RICE UNIVERSITY
Binary Analysis for Attribution and Interpretation of Performance
Measurements on Fully-Optimized Code
by
Nathan Russell Tallent

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Alan Cox
Associate Professor of Computer Science and
Electrical and Co ter Engineering

A

William N. Scherer 111
Faculty Fellow, Computer Science

HousToN, TEXAS

MAy 2007

UMI Number: 1441861

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1441861
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Abstract

Binary Analysis for Attribution and Interpretation of Performance Measurements
on Fully-Optimized Code
by

Nathan Russell Tallent

Modern scientific codes frequently employ sophisticated object-oriented design. In
these codes, deep loop nests are often spread across multiple routines. To achieve high
performance, such codes rely on compilers to inline routines and optimize loops. Con-
sequently, to effectively interpret performance, transformed loops must be understood
in the calling context of transformed routines.

To understand the performance of optimized object-oriented code, we describe how
to analyze optimized object code and its debugging sections to recover its program
structure and reconstruct a mapping back to its source code. Using this mapping,
we combine the recovered static program structure with dynamic call path profiles
to expose inlined frames and loop nests. Experiments show that performance visu-
alizations based on this information provide unique insight into the performance of
complex object-oriented codes written in C++. This work is implemented in HPC-

TOOLKIT, a performance analysis toolkit.

Acknowledgments

It has been said that “using the idea of one is plagiarism but using the ideas of
many is research.” In this spirit, I would like to thank John Mellor-Crummey and
Rob Fowler, both who have been involved in this work in many ways. Particular
thanks go to John for committing to see this work to completion during a trying
semester and to Rob for bringing Chroma to my attention — the first time to my
distress!

If a dedication is needed, it should be to my wife and son who do not take this

‘boring stuft’ too seriously.

Finally, this work has been supported by the Department of Energy Office of Sci-
ence, Cooperative Agreement No. DE-FC02-06ER25762; and the Department of En-
ergy under Contract Nos. 03891-001-99-4G, 74837-001-03 49, 86192-001-04 49, and/or
12783-001-05 49 from the Los Alamos National Laboratory. Experiments were per-
formed on equipment purchased with support from Intel and the National Science

Foundation under Grant No. EIA-0216467.

Contents

1 Introduction 1
2 Three Primers 6
2.1 A Profiling Primer’s Primer 6
22 An HPCTOOLKIT Primer 8
2.3 Related Work 10

3 Recovering Source Code Structure Using Binary Analysis 13
3.1 The Basic Problem and Strategy 16
3.2 Recovering the Procedure Hierarchy 20
3.2.1 Procedure Nesting 20

3.2.2 Procedure Source File and Line Bounds 21

3.2.3 Indirect Procedure Nesting 29

3.24 Inthe Absence of DWARF 32

3.2.5 Macros and Generated Source Code 33

3.3 Recovering Alien Contexts 34
3.4 Recovering Loop Nests 37
3.5 Recovering Groups of Procedures 47
3.6 Normalization 49
3.6.1 Procedures and Loops 49

3.6.2 Alien Contexts 50

363 Ordering 50

4 From Bloopers to bloop: Implementation 51
4.1 Design and Implementation 51
4.1.1 Processing Instructions 53

4.1.2 Determining Contexts 54

4.2 GNU Binutils and Binary Analysis 28
43 Lying Liars 59

5 Performance Visualization Using Dynamic And Static Structure 63
5.1 Deficiencies of Call Path Visualizations 63
5.2 Combining Dynamic Call Paths with Static Structure 65
5.3 CaseStudies 66
531 C++'sSTLmap. 67

532 Chroma’shmc 75

5.3.3 NAS Parallel Benchmark’s CG (UPC Version) 82

6 Conclusions 87

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

An object to source code structure mapping.
Typical line map information.
Nested subroutines in Fortran.
Detecting alien code with incomplete DWARF..
Contracting procedures’ end lines by instantiating alien contexts.
Detecting incorrect class nesting through backward references.

Alien context ambiguity. L.
Recovering alien contexts within a loop body.
Detecting incorrect loop placement through nesting cycles.
Correcting nesting cycles.

Maximum procedure context nesting.
Erroneous DWARF linemaps.

Source code for testing C++’s STLmap.,
Tau’s visualization of STL map example (Figure 5.1).
HPCToOLKIT’s visualization of STL map example (Figure 5.1). . . .
Apple’s Shark’s visualization of STL map example (Figure 5.1).
Tau’s visualization of Chroma.
HPCToOLKIT’s visualization of Chroma (calling context tree). . . .
HPCTOOLKIT’s visualization of Chroma (flat).
HPCToOOLKIT’s visualization of NPB23 CG.

i

List of Algorithms

4.1 bloop’sdriver. 52
4.2 determine-context 56
4.3 merge-broken-contexts L. 57
4.4 matches, 58

il

Chapter 1

Introduction

Performance problems are not created equal: distinguishing between algorith-
mic ailments, data structure deficiencies, memory hierarchy maladies and instruction
stream inefficiencies requires a level of understanding that few developers have. Just
as debuggers help navigate crooked code paths, performance tools help reveal per-
formance bugs. To aid the performance analyst, a tool must be able to accurately
characterize and effectively summarize the behavior of a given code. Accurate char-
acterization means that a tool must be able to faithfully represent, with minimal
distortion, the run time behavior of an application. Effective summarization means
that the tool must accurately summarize large amounts of data in a way that enables
the analyst to quickly identify and understand performance problems.

Potent characterization and summarization strategies must consider their target
domain. For procedural-style (e.g., FORTRAN 77) scientific codes typified by a few
large routines and deep explicit loop nests, loops contain most of the computation
and therefore understanding loop performance is a key part of improving application
performance. For such programs, Mellor-Crummey, Fowler, et al. [36] found that
annotating loops with metrics such as CPI (cycles per instruction), memory hierarchy
bandwidth and wasted FLOPS and then comparing all the loops in the program as
peers was a very effective method for quickly directing the analyst’s attention to

under-performing regions.

The widespread adoption of modular and object-oriented programming styles has
changed the way scientific applications are constructed, but it has not changed the fact
that loops are still crucial for understanding performance. For example, Chroma [31],
Trilinos [28] and Chombo [32] are all C++-based codes in which key solvers have
been abstracted into modular libraries. These codes still have deep loop nests, but
the nests are often spread across multiple routines: they may be ‘assembled’ at com-
pile time by inlining object methods, or they may be ‘created’ at run time through
dynamically-resolved virtual function calls. However, the composition of many small
routines, some of which are dispatched dynamically or instantiated at compile time,
creates a very complex dynamic call graph. The effect of modular and object-oriented
programming styles is that to understand performance, loops must be understood in
their calling context. Even so, few existing performance tools provide full calling
context information; none that do combine it with loop nests.

Call path profilers assign costs based on calling context. One method for collect-
ing call path profiles is to add source-level instrumentation. Tau [39], a set of widely
installed performance tools designed for scientific applications, takes this approach.
Tau’s procedure instrumentation increments a count of calls to that procedure, mea-
sures the procedure’s inclusive cost — i.e. the cost of the procedure including all
its callees — and records arcs representing the calling context. While Tau does not
typically instrument loops, it might seem that an easy way to merge source code loop
information with call path data would be to automatically add loop instrumentation.

However, using static source code instrumentation as a measurement technique
typically introduces distortion in two areas. The most commonly observed distortion
is that instrumenting small routines and loops results in large levels of execution

overhead. Even a small amount of instrumentation added to a short routine can

double its cost (100% overhead); instrumenting loops can increase overhead more
dramatically.

The less commonly noted distortion is that source code instrumentation can
change the measured application by preventing important compiler optimizations.
By introducing foreign, side-effect inducing code, instrumentation precludes inlining
and interferes with loop transformations such as software pipelining. The net effect
of instrumentation can be severe enough that the instrumented code may manifest
performance problems that do not actually exist in the non-instrumented optimized
code. While it is possible to selectively instrument routines to reduce overheads and
allow for inlining, doing so affects the accuracy of call path profiles. In summary,
because instrumentation affects not only the speed of the generated code but non-
trivially affects the actual object code that is executed, it introduces distortion that
jeopardizes the accuracy of both characterization and summarization.!

In contrast to instrumentation, sampling-based call path profiling can achieve high
levels of accuracy while maintaining low overhead [6,21]. On operating systems that
support dynamic linking and library preloading, a profiler can be launched on un-
modified executables, a significant practical benefit when compiling times for complex
applications can be hours. This solves the accurate characterization portion of the
problem.

The remaining task is to effectively summarize and present profile data. Most
importantly, the data should he correlated to important source code constructs such
as loops. However, call path profiles of optimized code ‘miss’ frames where routines

have been inlined and they have no knowledge of loops. Moreover, both procedures

!Binary instrumentation does not prohibit compiler optimizations; e.g., both Dynlnst [10] and
PIN (35] insert instrumentation dynamically while ATOM [41] statically rewrites binaries. However,
this method can incur high overheads.

and loops can be transformed by compiler optimizations and consequently not directly
correspond to source code.

The challenge, therefore, is to compute a mapping between the optimized object
code and the source code structure. Ideally, this information would be recorded
by the compiler. However, since compilers do not typically record a summary of
their transformations, we propose to infer this mapping using binary analysis. An
obvious place to start is the binary’s line map, which maps an object address to its
corresponding source file, procedure name and line number. Unfortunately, the line
map is insufficient to recover the proposed mapping because in the presence of inlining
it is impossible to distinguish between inlined and non-inlined code. This implies that
to compute the object to source code map, we must obtain additional information
through binary analysis. With this mapping in hand, we can then effectively merge
dynamic calling context information with the static structure of the optimized source
code, making both the dynamic and static scopes ‘first-class’ entities for the purpose
of assigning cost metrics.

We therefore intend to defend this thesis: Combining dynamic calling con-
text information with the static structure recovered from optimized appli-
cation binaries provides unique insight into the performance of modular
codes that have been subjected to complexr compiler transformations such
as inlining and C++ template instantiation. Moreover, binary analysis
of the optimized object code and its debugging sections is sufficient to
accurately compute the mapping between the object code and the source
code structure that is needed to combine the dynamic and static infor-
mation. In support of our thesis, we extend several tools, collectively named HP C-
TooLKIT: 1) We rewrite HPCTOOLKIT’s binary analysis tool bloop to compute an

object to source code structure mapping for fully optimized binaries; 2) We extend

HPCTOoOLKIT’s correlation tool to combine call path profiles with source code struc-
ture by exposing inlined frames and loop nests as cost-inducing entities; and 3) We
present visualizations of the correlated data and use them to analyze complex codes.

The rest of this document is organized as follows. Chapter 2 provides further
background and justification of our approach. Chapter 3 details our methods for
binary analysis, while Chapter 4 discusses important implementation considerations
for bloop. Chapter 5 describes how call path profiles are correlated with bloop’s
program structure information. Three case studies argue that the resulting call path
visualizations enable the analyst to quickly understand intricate details that would

be otherwise obscured or unavailable. Finally, Chapter 6 presents our conclusions.

Chapter 2

Three Primers

2.1 A Profiling Primer’s Primer

A serial program can be viewed as series of instructions, only one of which executes
at a given time.! The current instruction — which can be viewed as a particular
location in the program —— is often identified by the instruction pointer or IP. At
a given time and location, the instruction executes in a certain context. In the
most general sense, context is the program’s state and includes the full memory
configuration. However, in practice we usually restrict our interest to the execution
stack; and since each activation record on the stack corresponds to a function call, we
often use ‘context’ to mean calling context, i.e., the chain of function calls from the
program’s entry point to the current instruction. Therefore, serial programs operate

in an environment that can be described by the following three dimensions:
o Time?
e Location (IP)

o Context

!Technically, this is not true on superscalar and out-of-order processors, where multiple instruc-
tions may be executed at the same time and out of their original order. However, compilers and
processors provide guarantees that this low-level parallelism maintains observational equivalence.

2This dimension may be thought of more generally as any monotonically increasing quantity such
as retired instructions or L1 cache misses [26].

Parallel programs contain multiple serial threads of execution and therefore require

an additional dimension:
e Thread

Profiling tools must be able to accurately characterize and effectively summarize
the behavior of a given program. Accurate characterization means that a tool must
be able to faithfully represent, with minimal distortion, the run time behavior of
the program. The most important components of characterization are the method
of measurement and the dimensions over which it is performed. Typical measure-
ment methods are instrumentation and statistical sampling. Commonly measured

dimensions give rise to typical profile classes:
e Flat profiles collapse time and context to generate an IP histogram.

o Call path profiles collapse time but expose calling context to create an IP-

calling-context ‘histogram.’

e Many parallel tools collapse location and context to create process-time visual-

izations of inter-process communication.

Effective summarization means that a performance tool must accurately summa-
rize large amounts of data in a way that enables the analyst to quickly detect and
understand performance problems. One key aspect of this is correlating the summa-
rization with important source code constructs.

As a matter of practice, it is common to collapse the time dimension to scale well
on long runs. A typical scalable approach to parallel performance analysis initiates
per-process monitoring during program execution and then applies a post-mortem

analysis phase to the resulting data set before presenting it to the analyst.

2.2 An HPCToolkit Primer

This work has been done in the context of the HPCTOOLKIT performance tools
and our binary analysis methods, in particular, have been implemented in one of
its tools known as bloop [36]. The following provides a brief background of HPC-
TOOLKIT.

bloop was motivated by the observation that since loops embody most of the
computation within scientific programs, understanding loop nests is often critical to
improving performance. In particular, treating loops as ‘first class’ entities enables
the analyst to quickly compare performance data for all loops in a program as peers,
without regard for what file, procedure, or load module they are in. HPCTOOLKIT’s
original use of bloop was to enrich flat IP-histogram profiles by merging them with
the program’s static loop structure information.

bloop uses binary analysis to correlate performance data with loops. One mo-
tivation for this approach was that multi-lingual applications required maintaining
multiple production-level front-ends, something that is difficult and costly. An easy
objection is that binary analysis trades one language problem for another: if the
source code analyzer must be able to analyze multiple languages, the binary ana-
lyzer, if it is to be multi-platform, must support multiple ABIs. The response to this
is that ultimately, source code analysis is not enough. For example, scientific codes
often link to proprietary math or communication libraries for which source code is
unavailable, but which can be very important for understanding an application’s per-
formance. Also, because optimizing compilers typically transform loops to improve
performance, the loops that are actually executed may not strictly correspond to the

source code.

The original bloop recovered loop nests in a procedure by first decoding the
procedure’s instructions and creating a control flow graph (CFG). From the CFG,
it constructed a loop nesting tree using Havlak’s loop nest recovery algorithm [27].
bloop then examined each loop in the tree and used the binary’s line map to recover
source line information for each instruction within the loop. To derive loop bounds,
bloop computed the minimum and maximum source line number within each loop.
Similarly, to compute the procedure’s boundaries, it used the minimum and maximum
source line over all instructions. To ‘undo’ the effect of loop transformations such as
software pipelining and loop-invariant code motion, it used a normalization pass that

applied the following two rules until it reached a fixed point:

e whenever a statement instance (line) appears in two or more disjoint loop nests,

fuse the nests; and

e whenever a statement instance (line) appears at multiple distinct levels of the

same loop nest, elide all instances other than the most deeply nested one.

This strategy was very effective on programs for which the primary target of
optimization was loops. However, when we applied bloop to object code generated
from heavily layered C++ applications, we discovered that procedure and loop bounds
were highly inaccurate, leading to wrongly attributed costs and useless results. The
basic problem was that procedure transformations such as inlining made the line map
information ambiguous; and by not understanding this ambiguity, bloop made invalid
assumptions. Chapters 3 and 4 present our solutions to these problems.

HPCTooLKIT’s call path profiler, csprof [21], was developed because of the
need to understand program costs in context. Some promising work was later done
on visualizing the resulting call path profiles, but because it was based on a naive use

of the line map, procedure transformations such as inlining made the result confusing

and difficult to understand. Additionally, no loop information was present. Chapter
5 shows how we have combined bloop’s static source code structure with dynamic
calling context information to obtain unique insight into the performance of modular

codes undergoing complex compiler transformations.

2.3 Related Work

The most widely known call graph profiler is gprof [24]. It uses instrumentation
(inserted by a compiler or binary rewriter) to count call path arcs from call sites
to callees and statistical IP (instruction pointer) sampling to estimate the exclusive
time of each procedure. To attribute the cost of a call in context, gprof makes the
assumption that costs are context-independent and uniformly distributes a proce-
dure’s cost among each of the call sites through which it is invoked; this attribution
assumption is frequently inaccurate [45]. Compaq’s hiprof [29] call path profiler
uses instrumentation of procedure calls and returns to measure the inclusive time
of a procedure when called from a particular call site, enabling the computation of
context-dependent costs. Tau [34,39] and Intel’s VTune [30], both instrumentation-
based tools, also apportion costs in a context-dependent fashion. Tau, however, only
distinguishes between contexts no greater than a fixed depth. In programs with small
procedures and many procedure calls, instrumentation can cause significant execu-
tion time dilation [21]. Tau can dynamically compute compensation factors that
approximately account for its own overhead.

A second approach to measurement, motivated by reducing overhead, is statistical
sampling [4,5,7,48]. HPCTOOLKIT’s csprof [21] samples the call stack to create a

calling context tree. It employs a special trampoline function to memoize invariant

10

stack prefixes between samples and collect return counts. Overhead is very low (2-5%)
even at a sampling rate of approximately 1000 samples per second.

Unfortunately, despite the utility of call path profiles for modular coding styles,
summarization and visualization techniques are still unsatisfactory. gprof-style tex-
tual call-graph reports are common. These reports are a sequence of text blocks, one
for each procedure and in descending order according to the procedure’s exclusive
time, where a given procedure’s text block shows both its callers and callees. For
large programs with many routines, these reports are intimidating even to those fa-
miliar with the code. Another common approach is to present call path data as a
graph, with ‘hot’ paths emphasized and possibly with controls to hide unimportant
nodes and edges [23,37]. While for small programs these visualizations are much easier
to understand than gprof-style reports, large graphs quickly become unmanageable.
As of this writing, Hall’s work on call path refinements [25] is one of the best ideas
for effectively summarizing large call path profiles, though perhaps the most under-
used. In essence, Hall proposed a specialized language for writing path filters: a call
path refinement defines a filter that when applied to a call path profile, produces the
refined graph with appropriately aggregated metrics. Finally, several tools present
calling context trees using a graphical interface analogous to a tree-based view of a
file system’s directories, with nodes sorted according to inclusive and exclusive cost.
This method is a simple but effective summarization technique because inclusive sorts
enable the analyst to quickly find and expand the ‘hot’ paths. HPCTOOLKIT and
Apple’s Shark (3] have adopted this approach. Tau presents data in the gprof, call
graph, and tree-based formats.

While the importance of correlating profiling information with source code has
been widely acknowledged, most of these summarization approaches only trivially

correlate dynamic data with source code using the binary’s line map; the one exception

11

is Tau which can correlate data to top-level loops using loop instrumentation. No tool
attempts to account for transformed loop nests or procedures (e.g., missing inlined
frames in call path data). Some work has been done on correlating dynamic profile
information with transformed source code, but it has been based on detailed compiler
information. Waddell and Ashley [46] combined static Scheme source structure with
dynamic calling information to visualize the performance of Scheme programs. Their
system relied on mappings generated by an optimizing Scheme compiler and focused
only on visualizing procedures and expressions. Adve, Mellor-Crummey et al. [1]
developed a performance visualization environment for the dHPF compiler, which
used detailed compiler generated mappings to associate performance information with
loops and communication-inducing array references.

To recover source code structure, we employ binary analysis techniques. To our
knowledge, no other tool aside from the original version of bloop [36] uses binary
analysis for this purpose. Tools such as ATOM, Dynlnst, and PIN are all designed
for carefully adding instrumentation to a binary. The ATOM framework [41] pro-
vides a simple and general API for statically instrumenting fully-linked binaries. To
support dynamic linking, Buck and Hollingsworth developed DynInst [10], an API
for generating run time instrumentation. PIN [35], another tool for dynamic binary
instrumentation, relies on a just-in-time compiler to dynamically generate a new in-

strumented instruction stream from a native binary.

12

Chapter 3

Recovering Source Code Structure Using Binary

Analysis

To combine dynamic calling context information with the static structure of fully
optimized binaries, we need a mapping between object code and its associated source
code structure. Since the most important elements of the source code structure
are procedures’ and loop nests — procedures embody the actual executable code
while loops often consume the bulk of the executable time — we focus our efforts
on them. An example of what this mapping might look like is shown in Figure
3.1. In this example, the object to source code structure map is represented as a
tree of scopes, where a load module (the binary) contains source files; files contain
procedures; procedures contain loops; procedures and loops contain statements; and
where scopes such as procedures, loops and statements can be annotated with object
code address interval sets. However, for the very same reasons that procedures and
loops are important to source code structure, they are also the primary targets of
compiler transformations — rendering methods solely based on source code analysis

useless.

There are two ways in which a performance tool can account for a compiler’s

source code transformations: it must either have access to a summary of actions

!Because of our focus on binary analysis, we use ‘procedure’ as a synonym for routine, subroutine,
or function.

13

<LM n=".../hmc" base_addr="0x4000000000000000"> load module

<F n=".../hmc.cc™ source file
<P n="doHMC" 1="257-449" addr="[0xleac0-0x21720)"> procedure
<S 1="309-309" addr="[0x1f1b6-0x1fl1c6)..."/> statement

<L 1="311-435" addr="[0x1£460-...)"> loop

<§ 1="313-313" addr="[0x1£250-0x1£256)..."/>
</L>

</P>
</F>

</LM>
An object to source code structure mapping represented as a static scope tree expressed
in XML. Static scopes include a load module (LM), file (F), procedure (P), loop (L) and

statement (S). Procedures, loops and statements are annotated with corresponding object
address interval sets.

Figure 3.1: An object to source code structure mapping.

performed by the compiler or it must analyze the resulting object code and attempt
to reconstruct this information. Since vendor compilers do not provide the former,
we pursue the latter approach: some form of binary analysis. However, to achieve
our goal of an object to source code structure mapping, we do need some basic object
to source code mapping information. Such information is ordinarily found within a
binary’s debugging section; a common representation for it is DWARF [20, 44].2

The fact that debugging information formats such as DWARF provide a rich lan-
guage for recording a large number of compiler transformations may seem to obviate
the need for complex binary analysis. As an example, DWARF provides a mechanism
(DW_TAG_ inlined_subroutine) that enables a compiler to describe trees of inlining

decisions where each ‘node’ in the tree associates a source code call site with its

2We use ‘DWARF’ to refer to both DWARF version 2 and version 3, unless otherwise qualified
as DWARF2 or DWARFS3, respectively. Version 3, finalized in December 2005, significantly extends
version 2 (1993), though the latter is still commonly used.

14

corresponding object code address ranges in the host procedure.® Such information
about inlining would greatly simplify the job of accounting for procedure transfor-
mations, and at the very least, approximate the transformation-history information
that we claimed was not available.

In practice, however, most compilers — including those from from Intel, Path-
Scale and The Portland Group (PGI) — do not generate inlining information, al-
though GCC 4.x does.* However, even if all compilers exploited DWARF’s ability
to record information about inlining, it would still not be not possible to describe
loop transformations using DWARF, for there is no mechanism for doing so. This is
understandable given that DWARF intends to describe transformations that directly
affect a debugger.® Therefore, because inlining information is not typically available
from production compilers — even though the potential has existed for several years
with DWARF2 — and because loop nest information is crucial to application perfor-
mance, it is necessary to analyze both the object code and its associated debugging
information to recover source code structure.

Henceforward, we focus our discussion on the DWARF debugging information

format which is the de facto standard in the Linux world. Even so, because our work is

SDWARF?2 permits only one contiguous object code address range, rather than a list of disjoint
ranges. Cf. §3.3.8 of [20,44].

“Recent Intel compilers have an option (-inline-debug-info) that purports to control whether
the compiler “preserve[s] the source position of inlined code” or “assign|s] the call-site source position
to inlined code.” We have closely examined the debugging information on some test cases and found
no difference in how inlined code was handled.

Some versions of GCC 3.3 do generate inlining information, though a bug impeded generation in
versions of 3.4.

®It is perhaps debatable whether loop transformations are directly relevant to a debugger or
not [9]. Certainly, they are of use to other downstream tools. However, at the very least, for common
debugging tasks that do not focus on debugging performance, describing procedure transformations
and data objects is more important: consider a user who wishes to set a break point in an inlined
routine.

It is interesting to note that Silicon Graphics developed some DWARF2 extensions [40] for use
with their MIPSpro compilers that describe a loop’s begin points, unrolling factors and software
pipeline depth.

15

only thinly tied to DWARF, using no exceptional descriptive information, it is widely
applicable to other contexts. Furthermore, while we target our work to the common
languages for scientific computing (Fortran, C, and C++), our object code analysis is
very general and adaptable to other languages with similar characteristics. However,
our methods are less useful on functional coding styles that employ many dynamically
created procedures (‘closures’) and that primarily use recursion to implement repeated

computations.

3.1 The Basic Problem and Strategy

A binary’s line map — supported by all debugging formats we are aware of —
associates an object code address with a source file, procedure name and source file
line number. Excerpts of an actual line map for a procedure named main are shown
in Figure 3.2. The inlining within main is quite complex and includes nested template
instantiations; in the excepts, all object code that derives from source code outside
of main is marked as alien. Observe that every address of the object code maps to
a procedure name of ‘main’ — even though the object code contains fragments from
several different procedures. In other words, the line map retains the original file and
line information (from before inlining) but assumes the name of the host procedure
(after inlining).

Since the original bloop [36] (¢f. Section 2.2) assumed that all object code within
a procedure mapped to the same source file and procedure — as might seem to
be the case from the line map’s procedure names — it expanded source procedure
and loop line bounds whenever it observed a new source line outside the currently
accepted bounds. Thus in the example of Figure 3.2, where main actually ranges

from lines 486-669, the original bloop would see a minimum line of 14 (from an

16

Line Map Comments
Address | File* Line Proc.’ || Alien? | Difficulty
0x*15550 | .../hmc.cc 499 main
0x*15560 | - 97 - Y Two different inlined
0x*15570 | - 14 - Y procedures from same file
0x*15580 | - 506 -
0xx158e0 | - 641 - Out-of-order line numbers
0x*17020 | - 527 -
0x*17030 | .../qdp-multi.h 35 - Y Two different inlined procs.
0x*17036 | .../qdp_multi.h 57 - Y from an external library
Ox*171£f0 | - 543 -
Ox*171£6 | .../singleton.h 456 - Y Two different, nested
0x*17200 | .../singleton.h 433 - Y template instantiations
0x*172c0 | .../bits/stl-treeh 1110 - Y Two different, nested
0x*172d0 | .../bits/stl_tree.h 587 - Y STL instantiations
0x*173c0 | .../objfactory.h 175 - Y More nested inlining (STL)
0x*173d0 | .../bits/stl_treeh 579 - Y Line # within bounds of host

This table contains a line map for procedure main from hme 3.22.3, part of Chroma [31].
"The code was compiled with Intel 9.1 (Itanium) and the object code for main ranged between
addresses 0x4000000000015340~-0x4000000000018140.

The left half of the table shows excerpts of the actual line map for main while the right
half identifies whether the given instruction derives from source code outside of main, i.e.,
is alien. Given that main was defined in source file ‘hmec.cc’, how could one determine its
source code bounds? (The actual bounds are lines 486-669.)

“The symbol ‘-’ indicates the expected file, i.e., ‘.../hmc.cc’
5The symbol ‘-’ indicates the expected procedure, i.e., main

Figure 3.2: Typical line map information.

inlined procedure earlier in the same file) and a maximum line of 1110 (deriving from
an inlined STL procedure). It would therefore report the procedure’s bounds to be
14-1110, inappropriately including many unrelated procedure definitions from source
file ‘hme.cc.” Since inlined code can appear within loops as well, the effect of this
invalid assumption was that both procedure and loop boundaries could be erroneously
expanded to include completely unrelated source code, rendering both the structure
information and attribution useless in the presence of compiler transformations such

as inlining. Even if bloop had attempted to consider only those line map entries

17

that mapped to the same source file as main, it would have still faced problems. The
minimum line in the excerpt is 14, but that line actually derives from the same file as
main. Since routines either before or after main may be inlined into main, knowing
only the file name does not help.

Clearly, we cannot reliably detect alien code without additional information. If we
had both source file and line bounds information, it would be possible to distinguish
between native and alien code in the line map: any address mapping to a different
source file, or to the same source file but outside the given bounds, must be alien.
One suggestion might be to ‘carefully’ use the line map to make an initial estimate

of the line bounds. However, it turns out that this is not easy:

o What file defines the procedure? While in many cases the first instruction in a
procedure maps to the host procedure’s source file, it sometimes maps to inlined

source code.

o What are the source line boundaries of a procedure? In general, no particular

instruction is guaranteed to map to the procedure’s begin or end line.

Although the line map’s entries are precisely the information needed to make the
step feature in a debugger correctly follow the source code (i.e., file and line), it is
difficult for a binary analyzer to use this information to unambiguously identify alien
regions within a procedure. If an analyzer did know the answers to the two questions
posed above, it could at least identify all alien code within a procedure, though it
would be insufficient to either partition the alien regions into single procedures or to
recover the nested inlining tree. Nevertheless, identifying alien code is an important
prerequisite for accurately recovering procedures and loop nests.

Another helpful observation is that source code does not ‘overlap.” For example,

two source procedures do not have overlapping source lines unless they are the same

18

procedure or one is nested inside the other. This observation extends to structured
loops as well. More generally, we can view a source file with lines and columns as
a one-dimensional line segment by collapsing its columns and where procedures and

loops are located at certain intervals in the segment (their line numbers).

Non-Overlapping Principle of Source Code. Let scopes 1 and zo have source
line intervals o1 and oo within the same file. Then, either z, and xo are the same,

disjoint or nested, but not overlapping.®
o (21 =2;) & (0, =05)
e (m1#w2) & ((1Noy=0)V (01 Coy) V(03 Con))
We can also say (where zo (X 1 means x1 is nested in x3):
e (01Noy=0) < ((z1 # x2) A (2 (X 22) A (29 X 11))
o (02 Co1) & (21 X 22)

One implication of this principle is that if we can recover nesting information for
procedures, then we can infer some information about source line bounds and vice-
Versa.

We desire, therefore, to exploit additional DWARF information to enable bloop
to use the line map more effectively. However, since we want bloop to be broadly
applicable, our goal is to identify a ‘lowest common denominator’ set of DWARF

information generated by all vendor compilers to supplement the line map.

éUnstructured programming constructs can give rise to situations that seem to violate this princi-
ple. For example, one could create an (irreducible) loop with multiple entry points using unstructured
control flow that may be thought of as two overlapping loops. However, in this case, even though the
control flow ‘overlaps’, the source code still strictly obeys the given constraints. An actual exception
is creating an ‘unstructured procedure’ with multiple entry points and a shared exit point using
FORTRAN 77’s alternate entry statement. This ‘alternate entry’ forms neither a procedure that is
strictly nested nor separate from the host procedure. Fortunately, the alternate entry statement is
now deprecated, its use is widely discouraged, and we know of no other source code language used
within scientific computing that contains a similar language construct.

19

3.2 Recovering the Procedure Hierarchy

Given a binary, or more generally a load module, we want to recover accurate
source procedure bounds for at least all object procedures in the load module’s symbol
table. This primarily involves identifying inlined code. However, besides inlining,
compilers introduce a variety of other complications. They flatten and reorder a
procedure forest (trees of procedures) into a procedure list because ABIs only address
procedures by one level of indexing. They may insert data between procedures so that
what might appear to be the last instruction of the procedure is actually data and
thus is not contained within the line map. Procedures might be split or completely
elided from the object code. Also, procedures may be ‘duplicated’ because of template

specializations and instantiations.

3.2.1 Procedure Nesting

While neither C nor C++ support nested procedures, Fortran does allow shallow
nesting, to a depth of two. Recovering the procedure hierarchy involves re-nesting the
flattened and reordered list that appears in the load module. While it also involves
recovering procedure-specific information, this is deferred to the next section.

It turns out that the task of recovering the general hierarchy from DWARF infor-
mation is fairly easy. DWARF allows procedure descriptors to be nested, where each
descriptor is a tree, providing a means for preserving the source code nesting infor-
mation.” Furthermore, compilers typically generate this nesting information. Note
that this information is not esoteric: Pascal — a language for which DWARF was
designed to support — supports nested procedures that are within the scope of their
parent’s local data. In other words, knowing a procedure’s nesting is just what a

debugger could use to correctly print data values from different procedure nests.

"Cf. §3.3 of [20,44] and in particular, DW_TAG_subprogram.

20

One complication to this solution is that typically not all procedure nesting is
indicated by DWARF. In particular, C++ allows classes to be declared within the
scope of a procedure, thereby allowing class member functions to be indirectly nested
within a procedure. Moreover, this nesting is usually not represented in DWARF.
We defer discussion of this to Section 3.2.3 and for now assume programs do contain

such code.

3.2.2 Procedure Source File and Line Bounds

Recovering a procedure’s source file and line bounds is complicated by compiler
transformations. Usually, one expects the first instruction of a procedure to be the
start of the prologue and therefore to map to the first source line of a procedure.
Similarly, it appears reasonable that, in many cases, the last return instruction —
or if there is no return instruction (as could be the case with a tail call) the last
instruction — maps to the last statement within the procedure. While one could
contrive an example with unstructured control flow that maps the last return in-
struction elsewhere within the procedure, one might hypothesize that it should still
map within the source procedure, thereby giving the source file and an approximate
end line. However, compilers can schedule instructions before the prologue and relo-
cate the epilogue to somewhere in the middle of the procedure body. Moreover, they
can create a frame-less procedure by entirely eliminating the need for an activation
record [17] — and then inline other frame-less procedures at the begin and end. Fi-
nally, data between functions may make it difficult, without a complete disassembly,
to even determine where the last instruction in a procedure is located. Transfor-
mations such as these occur frequently enough to render most analyses of optimized

modular code useless if they are ignored.

21

Fortunately, we can again exploit the procedure descriptors within DWARF to
obtain most of the information necessary for identifying alien code. We have already
observed that while DWARF provides a way to record inlining decisions,® the inclusion
of this information is the exception rather than the norm. More felicitously, all
compilers we are familiar with generate a basic DWARF procedure descriptor that
includes the procedure’s name, defining source file and begin line, and low and high
addresses.’ The first three pieces of data are obviously welcome. Address ranges
are important because they enable the analyzer to ignore sections of data in the
middle of or at the end of procedures — addresses for which a line map query can
return misleading information. Conspicuously absent is a way to describe the source
procedure’s end line. It is worth noting again, that this information is tailored for
a debugger: while inlining information could enhance usability (e.g., breakpoints in
inlined routines), it is not necessary for basic debugger functionality; and end line
information is superfluous.

While DWARF provides accurate file names, begin lines and procedure nesting
information, this is not yet sufficient to accurately detect alien code. Because a
procedure may contain inlined code deriving from before or after it within the same
source file, it is essential to have accurate end lines. If we combine the nesting,
file, and begin line information with the Non-Overlapping Principle, we obtain the

following invariants:

Procedure Invariant 1. A procedure’s bounds are constrained by any parent proce-

dures that contain it.

8 Cf. DW_TAG._inlined subroutine in [20,44].

9Cf. DW_AT decl file, DW_AT declline, DW_AT low_pc, DW_AT high_pc, DW_AT ranges in
(20,44]. The DWARF2 low and high address constructs assume the procedure is contiguous, while
DWARFS3 allows a series of ranges to describe several non-contiguous blocks. Ranges are inclusive
so that the high address is the first address past the last instruction in the procedure.

22

subroutine Y ()
call z()

contains
subroutine z ()

end subroutine
end subroutine

subroutine Z()

end subroutine
Figure 3.3: Nested subroutines in Fortran.

Procedure Invariant 2. Let procedure y have sibling procedures x and z before and
after it, respectively. Then, y’s begin line is greater than x’s end line and its end line

is less than z’s begin line.'®

These invariants enable an analyzer to infer an upper bound on all procedure end
lines except for the last top-level procedure of a source file, whose upper bound is
oo. Even though a procedure may have an upper bound of oo, this can only occur
if it is the last procedure in a file, which means that any code inlined into it must
come from before it in the same file or from another file. Therefore, assuming we
have DWARF descriptors for every procedure, these bounds enable us to detect all

alien code if there is no nesting,.

The upper bounds we have established thus far, however, are not strictly enough
to identify all alien code in the case of procedure nesting, even if we assume that all
procedures have DWARF descriptors. To see this, consider the procedure hierarchy
in Figure 3.3 where Y and Z are two adjacent procedures at the same nesting level.

Using the end lines inferred from Procedure Invariants 1 and 2, an analyzer can

10Tf the procedures were on a single line, this inference would be incorrect. Practically, we can
ignore this possibility. If compilers routinely generated line and column information, this problem
could be eliminated.

23

easily detect all alien lines in Y deriving from procedures that are siblings of Y or
that are nested within one of its siblings. However, because Y’s end line bound is
known only to be less than Z’s begin line, if another procedure x is both a child of
Y and inlined into Y, the analyzer will not be able to detect alien code from z. To
avoid this problem, we observe that since Fortran places strict limits on how nested
procedures can be defined, an implication of the Non-Overlapping Principle is that

the descendants of a procedure form a partition.

Procedure Invariant 3. Let procedure Y have nested procedures xy ...z, in that
order. Then Fortran nesting implies that the executable code of Y and x; ...z, forms

n+ 1 ordered, contiguous source code regions.

Therefore Y should use 2’s begin line information to refine its end line bound, enabling
it to detect an inlined instance of z.

We now have a set of invariants that enable detection of all alien code given the
presence of basic DWARF information; we refer to the process of bounding procedure
end lines as infer-end-line-bounds. However, it is often the case that not all source
code procedures have associated DWARF descriptors. In particular, if a compiler can
inline all direct calls to a procedure and prove that it is never called indirectly — as
is often the case with static functions, non-virtual member functions and template
instantiations — it need not generate object code or a DWARF descriptor. Conse-
quently, there are often gaps in our knowledge of the source code ‘procedure space’.
Consider the example in Figure 3.4. There are four procedures, two that have as-
sociated object code (A and D) and two that have neither object code nor DWARF
descriptors (B and C). Furthermore, both A and D contain inlined fragments from C
and B, respectively. Procedure Invariant 2 provides an end line bound of < 40 on A
which is not tight enough to detect the alien code from C. Consequently, it appears

that A overlaps both B and C.

24

Inference Steps

Source and Object Code :
1. Detect Alien Code
10 A A:...
(){ . 10-18 | | A.beg: 10 Abeg: 10
cOi | G 3‘ Aend: <40 Aend: <40
cor 131233 A.has: 10-18, A.has: 10-18,
19: 1} = 31-33 31-33
20: B() {
B: none
25: 1}
30 C{) {
. C: none
35: 1}
. R D.beg: 40 D.beg: 40
40: D{() { D:...
... | 40-48 | | Dend: <o Dend: <o
B(); —— ' | D.has: 22-24, D.has: 40-48
2 40-48
., 22=-24
49: 1} _———— | D.alien: T D.alien: 22-24

The left side (the same as in Figure 3.5) shows source code and its corresponding object
code; boxes within the object code represent inlining. The right side shows that alien code
has been detected in D but not in A.

Figure 3.4: Detecting alien code with incomplete DWARF.

Clearly, it is therefore desirable to contract procedure end lines as much as possible.
One way of doing this is by taking advantage of DWARF’s C++ class information.
DWARF represents a class and its member functions in the same descriptor tree as
nested procedures. (Note that a debugger would use this information for printing data
or calling class member functions.) Even if every occurrence of a member function
has been inlined, that member function may have a ‘partial’ DWARF descriptor that
provides source file and begin line information for its definition, though the descriptor
will be incomplete in the sense that it contains no object addresses entries. By
‘instantiating’ these partial descriptors, source file scopes containing member function

definitions will have additional information by which to tighten procedure end line

25

Source and Object Code Inference Steps
1. Instantiate Z 2. A & Zoverlap! 3. Contract A

10: A { A:..._’

... 10-18

cOs ¢, | Abeg: 10 Abeg: 10 Abeg: 10 Abeg: 10

31-33 | RA.end: <40 Aend. <40 A.end: <22 Aend. <22
19) — | RA.has: 10-18, A.has: 10-18, Ahas: 10-18, —» A has: 10-18

31-33 31-33 31-33
20: B() { \
.. B:
25: none / \\

Zbeg: 22 Zbeg: 22 Zbeg: 22
30: c() { Zend: <40 Zend: <40 Zend: <40
... C: none Z.has: 22-24 Z.has: 22-24 Z.has: 22-24
35: 1} 74 31-33
/
— //
40: D() { D:... /
40-48 D.beg: 40 / D.beg: 40 D.beg: 40 D.beg: 40
BO/ |, D.end: <o D.end: <o D.end: <o D.end: <
] 22—24J D.has: 22-24, ™ D.has: 40-48 D.has: 40-48 D.has: 40-48

49: 1}

40-48

The left side (the same as in Figure 3.4) shows source code and its corresponding object
code; boxes within the object code represent inlining. The right side shows the inference
steps for ‘instantiating’ Z and then using its bounds to tighten (actual procedure) A’s end
line.

Figure 3.5: Contracting procedures’ end lines by instantiating alien contexts.

bounds. We name this instantiate-DWARF-descriptors. (Recall that we assume no
procedure-scoped classes.)

A second and more involved possibility for contracting procedure end lines is to
‘instantiate’ known alien regions. Since alien an region ideally corresponds to a dis-
tinct procedure we shall also refer to the region as an alien contezt and therefore call
the inference process instantiate-alien-contexts. As an illustration, consider the situa-
tion in Figure 3.5 which has the same source and object code as Figure 3.4. Initially
an analyzer must assume that A’s end line is less than 40 which would not enable it to

detect the alien code from C. However, because begin lines are accurate, the analyzer

26

can infer that alien code exists in D and instantiate ‘procedure’ Z (Inference Step 1),
which overlaps with A. What then can it infer from Z7?

Technically, from the analyzer’s perspective, Z could be an instance of A. This
would be the case if A’s source bounds actually included lines 10-33, but 1) opti-
mization eliminated lines 22-24; and 2) a version of A was cloned and inlined into D;
and then 3) optimization proceeded to eliminate all but lines 22-24.'' However, this
would be rather extraordinary and it would be reasonable to assume in most cases
that inferred procedures whose begin lines are not ‘close’ represent distinct proce-
dure contexts. Under this assumption, Z would be instantiated and assume a place
within the top-level procedure hierarchy (Inference Step 1).}? This in turn enables
the analyzer to remove lines 31-33 from A and combine them with Z (Inference Steps
2 and 3). While lines 31-33 could be split into a new Z’, it is better to simply ag-
gregate regions that the analyzer knows little about as long as they do not overlap
known procedures. It should be noted that because alien context region information
can change during the analysis of a procedure, ‘instantiation’ of alien contexts should
only be done after the procedure has been fully analyzed (cf. Section 4.1.2).

Because the act of instantiating a procedure introduces new information within
a particular file scope, it triggers a propagation pass that checks whether any proce-
dures overlapping the newly instantiated procedure should tighten their bounds —
possibly giving rise to more instantiations. Therefore, we would like to establish an
upper bound on the number of times that procedure end lines must be updated. Since
inferred procedures may only change the end lines of actual (non-inferred) procedures,

a propagation pass only needs to consider overlapping with other actual procedures

"Recall that often the main purpose of inlining is to expand the known context for analysis,
specialization and instruction scheduling.

12Technically, Z could be a nested procedure and may not belong at the top level. However, it is
still valid to use Z’s bounds to contract actual procedures’ end lines.

27

within the same file scope. Moreover, the number of times a procedure can be in-
stantiated is independent of the number of times the procedure is inlined. Therefore,
even if a procedure is inlined many times, the first time it is detected and instantiated
is the only time it may trigger a propagation pass.'> Observe that we can bound the
number of procedures that can be inferred for one file by the number of procedures
from that file whose DWARF descriptors do not include object code ranges. Let p;
and g; be the number procedures within file ¢ with and without DWARF descriptors,
respectively. Then the number of propagation passes induced by file ¢ can be bounded
by O(g;) where each pass examines at most O(p;) actual procedures. While the ex-
amination of an actual procedure may result in the creation of yet another inferred
procedure, the total number of propagation passes for the whole binary is bounded
by Q@ = >_7 ¢; (where n is the number of files). If we let p’ be the maximum value of
p; over all files, then we can bound the number of propagated changes for the whole
load module by O(p'Q).

While we can establish an upper bound on the inference steps required by instantiate-
alien-contexts, the profitability of using it to refine actual procedures’ end lines is
suspect. In practice, the most commonly inlined procedures are class functions and
template instantiations, both of which are typically defined before being inlined in
their ultimate host procedure(s). This means that without instantiate-alien-contexts,
most alien code can be easily detected by using accurate file and begin lines. More-
over, while instantiate-alien-contexts has the potential of improving alien detection, it
can also make incorrect inferences (as illustrated in the example where A’s bounds
could have been 10-33) and hence does not have the desirable property of being

‘conservative.” Finally, implementing this process of instantiation and propagation is

3Technically, cloning and specialization of procedures might create instances where one version
appeared to contain lines 10-12 and another 11-13. As with the validity of instantiating Z, a heuristic
would have to determine whether the begin lines were ‘close’ enough.

28

non-trivial. Instead of instantiate-alien-contexts, we recommend employing instantiate-
DWARF-descriptors.

Before summarizing our results, we consider two final matters. First, because of
compiler-generated template specialization, multiple object code procedures may be
generated that map to the same source file and begin line. While we do not regard
this as an exception to the Non-Overlapping Principle, it is a complication that must
be handled. Second, sometimes procedures are split such that they have multiple
symbol table entries and yet appear to have overlapping source code. In such cases,
we can fuse the procedures because even though their link names are different, their
DWARF names will be identical.

In summary, combining basic DWARF information — procedure nesting, name,
source file and begin line -— with the Non-Overlapping Principle enables an analyzer
to infer highly accurate source code bounds (infer-end-line-bounds) as well as detect all
alien code given DWARF descriptors for every procedure. (Recall that we are assum-
ing the source code contains no procedure-scoped C++ classes.) More practically,
when some DWARF descriptors are missing, our methods enable detection of most
alien code in typical binaries and do not erroneously classify native code as alien.
instantiate-DWARF-descriptors is an easy and conservative way to fill in many gaps
within the procedure hierarchy. Neither alien names nor nested inlining information

can be recovered without additional information.

3.2.3 Indirect Procedure Nesting

C-++ permits classes to be declared within the scope of a procedure, thereby allow-
ing class member functions to be transitively nested within a procedure. Recall that
to establish procedure nesting, we relied upon the DWARF procedure descriptor tree.

Further recall that DWARF represents a class and its member functions in the same

29

descriptor tree as nested procedures; and that member functions at least have ‘partial’
DWARPF descriptors that provide source file and begin line information. While one
might expect procedure-scoped classes to be nested within their procedure descriptor,
they are usually promoted to the top level of the DWARF tree. Consequently, al-
though nested classes are represented in DWARF as children of their enclosing class,
a procedure-scoped outer class is usually not associated with its enclosing procedure.

Assume for the moment that we have DWARF descriptors for every procedure.
In this case, re-nesting a procedure-scoped class and its member functions given the
procedure hierarchy is trivial since the Non-Overlapping Principle implies that any
class member function that has a begin line within a procedure must be nested within
that procedure. The challenge, however, is distinguishing class member function code
from the enclosing procedure’s code. Suppose a class with one member function is
declared within a procedure. This class’s member function is likely to be inlined,
causing object code mapping to the member function to be intermingled with code
native to the procedure. However, unlike the strict requirements for Fortran nested
procedures, the class declaration may appear anywhere in the procedure that a dec-
laration may appear. Since we do not have member function end lines, we need some
way of dividing between the source lines for the member function and those for the
procedure.

More generally, suppose we have a procedure-scoped class that possibly contains
nested class declarations. Assume there are a total of n member functions between
the different classes. C++ permits class declarations to appear not only within class
scopes, but within class member function scopes, implying that the member functions
do not necessarily form n contiguous regions, as was the case with Fortran nesting
(Procedure Invariant 3). Since class declarations within class member functions are

extremely rare, we shall ignore this problem for the moment and assume that the

30

<F n="zoo.cpp"> Steps
<P n="zoo" 1="10-15">

<Alien |f="zoo.cpp"|... 1="16-50" > 2. LC’ode use before a declamtz’on’

</Alien>
</P>
<Class n="..." [1="16-25"] 1. Instantiate class (incorrectly)
</Class>

Figure 3.6: Detecting incorrect class nesting through backward references.

member functions can be ‘flattened’ into n contiguous regions. This means we can
apply Procedure Invariant 2 to obtain end line bounds on the first n — 1 member
functions. Moreover, these end lines are tight enough to give unambiguous procedure-
sized regions.’* Unfortunately, Procedure Invariant 1 only bounds the nth member
function’s end line by the procedure’s end line, implying that there is no is no clear way
to divide the scope of the nth member function and the rest of the enclosing procedure.
This problem means that even with DWARF descriptors for every procedure, we
cannot necessarily detect all alien code within a procedure. However, since procedure-
scoped classes are extremely unlikely to contain important code from the perspective
of performance, a reasonable approach is to assign code deriving from the ambiguous

region after the nth member function to the procedure.

Of course, in the general case, we cannot assume that we have DWARF descriptors
for every procedure. Consequently, given a particular class’s DWARF descriptor, we
cannot be sure if the class is a procedure-scoped class or a top-level class. Fortunately,
it is rare to declare classes within procedures.!®> Nevertheless, we have developed a
reasonable strategy (which has not been implemented) that should be able to detect

most instances of procedure-scoped classes. We first observe that it is very unlikely for

14Technically, these regions could overlap data declarations, but this is unimportant.
5For example, one use for procedure-scoped classes is as a type argument to a template instance
that is local to the procedure. However, procedure-scoped classes cannot be used in this way.

31

a procedure with a procedure-scoped class to be be inlined; conversely, it is extremely
likely that at least one of the member functions of the procedure-scoped will be
inlined. Because of this, a procedure-scoped class that is wrongly instantiated as a
top-level class can only result in erroneous alien detection for one procedure, namely
its host procedure. Moreover, included with the class information that compilers
generate is the begin line of the actual class declaration. Thus, we can employ a
guess and correct strategy, as depicted in Figure 3.6. First, an analyzer instantiates
a given class descriptor with the assumption that it derives from the top-level (Step
1). Then, after processing the procedure (if any) that is immediately before the class
declaration, the analyzer checks that procedure. If it observes a situation similar to
Step 2 where class member functions have been inlined before they were declared, it
has found an impossibility. An adequate resolution is to nest the class and repeat

analysis of the procedure.

3.2.4 1In the Absence of DWARF

Sometimes a load module contains procedures without DWARF descriptors. Since
this also implies that such a procedure has no entry within the DWARF procedure
hierarchy, an analyzer cannot easily use Procedure Invariants 1, 2 and 3 to establish
limits on the procedure’s bounds.

Assuming that only a small fraction of the object code has no DWARF descriptor,
we have had moderate success with simply consulting the begin and end instruction
to estimate a procedure’s bounds and source file. We have also found that carefully
using ‘fuzzy’ line matching for determining whether a statement is alien frequently
improves results. ‘Fuzzy’ line matching tests for a statement’s inclusion within the
current procedure’s bounds by using an upper and lower bound tolerance factor. If

the tolerance factor would include the statement within the bounds, the statement is

32

deemed to be native and the bounds grow accordingly to include it. Since statements
(instructions) are processed incrementally, bounds can also grow incrementally, with
different rates, depending on the tolerance factor. See Algorithm 4.4 on page 58 for
an example implementation. While this heuristic is not conservative, its results have
been quite acceptable.

For load modules without any supplemental DWARF information — or its equiv-
alent from another debugging format — prospects for accurately recovering procedure
bounds and detecting alien code in highly optimized binaries are bleak. As previously
discussed, typical line map information is too irregular to permit simple rules to com-
pute procedure bounds. While it is not likely to be helpful, it is worth noting that if
accurate procedure bounds are already available, it is easy to recover the procedure

hierarchy by using the Non-Overlapping Principle.

3.2.5 Macros and Generated Source Code

Most C and C++ (as well as some some Fortran) codes make heavy use of pre-
processing directives and macros. Probably the most commonly used directive is
#include for including the contents of another file. This directive is typically used
to provide procedure and data declarations implemented by other files or libraries.
To enable the compiler to relate the preprocessed result with the original source, the
compiler’s preprocessor emits special #1line directives that contains a source file and

line number. A #line directive has the form
#line line-number source-file

and informs the compiler that the line map information for what follows should be
relative to the directive’s source file and line number. Besides #include, another

common directive is #define, which is commonly used to define a macro ‘function’

33

<F n="main.cpp">
<P n="zoo" 1="10-100">

A; <A |f="moo.cpp" n="zoo" 1="10-13"

>

L; <L 1="20-50">
As <A [f="moo.cpp" n="zoo" 1="10—15"‘>

</h>
</L;'
Figure 3.7: Alien context ambiguity.
such as MAX(a,b). These ‘functions’ are expanded — ‘inlined’” — at compile time.

While most macro functions are small expressions, some codes make heavy use of these
function macros to implement large bodies of code such as loops. Unfortunately, pre-
processors typically do not identify expanded macro functions with #1line directives.
While DWARF does provide a means for describing how macros are expanded, com-
pilers typically do not generate this information. Thus, expanded function macros
cannot be detected as alien code.

Similarly, some codes employ their own source-code generators using scripts to
generate code that is then fed to a vendor compiler. If a generator fails to include
#line directives, a compiler cannot correlate the generated code with the source code.
Fortunately, there is a natural deterrence against excluding this information because

it also means that debuggers cannot follow source code!

3.3 Recovering Alien Contexts

Within a procedure in the object to source code scope tree (c¢f. Figure 3.1), an
alien context (or scope) indicates the inclusion of alien code. Figure 3.7 shows an

example of two alien contexts, A; and A,. This information enables one to distinguish

34

between costs due to native and alien code. At least two additional questions present
themselves. First, should we attempt to instantiate alien contexts, thereby filling
in ‘missing’ information within the procedure forest? Second, should we attempt to
recover alien context nesting?

The first question was discussed in Section 3.2.2 where instantiate-alien-contexts
was used to improve actual procedure’s end lines; it was answered in the negative.
Rather, we argued that it was better to ‘instantiate’ procedures without object code
but for which partial DWARF descriptors exist (instantiate-DWARF-descriptors).

An alternative to instantiating alien contexts is to partition coarse alien context
regions into fine-grained regions, which we call partition-alien-contexts. Recall that
alien code is detected within a procedure when its source line information maps to
a different file or is outside of the procedure’s bounds. Consequently, alien context
regions are qualified mainly by source file and may include several procedures implying
that it is not possible in general to distinguish between separate instances of inlined
procedures. However, observe that because alien contexts are qualified by source file,
the Non-Overlapping Principle allows them to be partitioned when it can be shown
that they overlap a known procedure boundary from the same file. One simple and
conservative way of partitioning an alien context is to use begin line information
from all available DWARF descriptors — including any C-++ class descriptors —
that derive from that context’s file. For example, if n member functions of a class
are defined within a single class declaration, then C++ class declaration rules and
Procedure Invariant 2 imply that there are at least n — 1 unambiguous function-sized
regions (cf. Section 3.2.3).2® In general, to implement partition-alien-contexts, all the
DWAREF descriptors for a particular source file can be used to partition alien contexts

deriving from that file. Also, since neither the extent nor the final locations of alien

161t is permissible to ignore any classes that are defined within class member functions.

35

contexts within a procedure are known until it is fully processed, the best way to
partition alien contexts is through a normalization post-pass.

With respect to the second question, we have already noted in Section 3.2.2 that
we do not have enough information to recover nested inlining. Recovering nesting
actually involves two separate issues: recovering procedure-sized rather than file-sized
alien contexts, and then nesting them. As just discussed, file-sized alien contexts can
be accurately partitioned, though not necessarily always into procedure-sized chunks.
The most problematic issue is nesting.

Because recovering alien context nesting would enable us to accurately fill in
sequences of missing frames with call path profiling data, a solution is desirable. An
ideal solution is for compilers to generate DWARF inlining information. Another
solution is to merge static call graph information with the recovered alien contexts
to infer nesting. Such call graph information could be constructed by a source-level
tool or a binary analyzer. A binary analyzer would need to analyze each call site
in the binary, attempting to disambiguate indirect calls (e.g., those made through
registers) using data-flow analysis. It should be noted that there is no correlation
between instruction order and nesting.

Without call site information, alien context recovery may encounter ambiguous
information that cannot be resolved. The example in Figure 3.7 shows two alien
contexts A; and A, with overlapping bounds, where A, is embedded within loop L;.
If there were no alien contexts, loop normalization (c¢f. Section 3.6.1) would apply
a version of the Non-Overlapping Principle, and merge the code outside the loop
with the overlapping instances inside it, accounting for loop-invariant code motion.
However, without call site information, we cannot distinguish between 1) one distinct

call site within the loop, where some of the inlined code was was loop invariant; or 2)

36

two distinct call sites where some of the code from the first call site (A;) was entirely
eliminated.
A number of details with respect to managing alien context detection and recovery

are discussed in Section 4.1.2.

3.4 Recovering Loop Nests

Loops form the computational core of most scientific applications. Therefore,
given the object code for a certain procedure, we wish to recover loop nests with
accurate source line bounds.

This task can be broadly divided into two components: 1) analyzing object code
to find loops and 2) inferring a source code representation from them. To find loop
nests within the object code, our bloop analyzer first decodes the instructions in
a procedure. Then, using the OpenAnalysis infrastructure [42], it reconstructs the
control flow graph (CFG) and then computes the tree of strongly connected regions
using Havlak’s algorithm [27] for recovering loop nests. Within the tree, each node
corresponds to a basic block of the CFG and each cyclic reducible (single-entry)
region corresponds to a loop where the target node of the backward branch is treated
as the loop header. Irreducible (multi-entry) regions are examined for loops and can
themselves optionally be treated as loops.

Given this tree of object code loops, bloop then combines each loop with source
file information to reconstruct a close approximation of the corresponding source code
loop nesting tree. This involves identifying alien code (using the techniques of Section
3.2), inferring loop bounds, and reversing compiler transformations such as software
pipelining that create multiple object code loops that map to the same source lines.

However, in contrast to the problem of recovering the procedure hierarchy, there is

37

no additional DWARF information available to the analyzer for forming a skeletal
solution: DWARF has no constructs for representing loops. Moreover, within fully
optimized binaries, the object code is a swirl of instructions, possibly from different
contexts, that is the product of loop transformations such as loop-invariant code
motion, loop unrolling, loop distribution, loop fusion and software pipelining. Since
we have no definite information about where loops begin or end within source code,
the only thing we can assume is that accurate procedure bounds enable us to detect
alien code. Given this situation, any algorithmm must approximate a solution; the
challenge, therefore, is to develop a set of heuristics that are general enough to apply
to all vendor compilers but powerful enough to produce accurate results.

It is not immediately clear where to begin searching for solid ground. One obvious
observation is that nested source code loops also obey the Non-Overlapping Principle.

Two immediate inferences are that:

Loop Invariant 1. A loop’s bounds are constrained by any outer loops that contain

1t as well as its containing procedure.

Loop Invariant 2. Let loop y have sibling loops x and z before and after it, respec-
twely. Then, y’s begin line is greater than x’s end line and its end line is less than

z’s begin line.r"

These two observations would be powerful tools if we had some prior knowledge
of loop bounds. Another limitation is that while they accurately describe source
code, they do not elegantly describe the transformed loops that the object code is
generated from. For example, when loops are split while partitioning the iteration

space, line map information will suggest that the object code contains two sibling

171f the loops were on a single line, this inference would be incorrect. Practically, we can ignore
this possibility. If compilers routinely generated line and column information, this problem could be
eliminated.

38

loops whose bounds do overlap. This fact means that care is needed when employing
these invariants.

A third observation that is just a reformulation of what loop invariant code motion
guarantees not to do is that: A computation at level | will (usually) not be moved
into a loop that is at a nesting level deeper than . (We adopt the convention that
top-level loops have a nesting level of 1 and top-level statements a level of 0.) This
observation presents an opportunity for developing a heuristic to actually estimate
loop bounds. For example, given accurate procedure bounds, we could scan through
all the non-alien statements within a particular loop and compute a minimum and
maximum line number, which we call the min-max heuristic.

As one might expect, there are complications, most significantly from ‘forward
substitution.” A Fortran statement function — a single statement function defini-
tion within a procedure that appears after type declarations but before executable
statements — may be used within a loop; these statement ‘functions’ have no cor-
responding DWARF descriptor. As discussed in Section 3.2.3, C++ permits classes
to be defined within procedures; and the best end line bound for the last member
function is the procedure’s end line bound. In either case, as the statement function
or last member function is inlined, a compiler typically associates the expanded code
with the definition rather than the host location. Consequently, such a forward sub-
stitution that appears in a loop will not appear to be alien to the procedure, even
though it is alien to the loop. As a result, a forward substituted statement appearing
in the first loop of a procedure will cause the begin line of this loop to expand and in-
clude all statements prior to the loop. While inordinate expansion of other loops can
be prevented using Loop Invariant 2, significantly erroneous bounds for the first loop
is problematic enough: we have observed a situation where such distortion caused

very inaccurate results for the first loop in an important procedure.

39

To prevent this problem, we would like some mechanism of estimating the begin
line of a loop. When loops are compiled to object code, the loop header test is
typically translated into a conditional backward branch that, based on the result of
the loop test, returns to the top of the loop or falls through to the next instruction.
Consequently, we expect a loop’s backward branch to retain the source line of the
loop condition, and therefore the loop header. Thus, it appears reasonable to consult
the source line information of this backward branch instruction to approximate the
loop begin line. Expectation and reality can often be disjoint, but it turns out that
compilers usually construct the line map in this manner (excepting GCC 3.4.x). Since
no analogous ‘backward substitution’ problems exist to threaten loop end bounds,
we can modify the simple min-max heuristic to form the bbranch-max heuristic for
computing loop begin and end lines: the loop begin line can be approximated using
information from the backward branch; and the best loop end line is the maximum
line after all alien and non-loop lines have been removed.

Unfortunately, this modified heuristic is still more fragile than we would like. For
one, we would like to handle GCC 3.4.x. A less common issue is that loops written
using unstructured control flow often have a loop test and backward branch at the end
of the loop — which is not surprising since object code itself uses unstructured control
flow constructs. Since it is not possible from the object code to distinguish between
structured and unstructured control flow, the bbranch-max heuristic will assign a loop
begin line larger than it should be. This presents us with a serious practical dilemma
because the analyzer will eject lines that actually belong in the loop, having the
two-fold effect of distorting metric attribution (e.g., assigning costs to a non-loop

statement that should belong to the loop) and annoying the analyst.'®

18As one might suspect, the relative severity ratings of these effects varies with the analyst and
his mood!

40

Possible Source Code Structures

Object Code
___________ (2) L, is inlined from moo.c (b) L, is inlined from zoo.c
abe: ... ‘main.c
<L 1="10-20” addr="abe"> <L 1="10-20" addr="abe">
<§ 1="12"> <s 1="12">
babe:| ...
1200.C, L, <L b="50-52" addr="babe"> L <L b="50-52" addr="babe">

... imoog:,
c.br babe | </1> </1>
_
<§ 1="18"> <$ 1="18">
c.br abe </L> </L>

Figure 3.8: Recovering alien contexts within a loop body.

We have therefore experimented with ‘fuzzy’ line matching (introduced for proce-
dures in Section 3.2.4) to form the bbranch-max-fuzzy heuristic. For loops, we found
that a begin line tolerance of 5 was small enough to usually prevent a loop from
growing past its actual begin line, but large enough to reach the begin line. (Cf.
Algorithm 4.4 on page 58; the end line tolerance is oc to assign the maximum line
within the loop as the end line.) Of course, it is possible to confound this heuris-
tic with, e.g., Fortran statement functions located within the tolerance factor of the
loop. However, because statement functions must appear after type declarations and
before executable statements, the Non-Overlapping Principle bounds a loop’s begin

line both by the first executable statement and by the procedure’s begin line.

While bbranch-max-fuzzy handles situations with simple inlining quite well, a more
severe problem remains. The first part of the problem is simply observing that loops
themselves may be inlined. Because loops are typically so important, when recovering
loop nests within a procedure, it is imperative to ensure that alien or native loops
are assigned to the appropriate alien or native context, respectively. Therefore, the

goal of loop recovery is not simply one of computing loop bounds where there is

41

no definite meta-information, but recovering a loop’s line bounds and its enclosing
procedure context without meta-information — where the enclosing procedure context
refers simply to the loop’s enclosing alien or procedure scope within the scope tree.
The difficulty is that bbranch-max-fuzzy always estimates a loop’s begin line and
procedure context from an instruction associated with the loop’s header, specifically
its condition test. In doing so, it implicitly assumes that the procedure context for
that instruction is the same context as other instructions from the loop, including the
loop body. The impact of this assumption is illustrated in Figure 3.8. The object code
in the figure contains two loops, one beginning at abe and the other at babe. Assume
that loop abe is correctly located and that we are in the process of determining the
procedure context of loop babe (L;). Clearly babe is an inlined loop — and we can
detect this — but it is not clear whether it was inlined from file moo.c or zoo.c. If,
as Case (a) depicts, the former is true, then bbranch-max-fuzzy will correctly choose
moo. c as the alien procedure context because the backward branch is associated with
that file. If on the contrary, loop babe actually derives from zoo.c, then bbranch-
max-fuzzy will still infer the result in Case (a) when it should have inferred Case
(b). For bbranch-max-fuzzy, this situation is inherently ambiguous; in general, it may
assume both an incorrect loop begin line and an incorrect procedure context. This
error will be compounded if the loop contains other loops, ultimately resulting in
both inaccurate cost correlations and incoherent visualizations. Moreover, within
object-oriented C++, it is very common for loop headers to contain inlined condition

tests.

The example in Figure 3.8 was contrived to be especially wicked; in fact, it is
fundamentally ambiguous. However, the more common problem is how to distinguish

between a loop deriving from an alien context (and which itself may have alien loops)

42

<F |n="main.cpp "1> Steps
<P n="init" [1="145-199" D>

A1 1. Find alien scope

S1 <8 1="82-82"/>

Lo <L 1="83-83"> 2. Locate loop (incorrectly)
So <S 1="83-83"/>

Az <A |f="main.cpp"| n="init" 1="158-158">

Ss [<s 1="158-158"/>] 3. | Self nesting!

Figure 3.9: Detecting incorrect loop placement through nesting cycles.

and one that only contains alien contexts within its header or body. Our solution to
this problem, is to guess and correct, and is related to the design decisions elaborated
in Section 4.1. In brief, the analyzer processes instructions within a loop one-by-one;
and for each instruction it determines that instruction’s procedure context and its
source line location within that context. Figure 3.9 shows a partially reconstructed
procedure where alien scope A; has been identified (Step 1) by using the source line
information for the instruction corresponding to S;. When the analyzer processes the
loop header () for L, using bbranch-max-fuzzy (Step 2), it must determine whether
the source line loop should be located in the current procedure context, a prior context
(which would imply the current context is alien), or a new alien context. In this case,
thanks to S, the analyzer ‘guesses’ that the loop header should be located within
the current alien procedure context A;. The analyzer next processes S3 (Step 3),
which it determines must be alien to the current procedure context A;, resulting in
the new alien context A;. However, because Az’s bounds are within init’s bounds,
this implies that init is inlined inside of itself, which is nonsense. This shows that

the guess at Step 2 was wrong.

This observation, which is another implication of the Non-Overlapping Principle,

can be reformulated more generally as follows:

43

Before After

<F n="main.cpp"> <F n="main.cpp">
<P n="init" 1="145-199"> <P n="init" 1="145-199">
A1
<S 1="82-82"/> <§ 1="82-82"/>

Ly <L 1="83-83"> <L [1="1568-158"}p

S <S 1="83-83"/> <S8 1="83-83"/>
<A>

Ss <S |1="158-158" /> <S 1="158-158"/>

To correct the nesting cycle of Figure 3.9, 1) un-nest Ly; 2) update its bounds with Ss; and
3) replicate A;’s context for Ss.

Figure 3.10: Correcting nesting cycles.

Procedure Invariant 4. Let L be a loop nest rooted in an alien scope C,. Further-
more, let L have loop levels 1...n. Now, let s be the deepest occurrence of a statement
at level m (1 < m < n) that clearly belongs in a shallower procedure context C'. Since
C' is a shallower procedure context, it must be a parent of C, which implies that C'

18 nested within itself, which is tmpossible.

When an impossibility such as this is found, the analyzer, knowing that L was mislo-
cated, can correct the situation by relocating all levels of L from C, to within C’. An
example for Figure 3.9 is shown in Figure 3.10. In this case, L; is un-nested one level,
which places it within the correct procedure context and its bounds are updated to
include S3. S, remains nested in L;, but A;’s context must be replicated to correctly
represent it. Observe that fuzzy matching can be a useful heuristic for expanding the
the begin line of L,. Correcting nesting cycles is discussed in more detail in Section
4.1.2 and Algorithm 4.3 on page page 57.

Combining bbranch-max-fuzzy with nesting cycle correction enables a binary an-
alyzer to accurately handle most inlining within loop nests. However, there is still

another thorny issue with respect to recovering loops in the vicinity of alien contexts.

44

Consider the case where a loop is located within an alien context. bbranch-max-fuzzy
relies on both an accurate loop begin line and procedure bounds to detect code that
is alien to the procedure and the loop (forward substitution). Recall that we have
little ability to distinguish between distinct alien procedure contexts deriving from
the same source file. This means that while processing a loop located within an alien
context, we have little ability to detect alien code unless it derives from a different
file. Even if we assume an accurate loop begin line, a routine from the same file
but defined afterward could be inlined into the loop, causing the bbranch-max-fuzzy
heuristic to improperly expand the loop’s end line. While sibling loops will constrain
the loop’s bounds (Loop Invariant 2), this does not help the case of a single loop,
which is much more likely to be found inlined than several sibling loops. Given our
limited information, there is little that can be easily done. We have experimented
with context-sensitive fuzzy matching that makes loop bounds matching more con-
servative when located within an alien scope. The effects can be complex, because a
loop may initially appear to be within an alien context (by backward branch infor-
mation) but later emerge as a native loop. However, in practice, we have found that
tightening the loop end line matching tolerance from oo to 20 produces good results
(cf. Algorithm 4.4 on page 58).

Before concluding this section, we consider two special cases. First, compilers can
both remove and add loops to object code. One way a compiler removes a loop is by
completely unrolling it and replacing it with an equivalent computation. Such a loop
might perform a trivial computation or it might be the inner loop of a loop nest. In
contrast to loop removal, a compiler may ¢ntroduce a new loop, e.g., to implement
Fortran 90 array or array triplet notation. These two transformations mean that in
some cases, an analyzer will be unable to recover an actual source loop, while in other

cases it will infer a loop where there is none. However, from the perspective of the

45

analyst, this is actually a very desirable property. Identifying (full) loop unrolling and
discovering implicit loops with binary analysis highlights its unique ability to reveal
what actually is executed. If, e.g., careless use of Fortran’s array notation induces
an unexpected loop — such as a copy when passing a slice as an argument — this is
important to know about!

The second special case is that procedures are not always contiguous, such as
when compilers place data in the middle of routines. While DWARF address ranges
may indicate such non-contiguity, because loop recovery includes basic instruction
decoding and creation of the CFG, data will be gracefully ignored.

In summary, the methods of this section enable a binary analyzer to identify loop
bounds and procedure contexts with a large degree of precision for very complex
object code. Implementation of the bbranch-max-fuzzy heuristic and nesting cycle
correction is very effective and in practice we often are able to precisely identify loop
bounds. These methods, however, are incomplete because we have not yet accounted
for loop invariant code motion and loop transformations such as software pipelining.
Because of this, the same line instance may be found both outside of a loop and
within it (e.g., partial invariant code motion) or there may be duplicate nests that
appear to be siblings (e.g., iteration space splitting). To account for compiler loop
transformations, we use the normalization passes described in Section 3.6.1.

Our methods for loop recovery have resorted to heuristics such as bbranch-max-
fuzzy for recovering loop nests. In practice these methods recover very accurate loops,
though the potential exists for pathological cases. Because of this, it is important to
observe that if the procedure context of a loop is determined incorrectly, the effects
of this error are limited at most to one procedure, namely the host procedure. More-
over, while bbranch-max-fuzzy does makes an assumption (line map information for

the backward branch) about typical compiler behavior to identify forward substitu-

46

tion, it is primarily based on the observation that moving statements into loop nests
is profitable neither from a machine-independent nor machine-specific perspective.
This suggests that the heuristic is unlikely to be invalidated by a future compiler
optimization.

A limitation of the methods of this section is that we have inferred loop con-
structs through careful use of line-based information as opposed to any sort of source
loop descriptor. While in many cases this works extremely well, more complex loop
transformations may lessen their accuracy. For example, automatically parallelizing
Fortran compilers often attempt to interchange loops, meaning that a certain loop
will be moved more deeply into a loop nest. If loop begin lines could be recovered
with perfect accuracy, then the analyzer could detect that an outer loop was nested
within an inner loop. However, because bbranch-max-fuzzy cannot assume begin lines
are completely accurate, it will use Loop Invariant 1 and expand the bounds of the
new outer loop, creating what appears to be (at least) two loops with the same begin

line.

3.5 Recovering Groups of Procedures

Within object-oriented code, groups of procedures are often important. For ex-
ample, C++ classes contain member functions that collectively implement all the op-
erations related to a certain abstraction. Application developers often wish to know
what the cost of these abstractions are. Placing member functions in a ‘first-class’
group enables a correlation tool to attribute performance data to all the functions
collectively as well as individually. In other words, the effect of inlining small and com-
monly used procedures is to distribute the costs of these abstractions to their caller;

‘instantiating’ the procedures (and maintaining object code links) enables these costs

47

to be aggregated, thereby providing a way to gauge the effectiveness of a compiler at
minimizing the cost of such abstractions.

Recall that DWARF represents a C++ class and its member functions in the
same descriptor tree as nested procedures. Therefore, all member functions of a class
are naturally grouped as children of the class, making it trivial to create groups of
member function names. If all instances of a member function happen to be inlined, it
has a ‘partial’ DWARF descriptor which still has file and line information. Moreover,
alien code within a procedure is identified by its file and line of origin. An analysis
tool can therefore associate DWARF member function descriptors (whether partial
or full) with alien contexts.

However, this involves a number of complexities. If a coarse (‘file-sized’) alien
context contains inlined member functions from two different classes, then that one
context — along with its associated performance metrics — will be associated with
both classes! An approximate solution to this problem is to use DWARF class mem-
ber function descriptors to partition coarse alien context regions into function-sized
chunks as discussed for partition-alien-contexts in Section 3.3.

Another use for procedure groupings is to expose the costs of the various instanti-
ations of a template. Instantiations of templated functions are treated as procedures
from the perspective of DWARF descriptors. Since non-inlined template instantia-
tions have DWARF descriptors that map to the same begin line and directly overlap
each other, groups can be inferred for them. In contrast, inlined template instan-
tiations are analogous to (fully) inlined functions and have no DWARF descriptors.
It is worth noting that this method only groups compiler generated instantiations
for one specific template; in particular, it cannot group several partially specialized

templates together because they map to different, non-overlapping source lines.

43

Since templated classes are classes, compilers typically record class member func-
tion information for each instantiated class. In this case, the above methods for a
non-templated class can be employed. However, care must be taken since the DWARF
class descriptors are unrelated to each other. To avoid considering the same template
class multiple times, the DWARF class descriptors should be grouped in some manner
using the Non-Overlapping Principle (as was done with templated functions) applied
to the first class member function.

In summary, we have identified some ways in which functions can be grouped
together to represent abstractions such as C++ classes and templates. These groups
enable performance metrics that would otherwise be distributed to be aggregated
and charged to the abstraction itself. We suspect that for common and regular
coding practices a relatively simple application of our class-based heuristics would
yield significant insight. We have not implemented them, however, partly because of

the difficulties of using GNU Binutils (¢f. Section 4.2).

3.6 Normalization

3.6.1 Procedures and Loops

As explained in the closing of Section 3.4, it is necessary to ‘undo’ the effects
of compiler loop transformations to remove duplicate line instances. To do this we
develop normalizations that are additional applications of the Non-Overlapping Prin-
ciple.

The first and most important loop normalization, which we call coalesce-duplicate-

statements, is the appropriate modification of the normalization given in Section 2.2:

e whenever a statement instance (line) appears in two or more disjoint loop nests,

fuse the nests but only within the same procedure context: and

49

e whenever a statement instance (line) appears at multiple distinct levels of the
same loop nest (i.e., not crossing procedure conterts), elide all instances other

than the most deeply nested one.

The second normalization, merge-perfectly-nested-loops, merges perfectly nested loops
with identical bounds.

coalesce-duplicate-statements should be applied before merge-perfectly-nested-loops
because it can create perfect loop nests. When merging statements and loops it is

important to also merge their associated object address range intervals.

3.6.2 Alien Contexts

As discussed in Section 3.3, partition-alien-contexts can partition file-based alien
contexts into more fine-grained contexts using begin line information for all DWARF

descriptors that derive from that file.

3.6.3 Ordering

See Algorithm 4.1 on page 52 for an example normalization phase. First, loop
normalizations should be applied in the order presented. After this, alien contexts
(which may contain loops) may be partitioned with partition-alien-contexts.

As artifacts of other normalizations, empty scopes may remain within the scope
tree. We find it convenient, therefore, to apply a final normalization pass, remove-
empty-scopes, to remove any empty scope that is associated with an empty object
code address range. Note that a procedure or loop may be empty in the sense that it
contains no statements that map to known source lines, but has a non-empty address
range. Since profiling data could map to one of these ‘empty’ scopes for which at

least a small amount of information is known, it is desirable not to remove them.

50

Chapter 4

From Bloopers to bloop: Implementation

We have implemented the strategies presented in Chapter 3 within HPCTOOLKIT’s
bloop tool. We currently support several Linux ABI’s including x86-Linux, x86-64-
Linux, Itanium-Linux and MIPS64-Linux. We support debugging information gen-
erated by at least GNU GCC (versions 3.x and 4.x), Intel (versions 8.x and 9.x),
PathScale (versions 2.x and 3.x), and The Portland Group (PGI) (versions 6.x).

While our prior discussion suggests the outlines of an implementation, there are
a number of important design and implementation issues that remain. These are

discussed in the following sections.

4.1 Design and Implementation

The basic algorithms for bloop and its helper functions are presented in Algo-
rithms 4.1, 4.2, 4.3, and 4.4.

Algorithm 4.1 shows the main driver, which can be divided into three parts. The
algorithm takes a load module and returns the object to source code structure map
in the form of a scope tree. The first step is to form a skeletal representation of
the procedure hierarchy by consulting the DWARF procedure descriptors for the
procedures contained in the binary’s symbol table. Procedure representations for
partial DWARF descriptors may also be instantiated (instantiate-DWARF-descriptors).

Second, for each object code procedure, the analyzer creates a control flow graph and

51

Algorithm 4.1: bloop’s driver.

Input: A load module Im (with DWARF debugging information)
Result: ¥, Im’s object to source code structure map (cf. Figure 3.1)

let €2 : recovered-procedure — object-procedure be the object code map
let A : object-procedure — DWARF-descriptor be the descriptor map
let A: address — (file-name, proc-name, line) be the line map

// Infer skeletal structure of X
instantiate-DWARF-descriptors (using descriptors in A without object code)
foreach object-procedure pq in Q s.t. d — A(pg) # NIL do
Create source code representation py for pg within ¥ (using d’s info),
locating py, within appropriate source file and procedure scopes.
end
Estimate representation for every procedure pq in Q s.t. A(pg) = NIL

// Infer alien code and loop nests for each procedure in ¥
foreach procedure ps; in ¥ s.t. pq — Q(ps) # NIL do
Determine loop nests for po by computing the strongly connected regions
tree T induced by the control flow graph CFG of pq
foreach basic block b in T (preorder traversal) do
let sy be b’s immediate enclosing scope (loop or procedure)
if b is a loop header node then
let 0 «— A(i) for backward-branch 4
esy, < determine-context(ess, o)
Create a source code loop I5 located within es§
ESy — lz
end
foreach instruction i in b do
let o — A(i)
esy. « determine-context(ess;, o)
Create a statement scope sy for o within esh
end
end

end

// Normalize X

foreach procedure p in T do
coalesce-duplicate-statements within p (cf. Section 3.6.1)
merge-perfectly-nested-loops within p (cf. Section 3.6.1)
partition-alien-contexts within p (¢f. Section 3.3)

end

remove-empty-scopes within ¥ (¢f. Section 3.6.3)

52

constructs a tree of strongly connected regions where each node is a basic block. Then,
the analyzer makes a preorder traversal (a parent before its children) over each basic
block in the tree, creating loops for blocks that represent loop headers and locating
each statement within its containing loop (if any) and procedure context. Finally, a
series of normalizations are applied to the resulting scope tree.

We now consider further implementation details.

4.1.1 Processing Instructions

Given a basic block, bloop considers each instruction in turn, creating and locating
a corresponding statement within the appropriate loop and procedure context before
considering the next instruction. The disadvantage of this ‘eager’ strategy is that
bloop may incorrectly locate the statement and discover only later that it must
correct this mistake (as was shown in Figure 3.9). Because the object code is often a
swirl of instructions from different procedure contexts, it may seem that considering
groups of instructions within a loop would provide a better indication as to where the
loop should be located. For example, one strategy might be to defer an instruction’s
location until a group of instructions can be located at once by placing it in a ‘lazy
location buffer.” This location buffer would wait until it had ‘enough’ information to
locate a group of instructions, and then perform a ‘lazy’ location. The problem with
this approach is the same as its motivation: instruction sequences can be signiﬁcan‘.dy
reordered and it is not clear either how to reasonably decide when a location decision
can be made or how to bound the computation performed by the lazy buffer. In fact,
it is sometimes not obvious where a loop should reside until inner loops have been
processed; sometimes it is fundamentally ambiguous (cf. Figure 3.8). For example, in
the presence of heavy inlining, a loop may appear to be located within one of several

alien contexts until a statement that clearly belongs to the host procedure is found in

53

a deeper loop nest. The implication is that at the very least, inter-basic block context
would be needed to effectively implement such a ‘lazy relocation buffer’. For these

reasons, we adopt the ‘eager’ approach.

4.1.2 Determining Contexts

As bloop processes a given instruction within a basic block, it must determine that
instruction’s procedure context. Without inlining, the context never changes, since
every instruction belongs to the same procedure. Consider now a procedure without
loops, but with inlined non-loop code. In this case, as instructions are processed,
adjacent instructions may belong to different alien contexts. Since we do not recover
nested inlining, all of these alien contexts will be flattened with respect to the pro-
cedure scope, one for each alien file. An algorithm for this simple example is to first
check whether the instruction’s source line information falls within the procedure’s
bounds, and if not, to use a hash map to locate the appropriate alien context.

Now assume that the procedure has loops, inlined code, and possibly inlined
loops. As was shown in Figure 3.8, the bbranch-max-fuzzy heuristic guesses a loop’s
procedure context using the source line information from the loop’s backward branch.
Assume for now that the guess is always correct and that the correct procedure context
(possibly alien) is always chosen. As we process instructions in the correctly located
loop, we may find inlined alien contexts within that loop. Since we want these alien
contexts to remain in the loop (and not simply the procedure), we should flatten
these contexts with respect to the loop and not the procedure.

Of course, it is often the case that bbranch-max-fuzzy guesses incorrectly. If this
guess is incorrect, it usually results in a nesting cycle similar to that shown in Figure
3.9 on page 43 and described in Procedure Invariant 4. This means that the best

procedure context is located not with the current loop, but in a shallower procedure

54

<P ...>
<A; ...>
<L1 R ¢
<Ay ...>
<L2 S

<L, ...>
<App1 -..>
<§ ...>
</P>

Scope s, embedded in a loop nest of depth m, has m + 1 alien contexts and one procedure
context for a total of m + 2 procedure contexts.

Figure 4.1: Maximum procedure context nesting.

context (possibly alien). Since we wish to locate instructions ‘eagerly’ (as opposed
to ‘lazily’), to be able to detect this nesting cycle, we need to check whether the
instruction (or loop header) we are processing is best located in a shallower context,
the current context, or an alien context associated with the enclosing loop. If the
instruction should be located in a shallower context, then a nesting cycle has been

found and must be corrected before continuing (Figure 3.10, page 44).

This algorithm is shown in Algorithm 4.2. Given an instruction and its corre-
sponding line map information, it scans the current procedure contexts (.e., parents
in the scope tree) and attempts to match one of them, giving preference to the pro-
cedure scope or a shallower alien scope. If a scope is found such that two procedure
contexts form a nesting cycle, the cycle is broken using Algorithm 4.3. If no match is
found, then existing alien contexts within the enclosing current loop or procedure are
searched for a match; if this fails, a new alien context is created and associated with
the enclosing loop or procedure. Note that because alien contexts are flattened with
respect to loops, scanning the current procedure contexts is, for practical purposes,

a constant time operation. In particular, for a loop nest of depth m, there can be

35

at most m + 2 parent contexts as illustrated in Figure 4.1. Even after inlining, loop

nests rarely exceed a depth of 10.

Algorithm 4.2: determine-context
Input: Let scope s be a loop or statement whose context is unknown. Then s,
is s's expected enclosing scope (loop or procedure) within ¥ and o its
source line descriptor (from line map).
Result: The actual enclosing scope ¢ (loop or procedure context) for s. As a
side effect, ¥ is modified to reflect c.

determine-context(s., o = (fnm, pnm, In))

begin
let ¢ — NIL
let c. be the immediate procedure context of s, (possibly s.)
let p be the enclosing procedure scope for s,

// Search current contexts. Each ¢, is alien except the last.
foreach procedure context c, in the path from s, ~ p do

if matches (c;, o) then
C— g

end
end

if ¢ # NIL then
// Merge self-nested contexts

if s, is a loop and c is shallower than c. then
merge-broken-contexts (s, ¢, o)
end

// Ensure ¢ lives within loop (e.g., forward substitution)
if s, is a loop and —matches (s., o) then

¢ — NIL
end
end
if ¢ = NiL then

// Note that ¢, is not shallower than c,
let ¢, be an alien context associated with s, such that matches (c,, o);
or NIL otherwise
¢ « ¢, if non-NIL; otherwise, a new alien context initialized with o
end

return c
end

56

Algorithm 4.3: merge-broken-contexts

Input: A loop scope sy (‘from’) within ¥ that should live within a different
ancestor procedure context ¢; (‘to’) because the statement scope
represented by source line descriptor o (from line map) lives both
within s; and ¢; (representing a nesting cycle).

Result: Locate the loop nest represented by s; within ¢;.

merge-broken-contexts(sy, ¢;, ¢ = (fam, pnm, in))
begin

let z, — sy

let ¢ — NIL

// w1 is the outermost loop nest containing sy

let c and z; be ancestors of x5 such that 1) ¢ is the first ancestor procedure
context of x2; and 2) x; is a direct child of ¢ on the path z5 ~ c.
(Possibly z; = xz; a scope can be its own ancestor.)

// Unnest the loop nest of sy until it is a child of ¢;. After
// line 3 (above), if ¢ +# ¢; then we have:

// <PlA ¢> <P|A ¢p>

/. e

// <A c¢> <A ¢

// <L z7 1="bi-e"> = <L 7 1="0g.ln-o0.ln">

// e e

// <L z9 1="b2"62"> = <L 9 1="g.ln-c.ln">
//

// <L sf> <L sf>

while ¢ # ¢; do
Make z; a sibling of ¢

// x; has just changed contexts. Make necessary fixes.
// Note: ¢ is an alien context
foreach scope z on the path x5 ~ x; do
let (b, e) be the line bounds of z
(b,e) « (o.ln,c.ln)
Replicate c’s alien context for any child of z that cannot be
contained within (b, e)
end
To < parent of z;
Update ¢ and z; according to line 3
end
end

Algorithm 4.4: matches
Input: A procedure, alien or loop scope s within ¥ and a source line
descriptor o (from line map).
Result: Whether s could be a directly enclosing scope for o.

matches(s, o = (fam, pnm, In))
begin
// (beg,end): begin and end line matching tolerance.
let € — (0,0)
switch scope type of s do
case procedure, p
€ < (0,00) if p has a DWARF descriptor; otherwise, (2,100)
if 3p/, the next non-overlapping procedure to p then
e.end « begin line for p’ minus 1
end
case alien
€ — (00, 00)

case [oop
€ — (5,00)
if s is within an alien contert then
e.end «— 20
end
end

return true iff the following hold:
1) if s is a procedure or alien scope
a) s’s file name equals o.fnm
b) s’s procedure name matches .pnm (allow for linkage characters)

2) o.In is contained in s given tolerance €
end

4.2 GNU Binutils and Binary Analysis

bloop uses GNU Binutils 2.17 (the most recent release) to decode instructions
and read debugging information. Because Binutils was designed to be used within
the context of the GCC compiler and GDB debugger, it presents a number of design
and algorithmic limitations for binary analysis [22]. We summarize the issues that

most directly relate to bloop’s implementation.

58

The BFD library provides access to information for several different ABI’s, but
tends to have a ‘lowest-common-denominator’ interface, meaning e.g., that BFD’s
interface to the binary’s debugging information can be largely summed up with one
routine that queries the line map.! While this design is sensible for a multi-target
compiler back-end where the goal is abstract the details of many ABIs, it is not helpful
for a binary analyzer. We therefore designed a ‘thin’ extension to the BFD interface
to convey DWARF procedure descriptor information back to bloop.

Binutils contains decoders designed for disassembling a binary’s instructions. How-
ever, the decoding routines are specifically designed for printing (since they are used
by objdump), rather than for providing information to a consumer, one of which
might be a printer. We therefore rely on a clever use of the print routine, imple-
mented by Jason Eckhardt for the original bloop, to extract decoding information.
Binutils’ decoders have also required modifications to convey branch target addresses
and instruction classification to a caller.

Besides interface problems, we also discovered algorithmic issues when applying
Binutils to binary analysis. Specifically, BFD’s line map query routine employed a
linear search of the line map tables to find source line information for a given address.
While this is acceptable overhead within a debugger, it becomes unmanageable when
a linear search is performed for every instruction in a binary. We therefore modified

several internal lookup algorithms to use binary search.

4.3 Lying Liars

Without debugging information bloop cannot recover useful results. It is also true

that without accurate debugging information it cannot recover useful results. One

'The routine is bfd_find nearest_line(); it has a close cousin bfd_find_line(). Actually,
Binutils 2.17 has added a routine to obtain some of the inlining information reported by GCC 4.x,
bfd_find inliner_info ().

of the challenges of performing accurate source code recovery has been gracefully
managing debugging information that is either wrong or blatantly against DWARF
specifications.

As an example of correcting wrong information, we found — much to our sur-
prise — that the Intel 9.1 (x86-64) compiler generated wrong procedure address
bounds on the AMRPoisson example driver of Chombo [32]. We began investigating
when we noticed that every statement and loop in several procedures were wrongly
attributed to the same line and source file. It turned out that the DWARF de-
scriptor addFabToSten(...)? claimed that its object code ranged from 0x480102 to
0x4819e4, or 6370 bytes. In fact, the procedure’s address bounds were from 0x480102
to 0x48022b: a considerably smaller 297 bytes! This discrepancy caused Binutils —
quite reasonably — to consult addFabToSten’s line map when looking up addresses
between 0x48022b and 0x4819e4, and to return the last entry in the map. Since the
only error of this kind that we have seen is an overestimate, we ‘solved’ the problem
by ‘sanity checking’ the DWARF end address against information from the binary’s
symbol table. Specifically, for a given procedure, we obtained the address of the next
adjacent procedure within the symbol table (if non-existent, the end of the section)
and set the procedure’s end address to the minimum of this address and the DWARF
end address.

Besides pedestrian instances of erroneous information we have also had to handle
the more exciting case of erroneous information that is also against the DWARF
specification. While working with Trilinos [28] and the PGI 6.1-2 (x86-64) compiler,
we (again) noticed that every statement and loop within most of the procedures
were wrongly attributed to the same line and source file. Figure 4.2 illustrates the

dilemma. Consider a query for address 0x40dba0. Since DWARF requires the line

2QuadCFStencil: :addFabToSten(BaseFab<double> const&, DerivStencilk).

60

PGI 6.1 on Trilinos 7.0.4 Intel 9.1 on Chroma 3.22.3

Line map Notes Line map Notes
[Begin] [Begin]
0x405b80 1 0x0 | 450 | Bad address!
0x62£020 | 152 | Data segment! 0x10 | 452 | Bad address!

0x405b90

: Oxel | 455 | Bad address!
0x40dba0 | 226 | Outside bounds! || Ox4*aecac0O | 455

: [End]
0x40d9b8
[End]

Figure 4.2: Erroneous DWARF line maps.

map to be sorted, the line map’s begin and end addresses specify its range.® However,
this address is located in the line map which begins with 0x405b80 and ends with
0x40d9b8. Hence, the out-of-order line map confused the query. To correct the
out-of-order entries, we modified Binutils to sort the line map.

While the sorted the line map corrects the ordering problem, notice that the Trili-
nos line map of Figure 4.2 also contains an entry for address 0x62f020 — an address
located within the data segment. Thus, correcting the invalid DWARF introduces a
new problem: because of bad line map entries, the line map appears now to con-
tain addresses between 0x405b80 and 0x62f020! Consequently, sorting the line map
actually made the problem worse because it now appeared to overlap almost every
other line map in the binary, creating ambiguity about which line map applied to a
given address lookup. The problem was not an isolated incident. As Figure 4.2 also
shows, the Intel 9.1 (Itanium) compiler generated a similarly erroneous line map for
Chroma’s hme [32]. While this line map was not out of order, it contained addresses
such as 0x0 and 0x10 that were neither in the text section nor in the binary! Incred-

ibly, several other line maps in the binary also contained entries for address 0x0. To

3Cf. §6.2.5 of [20,44)].

61

gracefully handle such data, not only did bloop need to sort the line map to obtain
correct line map ranges, but it had to somehow ignore addresses not even in the text
section.

We eventually solved this problem by patching Binutils’ DWARF reader to filter
obviously inappropriate addresses. To filter efficiently, we had to quickly find section
bounds information and use this to determine whether to keep or reject a line map
entry. Because of Binutils’ implementation details, we chose to filter based on whether
an address was within the .text section or not. In particular, we kept an address in
the line map if and only if it was in the same region (relative to the .text section) as
the first address of the sequence. These modifications enabled bloop to recover very

accurate source code structure.

62

Chapter 5

Performance Visualization Using Dynamic And

Static Structure

5.1 Deficiencies of Call Path Visualizations

HPCTOOLKIT’s original visualization tool presented csprof’s call path profiles
in a top-down ‘file-browser’ similar to Figure 5.3 on page 71. Each interior node in
the visualization contained two pieces of information: a call site and the call site’s
host procedure, or its procedure frame. A node could be expanded or collapsed to
reveal or hide its children. The tree could then be expanded in the style of a graphical
file browser, with children sorted by inclusive metrics to enable quick zooming to the
most costly call paths in the program. Using a mouse to click on a procedure frame
caused the source code window to zoom to the start of the procedure’s source code
definition; clicking on a call site zoomed to the call site. Since call sites were not
merged, distinct call sites formed distinct paths.

While this approach seemed promising, compiler transformations introduced prob-
lems. csprof collects call path profile data as a calling context tree [2]. In this rep-
resentation, a path from the root to a leaf represents a call path where interior nodes
are return addresses (the calling context) and the leaf is a sample point (instruc-
tion pointer). To couvert the calling context tree into an effective and compelling

visualization, csprof’s original correlation tool converted each return address into

63

a call site and then inferred its procedure frame. To convert a return address to a
call site address, the tool subtracted either the width of an instruction packet (for
fixed-width instructions) or one (for variable-width instructions).! To infer the call
site’s procedure frame, the tool queried the associated line map to obtain the call
site’s source line information. Assuming that the call site did not derive from inlined
code, the tool created a procedure frame with the same name as the call site’s source
line information. It also computed a begin line for the procedure frame by using the
source line for the first address in the associated line map. Neither of these methods
worked well because of the reasons discussed in Section 3.1. Inlined call sites that
caused omitted frames within a path were never marked as such. Moreover, a call
site within inlined code appeared to execute from its original (non-inlined) location,
while its frame’s source file and line were mapped to whatever happened to be first
in the line map. Both problems led to to confusing visualizations. Another deficiency
was that because the correlation tool had no knowledge of loops, it could not group
call sites within a loop, thereby highlighting the costs incurred by the loop in context.

In effect, the problems with the visualization amounted to a lack of knowledge of
the static source code structure. For example, if for a given routine the correlation tool
could obtain nested inlining information, then the actual chain of missing frames could
be recovered accurately. While our binary analysis techniques cannot actually recover
a compiler’s inlining decisions (¢f. Section 3.3), they recover enough information to
distinguish between code belonging to a native or alien frame and therefore result in
enough information to inform the viewer that at least one static frame is missing due
to inlining. Moreover, with accurate loop nests, call sites can be accurately attributed

to the loop, even if it has undergone significant transformations.

!Subtracting one from a variable sized instruction may result in an address within the call site
instruction, but that is sufficient.

64

5.2 Combining Dynamic Call Paths with Static Structure

Given an object to source code structure mapping, combining the dynamic call
path and static source code structure is a straightforward task. By making a copy of
the run time load map that associates virtual address ranges with load modules, the
call site and sample point addresses within the call path profile can be mapped to
their appropriate load module.? Program structure information is computed for each
procedure in the load module. Since each procedure is annotated with object address
interval sets, the recovered procedure scope for the call site or sample point can be
quickly obtained using a data structure such as a balanced tree. Within a procedure
scope, statements form a fine-grained partition which implies that any given object
address may belong to at most one statement and therefore at most alien context
and one loop nest. Since each statement in the program structure is annotated with
object-address interval sets, another lookup quickly identifies the associated source
code statement, completing the static context of the call site: procedure, alien (if
appropriate) and loop scopes.

Once the context of the call site has been found, the next step is to create a
procedure frame for that call site and locate the call site within any loop nests. If the
call site derives from an alien procedure context, then we can create two frames, one
for the host procedure and one for the alien context, and locate both the alien frame
and the call site within any enclosing loop nests. Recall that any potential nested
inlining is flattened with respect the alien context’s enclosing loop or procedure scope
(cf. Section 4.1.2).

An additional benefit of the object to source code structure mapping is that ob-

ject code disassemblies can be annotated with performance and program structure

Zcsprof captures the run time load map in its data file.

65

information. For example, all instructions associated with a loop can be easily ob-
served. We have not actually implemented such functionality, but it would not be

conceptually difficult to do so.

5.3 Case Studies

To demonstrate the effectiveness of combining dynamic calling context information
with static source code structure, we present three case studies. We primarily compare
HPCToOLKIT against Tau, a tool based on instrumentation that is widely installed
on large parallel machines and which supports both node-based and parallel analysis.
Tau is quite mature, being the product of over fourteen years of joint development
by the University of Oregon, the Research Centre Juelich and Los Alamos National
Laboratory [39]. We based our experiments on Tau 2.16.2p2 configured with PDT
3.10 and procedure (-PROFILE) and call path instrumentation (-PROFILECALLPATH).
We also configured a version with overhead compensation (~COMPENSATE).

For all case studies, we used a handicapped version of csprof that did not memoize
call paths as described in [21] and Which therefore incurred more overhead than it
should have; nor did it collect information on the number of calls. csprof was run
with the default sampling period of 1000 ms. Unless otherwise indicated, all our
experiments were performed on an Itanium 2/Myrinet cluster running Linux 2.6.9
and using the Intel 9.1 compiler suite. Each compute node of the cluster is a dual-
Itanium 2 running at 900 MHz with 4 GB of memory. When run times are reported,

they are averages of three trials.

66

#include <stdlib.h> // for drand48
#include <map>
using namespace std;

class Mp : public map<int, double> {

public:

MpO { }

virtual “Mp() { }

virtual void add(int i, double d) { insert(make pair(i, d)); }

}i

int main() {
const int TenM = 10000000;
Mp m;
srand48(5);

int ub = drand48() * TemnM; // ~5.2M

L for (int i = 1; i < 1000; ++i) {
m.add (i, (double)i);

}
L, for (int i = 1; i < ub; ++i) {
S1 m.add(i + 1000, drand48()); replace with: (double)i
So m.add(i + TenM, drand48()); replace with: (double)i
}
}

Source code for testing C++’s STL map. A second version of the code was formed by
modifying the underlined text according to the boxes on the right.

Figure 5.1: Source code for testing C++’s STL map.

5.3.1 C++’s STL map

The first case study was based on the simple program in Figure 5.1 and was de-
signed to test the effectiveness of compiler optimizations in hiding a simple object
oriented abstraction. In this example, the Mp class is derived from the Standard
Template Library’s (STL) map class template and given a virtual member function
Mp::add® to wrap the insertion of elements. Far from being purely academic, the
code represents a common and useful way of building C++ classes and of using STL

and STL-influenced containers. In particular, STL’s map is such a useful abstraction,

SWhile there is no direct need for Mp: :add to be virtual, it is easy to imagine a larger example
in which it this would be necessary. The destructor must be virtual.

67

that a developer might easily use it in place of a hash table, even though it is imple-
mented using balanced trees and therefore does not provide the amortized time bound
guarantees that are typical of a hash table. This example uses int keys rather than
strings to represent the more reasonable decision of using map with a pointer-valued
key.

The code in Figure 5.1 inserts approximately 10.4 million items into a STL map
over the course of loops L; and Ly. A quick scan of the main routine suggests that
the bulk of the execution time should be consumed by these loops, with the latter
loop dominating. Even though Mp has virtual functions, an optimizing compiler could
inline the calls to add and the map<>::insert routine. Loop L; could be completely
unrolled (i.e., eliminating the loop), though this seems unlikely and unnecessary.

We created three versions of the program, one with the Intel compiler and two
with the Tau compiler, with and without overhead compensation. All three versions
were compiled with -03 -g and were run on a single dedicated node. When exe-
cuted under csprof, the run time increased from 41.46 to 42.92 seconds (or 3.5%
overhead). In contrast, the Tau version without compensation ran in 153.07 seconds
(270% overhead) while the version with online compensation ran in 179.48 seconds
(333% overhead). To obtain full calling contexts, we set the Tau call path depth to a
sufficiently large number (1000).

We then proceeded to examine Tau’s process-based displays (not shown). Results
for the two Tau versions were not significantly different. The Call Graph display, a
graph visualizer with nodes and edges, showed that main called Mp::add as well as
the Mp constructor and destructor, but had no information about drand48 or any STL
routine. Already we see that in the Tau version, add was not inlined as expected;
nor did Tau detect the call to srand48 or the calls to drand48. The Statistics Table,

the view we judged to be the most useful, showed that main called add a little over

68

10.4 million times and that 90% of the inclusive time was spent in add. All told,
the information is trivial except for the relative times, and the overhead percentage
makes even this suspect.

To improve Tau’s default output, we tried two things. First, Tau’s overhead can be
reduced by manually configuring a ‘throttle’ mechanism to selectively instrument only
certain routines.* Since the default throttle rule is to disable profiling of a function
that is called greater than 100,000 times and which has an inclusive time of 10 micro-
seconds, it would certainly apply to add. Unfortunately, add (along with its callees)
is just the routine that we want information about! For throttling to be useful in this
case, Tau would need to somehow inform the analyst when add was throttled and
how that time compared with the total execution time; in other words, to expose the
ratio of non-throttled to throttled time. Note that sampling based profilers are based
on just this sort of scaling by assuming that a large enough collection of samples
represents the whole. Nevertheless, we tried the ‘throttle’ feature using a rule to
disable profiling after 1 million calls, about 10% of the 10.4 million identical calls
to Mp:add (not shown). This change reduced overhead to 9.8% (45.54 seconds), but
it also inverted the relative exclusive times of main and Mp:add to where main was
about 15 times more expensive than Mp:add! This places the analyst in the awkward
position of guessing how many calls to the key routine can be ignored while still
generating reasonably accurate results.

The second thing we tried was adding Tau’s loop instrumentation. Because of the
potential for overhead explosion, Tau does not perform loop instrumentation auto-

matically and, even then, only outer loops can be instrumented. Moreover, the user

4Throttling’ is accomplished by manually configuring an environment variable that contains a
rule for determining when to stop collecting data for a function. The process is manual because if
the default rule is inappropriate, a new one must be developed without the aid of a an automatic
feedback loop.

69

Talk Faafiof Thisad Statstucs: m.c.t, 0.0,0 profile it nothicttle-loops.0.0.0 03X

© W int maing [{t1l.cop}{12,1}-{26,1}} 100.0% 2.0% 1 4
@ Wl Loop: int maind [{t1.cppi{22,33-(25,3}] 38.0% 7.8% 1 10,456,788

Il void Mp::add(int, double) [{11.cop}{S,3}-{S,64}] 90.2% 90.2% 10,496,788 0

¢ W Loop: int maing [(t1.cpp}{18,3}-{20,2}] 0.0% 0.0% 1 999

W void Mp::addint, double) [{t1.cpp}{9,3}-{9,64}] 0.0% 0.0% 999 0

W void Mp:MpO [{tl.cpp}{7,3)}-{7.10}] 0.0% 0.0% 1 0

W voic Mp:: ~Mp([{t1.cop} {8,3}-{8,19} 0.0% 0.0% 1 0

Figure 5.2: Tau’s visualization of STL map example (Figure 5.1).

must manually create a loop instrumentation file with the appropriate instructions.®

While this is impractical for large codes, for this small example, it was easy enough
to add appropriate instrumentation. The result, shown in Figure 5.2, was more infor-
mative than the first, indicating that the second loop consumed 98% of the execution
time, but much about the performance remained unclear.

The most salient unknowns were details of the STL map implementation. Why did
we not see any STL calls? Further investigation revealed that Tau does not instrument
header files — in which STL is implemented — though it is possible to manually
instrument a particular header file and then modify the order of the compiler’s include
path lookup to find the instrumented version first. Since our purpose was to evaluate
performance tools, we did not think such manual heroic efforts were warranted.

When we used HPCTOOLKIT to visualize the profiling data, several things imme-
diately became apparent, some of which are shown in Figure 5.3. According to this
data, loop L, consumed 92.4% of the execution time (similar to Tau’s estimate), but
the remaining 7.6% of the time derived from an inlined Mp destructor! In contrast,
Tau assigned negligible times to both the Mp constructor and destructor. Further-

more, HPCTOOLKIT clearly distinguished between the two loops in main and also

5This can be created automatically on a per file basis with Tau’s Eclipse plug-in.

70

. STL map-iast e XK
File
stl_tree.h . . .
911 _Compare, _Alloc>::iterator, bool>
912 _Rh_tree< _Key, _val, _KeyOfvalue, _Compare, _Alloc>::
913 insert_uniquef{const _Val& __w)
914 {
415 _Link_type __x = _M_begin{;
916 _Link_type __y = _M_gand(;
917 bool __comp = true;
918 while {__x 1= 0}
919 {
920 Y= LK
8 921 _.comp = _M_impi._M_key_compare{_KeyOfvalue((_ V), _S_kew{__x)), e
322 X o= __comp ? _S_left(__x) . _S_right(__x);
923 }
924 iterator __j = iterator{__v};
25 if (__comp)
926 if (__} == beginQ)
927 return pair<iterator,bool>(_M_insert(__x, __%, ..V}, trug);
928 else -

I

{ Calling Context View

Scopes @@ @%— # samples ® 'ﬁ'
[~ ¥ Be __ToC_srarn_mam e
@ Bd main 1.16e07 38.4%
L4 loop attl.cpp: 22-24 i 1.16e07 38.4%
g Mp::add(int, double) B 1.37e07 45.3% 1.16e07 38.4%
® [lman i 1.33e07 44.0% 1.16e07 38.3%
© loop at sti_tree.h: 918-922 41,1507 38.1% | 1.15e07 38.1%
stl_tree.h: 921 4 1.10e07 36.2% | 1.10007 36.2%
stl_tree.h: 922 i 5.20e05 1.7% 5.20e05 1.7%
stl_tree.h; 918 i 4.00e04 0.1% | 4.00604 0.1%
© B std:_Rb_tree<int, sto::pair<int const, double>, std:_S| 1.07e06 3.5% 2.50e04 0.1%
© Bp std:: _Rb_tree_insert_and_rebalance({bool, std:: _Rb_tree| | _6.35e05 2.1% 4.00e05 1.3%
sti_tree.h: 930 i 3.00e04 0.1% 2.00e04 0.1%
stl_tree.h: 816 i 2.00e04 0.1% | 2.00e04 0.1%
© Bb unknown@0x4000000000000e80 i 1.50e04 0.0% 1.50e04 0.0%
stl_tree.h: 815 1 1.00e04 0.0% 1.00e04 0.0%
stl_tree.h: 822 i 1.00e04 0.0% 1.00e04 0.0%
© B drand48 §§ 4.35e05 1.4% 1.00e05 0.3%
© Bb drand48 3.85e05 1.3% 3.50e04 0.1%

Dk

(]

A loop within the STL map<>: :insert routine that consumes, within this context, 38.1%
of the inclusive time. The loop’s “[I] main” parent indicates that the loop was inlined into
main. Closer inspection with HPCTOOLKIT reveals that this loop was inlined into loop Lo
from the call to Mp: :add at 57 (nested inlining).

Figure 5.3: HPCTOOLKIT’s visualization of STL map example (Figure 5.1).

differentiated the loops themselves from the other call sites in main, such as the
inlined destructor.
Expanding loop L, revealed some fascinating details. Most significantly, unlike

Tau’s data, this two-line loop contained several callees, some embedded within a loop.

71

Two of the children consumed large fractions of the execution time and therefore
would have been quickly noticed, but the others did not and therefore would mostly
likely have been ignored had they not been grouped into the loop’s cost. For example,
the two calls to to drand48, distinguished by their call sites at lines S; and S,
respectively, each consumed 1.3% of the execution time; one could even follow the call
path further to learn that drand48 is implemented with erand48_r. Loop overhead
appeared to be minimal, with only a few samples attributed to code directly inside
the loop. By far, most of the inclusive time (89.6%) was attributed to two call sites:
a call to Mp: :add deriving from the call site at Sy (45.3%) and an inlined STL map
insert routine deriving from S; (44.3%)! In other words, one call to add was inlined
into L, (along with STL routines) while the other was not! Moreover, STL routines
from the inlined add at S; had been inlined into L, (nested inlining). Expanding
the add call site (at Sy) indicated that the same STL map insert routine that had
been inlined directly into Ly (from S;) had also been inlined within add. While this
asymmetric inlining seemed surprising, we verified the diagnosis against both bloop’s
program structure data and a disassembly of the object code. Given the amount of
STL inlined into the loop, a possible explanation for this seemingly bizarre compiler
decision is that a heuristic designed to limit the amount of code inlined into a loop
prohibited inlining of the second call to add at S;.

A surprising number of STL implementation details can be gleaned in a very
short amount of time from this data. An analyst moderately familiar with data
structures, but not familiar with STL implementations, would be able to quickly
‘guesstimate’ several details by the names of the container types and routines. For
example, the inlined insert routine is named Rb_tree::insert_unique, suggesting
that STL maps are implemented by Red-Black balanced trees and that keys are as-

sumed to be unique. Internal STL call sites such as Rb_tree_insert_and_rebalance

72

Session | - Tire Profile of 1l
TProfte Chant
Tree (Top-Down)

1 Seit Tetal = Library Symbot
0.0% 96.9% tl v start I
0.0% 96.9% tl ¥ _start
0.1% 96.9% tl v main
0.0% 64.7% 11 W 3td.._Rb.tree<int, std: pair<int const, double>, std: _Selectist<std .pair<int corst, doudke> >, std.less<int>, std :atocator <sid: pair<int const, ouble> > > _M_erasel..’
0.0% 64.7% tl wstd:_Rb_tree<int. 51¢, paircint const, doubie>. st Selectlststd.ipair<int corst, double> >, 510, tess <int>, std aliogator<sid: pair<int Lonst, double> > > _M_eras
0.0% 64.7% t] P std.._Rb_tres <int, 5td::pair<int const, doubfe>, st _Setectist<std..pair<int const, double> >, std.less <int>, st iallocator <std: pair<int const, double> > >:. M_er. .,
22.4% 291k tl ¥ std:;_Rb_tree<int, $td: pair<int const, double>, std.. Selectlst<std ;pair<int const. double> >, std.less<int>, std :abocator<std pair<int const, double> > >: .nsert_uni
0.9% 6.6% 1 wstdi Rb_tree<int, sid: pair<int canst, double>, std...Selectlst<sid . palr<int const, double> ». std; less<int>, std..altocator<31d:.pair<ing const, coudte> » >, _M_inse.. |
0.4% 3.5% libstde~ > operator newtuns.gned long}
2.0% 2.0% libstde~ st0.._Rb_tree_insert_and rehalance(bool, std.._Rb.tree, node base®, std :_Rb_tree_node base®, std | Ro_tree node dased)
0.1% 0.1% tl dyld_stub__Z5t29_Rb_tree_insert and _rebalancetPStis Ro_tree noce baseSO_RS.
0.0% 0.0% libSyste. malioc
0.0% 0.0% t1 dyid.stub. Znwm
0.0% 0.0% libstdc- 0x90b494abc (7. 1KB}
0.1% 0.1% 11 dy:d_stub__ZASt8_Rb_treelStdpa rikidEst10_Select 15152 EStdiessHESAIS2_EEI_M_insertEPSI1B_Rb_tree_node_baseSA_R«S2.
0.4% 2.8% libSyste.. » drand48
0.1% 01% 11 std:. _Rb_tree<int, std: pair<int const, double>, s1d.. Selectist<std pair<im corst. double> >, std.less<int>, std..abocator<std..pair<int const, doubles > >, M_insert(..-
0.0% 0.0% t1 dyid_swb.drand4s
0.0% 0.0%tl dyie_stub_.ZNSIE_RE. pai 10_Select1stisz.. 2_EE13insent. 2.
0.0% 0.0% fibSyste drand48
0.0% 2.7% mack k. buser tap
JRURINN 1 S-S S T N PO e et e et e i e e e e
8 - -2

? of 3400 (0.1%) samples selecied

Process. (100.090 11110541 T ¥'Theesd Ml T TT View Tree (Top-Down)

Apple’s Shark exposes STL calls such as STL’s map<>: :erase and map<>: :insert.

Figure 5.4: Apple’s Shark’s visualization of STL map example (Figure 5.1).

and Rb_tree_rotate_left support this hypothesis. More importantly, internal call
sites are nested in their enclosing loops. For example, within both inlined instances of
the STL map insert routine, there was an insertion loop that consumed about 38.5%
of the insertion time for a total of 77%. Other details were also apparent such as the
fact that between the two inlined STL call sites, the Rb_tree node allocator consumed
about 8% of the execution time.

In short, HPCTOOLKIT rapidly revealed at least two potential performance is-
sues. First, a call to Mp: :add had not been inlined into Ly as was expected, possibly
preventing other optimizations with the other already-inlined STL insertion code.
Second, nearly 16% of the execution time was spent in allocation or deallocation rou-
tines. Further useful exploration might include examining compiler inlining options
or more closely understanding STL allocation/deallocation details. The salient point
is that HPCTOOLKIT’s visualization revealed important performance details that

were otherwise unnoticed by Tau.

73

As a third point of comparison, we tried Apple’s Shark tool, one of the best
process-based performance tools we are aware of from either vendors or researchers.
Shark contains a sampling-based call path profiler which we applied to a version of
the code compiled with GCC 4.x (using -03 -g) on Mac OS; a screen shot is shown in
Figure 5.4. Shark was able to measure the optimized code, though because it merges
all call sites to the same callee from the same caller, it was not able to provide as much
context as HPCTOOLKIT. For example, Shark did not distinguish between distinct
calls to the STL map insert routine. More importantly, it does not show the effects
of inlining or aggregate costs to loops. A surprising aspect of this data is that nearly
65% of the inclusive time was spent in map<>: : erase, supposedly called directly from
main. While this sample code is small enough that we know that the call derived from
a static destructor in main, this fact is not exposed because the destructor’s frame
is missing in the call path. Moreover, loops from the insert routine are not exposed.
However, unlike HPCTo0OOLKIT, Shark does have a nice object code to source code
correlation tool, though it is based only on source lines and not program structure.

In summary, our unique approach of merging call path profile data with program
structure information, reveals essential information about compiler optimizations and
implementation details — all correlated with profiling data — that would not oth-
erwise be available. To emphasize once again the utility of merging static program
structure with call path data, we slightly modified the underlined code of Figure 5.1
according to the boxes in the corresponding right margin. Surmising that the use of
drand48 prevented some loop optimizations, we removed or replaced references to it.
The resulting loops are candidates for fusion if the compiler has knowledge that the
order of map insertions is irrelevant. Indeed, HPCTOOLKIT’s resulting visualization
showed that the loops had been fused. In contrast, Shark could not present loop

effects and Tau’s loop instrumentation prevented the fusion. Although it is true that

74

the fused loop identified by bloop did not directly correspond to source code, this
is the sort of incongruity that a performance analyst desires. As one final example,
after correlating bloop information with a flat profile of the Navier-Stokes solver S3D
(Sandia 3D Direct Numerical Solver) [12], we immediately noticed a small loop con-
suming 5% of the L1 cache misses (collected using HPCTOOLKIT’s flat profiler) —
a loop for which there was no corresponding source loop and which mapped to a call
site. After briefly wondering if we had found a bug, we noticed that the call used
Fortran array notation to pass a non-contiguous 4-dimensional slab of a 5-dimensional
array to the callee. Because the callee was unprepared to accept this non-contiguous
4-dimensional slice, the compiler had made a copy of the slice into a stride-1 array and
passed that, giving rise to a loop that incurred a relatively significant performance

loss.

5.3.2 Chroma’s hmc

As a second case study we investigated the lattice quantum chromodynamics solver
Chroma [31]. Chroma is a very large (with binaries of approximately 110 megabytes),
modular application designed around C++ expression templates. Its modular design
means that understanding costs in context is very important. Because of its expression
templates, at compile time myriads of very complex templates are instantiated and
possibly inlined. Consequently, Chroma can take hours to compile: about four on a
1.3 GHz Itanium/Linux node.

This fact exposes one of most significant practical differences between HPC-
TooLKIT’s approach and Tau’s. While bloop requires that applications be compiled
with debugging information (i.e., -g), such information has no important effect on
performance and no effect on compiler optimizations; it is therefore hardly a burden in

either production or development environments. In contrast, instrumenting Chroma

75

required a complete recompilation of the entire Chroma application, along with its
libraries QDP++ and QMP. The time for recompilation with instrumentation in-
creased from four hours to about seven. While the overhead of static instrumentation
is often unacceptable in production environments, this sort of recompilation overhead
is likely to be similarly inconvenient for general development. At the very least, such
times are a large impediment for all but the most foresighted of analysts.

We ran Chroma’s hme driver on the provided sample input file.® Tau'’s overhead
become more manageable on a code with non-trivial functions, dilating the base
execution time of 16.39 seconds by 35% to 22.25 seconds. However, when we increased
the call path depth limit from 2 to 3000, collecting full call paths increased the
time dilation to 123% (36.56 seconds). In contrast, csprof collected full call paths
(without memoization enabled) for a dilation of 2.14%. We hypothesized that Tau’s
online overhead compensation might perform more favorably on this code than the
STL map code (Figure 5.1). However, we were unable to collect data because of a
run time error. Sample screen shots for Tau and HPCTOOLKIT are shown in Figures
5.5 and 5.6, respectively.

The contrasting dilation effects were apparent even at the top level. HPC-
TooLKIT attributed 99.5% of the execution time to the doHMC” driver routine while
Tau assigned only 88.2%. Another difference became immediately apparent while
expanding the most expensive paths according to each tool: Tau appeared to have
missing frames. Specifically, the doHMC routine applied arguments to a templated
AbsHMCTrj functor object to yield a call to its virtual operator() routine. HPC-
TooLKIT identified both the call site — nested within the main loop on lines 311-435

— and callee. Because the compiler created a concrete instance of the operator ()

The input file was hmc.prec_wilson.ini.xml.
"Within this section, all classes and routines are assumed to be in the Chroma name space unless
otherwise indicated.

76

Fobe apabest Thrzad Stideps s ne o 00,00 proibe dipath 300 e - X

File Options Windows Help

© Wit maingint, char *) [{hme.cc)} {486, 1}-(668,1)] 100.0%
© M Chroma::doHMC [{hme.cc) (256, 3)-{449, 3} 88.2%

@ B wid Chroma::LatColMalSTSLeapfrogRecursiveintegrator:: operator(Chroma:: AbsFieldState < QDP: multild < QDP:: LatticeColork 72.5%

¢ W \vid Chroma: LatColMatExpSdtintegrator: operator({Chroma:: AbsFieldState < QDP::multild <QDP::LatticeColorMatrixF2 >, ¢ 66.5%

¢ Ml \oid Chroma::LCMMDIntegratorSteps:: leapP(QDP: multild < Chrama::Handle <Chroma:: Monomial < QDP::multild <QDP:: £6.5%

© [l Chroma::SystemSotverResults_t Chroma::InvCG2(const Chroma::LingarOperator<QDP::LatticeFermion> &, const QD 32.8%

¢ B chroma:invC G2 _a [{inveg2.cc} {67,2)-{219,3} 32.7%

¢ Mwoid Chroma:: EvenOddPrecWilsonLinOp::operator((QDP:: LatticeFermion &, const QDP::LatticeFermion & Chr 31.6%

¢ M wid Chroma: QDPWilsonDslashOpt: apphiQDP: LatticeFermion &, const QDP:iLatticeFermion &, Chroma: 30.2%

 woid *QDP: Allocator;; QDPDefaultAllocator: allocate(size 1, const QDP:: Allocator::Memony®PooiHint 8) [§ 3.2%

I void QDP::Allacator:: QDPDefaultAliocator: free(void *) [{adp_defaul_allocator.cc} {102,31-{128,3}] 3.0%

Il void *QDP::Allacator:: QDFDefaultAilocator:: allocate(size_t, const QOP: Allocator:: MemonyPoolHint &) [{ad| 0.5%

Ml void QDR Altocator:: QDPDefaultAlocator: freetvoid *) [{gdp.default_atiocator.cc} {102,3)-{128,3}) 0.5%

© P QWP _status_t QMP_sum_couble_array(doubie *, int) C {{QMP_camm_mpi.c} {413, 1)-(439, 1}] 0.3%

M unsigned long Chroma::EvenCdaPrecwilsonLinOp::nFlops(const {{eoprec_wilsor_finop_w.cc} {179,3}-(183,} 0.1%

1 QOP: StandardOutputStream 4QDP::StandardOutputStream: :uperator < < (const char *) [{qop stdio.cc} {182, 0.1% 0.1% €76 0

Hll QOP::StandardOutputStrearm &QDP::StandardOutputStream: operator< <(double) [{adp._stdio.cc}{238,1}-(2 0.0% 0.0% 364 ¢

W void *QDP:: Allocator: QDPDefaultAllocator:: aliocate(size t, const QDP:Allocator:Memon#oolHint & [{gdp_d 0.0% 0.0% 260 [ol

il void QDP:: Altocator:: QDPDefaultAllocator: freefwid *) [{todp_default_allocator.cc} {102,31-{128,3}} 0.0% 0.0% 260 ¢

H QDP: StandardOutputStrear &QDP::StandardOutputStream: operator< <(std::05tream &()(std:: ostream &) 0.0% 0.0% 208 [¢]

©] QDP: StandardOutputStream &QDP: StandardCutputStream: operator < <(int) [{qdp_stdio.cc} {195, 1}-{198,1 0.0% 0.0% 52 52

#l QDP::StandardOutputStrearn &QDP::StandardOutputStream: operator< <(const std::string & [fodp_stdio.cc} 0.0% 0.0% 104 0

Wl void QDP::StopWatch::StopWatch([{qap_stopwatch.cc} {14, 13-{18,1}] 0.0% 0.0% 52 [¢]

B oid QDP::StopWatch::star() [{adp. stopwatch.cc} {28, 13-(29, 1)) 0.0% 0.0% 52 0

Ml void QDP::StopWatch::stap() [{adp_stapwatch.cc} (41, 1}-{57,1}} 0.0% 0.0% 52 0

couble QDP::StopWatch:: getTimelnSeconds([{gdp_stopwatch.cc {93, 1)-{123,1)] 0.0% 0.0% 52 Q

B void QDP::Stopwatch: reset() {qdp._stopwatch.cc} (22,1)-(26,1}] 0.0% 0.0% g2 0

&l QOP::Latticeinteger QDP: Layout::latticeCoordinate(int) [{qop_scalarsite_specific.cc} {20,31-{34,3}] 13.2% 0.1% 104 26,728

©- [l Chroma:: MdagMSystemSalver <QDP::LatticeFermion> *Chroma: EvenOddPrecwilsonFermact: invMdagM (Chroma: H: 7.5% 0.0% 52 312

- [l woid Chroma:: PlagGaugeAct: deriviQDP: multild < QDP::LatticeColorMatrixF2 > &, const Chroma:Handle<Chroma:: 3.5% 2.5% 52 10,712
- [l wid Chroma;; EvenOddPracwilsonLinOp:: evenOddLINOp(QDP::LatticeFermicn &, const QDP: LatticeFermion &, Chror 2.0% 0.0% 208 208} |

& [l void Chroma::EvenOddPrecWllsonlinOp:: derivOddEvenLinOp{QDP: :mutti 1d < QDP: LaticeColorMatrixF3 > &, const Q 1.9% 0.1% 104 728
& [l void Chroma:: EvenOddPrecWilsonlinOp:: derivEvenOddLinOp(QDP:: muttild <QDP: LatticeColorMatrixF3 > & const Q 1.8% 0.1% 104 520
© [l void Chroma::EvenOddPrecWilsonLinOp:;operator((QDP::LatticeFermion &, const QDP.;LatticeFermion & Chroma::P 1.0% 0.0% 52 4186
o [l void Chroma:taproj(QDP::LatticeCalorMatrix &) [taproj.cc}{32,3}-{61,2}} 0.6% 0.4% 208 2,288

Ml void QDP:: Allacatar:: QDPDefaultAllocator::free(void *) [{adp_default_allocator.cc) {102,31-(128,3}] 0.3% 0.3%
o W Chroma:EvenOddPracConstDetLinearOperator < GDP:: Latticefermion, QDP::muitild<QDP: LatticeColorMatrizF3 >, ¢ 0.2% 0.0% 104 208

~
w
=
[N
o

[l

The ‘hot’ path to the solver is expanded (application of QDPWilsonDslashQOpt objects).

Figure 5.5: Tau’s visualization of Chroma.

routine — meaning there would have been an actual frame on the call stack — we
wondered why Tau seemed to miss it. It turned out that the reason for the missing
frame was the same reason for the missing STL frames: the function definition was
in a header file and Tau does not instrument header files! While this decision may
be acceptable when header files only contain small routines, templated classes often
define all their routines in header files. In fact, in this instance there were two such
operator () applications in a row, and Tau missed both. Continuing down the most
expensive call path revealed another instance where three call frames were missing for
the same reason, one of which contained a solver loop detected by bloop. As a result,

Tau’s call path leaped from LCMMDIntegratorSteps: :leapP to InvCG2, missing dy-

77

[NEARR TSI

File

twtdsiash_qdpept w.cc
188 tmp(rbfotherCB)} = spinProjectDir3Plus(psi); hudi
200 mp2[rbfeb]] = shiftitmp, FORWARD, 3);
201 chilrb[cb]] + = spinReconstructDir3Plus(u[3[*tmp2);
202
202
204 1mprblotherCB]] = adj(u[0}*spinProjectDirOMinus(psiy;
205 tmp2[rb[ch]] = shifttmp, BACKWARD, 0);
206 chilrb[cb]] + = spinReconstructDirOMinusitmp2),;
207
208 tmpfrbf{otherCB]} = adj(ul 1D spinProjectDir IMinus(psiy;
209 tmp2[rb[cb]] = shiftitmp, BACKWARD, 1),
210 chi[rb[cb]] + = spinReconstructDirlMinustmp2); o
211 Pz
212 tmp(rb(otherCB]] = adj{u[2)j*spinProjectDir2Minus(psi);
213 tnp2[rb{eb]] = shifttmp, BACKWARD, 2); hd

[Cailing Context View

Scopes @@ @%

nt Aggregate Metrics | 11
1

} ¥
27 100.0 /1.1

211207
11807 100.0

frant ij-1.11e07 100.0
b ._libc_start_main i 1.11e07 100.0

Bb rnain 4. 1.11e07 99.8%
9 woid Chroma: doHMC < Chroma: HMCTriParams > (QDP: multiLd < QDP.. OLattice < QDP:: PScalar< QDP: PColorMatrix < QDP:RComplex<fig ;| 1.10e07 98,5%
@ locp at hme.cc: 311-435 :
B Chroma:: AbsHMCTrj<QDP: multild <QDP:: OLattice <QDP::PScalar< QDP:: PColorMatrix <QDP::RComplex <float>, 3> > > >, [e]s]
€ B Chroma: AbsMOIntegrator < QDP::multild<QDP:: OLattice < QDP::PScalar < QDP:: PColorMatrix < QUP::RCornplex <float>, 3> » | i .
@ B Chroma::LatCoIMa1STSLeapfrogRecursivelntegrator::operator((Chroma: . AbsFieldState < QDP::multild<QDP:.OLattice < QDI :
Q ioop at icm_sts_leapfrog_recursive, cc; 129-131 ’
@ B Chroma: LatColMatExpSatintegrator.: operator((Chroma: :AbsFieldState < QOP: multild < QDP::OLattice < QDP::PScald if
@ loop at lcm_exp_sdt.cc 85-94 i
® Chroma::LCMMDIntegratorSteps: :leapP(QDP::multild < Chroma::Handle < Chroma::Monomial < QDP::muitild |
? Criroma:: TwoFlavorExactWilsonTypeFermMonormial< QDP: multild<QDP:: OLattice < QDP::PScalar < QDP: |
9 Chroma:TwoFlavorExactWilsonTypeFermMonornial<QDP: muiti 1d <QDP:: OLattice < QDP: PScalar< Q0
14 Chroma::MdagMSysSoiverCG<QOP:: OLattice < QDP:: PSpinvector< QDF::PColoryector <QDP::RCom &
? loop at syesolver_mdagm_cg.h: 66-70 1 B
% B ChromanSystemSolverResults t Chiroma:: InvCG2 <GDP: Olattice < QDP::PSpinvector< GDP:| ¥
@ B» Chroma::SystemSaiverResufts_t Chroma::InvCG2_a<QDF: OlLattice <QDP:PSpinvector 4
Q@ loop atinveg2.cc 147-207 :
¢ B ChromaEvenOddPrecWilsontinOp::operator((QDP:: OLattic e < QDP::Pspinvectol : -
9 Chroma:: QDPWiIlsonDslashOpt:: appiy(QDP:: OLattice < QDP::PSpinvector< QDI < _1.27e06 11.4% | 5.0
© B void QDP::OSublattice <QDP:: PSpinvector <QDPIPColorvector<QDPRCY] 1.50008 1,4%

[[1] void QDP::OSubLattice<QDP.:PSpinvectar<QDP::PColorvecter< QO il 1.60e05 1.4%
9 B> void QDP: evaluate < QDP::PSpinvector <QDP::PColorvector<QDP: | 7] 1.60605 1.4% 1.1
(>4 loop at gcip_generic_fused_spin_proj_evaluates.h: 154-162 | 1.60e05 1.4% 11,1
B cp_generic_fused_spin_proj_evaluates.h: 162 | 6.00e04 0,5% 6.0
adp_genericfused_spin_proj_evaluates.h; 161 | 5.50e04 0.5% 5.5
-] [1] void QDP: evaluate <QDP: PSpinvector<QDP::PColorvec) i] 3.00804 0.3% 1
& B QOP:inlineSpinProjDir IMinus(float const®, float*, unsigned; 1.50204 0.1% 1.5
© Bb \woid QDP:QDPSubType < QOP::PSpinvector< QDP: PColorvector<QDP:Reif 1.30805 1.2%
© B void QDP:QDPSubType < QDP:PSpinvector<QDP::PColorvestor<QDP::R(:] 1.30e05 1.2%
© g woid QOP:QDPSULType <QDP::PSpinvector< QDP:FColorvector<QOP:R(:| 1,25€05 1,1% |]
_ o B DP..OSuhlallice <O inyeslor<o QUYEGIor<Op S 1.0% hd
L]

The ‘hot’ path to the solver is expanded, embedded within five dynamically nested loops.
The highlights show a call site for an operator= expression template. Deeper within the
call path are some inlined routines and loops implementing the operator=. (The function
name is not visible because of the type qualifiers!) Observe that siblings to this call site
consume about 1% of the inclusive time making it difficult to know where to focus.

Figure 5.6: HPCTOOLKIT’s visualization of Chroma (calling context tree).

78

namic invocations of dsdq and getX® as well as an application of a MdagMSysSolverCG
object, significantly reducing important context. Because such dynamically invoked
routines are characteristic of object-oriented design rather than the exception, any
effective tool must account for them.

Following the most expensive path down to the main solver interface InvCG2
showed that the attribution discrepancies had grown. While HPCTOOLKIT charged
54.5% of the execution time to this path, Tau assigned only 32.8%. HPCTOOLKIT
also showed how the solver’s interface called a worker routine that contained the
solver’s main computational loop (47.3%). This worker routine called about 13 rou-
tines, but the loop path — about 87% of the solver’s 54.5% — clearly focused our
attention on the 7 call sites within the loop. In particular, two distinct applications of
Even0OddPrecWilsonLinOp objects consumed 22.9% and 22.8%, respectively, of the
execution time — call sites that Tau represented with one frame. HPCTooOLKIT
attributed almost all of the time consumed by one of the EvenOddPrecWilsonLinOp
object applications to two other distinct applications of QDPWilsonDslashOpt objects,
each consuming about 11.5% of the inclusive time (about 46% total). In contrast,
Tau combined all four call sites together for a cost of 30.2%.

When expanded fully, Tau reported one additional frame on the hot path, a call
to an allocator function consuming 3% of the time, for a total depth of 9 frames of
context (prior to the allocator call). In contrast, HPCTOOLKIT presented the full
object code context of 14 procedure frames (excluding three frames of context for
main!) and five loops. Moreover, there were several actual frames that Tau elides
between a QDPWilsonDslashOpt object application and the allocator function. In
effect, by not instrumenting header files, Tau missed all of the internal context of the

solver.

8Both are member functions of the TwoFlavorExactWilsonTypeFermMonmial class.

79

HPCToOLKIT helped elucidate the complex effects of expression template cod-
ing. Expanding calls made by an application of the QDPWilsonDslashOpt object
revealed about 30 distinct call sites, mostly to expression template operators with
fully specialized names that would make even the most efficient hash function cringe.
Most of the call sites are responsible for approximately 1% or less of the of parent’s
11.6% inclusive time. Expanding the most expensive one (1.4%) revealed a call to
an operator= function tagged with inline, but that had not been inlined. Rather,
this operator itself contained inlined code along with a calling path containing several
additional frames and a loop, responsible for the 1.5%. While this information was
interesting, it was difficult to determine where to go next because the costs were so
widely distributed. It is likely that group information would have been helpful.

This shows that when costs are finely distributed across contexts, calling context
views do have limitations. In this case we could not easily distinguish between the
individual templated expression operators to determine if there was a clear perfor-
mance problem. Therefore, we turned to HPCToOLKIT’s ‘flat’ view, shown in Figure
5.7. Conceptually, this view ‘flattens’ the calling context of each sample point and
then combines context-less samples from the same procedure (maintaining the static
structure information) to generate exclusive times. However, because the view is
computed from the merged calling context tree and program structure, it also com-
putes inclusive times (unlike a IP-histogram) and exposes call sites (including inlined
ones) and loops. The flat view showed that nearly 50% of the execution time had
been spent in class constructors and destructors! This fact shows that C++ class
abstractions can have a high price.

In summary, we have seen that HPCTOOLKIT enabled us to begin to understand
both the operation and performance of a very complex code that depends on compile

time transformations and dynamic function resolution. We were able to relatively

80

nivicngeioL - X

File
qdp_forward.h
48
49 // Reality
50 1emplate<class T> tlass RScalar;
51 template<class T> class RComplex;
52
53 £ Primitives
54 template<class T> class PScalar;
55 template <class T, int N, template<class,int> class C> class PMatrix;
56 template <class T, int N, template<class,int> class C> class Pvector;
g 57 template <class T, int N> class PColorvector,

I

58 template <class T, int N> class PSpinvector;
59 template <class T, int N> ¢lass PColorMatrix;
&0 template <class T, int N> class PspinMatrix;
61 template <class T class PSeed;

62

63 template <int N> class GammaType;

64 template<int N, int m> class GammacConst;
55 v

"“, 1: i
Scopes @@ @% # samples @ ﬁ%
Experiment Aggregate Metrics i 1.11e07 100.0 1.11€07 100.0 | |4
® __cxavec_dtor i 2.81e08 25.3% 1.16e06 10.5% ;| |
B vec.cc 235 il 3.80e05 3.4% 3.80e05 3.4%
vec.cc: 228 il 2.90e05 2.6% 2.90e05 2.6%
vec.cc: 221 i 2.50e05 2.3% 2.50e05 2.3%
wec.co 232 §} 1.25e03 1.1% 1.25e05 1.1%
vec.co; 247 i 5.50004 0.5% 5.50e04 0.5%
B> QDP::RComplex <float>: ~RComplex) §{ 4.40805 4.0% 4.50e04 0.4%
Eb QDP::PLolorvector<QDP: .RComplex <float>, 3>: ~PColorvector) 5?__“1424906 11.2% 2.00804 0.2%
B> QDP::Olattice< QDP::PScalar<QDP::PColorMatrix<QDP::RComplex<float>, 3> i 2.00e04 0.2%
E» QDP::Olattice<QDP::PScalar<QDP:PScalar<QDP::RComplex<float> > > >~ 5.00e03 0.0%
@ __cxa.vec_ctor i 1,22e06 11.0% 5.00e05 4.5%
® __c(xa_vec_cctor i 1.27e06 11.4% 4.85e05 4.4%
@ QDP:RComplex<float> . ~RComplex(d 3.95e05 3.6% 3.95e05 3.6%
© void QDP:evaluate<QDP: PSpinvector<QDF::PColorvector < QDP::RComplex <float 3.80e05 3.4% 2.85eQ5 2.6%
@ void QDP:evaluate <QDP::PSpinvector < QDP::PColorvector <QDP::RComplex<float :] 3.80e05 3.4% 2.75e05 2.5%
@ void QDP:evaluate <QDP::PSpinvector<QDP::PColorvector<QDP::RCamplex <floa §; 3.20e0% 2.9% 2.65e05 2.4%
© void QDP: evaluate <QDP::PSpinvector <QDP::PColorvector<QDP::RComplex <floaf i} 3.55805 3.2% 2.35e05 2.3%
z_ void QDP::evaluate <QDP::PSpinvector<QDP::PColoryector<QDP::RComplex<floal i} 3.30e05 3.0% 2.50805 2.3% v
% [

A flattened view, sorted by exclusive time. Tt is immediately apparent that the procedures
__cxa_vec_{dtor, ctor, cctor} and their descendants consume approximately 47% of the
total execution time! The highlights show the instantiation point (i.e., a ‘definition’ created
at compile time) of a PColorVector destructor.

Figure 5.7: HPCToOOLKIT’s visualization of Chroma (flat).

quickly delve into the computational kernel; at one point, loop information quickly
filtered between interesting and uninteresting call sites. However, this example also
showed that flattening calling context information in the presence of many very short

procedure calls can be valuable.

81

5.3.3 NAS Parallel Benchmark’s CG (UPC Version)

As a third example, we present data for a Unified Parallel C (UPC) [19] version
of the NAS 2.3 Parallel Benchmark CG. UPC is an extension of C that provides a
global shared address space (partitioned) for Single Program Multiple Data (SPMD)
programs. By supporting C’s flexible data structures, UPC enables programmers
to write parallel applications involving unstructured data and port them between
both shared memory and cluster architectures. The CG benchmark computes the
conjugate gradient of a large, sparse, symmetric positive definite matrix. The kernel
is typical of unstructured grid computations in that it tests irregular long-distance
communication and employs sparse matrix-vector multiplication [43]. It is therefore
a good application for UPC.

For this study we used a UPC version of CG written by Cantonnet and El-
Ghazawi [11] and modified (via loop unrolling) by Coarfa, Dotsenko et al. [15]. We
used the Berkeley UPC compiler [13] (version 2.4.0), configured with the Intel 9.0
compiler on the same Itanium architecture. We collected csprof data for a class B
problem size on four nodes and examined the results of one node.

We did not include Tau results because Tau does not yet include a configuration
for UPC or for UPC’s communication library GASNet [8]. Moreover, while it would
be possible to instrument the main CG solver code manually, because the interesting
portions of the call graph are the communication calls induced by non-local memory
references, the Tau data would be trivial. This reinforces one of the benefits of our
binary analysis method: as long as a compiler provides basic debugging information,
intriguing details can be obtained without either obtaining source code or rewriting
compilation scripts to manually instrument source files. Berkeley’s UPC is therefore
interesting not simply because UPC has important applications, but because it is

not a tightly coupled vendor compiler. Rather, it is a source-to-source compiler that

82

generates C source code (containing calls to run time library routines) that is then
translated to object code by a vendor compiler.

HPCTOOLKIT’s visualization, a screen shot of which is depicted in Figure 5.8,
immediately shows the Berkeley UPC run time layers that launch and initialize inter-
process communication. While this overhead was negligible for a 51 second run, it is
clear that the initialization process was non-trivial. For example, the HPCT0OOLKIT
visualization showed that before CG’s main routine was invoked, there was a call
to the Berkeley UPC run time initialization function upcr_startup_init which de-
scended through thirteen call sites and three loops to initialize three communication
layers: GASNet, MPI (only used as a launcher), and the low-level Myrinet intercon-
nect driver. All this was observed even though neither the specific MPI installation’s
nor the Myrinet driver’s source code was available.

Expanding the hot path, we quickly found the most important computational loop
within main, despite the fact that it is a 350 line routine with many other loops. This
loop consumed 96.2% of the execution time and called the conjugate gradient solver,
conj_grad which consumed 92.5% of the time. The rest of the routine’s execution
time was mostly consumed by computation of the residual norm (loops) and calls to
reduce_sum. The static data clearly distinguished the key loop from other ancillary
loops and procedure calls.

The main conj_grad loop (92.5%) is itself comprised of several inner loops and
calls to reduce_sum. This main loop contains a upc_barrier statement, which, inter-
estingly, we could easily see was implemented by calls to _.upcr_wait and .upcr_notify.
We could also expand these call chains and descend into both the GASNet and
Myrinet communication layers. However, the loop by far spent most of its time
in three areas: two doubly nested loops and a call to reduce_sum. The first doubly

nested loop (70.7%) contains the computational core (and the loop that was mod-

83

C G-uniatlad-upc - X

File
cg.C

1204 el
1308 for{ i={2npcols-1); i>=0; i--)

O 1306 {
1307 k = reduce_threads_g{MYTHREAD/i];
1308 | = reduce_recv_stant_g[MYTHREAD](i}-1;
1309 m = reduce_send_start_g[k]{i]-1;
1310
1211 upc_memget(prefetch_buffer, &wil[k]. arr[m],
1212 sizeof(doukle) * reduce_send_len_g[kl[i] };
1213
1314 upc_haotify,
1315
1216 for{ J=0,; j<reduce_send_len_g[kl(i}; j++)

0 1317
1318 w_ptr[l+]j] + = prefetch_buffer(jl;

0 1310 } Z
1320
1221 upc_wait;

Calling Context View

Scopes @ @§-

Experiment Aggregate Metrics

sample...
3,56£07 100.0 ||

¢ _fini 3.56e07 100.0
Q@ B _stant 3.56e07 100.0
@ B __libc_start_main 3.56e07 100.0
@ B> main 3.56e07 100.0
@ BP bupc_init_reentrant 3.56e07 100.0
9@ B» do_bupc_init_reentrant 3.56e07 100.0
@ B upcr_startup_spawn 3.56e07 99.5% o

[000 at ~~~cgu-bupc.B.4: <unknown-file >~~~ Q 3.56e07 99.9%

© BY user_main 3.56e07 99.9% | 1.50e04

] loop at cg.c; 409-469 3.43e07 96.3% | 5.00e03

¢ conj_grad 2.76e07

2.66e07
2.52e07
8.55e05
1,30e05
7.25e05

[loop at cg.cc 1206-1440
© loop atcg.c 1224-1298
@ loop at ¢g.c; 1306-1234
© B> [I] conj_grad
o loop atcg.c; 1317-1319
? B> _upcr_wait

R

R

¢ B gasnete_amdbarrier_wait : 2.50e04 0.1%
® 1008 at ~~~Cgu-bupe.B.4: <unknow : 2.50e04 0.1%
[l00p &t ~~~cgu-bupc.B.4: <unky 2.50e04 0.1%
B> ~~~cgu-bupc.B.4: <unknowr i .1% | 2.50e04 0.1% |
© B gasnete_amdbarrier_kick 21% 12,0004 0,1% ||
@ B> gasnetc_AMPall B .0% 11.50e04 0.0%
o] loop at ~~~cgu-bupc.B.4 .0% [1.50804 0.0%
~m~CgQU-bUPC.B.4: <uUl ¢ 0% 11,50e04 0.0%
© B reduce_sum i 5.00e03 0.0% {|_|
e05 0.7% |-

The ‘hot’ path to the main conj_grad loop (1206-1440) is expanded. Within this loop are
two loops (1224-1298 and 1306-1334) and a call to reduce_sum. The second loop (1306-
1334) is expanded. Highlighted is a call site to _upcr_wait mapping back to a upc_wait
statement within this loop. The path that _upcr_wait takes down into the GASNet layer
is also shown.

Figure 5.8: HPCTOOLKIT’s visualization of NPB 2.3 CG.

84

ified by unrolling). By simply glancing at the loops nested in the first loop, we
could see that the compiler had inserted no communication calls and that the loop’s
performance depended on effective use of the memory hierarchy and the processor’s
functional units. The second doubly nested loop (10.9%) did perform communica-
tion: a call to upc_memget was replaced with an inlined call to _gasnet_get_bulk
that consumed 6.1% of the inclusive time. A upc_wait statement, translated to a call
to _upcr_wait, was negligible, at least on four processors. The call to reduce_sum
(8.6%), not surprisingly, used communication to perform a reduction. Actually, there
is another call to reduce_sum within the loop — and as previously noted outside of
the loop — but the distinct contexts enabled us to clearly see that this particular
one was by far the most expensive. Within reduce_sum there was an inlined call
to _gasnet_put that corresponded to a simple C assignment. Because the assign-
ment occurred when the loop induction variable rs_i was not equal to MYTHREAD, it
referenced remote data and induced non-local communication.

This case study is illustrative in several ways. First, it shows that even on a
relatively small benchmark, correlating dynamic call path information with static
program structure enables the analyst to quickly focus on the most costly loops of
the program as well discover interesting facts about a compiler’s inlining decisions.
In every case, the loop bounds that bloop computed were exact and showed how the
computation was structured. Moreover, they enabled us to quickly divide between
loops that computed on purely local data and loops that induced communication.
Second, because our methods do not rely on source code, program structure informa-
tion was available even when source code was not: from procedure names, to loops,
to alien procedure contexts. We observed that what might remain a simple C assign-
ment on a shared memory architecture, translated into a communication call — and

we traversed the two layers of communication libraries that implemented it (GASNet

85

and Myrinet). Third, our methods were able to provide all this information in the
context of a research compiler thinly layered on top of a vendor compiler. While it
is true that collecting good structure information was only possible because of the
Berkeley compiler’s inclusion of #1line tags to facilitate debugging, it highlights that
as long as a binary has basic debugging information, our methods provide extremely

useful interpretive insight where other tools fail.

86

Chapter 6

Conclusions

We have designed a method of binary analysis for effective attribution and in-
terpretation of performance measurements on fully-optimized code. Specifically, 1)
we have rewritten HPCTOOLKIT’s binary analysis tool bloop to compute an object
to source code structure mapping for fully optimized binaries; 2) We have extended
HPCTOOLKIT’s correlation tool to combine call path profiles with source code struc-
ture by exposing inlined frames and loop nests as cost-inducing entities; and 3) We
have presented visualizations of the correlated data and used them to analyze complex
codes.

Of course, correlating dynamic and static information is not difficult for source
code that closely resembles the target architecture and which is not transformed by
a compiler. However as scientific applications are designed around object-oriented
abstractions, they rely more on compiler optimizations. Our binary analysis methods
recover the source code structure of the most important components: procedures
and loops. We have presented ideas for creating class member function groupings
and have observed that additional information is necessary to recover inlined nesting
structures.

In one sense, we have solved an artificial problem. In 1992, Brooks, Hansen
and Simmons [9] developed debugging extensions, generated by the Convex compiler,

that mapped object code to a scope tree of (Fortran and C) routines, loops, blocks,

87

statements and expressions. While they left to future work a solution for the inlining
problem, if compilers had adopted the revisions they described, both debuggers and
performance tools could be more revealing. Nevertheless, however easy the problem
of creating the object to source code mapping could have been, the fact remains
that the most aggressive compilers used for scientific computing generate limited
debugging information. Although it is true that compiler writers must weigh market
considerations when allocating developer resources between new features, bug fixes,
testing, and documentation, a relatively small amount of effort by compiler developers

would yield much low hanging fruit:

e Simple exploitation of the current DWARF standard would enable powerful
techniques for understanding performance. For example, two simple changes
would enable detection of all inlined code (with the exception of the last func-
tion in a procedure-scoped class; cf. Section 3.2.3). First, while DWARF does
not represent procedure end lines, it would be trivial to generate at least a
partial DWARF descriptor for every source code procedure and template in-
stantiation, whether inlined at every call site or not. Second, procedure-scoped
class descriptors should be nested within their containing procedure. Addition-
ally, recording inlining decisions — which have been representable in DWARF

for several years — would make associating inlined code with call sites trivial.

e Compilers should generate correct DWARF. None of the invalid DWARF we
have encountered could be justified by citing a DWARF design flaw or repre-

sentational deficiency.

e The major source code construct not representable in DWARF is a loop. One
very simple piece of compiler support for loop recovery would be to always map

a (structured) loop’s backward branch not to the condition test, but to the

88

loop’s header (because the condition test itself may derive from inlined code).’
However, even this would not enable an analyzer to account for transformations
such as loop interchange found in automatically parallelizing compilers. Because
loops are important, we advocate DWARF extensions that at least describe
source loop nesting structures and associate them with address ranges. Even in
this context, object code analysis could still be used to detect compiler generated

loops and loops formed with unstructured control flow.

e Line maps should have source column-level granularity, enabling the tracking of
source code expressions. This would provide a simple way to account for macro
function expansion by extending the #line directive to set the column as well
as source line and file as shown in the following example:

z = foo(
#line macro-begin-line macro-begin-column macro-file
expanded-macro-source~code
#line restored-line restored-column restored-file
)
While all these proposals result in larger amounts of debugging information, this is
a small price to pay in the context of scientific computing. The extra space require-
ments should not affect performance since debugging sections need not be loaded for
production runs. If space is an issue, compression techniques can appropriately trade
time for space.

Although we have focused on common languages for scientific computing such as

C, C++, and Fortran, our principles have broad application for any statically com-
piled language where performance is critical. Because we have based our analysis

methods only on a ‘lowest common denominator’ set of DWARF debugging informa-

!Current architectures use separate instructions (or operations, in the case of VLIW architectures)
for evaluating the loop continuation condition and branch.

89

tion and have tested them on highly optimized binaries with compilers that aggres-
sively transform both procedures and loops, they should be easily adaptable to other
languages. While our loop recovery is based on the bbranch-max-fuzzy heuristic that
does makes an assumption about typical compiler behavior to identify forward sub-
stitution, the main assumption behind it is machine-independent (loop invariant code
motion) and therefore unlikely to be invalidated by a future compiler optimization.
We have also seen that in the worst case, loop heuristics can make errors that affect
only the procedure whose structure is being reconstructed.

When compared with instrumentation-based techniques, our measurement and
analysis methods have several advantages. First, sampling-based call path profilers
introduce minimal distortion during profiling and allow arbitrary compiler transfor-
mations; on many operating systems they can even be invoked on unmodified binaries.
In contrast, static instrumentation introduces side effect inducing code into an ap-
plication, significantly dilating execution time and preventing important procedure
and loop optimizations. We have found that on large codes, recompiling to add
instrumentation is at best painful and at worst infeasible.

Second, using binary analysis to recover source code structure is uniquely com-
plementary to sampling-based profiling. While Tau [39] only instruments non-header
source files, HPCTOOLKIT’s call path profiler samples the whole calling context irre-
spective of whether the call chain passes through communication libraries or process
launchers. Moreover, bloop recovers the source code structure for any portion of
the calling context regardless of source code (as long as debugging information is
present). These facts are significant because even if we could obtain a perfect object
to source code mapping from a compiler, an absence of source code surely implies (in
practice) the absence of such a mapping. In other words, using binary analysis to

recover source code structure handles the complexities of real systems.

90

Third, binary analysis is an effective means of recovering the source code structure
of fully optimized binaries. When source code is available, we have seen that bloop’s
object to source code structure mapping accurately correlates highly optimized bina-
ries with procedures and loops. Among other things, it accounts for inlined routines,
inlined loops, fused loops, and compiler generated loops. In effect, our binary analysis
methods have enabled us to observe both what the compiler did and did not do to
improve performance.

We conclude that combining call path data with static source code structure pro-
vides unique insight into the performance of modular applications that have been
subjected to complex compiler transformations. bloop’s program structure informa-
tion for the STL map example (Figure 5.1, page 67) transformed what might have
been trivial or confusing call path information into a series of interesting details. We
saw unexpected compiler inlining decisions and surprising C++ destructor overheads.
We quickly learned details about map’s implementation (Red-black trees, location of
the main insertion loop) that might have been more difficult to find by simply read-
ing the source code! Our visualizations of CG enabled us to quickly find key loops in
the solver and distinguish between local and non-local computations. We identified
inlined communication and observed how the Berkeley UPC compiler [13] converted
non-local references to communication. Our analysis of Chroma [31] showed bloop’s
ability to handle very large and complex codes designed to undergo complex compiler
transformations. Our methods recovered the structure of a deep call path through
several dynamically dispatched routines, including a deep, dynamically nested loop.

Yet, Chroma also showed the limitations of typical top-down calling context vi-
sualizations. Once we had expanded the ‘hot’ path and found the main compu-
tational loop, costs were so finely distributed among expression template operator

instantiations that it was difficult to understand if there was a performance problem.

91

By exploiting HPCTOOLKIT’s ability to flatten the calling context tree, we quickly
observed that an extremely large percentage of the execution time was devoted to
managing C++ object deletion.

It should be said that Tau’s research group — Maloney, Shende, et al. — has
worked on eliminating some of the problematic effects of static source code instru-
mentation that we have observed. To support instrumentation of fully optimized
code, Shende developed an ‘instrumentation aware’ compiler [38]. This compiler
consumed instrumented code, but removed the instrumentation before performing
analysis and optimization. Then, with the aid of compiler generated mappings, the
compiler re-inserted the instrumentation into the post-optimized intermediate rep-
resentation and generated code. Since this compiler only supported C, it has not
yet been incorporated into Tau. As another approach for reducing overhead, Tau
experimentally supports dynamic instrumentation via Dynlnst [10]. Dynamic instru-
mentation is more promising since it does not inhibit compiler transformations and
can monitor object code for which there is no source. Nevertheless, monitoring every
call is inherently more expensive than sampling and call path information is limited
without static program structure.

Looking forward, we believe that our methods have applicability beyond node-
based performance tuning. Since the emergence of petascale computing is being fueled
by even larger scales of parallelism than exist on today’s machines, scaling issues
will be critical to achieving high performance. Call path profiles can be exploited to
detect scalability problems in parallel programs. Coarfa’s ‘scalability analysis’ [14,16]
aggregates data from per-process call path profiles of parallel programs to expose
scalability bottlenecks in context. Call path profiles enriched with program structure
would enable scalability analysis to pinpoint scaling problems to loops and make sense

of scaling problems within procedures containing inlining.

92

Another area of interest is recovering program structure information for dynams-
cally compiled code. Languages such as Java that allow objects to change at run time
are particularly suited to dynamic compilation because only at run time is enough
information known to determine that a class member function is not overridden and is
therefore inlinable. Sun Microsystem’s HotSpot virtual machine (VM) uses a just-in-
time compiler to dynamically compile and ‘uncompile’ frequently executed portions
of the byte code to object code. The effect is similar to loading and unloading dy-
namically linked libraries, except that the object code has no corresponding image on
permanent storage and that object code may be regenerated to account for dynamic
changes. Because Java’s debugging information is file and line based, analysis of the
code is required to recover program structure. To support Java profiling tools, Sun de-
veloped the Java Virtual Machine (JVM) Tool Interface (formerly known as the JVM
Profiling Interface) [33] which enables the construction of either instrumentation or
sampling-based call path profilers [18,47]. The JVM Tool Interface provides call backs
when a compiled method is loaded or unloaded (Compiled Method Load/Unload), en-
abling a profiler to copy the object code and its corresponding line map to permanent
storage for later analysis. One interesting fact about the HotSpot compiler is that
because inlining changes the run time call stack and interferes with Java’s ability to
maintain security guarantees, the HotSpot VM effectively maintains two call stacks,
an optimized stack and a ‘shadow’ stack corresponding to the source code. This im-
plies that the HotSpot compiler maintains some sort of mapping between the object
and byte code to construct the shadow stack. However, the JVM Tool Interface does
not appear to make this information available.

Finally, if the recent interest in automatic performance tuning is to be successful,
performance information is required that can guide a program. If a performance tool

cannot even aid an expert human analyst in diagnosing whether there is a performance

93

problem — and if so, its severity and cause — there is little hope for an auto-tuner.
Although our methods do not directly enable auto-tuning, inasmuch as they provide
novel information that helps an analyst quickly interpret the performance data, they

are a minimal prerequisite.

94

Bibliography

[1]

V. S. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. A. Reed, and
K. Kennedy. An integrated compilation and performance analysis environment
for data parallel programs. In Supercomputing '95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), page 50, New York, NY,
USA, 1995. ACM Press.

G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 85-96, New York, NY, USA,
1997. ACM Press.

Apple Computer. Shark. http://developer.apple.com/performance. 10 April
2007.

M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented
code. In SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 168-179, 2001.

M. Arnold and P. F. Sweeney. Approximating the calling context tree via sam-

pling. Technical Report 21789, IBM, 1999.

R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by
statistical sampling of microprocessor performance counters. In ICS ’05: Pro-

ceedings of the 19th annual International Conference on Supercomputing, pages

101-110, New York, NY, USA, 2005. ACM Press.

95

[7]

[11]

A. R. Bernat and B. P. Miller. Incremental call-path profiling. Concurrency and

Computation: Practice and Experience, 2006.

D. Bonachea. GASNet specification v 1.1. Technical Report UCB/CSD-02-1207,

University of California at Berkeley, 2002.

G. Brooks, G. J. Hansen, and S. Simmons. A new approach to debugging opti-
mized code. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementation, pages 1-11, New York,

NY, USA, 1992. ACM Press.

B. Buck and J. K. Hollingsworth. An API for runtime code patching. The

International Journal of High Performance Computing Applications, 14(4):317-
329, Winter 2000.

F. Cantonnet and T. El-Ghazawi. UPC performance and potential: A NPB
experimental study. In Proceedings of Supercomputing 2002, Baltimore, MD,
November 2002.

J. H. Chen. Sandia internal report. Technical report, Sandia National Labora-

tories, 2005.

W.-Y. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A
performance analysis of the Berkeley UPC compiler. San Francisco, California,

June 2003.

C. Coarfa. Portable High Performance and Scalability for Partitioned Global
Address Space Languages. Ph.D. dissertation, Department of Computer Science,

Rice University, January 2007.

96

[15]

[22]

C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi,
A. Mohanti, Y. Yao, and Chavarria-Miranda. An evaluation of Global Address
Space Languages: Co-Array Fortran and Unified Parallel C. In Proceedings of
the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP 2005), Chicago, Illinois, 2005.

C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability analysis
of spmd codes using expectations. In To be published in Proceedings of the 21st

ACM International Conference on Supercomputing, Seattle, WA, 2007.

Compagq Information Technologies Group. Using Compaq C++ for Tru64 UNIX
and Linux Alpha. Hewlett-Packard Company.

M. Dmitriev. Profiling Java applications using code hotswapping and dynamic
call graph revelation. In Proceedings of the Fourth International Workshop on

Software and Performance, pages 139--150. ACM Press, 2004.

T. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC specifications. http:

//upc.gwu.edu/documentation.html, 2003.

Free Standards Group. DWARF debugging information format, version 3. http:

//dwarf . freestandards.org. 20 December 2005.

N. Froyd, J. Mellor-Crumnmey, and R. Fowler. Low-overhead call path profiling
of unmodified, optimized code. In ICS °05: Proceedings of the 19th annual
International Conference on Supercomputing, pages 81-90, New York, NY, USA,
2005. ACM Press.

N. Froyd, N. Tallent, J. Mellor-Crummey, and R. Fowler. Call path profiling for
unmodified, optimized binaries. In GCC Summit ’06: Proceedings of the GCC
Developers’ Summit, 2006, pages 21-36, 2006.

97

[23]

[24]

[29]

[30]

[31]

E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Exzperience, 29(5),

1999.

S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution
profiler. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, pages 120-126, New York, NY, USA, 1982. ACM Press.

R. J. Hall. Call path refinement profiles. In IEEE Transactions on Software

Engineering, volume no. 6, 1995.

R.J. Hall and A. J. Goldberg. Call path profiling of monotonic program resources
in UNIX. In Proceedings of the USENIX Summer Technical Conference, 1993.

P. Havlak. Nesting of reducible and irreducible loops. ACM Trans. Program.
Lang. Syst., 19(4):557-567, 1997.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley.
An overview of the Trilinos project. ACM Trans. Math. Softw., 31(3):397-423,
2005.

Hewlett-Packard. The hiprof profiler. http://research.compaq.com/wrl/

projects/om/hiprof .html.

Intel Corporation. Intel VTune performance analyzers. http://www.intel.com/

software/products/vtune.

Jefferson Lab. The Chroma library for lattice field theory. http://usqcd. jlab.

org/usqcd-docs/chroma.

98

[32]

[34]

[36]

[37]

Lawrence Berkeley Lab. Chombo: A distributed infrastructure for parallel cal-
culations over block-structured, adaptively refined grids. http://seesar.1bl.

gov/ANAG/chombo.

S. Liang and D. Viswanathan. Comprehensive profiling support in the Java
virtual machine. In Proceedings of the Fifth USENIX Conference on Object-

Oriented Technologies and Systems, pages 229-240, 1999.

K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, F. Juelich, R. Rivenburgh,
C. Rasmussen, and B. Mohr. A tool framework for static and dynamic analysis
of object-oriented software with templates. In Supercomputing '00: Proceed-
ings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), page 49,
Washington, DC, USA, 2000. IEEE Computer Society.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 190-200,

New York, NY, USA, 2005. ACM Press.

J. Mellor-Crummey, R. Fowler, G. Marin, and N. Tallent. HPCView: A tool
for top-down analysis of node performance. The Journal of Supercomputing,

23:81-101, 2002.

G. Sander. Graph layout through the VCG tool. In R. Tamassia and I. G.
Tollis, editors, Proc. DIMACS Int. Work. Graph Drawing, GD, number 894,
pages 194-205, Berlin, Germany, 10-12 1994. Springer-Verlag.

S. Shende. The Role of Instrumentation and Mapping in Performance Measure-

ment. Ph.D. dissertation, University of Oregon, August 2001. TH/PA/06/22.

99

[39]

[40]

[41]

[42]

S. S. Shende and A. D. Malony. The Tau parallel performance system. Int. J.
High Perform. Comput. Appl., 20(2):287-311, 2006.

Silicon Graphics Computer Systems. MIPS extensions to DWARF version 2.0.

ftp://ftp.sgi.com/sgi/dev/davea/mips_extensions.ps.

A. Srivastava and A. Eustace. ATOM: a system for building customized pro-
gram analysis tools. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming Language Design and Implementation, pages 196-205. ACM Press,
1994.

M. M. Strout, J. Mellor-Crummey, and P. Hovland. Representation-independent
program analysis. In PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools and engineering, pages 67-74, New York,

NY, USA, 2005. ACM Press.

R. H. Subhash Saini, Johnny Chang and H. Jin. A scalability study of Columbia
using the NAS parallel benchmarks. Technical Report NAS-06-011, NASA Ad-

vanced Supercomputing Division, 2006.

UNIX International. DWARF debugging information format. http://dwarf.

freestandards.org. 27 July, 1993.

D. A. Varley. Practical experience of the limitations of gprof. Software: Practice

and Experience, 23(4):461-463, 1993.

O. Waddell and J. M. Ashley. Visualizing the performance of higher-order pro-
grams. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 75—-82. ACM Press,
1998.

100

[47] J. Whaley. A portable sampling-based profiler for Java virtual machines. In Java

Grande, pages 78-87, 2000.

(48] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient,
and adaptive calling context profiling. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN conference on Programming language design and implementa-
tion, pages 263-271, New York, NY, USA, 2006. ACM Press.

101

