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ABSTRACT

This paper proposes a new multiscale image decomposition based
on platelets. Platelets are localized functions at various scales, lo-
cations, and orientations that produce piecewise linear image ap-
proximations. For smoothness measured in certain Hölder classes,
the error of m-term platelet approximations can decay significantly
faster than that of m-term approximations in terms of sinusoids,
wavelets, or wedgelets. Platelet representations are especially well-
suited for the analysis of Poisson data, unlike most other multiscale
image representations, and they can be rapidly computed. We pro-
pose a platelet-based maximum penalized likelihood criterion that
encompasses denoising, deblurring, and tomographic reconstruc-
tion.

1. PHOTON-LIMITED IMAGING

In a variety of applications, data are acquired by the detec-
tion of (light or higher energy) photons, and often the ran-
dom nature of photon emission and detection is the dom-
inant source of noise in imaging systems. Such cases are
referred to as photon-limited imaging applications, since
the relatively small number of detected photons is the fac-
tor limiting the signal-to-noise ratio. These applications in-
clude Positron Emission Tomography (PET), Single Photon
Emission Computed Tomography (SPECT), Confocal Mi-
croscopy, astronomical imaging, and Infrared (IR) imaging
[1].

Wavelet-based methods are powerful tools for image de-
noising and have been used in applications of this nature;
however, most wavelet-based approaches are based on Gaus-
sian approximations to the Poisson likelihood, and these
approximations can be especially inaccurate in the context
of photon-limited imaging applications because of the low
count levels. The Haar wavelet system is the only exception;
it does provide a tractable multiscale analysis framework for
Poisson data. Haar analyses are restrictive, however, in that
they can only result in piecewise constant approximations
and cannot approximate smooth boundaries or curves and
edges well.
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In answer to these difficulties, we propose a new multi-
scale image representation based on atoms called platelets.
Platelets are localized atoms at various locations, scales and
orientations that can produce highly accurate, piecewise lin-
ear approximations to images consisting of smooth regions
separated by smooth boundaries. At the heart of fast, plate-
let-based, maximum penalized likelihood methods for im-
age estimation and reconstruction lies a recursive partition-
ing scheme based on multiscale likelihood factorizations
which, unlike conventional wavelet decompositions, are ver-
y well suited to applications with Poisson data. Platelet-
based techniques for image denoising and estimation sig-
nificantly outperform even clairvoyant wavelet threshold-
ing techniques. Because platelet decompositions of Poisson
distributed images are tractable and computationally effi-
cient, expectation-maximization type algorithms enhanced
with platelet techniques can easily be used to reconstruct
images in an ill-conditioned inverse problem setting.

2. PLATELET APPROXIMATIONS

One of the key ideas underlying multiresolution analysis is
that of recursive partitions, which yield sequences of nested
image partitions. Recursive partitions (RP) in general are
interesting because they allow for important extensions of
classical Haar multiscale analysis. The wedgelet partition
[2] is based on a dyadic, square recursive partition which
allows for non-square, “wedge-shaped” partitions only at
the final level of the partition. That is, a wedgelet partition
is based on a recursive dyadic square partition of the image
in which the final partition “cells” are allowed to terminate
with a wedge instead of a square.

In general, an RP can contain smaller / larger dyadic
squares or wedges in different regions of the image domain.
This spatial variation in the “resolution” or “scale” of the
partition enables partitions to “zoom-in” in regions of fine
detail and structure and “zoom-out” in smooth regions of the
image. Spatially varying partitions can be constructed by
beginning with a very fine (pixel-level) partition of the im-
age merging partition cells (squares or wedges) in a bottom-
up fashion, according to a data-based metric of fit versus
partition complexity.

Instead of approximating the image on each cell of the



partition by a constant, as is done in a Haar or wedgelet
analysis, we can approximate it with a planar surface. We
define a platelet
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, ' is a dyadic square or wedge
associated with a terminal node of an RP, and
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denotes

the indicator function on ' . Each platelet requires three co-
efficients, compared with the one coefficient for piecewise
constant approximation.

In many applications it is beneficial to have the added
flexibility of platelet approximations. Image gradients, or
smooth transitions between regions of varied intensities, en-
code information about light emission or reflection as well
as surface geometry. Platelet approximations are ideally
suited to photon-limited applications because of the inher-
ent smoothness of the images. In medical imaging appli-
cations, radioactive pharmaceuticals diffuse smoothly in re-
gions of homogeneous tissue, resulting in smoothly varying
intensities within images of organs, and in astronomical ap-
plications, images of celestial bodies are similarly smooth.
The goal of these applications, however, is often to detect
boundaries of or abnormalities within objects under obser-
vation. Such regions would be indicated by sharp changes,
i.e. edges, in the intensity image.

In the context of photon-limited imaging, therefore, it is
natural to assume an image model consisting of smooth re-
gions separated by a smooth boundary. The power of plate-
lets is realized in connection with ) -term approximations.
Although each platelet has two more parameters per term,
for images of sufficient smoothness many fewer platelets
than constant blocks are needed to approximate an image
to within a certain error [3]. For this analysis, consider im-
ages which are Hölder smooth apart from a Hölder smooth
boundary over * + ��,�-/. :
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Theorem 1 (proved in our platelets technical report [3])
shows that for images consisting of smooth regions (

[K\2,
)

separated by smooth boundaries ( Z \l,
) ) -term plate-

let approximations may significantly outperform Fourier,
wavelet, or wedgelet approximations, which have rates ofmn� ) f@op 
 , mn� ) f 3 
 , and

mn� ) f 3 
 , respectively, for this
class. Figure 1 displays such an image (a linear top and

quadratic bottom separated by a cubic boundary) and an
approximation of it with platelets. Wavelets and Fourier
approximations do not perform well on this class of im-
ages due to the boundary. Conversely, wedgelets can handle
boundaries of this type, but produce piecewise constant ap-
proximations and perform poorly in the smoother (but non-
constant) regions of images.

(a) (b)
Fig. 1. Approximation Example. (a) Image of smooth regions
separated by a smooth boundary. (b) Rough approximation of (a)
with platelets (lines drawn to illustrate platelet boundaries).

3. PLATELET ANALYSIS OF POISSON DATA

Suppose that
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is a realization of a Poisson process.
Underlying this process is an continuous intensity functiont ��qu�	r7
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The likelihood of } , given the intensities or probabilities � ,
is denoted by � � }@� � 


.
In earlier work, we introduced a class of multiscale like-

lihood factorizations for Haar multiscale analysis that pro-
vided an alternative probabilistic representation (i.e., in ad-
dition to that of the original likelihood � � }@� � 


) of the in-
formation in } , in a manner indexed by the various loca-
tion/scale combinations offered by a given recursive parti-
tion [4]. The likelihood factorization allows the likelihood
of the entire image to be represented in a tree structure in
which both likelihoods and parameter penalties of children
are inherited by parents. Thus the likelihood factorization
serves as a probabilistic analogue of an orthonormal wavelet
decomposition of a function. In our technical report [3] we
extended the class of multiscale likelihood factorizations to
encompass likelihoods generated by platelet analyses. The
parameters of the conditional likelihoods play the same role
as wavelet coefficients in a conventional wavelet-based mul-
tiscale analysis. Using this, it is possible to optimally prune



a recursive partition of the data using a fast algorithm rem-
iniscent of dynamic programming and the CART algorithm
[3]. The pruning process is akin to a “keep or kill” wavelet
thresholding rule.

The optimal pruning solves a maximum penalized like-
lihood estimation, wherein the penalization is based on the
complexity of the underlying partition. The complexity of
a given partition is proportional to the total number of ter-
minal cells. Our goal here is to maximize the penalized
likelihood function
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denotes a likelihood factorization and �
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is the number of parameters in the vector � (one for each
constant terminal cell, three for each platelet terminal cell).
The constant

��\ + is a weight that balances between fi-
delity to the data (likelihood) and complexity regularization
(penalty), which effectively controls the bias-variance trade-
off.

The solution of��� �  � 
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is called a maximum penalized likelihood estimator
(MPLE). Larger values of

�
produce smoother, less com-

plex estimators; smaller values of
�

produce more compli-
cated estimators. The best overall performance (as mea-
sured by MSE) depends on the choice of

�
.

The algorithm is detailed in our technical report [3], and
finds the globally optimal solution to (3), as desired. The
computational complexity of platelet analysis is not signif-
icantly greater than that of wavelet or wedgelet analyses.
We bound the computational complexity of performing ei-
ther an “approximate” or exact MPLE, where the “approxi-
mate” estimate uses a (suboptimal) least-squares platelet fit
and the exact estimate is obtained by numerically optimiz-
ing the (concave) log likelihood function for the most likely
platelet fit. The theorem below is proved in [3].

Theorem 2 (MPLE): A Haar MPLE can be computed inmn��{ . 

operations, where

{ .
is the number of pixels in the

image. A wedgelet or “approximate” platelet MPLE can be
computed in

mn��{��=

operations. An exact platelet MPLE

can be computed in
mn��{��5


operations.

4. PHOTON-LIMITED IMAGE DENOISING AND
RECONSTRUCTION

Platelet-based estimation techniques are here compared
with wavelets, applied to nuclear medicine data for denois-
ing, and applied to confocal microscopy data for deblurring.

SNR Platelets D4 Wavelets D6 Wavelets
1 0.038 0.041 0.048

10 0.029 0.101 0.130
100 0.039 0.159 0.198

Table 1. ���������� for Denoising with Platelets and Wavelets

4.1. Comparison with Wavelets

In order to compare the performance of platelets and wave-
lets, we generated Poisson data using Figure 1(a) as a scaled
version of the true intensity at resolution

,=W� �!�,(W� 
pix-

els. For SNRs (average intensities per pixel) of one, ten,
and one hundred, seventy-five realizations were generated
and denoised with platelets and D4 and D6 wavelets. The
wavelet hard threshold level was chosen clairvoyantly for
each noisy image to yield the minimum mean square error,
and the MPLE penalty

�  3. ����� � 	 counts



was used for
the platelet estimator. The MSEs (averaged over all trials,
and normalized by the total intensity) for each SNR are dis-
played in Table 1. Clearly platelets have a significant ad-
vantage over conventional wavelet denoising methods.

4.2. Nuclear Medicine Denoising

Figure 2 (a) depicts an image of the spine obtained from
a nuclear medicine study. Functional changes in the bone
can be detected using nuclear medicine image before they
will show up in X-ray images. Here we applied a technique
called “averaging over shifts” or “cycle-spinning”. This en-
tails circularly shifting the raw data by a few pixels, denois-
ing, and then shifting the estimate back to its original posi-
tion. Five shifts in each direction (horizontal and vertical)
yielded a total of twenty-five estimates, which were then
averaged. This technique often improves denoising and re-
construction results because it reduces the dependence of
the estimator on the dyadic partition. The result of the ap-
plication of our denoising algorithm is displayed in Figure 2
(c). Comparisons with the result of hereditary Haar wavelet
denoising (in Figure 2 (b)) demonstrate the superiority of
platelet representations of image structures. The improve-
ments in edge clarity are most visible in the spinal column
and hips.

Platelet-based techniques can also be used in tomo-
graphic reconstruction applications such as PET, as detailed
in our technical report [3]. The algorithm is similar to the
one used for confocal microscopy image reconstruction in
the following section.

4.3. Confocal Microscopy

Confocal microscopy is used to obtain volume images of
small fluorescent objects with high spatial resolution. Due
to the geometry of these microscopes, a “blurring” is in-



(a) (b)

(c)

Fig. 2. Denoising in nuclear medicine. (a) “Raw” nuclear
medicine spine image (

�������������
pixels). (b) Haar-based MPLE,�	��
���������� counts � , averaged over 25 shifts. (c) Platelet-based

MPLE, ����
���������� counts � , averaged over 25 shifts.

troduced into the measurement process. This distortion of
the image is commonly modeled by the convolution of the
true image with the point spread function of the microscope.
Since the arrival of fluorescence light at the photo multiplier
tube can be modeled as a Poisson process, the “de-blurring”
and estimation process may be viewed as a Poisson inverse
problem well suited to the application of iterative platelet
estimation using the EM algorithm, as detailed in [3].

A common use for CFMs is the imaging the dendritic
spines of neurons; with this application in mind, we de-
veloped the

,=W� ! ,(W� 
phantom image in Figure 3(a). In

practice, some regions of the object will be closer to the de-
tector or exhibit more fluorescence than others, which we
model in our phantom with image gradients, making this
an excellent candidate for platelet analysis. The averaged-
over-shifts platelet-based MPLE appears in Figure 3(c). For
comparison purposes, we also present the results obtained
by using the commonly applied stopped EM-MLE algo-
rithm in Figure 3(b), here stopped at the iteration yielding
the minimum MSE. Finally, Figure 3(d) plots the c . error
of both of the estimates (and that of a Haar-based MLPE)
at each iteration. After several iterations the EM-ML esti-
mate worsens considerably with each subsequent iteration.
In contrast, both MPLEs converge eliminating the need to
choose which iteration is the best stopping point, as done

with the EM-MLE. Furthermore, the converged MPLEs ex-
hibit significantly less c . error than the best MLE.

(a) (b)

(c)
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(d)
Fig. 3. Confocal microscopy simulation. (a) Phantom ( F �HGI� F �HG
pixels). (b) Best EM-MLE restoration. (c) Platelet-based MPLE
(averaged over J � J shifts). In this case, �K�L
���������� counts �
and convergence was declared when M�M NPO�Q7R 
ESUT NIO?Q S M�M VXWYM�M NZO�Q S M�M VP[
FX\^] � (14 iterations in this case). (d) MSE decay by iteration.

5. SUMMARY

This paper introduced the platelet representation for the
analysis, denoising, and reconstruction of photon-limited
images. Platelets outperform conventional wavelet repre-
sentations because of their ability to approximate smooth
boundaries more efficiently than wavelets. Experimen-
tal results with real data from astronomy, confocal mi-
croscopy and nuclear medicine demonstrate the effective-
ness of platelet-based methods. Astronomical imaging re-
sults will appear in the final paper.
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