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ABSTRACT

A general method of predicting the effective molecular diameters
and the thermodynamic properties for fluid mixtures based on the Hard
Sphere Expansion ccnformal solution theory is developed. The effective
diameters are determined from isochoric behavior of pure fluids with
unknown intermolecular potentials. Inadequacies in the Hard Sphere
Expansion conformal solution theory are offset by this formulation of
diameter determination.

Methane-propane mixtures of various composition were selected for
testing this approach. Satisfactory results for the compressibility
factors and isothermal enthalpies over a wide range of temperature and
pressure further demonstrate the applicability of the HSE method. The
diameters have been justified to be the optimal ones for use with HSE
method by an error analysis of comparing the predicted results with

experimental values.
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NOMENCLATURE

Upper Case lLetters

A Helmholtz Free Energy

F,X Thermodynamic Functions

G Gibbs Free Energy

H Enthalpy

K Vapor-Liquid Equilibrium Constant

N Number of Molecules, Number of Components
P Pressure

Q Configurational Partition Function

R Gas Constant

T Temper ature

U Total Potential Function, Internal Energy
v Volume

VP Vapor Pressure

Y Coefficients in Hard Sphere Mixture Equation of State
Z Compressibility Factor

Lower Case Letters

a Function defined in Eqn. (4.25)
b.p. Bubble Point

d Hard Sphere Diameter

f Thermodynamic Function, Fugacity
g Distribution Function

k Boltzmann Constant

n Number of moles



Greek

iv

NOMENCLATURE (continued)

Intermolecular Distance, Reduced Condition
Intermolecular Potential Function
Molar Fraction in Liquid Phase

Molar Fraction in Vapor Phase, Dimensionless Inter-
molecular Distance

Constant as Defined in Equation (4.30)
Parameter in Hard Sphere Mixture Equation of State
Energy Parameter in Potential Function

Parameter in Hard Sphere Equation of State, Energy
Unlike Pair Parameter

Parameter in Hard Sphere Equation of State
Temperature Shape Factor

Volume Unlike Pair Parameter

Chemical Potential

3.141592...

Density

Length Parameter in Potential Function
Summation

Volume Shape Factor

Function as Defined in Equation (4.24)
Acentric Factor

Function as Defined in Equation (4.34)



NOMENCLATURE (continued)

Subscripts and Superscripts

A,B

b

ex
exp
hs
i,3,k,4
L

M

1,2,3,.

(1),(2)

Indices

Bubble Point

Critical Condition

Excess Over Hard Sphere Property

Experimental Value

Hard Sphere Property

Indices

Liquid Phase

Mixture

Pressure

Reference Fluid

Reference

Temperature

Volume, Vapor Phase

Indices, Carbon Number of Paraffin Hydrocarbon
Property of Hard Sphere System, Equivalent Condition
Perturbed Terms

Molar Quantity, Average Quantity

Pseudo Conditions, Derivative

Vector

Ideal Gas State



CHAPTER 1

INTRODUCTION

Prediction of thermodynamic properties has always been a challenge
to both theoreticians and engineers. The classical thermodynamics
presents broad interrelations among macroscopic properties, but it is
not concerned with quantitative prediction of these properties. The
empirical approach, which tries to fit measured values to a preselected
equation of state and then calculates other properties by manipulating
that equation through thermodynamic relations, is useful in some prac-
tical aspects; however, its extrapolation to a range remote from the
experimental data used to determine the parameters of the equation is
doubtful because of its lack of adequate theoretical background.

Another crucial uncertainty is the selection of mixing rules for obtain-
ing the properties of the mixture. Therefore, a theoretically-based
principle is needed to guide empirical methods in order to make reason-
able extrapolations and exteiasions.

The theoretical base can be obtained from statistical mechanics,
which attempts to establish relationships between macroscopic properties
and intermolecular forces. This rigorous approach has demonstrated its
predictive power in some simple systems, but there are certain difficul-
ties when it is applied to more complex systems. The major one is the
lack of precise knowledge of intermolecular potential between real mole-
cules. Otﬁer difficulties are created by the necessary assumptions and

approximations made in the derivation and by the computational efforts



involved. These are especially severe if one is concerned about mix-
ture properties. A simpler route to the prediction of thermodynamic
properties is desirable at the expense of a certain amount of rigor.

Realizing the uncertainty in empirical correlation and difficul-
ties in statistical mechanics for real fluid mixtures, Mansoori and Leland16
adopted a 'molecular thermodynamics' approach to mixture properties by
which the statistical mechanics is used as a starting point and then
parameters are introduced from pure component data. Their method is
based on a hard sphere expansion (HSE) using a pure fluid as a reference.
Parameters for a pure reference fluid are obtained to evaluate excess
properties over those of a hard sphere fluid for a mixture. These ex-
cess properties are the overall properties less the corresponding hard
sphere properties, and parameters are defined such that these excess
properties are the same for both mixture and reference fluid. The mix-
ture property is then evaluated by adding the excess property of the
reference fluid to the directly calculated hard sphere mixture property.
The method is rather simple and can be applied to systems with any number
of components. The only drawback is that no way of determining the hard
sphere diameters has been developed for this method. Therefore, the
approach as initially described is incomplete.

In this work, we propose a method to determine the effective dia-
meters for use with the HSE theory for real fluids when both the form of
the intermolecular potential and its parameters are unknown, but accirate
equations of state which represent P-V-T behavior over an extensive range

are available for pure components. Presumably other properties derived



from the equations‘of state are of the same accuracy as well.

Numerical results for compressibility factors, isothermal enthalpy
deviations, and fugacity coefficients are presented and compared with
experimental data. A flow diagram with sample calculations is given to

illustrate the procedures.



CHAPTER 2

CORRESPONDING STATES PRINCIPLE

2.1 Introduction

The principal application of the corresponding states principle
.(CSP) is the estimation of unknown thermodynamic properties of many
fluids from the knowledge of the properties of few fluids selected as
the reference substances. This principle has proven to be one of the
most useful tools in correlating and predicting thermodynamic and trans-
port properties for substances of engineering interests.

Historically, the idea of CSP was first introduced by van der Waals
in 1881, and its original theoretical development for 'simple' fluids,
i.e. non-polar fluids with spherical molecules, was presented by Pitzer19
in 1939. That work pointed out the molecular requirements which must be
satisfied for a system to obey CSP. They can be summarized as follows:

1. Internal energy states of individual molecules are independent

of density and depend on temperature only;
2. The molecular energy can be described by classical mechanics,
i.e. quantum effects can be neglected;

3. The total intermolecular potential energy of the fluid can be
represented by a sum of pair potentials which can be expressed
as the product of an energy parameter and a function of dimen-

sionless separation distances between molecular centers, i.e.

U(r) = e£(5) (2.1)



(9;]

where ¢ is the minimal energy and 0 is the collision diameter.
These assumptions lead directly to the two-parameter CSP. Fluids

composed of monatomic or spherically symmetrical molecules satisfy

these requirements.
. . - . 1,24
The equation of state derived from statistical mechanics

using the above assumptions has the form:

s V.
Z=fg 5 na (2.2)

where f is a universal function which is valid for all fluids conforming
to the assumptions, k is the Boltzmann constant, V,T, and N are volume,
temperature and number of molecules in the system, respectively.

Applying the characteristics of an equation of state at its criti-

. . 3P 3°%p
cal point, i.e. (56 . =0 and (—=3) = 0, one can express the

T=T T=T
c C

two-parameters of the equation of state in terms of critical constants

T V
Z = f(T i (2.3)
c ¢
One of the advantages of CSP is that it is nct necessary to have
an analytical equation of state and one may use instead tabulations of
smoothed experimental data in reduced form.

2.2 Deviation from the Simple CSP

The sources of deviation from the simple CSP have been discussed
in a review paper by Leland at.al.4 They classified the pure fluids

into five groups accordingly and summarized the attempts made to account

for the deviants.



Cook and Rowlinson6 and Pople21 have presented the theoretical
basis of a CSP for fluids in which the deviation from simple CSP is
due to an asymmetric force field. From a practical point of view,
among the efforts made to extend simple CSP to 'mormal' fluids com-
posed of asymmetrical or slightly polar molecules the use of the empiri-
cal acentric factor and shape factors are most successful. Both have
been widely used in correlating and predicting thermodynamic properties
of hydrocarboﬁs.

The acentric factor, based on vapor pressure deviations, was intro-

duced by Pitzer and Curlzo. It is defined to be:
w=-1- 10g10(Pf)Tf=.7 (2.4)

where the reduced vapor pressure Pf is evaluated at reduced tempera-
ture Tr='7' For simple fluids, the value of @ is essentially zero, but
it becomes larger with increasing polarity or molecular elongation and
smaller as the molecular shape is more spherical. The equation of state
for those fluids can then be expressed as follows:

T V

Z = f(—T';, {,;, wy (2.5)

The book by.Reid et.al23 contains a broad tabulation of w values.

The idea of shape factors was theoretically developed by Cook and
Rowlinson6, and Leachlo. These parameters multiply the critical pro-
perties of a fluid to give the proper reduced variables for substitution

into a reduced property function for a dissimilar reference fluid. For



example, the equation of state in terms of shape factors is:

- gL X
Z = f(Tce: Vcé) (2‘6)

Leach et.al.11 made practical utilization of shape factors to
the estimation of hydrocarbon properties. The values of shape factors

are generated by simultaneous solution of

_ T i

21 - fr(T B, v &, ) (2.7)
c, 1r c, 1r
1 L :

£ T i .

P)i - Fr(T B, >V 9, ) 2.8)
Ci 1r Ci 1ir

where fr and Fr represent, respectively, the reduced compressibility
factor and fugacity function for a reference fluid r. These shape
factors are designated by two subscripts. The first indicates any given
fluid i and the second a dissimilar reference fluid r. Leach10 has
derived the functional form of the shape factors in terms of reduced
temperature and density for hydrocarbons.

2.3 Corresponding States Principle for Mixtures

The most important role for CSP is in the prediction of mixture
properties. In engineering practice, the most useful approach has been
through the pseudocritical concept in which the pseudocritical values are

critical properties of a hypothetical pure substance which gives thermo-



dyanmic properties of the mixture when substituted into the pure compon-
ent equations for the reference. For example, the compressibility

factor can be expressed by

T V
z = £ (5,77) (2.9)
T V
c ¢
ex ex T V
or Zm = fr =) (2.10)

T V
c ¢
where subscripts m and r refer to mixture and reference fluid, respect-
ively, superscript ex indicates '"excess property', to be discussed in

i 1 n n
the next chapter. TC, VC and TC, Vc are two different types of pseuodo-

critical constants.

Pseudocritical constants show various forms of composition depend-
ence with different assumptions concerning the solution theory. The ones
introduced by Reid and Leland22 were derived by equating the total mix-
ture property to that of a pure reference fluid as in Eqn. (2.9). In
this work, however, the pseudocritical constants are derived from Eqn.
(2.10), the equality of the excess over hard sphere mixture property to

that of a pure reference fluid. This idea was first proposed by Mansoori

and Leland16.



CHAPTER 3

HARD SPHERE EXPANSION THEORY

Equilibrium thermodynamic properties of a fluid can be predicted
from molecular characteristics by combining an intermolecular potential
function, U(r), and a (radial) distribution function gij(r) which gives
a measure of the probability of finding two molecules i and j at a dis-
tance r apart. Usually g(r) depends on both density and temperature.

For a pure fluid in which the pair potential u(r) can be written

: r . . . . .
as efCa), the distribution function can then be expressed in- terms of

three dimensionless variables:

8(r) = ¢C, ==, 00°) (3.1)

the first two terms show the effect of the characteristics of inter-
acting pair itself on the distribution function, while the last term,
Pc®, accounts for the molecular environment around the pair created by
the interacting effects of other molecules near it.

For mixtures of conformal components in which all pair poten-

. 1 . . a4 3 R p - ' r . .
tial functions are fac¢torable in the form of eiifq;__) for like pairs
ii

r . . . . . . .
and ei.f(a——) for unlike pairs, the distribution function, for a binary
A-B mixture, can be written as:

€ € €
AB AA BB o3 o o

N(r) = g, =2, A8 BB o
EAB g ST Pa%an’ Pa%ap’ P35> PEaB)

(3.2)
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It is a complicated function depending on the number demsity of each
constituent and every conceivable interaction of core molecules and
nearby neighbors.

Assuming spherical central force field and pairwise additivity of
potential functions, and neglecting more-than-two body interactions, one
can show7 the following relationships between equilibrium properties and
molecular characteristics.

For pure fluids:

g By I de

RT = 1 3ET g(r)r (3.3)

-[—] —% omp =]

G =G5, u@ e a (3.4)
T,V

K-_A* om rl/T ®

C-ﬁir) =% Jo I u(r) g(r,T)redr dC—) (3.5)
T,V

For mixtures of N components:

2m NN @ dui.(r)
=1 - ] 3
T ? 5 Io dr gij(r) o dr (3.6)
—_—% N N =]
U-U 21p
) = L XX, . L (r)? d 3.7
( T oy kt ; x % Io ulJ(r)glj(r) r 3.7
_-_3"' N N 1/T <o
(A ) _ 2mp T KX I I (r)g (r T)r® dr d(—) (3.8)
RT k 701300
m,T,V ij

For many systems of engineering interests, e.g. dense liquids and
their mixtures, it is very difficult to determine the exact form of

the intermolecular potential and the analytical expression of the dis-
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tribution function. Furthermore, the complication of the integrations
which appear in the above equations prohibits one from attempting a

direct computation. It is convenient to resort to a perturbation techni-
que in which the properties of the mixture are calculated from the known
properties of a reference system. However, the reference system must
satisfy two criteria. The first is that the under lying reference system
must be similar to the given system in some sense to insure the rapid con-
vergence; secondly, the properties of the reference system must be known
with sufficient accuracy, either from theory or experiment.

Calculations from equations of state for both pure hard spheres2
and hard sphere mixtures15 are in very good agreement with the data from
machine-calculated Monte Carlo methods and molecular dynamic calculations.
The effectiveness of a hard sphere system as a perturbation reference has
also been tested and justified by many researchers.26

In using a hard sphere system as a reference, the choice of the
effective diameter is very important, because the calculated thermodynamic
properties are very sensitive to the diameter. The determination of hard
sphere diameter is discussed in Chapter 4.

3.1 Perturbation Expansion about Hard Sphere Properties

The basic idea of HSE theory is to separate any dimensionless pro-
perty into effects due to repulsive forces and those due to attraction;
the strategy employed starts with separating the intermolecular potential
into two terms. The first is that applicable to hard sphere behavior at
a properly chosen average diameter and a second term accounts for the

attractive forces. With this kind of potential separation, the distribu-
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tion function can then be expanded into a power series in ﬁ% beginning
with the hard sphere term. Substitution of separated potential and ex-
panded distribution function into property equations, e.g. Eqns. (3.3)
through (3.8), produces another power series of ﬁ% with the first term
containing characteristics of hard spheres only, and the remaining terms
arising from the attractive part of the potential functiom.

To illustrate for a pure fluid of N molecules, divide the total

. . o .
intermolecular potential U into a hard sphere potential U and a residual

U(l)’

i.e.
v=1°+u®) (3.9)
where
o} N o} o} ‘0, r,.>d
U = Loou (r,,.d), u (r,,,d) =4->_ij (3.10)
i>i=1 ij’ ij tm, rijsd
) N N r,.
1@ -z WO Laem 3 ) L (3.11)
>i=1 H P>i=1

The assumptions made in the above equations are (1) pair potential can
be represented by u(r,d,€) as shown in Fig. 1, (2) additivity of pair
potentials holds for both hard sphere and attractive potential, (3) the

attractive potential can be factored into the product of an energy para-

. . . r . .
meter and a dimensionless function of FE and (4) three-body interactions

are negligible.
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u(r)
A
e—  —» =
[0} I . r
€

Fig. 1 The HSE Potential

The radial distribution function g(r) foria pure fluid is related

to the: total. intermolecular:potential U by

Ve U - -
g@j::EEJZHNQ.“jemx-E? dr . . .dry (3.12)

where Q, the configurational partition function, is defined:

1]

Q ﬁ% TooN . exp(- 2y dry...dr. (3.13)

V, T, and N are volume, temperature and number of molecules of the
system, respectively. The exponential term in both Eqns. (3.12) and

(3.13) can be expanded in terms of the hard sphere potential and a

. . 1
series of successive powers of Pk

@) *) s
exp(- ﬁ%) = exp(- g%)[l - EE )_+,§% %E X

el (3.14)
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(3.11) for U(l)is now substituted into Eqn. (3.14) and the result
is placed in Eqn. (3.12) for g(r) and Eqn. (3.13) for Q. The resulting
expansions of the integral and Q in Eqn. (3.12) are each divided by Q°;
the configurational integral for a hard sphere fluid which can be ob-

tained by replacing U in Eqn. (3.13) by I°. The distribution function

then becomes:
gr) = £ Epe)1+ (28 Epe) + (&7 @ Ep) + ] (315)

The first term g° is the distribution function for a hard sphere fluid with
molecules of diameter d. The functions g(l) and g(z) are sums of compli~
cated integrals which are dimensionless functions of Cﬁ) and pd®. Note that
g(l) and g(z) terms are zero at r < d.

Substituting this expanded distribution function [Eqn. (3.15)] and

separated potential as in Eqn. (3.9) into the equation of state for a pure

fluid [Eqn. (3.3)] yields a series in %E in the form:
z=2 + & 0ee) 28+ (Sree) 2+ (3.16)

l .
7, the compressibility factor of hard spheres, Z( ) and 2(2) are, respectively,

mpd® ¢ Al (y)
Z=t- 3iT I Sy g (y,pd) yidy (3.17)

1) _ 2ﬂ f ag )gx 0d®)

N
~
I

g (y,pd®) yidy (3.18)



15

@)

i}

@ ()
) %TI fogi“ély"’f'd—al g (y,pd%) g(l)(y,pd3) y2dy (3.19)

where y =

o s

Similar expanded expressions for internal energy deviation Eqn.
(3.4) and Helmholtz free energy deviation Eqn. (3.5) of pure component
can be obtained by the same procedures. Note that the internal energy
deviation for hard sphere system is zero.

It is necessary now to consider the possibility of developing a
similar expansion of the equation of state for a mixture of conformal

components. As shown in Eqn. (3.2), the pair distribution function

giB(r) in a mixture depends on the force parameters of all kinds of mole-
cular pair interactions and the number densities of every species. It
is formidable to attempt direct expansion, but a corresponding states
technique called the mean density approximation (MDA)16 has been used
to overcome this difficulty. This approximation assumes

m r Sap -

Bap(®) = 8(57> 3 » PO ) (3.20)

AB

where p is the number density of the mixture. The function g is the
pair distribution function for a pure reference fluid, which is con-
formal with the constituents of the mixture. The first two dimensionless
parameters are characteristics of the specific A-B pair interaction. The
dimensionless density parameter, however, which describes the effect
of the molecular environment around the pair, is an average parameter

and depends on the mixture composition. The definition of o® has dif-
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ferent forms for different theories. In the van der Waals one~fluid

theory,22 it is

_ NN
e =X7T x,x,0, (3.21)
PR R D
ij]
and in HSE conformal solution theory, it is given by:
NN .
3
o ISy
3
& =73 % x.x,.d; .6, .7 (3.22)
i3 i"jijvi]

Derivation of Eqn. (3.22) will be shown in Chapter 4. The effective-
ness of MDA for the HSE procedure with Eqn. (3.22) has been justified
to some extent by Chang.3

Making a similar separation of the intermolecular potential and
following the procedure in deriving an expanded distribution function
for a pure fluid, one can show that the distribution function for an A-B

pair in a mixture is;

(1)

- _r a3 Y e
AB AB
®AB.? (2
s By gD o)+ L]
AB
where the gAB’ g( ) and g( ) are the same as those in Eqn. (3.15) for a

pure fluid if d® is replaced by d®. The d® comes from MDA.

An equation of state for the mixture is then obtained by substitu-
ting Eqn. (3.23) into Eqn. (3.6) with the potential separated into the

hard sphere and attractive portion. The result is



[
~J

NNe NN e 2
z =22+258 (L ) o) z(l) + z z i ed) 23 . 32
" ij ij uon

o T . .
where Zm, compressibility factor of hard sphere mixture, is

o N N 2mpdd
Z =1-%Z
m .

]

©
d =3 .
1J I u (Y) go(y’pda) yady (.‘5.25)

He

Zé:) is the same as Z(l) and likewise Zéz) is the same as 2(2) with & in
Eqns. (3.18) and (3.19) replaced by ‘d®. The expanded expression for
internal energy deviation and Helmholtz free energy of the mixture can

be derived by the same procedure.

3.2 Thermodynamic Properties of Mixtures by HSE Method

As shown in the Eqn. (3.16), the compressibility factor is separated
into two parts. One is generated by the repulsive portion of the inter-
molecular potential and the other by the attractive portion. For a pure
fluid, any dimensionless thermodynamic property can be expressed as the
sum of the hard sphere part and the excess part as

X = xS 4 x%F (3.26)
r r r

where X represents a dimensionless thermodynamic function such as Z,

_—— = - = %

-
U-U H-E A-A  G-G £ £ )
RT ° RT’ RT ® RT’ in > or £n SRT" Subscript r refers to any pure

reference fluid r, and superscripts hs and ex refer to hard sphere and
excess properties, respectively.

Similar expression for mixtures can be obtained by assuming the
mean density approximation as shown in the previous section. This

gives
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X =X +X (3.27)

where m stands for mixture.

Applying CSP to excess part of pure fluid and mixture, i.e. letting

e

me = X:X, and combining Eqns. (3.26) and (3.27), one obtaims the work-

ing equation

X =

th
m m

FE - X o (3.28)
The total mixture property Xm is the desired function. The

hard sphere mixture property Xzs can be calculated by knowing the

individual hard sphere diameter of each component. The reference

fluid hard sphere property XES can be evaluated by knowing the equi-

valent diameter of the mikxture. The reference fluid‘'tetal: propérty-

xr is predicted at the equivalent conditions, such as an equivalent tem-

perature T° and density p°, as will be defined in Chapter 4.

3.2.a) Compressibility Factor

The working equation for obtaining the compressibility factor is

Z = Zh

s hs
m - + (Zr = Zr )'10 ,po (3-29)

Carnahan and Stariing2 déveloped an equation of state for a

system of nonattracting hard spheres in the form:

g _Llitnsrf - P
@ -me (3.30)
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7
where 1 = 6 pd®, p is the particle density and d the diameter of the

rigid sphere.

For a hard sphere mixture of N components, Mansoori, et.al.

developed the following equation of state.

hs _ 1+ (1-3Y1)gm + (1-33{2)gr2n - Y grzn

Z = — 3
m (1 %m)
where
N - N
E =3 E ==p 3 xd&
m i=1 i 6 m =1 i1
N N -1
Y, = X Y OA,.{(d, +d.)(d.d,) ®
1 R AlJ { J)( i J)
1
N N N ék (did.)2
Y. = Z & A, Z ()
i i=1 k=1 G Y
N g, 2/3
=03 @) x°F
i=1 m
and

of=

TR CHSLER (CRERL R

L5

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

If the reference property Zr is calculated from the BWRS equation

of state as shown in Appendix A, one can obtain the compressibility

factor for the mixture by substituting Eqns. (3.30) and (3.31) into (3.29).
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3.2.b) Isothermal Internal Emergy and Enthalpy Deviation

Since no contribution comes from the repulsive part of the poten-
tial to the internal energy deviation, the equation for internal emergy
deviation reduces to

[(i'—-ﬁ*) ]l = [(ﬁ—'ﬁj) ] (3.37)
RT “m T,V RT ‘r TP,po
and the mixture property is given completely by that of the reference.

— —%
The expression for (Uég )r from the BWRS equation of state is

derived in Appendix A, and the enthalpy deviation of the mixture is

obtained by the relationship

-5 -0 N OPY -0
Carn - Crrn T G- m T CRT Ot ! (3.38)

% =%
Note that H and U are functions of temperature only.

3.2.¢c Free Energies

The working equation for the Helmholtz free energy is

— —% hs - =% — —% hs
(&R 1 & D, - &Pl 69
T,V

m m RT “r RT “r
b ’p

Expressions for all three terms on the RHS of Eqn. (3.39) can be derived

through Eqn. (3.40) with an appropriate equation of state

—_
A-A P dp'
o =] e £y 3.40
Rr ),y "o @D T (3.40)
The results are
—A-_A-.* hs 3Y,+2Y5 3 (1-Yy -Y5 -¥5/3) 3
e )m = (¥3-1) 4n(1-§ ) + I-E 3 (1_gm)2 T2 (1%, +¥5 #Y5)

(3.41)
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—_ -k
A-A DS 1 2.

TR @ e

i3 (3.42)

— =%
and éﬁ%* . from BWRS equation of state is derived in Appendix A. All

symbols in the above equations have been defined in section (3.2.a).
From the definition of Gibbs free energy at constant temperature

and volume, one obtains

el A-A -PY
) =G G ) (3.43)
T,V T,V

Eqn. (3.43) can be expressed in terms of temperature and pressure by:

G, = R, et R G4
T,P T,V
where
p’ =Bl snap - 2T (3.45)
A2 v

%
Integration of the Gibbs free energy of an ideal gas from P to P

at constant temperature yields

. P P
—% =% —% —% RT P.. .
- X = = = — = [ ST~ N ’ ¢
Gp p - G p’ IP* de J"P* vV dp ‘]“P* 5 P = RT 4n <3'= RT InZ  (3.46)
P

Substituting (3.46) into (3.44), one obtains

- =% — =%

G-G _ A=A .

('RT ) = CRp + (Z-1) - 4nZ (3.47)

T,P T,V

— —%
Noteworthily, in the process of calculating CQE%—) , one can obtain Zm
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10"
and ( iT

)m as well. They are useful in the calculation of the partial

fugacity discussed later but differ from those obtained directly from Zm

—

U-u .
RT ‘m

and calculations. We distinguish them by labeling subscript A,

U,-U -k

A A . 1. . A-~A
(ZAznand { RT )m, to indicate that those properties are from C_ﬁf— o

calculation.

3.2.d) Fugacity Coefficient of Individual Components and K-values

In this section, we are going to derive an expression for the

o £,
fugacity coefficient of an individual componment (4n ;li).

. . .th . . .
The chemical potential of the i~ component in the mixture is

defined by
-~ /A 3G
4% Gn) = Ga) (3.48)
TV, * 7,P,n
] J
the chemical potential departure can then be written as
(up =3 [ a@ED] (3.49)
I,V i T,V,n,

J

where the bar (-) means molar quantity.

Eqn. (3.49) can also be expressed:in terms of temperature and

pressure as

%* * * *
(s =ps) = (U, u.) + (u;) - () (3.50)
Ty PThrp Yrop Yo"
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RT _ ZRT
7 and P = 7 (3.51)

It is noted that, by definition:

*
where P =

[dui = RTdAnf ] (3.52)
T

and
%
(ui-ui) = RT 4n — (3.53)
T,P i
Integration of the chemical potential Eqn. (3.52) for an ideal gas mixture
*

from P to P at constant temperature yields

. P P x,P

w

* o i
M) - W) =, du =RT[, dn £ =RTAn—— = RT {nZ
T,P T,P P P x,P

(3.54)
Substituting Eqns. (3.49), (3.53), and (3.54) into Eqn. (3.50), one

obtains

£, 3 . AA
in E -(tnz)_ + =y InCp )mJT,V,nj
(3.55)
A 2 [ AE
= -(&nz)m + [C-ﬁi—)m]T’v +n SE; [(_ﬁi_)ij,V,nj

The first term (JLnZ)m is obtained from the Zm calculation in section
(3.2.a), the second term from the previous section, and the last term
according to Eqn. (3.39), can be separated into hard sphere part and ex-

cess part. The latter is then replaced by reference fluid. The result is
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a2 2 p AP I
E( ) ] i, =n 0, (&), ]T’V,nj o [(—ﬁ—)r,t[",p ]

(3.56)

The composition-dependence of T and p° are due to the composition-depend~
ence cof pseudocriticals and the definitions of equivalent conditions as
shown in Eqns. (4.14) through (4.17). Differentiation of Eqn. (3.40)

w.r.t. n, for a mixture of hard spheres produces the first term on the RHS

of Eqn. (3.56).

- —* hs hs !

—a—[( ] n.f ( - (3.57)
RT m T,V,n, lmTVnJ P

1]

Hsu8 has shown that

hs !

p Z d 3 1 1] ¥ g 3
Jﬂ ('g; ) EE. = [ 5 (Yl:j_"Yz; R _tg’_l (1-Y3)]
t m,T,V,n, n
J
1]
t 1 gm i (] 1 -
+ Y3 s i in (1'€m) + rg— [(I"SYQ_?’YS) —52; -t 3Y2 si + 2Y3 ai.]
m m
1
m,i 3 1 1 1 1
*as a 2 (3 e (LA -5 (i + %ty Y 5i)]
+ (1_1 E [3-2d (1 - Yp - Y - % Y3)] (3.58)
2, e
where
' og
E .= (=) =L pdd (3.59)
m, i ani T,¥,n 6n i
1 aYk
Yk i = (g;“) for k = 1,2,3 (3.60)
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1

1 N g .
and Yy,i= =B~ 5 (d +d)(d, -d,)? x, - (l+-ﬂ’—l)Y1 (3.61)
6nf . i i 37 "3 a0 B
m j=1 m
5 ]
a3 ng
L 1 m
Ya,i=;;[N—-l— -2~§~’-1'-1]Yz
s xd? "
o, Kk
N N
1 2 s s
+= () (2 x@) [ T (d,d,)(d,-d,)® x.] (3.62)
n 65m k=1 **%k j=1 i7] i7] hi
1
! 1 3 n§m i
Gasp Ll = -2 -1% (3.63)
v ox,d m
j=1 43

n, and x, are, respectively, the number of moles and the molar fraction of

ith component, n is the total number of moles, N is the number of components
in the mixture, while other quantities §m, Y1, ¥, and Y3 have been defined
in section (3.2.a).

let us now work on the last term of Eqn. (3.56); it is the ‘excess'
Helmholtz free energy of the reference substance r at the equivalent tem-
perature 7 and equivalent ‘density p° . . For.convenience, the subscript r
has been omitted in the following derivations. Performing the differen-

tiation yields

B[ AR _ AR X
"3y LR Lo n 3w L) o] Go?)

(3.64)
— —% ex
) A-A )y ]
v

o}
to5s LG (BLQ-)
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Differentiating Eqn. (3.40) w.r.t. temperature and density separately,

one can show that

— =% ex o ex ! U,-U, ex

3 ,A-A dZ dp 1 A A

5 G, = €, e ) (3.65)

T RT 0© o 9 0 ! 0 i RT TO 00

and
— —% ex
) A-A 1 ex

O ¢ ) == (Z,-1) (3.66)
Jp RT P p A 7 ,0°

Note, as mentioned in the previous section, we add subscript A to indi-

- —%
- . A-A .
cate the quantities are obtained from ( RT ) calculation.

m

The equivalent temperature and density are functions of pseudo-

critical temperature and volume as shown in Eqns. (4.16) and (4.17), one

can then write

0 oT
AT, _ 2, e 3.67
do =& G (3.67)
in, QT V” in
J ¢ V.
"
0 0 oV
CH =& & (3.68)
i nJ aVc T” i nJ
c
and
Ip TT
(i—ﬁ) = = 1" < (3‘69)
aTc V" Tc2
c
pO
.B_TI) = Vi (3.70)
avc T” c
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Substituting Eqns. (3.65) through (3.70) into (3.64), one obtains

- - "
S5k ex v,-u, 3T,

[(RT © .0 1= Crr )T0p° . '(an)

b
H
+ (2, 5 (——) (3.71)

T°,0° v " n,

c ]
" 1"
BTC BVC

the expressions for n (g;—) and n 635‘ are derived in Appendix B.
i nj i nj

Substition of Eqns. (3.57) and (3.71) into Eqn. (3.55) yields the

fugacity coefficient of individual component in the mixture

— - % "
£, - —* U,-U T
A TA n c
%n“——=-(&nz) +[( ) ] + [ =7),] il Cwe)
XiP RT m T,V RT r TO, o Tc ani a
v p h '
\) s
hs, - Z dp
sl ] hED el E5 =
™,° v in, 0 im,T,V,n, P
c J J
(3.72)
The last integral term was expressed in Eqn. (3.58).
The k-value can be obtained from
fi f. yi
= —_— - 1 = 1
in Ki (In x.P)L (4n y.P) in - (3.73)
i i~ v i

where subscripts L and V refer to liquid and vapor phases at the equili-

brium temperature and pressure, respectively.



CHAPTER 4

APPLICATION OF CSP AND HSE TO HYDROCARBON MIXTURES

4.1 Defining Equations of Pseudoforce Parameters for HSE Method

As mentioned in the previous chapter, a dimensionless mixture
thermodynamic property is obtained by adding a directly calculated hard
sphere mixture property to an excess over hard sphere mixture property.
The latter is set to equal to the corresponding pure reference fluid pro-
perty calculated by substituting pseudoforce parameter € and & into a
pure reference fluid equation. A detailed treatment of the development
of the pseudoforce parameter defining equation is given by Mansoori and
Lelandle.

The equation of state for the pure reference fluid can be rewritten
from Eqn. (3.16) by replacing € and & with € and @, respectively, as

follows

o =2+ @E) 2+ @27 6®) 20+ D] (4-1)

e and d® are the two pseudoforce parameters of the mixture, they, or the
pseudo-criticals derived thereafter, will be used to predict the mixture
property from the pure reference fluid at the same conditions as the mix-
ture is.

Subtracting Eqn. (4.1) from Eqn. (3.24), regrouping terms of like

powers in ( i%)’ one obtains
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' o 3 _ =y ()
zrn'qz;_~=<z -z)+( )P(??Gijdij-.ed)z
(4.2)
_ - 2)
+ G )2 P (Z Z ¢? 4 d?j - Pz + 063 )3]

ij]
The first two terms on the RHS of Eqn. (4.2) are, respectively, hard-
sphere compressibility factors of the mixture and reference fluid which
are calculated from equations of states for hard sphere systems by

using appropriately chosen effective diameters. The last two terms are

set to be zero by making

__ NN
e d =% % %.x, ¢g,,8, (4.3)
.. 1Ty Tijij
1]
p— N N .
® e =35y xx, 2.8, (&4.4)
RS A T % B
1]
NN
o L MR TEY G4 iJ]
or & = NN (4.5)
Tz XX, ei ds,
ij J jij
‘N N
T Iox.x, 2.4,
- i i 13- 1] 1]
: - i (4.6)
I T XX, ei.dsi.
i 3 J 13

Eqn. (4.2) then reduces to the working equation for the compressibility

factor

'Zm(T>9') = Z:ls(P ’d S) + [Z (J- :p ) Z (p d)] (47)
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where di's are diameters of components in the mixture, Tz and pi are,
respectively equivalent temperature and density, to be defined later,

of the reference fluid. For other dimensionless thermodynamic properties,

~% - =%
U-u
RT

(

) - and (éé%—)m, one can obtain the same expressions of pseudoforce
m

parameters.

We have extended the prediction of properties to the second order
of ﬁ% as shown in Eqn. (4.2) and should therefore obtain better results
than those predicted by the van der Waals 1-fluid theory which rigorously
makes the expansion only to- the first order. of ﬁ% .

Eqns. (4.5) and (4.6) show the composition dependence of pseudoforce
parameters d° and ¢ in which e;; and dii describe interactions between
like pairs of molecules and eij and dij describe interactions between
unlike molecular pairs. Because the interaction between unlike molecules
is not completely understood, we adopt the following equations similar to
those proposed by Mollerup and Rowlinson 18 for the van der Waals 1-fluid

theory.

-

e,.. =E, .(e

..€. .
1] 1] i1 1]

) (4.8)

3 = l 3 3 . 2

where gij and Xij are the unlike pair parameters which can be empirically

adjusted to give better mixture property prediction. For most unlike

hydrocarbon pairs, it has been showns’18 that gij and Xij are close to
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unity, and their effect on property prediction is appreciably large,
especially for equilibrium calculations.

For engineering applications, it is more convenient to express
pseudo-parameters in terms of critical constants. In general, the
direct proportionality of €5 to Tc and &ii to VC for simple fluids

i i

2
can be shown by applying éig) = 0 and C%VS)T=T = 0. Leach10
c

B\ T=Tc
introduced the shape factors to account for the nonconformity of mole-

cules due to non-central force field and/or slight polarity. He assumed

€ =8 T (4.10)
1

&, x 3,V (4.11)

11 1 Ci

and also for reference fluid at pseudo conditions with the same propro-

tional censtants

_— "
g o GrTC (4.12)

ded ¥ (4.13)

where subscript r stands for reference fluid and T: and V: are the
pseudocritical temperature and volume, respectively.

Substituting Eqns. (4.10) through (4.13) into Eqns. (4.5) and (4.6),
using relations (4.8) and (4.9) for unlike pair interactions, and cancel-

ing out proportional constants, one obtains



32

NN X -
EExx (3 V48 V) —l; (6, T, 0. T )gzij
1 ij I* i J j id 3
T, = _— o N (4.14)
PHD) xixj(@, V. o+ 3 V) —21 (8, T 0 T )3
1] ir ¢, jroey frey jrie,” 7ij
and
NN Nas 2
(DT xx (3, Vv +8& v )=t T 6T )%g..]
" . . iTiMir c, jvrec.” 2 ir'e, jroc,” °“ij
: 1] i D | _r J
vV = (4.15)
c NN Ki. 2
TYxx @V +& v )=l T e T )E,,
.. Ljtir e, jr c. 2 ir7e, jrr, ij
ij i j S j

where @ir's and Gir's are shape factors for component i relative to
the reference r.

The equivalent temperature and density of the reference fluid
are defined in such a way that the excess properties of mixture and
reference fluid over the hard-sphere properties are equal when both

are at the same reduced conditions, i.e. at

T
N
1‘; == T, (4.16)
T r
c
and
1"
o] pmVC
PL =y (4.17)
c
r

Based on Leach and Leland's idea of shape factors, one can define
an equivalent temperature and density for each component in a conformal
solution in the sense of the equalities of total property and hard

sphere property of individual component to those of reference fluid, i.e.
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o .0 0 0
Xi(Ti’pi) = Xr(Tr,Pr) (4.18)
and
hs,, 0 .0 hs,. 0o .o
X, (TP = X (TP ) (4.19)

The definitions of equivalent temperature and density of each compoment

are then as follows:

TO
o _ _r_
Ti =7 Tc.eir (4.20)
[ 1
by
and
[o)
prVC
o _ r
1TV s, (4.21)
C 1ir

Substituting Eqns. (4.16) and (4.17) into Egns. (4.20) and (4.21),

one can obtain equivalent conditions in terms of mixture properties as

T
o__ m
L= Tc.eir (4-22)
1
c
"
o e (4.23)
TV 8, '
Ci 1ir

4.2 Choice of Reference Fluid

Inspecting the desired Eqn. (3.7), one notices that the successful
prediction of mixture properties depends on the accuracy of the pure

reference fluid property, obtained either from experimental data or
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from a smoothed equation of state, and the way in which the effective
diameters are determined.

As a rule, the error due to an inaccurate reference fluid can be
reduced to a minimum by using the most reliable experimental data or
equation of state available. Nevertheless, the consideration of conformity
of each component to the reference fluid is also very important. In other
words, the more conformal the components to the preselected reference fluid,
the better the predictionm.

In this work, ethane is chosen as the reference fluid for methane-
propane mixtures of various compositions. The choice is based on the
closeness of its acentric factor to the molar average acentric factor of
the components in the mixture. The properties of the reference fluid are
generated from BWRS equation of state.

4.3 Determination of Hard Sphere Diameter

The major problem of applying CSP and HSE method to real mixtures

is the question of how to determine the diameter in the hard sphere poten-
tial function. Different criteria for the choice of the hard sphere dia-
meter have been proposed from theoretical and phenomenological approaches.
The theoretical determinations of the diameter are for use with perturba-
tion and/or variational techniques. A review paper by Smith26 summar izes
and compares the different formulations for diameter determination. The
effectiveness of the theoretically-determined diameter has been justified
to some extent in the prediction of properties of model systems, e.g. the
machine calculated Lennard-Jones molecules and soft-sphere molecules.

However, the direct application of these formulations to real fluids has
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been delayed because of the lack of knowledge of potential functions be-
tween real molecules. Recently, a work has been undertaken by Jones9 to
find the best set of parameters for the Mie potential by lease-square fit
of second varial coefficients of hydrocarbons over a wide-range of tempera-
tures. Hopefully the Mie potential function with the parameters obtained
can represent the true potential function of hydrocarbons in some respects.

In this section, we will discuss the problem of determining effect-
ive diameters for use with the HSE theory for real fluids when both the
form of the intermolecular potential and its parameters are unknown, but
accurate equations of state representing the P-V-T behavior over an exten-
sive range are available for the pure components.

The following analyses are applicable for every dimensionless pro-
perty of concern, but we will take compressibility factor as an example to
show how the diameters are determined. For convenience, the compressibility

factor of a pure component, i.e. Eqn. (3.15), is written as

z=2"0F) + 168, & (4.2

The form of the | function is unspecified but its value is always less
than zero.

Criteria for the Effective Diameters

As we have shown in the derivation of HSE method, any dimensionless
thermodynamic property can be expanded into a power series of 1/T with
the property of a corresponding hard sphere system as the leading term.

The terms of orders (1/T)® and higher are assumed to be the same for the
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mixture and the reference fluid, or they are assumed to be relatively
small in comparison with lower order terms so that they can be included
in the leading term by properly choosing an effective diameter of the
hard sphere molecule. Therefore, it is possible to enumerate criteria
which the diameters should fulfill for a fluid with an unknown potential.
The diameters should be chosen for each fluid so that:

1. The { function for each fluid at a constant density is repre-

sented as cleosely as possible by a quadratic form:

_a®) e
R (4.25)

where al(p) and az(p) are functions of density only.

2. The al(ﬁ) and az(p) coefficients in Eqn. (4.25) involve the
effects of intermolecular attraction only.

3. The ZhS term in Eqn. (4.24) accounts for all repulsion effects
plus the effects due to attraction which have higher order temperature

o 2
dependence than C%) and cannot be accounted for in Eqn. (4.25).

4. At high densities where three body interactions begin to make
1.2
contributions to the | of the order (E) , as much as possible of the con-

32(9)
tribution of these effects is removed from the e term and included

in the Zhs term.

These criteria are ideal conditions which cannot be realized com-
pletely by altering the value of d. In order to find the diameters which
these criteria approach as closely as possible, it is necessary to have
an accurate representation of the constant density isochoric behavior of

each pure component over as wide a temperature range as possible.
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Effective Diameters from A Pure Component Equation of State .

In this study the BWRS equation of state was used primarily because
it has been fitted to a wide range of pure components. For some com-
ponents there are some equations which represent isochoric behavior much
hetter. However, the effect of the HSE procedure for mixtures when pure
component equations of state are known is to generate in the reference
fluid equation of state a more rigorous composition dependence. The
BWRS equation for mixtures has an empirical composition dependence which
works well in some cases, particularly for hydrocarbon mixtures, but not
so well for others, especially when non-hydrocarbons are involved. When
the BWRS equation is used for all.pure component properties, it is of
interest to compare the theoretically based composition dependence induced
by the HSE theory with its empirical form in the BWRS mixture equation.

For a pure component the BWRS equation, or any empirical equation
of state which has been fitted over the widest possible range of tempera-

tures and density conditions, can be represented conceptually as follows:

7 =2() +[Z (,T) + 2 (p,T)] (4.26)
where Z is the compressibility factor. The term in brackets in Eqn.
(4.26) includes all the temperature dependence and has the same value of
the | term in Eqn. (4.24). If represented at a constant density by an
expgnsion in powers of % it would need many terms of higher order than
(%)2 if the empirical equation of state was valid over the widest possible
range of temperatures at this density. Consequently, the ¥ term in Eqn.

(4.26) is defined as
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Vo = Z+(p,T) +2Z (p,T) . (4.27)

The © subscript indicates that in an expanded form it would include
all order of (1/T) in representing the value of | over the widest
possible temperature range.

If the equation of state in Eqn. (4.26) were generated by an
imaginary Kihara type potential, the Z(p) term would represent the con-
tribution of the hard core. Because the molecules with this type of
potential also have a soft repulsion at separation distances slightly
greater than the hard core diameter, the Z(p) term does not include all
repulsion effects. The soft repulsive potential contributions to the
compressibility factor are positive and temperature dependent. As the
| term includes all of the temperature dependence of Z, the soft re-
pulsive contributions are included in it and are designated by Z+(p,T)
in Eqn. (4.27). The major source of temperature dependence in the {
term is due to contributions from the attractive portion of the unknown
intermolecular potential. These contributions, designated as Z-(p,T)
in Eqn. (4.27) are large and negative, causing the value of {_ to be
always negative.

It is important to point out that although any empirical equation
of state fitted to a wide range of P-V-T properties can give the value
of Z_(p,T),Z+(p,T), and Z(p), the term Z+(p,T) has no relation to and
cannot be identified as a sum of the positive temperature dependent
terms which appear in the empirical equation. Likewise, Z (p,T) has no

relation to the combined negative temperature dependent terms.
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. . . +
If it were possible to separate | precisely into the true Z (p,T)
and Z (p,T) contributions, the optimum diameter to meet the criteria

discussed above should be given by the solution of:

2 (@) = 20) + Z7(0,T) + a2 (p,T) (4.28)

where o is the fraction of Z7(p,T) due to the sum of all attractive terms
13
of order (E) and higher plus all 3-body attraction terms of the order
1.2 , - . 1 . .
CT) in an expansion of Z (p,T) in powers of (E)' The diameter is then

obtained by evaluating Zhs(pda) from Eqn. (4.28) and equating the result
to the hard sphere equation of state, Eqn. (3.30), and solving for
diameter d.

A method of approximating the right side of Eqn. (4.28) in order to
solve for d in this way was developed in this study. From the equation

of state only the Z(p) term is obtainable, For example, from the BWRS

equation:

Z(p) =1+ Bop + bop (4.29)
Special procedures must be used to estimate the other terms in Eqn. (4.28).
The value of these terms can be determined directly in two limiting cases.
The first of these is a high density limit and was studied by Bienkowski
and Chao.1 As they have shown, in this limit:

Lin [2(P) + ZT(p,T)] > @Z”(0,T)

Pow
and in this limit Z  (p,T) in Eqn. (4.26) is also negligible in comparison
with Z+(p,T). Conseguently, the solution for values of d from Eqns. (4.28)
and (3.30) should approach the diameters obtained by Bienkowski and

Chao. Unfortunately, conditions of interest are very far from this limit
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and it appears that the cptimal diameters do not approach the limiting
values monotonically.

The other limiting case is at a high temperature limit where

Lim [Z7¢,T) + 02 (p,T)] = O (4.31)

(=0
In this case the right side of (4.28) becomes only Z(p), which is fur-
nished directly by the equation of state as in Eqn. (4.29). This is
called the high temperature limit and at some temperature conditions of
interest, especially at low densities, the optimal diameters approach it
closely. These diameters are always smaller than the high demsity limit
of Bienkowski and Chao.

These limits are very nearly upper and lower bounds for the optimal
diameters although they do not closely approach the upper bound at any
conceivable density of interest. A few cases at low density showed the
optimal diameter very slightly below the high temperature limit. The
discrepancy is easily within the experimental uncertainty, however.

Determination of Effective Diameters from Isochores

We must now consider a more general method for use when these limit-
ing conditions are not applicable. Determining Zhs(pds) with the optimal
diameters at a given finite temperature and density is carried out by con-
sidering a limited temperature range along an isochore at the given density.
This temperature range is selected to locate the given temperature as
near to the center of the range as possible. Isochores extrapolate

smoothly into the two phase region and in the liquid phase at lower tempera-
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tures in the range these extrapolations may even produce negative
compressibility factors without adverse effects to the solution for

the diameters. Properties along the isochore can be obtained either

from direct experimental data or from an equation of state which repre-
sents isochoric behavior well. If such an equation of state is used,

the temperature range selected must be shifted to higher values if neces-

ok,

sary to insure that ( as calculated by the equation is positive at
op T

each temperature value within the range.

The width of the range is selected ideally to determine at a given
temperature and density, T and p, the first and second derivatives of the
dimensionless property with respect to inverse temperatures and to pre-
dict the property at each temperature in the range with an accuracy within
its experimental error by a quadratic function. For example, if the com-
pressibility factor is being evaluated, the values of z at p at each point

in the range about T are fit by least squares to:

a, () as (p)
T + (4.32)

z=a(p)+

In this work a range was selected consisting of 11 temperatures, 10°F

apart, including the given temperature. .If (%g) is positive at each tem-
r

perature, the range then consists of 5 temperatures above and 5 below the

given value, otherwise the range is shifted upward so that the lower tem-

, . : . B e P .
perature in the range is nearer to the given temperature. If (%E) is

negative at the given temperature the method is inoperable at the given

conditions.
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It was found that varying the width of the range did not affect
the results as long as the conditions described for it are met. Eqn.
(4.32) at every density studied gave excellent reproduction of z values
along the 100° range as defined here.

The value of | for the quadratic fit of the isochore in this limited
range is defined as wa to indicate that it contains two inverse tempera-

ture terms. Consequently, from Eqn. (4.32):

a (p) a (p)
Uy = T + = (4.33)

We can find the temperature dependence not accounted for by the quadratic
fit by comparing U, with Wm which presumably describes the maximum poss-
ible range of temperatures. The difference defined as

6 =4 -1, (4.34)
since the HSE pseudo critical values for the excess over the hard sphere
behavior were derived by considering only terms in C%) and (%)? in its
expansion. Furthermore, these terms involved only pairwise contribu-
tions from the attractive portion of the intermolecular potential. Con-
sequently, at conditions where the coefficients a, and a, in Eqn. (4.33)

1 2

contain predominantly attractive contributions of this type, the aZ-(p,T)

: . - 2
term in Eqn. (4.28) contains no triplet potential effects of ordér (%)

3
and is consequently entirely included among the interactions of order (%)

in the %n'expression. If an expression of Z+(p,T) in powers of % gives
: 2
coefficients of'C%) and (%) which are negligible in comparison to the

attractive contributions of these terms, their presence will not
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appreciably affect the € pseudo attraction parameter predicted by the HSE
theory. Consequently, the only soft sphere contributions which need to be

included in the hard sphere term by adjusting the diameter are those in

3
terms of order (%) and higher in the {_ term.

In this case, the difference between V, and Vo represents all terms

3
of higher order than C%) which need to be combined into the hard sphere

result. This difference defines the 8 parameter in Eqn. (4.34). If all

3

terms of order C%) were zero, the best Zhs(pds) value at these condi-
tions would be the a_ leading term in Eqn. (4.32) for the quadratic fit.
With corrections for the higher order terms, the best ZhS(Pds) value

is then:

2Py = a +6 (4.35)
Eqn. (4.35) may be regarded as the best approximation to Eqn. (4.28)
under these conditions.

The limits of validity of Eqn. (4.35) are indicated by the magnitude

of the Y, term in Eqn. (4.33). The assumptions leading to Eqn. (4.35)
become invalid at high densities. At the lowest densities below
ch‘: 0.6, 8 0 and ao‘: Z(p), the high temperature limit of the equa-
tion of state in Eqn. (4.29). As densities increase above pVC = 0.6,
al(p) in Eqn. (4.33) becomes more negative and az(p) begias to increase,
but the sum of them, {y, keeps increasing in negative magnitude. Pre-
sumably this means an attraction contribution is being represented.

Positive contributions of the soft repulsion are apparently still negli-

gible and Eqn. (4.35), which requires this, is still valid. This causes
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the value of 8§ in Eqn. (4.34) to be positive and Zhs in Eqn. (4.35)

increases.
As density increases further the absolute value of Yy, begins to
decrease, because a, term keeps becoming less negative and at pVC ~ 1.2

~

it becomes positive while & approaches a maximum. The a, term starting
to become less negative in this way is considered to be caused by the

onset of the positive contributions of soft repulsion which at these den-

7 2
sities begins to affect the coefficient of C%) . This maximum in § occurs

at a reduced density of about 1.6.
The reduced density of 1.6 is considered to be the upper limit of
the validity of Eqn. (4.35). At densities higher than this & decreases

rapidly and ay becomes less negative, interpreted as the appearance of

positive soft repulsion effects in % term. Diameters from Eqn. (4.35)

give poor results in this region. There is no way that these soft effects

can be separated from attraction effects and the optimal diameter cannot

be calculated.

The diameters can be predicted once more at very high densities
where {; has become very small although still negative, indicating more

effects of soft repulsion. It is also very likely that three body con-
12
tributions to (E) term are no longer negligible by the fact that a,

begins to drop. The optimal diameters are then obtained by placing all
2
of the second order (%) term in the hard sphere equation.

The temperature range used for the quadratic fit is reduced from

10 to SCO°F with the given temperature near the center of this shorter
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range. The objective is now to obtain an accurate representation of

each z value in the range by

1 al'(p)
Z=a(p)+— (4.36)

!
The a, term is always negative at readily accessible densities. Since
none of the negative '% dependence should appear in the hard sphere
equation and Eqn. (4.36) represents the z values accurately in the

hs .
shorter range, the best Z  result is:

2 eP) = a () (4.37)

Eqn. (4.37) is then solved for the diameter. This linear fit method
gives excellent results for the optimal diameter at reduced densities
of about 2.4 and higher.

The reduced density region between 1.6 and 2.4 is thus an indeter-
minant region. As a first approximation, the best Zhs(pda) values in
this region were assumed to be given by a spline fit interpolation between
points at PR > 2.4 and those at Pr < 1.6. For liquids at low temperatures
the indeterminant region is lengthened because the liquid no longer can be
extrapolated to reduced densities near 1.6 because of the stability limit.
Low density values at PR < 0.6 are still obtainable by equating ZhS(Pda)
to the high temperature limit of the equation of state.

The behavior of the quadratic and linear fit methods is shown in
Figure 2. It is found that the quadratic fit method below Pr = 1.6 and

the linear fit method at Pr > 2.4 give excellent results for the optimal
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diameter. This was checked by increasing and decreasing Zhs(pda) about
the predicted value and noting the effect on the predicted mixture pro-
perties. The weakest prediction for Zhs(pda) is in the splime fit region.
Some typical results of this test on the predicted value are shown in
Table 10.

Although only the determination of diameters for the compressibility
factor calculations is shown here and is used as an example in the explan-
ation of the method, other properties can be predicted equally well.
Because of the temperature and density dependence of the diameters and
shape factors which relate them to critical constants, it is best to
determine separate values of them for each component.

Ah

The determination of diameters for Z and 'Ré calculations are

- =%
exactly the same. For U-U

© no hard sphere property calculations are
made and the a term of the quadratic fit along the compressibility factor
isochores can be equated to Zhs(bdé). This is then solved for the dia-
meter used in the pseudo parameter computations.

4.4  Procedures of Calculation

A program in FORTRAN IV is written for an IBM 370/155 digital computer;

a flow diagram for the computer program is shown in Fig. 3. The program

} o ) o o T-U* Ak
¢an calculate both total mixture properties; Z, Hﬁ%—, and RT and indivi-
v C fi
dual component property &n;—ﬁ. 'A property index IZUF is read in the com-
i

puter with other input information to indicate which property is the

desired one.
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Fig. 3 Flow Diagram of HSE Procedure
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(a) IZUF = 1, Z calculation only;

- =%
(b) _.IZUF = 2, Z and —— calculations;

K K*
(¢) IZUF = 3, Z and éT calculations;

- =% £,
- i .
(d) IZUF = 4, Z, R and 4n XiP calculations.
— =% - =%
\ U-u A-A ,
For cases (b) and (c¢), although RT and RT 4res respectively,

the desired properties, the compressibility factor Z must be calculated
first. Because it is in the Z calculation that one can obtain a consistent

mixture density at the given temperature, pressure and compositions of

— =%
the mixture. The more practically used properties, (H-H ) and 4n %

are readily obtained by Eqns. (3.38) and (.347), respectively. In case

— =%
A-A

RT
provides the required pseudocriticals and shape factors for use in

£,
Ln-§l§ calculation as indicated in Eqn. (3.72).

(d), Z calculation gives consistent mixture density and calculation

Two kinds of information are required to proceed the computation;
characteristic properties and state properties. The former includes criti-
cal constants, TC, Vc and Pc’ acentric factors W, normal boiling tempera-
tures Tb and 11 constants for BWRS equation of state, the values used are
listed in Tables 1 and 2, which are part of the computer program. State
properties comprise temperature, pressure, composition and number of compon-
ents in the mixture. For CH, -CgHs mixture, the energy unlike pair para-

meter gij = ,97 is taken from Mollerup and Rowlinson's workls, and volume
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unlike pair parameter Xij is set to be unity as suggested by Hsu8.

In this work, temperature and density are used as the independent
variables in the computation scheme. Because temperature and pressure
are more popularly adopted in most engineering practices, an initial
estimation of the mixture density from input mixture temperature and
pressure is then necessary.

Equivalent pressure can be defined in a similar manner to the defini-

tion for equivalent temperature and density as in Eqns. (4.16) and “4.17),

i.e.

Pm

P"r == P, (4.38)
P T
c
1% 1"
zchT r " ZC RTC "
where Pc ="V and Pc = e, Zc and ZC are compressibility factors
r cr VC r

at critical and pseudocritical conditions for reference fluid and mixture,

respectively.

1"
Substituting PC and Pc into Eqn. (4.38), one obtains

b
P V” Tc Zc
mc r r
P 5 (4.39)
Tc Cr Zc

we know every quanti£§ exééﬁﬁ ZC on the RHS of Eqn. (4.39). A trial-and-

Z
°r
error on the value of —;~ has been studied, we found that first setting
Z
c
Z
‘e
—— = 1, then choosing route according to following criteria can give a
c

reasonable first trial mixture density.
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HIHHO

. 0 0
(1) if < 1 and Pr > VPr’ then P

(o] (o]
z (T, VB + 0.1 B)

(¢]

0o 0
4
Zr‘Tr’ Pr)

'alwrao

. 0 0
(2) if < 1 and Pr < VPr’ then o,

(¢]

HIHHO

. [0} 0
(3) if = 1 and Pi < 1.5 P, , then pi =2 (T, .9P))

(o} r

H'HHO

. o 0 _ 0
%) if 21and 1.5 <P _<6.5P , thenp) = z (f, P)

r r

(g]

0 o _ 0 0
= 1 and Pr > 6.5 Pc , then pr = (T, '9Pr)

r
o r

(5) 1if

= Iﬁi—]o

where the equivalent temperature fi is defined in Eqn. (4.12), VPr stands

for the vapor pressure of the reference fluid at fi, it is estimated by
. , 12 o] o Oy .
using Lee-kesler vapor pressure equation . o, = Zr(Tr, Pr) implies

that pz is obtained by solving BWRS equation of state at TZ and ﬁi

The initial mixture density is then calculated from Eqn. (4.40)

o
[}
PD«
=N
<

(4.40)

<3
8]
o)
H

It should be pointed out that the first trial mixture density is import-
ant to the computation. The closer the first trial value to the experi-
mental density, the faster the computation converges.

A sample calculation is presented below, it shows the step-by-step

procedure for compressibility factor calculations.
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Sample calculation:

psia.

Equimolar binary mixture of methane and propane at 160° F and 3000

For convenience, the indices 1 and 3 denote, respectively, CHa

and CyHy, corresponding to the number of carbon atoms in the compounds,

and let r stand for the reference fluid G H;.

a)

b)

c)

d)

At first, the relative shape factors are set to be unity,
@lr - §3r =1 e1r - e3r =1
The trial values T and v" are calculated from Eqns. 4.14) and
c c 4

(4.15),
n "
T, =538.1°R, V_ = 2.279 £63/4b-mole
The trial mixture density is estimated from Eqns. (4.38) through

(4.40),

° = .7369 4b-mole/ft>
The equivalent temperature and density are calculated from Eqns.

(£.22) and (4.23),

fi = 395.3°R , pi = 1.053 4b-mole/ft3
Tg = 766.6°R , p% = .524 Ab-mole/ft3
TZ = 633.°R , di = .717 4b-mole/ft®

The hard sphere property is determined from Eqn. (4.35) or (4.37)

at the above equivalent temperature and density,

z?s = 2.906, Z

hs _ 3 751, 2" = 3.360
3 r



£)

g)

h)

i)

»

k)
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The relative volume shape factors @ir's are solved from Egqnms.

(4.19) and (4.21),
er = .872, §3r = 1.121

The relative temperature shape factors @ir’s are solved from

Eqns. (4.18) and (4.20),
91r = .930, 63r = 1.03%

The process from steps b to g are repeated until the pseudo-

" n
criticals Tc and VC converge to relatively unchanged values,

I) = 554.6°R, V_ = 2.325 ££>/2b-mole

Only 7 iterations are needed for the fractional deviations of

two consecutive iterations to be less than lx10-3. At this point,

each component is conformal with reference fluid by using the
relative shape factors obtained.

The diameters are calculated from Eqns. (3.30),

o} o]}
d, = 3.5524, d, = 4.819A, d_ = 4.200

Hard sphere properties of the mixture and reference fluid are

obtained from Eqns. (3.30) and (3.31),

z?s = 3.469 7S _ 3.689

m

Total mixture property Zm is calculated from Eqn. (3.29) and
P from P = Z P RT,

m m mw m

Zm = 7808 Pm = 3827 psia
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Now a complete total mixture property calculation is accomplished.
1) The calculated Pm is compared with experimental mixture pressure
Pexp’ Pm is then adjusted by a numerical method called 'false posi-

tion', and steps d through i are repeated until Pm R’Pexp 9 itera-

P -P
tions are needed to make I —25—952 | < 1.5X10 3 and the final re-

exp
sults are
" o " 3
Tc = 549.2°R, VC = 2.322 £t~ /4b-mole
d = ° o = - 3 = y = ,9 2',
Ti 369.0°R, Py 1.134 4b-mole/ft™, §1r .8705, elr 9527
° - 0 ° . 3 = 1.1036 - .
T3 765.0°R, Py 445 Lbemole/ft™, §3r 1.1036, 93r 1.0185
Ti = 620.3°R, pi = .672 &b-mole/ftB,
d, = 3.558A, d, =4.8608, d_=4.2364
1 3 T
P = 2997 psia, p = .6779 db-mole/ft*, 7 = .6646
m m m
Comparing to experimental value Z = .6676, the error for compressi-

bility factor prediction is 0.4%.

4.5 Results and Discussion

Tables 4, 5, and 6 contain the predicted compressibility factors of
binary mixture of methane and propane for several compositions at 160°F,
280°F, and 400°F. The pressure range is from 400 psia to 9000 psia. The
average deviation is .7%. The poorer results at some conditions have
been studied. Most of them are due to the weakness in the BWRS reference
equation of state at the equivalent conditions, a few are due to the

spline-fit approximation in the indeterminant region.
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Results of isothermal enthalpy deviations are shown in Tables
7 and 8. The agreements are generally good. For the mixture of 23.8%
methane-76.2% propane, HSE method does not show much improvement over
the van der Waals one-fluid theory studied by Mollerup.17 The theore-
tical advantages of the HSE method for enthalpy predictions may be off-
set here by the use of a generally poorer reference equation of state
than that used by Mollerup.

Tables 9 compares the predicied fugacity coefficients of equimolar
methane and propane mixture with experimental data which are calculated
by numerical integration of the partial volume from Sage and Lacey's25
data. The discrepancies are apparently due to the failure of the BWRS

- %

. . L A-
equation of staté to generaté accurate ( Ré

ethane, which is required by the HSE method and other CSP theories, as

) for the reference fluid

one can see from Table 3, which shows the difference between the experi-
mental data and those from the BWRS equation of state for the pure ethane.
In this work, no attempts have been made to change the unlike pair

interaction parameters in order to give better predictioms.



CHAPTER 5

CONCLUSION

The HSE theory incorporated with the method of determining effect-
ive diameters is applied to predict the thermodynamic properties of
hydrocarbon mixtures. Although the determination of diameters for
fluids with unknown potential functions with this method is not possible
at all densities, enough calculations can be made to allow a correla-
tion by fitting the results to the Verlet-Weis equation for the optimal
diameter with the perturbation theory.

There are several advantages of using the HSE method with the
effective diameters. It is rather simple and straightforward. The
method first utilizes the knowledge of pure component properties, the
shape factors are then generated internally to insure conformality of
each constituent with the reference fluid, and the diameters are deter-
mined at the same time. The mixture properties are then calculated read-
ily. No data correlation is needed to obtain the necessary composition
dependence.

The theoretical merit of the HSE method is the separation of the
overall properties into different contributions which allows us to treat
the short range repulsive interactions more precisely, and the long range
attraction effects are accounted for by the well-developed CSP. It is
believed that the HSE method should extend the predictions to lower tem-
peratures iiian previous CSP methods did, because the second order of

inverse temperature has been taken into account.
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The theoretically-based HSE method can safely be extrapolated to
new regions of pressure and temperature and its extension to multicom-

ponent systems is straightforward as well.



APPENDIX A

BWRS EQUATION OF STATE AND DERIVED THERMODYNAMIC FUNCTIONS

The BWRS equation of state is an ll-parameter, modified BWR

(Benedict-Webb-Rubin) equation proposed by Starling.27 It has the

form of
P = pRT + (BRT - A_ - CO/T2 + DO/T3 - E’O/'I‘*) p?
+ (bRT- - a - d/T) p® + a(a + d/T) p° (A-1)
+cp? /T (1 + vp®) exp(-vp?)

where P is the absolute pressure in psia, T the absolute temperature
in °R, p the molar density in 4b.-mole/cu.ft., and R the universal gas
constant (= 10.7335 psi-ft.®/4b.-mole °R).

The values of the 11 parameters for several natural gas systems,
which are listed in Table 2, are obtained by Lin and Hopke14 through a
multiproperty regression analysis procedure in which they used experi-
mental density, enthalpy, vapor pressure .and K-value’ data of both pure

component and mixture to generate the optimal set of parameters.

Compressibility

Dividing through Eqn. (A-1). by PRT, one obtains the compressi-

bility factor form of the equation of state:
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o AL ¢ D Eg
= — = - —— g,  — + —— g —
Z2=opr -1+ G, "3 "R® "R ~RB )P

R LaRCK 12 T

. ( 1+ vp®) exp(-vp®)
" RP

Internal Energy Deviation:

The expression for internal energy deviation is derived by using

the relationship

-0 P >z, a' (A-3)
G =Tl QT o |
T,V
the result is
X
(U’-U) - 3_’_3(:0 _.zﬂo._}_S_Eg)p +l (.i+2d )pz
RT TV‘RT RT® ~ RT* T RT® 2 ‘RT * RT®
(4-4)
e a, 2. 5 3¢ e L 1
5 Grt R P YRT® 1+ (w)] e YR

Helmholtz Free Energy Deviation

The Helmholtz free energy deviation is derived by using the follow-

ing relationship

P ¢
z-1) & (A=5)
0 p



the result is
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APPENDIX B

1" n

3T, 3V,
EXPRESSIONS OF n(z— AND n(==)

‘Bnk T;V;n& ank T,V,n&
" "
The pseudocritical temperature Tc and volume VC can be expressed,

respectively, in terms of number of moles of the components as follows

N N )\. . . . e T e m
. TTan __;__1 W, o, + chéj.,r) g.:iaj ®.. c, J_rlcji
T = : ‘ (B-1)
c NN A ) 3
vy ity -2 v, % * Vc.éjr) 815 Cirle, erc.)
L i 2 i i i j
NN iy 12
i1 2
o ZEam St 8y V85 By (85T 04T O
v - 1 1 1 . 1 . L N N (B'2)
© NN B
®Yyann, =LV & _ +V & )E (8, T 6, T )
.. 1) 2 c, ir c, Jr’ °ij ir'ec, jrie,
i] i j i 0 7]

th
where n, and nj are, respectively, number of moles of ith and j com-

ponents, n is the total number of moles of the mixture, and N is the

number of components.

1
For convenience, let us represent the numerator of TC by N and

the denominator by D, i.e.

N N o
N=SSnn, —L (v &, +V &, )€ (6.T 6.7 ) (B-3)
. . 1j 2 c, ir c. jr .. irec, jrec,
i] i~ j ij i j
NN Xi. i
D=ZZn.n.—21(V 8. +V & )YE. .. (8, T O, T )2 (B-4)
1 i Ci ir Cj jr i} ir ci jr cj

Eqns. (B-1) and (B-2) then become



T = % (B-5)

V. = 2§ (8-6)

Differentiating Eqms. (B-3) through (B-6) by ny and keeping T,V,

and n, constant, one obtains

’ p&) - 8
3T k T,V,n k T,V,n
c _ 4 4
Ga) = 7 (B-7)
k T,V,n&
) 2208 n?1? c%%— - 2nDRN
)\ % T,V,n k T,V,n
c _ £ £
(g;l“) = ENE (B-8)
k T,V,n&
a 1t v”
T d
oN c c
) = A + B(3z) + C(T) (B-9)
on , k 3 an
k T,V,n, P T,V,n, k T,V,n,
1] 1"
oT IV
D
(gn—) =E +F (50 +6 (5 (B-10)
k T,V,n, k T,V,n, k T,V,n,
where
N ©
A =230, K B4B) B (@) (8-11)
k .2 TR Pk Uik
N N o 3B, 38,
B=2Zam =8 (I o+ ) ] e,
13 aTc Vc aTc Vc
(B-12)
do,
+2 (B,48.) @, —9 ]
173773 aT‘ v

c c
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NN .. 3B, 3B,
cC=xsnn =12 {([¢() + D oo,
. L 1) ij " " 1]
Lt avc T aVc T
C [
(B-13)
acvi
+2 (848 @) (W) ]
avc T
C
R %
B, =2 ? n; = B+ By () (B-14)
NN A oB. oB. 1
F=2fan —& ([ +H I @a)f
. s ] 1] T " 1]
td oI, y oT. y
¢ ¢ (B-15)
o, 5 X,
LI R o B e I
t aTc Vv
C
N N A, 8. dB. i
c=grnn, =g LD + D 1 @pe)”
i3 o 3V, Lt AT, o
C C
(B-16)
%
o, do .
) G )
i aVC Tc

ando, =T 6, ,B8,=V_ & .
i c, ir i c, ir

Multiplying Eqn. (B-7) by 3; and Eqn. (B-8) by L. and substituting

"o

T v
c c

Eqns. (B-5) and (B-6) into the resulting equations, one obtains
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—‘;: o) = ¥ <§§—k> -5 (—2—3;) (B-17)
v,
v T
. : GO -3 & 2 G - (3-19)

the subscripts T,V and n, have been dropped for convenience.
Substitution of Eqns. (B-9) and (B-10) into Eqns. (B-17) and (B-19)

and rearrangement of the resulting equations produce

oT ov A E
1 B E ¢ C _Cy =Sy o ek -k -
" N + D) n(an + (D N) n(an ) = n(N . D ) (B 20)
TC k k
a 1 1"
T ov E
1 F c 1 G c k
LD + - H aeD =0 -2 (3-21)
1 1"
T D ank v D ank D
c c
" n
aTc avc
ng;;d and n(ga—) can then be solved readily.
k T,V,n k T,V,n,
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Av/104
o]

¢ /108
(o]

a/lO3

c/lO9
p /10%0
0
d/105

g /10!
o]

TABLE 2

THE BWRS-EXXON Constants

CHy Ca b5 C3Hg
0.696663 0.940341 1.15091
0.70324i 1.50851 2.20325
3.3127Z 26.0615 75.3232
1.39930 3.04152 5.50137
0.861307 2.69564 6.36610
2.75239 17.3349 55.8356
0.453145 1.03845 2.17606
0.508281 5.94592 23.3092
1.41063 20.7312 75.6999

0.684469  5.98254 18.7440

1.26531 90.0981

437.431
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TABLE 3 69
The Analysis of The Accuracy of Reference Fluid G Hs

I=160°F
Aat AR
P§§§i§§e Z;;Pt “srs R )T,V,expt (_EE—)T,V,BWRS

400 .8594 .8548 1454 .1508
800 .6878 .6768 .3446 .3591
1000 .5881 5737 4820 .5045
3000 .6134 .6064 1.0129 1.0361
5000 . .9024 .8937 1.0519 1.0693
7000 1.1793  1.1732 1.0478 1.0678
9000 1.6454  1.4442 1.0333 1.0546

T = 220°F
400 .8999 .8963 .1035 .1073
800 .7939 .7850 2244 .2341
1000 .739% .7285 .2924 .3065
3000 .6579 .6538 .7315 .7495
5000 .9030 .8941 .7785 .7989
7000 1.1548  1.1453 7744 .7983
9000 1.4016 1.3922 .7594 .7835

T = 280°F
400 .9267 .9236 .0758 .0786
800 .8541 .8471 .1580 .1655
1000 .8194 .8103 .2011 2113
3000 .7218 .7208 .5198 .5363
5000 .9184 .9105 5747 .5939
7000 1.1439  1.1325 .5726 .5930
9000 1.3698  1.3559 .5547 .5760

+ Sage and Lacey, Ref. 25.
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TABLE 6
‘Predicted Compressibility Factors For .
30% CH, - 70% .GyHs Mixture

Pure C;H; Is Used As The Reference Fluid

T = 160°F
P (psia) z::pt anl
400 .7923 .7991
600 .6552 .6673
1500 .3980 .3948
3000 L6415 6476
5000 .9736 .9758
7000 1.2873 1.2919
9000 1.5888 1.5965

T = 280°F
400 .8928 .8964
800 .7880 .7879
1000 L7416 .7354
3000 7097 7112
5000 .9637 L9645
7000 1.2266  1.2276
9000 1.4829  1.4837

T = 400°F
400 .9391 .9403
800 .8862 .8844
1000 .8639 .8670
3000 .8204 8174
5000 .9912 .9949
7000 1.2041  1.2113
9000 1.4213  1.4277

++ Sage and Lacey, ref. 25



TABLE 7
Predicted Enthalpy Deviation For 23.4% CH, - 76.6% Cs Hyg

(Pure G H; Is Used As The Reference Fluid)

remp.  presswe BB, @R, @R
CF) _(psia) (Btu/ib) (Btu/4Lb) {Btu/b)
200 250 12.4 12.4 12.2

750 50.0 49.5 47.7

1250 97.6 98.9 98.7

1750 111.6 111.7 112.1

100 250 20.4 19.3 18.5
1250 142.4 144.0 142.4

1750 143.6 144 .4 143.1

50 750 157.1 156.8 154.9
1250 156.1 156.3 154.8

1750 155.5 156.0 154.3

0 750 169.3 168.3 167.1
1250 168.5 167.4 166.2

1750 167.1 166.5 165.1

-50 750 180.7 178.4 178.6
1250 179.3 177.1 177.2

1750 178.0 176.0 175.8

++Yesavage, Ref. 29.
+ Mollerup, Ref. 17.



TABLE 8
Predicted Enthalpy Deviation For 49.4% Methane - 50.6% Propane

Pure Ethane Is Used As The Reference Fluid

++

&) ®'-m)

Temp . Pressure expt. HSE

Cp_ (psia) (Btu/4b) (Btu/4b)

200 250 9.8 9.4
500 20.7 19.7
1000 44.9 43.8
1500 69.3 70.4
2000 86.9 88.9
100 250 14.5 13.9
1500 119.8 123.2
2000 126.9 127.2
0 1000 158.6 160.4
1500 158.8 160.5
2000 158.5 159.6
-50 1000 173.5 173.0
1500 172.7 172.1
2000 171.4 171.0

++ Yesavage, Ref. 29.
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TABLE 9
Predicted Fugacity Coefficients For 50% Methane - 50% Propane Mixture

Pure Ethane Is Used As The Reference Fluid

T = 160°F
g 1 £
Pressure (In E) (4n '1;)
(psia) expt. ___~ HSE
200 o o
1000 - . 2649 -.2593
2000 -.5601 -.5896
3000 -.7209 -.7616
5000 -.8261 -.8687
7000 -.8006 -.8453
9000 -.7132 -.7590
T = 220°F
200 ot ot
1000 -.1874 -.1773
2000 -.3874 - 4024
3000 -.5156 -.5435
5000 - .6065 -.6419
7000 -.5836 -.6214
9000 -.5043 -.5452

++ Sage and Lacey, Ref., 25.

£ . .
+ (4n P)T,P - 200 psia " 0 is the datum point.



TABLE 10.

Effect on ZHS on Calculated Z

In the Incalculable Region for ZHS

50% CHa
50% CyHg

T = 160°F

P = 5000 psia

ZEE_ % Error
2.73 5.31
3.39 1.77
ot 8) = 3.48 =
3.68% 0.29
3.74% 0
3.9 -0.99
4.21 -2.23

*By spline fit between ZHS at pp > 2.4 and ZHS at pp <1.6

+Predicted by interpolation to O % Error.
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