled post-selection of half-filled systems with zero total magnetization, keeping ∼ 9%

of data. However, post-selection there did not eliminate the finite spin temperature in

the initial state. Furthermore, our post-selection approach is difficult to implement in

optical lattice systems where it has proven challenging to engineer arrays with sharp

boundaries and a well-defined number of sites [38].

Equipped with the ability to load near-zero-entropy band insulators after post-

selection, we implement the simplest building block of a two-dimensional Fermi-

Hubbard model: a tunnel-coupled 2 × 2 plaquette. The single-band Hamiltonian

is

Ĥ = −
∑

⟨i,j⟩x,σ

tx(ĉ
†
iσ ĉjσ+h.c.)−

∑
⟨i,j⟩y ,σ

ty(ĉ
†
iσ ĉjσ+h.c.)+

∑
i

Uin̂i↑n̂i↓+
∑
i,σ

∆in̂iσ, (9.2)

where ĉ†iσ is the fermionic creation operator of spin σ at site i, n̂iσ is the number

operator, tx(y) is the tunneling matrix element in the x(y) direction, ∆ is the energy

offset, and U is on-site interaction between opposite spin states. We start by loading

two diagonal sites in a rectangular array with vertical (horizontal) spacing of 1520

(1690) nm [Fig. 9.4 (a,b)]. The correlated state at half-filling is prepared by adiabat-

ically ramping on the two opposing diagonal sites in 50 ms [39], with tunnelings of

tx [ty] = h×140(5)[220(5)] Hz in the final configuration (see Section 9.4.4). We also
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ramp U/t̄ from 0 to 3.4(2) in the same time using the Feshbach resonance. Here,

t̄=(tx + ty)/2.
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(c)(b)
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la
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n
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Figure 9.4 : Low entropy preparation of a 2 × 2 array. a) We load two atoms
per site on one diagonal of the array. b) We create a correlated state by ramping on
the additional lattice sites and increasing the scattering length to introduce on-site
interactions. For the following data, we work with tx/h = 140(5) Hz, ty/h = 220(5) Hz
and U/t̄ = 3.4(2). c) Measured spin-spin correlations enabled by the bilayer imaging
scheme. d) Best fit (purple bars) and measured (black dots) microstate populations
for 671 post-selected experimental shots. The fit gives an entropy in the range [0,0.09]
kB per particle. Insets are shown for the two most common states.

The resulting spin-spin correlations are shown in Fig. 9.4(c), which depicts Cij =

⟨Sz,iSz,j⟩−⟨Sz,i⟩⟨Sz,j⟩, where Sz,i ≡ 1
2
(n↑,i−n↓,i). Here, data were post-selected to

include only images that contained two |↑⟩ and two |↓⟩ atoms, for a total of 673

experimental cycles. With full spin- and density-readout, we are able reconstruct

the diagonals of the density matrix ρ= |Ψ⟩⟨Ψ| in the basis of allowed number states



195 9.4. CONCLUSIONS

(with Hilbert space size
(
4
2

)2
= 36), and compare data with theory. In Fig. 9.4(d), we

plot the experimental population in each microstate together with the populations

expected theoretically for the plaquette ground state, which are consistent within

error bars. Here, we reduce our statistical errors by taking advantage of the spin-

symmetry of the Hubbard Hamiltonian to average the probabilities for spin-reversed

microstates. Furthermore, we fit the temperature of the canonical ensemble to best

reproduce the distribution of microstates. The fit gives an upper bound for the

temperature of kBT ∼ 0.3t̄ (with the fit losing sensitivity below that temperature).

This corresponds to an entropy in the range [0,0.09] kB per particle, which is consistent

with the prediction from simulating the ramp dynamics (entropy gain of 0.02 kB per

particle).

9.4 Conclusions

In conclusion, we have realized a 2D tweezer array of fermions with software-programmable

geometry using a novel stroboscopic technique that allows independent control over

all tweezer depths and positions. We have realized the building blocks to implement

programmable 2D Fermi-Hubbard models, and demonstrated these on a small scale.

Future work will focus on increasing the system size of the tunnel-coupled arrays. A

natural target for future work will be few-leg ladder systems. For example, two-leg tri-

angular ladder systems can be used to explore the J1−J2 model, including the special

case of the Majumdar-Ghosh model and its valence-bond solid ground states [308].

Furthermore, upon introducing spin-imbalance and hole-doping, a triangular two-leg

ladder is predicted to host magnon-hole binding at energy scales set by the tunneling,

rather than the superexchange [309]. Multi-leg triangular ladders may potentially

host other exotic states such as a chiral spin liquid at half filling and intermediate

U/t that evolves to a 120◦-antiferromagnetic order at strong U/t [310]. Ultimately,

fully 2D tunnel-coupled arrays with arbitrary geometry will be a rich playground for
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exploring novel phases of correlated fermions.

9.4.1 Measurement of Floquet heating

To measure the ground state lifetimes shown in Fig. 9.1, we perform the following

experiment. We load two tweezers, spaced 8.1µm apart to avoid any overlap, each

with a spin up and a spin down atom. Atoms in higher vibrational states are removed

by lowering the tweezer depth and applying a magnetic field gradient, as described

in [39]. The tweezer depth is increased to 50 kHz, and a variable hold time is applied.

The tweezer light is strobed such that only one tweezer is on at a time, resulting

in Floquet heating for low strobe frequencies. Finally, atoms in newly populated

higher vibrational states are again removed with an identical spilling process, and the

remaining |↑⟩ atoms are imaged.

9.4.2 Theoretical calculations of Floquet heating

We determine the Floquet heating from the strobing of the trap by directly calculating

the dynamics of a single atom in a tweezer potential using a method based on a discrete

variable representation (DVR) of Hilbert space [303], which was applied to ground

state properties of tunnel-coupled tweezers in [293,304]. The tweezer potential is

V (r⃗) = − V0

1 + z2

z2R

exp

[
− 2r2

w2
0(1 +

z2

z2R
)

]
(9.3)

where V0 is the trap depth when the tweezer is on, zR is the Rayleigh range, and w0 is

the trap waist, and we use the measured parameters. We use a DVR basis of spatial-

parity-adapted sinc functions on a three-dimensional cubic grid of (Nx, Ny, Nz) points

spanning (0, 0, 0) to (Lx, Ly, Lz) to represent our wavefunctions. Only even parity

states occur for the dynamics considered.

The procedure is sketched in Fig. 9.5 and we proceed to describe it. The state at
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Figure 9.5 : Theoretical calculations of Floquet heating. Schematic of the
procedure used to calculate Floquet heating.

time t after the strobed time evolution is

|ψ(t)⟩ =
[
e−iT̂ δte−i(T̂+V̂ )δt

]
· · ·
[
e−iT̂ δte−i(T̂+V̂ )δt

]
︸ ︷︷ ︸

t/2δt times

|i⟩ (9.4)

where T̂ = −ℏ2∇2/2m+Vabs(r⃗) is the kinetic energy operator (ℏ is Planck’s constant,

andm is the mass of 6Li) plus a potential V̂abs to handle boundary conditions discussed

below, V̂ is the potential energy operator associated with Eq. (9.3), and δt = 1/(2fs),

and assuming t/2δt is an integer (the micromotion between such times is discussed

later). The initial state |i⟩ is assumed to be the ground state of the system in the time-

averaged potential, i.e. of H1/2 = T + V/2. Directly solving Eq. (9.4) is challenging

due to three factors: (1) the tweezer potential is 3D, (2) it involves a wide range

of length scales (the wavefunction localization length, the Gaussian waist, and the

Rayleigh range), and (3) the dynamics problem must account for a huge separation

of timescales when fs is large, the short time of the pulses and the long lifetime of

the atoms, a ratio of timescales of more than 107.

We solve this by rewriting Eq. (9.4). First we can diagonalize to obtain e−iT̂ δt =

U0D0U
−1
0 whereD0 is diagonal and U0 is the matrix whose columns are eigenvectors of
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T̂ , obtained by first diagonalizing T̂ and then exponentiating. (U0 need not be unitary

since T̂ has non-Hermitian terms for the absorbing potential.) Similarly e−i(T̂+V̂ )δt =

U1D1U
−1
1 . Therefore the terms in brackets – denote it M ≡ e−iT̂ δte−i(T̂+V̂ )δt – in

Eq. (9.4) can be rewritten

M = U0D0U
−1
0 U1D1U

−1
1 . (9.5)

One can multiply these matrices, and diagonalize the result to find M = U2D2U
−1
2 ,

so

|ψ(t)⟩ =M t/2δt |i⟩ = U2D
t/2δt
2 U−1

2 |i⟩ . (9.6)

The micromotion at times between integer multiples of 2δt can be treated by

propagating to the largest multiple of 1/fs as above, and then calculating the time

evolution within a single period, which is straightforward and efficient in terms of

the diagonalized evolution matrices (Da, Ua) already obtained. The computational

cost is dominated by diagonalizing to find D0, D1, and D2, with several additional

multiplications. Although this involves full diagonalization of three large matrices, it

avoids the issues associated with separation of timescales.

To obtain accurate results, one must use a a fine enough DVR grid and a large

enough system. Here, a challenge arises that is absent for ground state calculations:

atoms can be excited from the ground state to scattering states and thus escape from

the trap. They may move rapidly, and thus would require La that grow linearly with

time to capture, in practice many orders of magnitude larger than we can calculate.

However, in the experiment once particles move sufficiently far outside the trap,

the probability they return is negligible. This can be accurately reproduced in the

calculations by including an absorbing boundary region in our simulations, a standard
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technique in calculations of, e.g., chemical dynamics [311]. We use a potential

Vabs(r⃗) = −iΓ
∑

a∈x,y,z

|a| − L
(0)
a

La − L
(0)
a

. (9.7)

This is zero inside the cubic region from the origin to (L
(0)
x , L

(0)
y , L

(0)
z ), and linearly

increases as one moves outside this region. The whole calculation is performed inside a

box of size (Lx, Ly, Lz) with (Nx, Ny, Nz) grid points. The calculations are performed

with (L
(0)
x , L

(0)
y , L

(0)
z ) = (3, 3, 7.2)w0, N = (27, 27, 23); Γ = 57 kHz; and La = La(0) +

Sa where Sa ≈ w0, and are well-converged in the number of grid points and system

size (Fig. 9.6). (Sa varies slightly in the right panel: because we fix the grid spacing

and ensure that the last grid point in the non-absorbing region doesn’t change with

La, we choose Sa closest to w0 while constraining La to correspond to the location of

the last grid points along the a’th direction.) The Γ and S are chosen to be sufficiently

large so that particles leaving the trap are absorbed before reaching the boundary

of the calculation, but Γ is maintained sufficiently small so that there is no Zeno

effect that would reflect the particles. The choices we make are consistent with these

conditions, as given in Ref. [311], and our results are insensitive to the specific choice

of the parameters. For example, varying Γ over a range of a factor of hundred has

a negligible effect on the atom lifetime. Calculated lifetimes are converged to have

visually negligible errors from the number of grid points, system size, and absorbing

boundary.

Using this method, we calculate the population of the ground state (of the time-

averaged potential) as a function of time. We find it gives a nearly perfect exponential

decay for the fs shown, with small deviations from exponential at smaller fs. The

lifetimes shown in Fig. 9.1(d) are obtained by fitting an exponential e−t/τ to the

obtained dynamics. The numerical calculations do not include the effects that give

the finite lifetime in the unstrobed tweezer (background gas collisions and off-resonant
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light scattering), and which are expected to be the reason for the high-frequency

lifetime saturation in Fig. 9.1(d). To incorporate those effects, the theory curve

in Fig. 9.1(d) is a simple interpolation 1/τeff = 1/τ + 1/τstatic where τstatic is the

lifetime in the unstrobed tweezer. The plot is largely insensitive to the details of this

interpolation.
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Figure 9.6 : Convergence of the calculated atom lifetime with respect
to number of DVR grid points and system size. Left: Lifetimes for dif-
ferent numbers of DVR grid points are converged well in the number of grid-
points for (Nx, Ny, Nz) = (25, 25, 21) (or more) in systems of size (L

(0)
x , L

(0)
y , L

(0)
z ) =

(3, 3, 7.2)w0. Right: lifetimes for different system sizes are converged well for
(Lx, Ly, Lz) = (3, 3, 5.6)w0 and larger. Right panel is at fixed grid point spacing
(0.16667, 0.166667, 0.4)w0, so the Na vary with La. The spacing corresponds to
(Nx, Ny, Nz) = (24, 24, 20) for the largest system.

9.4.3 2D Array Generation

Our arrays are generated by two perpendicularly oriented AOMs from AA Optoelec-

tronic (MT110-B50A1,5-IR) driven by a two-channel arbitrary waveform generator

(Spectrum M4i.6621-x8 PCIe). In principle, digital micromirror devices or liquid

crystal spatial light modulators can be used as alternatives for generating arbitrary

arrays; however, these technologies suffer from low bandwidths (100Hz-several kHz).

Furthermore, the lowest spatial disorder demonstrated to date in state-of-the-art ex-

periments with large arrays [312–314] (typically 1-2%) is large compared to the tun-
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neling rate between tweezers in a strongly interacting Hubbard system. Therefore we

choose to generate arrays with AOMs using a stroboscopic approach.

The typical strobing scheme, illustrated in Fig. 9.1, generates one column of the

array at any given time. This gives the most flexibility for creating different ge-

ometries. The two AOMs operate with the longitudinal acoustic mode with a high

speed of sound (4200m/s) in the crystal. This speed, along with the aperture size

of 1.5× 2mm2, sets the minimum possible dwell time on a tweezer (the duration for

which the tweezer is on). We find that dwell times below 0.5µs produce tweezers

with profiles that are significantly distorted along the strobe axis. When generating a

two-site array by strobing, we measure that the tweezer waist along the strobe axis in-

creases at 1.4% per increase of 100 kHz strobing rate. Distortions in the tweezer profile

can be partly mitigated by applying a cosine-sum window function on the waveform

that is sent to the strobed AOM. Given the minimum dwell time per tweezer, the

strobe period 1/fs grows linearly with the number of strobed columns. This seem-

ingly limits us to about 8 sites along the strobe axis due to Floquet heating based

on the results shown in Fig. 9.1. However, we can surpass this limitation with the

technique discussed in the following paragraph.

To reduce Floquet heating and distortion of the tweezer intensity profile, we com-

bine 2D multitone arrays (produced by driving both AOMs with a set of radiofre-

quency tones) with strobing. For certain geometries, this allows us to reduce tweezer

dwell times by using smaller modulation depths. We define modulation depth as the

difference between the minimum and maximum relative intensity used over one strobe

period. The principle is illustrated in Fig. 9.7 for 50% modulation depth, and was

applied for the rectangular, Lieb, triangular, and ring lattices in Fig. 9.2. For the

example of Fig. 9.7, a static 2D multitone configuration (modulation depth of 0%)

can be used in principle to create the geometry shown, but would not give enough

degrees of freedom to homogenize the depths of all sites.
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The type of lattices that can be generated with this approach is restricted to combi-

nations of patterns that can be generated by using 2D multitone arrays. Assume each

of the two AOMs is driven by a set of tones such that it individually produces tweez-

ers at positions Px, Py respectively, where Px = {px,1, ...px,n} and Py = {py,1, ...py,m}.

The result when driving both AOMs will be the Cartesian product of the two sets

Px ×Py = {(px,i, py,j) | px,i ∈ Px, py,j ∈ Py}. For example, triangular and Lieb lattices

can be generated by switching between two multitone rectangular arrays and overlay-

ing a small amplitude strobed array to homogenize the tweezer depths. In general,

most 2D patterns of interest that host some level of periodicity can be generated by

switching between two or three multitone rectangular arrays at full modulation depth

and overlaying a small amplitude strobed array for homogenization. When using 2D

multitone arrays, we avoid square geometries, as equidistant tweezer spacing in x and

y leads to diagonal sites having near degenerate tones, which results in low frequency

beating between these tweezers and atom heating.

average
potential

1/3fs 2/3fs 1/fs

(a) (b)time

Figure 9.7 : Illustration of using 50% modulation depth to generate a 2× 3
array with strobe rate fs. (a) The individual strobe steps and (b) the time-
averaged potential. This procedure can be thought of as superimposing a static 2× 3
grid on top of a 3-step array with 100% modulation depth.

To scale our system sizes beyond currently demonstrated capabilities, up to the

maximal size as limited by Floquet heating and AOM bandwidth, there are two

considerations. First, the fidelity of image reconstruction (assigning the fluorescence

from an imaging lattice site, spacing of 752 nm, to a unique tweezer site, spacing of
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∼1.5µm) needs improvement for tweezer spacings that are small enough to support

tunneling across the array at the ∼100Hz level. We may implement a 532 nm-spaced

imaging lattice for better discretization, or move the tweezers apart prior to imaging

in the current 752 nm imaging lattice.

Secondly, post-selection will become costly at the current loading fidelity of ∼90-

91% as the system size increases. In the near future, moderately sized ladder systems

will be of interest. As our cycle time is 4 s, an order of magnitude lower than conven-

tional quantum gas microscope experiments, post-selection at the level of even 5%

is experimentally feasible. For large systems the loading fidelity must be improved.

Indeed, our previous work [39] demonstrated a 96% loading fidelity. The bottleneck

in loading fidelity stems from low axial trap frequencies (from large tweezer waists).

This puts stringent requirements on intensity stability of the tweezers during the

spilling procedure and also results in a poorer separation of tunneling timescales be-

tween when the ground vibrational state and the excited vibrational states leak out

in this process. Low axial frequencies can be increased by introducing a lattice along

the propagation direction of the tweezers, as has been demonstrated in Ref. [315],

where ground state fidelities have been measured as high as 97% for two atoms, or

98.5% for a single atom.

9.4.4 2× 2 plaquette

We calibrate the tunnelings in the horizontal and vertical directions in the 2×2 array

as follows. We first load atoms on only one site, and reduce the tweezer intensities

by 5 percent on all other sites except for the one in the direction we want to measure

the tunneling. At a non-interacting magnetic field, we quickly initialize tunneling

by zeroing the offsets among the target sites [39], and we measure Rabi oscillations

between the two sites [293,294].

To calibrate the on-site interaction energy U , we perform radiofrequency spec-
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troscopy and measure the difference between single and double occupied sites. How-

ever, the most sensitive way to measure U/t is to fit the distribution of microstates.

In particular, for temperatures far below the interaction energy, U/t sensitively de-

termines the number of single occupied sites. The value of U/t reported comes from

a best fit of the experimental data, which is in reasonable agreement with an inde-

pendent spectroscopic calibration [U/t = 4.4(5)].

To prepare the 2×2 plaquette ground state, we initialize the ground state of sites

1 and 4 with doublons, as pictured in Fig. 9.4. To achieve a half-filled system, we turn

on the opposing diagonal sites in a two-step sequence. First, the intensities of sites 2

and 3 are increased in 5ms with an exponential time constant of 1ms, until they are at

∼90% intensity of sites 1 and 4. Then, the intensities are further increased in a 50ms

exponential ramp with a time constant of 5ms, until the offsets are zeroed. During

this time, the magnetic field is ramped from a nearly non-interacting system at 573G

to its final value of 631G using a two-point cubic spline function. A hold time of 4ms

is applied for further equilibration. Finally, tunneling is frozen by rapidly increasing

the tweezer intensity to 2.5 times the science depth, and imaging commences.

In this Chapter, for the 2 × 2 tunneling data we average over states obtained

by interchanging |↑⟩ and |↓⟩. This is because all potentials in the system are state

independent. This reduces the statistical error due to the limited number of experi-

mental shots (673 shots). Since we do not equalize the disorder entirely to zero, we

do not assume any reflection symmetries that could be utilized in the ideal system to

further reduce the statistical errors. We show the full microstate distribution without

averaging in Fig. 9.8, and the full labelling of microstates in Table 9.1.
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Index |↑⟩ population |↓⟩ population
0 1100 1100
1 1010 1100
2 1001 1100
3 0110 1100
4 0101 1100
5 0011 1100
6 1100 1010
7 1010 1010
8 1001 1010
9 0110 1010
10 0101 1010
11 0011 1010
12 1100 1001
13 1010 1001
14 1001 1001
15 0110 1001
16 0101 1001
17 0011 1001
18 1100 0110
19 1010 0110
20 1001 0110
21 0110 0110
22 0101 0110
23 0011 0110
24 1100 0101
25 1010 0101
26 1001 0101
27 0110 0101
28 0101 0101
29 0011 0101
30 1100 0011
31 1010 0011
32 1001 0011
33 0110 0011
34 0101 0011
35 0011 0011

Table 9.1 : The basis microstates for the data reported in Fig. 9.4. The order of the
sites used corresponds to the numbering in Fig. 9.4(a).
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Figure 9.8 : Full microstate data for Fig.9.4 without averaging to take advantage
of the spin symmetry of the Hamiltonian.

9.4.5 Entropy and Temperature

In order to fit the temperature of our system, we use the canonical ensemble as

post-selection enables us to remove number fluctuations. Thus, with free parameters

temperature T and U/t, the partition function is the sum over all energy eigenstates

Ω, with

Z (U/t, T ) =
∑
Ω

exp

(−EΩ(U/t)

kbT

)
. (9.8)

For each temperature and interaction, we create an expected distribution of mi-

crostates, and we compare to the experimental data using a weighted least squares

fit. We find that the weighted sum of the squared residuals reaches a local minimum

(which depends very weakly on temperature) at U/t = 3.4(2), where the errorbar is

extracted from 500 bootstrapped samples of the data. We find that the temperature

fit loses sensitivity below kBT ∼ 0.3t̄ (Fig 9.9). This corresponds to an entropy range

of [0,0.09] kB per particle. Exact diagonalization performed by in the Python pack-

age Quspin [316] suggests that for our ramp parameters, the entropy gain would be
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0.02 kB per particle.
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Figure 9.9 : Entropy and least squares residual as a function of tempera-
ture.Below around kBT = 0.3t̄, the least squares residual is minimized, corresponding
to an entropy range of [0,0.09] kB per particle.

In future studies, we wish to implement larger 2D ladder systems, preparing

ground states of half-filled systems by the aforementioned technique of adiabatically

ramping on additional tweezer sites. We use exact diagonalization on numerically

tractable systems to estimate the many-body gaps sizes and therefore the feasibility

of this approach. For instance, on a 2× 5 triangular lattice at half filling, at U/t = 6,

we can perform an adiabatic ramp in 100 ms that will only lead to an increase of

0.06 kB per particle. For a 2 × 6 lattice with the same parameters, the increase is

0.07 kB. These values were obtained by calculating dynamics with experimentally

realistic ramp parameters. We are unable to perform exact diagonalization with our

computing resources for larger 2D systems.
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Chapter 10

Ongoing work on the SU(N) FHM and optical

tweezer arrays

The secret of genius is to carry the spirit of the

child into old age, which means never losing your

enthusiasm.

Aldous Huxley

In this chapter we present short highlights and/or useful notes of the projects

regarding the SU(N) Fermi-Hubbard model and quantum simulation with optical

tweezers that we have conducted in the past months and correspond to ongoing work.

These include: the precise measurement and characterization of the equation of state

of the SU(N) FHM, the study of magnetic correlations for SU(3) fermions in square

lattices, and the study of Hubbard parameters in optical tweezers.

10.1 Precise measurement and characterization of the equa-

tion of state of the SU(N) FHM

In this work we are collaborating with the group of Simon Fölling at LMU, Germany

sparked by the desire to fully characterize the equation of state of the SU(N) FHM

engineered with AEAs in optical lattices.

We have performed DQMC calculations in 6 × 6 lattices and NLCE calculations

up to fourth-order for interaction strengths U/t = 2.34, 7.43, 10.78, 33.34 at temper-

atures T/t ∈ [0.5, 20] and chemical potentials that span the densities ρ ∈ [0, 1.5].

Observables of interest are the density ρ, the number of on-site pairs D, the density-

density correlation function Cd = ⟨n0nr⟩−⟨n0⟩⟨nr⟩, the spin-spin correlation function

Cs =
∑

σ ̸=τ [⟨n0σnrσ⟩ − ⟨n0σnrτ ⟩], and the quantities ⟨pα⟩ which measure the number
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of singly occupied sites “singlons” (α = 1), doubly occupied sites “doublons” (α = 2),

triply occupied sites “triplons” (α = 3), etc...

The results obtained numerically are calculated in a homogeneous system, where

the chemical potential is constant across all lattice sites. In order to compare with

experiments and perform thermometry, the local density approximation (LDA) is used

(see Chapter 8 for a discussion on the subject). In Fig. 10.1 we present preliminary

results of the equation of state for an SU(6) FHM in a two-dimensional square lattice,

comparing our theory to the (unpublished) data from Fölling’s group. Markers in blue

correspond to the density and in green to the
∑

α=odd ⟨pα⟩, which are obtained by

measuring after a photoassociation process that removes pairs of atoms on a given

site. In order to perform thermometry, both results are simultaneously fit against

NLCE calculations, for which the only free parameter is the temperature.

Figure 10.1 : Equation of State of the SU(6) FHM (preliminary). Top: Ex-
perimental results for the density (blue markers) and photoassociation data (green
markers) are presented for U/t = 7.43. Lines in blue and green correspond to fits to
the third-order NLCE data. Bottom: Residuals of the fits.



210
10.1. PRECISE MEASUREMENT AND CHARACTERIZATION OF THE

EQUATION OF STATE OF THE SU(N) FHM

10.1.1 High-Temperature Series Expansion

In addition to numerically exact results, we also derive a second-order HTSE for the

quantity ⟨pα⟩. These results allow us to have simple expressions we can also use to

compare against experiments and for understanding the relevant physics at different

temperatures and fillings. Following a similar derivation as the one Section 5.1 we

first obtain the results in the zeroth-order case and then the second-order.

10.1.1.1 Zeroth-order HTSE

In this case t = 0, and we define,

ϵ0(n) =
U

2
n(n− 1)− µn+ gδn,α, (10.1)

where the last term is a fictitious term that will allow us to extract ⟨pα⟩ by differen-

tiating with respect to g. The partition function for the single site is given by,

z0 =
N∑

n=0

(
N

n

)
e−βϵ0(n) (10.2)

For simplicity, let us define y = e−βU , x = eβµ, and w = e−βg. Written like this, the

partition function is:

z0 =
N∑

n=0

(
N

n

)
y

1
2
n(n−1)xnwδn,α , (10.3)

and the free energy in the grand canonical ensemble is Ω0 = −T ln z0.

In the zeroth-order HTSE,

⟨pα⟩ = lim
g→0

∂Ω0

∂g
=

1

z0
lim
g→0

−T 1

z0

[−w
T

∂z0
∂w

]
= lim

g→0
w

N∑
n=0

(
N

n

)
y

1
2
n(n−1)xnδn,αw

δn,α−1

⟨pα⟩ =
1

z0
lim
g→0

(
N

α

)
y

1
2
α(α−1)xαw =

1

z0

(
N

α

)
y

1
2
α(α−1)xα. (10.4)



211
10.1. PRECISE MEASUREMENT AND CHARACTERIZATION OF THE

EQUATION OF STATE OF THE SU(N) FHM

Therefore, in the zeroth-order HTSE, we get:

⟨pα⟩0 =
(
N
α

)
y

1
2
α(α−1)xα∑N

n=0

(
N
n

)
y

1
2
n(n−1)xn

. (10.5)

The quantities ⟨pα⟩ are related for the zeroth-order HTSE to the density and the

number of on-site pairs via the following equations:

⟨n⟩0 =
N∑

α=1

α⟨pα⟩0 =
1

z0

N∑
α=0

(
N

α

)
αy

1
2
α(α−1)xα, (10.6)

1

2
⟨n(n− 1)⟩0 = ⟨D⟩0 =

N∑
α=0

(
α

2

)
⟨pα⟩0 =

1

z0

N∑
α=0

(
α

2

)(
N

α

)
y

1
2
(α−1)xα. (10.7)

10.1.1.2 Second-order HTSE

Understanding the g = 0 limit

Let’s consider for a second the case when g = 0 in eq. (10.1). This corresponds to

the corrections to the free energy presented in Section 5.1:

−β∆Ω = zN

(
βt

z0

)2
[
1

2

N∑
n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2

− 1

βU

∑
n̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2
[n(n−1)+(m−1)(m−2)]

n−m

]
.

(10.8)

Which we rewrote for simplicity in terms of F [f(n,m)] and G[f(n,m)] as

− β∆Ω = zN

(
βt

z0

)2
[
F [1] +G[1]

]
, (10.9)
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where

F [f(n,m)] =
1

2

N∑
n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2f(n,m) (10.10)

G[f(n,m)] = − 1

βU

∑
n̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2
[n(n−1)+(m−1)(m−2)]

n−m
f(n,m)

(10.11)

Studying the g > 0 case

We are interested deriving expressions for ⟨∆pα⟩, therefore the question is how

eq. (10.8) gets modified when g > 0. The energies of two adjacent sites are:

E = ϵ0(n) + ϵ0(m− 1), (10.12)

and the energy differences are given by,

∆ = ϵ0(n) + ϵ0(m− 1)− ϵ0(n− 1)− ϵ0(m). (10.13)

When g > 0, these last 2 expressions get new terms, specifically,

E → E + g

(
δα,n + δα,n−1

)
(10.14)

∆ → ∆+ g

(
δα,n + δα,m−1 − δα,m − δα,n−1

)
→ ∆. (10.15)

The split-up in n = m and n ̸= m sums still works fine since ∆ = 0 when n = m
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even when g > 0. With these results, the correction to the free energy is now,

−β∆Ω =zN

(
βt

z0

)2
[
1

2

N∑
n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2wδα,n+δα,n−1

− 1

βU

∑
n̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2
[n(n−1)+(m−1)(m−2)]wδα,n+δα,m−1

n−m

]

=zN

(
βt

z0

)2
[
F̃ + G̃

]
(10.16)

And in order to obtain ⟨∆pα⟩ we need to follow the same recipe:

⟨∆pα⟩ = lim
g→0

∂∆Ω

∂g
= lim

g→0
−βzNt2

[(
F̃ + G̃

)(∂z−2
0

∂g

)
+

1

z20

(
∂F̃

∂g
+
∂G̃

∂g

)]
. (10.17)

Taking the derivatives and taking the g → 0 (w → 1) limit we get the following

expression,

⟨∆pα⟩ = zN

(
βt

z0

)2
[
− 2⟨pα⟩0

(
F [1] +G[1]

)
+ F [δα,n + δα,n−1] +G [δα,n + δα,m−1]

]
(10.18)

In Fig. 10.2 we present an example of ⟨pα⟩ computed to second-order in a HTSE.

10.1.1.3 Sanity checks: ρ and D

For the zeroth-order HTSE we proved that ⟨n⟩0 =
∑

α α⟨pα⟩0, and ⟨D⟩0 =
∑

α

(
α
2

)
⟨pα⟩0.

We need to convince ourselves the corrections here computed are correctly connected

to the corrections to the density ⟨∆n⟩ and the corrections to the number of on-site
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Figure 10.2 : HTSE results for ⟨pα⟩. Results for SU(4) at U/t = 10 and T/t = 2.
In solid red, green, blue, and yellow ⟨p1⟩2, ⟨p2⟩2, ⟨p3⟩2, ⟨p4⟩2, respectively. Solid
black and purple denote ⟨D⟩2 and ⟨n⟩2 from eqs. (10.20) and (10.19), respectively.
In dashed orange and green, the same quantities obtained as the weighted sums of
the ⟨pα⟩2. These expressions agree with each other, which corroborates the validity
of our results.

pairs ⟨∆D⟩. These 2 are given by,

⟨∆n⟩ = zN

(
βt

z0

)2
[
− 2⟨n⟩0

(
F [1] +G[1]

)
+ F [2n− 1] +G[n+m− 1]

]
, (10.19)

⟨∆D⟩ = zN

(
βt

z0

)2
[
− 2⟨D⟩0

(
F [1] +G[1]

)
+ F [(n− 1)2]

+G

[
n(n− 1) + (m− 1)(m− 2)

2

] ]
. (10.20)

In both cases, is clear that the first term in the sum in eq. (10.18) will give rise to

the first terms in eqs. (10.19) and (10.20).
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For the second term, we get:

∑
α

αF [δα,n + δα,n−1] =
1

2

N∑
α=0

α

(
N − 1

α

)2

x2α+1yα
2

+
1

2

N∑
α=0

α

(
N − 1

α− 1

)2

x2α−1y(α−1)2

=
1

2

N+1∑
α=1

(α− 1)

(
N − 1

α− 1

)2

x2α−1y(α−1)2

+
1

2

N∑
α=0

α

(
N − 1

α− 1

)2

x2α−1y(α−1)2

=
1

2

N∑
α=0

(2α− 1)

(
N − 1

α− 1

)2

x2α−1y(α−1)2

= F [2α− 1] (10.21)∑
α

(
α

2

)
F [δα,n + δα,n−1] =

1

2

N∑
α=0

(
α

2

)(
N − 1

α

)2

x2α+1yα
2

+
1

2

N∑
α=0

(
α

2

)(
N − 1

α− 1

)2

x2α−1y(α−1)2

=
1

2

N+1∑
α=1

(
α− 1

2

)(
N − 1

α− 1

)2

x2α−1y(α−1)2

+
1

2

N∑
α=0

(
α

2

)(
N − 1

α− 1

)2

x2α−1y(α−1)2

=
1

2

N∑
α=0

[(
α− 1

2

)
+

(
α

2

)](
N − 1

α− 1

)2

x2α−1y(α−1)2

=
1

2

N∑
α=0

(α− 1)2
(
N − 1

α− 1

)2

x2α−1y(α−1)2

= F [(α− 1)2] (10.22)

Where in the 2nd, 3rd, 5th, and 6th lines we shifted the summation indexes, and used

the fact that
(
x
y

)
= 0 if y > x or y < 0.
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The final step is to calculate the last term:

−βU
∑
α

αG[δα,n + δα,m−1] =

N∑
α=0

α
∑
m ̸=α

(
N − 1

α− 1

)(
N − 1

m− 1

)
xα+m−1y

1
2
[α(α−1)+(m−1)(m−2)]

α−m

+
N∑

α=0

α
∑

n̸=α+1

(
N − 1

n− 1

)(
N − 1

α

)
xn+αy

1
2
[n(n−1)+α(α−1)]

n− (α + 1)

=
∑
m̸=α

α

(
N − 1

α− 1

)(
N − 1

m− 1

)
xα+m−1y

1
2
[α(α−1)+(m−1)(m−2)]

α−m

+
N∑

α=0

α
∑

m̸=α+1

(
N − 1

m− 1

)(
N − 1

α

)
xm+αy

1
2
[m(m−1)+α(α−1)]

m− (α + 1)

=
∑
m̸=α

α

(
N − 1

α− 1

)(
N − 1

m− 1

)
xα+m−1y

1
2
[α(α−1)+(m−1)(m−2)]

α−m

+
N+1∑
α=1

(α− 1)
∑
m ̸=α

(
N − 1

m− 1

)(
N − 1

α− 1

)
xα+m−1y

1
2
[m(m−1)+(α−1)(α−2)]

m− α

=
∑
m̸=α

α

(
N − 1

α− 1

)(
N − 1

m− 1

)
xα+m−1y

1
2
[α(α−1)+(m−1)(m−2)]

α−m

+
∑
m ̸=α

(m− 1)

(
N − 1

α− 1

)(
N − 1

m− 1

)
xα+m−1y

1
2
[α(α−1)+(m−1)(m−2)]

α−m

= G[α +m− 1] (10.23)
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−βU
∑
α

(
α

2

)
G[δα,n + δα,m−1] =

N∑
α=0

(
α

2

)∑
m̸=α

(
N − 1

α− 1

)(
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(10.24)

Where in the second to last lines for each expression we shifted the summation indexes

α ⇐⇒ m, and also used the fact of when do the binomial coefficients vanish. These

results corroborate our findings and proof that eq. (10.18) is the correct expression

for ⟨pα⟩, valid to second order in βt.



218
10.1. PRECISE MEASUREMENT AND CHARACTERIZATION OF THE

EQUATION OF STATE OF THE SU(N) FHM

10.1.2 Measuring correlation functions from density fluctuations

In addition, we have derived expressions for a proposed protocol that explains how the

measurements of density fluctuations can be utilized to also access spin correlations

via shelving ∗ some flavors prior to measurements.

Exploiting the SU(N) symmetry we simplify the expressions for eqs. (3.16) and

(3.18). Given the flavor permutation symmetry, the different sums can be replaced

by,

Cs = N(N − 1)⟨nxσnyσ⟩ −N(N − 1)⟨nxσnyτ ⟩, (10.25)

C̃d = N⟨nxσnyσ⟩+N(N − 1)⟨nxσnyτ ⟩, (10.26)

where overlined quantities such as ⟨nxσnyτ ⟩ indicate that these are either obtained

for a single (σ, τ) pair of flavors, or averaged over all the possible pairs†.

Experiments have access to C̃d = ⟨nxny⟩ averaged over a few lattice sites. Because

of this, it is then useful to derive an expression for the spin-spin correlation function

in terms of C̃d from eqs. (10.25) and (10.26):

Cs = N2⟨nxσnyσ⟩ − C̃d, (10.27)

Cs = (N − 1)C̃d −N2(N − 1)⟨nxσnyτ ⟩. (10.28)

In order to extract ⟨nxσnyσ⟩ and ⟨nxσnyτ ⟩ to obtain the spin-spin correlation

function one needs to obtain the expression for the density-density correlation function

C̃
(M)
d = ⟨n(M)

x n
(M)
y ⟩, where the (M) superscript denotes that only M spin components

∗Shelving refers to storing some spin components in the metastable state 3P0, and therefore
making it insensitive to the imaging laser.

†Ideally, the latter one would reduce the statistical errors and reduce systematics from possible
imabalances in the populations. But the first procedure would allow for a fast readout in a single
experimental sequence, and then averages of different realizations can be obtained.
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are present in the measurement, i.e. N −M components have been shelved:

C̃
(M)
d =M⟨nxσnyσ⟩+M(M − 1)⟨nxσnyτ ⟩. (10.29)

For any two numbers of shelved species, M and M ′, one can extract the two

correlations,

⟨nxσnyτ ⟩ =
(

1

M −M ′

)(
C̃

(M)
d

M
− C̃

(M ′)
d

M ′

)
, (10.30)

⟨nxσnyσ⟩ =
1

MM ′(M −M ′)

[
M(M − 1)C̃

(M ′)
d −M ′(M ′ − 1)C̃

(M)
d

]
. (10.31)

With these expressions, one can obtain via eqs. (10.30) and (10.31) the spin-

spin correlation functions from any two number of shelved species by substituting in

eqs. (10.27) and (10.28). For convenience, let’s set M ′ = N :

Cs(M,N) =
N

M(M −N)

[
M(M − 1)C̃d −N(N − 1)C̃

(M)
d

]
− C̃d, (10.32)

Cs(M,N) = (N − 1)C̃d −N2(N − 1)

(
1

M −N

)(
C̃

(M)
d

M
− C̃d

N

)
. (10.33)

These 2 equations are equivalent and simplify to,

Cs(M,N) =
N − 1

M(N −M)

[
N2C̃

(M)
d −M2C̃d

]
(10.34)

where C̃d corresponds to the number fluctuations in a region for N un-shelved species,

and C̃
(M)
d to the number fluctuations in a region for M un-shelved species.
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10.2 Mott transition and magnetism of SU(3) fermions in a

square lattice

In this project we have focused on studying the N = 3 FHM in the square lattice.

In particular, we explored two different fillings ⟨n⟩ = 1 and ⟨n⟩ = 1.5 since we are

interested in understanding how the physics depends on the degree of Fermi Surface

nesting.

A question of interest is to understand if results away from the Heisenberg limit [138]

survive at lower interaction strengths and if predictions from mean-field and renor-

malization group [102] are also observed with exact numerical methods. For this

reason, we have performed DQMC simulations in 6 × 6, 8 × 8 and 12 × 12 lattices

and explored its thermodynamic and magnetic properties.

Preliminary results of DQMC simulations are presented in Fig. 10.3 where spin

and density correlation functions are presented for a 6× 6 lattice for a single DQMC

trajectory at different temperatures at ⟨n⟩ = 1. Results for the spin degree of freedom

illustrate that as temperature is lowered the system starts developing a two-sublattice

structure [going from Fig. 10.3(a) to Fig. 10.3(c)] and as one cools further down, a

three-sublattice structure starts to emerge Fig. 10.3(e). Averaging over more realiza-

tions is needed to reach further conclusions.

10.3 Hubbard parameters in optical tweezers

Although optical lattices are one of the major tools in the quantum simulation com-

munity, they are not yet cold enough to access some of the most interesting regions

of the FHM phase diagram. In Chapter 9 we discussed the development of quantum

simulators using optical tweezer arrays, which might provide a platform to overcome

this temperature issue.

Optical tweezers also have the potential to generate arbitrary lattice geometries

(see Fig. 10.4) and can study very low entropy systems by a post-selection process.
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Figure 10.3 : DQMC correlations in the SU(3) FHM (preliminary). T/t =
(a) 301.205 (b) 6.250 (c) 0.625 (d) 0.208 (e) 0.156 (f) 0.104.

However these experiments require: 1) a fine and long calibration procedure to en-

sure coherent tunneling rates, 2) comparison with numerical techniques (ED, NLCE,

DQMC) to get access to the Hubbard parameters and the temperature.

One of the complications in optical tweezers that is not present in optical lattices

arises from the lack of periodicity in the potential. In Chapter 4 we discussed why ul-

tracold atoms in optical lattices are well described by the single band Fermi Hubbard

Model. In particular we discussed how the solution of the eigenvalue problem in a

periodic potential can be tackled with Bloch states and the construction of the Wan-

nier functions. In addition to the periodicity, in simple 1D, 2D, and 3D cubic optical

lattices the potential is also separable in the three spatial coordinates. These two

properties (periodicity and separability) largely simplified the problem as discussed



222 10.3. HUBBARD PARAMETERS IN OPTICAL TWEEZERS

Figure 10.4 : Examples of tweezer geometries. (a) Chain (b) Square (c) Trian-
gular (d) Lieb (e) Honeycomb (f) Kagome.

in Chapter 4. On the other hand, for optical tweezer arrays, none of these conditions

are satisfied, which means one needs to diagonalize a large Hilbert space and the

calculation of the maximally localized Wannier functions requires the construction of

a unitary matrix that minimizes the spread of the Wannier functions (accomplished

simply by performing a Fourier transform of the Bloch states for the periodic case).

In this work, we are developing an algorithm to compute the Hubbard parameters for

arbitrary geometries in 1D and 2D. The code receives as an input the experimental

parameters and then equalizes the Hubbard parameters for an arbitrary geometry by

tuning the separation between tweezers and the individual trap depths and waists

(see preliminary Fig. 10.5).
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Figure 10.5 : Example of Hubbard parameter calculation (preliminary). The
algorithm receives the experimental parameters and then minimizes the cost function
that creates the unitary matrix that allows to construct the maximally localized Wan-
nier functions for the eigenstates of the Hamiltonian. Lattice spacings and individual
trap depths are varied to equalize the Hubbard parameters tij (links between sites),
∆ the energy offset (blue), and U the on-site interaction (orange).
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Chapter 11

Conclusions and future perspective

El viaje no termina jamás. Sólo los viajeros termi-

nan. Y también ellos pueden subsistir en memo-

ria, en recuerdo, en narración... El objetivo de un

viaje es sólo el inicio de otro viaje.

Viaje a Portugal. José Saramago

In this thesis we reported on the numerical results of the SU(N) Fermi-Hubbard

Model for one-, two-, and three-dimensional cubic lattices for different values of N

and interaction strengths U/t. Efforts mainly focused on exploring the 1/N filling

regime, where most of experiments operate.

Throughout this thesis we discussed results for N = 2 in anisotropic lattices,

where we realized a cooling protocol could be devised by exploiting how the entropy

as a function of density depends on the degree of anisotropy.

Then, in order to study the physics for larger N we had to develop and adapt

numerical techniques such as DQMC, ED and NLCE. Although I mainly focused on

developing the DQMC algorithm, close collaboration with other graduate students in

the group to develop, test, and implement all other numerical techniques has been

an exciting journey. Applying these techniques we observed unexpected phenomena

as a function of N such as the universal scaling of thermodynamic observables above

the superexchange energy J . Furthermore, this has allowed us to build strong col-

laboration with experimental groups, which have nutured our desire to develop more

techniques and come up with proposals to study. Of relevance are the groups of

Yoshiro Takahashi with whom we detected the coldest Fermi gas in an optical lattice

T/t ∼ 0.1 and understood that antiferromagnetic nearest-neighbor correlations are
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enhanced for larger N and in smaller dimensions. With Simon Fölling we have been

performing a precise measurement of the equation of state of the SU(N) FHM.

There are still many areas to explore regarding the SU(N) FHM. In particular,

the current development of Constrained Path Quantum Monte Carlo techniques with

collaborators Richard Scalettar, Ettore Vitali, Chunhan Feng, Kaden Hazzard and

Shiwei Zhang opens the possibility to explore ground state physics without a sign

problem. Other Auxiliary DQMC Hubbard Stratonovich decompositions merit fur-

ther exploration where the possibility of developing a hybrid method could allow for

a deeper exploration of phase diagram for various values of N .

Results in spin imbalanced systems, or with different tunneling rates for each spin

component open the avenue to study orbital physics and disentangle the effects of

Fermi surface nesting. Additionally, the development of quantum gas microscopes

opens now the possibility to understand long-range order in these systems.

On the other hand, new architectures, such as optical tweezers will allow for

the exploration of low-temperature physics that is currently inaccessible to optical

lattices. The degree of control these offers will certainly revolutionize the field of

quantum simulation and pose new and exciting challenges for the theoretical groups

working in many-body physics.

As I finish writing this thesis, it is a good moment to look at what are future

questions of interest in the SU(N) FHM and with optical tweezer arrays. Some

directions to explore using these new architectures correspond to:

• A deep understanding of the SU(N) quantum magnetism. In particular, what

long-range order phases emerge, and if for large N there is a spin liquid.

• An exploration of the doped phase diagram of the SU(N) FHM, where there are

no theoretical predictions yet. A possible starting point is to ask: What occurs

when one introduces one hole into a system at 1/N -filling? What occurs when

one introduces two holes? Is behavior of one or two holes the SU(N) systems
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similar to their N = 2 counterpart?

• A study of the symmetry of the superconducting gap for N > 2. What is the

equivalent of Cooper pairing for N > 2? For N = 2 a Cooper pair requires

two particles in a singlet state and in the case of the SU(2) FHM the symmetry

of the gap is expected to be d-wave. For N > 2, N particles are required to

form a singlet and an open question is what should be the symmetry of the

superconducting gap?

• A thorough study of the doped SU(2) FHM using optical lattices. One of the

subjects of debate is if the FHM supports a d-wave superconducting phase.

Optical lattices are not yet cold enough to answer this question, but optical

tweezers could (using post-selection methods) after they are scaled to larger

system sizes.
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Appendix A

Probability distribution of the SU(N) FHM

DQMC Algorithm

In the following notes we derive the probability distribution that is sampled in the

DQMC algorithm of the SU(N) Fermi-Hubbard Model. First we rewrite the N = 2

case in a convenient way, and then do the same for N > 2. Subsequently, starting

from the partition function we introduce the Hubbard-Stratonovich decomposition

and derive the probability distribution that will be stochastically sampled. Later we

discuss the N = 2, 3 cases and finally we conclude mentioning how the algorithm

changes.

A.1 The SU(2) Fermi Hubbard Model

The SU(2) Hubbard Hamiltonian is,

H = −t
∑
⟨i,j⟩σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ (A.1)

where σ =↑, ↓. We can notice that,

H =
∑
σ=↑,↓

Kσ + V↑,↓(U) (A.2)

Kσ = −t
∑
⟨i,j⟩

(
c†iσcjσ + c†jσciσ

)
− µ

∑
i

niσ (A.3)

V↑,↓(U) = U
∑
i

ni↑ni↓ (A.4)

and define

H
(σσ′)
FH (U) = Kσ +Kσ′ + Vσ,σ′(U) (A.5)
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Note that H
(σσ′)
FH = H

(σ′σ)
FH . We know how to implement the DQMC algorithm for this

Hamiltonian [54], so it is of our interest to express the SU(N) Hamiltonian in terms

of the N = 2 one.

A.2 The SU(N) Fermi Hubbard Model

The SU(N) Hubbard Hamiltonian is,

H = −t
∑
⟨i,j⟩σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
i,σ ̸=σ′

niσniσ′ − µ0

∑
i,σ

niσ −
∑
i,σ

V ext
i niσ, (A.6)

that we can rewrite using local density approximation µi = µ0 − V ext
i as,

H =
∑
σ

[
− t
∑
⟨i,j⟩

(
c†iσcjσ + c†jσciσ

)
−
∑
i

µiniσ

]
+
U

2

∑
i,σ ̸=σ′

niσniσ′ , (A.7)

and we can identify the Kσ terms easily and therefore rewrite it as,

H =

(
1

2(N − 1)

)∑
σ ̸=σ′

(Kσ +Kσ′) +
U

2

∑
i,σ ̸=σ′

niσniσ′ , (A.8)

so rearranging terms we have,

H =

(
1

2(N − 1)

)∑
σ ̸=σ′

[
Kσ +Kσ′ + U(N − 1)

∑
i

niσniσ′

]
(A.9)

Thus, writing it in terms of the N = 2 Hamiltonian, we have

H =

(
1

2(N − 1)

)∑
σ ̸=σ′

H
(σσ′)
FH (U(N − 1)). (A.10)

Or it can be written as,

H =

(
1

N − 1

)∑
σ

∑
σ′>σ

H
(σσ′)
FH (U(N − 1)). (A.11)
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A.3 DQMC

A.3.1 Computable approximation of the probability distribution

We know that for each individual Hσσ′
FH , the kinetic and interaction terms do not

commute, so let’s start by applying the Trotter-Suzuki decomposition to approximate

the partition function Z:

Z = Tr
(
e−βH

)
= Tr

[
L∏

ℓ=1

e−∆τH

]

= Tr

[
L∏

ℓ=1

exp

(
−
(

∆τ

N − 1

)∑
σ

∑
σ′>σ

H
(σσ′)
FH (U(N − 1))

)]

= Tr

[
L∏

ℓ=1

∏
σ

∏
σ′>σ

exp

(
−
(

∆τ

N − 1

)
H

(σσ′)
FH (U(N − 1))

)]
+O(∆τ 2)

≈ Tr

[
L∏

ℓ=1

∏
σ

∏
σ′>σ

e−(
∆τ
N−1)(Kσ+Kσ′ )e−(

∆τ
N−1)Vσ,σ′ (U(N−1))

]
(A.12)

Note that in the last line the Trotter-Suzuki approximation has appeared one more

time, so that we can separate the kinetic part from the interaction part. The kinetic

energy term is quadratic in the fermion operators and the σ and σ′ operators are

independent, therefore it can be written as

e−(
∆τ
N−1)(Kσ+Kσ′ ) = e−(

∆τ
N−1)Kσe−(

∆τ
N−1)Kσ′ , (A.13)

where the operators Kσ are written in their quadratic form as,

Kσ = c⃗†σKc⃗σ (A.14)
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with the square matrix K (dimension Ns × Ns with Ns the total number of sites) is

given by,

K =


−µ1 −t 0 0 . . .

−t −µ2 −t 0 . . .

...
. . .

 (A.15)

With this results, the partition function is now:

Z ≈ Tr

[
L∏

ℓ=1

∏
σ

∏
σ′>σ

e−(
∆τ
N−1)c⃗

†
σKc⃗σe−(

∆τ
N−1)c⃗

†
σ′Kc⃗σ′e−(

∆τ
N−1)Vσ,σ′ (U(N−1))

]
. (A.16)

Now, the potential energy term is quartic in the fermion operators so we need to per-

form a discrete Hubbard-Stratonovich transformation. First let’s note the following:

e−(
∆τ
N−1)Vσ,σ′ (U(N−1)) = e−∆τU

∑
i niσniσ′ =

∏
i

e−∆τUniσniσ′ (A.17)

Then,

∏
i

e−∆τUniσniσ′ =
∏
i

[
1

2

∑
hi=±1

e−(hiλ+
U∆τ

2 )niσe−(−hiλ+
U∆τ

2 )niσ′

]

=

(
1

2

)Ns ∑
{h⃗:hi=±1}

e−
∑

i(hiλ+
U∆τ

2 )niσe−
∑

i(−hiλ+
U∆τ

2 )niσ′

=

(
1

2

)Ns

Trh

[
ec⃗

†
σV(h)c⃗σec⃗

†
σ′V(−h)c⃗σ′

]
(A.18)

where coshλ = exp (U∆τ/2) and,

V(h) = diag

(
−hiλ− U∆τ

2

)
∗. (A.19)

∗We would like to notice here that if the Hamiltonian is written in the PHS form, the Hubbard-
Stratonovich decomposition will gain an additional e−U∆τ/4 term that is irrelevant to the algorithm
(since one will take ratios) and that the term −U∆τ/2 can be disregarded since it will be captured
by the chemical potential, rendering V(h) = diag(−hiλ).
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We now need to take into account the fact that we have inserted
(
N
2

)
Hubbard-

Stratonovich transformations for each time slice l [one for each pair of (σ, σ′)]. There-

fore the following index relabeling needs to be done:

hi → h(σ,σ
′)(i, l), Trh → Trhσσ′ , V(h) → V(ℓ)(h)

Putting this back into the expression for the partition function, we now have:

Z ≈ Tr

[
L∏

ℓ=1

∏
σ

∏
σ′>σ

e−(
∆τ
N−1)c⃗

†
σKc⃗σe−(

∆τ
N−1)c⃗

†
σ′Kc⃗σ′

(
1

2

)Ns

Trhσσ′

[
ec⃗

†
σV(ℓ)(h)c⃗σec⃗

†
σ′V(ℓ)(−h)c⃗σ′

]]
,

≈ Tr

[
L∏

ℓ=1

∏
σ

∏
σ′>σ

(
1

2

)Ns

Trhσσ′

(
e−(

∆τ
N−1)c⃗

†
σKc⃗σe−(

∆τ
N−1)c⃗

†
σ′Kc⃗σ′ec⃗

†
σV(ℓ)(h)c⃗σec⃗

†
σ′V(ℓ)(−h)c⃗σ′

)]
.

(A.20)

We can move the time product
∏

ℓ inside the Trhσ,σ′ .

Z ≈ Tr

[∏
σ

∏
σ′>σ

(
1

2

)LNs

Trhσσ′

{(
L∏

ℓ=1

e−(
∆τ
N−1)c⃗

†
σKc⃗σec⃗

†
σV(ℓ)(−h)c⃗σ

)
(

L∏
ℓ=1

e−(
∆τ
N−1)c⃗

†
σ′Kc⃗σ′ec⃗

†
σ′V(ℓ)(−h)c⃗σ′

)}]
, (A.21)

Then, we are able to trace over fermions explicitly, since there are only bilinear forms

in fermion operators, and obtain:

Z ≈
(
1

2

)LNs(N2 )∏
σ

∏
σ′>σ

{
Trhσσ′Tr

[(
L∏

ℓ=1

e−(
∆τ
N−1)c⃗

†
σKc⃗σec⃗

†
σV(ℓ)(h)c⃗σ

)
(

L∏
ℓ=1

e−(
∆τ
N−1)c⃗

†
σ′Kc⃗σ′ec⃗

†
σ′V(ℓ)(−h)c⃗σ′

)]}
. (A.22)

And from our knowledge from the N = 2 case, we know to how to express those two
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traces:

Z ≈ C1

∏
σ

∏
σ′>σ

(
Trhσσ′ det

[
Mσ(h

(σ,σ′))
]
det
[
Mσ′(−h(σ,σ′))

])
, (A.23)

where we explicitly indicate that the interaction between σ and σ′ is encoded in a

single Ns × L matrix,

Mσ(h
(σ,σ′)) = Id +BL,σ(h

(σ,σ′)
L )BL−1,σ(h

(σ,σ′)
L−1 ) . . . B1,σ(h

(σ,σ′)
1 ), (A.24)

and the Bℓ,σ matrices are:

Bℓ,σ(h
(σ,σ′)
ℓ ) = e−(

∆τ
N−1)KeV

(ℓ)(h
(σ,σ′)
ℓ ). (A.25)

Finally the expression gets simplified after noticing that we can also interchange the

trace over all h′s with the products that we will simply denote as Tr{h} (to indicate

that there’s now a whole set of auxiliary fields for each imaginary time slice), and we

are left with:

Z ≈ C1Tr{h}

(∏
σ

∏
σ′>σ

det [Mσ(h)] det [Mσ′(−h)]
)
. (A.26)

And from here we have obtained:

ρ({h}) = C1

Z

(∏
σ

∏
σ′>σ

det
[
Mσ(h

(σ,σ′))
]
det
[
Mσ′(−h(σ,σ′))

])
, (A.27)

that encodes the probability distribution to be stochastically sampled. As we can see,

it is now the product of N(N − 1) determinants, however, all of the terms come in

pairs of products of determinants, which therefore allows us to perform the Metropolis

algorithm to each pair (σ, σ′) straightforwardly (i.e. using the subroutines written for

the N = 2 case), except that now one has more auxiliary fields and therefore has to
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loop over the set of spin pairs.

A.3.2 Sanity check N=2 and N=3

For N = 2, we have σ = 1, 2 =↑, ↓, and {h} = h(1,2) therefore,

P({h}) = C1

Z

(
det [M↑(h)] det [M↓(−h)]

)
, (A.28)

which is consistent with our previous results.

For N = 3, we have σ = 1, 2, 3, and {h} = {h(1,2), h(1,3), h(2,3)} so:

P({h}) = C1

Z

(
det
[
M1(h

(1,2))
]
det
[
M2(−h(1,2))

])(
det
[
M1(h

(1,3))
]
det
[
M3(−h(1,3))

])

×
(
det
[
M2(h

(2,3))
]
det
[
M3(−h(2,3))

])
, (A.29)

A.3.3 Algorithm

Given that the interaction terms are pairwise, the Metropolis ratios are calculated in

the same way for each pair (σ, σ′) and therefore the algorithm is identically to the

one for N = 2 except that now one also has to loop over the spin degree of freedom.

1. Initialize all the Hubbard-Stratonovich fields {h}.

2. Set (ℓ, σ, σ′, i)

3. Perform the (ℓ, σ, σ′, i)−loop.

(a) Propose new configuration h
(σ,σ′)
new by flipping the site, ie. h(σ,σ

′)(ℓ, i) →

−h(σ,σ′)(ℓ, i)

(b) Compute Metropolis ratio. Note that this looks exactly like the N = 2 case

because only the determinants that involve the h(σ,σ
′) field are connected,

and so the other determinants remain the same and cancel out.
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(c) Calculate the acceptance-rejection.

(d) Go to the next (ℓ, σ, σ′, i), where:

• If i < Ns, i→ i+ 1

• If i = Ns, i→ 1 and σ′ → σ′ + 1

• And so on. Then update the σ and finally the imaginary time. Do so

until you have have “walked” all the auxiliary fields.

(e) After warm ups, starting performing physical measurements, which are

related to the Green’s functions that are computed in the exact way that

is done in the N = 2 case: Gσ
ij(ℓ = L) = ⟨ciσc†jσ⟩ = [Mσ(h)]

−1
ij .
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Appendix B

Non-ergodicites in the SU(N) FHM DQMC

Algorithm

In this appendix we discuss some aspects regarding non-ergodicities in DQMC

(commonly refered as sticking). First we discuss the structure of the interaction

matrices for N > 2 in terms of the auxiliary Ising fields hστ , and then we discuss how

global moves might be constructed to mitigate sticking issues.

In our DQMC algorithm the Hubbard Stratonovich transformation decouples each

interaction term in terms of the difference to the operators nσ − nτ . For N = 2 this

corresponds to the local magnetization n↑ −n↓ and the interaction matrices have the

following form:

v↑,↓(i) = exp[±λh(i)], (B.1)

where the ± sign corresponds to ↑, ↓ respectively. For larger N , we have
(
N
2

)
(σ, τ)

pairs, and each term is decoupled in the nσ − nτ channel. We decided to follow the

convention of assigning the plus sign to the terms with the lowest σ. This convention

simplifies the coding and is easy to remember. For example, following that convention,

the interaction matrices for SU(6) have the following form:

v1(i) = exp [λ (+h12(i) + h13(i) + h14(i) + h15(i) + h16(i))] ,

v2(i) = exp [λ (−h12(i) + h23(i) + h24(i) + h25(i) + h26(i))] ,

v3(i) = exp [λ (−h13(i)− h23(i) + h34(i) + h35(i) + h36(i))] ,

... =
...

which means that the N(N−1)/2 auxiliary Ising fields couple asymmetrically to each

spin flavor. This has consequences in the efficiency of the global moves to mitigate
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non-ergodicites, i.e. sticking. The best way to understand this is to look into the

single-site limit, where we can write the Boltzmann weights for an arbitrary Hubbard-

Stratonovich configuration.

Let’s start with N = 2 in the single-site case. In this case, we have a single

Hubbard-Stratonovich field S12(τ) ∗ and the determinants of the matrices that de-

fine the probability distribution only depend on Σ12 ≡ ∑
τ S

12(τ), where we have L

imaginary time slices τ :

deti = 1 + e±λΣ12+βµ, (B.2)

where the + sign is for i = 1 and the− sign for i = 2. The weight of such configuration

is given by det =
∏

i deti, and therefore the weight for a given configuration of Σ12 is(
L

(L−|Σ12|)/2

)∏
i deti, where the binomial coefficient counts how many ways the S12(τ)

fields can be chosen to get a given Σ12.

1.0 0.5 0.0 0.5 1.0
/L

0.00

0.05

0.10

0.15

0.20

P(
)

U
0
1

2
4

8
12

Figure B.1 : Probability distributions for the Hubbard Stratonovich config-
urations for N = 2. Results in the single-site limit for different values of U .

In Fig. B.1 we present the probability distributions for the different Hubbard-

∗Here we use S12(τ) to explicitly indicate we are working in the atomic limit, and corresponds
to the value of the single-site auxiliary Ising field for the pair of spins 1 and 2 at the imaginary time
slice τ .
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Stratonovich configurations. As the interaction increases, the high probability con-

figurations move towards Σ12 = ±L, which correspond to configurations in which the

site has n↓ ≈ 1 or n↑ ≈ 1, respectively. Furthermore, as the interaction strength

increases, other values of Σ12 decrease their weight, and even vanish (for example at

U = 12 near the Σ12 = 0 region). This is the origin of the sticking : single Ising spin

flips in the Hubbard-Stratonovich fields cannot take us from one “bright spot” to the

other, i.e they are unable to take us from the ±L configuration to the ∓L config-

uration, since they would have to traverse a region of configurations with very low

Boltzmann weights, which is render impossible since those moves would not be ac-

cepted by the Metropolis-Hastings algorithm. The ideal of global move is such that it

allows us to visit the “bright spots”, and in order to do, for N = 2 this is accomplished

by performing the global update Σ12 ⇐⇒ −Σ12, which takes the system from the

±L configuration to the ∓L configuration and therefore recovering the ergodicity of

the algorithm. Moreover, since the probability of proposing the global move (identical

for going ± to ∓ and viceversa), and its the probability of its acceptance depends on

the Metropolis-ratio, this type of move preserves detailed balance. However, global

moves come at a cost: when implementing this for the full Hamiltonian, one needs

to compute det [Mσ({s})] and det [Mσ({s′})] for the configurations, which takes N3
s

operations instead of N2
s for the single Ising spin flip.

Let us now analyze the case of N = 3 in the single site limit, which will illustrate

how the pairwise Hubbard-Stratonovich decoupling affects the probability distribu-

tions of the Ising fields. For N = 3 we now have,

det1 = 1 + eλ(+Σ12+Σ13)+βµ, (B.3)

det2 = 1 + eλ(−Σ12+Σ13)+βµ, (B.4)

det3 = 1 + eλ(−Σ12−Σ13)+βµ, (B.5)
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where Σij ≡∑τ S
ij(τ), and Sij(τ) is the Hubbard-Stratonovich field for the (σ1, σ2)

interaction. We then compute the logarithm of the weight of such configuration,

i.e. lndet = ln [
∏

i deti], as well as the logarithm of the products of the binomial

coefficients: lnbinom = ln
[∏

i<j

(
L

(L−|Σij |)/2

)]
. In this way we can study the weight

for a given configuration of Σij’s by looking at lndet + lnbinom.

In Fig. B.2 we present lndet, lndet+lnbinom, the density ρ = ⟨n⟩, and the individ-

ual densities ⟨nσ⟩ for different values of the auxiliary fields at an interaction strength

of 15.3 and temperature of 1 in the atomic limit. For simplicity we present only 3

values of Σ23/L while we present contour plots with axis Σ12/L and Σ13/L. In this

figure we observe how the location of the “bright spot” depends on the configuration

of the auxiliary fields (see Table B.1).

Σ12 Σ13 Σ23 Dominant nσ

0 −L −L n3

L L 0 n1

−L 0 L n2

Table B.1 : “Bright spots” locations for N = 3 and the dominant flavor density for
that configuration.

Currently, the DQMC algorithm incorporates the set of all possible N = 2-type

global moves i.e. Σij ⇐⇒ −Σij for all ij pairs. The whole set of moves allows

for the exploration of all “bright spots” in the auxiliary field configuration preserv-

ing ergodicity (although the connection between different “bright spots” only occurs

after a few steps), and by construction respecting detailed balance. In practice we

have found that using numtry=4 † in the algorithm we can mitigate sticking for

values of U/t ≲ 15 at temperatures and densities where the sign problem is still man-

ageable. Additionally, we diagnose sticking by observing that the SU(N) symmetry

is preserved in the individual spin populations ⟨nσ⟩ = ρ/N , the two-point correlators

†The argument numtry controls the number of times a single N = 2-type of global move is
attempted for each auxiliary field Σij .
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⟨nσnτ ⟩ = ⟨nαnγ⟩ ∀(σ, τ), (α, γ), and the error bars of both quantities. We only analyze

data when the SU(N) symmetry is conserved within the error bars of the observables

and if the error bars are not anomalously small.

As a future direction, similarly to the N = 2 case, locating the “bright spots”

allows one to propose efficient global moves that take you from one high probability

configuration to another one in single step. For the N = 3 followed by the “bright

spot” corresponds to a triangle in a three-dimensional space with the vertices given

by the first three columns of Table B.1. Visualizing this for other higher values of N

becomes more cumbersome, but will be needed if more efficient global moves want to

be incorporated.
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Figure B.2 : Probability distributions for the Hubbard Stratonovich configu-
rations for N = 3. Results for different configurations of the Hubbard-Stratonovich
fields for SU(3) in the atomic limit. Solid black line corresponds to ⟨n⟩ = 1 and
dashed lines to ⟨nσ⟩ = 0.99 and 0.999.
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Appendix C

Convergence tests for the SU(N) FHM DQMC

Algorithm

We developed the DQMC and ED simultaneously in the group and therefore we

needed to run tests to check their convergence. We performed tests against:

• The atomic limit (t = 0), which allows us to check the interaction energy term

of the Hamiltonian. In Fig. C.1 we compare some DQMC results against the

atomic limit and we observe good convergence.

• The non-interacting limit (U = 0), which allows us to check the kinetic energy

term of the Hamiltonian. In Fig. C.2 we compare some DQMC results against

the non-interacting limit and we also observe good convergence.

• The N = 2 limit for U ̸= 0 and t ̸= 0, which allows to check that looping over

the spin flavors is working correctly and we can reproduce the results of codes

that only deal with N = 2 and are well established in the literature. In Fig. C.3

we compare some DQMC and ED results against the established N = 2 code

and we observe convergence.

• Against each other for N > 2, U ̸= 0, and t ̸= 0. In Fig. C.4 we compare

DQMC and ED results for N = 3 and N = 6 code. We observe how they both

converge as we relax the Hilbert space truncation.
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Figure C.1 : DQMC tests vs the atomic limit. Results for the density and the
number of on-site pairs as a function of the chemical potential or the temperature.
Markers correspond to DQMC and lines to the t = 0 limit.
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Figure C.2 : DQMC tests vs the non-interacting limit. Results for the density,
number of on-site pairs, and the kinetic energy as a function of the chemical potential
or the temperature. Markers correspond to DQMC and lines to the U = 0 limit.
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Figure C.3 : DQMC tests and ED tests for N = 2. Results for the density as a
function of temperature at different values of U, t, µ. Markers correspond to DQMC,
solid lines to the SU(N) ED code, and dashed orange lines to an ED code that only
deals with N = 2.
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Figure C.4 : DQMC tests and ED tests for N = 3 and N = 6. Results for the
density and the number of on-site pairs as a function of the chemical potential at fixed
U/t and T/t. Markers correspond to DQMC, lines to the SU(N) ED code for different
Hilbert space truncations (basis states with an on-site energy larger than the energy
cutoff Ecut are disregarded). Solid black line correspond to a full ED calculation.
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