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ABSTRACT

The Computation of Optimal Controls with

a State Variable lnequality Constraint
by

John L. Tletze

An algorithm for the numerical solution of optimal
control problems involving a functional | subject to
differential constraints, terminal constraints, and a scalar
state variable inequallity constraint is developed. First the
Inequality constraint is converted to an equality constraint
by a Valentine-type transformation; then this new problem is
scaled so that the subarcs which comprise the total
trajectory are normalized to unit Jlength. The resultant
normalizing parameters are then Iincluded 1in the overall
optimal control problem, and this final problem Is solved by
a modification of the sequential gradient-restoration

algorithm.

The new algorithm has three major advantages:

(1) time normalization transforms variable time
corner conditions and variable time terminal conditions
Into fixed time corner conditions and fixed time
terminal conditions, with subsequent ease of
implementation.

(11) 1inequality satisfaction Is enforced at all

stages of the algorithm.



(i11) a clear-cut criterion for choosing gradient

stepsize is employed.

Four numerical examples 1{llustrating the theory are

presented,



1. Introduction

Early work on the constrained? variational problem
dates to Valentine in 1937, reference 1. Later work, which
included necessary conditions for optimality of constrained
problems, was done by Gamkrelidze in reference 2, Dreyfus in
reference 3, Berkovitz In references 4 and 5, and Bryson et
al. In reference 6. Therefore all the relevant theory for
the optimal control problem with state varfable inequality
constraints was known by the end of 1963, The only problem
remaining was the development of computational algorithms to
solve the problem stated by the necessary conditions. This
problem has occupied the attention of many Investigators

over the last ten years.

In the construction of an algorithm, two approaches
have been followed =~ direct and 1Indirect. In the direct
approach, when a portion of the trajectory 1lies on the
inequality boundary, the control vector is determined so as
to keep the trajectory on the boundary. The entrance time
onto the boundary and the exit time from the boundary are
determined from the necessary conditions of the problem. In
the indirect approach, additional state variables are
introduced and/or the functional to be minimized is modified

suitably to account for the constraint.

T In the context of this thesis, constrained refers to a
problem Involving a state variable inequality constraint.



In the area of direct approaches, some of the
earlier work was done in references 7-8, while more recent
work has been done in references 9-12. The common element in
references 7-12 Is that the number and sequence of subarcs
comprising the extremal arc must be known a priori. On the
inequality boundary, the inequality constraint Is employed
with the equality sign. The equality. constraint s then
differentiated as many times as required (K times), until
the control variable appears explicitly. Then, the equality
constraint and its first K-1 derivatives are employed as
corner conditions at the entrance to the inequality
boundary, while the final derivative 1Is used as a control
variable equality constraint to be satisfied everywhere on

the boundary.

In the area of Indirect approaches, the most widely
used are the penalty function and mathematical programming
techniques. !n the penalty function technique, the original
constrained optimization problem 1is transformed into an
equivalent unconstrained optimization problem through
suitable modification of the functional to be minimized. In
this connection, penalty function techniques were developed
in reference 13 in conjunction with a conjugate gradient
algorithm and 1iIn reference 14 in conjunction with a
generalized Newton-Raphson algorithm. In the mathematical
programming technique, the system of differential equations

Is discretized over the interval of integration and the



resulting difference equations are solved by Mathematical
Programming algorlthms, References 15, 16, and 17 discuss
several algorithms In detall., The major advantage of these
approaches 1Is that the number and sequence of subarcs
composing the extremal arc need not be known a priorl.
Naturally there are some disadvantages. In the penalty
function approach, the choice of penalty constant s
arbitrary. Generally the problem Is solved for Increasing
values of the penalty constant, and in the 1limit as the
constant becomes infinite the computed solution converges to
the actual solution. In reference 18 it Is proven that this
technique generates behavior which seriously degrades the
accuracy  of numerical integration techniques. The
disadvantage of the mathematical programming approach
revolves around the size of the discretization step. For
good accuracy it should be small, but to keep the size of
the problem within manageable proportions 1t should be
large. There is no clear criterion for choosing a stepsize

to yield a desired accuracy.

Another indirect approach, developed in reference
18, uses a Valentine-type transformation, or slack variable,
to convert the inequality constraint to an equality
constraint, The vresulting equality constraint 1is then
differentiated K times until the control variable appears
explicitly. Defining the Kth derivative of the slack

variable as a new control and defining the other slack



variable derivatives as additional state variables, the Kth
equation Is then solved for the original control in terms of
all of the state variables and the new control. The origlinal
control Is then replaced and the optimization takes place In
the new and larger (by K) state space with respect to the
new control. Several disadvantages are apparent. Accurate
results depend on the slack variable and its derivatives
being zero when the trajectory 1lies on the constraint
boundary. Because of the type of numerical algorithm used to
solve the problem, the slack variable Is nev:r Identically
zero, even at convergence. Therefore the trajectory will
never lie on the constraint boundary, but only approach it.
Second, the transformed problem 1is singular when the
trajectory is on the constraint boundary. This means that
the new control may have discontinuities at the entrance and
exit points of the boundary, a severe problem for numerical
integration methods. Finally, It may not be possible to
solve explicitly for the old control. This will be generally

true if a nonlinear system is being optimized.

This last disadvantage has been removed in
references 19 and 20. |Instead of solving for the old
control, the equation is adjoined to the functional as a
non-differential equality constraint via a Lagrange
multiplier. This permits solution of the problem without
having to take special precautions when solving nonlinear or

transcendental equations.



This thesis develops a hybrid algorithm 1in an
attempt to combine the best features of both the direct and
Iindirect approaches. Philosophically speaking, the new
algorithm 1is a combination of the direct approach as
outlined In reference 11 with the Indirect approach as
outlined in reference 19, As in reference 19 the state
variable inequality constraint 1is transformed into an
equality constraint by means of a Valentine~type
transformation; 1i.e. a slack variable. This new equality
constraint Is then differentiated K times until the control
variable appears explicitly. The slack variable and its
first K-1 derivatives are defined as new state variables,
while the Kth derivative 1Is defined as a new control.
Finally the Kth derivative of the state variable constraint
interrelates the original control with all the state

variables and the new control,

While on the state constraint boundary, the new
state variables and the new control must be zero. The new
algorithm is designed to enforce this zero condition at all
times. Therefore one of the disadvantages of the approach of
references 18 and 19 is eliminated. To determine the
boundary entrance and exit times, the algorithm divides the
original problem into separate subarcs, as in reference 1l1.
Then each subarc 1is normalized to unit length by a
parameter, and the parameter vector Is included as part of

the optimization problem. At convergence the values of the



parameter vector will tell exactly when the boundary

entrance and exit occurred.

The new algorithm belongs to the sequential
gradient-restoration class as defined by Miele, et al. in
reference 21. A major property of the algorithm is: at the
end of each gradient-restoration cycle the state
trajectories satisfy the constraints to a given accuracy.
This means that at convergence, the algorithm has produced a
sequence of feasible but suboptimal solutions, except for

the final cycle,



2. Development of the Algorithm

The basic problem to be solved numerically Is the following.
fr

minimize | = g(x); + [ f(x,u,0)do (1)
0

subject to the following constraints

dx/d6 = ®(x,u, 8) x(0)= given o (2)
¥(x), = 0 (3)
and L(x,8) s 0 (4)

where x Is a vector of state variables (n 1long), u ls a
vector of control variables (m 1long), ¢ Is a vector of
length n, Y Is a vector of terminal constraints (q long),
and L Is a scalar state variable inequality constraint. Now,
using a technlique due to Valentine, rewrite Equation (4) as
an equality constraint by adding a so-called slack variable:

L(x, 8 + p2 = 0 (5)

Equation (5) is now differentiated K times with respect to

8, yielding the following equations:

L,(x, 8) + 2834 =0 (6)
L(x, 8) + 28,2 + 288, =0
L(x,u, 6) + [terms in 31,,Bk-i* BB, =0

where the subscripts on L and B denote derivative with

respect to 6. Using the Kth equation, one may solve for the



control u to obtain:

U = G(x,Bk-1 seeeeeerB1 BBk, 8) (7)
Using Equation (7), and treating B8,....,Bk-1 as additional
state variables, the following wunconstralned control

problem, with By as the new control, Is obtained:

.
I = glx); + [ f(x,6(....),0)de (8)
0

dx/de = ¢(x,6(....),0) x(0)= given (9-1)
Y(x), = 0 (9-2)
dg/de = Bq 8(0) (10)
dg1/de = By B1(0) \determined from x(0)

. . . and Equations (5) and (6)
dBk-1/d® = Bk Bk-1(0)

Although the original problem has been converted to an
unconstrained form, the constrained subarc of the original
problem has also been transformed - into a singular subarc.
Thus the possibility that Bk will be discontinuous at the
junction of the unconstrained and constrained subarcs
exists. Since numerical Integration techniques operate by
approximating the function and its derivative over a grid of
points, a discontinuity In the derivative will affect
integration accuracy unless the method being used 1Is
designed specifically for this case. To bypass this

condition, the problem formulated 1{in Equations (8-10) is



restated in a slightly different form and then Is split into
three separate subarcs with the central subarc lying on the
constraint boundary. Splitting the problem Into three
subarcs allows the Iintegration to proceed along each subarc
without the problem of Integrating across the control

discontinuity.t

First, consider a restatement of the problem in the
following form. Here the state vector x has been expanded to
ntk to Include the additional state variables, and the
control vector has been expanded to m+l to include the new
control g, . Further, the final equation In Equation (6) is
not explicitly solved for u, but Is kept as an equality
constraint over the entire Interval of integration.

Therefore:

minimize | = E(x)T + fi?(i,ﬁ,e)de (11)
subject to

dx/de = 9#(x,u,0) x(0)= glven (12)

S(x,0,08) =0 (13)

Une1(8) = B (8) = 0 6,5 6 s 6, (14)

Xpe(0) =0 0= 1,...,k (15)

¥(x)y =0 (16)

T For the rest of this thesis, the main problem is
considered to have three subarcs with the central subarc
lying on the constraint boundary. |f the constraint boundary
Is encountered more than once, it is a simple modification
of the algorithm to Include this case.
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Equation (13) Is the final equation from the set In
Equation (6). Equations (1l4-15) result from the fact that,
on the constraint boundary, 8 and all of its derivatives
must be zero. The trajectories are on the boundary from 6,

to 0,, 61 being the entry point and 62 being the exit point.

The problem outlined above is now transformed into one
which has three subarcs of unit length. The entry, exit, and
possibly the final time are considered to be parameters
which are optimized with the rest of the problem. This
device 1is attributed to Long, reference 22, With this
transformation, the problem 1is changed from one with
variable entry and exit points to one with fixed entry and

exit points,

The following transformation between t and 6 iIs used:

0 = 91t Ostsl (17)
8, *+ (8p-04(t = 1) 1sts2
92 + :(93-92)(1: - 2) 2<5ts3

where g, Is the boundary entrance point, 6, is the
boundary exit point, and 6, =71 is the final time, which may
be variable. The parameter vector T Is defined as (6,,6,)
if thé final time is fixed, or (6,,0,,65) if the final time

is free.

The transformed problem now becomes:
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I = a(x), j: F(x,u,m, t)dt (18)
X = d(x,u,m,t) x(0)= given (19)
S(x,u,m,t) =0 (20)
N(u) = Uy, () =0 1sts2 (21)
MOX), = X (1) eee, Xy (1) =0 (22)
¥(x,m) = 0 (23)

The necessary conditions for the above problem are derived

in the next’section.

2 SS ditio

To keep the notation uncluttered, explicit dependence
on x, u,m, and t will be eliminated and only indicated where
necessary. Further, evaluation of a function at a given time
t, will not be indicated by a subscript but will be
parenthesized 1like an argument. Thus Equation 23 would

become ¥(3).

Define the Hamiltonian of the problem as
H=f - Ao + oS + pN (24)
where A(t) is an n+k vector of Lagrange multipliers, o (t)

and pn(t) are scalar multipliers, with pn(t) defined as:
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pn(t) = 0 Ostsl , 2s5ts3 (25)
z 0 1sts2

The augmented performance index is then

c.
]

3
IO(H + ATR)dE + oTM(L) + Lw(3) + g(3) (26)

where o is a k-vector multiplier and y is a g-vector

multiplier. Integrating by parts over each subarc yields:

3
J o= JJH-&ROdt +oTM(1) + Wu3) + g(3)  (27)

1 2

RS P US

3
" (XTxJ
1 : 2

Taking the first variation of J we have:

‘[3 . T 3 T
SJ = o(Hx = A ax dt + LHU Au dt (28)
T
+ [J:Hﬂdt Y (e + g (3)] Arn
+ 0 OMI-) - MI#) + M (Dol ax(1)
s 0 AM2-) = 2417 ax(2)

+ LA+ g, (3) + v, (30107 ax(3) = x0) ax(0)
where continuity of the ax across the junctions has

been utilized.

Since the variations aAx(t), au(t), and Ar are free and

since aAx(0) = 0,the following conditions must be satisfied
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if the first variation of J Is to vanish.

A= Hy (29)
H, = 0 (30)
[(hede + g (3) + w3y =0 (31)
[ ]

M1=) = X1+) + My(l)o = 0 (32)
X2-) = X2+) =0 (33)
A(3) + g, (3) + ¥, (3)u =10 (34)

subject to:

X = ¢ x(0)= given (35)
S =0 (36)
N(u) = 0 1sts? (37)
¥(3) = 0 (38)
M(1) =0 (39)

Summarizing, we seek the functions x(t), wu(t), ™ and the
multipliers A(t), pg(t), opp(t), 0, Wwhich satisfy the
constraints (35) - (39) and the optimality conditions (29) -

(34).,

2.2 Approximate Methods

Since the equations to be solved will be nonlinear in
general, some form of lterative approximation must be used

in their solution. Therefore define the scalar functionals P
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and Q which denote the error 1in the constraint and the
optimum conditions respectively. In the context of this

thesis the norm of a vector is defined as:

Z(a) = a'la (40)
Define:
3
P = [ {26 - o) + zts)}de + [Z(Mde + zZ0 D)
° 1
+ Z(y)
3 4
Q= I{zu - Hy) + Z(H)}dt + (42)

°

3

ZC [ Hdt + g (3) + w (3 +
(-]

ZC AM1=) = A1+) + My(1)g)

20 M2-) = M24))

ZC AC3) + gy (3) + ¥, (3) )

For the exact variational solution P 0 and Q = 0, while

any approximate solution vyields P > 0 and/or Q > 0. In

practice It Is difficult to numerically obtain zero, so that
a convergence criterion might become:
P < ¢q Q< e (43)

where ¢4 and ¢, are small preselected numbers,

The algorithm proposed for the solution of the
preceding problem 1is a variation of the sequential

gradient-restoration algorithm of reference 21. The
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algorithm consists of an alternate succession of gradient
phases and restoration phases. In the gradient phase, the
value of the functional | Is decreased, while In the
restoration phase the wvalue of P 1Is reduced to |its
preselected accuracy. In both phases, the variations in the
functions are obtained by placing a quadratic constraint on

the control and parameter variations.

z 3 Sgg!lgﬂ:la] Gtadlent"Be:EIQEaIiQn e]ggtlghm

A generalized algorithm which applies for either the
gradient or restoration phase can be derived in the
following manner. Let x(t), u(t), and T denote the nominal
functions and let X(t), &(t), and ¥ denote the varied
functions. Further let o denote the stepsize and let A(t),
B(t), and C denote the displacements per unit stepsize.

These quantities satisfy the definitions:

X(t)= x(t) + Ax(t) a(t)= u(t) + Au(t) (44)
= 7 + AT
and

ax(t) = cA(t) au(t) = aB(t) Ar =a C (45)

The variations ax(t), au(t), and Ar are generally
selected to have some desirable properties for the problem
of interest. For this problem, a desirable property in the
gradient phase would be the reduction of J while keeping the

increase in P relatively small. For the restoration phase a
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desirable property would be the decrease of P with only a
small change in the value of J. To obtain either property it
is only necessary to select the variations so that the first
variation of J or P is negative. This means that for a
sufficiently small stepsize @, the functional J or P will

decrease,

To ald In the selection of the correct variations, the

first variations of J and P are given below:

3 . 3
80 =[x = DTaxde + [ #,Tauat (46)
> T
o0 [ Hodt + ¥ (3 u + g (3)]06n
+ A(1-) = M1+) + M (1)0]7ax(1)
¢ [M2-) - M29)1Tax(2)

s DM3) 4 g (3) + ¥, (3)u1Tax(3)

¥
. ) T,.: T T T
6P = 2|((x - ¢) (ax = & Ax = ¢, AU = & "Arn) (47)
ﬂ} M u b w AT
+ sT(s, Tax + s, au + s, am)

s NN Taudade + MEDTM TCDax(1))
s w3 T, T(3ax(3) + v T (3nr )}

The variations to be used can now be selected. In the

following R1 and R2 are constants which depend on the phase,
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l.e. for a gradient phase R1= 0 and R2= 1, for a restoration
phase R1= 1 and R2= 0. With this In mind, the variations

ax(t), au(t), and Ar must satisfy the following equations.

AX - ¢ Tax - ® TAu - & AT + aR (X - &) = 0 (48)
X u T 1
Ax(0) = 0 (49)
wa¢3)Ax(3) +w"T (3)A1 + R ¥(3) = 0 (50)
T T T _
Sx Ax + Su Au + S" AT+ aRls =0 (51)
NuTAu + aR N = 0 1sts? (52)
A= RF, + @ A-p.S =0 (53)
Au + a(R2fu - ¢uA + pSSu + pnNu) = 0 (54)
J~3
Aw + al O(R2ﬂr - gTA + p gr)dt + R2%T(3) (55)
+ ﬁr(S)uJ = 0
M1#) = A(1-) - M (1)o = 0 (56)
CM24) - AM2-) =0 (57)
M3) + R,g (3) + ¥ (3)u=0 (58)
MXT(l)Ax(l) + aR M(1) = 0 (59)

Using the above equations and the definitions of P and Q

when subject to these equations , we have:

J = = aQ (60)



18

P = =2aP (61)

which vields the desired descent property In each case
provided that Q > 0 and/or P > 0. On account of Equations

(45), Equations (48-59) can be rewritten as:

T

A-oTa-0T8-0Tc+Rr(k-20 =0 (62)
A0) = 0 (63)
v T(3)AG) + ¥ T(3c + R w(3) = 0 (64)
s,'a+s T8B+sTc+Rrs =0 (65)
NTB + RN =0 15t<2 (66)
A - R,F *+ @ A=-pS =0 (67)
B + R2fu - ¢uA + pSSu + pnNu =0 (68)
C + £(R2fﬂ-¢n A+pssn)dt+R2g"(3)+‘l’ﬁ(3)u =0 (69)
M1+) = M1=) - M (1)o = 0 (70)
M2+) = M2-) = 0 (71)
AN3) + Rog (3) + ¥ (3)u=0 (72)
MXT(I)A(I) + R M(1) = 0 (73)

For given nominal functions x(t), u(t),™ and the
constants R1 and R2, Equations (44-45) and Equations (62-73)

constitute a complete Iteration leading to the varled
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functions %(t), tU(t), ™ providing one specifles the stepsize
a. To repeat, for a gradient step R1= 0 and Ry= 1; for a
restoration step R1= 1 and R2= 0, In addition the

multipliers and pg are defined via Equation (68) so that

°n
Equations (65-66) are satisflied exactly.

2.4 The Linear Multipoint Boundary Value Problem

Equations (62-73) represent a linear time-varying
boundary value problem, The initial conditions on A are
specified by Equation (63) , the final conditions on ) are
specified by Equation (72), and midpoint conditions on A are
specified by Equation (73). The followlng technique, which
is a modification of Miele's Method of Particular Solutions

(ref. 23), is proposed for the solution,

In what follows the order of the differential systems
62 and 67 is n, the order of the constraint is k, the number
of parameters is p, and the number of terminal constraints
is q. First integrate the differential systems 62 and 67
forward in time n+p+k+l times, and in each (integration
(subscript 1) assign the following values to the n-vector

XNO0), the p-vector C, and the k=~vector o:

A‘(O) = [6'1'6'2'...0..’6‘n]T (7“)
ci = [Gi’n.'.l’ooooo-cfdl’n-fp].r (75)
0‘ =[6‘,n+p+1’oouooo'5]’n+p+k+1]T (76)
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for 1= 1,.0¢.,n+p+k+l and where 81 ; is the Kronecker delta.

In this way one obtains the functions
Ai(t),Bi(t),}\,(t),ps‘(t),pn,(t),oi,c‘ (77)

Next introduce the n+p+k+1l undetermined scalar constants KI

and form the linear combinations

ACt)= JKiA[(t)  B(t)= JK{Bj(t) C= JK;C; (78)
ps(t)= JKipgi(t) o, ()= JKyp i (t)

By an appropriate choice of the constants K; and the
components of the multiplier ¥, these linear combinations
can satisfy all the differential equations and the boundary
conditions. This cholce is determined by the following set

of linear equations.

TKi (v, (3)A,(3) + v T(3)c)) + R,¥(3) = 0 (80)

ZK,[.E(R2fn = @ A + pgS At + Cy1 + Ry (3)  (81)

+ Wn(3)11= 0
Ky 4 (3) + Rog,(3) + ¥, (3)u=20 (82)
ZK,Mthl)A,(l) + RM(1) =0 (83)

The linear equations (79-83) represent n+p+k+l+q equations
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in the n+p+k+l unknown multipliers K' and the q components

Of Ue

After determining the constants Kl' two methods of
combination are possible. If all the quantities in Equation
(77) have been saved, the composite solution of Equations
(78) can be formed directly. An alternative 1Is to use the
Kl's to define X0), C, and o and integrate the differential
system forward one final time. This final technique Is the

one used In the examples of this thesis.,

2.5 Stepsize Determination

From the solution of the linear multipoint boundary
value problem the functions A(t), B(t), C and the
multipliers Xt), pn(t), ps(t),o , 4 are available. With
these functions, one can form a one-parameter family of

solutions:

X(t)= x(t) + aA(t) d(ti= ul(t) + aB(t) (84)

= + oC

for which the augmented functional J and the constraint

error P take the following form:
J = Jd(a) P = P(a) (85)

In the restoration phase of the algorithm it is desired to
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have
P(a) < P(0) (86)
Satisfaction of lnequation (86) can be ensured by using a
bisection process, starting from the reference stepsize
a =1 (87)
This value reduces the constraint error P to zero If all
of the constraints are linear in x(t), u(t), and v. If the
constraints are nonlinear, the Newton class restoration
phase should exhibit quadratic convergence after stabilizing

at a« = 1.,

The reference stepsize for the gradient phase Is
determined by finding the minimum of JU(a) along the
direction. This stepsize Is computed by assuming that J(a)
has a quadratic representation, and then finding the minimum

of this representation.

Let J(a) be represented by the quadratic form:

J(a) = Ko + Ko+ K2a2 (88)

and let the coefficients of the quadratic be determined from
the values of the ordinate and the slope at a= 0 and the

value of the ordinate at o= 1. This ylelds the relations:

JC0) = Ky Ua€0) =K, U(1) =Ky + Ky + K, (89)
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From Equations (42-46) we have Jy(0) = -Q, therefore

Ko = 3€0) Ky = =Q K, = JC1) - UC0) + Q  (90)

With the coefficients known two possibilities exist, Ky>0 or
K2<0. | f K2>O, the quadratic function (88) has a minimum for

the gradlent stepslze value
I f K2<0, the quadratic function does not possess a minimum.

This suggests the use of the following values of a In the

gradient phase:

Q
i

o« = 1 f K,<0 (93)

Finally, for any given stepsize a, the new
parameters must be such that the following Inequality 1is

satisflied:
8, < 6, < 83 (94)

If it Is not, then some systematic reduction of o should be
made untll satisfaction occurs. lnequation (94) is used to

ensure that all subarc lengths will be finlte and positive.
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3,0 Numerical Computation

Experimental Conditions

In order to evaluate the previous algorithm, four
numerical examples were considered. Computations were
performed using the Rice University [IBM 370/155 digital
computer. Double Precision arithmeiic was used, and the
algorithm was programmed 1In FORTRAN IV. Each problem was
broken into three sublintervals with 20 integration steps per
subinterval. All differential equations were Integrated
using Hamming's modified predictor-corrector method with a
special Runge=-Kutta starting procedure. All definite

integrals were computed with a modified Simpson's rule.

Search Conditions

The determination of the gradient stepsize or the
restoration stepsize was performed 1In accordance with
Section 2.5. For the gradient phase, the stepsize was

subject to the inequalities:

J(a) < JCo) P(a) s PCO) + 1 (95)

For the restoration phase, the stepsize was subject to the

inequality:

P(a) < P(O) (96)

Before checking either of these inequalities, the
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followling Inequality on the parameters must be satisfled:

61 < 62 < 63 (97)

this ensures a finite and positive length for each subarc.

Lonvergence

Convergence of the algorlthm was deflned through the

inequalities:

Ps €, Qs €, (98)
where
o -8 a -4

€, 10 €, 10 (99)
Nonconvergence

Conversely, nonconvergence was defined as:

(a) N > 50 (100-1)
(b) N > 10 (100-2)

S

Here N Is the number of the I{teration and Ns Is the
number of blsections of the stepslize o required to satlisfy
Inegn. (95) or (96). Inequatlion (100) Is primarily to stop

algorithm execution should nonstandard conditions occur.
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Nominal Selection

Experimentation with the algorithm has demonstrated a
sensitivity to the selection of nominals. This takes the
form of falling [nonconvergence (b)j during the (initial
restoration because the boundary subarc is reduced to zero
length while the parameter perturbations remain finlte and
such as to reduce the boundary subarc below zero. This
effect seems to be due to the fact the S function of
Equation (13) 1Is nonzero Iinftially. In an effort to
eliminate this behavior, the following rationale (s proposed

for selectling nominals,

In general the values for the state variables at
boundary entrance and exlit are known, especially for the
newly added slack variahbles. Therefore choose the nominals
so that stralght lines join the Initial or final conditlons
to the boundary entrance or exlt points respectively. The
new control must be zero on the boundary subarc. Therefore
choose the nominal to be zero on this subarc and to be 1 on
the other subarcs. The sign for the control off the boundary
Is determined by the sign of the nominal slack variable
derivative. Choose the old control so the S functlon is zero
on the central subarc, and otherwise use a constant control.
The value of the constant Is determined from continulty
across the boundaries. The Inltial value of the parameters
does not seem to be critical, and can be estimated from the

unconstrained solution If avallable. Otherwlse values of .1



and .9 times the maximum time seem reasonable.
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Example 3.1

Consider the problem of minimizing the functional

1
| = I (x2 + y2 + ,005 u2? )de (101)
0

with respect to the states x(0),y(8) and the control u(s)

which satisfy the differentlial constralnts

dx/de = vy (102)
dy/d® = =y + u

and the state variable Inequality constraint
y - 8(6 - .,5)2+ ,5 < 0 (103)
and the boundary conditions
x(0) = 0 y(0) = -1 (104)
In order to ensure satlsfactlion of the state Inequality
(103) over the Interval of definition, Introduce the

additional state-slack variable z(8) through the following

relatlon:

y = 8(6 - ,5)2 + ,5 + ,522 =0 (105)
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which upon differentiation with respect to 0 becomes

dy/d6 - 16(6 - ,5) + 2z dz/dge =0 (106)

Now Introduce the new control varlable w(0) defined as:

dz/d6 = w(9) (107)

In 1lght of Eqns. (102), (105), (106), and (107), the

followlng relatlons among the states and the controls exlst:
u - y + 16(6 - ,5) + zw =0 0s8sl (108)
w=20 9156562

where the state Is on the boundary from 61 to 92.

The boundary conditlons on the slack varlable z(8) must
be consistent with the definition (105) and the boundary

conditions Eqn. (104). This generates an Initial condltion:

z(0) = = V5 . (109)

In addition, the followlng midpoint condition Is Imposed:

2(61) s 0 (110)

To convert the problem to the model of this thesls,
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introduce the normalized time t, as deflned by Eqn. (17).
When normalized time s employed, the problem Is

reformulated as that of minimizing the functional

1
| = j91<x2 + y2 4,005 uddt + (111)
0
2
j (6. - 6.)(x2 + y2+ .005 u?)dt +
1 2 1

3
j (1- 6,)(x2+y2+ .005 ud)dt
2

with respect to the state x(t),y(t),z(t), the control
ul(t), w(t), and the parameter ccmponents 91,92 whlch satlsfy

the differentlial constralnts

X = IR 0stsl (112)
y = ei(u - vy)

z = oM

X = (92 - ei)y 1<t<2

y = (e2 - 91)(u -y)

z = (92 - 91)w

x = (1 - 625y 2 <t <3

y = (1 = 92)(u -y)

2z = (1 =~ 92)w

the control varlable constraints
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u -y + 16(6 - ,5) + zw = 0 0sts<3 (113)

w =20 1sts2

[where 0 is defined by Eqn. (17) 1, and the multipoint

conditions

x(0) =0 x(3) = free (114)
y(0) = -1 y(3) = free
z(0) = =5 z(1) =0 2(3) = free
In this problem,
n =3 m= 2 p = 2 k = 1 q=20 (115)

Since n+p+k+l = 7, seven particular solutions are needed

for each gradient or restoration iteration.

Assume the nominal state

VS (t-1) 0st<1 (116)

-t/3 y = =1 2z

>
u

1sts2

n
o

x = =t/3 y = =1 z
V5 (t-2) 25t <3

X = =t/3 y = =1 z

the nominal control

u = =5 w = +1 0stsl (117)

u 8t - 13 w= 0 1sts2
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u= 3 w= -1 25ts3

and the nominal parameter components

6, = .25 0, = .75 (118)

These nominals are consistent with the selection
criteria outlined In Section 3.0, but they violate Eqns.
(112). This being the case the algorithm starts with a
restoration phase. After a total of 12 iterations the
algorithm has converged to the required accuracy. Tables 1-6
show convergence history, and the optimal trajectories and

multipliers for the converged solution.



Table 1 Convergence History for Example 3.1
lteration P Q L Mode
0 +1333E+02 «1373E+01 REST
1 «3120E+01 .1180E+01 REST
2 «3640E+00 .7352E+00 REST
3 +4195E-03 .6765E+00 REST
b «3953E-09 +3455E=-01 .6760E+00 GRAD
5 «1782E+00 +2974LE+00 REST
6 +9521E-04 +3331E+00 REST
7 +.1618E=-11 +4975E-02 «3325E+00 GRAD
8 «1571E+00 +1773E+00 REST
9 +1802E~-04 .1883E+00 REST
10 .6815E~-13 J2UULE~D3 .1882E+00 GRAD
11 +4167E-02 +1724LE+00 REST
12 +.6976E=-08 +UB659E=-04 +1728E+00 GRAD
Table 2 Parameter Convergence History for Example 3.1
lteration 64 P
0 +2500 . 7500
1 +3710 .6889
2 4799 5942
3 4755 .5820
L JAU754 .5823
5 3456 .6019
6 .3707 .5978
7 3704 .5978
8 +2898 5789
9 3034 .5839
10 3034 .5839
11 2811 ,65237
12 2826 .6226

33
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Table 3 Converged State Trajectories for Example 3.1
Time X Y Z

0.0 .0000E+00 ~-.,1000E+01 ~-.2236E+01
0.2 -.3897E-01 ~.4339E+00 =-,1736E+01
0.4 ~-.5410E~-01 -,1375E+00 =-,1292E+01
0.6 -.5781E-01 -~-,1685E-01 -.8835E+00
0.8 -.5813E-01 ~-,1105E-01 =-.4717E+00
1.0 -,6117E-01 =-,1219E+00 -,1442E-12
1.0 -.61176-01 ~-.1219E+00 ~-,1437E-12
1.2 ~-,7666E~-01 ~=.3214E+00 -,1437E-12
1.4 ~-.1032E+00 ~-,.4469E+00 -,1437E-12
1.6 -.1357E+00 =-.4985E+00 ~,1437E-12
1.8 -.1693E+00 ~,4761E+00 =-,1437E-12
2.0 -.1988E+00 ~.3797E+00 ~.1437E-12
2.0 -.1988E+00 <-.3797E+00 ~,1521E-12
2,2 -.2213E+00 =-,.2116E+00 «2260E+00
2.4 -.2308E+00 -,4576E-01 «5376E+00
2.6 -.2303E+00 JU4367E~01 <9284E+00
2.8 ~.2258E+00 .7015E-01 .1320E+01
3.0 -.2187E+00 +1369E+00 +1651E+01
Table 4 Converged Control Trajectories for Example 3.1
Tim y W

0.0 +1213E+02 .9450E+01

0.2 .6863E+01 .8289E+01

0.4 «3323E+01 +7467E+01

0.6 .9787E+00 +7110E+01

0.8 -, 7788E+00 +7662E+01

1.0 -.3600E+01 .8980E+01

1.0 -.35600E+01 .0000E+00

1.2 -.2711E+01 .0000E+00

1.4 -.1749E+01 .0000E+00

1.6 -.7127E+00 .0000E+00

1.8 .3976E+00 .0000E+00

2.0 .1582E+01 .0000E+00

2.0 .1582E+01 .2890E+01

2.2 .2185E+01 «SLILE+O1

2.4 «1747E+01 +4805E+01

2.6 .6571E+00 «5354LE+01

2.8 «3952E+00 +4898E+01

3.0 «1932E+01 .3757E+01
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Table 5 Lambda Multipliers for Converged Solution of Example 3.1

Time Ai }\2 Ae

. «2801E+00 .6178E+00 -,1028E+01
0.2 «2776E+00 «5301E+00 ~-.7973E+00
O.b «2722E+00 .U4869E+00 -.5937E+00
0.6 .2658E+00 «U653E+00 -.4064LE+00
0.8 «2592E+00 JUU97E+00 ~-,2176E+00
1.0 «2525E+00 .4280E+00 -,2025E~-03
1.0 «2525E+00 .4280E+00 -,.1658E-02
1.2 «2433E+00 «3779E+00 -,.1658E-02
1.4 «2312E+00 «3070E+00 -,1658E-02
1.6 «2150E+00 «2256E+00 -,1658E-02
1.8 L1942E+00 «1440E+00 -,1658E-02
2.0 .1691E+00 «7277E-01 -,1658E-02
2.0 .1691E+00 «7277E-01 -,1658E=-02
2.2 «1372E+00 .1696E-01 .5202E-02
2.4 .1029E+00 ~,1033E-01 .2859E-02
2.6 .6807E-01 ~,1636E~01 <9408E-04
2.8 «3362E-01 -,1242E-01 -,.,8603E-O04
3.0 -.1688E-14 «1772E-11 -,6814E-11

Table 6 Remaining Multipliers for Example 3.1

Time b P
0.0 «1317E+00
0.2 .1301E+00
0.4 «1294E+00
0.6 «1294LE+00
0.8 .1296E+00

1.0 .1312E+00

1.0 «1578E+00 ~-,5639E-03

1.2 .1382E+00 =-.5639E-03

1.4 «1113E+00 -,5639E-03
1.6 .8077E-01 -,5639E~-03
1.8 +H4992E-01 -.5639E-03

2.0 .2240E-01 ~-,5639E-03
2,0 «2453E-01
2.2 «1539E-02
2.4 - 4141E-02
2.6 -.1078E=-02
2.8 .2883E-02 o = -, 1456E-02
3.0 ~-.2972E-03



36

Example 3,2

Consider the problem of minimizing the functional

(119)

[
~

with respect to the states x(6),y(6) and the control u(#6)

which satisfy the differential constraints

dx/de = u (120)

dy/de = u2?2 - x2

and the state variable inequality constraint

M-y 20 (121)

and the boundary conditions

x(0)
y(0)

0 x(t) =1 (122)

0 y(t) =0

In order to ensure satisfaction of the state inequality
(121) over the interval of definition, introduce the
additional state-slack variable z(8) through the following

relation:

Mo~y = 22 (123)
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which upon differentiation with respect to 6 becomes
-dy/de = 2z dz/de (124)
Now introduce the new control variable w(8) defined as:
dz/d6 = w(6) (125)

In 1light of Eqns. (120), (123), (124), and (125), the

following relations among the states and the controls exist:
X - u - 2zw = 0 0s6st (126)
w =20 615 6 < 62

where the state Is on the boundary from 8; to 6,,

The boundary conditions on the slack variable z(9) must
be <consistent with the definition (123) and the boundary

conditions Eqn. (122). This generates an initial condition:

z(0) = Vo (127)
in addition, the following midpoint condition is Imposed:

2(6,) =0 (128)

To convert the problem to the model of this thesis,
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introduce the normalized time t, as defined by Eqn. (17).

When normal fzed time s employed,

the

reformulated as that of minimizing the functional

with respect to the state x(t),y(t),z(t),

u(t), w(t), and the parameter components

satisfy the differential constraints
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O<t<l
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8
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(129)
control
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(130)
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and the multipoint conditions

x(0) = 0 x(3) =1 (132)
v(0) = -1 y(3) = 0
z(0) = /.4 2(1) = 0 2(3) = free

In this problem,
n =3 m= 2 p =3 k =1 q=2 (133)
Since n+p+k+l = 8, eight particular solutions are needed

for each gradient or restoration jteration.

Assume the nominal state

Xx = =t/3 y = .4t 2z = /J.u4(l-t) 0stsl (134)
X = =t/3 y = .4 zZ = 0 1s<sts2
X = =t/3 y = ,4(3-t) z = /. 4(t-2) 2<t<3

the nominal control

u=1/3 w = -1 O<tsl (135)
u = t/3 w= 0 l<tg2
u=2/3 w = +1 2<t<3
and the nominal parameter components
91 = Tl'/6 62 =2 11'/3 63 = TI‘/2 (136)

These nominals are consistent with the selection
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criteria outlined in Section 3.0, but they violate Eqns.
(130). This belng the case the algorithm starts with a
restoration phase., After a total of 6 Iterations the
algorithm has converged to the required accuracy. Tables
7-12 show convergence history, and the optimal trajectories

and multipliers for the converged solution.
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Table 7 Convergence Hlstory for Example 3.2

lteration P Q | Mode
0 .8685E+00 +1570E+01 REST
1 .2208E+00 «1557E+01 REST
2 .6361E~-02 +1565E+01 REST
3 .1030E-05 +1585E+01 REST
Iy «SULUBE-13 «2996E-02 +1585E+01 GRAD
5 .2818E-04 .1580E+01 REST
6 «3233E-10 «9933E~-04 .1582E+01 GRAD

Table 8 Parameter History for Example 3.2
lteration 6, 0, 64
0 .5235 1.047 1.570
1 .8607 1.074 1,557
2 .8148 . 83916 1.565
3 .8172 .9184 1.585
[ .8172 .9182 1,585
5 .7827 .9110 1,580
6 .7832 .9127 1.582
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Table 9 Converged State Trajectories for Example 3.2

Iime X Y Z

0.0 .0000E+00 .0000E+00 .6324E+00
0.2 +1394LE+00 .1231CE+00 «5261E+00
0.4 «2733E+00 «2307E+00 JU11LE+00
0.6 «H013E+00 .3171E+00 «2879E+00
0.8 .5224E+00 .3771E+00 «1513E+00
1.0 .6310E+00 +4000E+00 ~-.2878E-12
1.0 .6310E+00 +4000E+00 -.2879E-12
1.2 .6475E+00 .U4000E+00 ~.2879E-12
1.4 LO6L4L5E+00 +4000E+00 -,2879E-12
1.6 .6820E+00 +4000E+00 ~-.2879E-12
1.8 .06999E+00 +4000E+00 =~.2879E-~12
2.0 .7182E+00 +UW000E+00 ~.2879E-12
2.0 «7182E+00 .4O000E+00 ~-.2903E-12
2.2 .8071E+00 .3808E+00 .1385E+00
2.4 .8801E+00 .3249E+00 «2739E+00
2.6 .9367E+00 .2380E+00 LUO02LE+0QO
2.8 .9771E+00 «1272E+00 «5222E+00
3.0 .1000E+01 +1686E~12 .6324E+00

Table 10 Converged Control Trajectories for Example 3.2

Time U W

0.0 .9031E+00 ~-.6447E+00
0.2 .8741E+00 =-.7076E+00
0.4 .8355E+00 -,7575E+00
0.6 .7975E+00 ~-,8248E+00
0.8 «7430E+00 ~-.9224E+00
1.0 .6310E+00 =-.9980E+00
1.0 .6310E+00 .0000E+0Q0
1.2 .6475E+00 .0000E+00
1.4 .66L5E+00 .0000E+00
1.6 .6820E+00 .0000E+00
1.8 .6999E+00 .0000E+00
2.0 .7182E+00 .0000E+00
2.0 .7182E+00 .1036E+01
2.2 .6058E+00 .1026E+01
2.4 LU4827E+00 .9887E+00
2.6 «3622E+00 .9271E+400
2.8 «2390E+00 «8595E+00
3.0 .9842E-01 +7829E+00
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Table 11 Lambda Multipliers for Converged Solution of Example 3.2

Time A A Aq
0.0 «2226E+01 -.9890E+00 «3242E+00
0.2 «2199E+01 -,.9890E+00 .2697E+00
0.4 .2117E+01 -.9890E+00 «2074E+00
0.6 .1984E+01 -.9890E+00 .1415E+00
0.8 .1806E+01 -.9890E+00 .7583E-01
1.0 .1583E+01 -,9890E+00 .3248E~-02
1.0 .1583E+01 -,9890E+00 .1102E-02
1.2 +1542E+01 ~-,9890E+00 .1102E-02
1.4 .1503E+01 -,9890E+00 .1102E-02
1.6 L1464E+01 =~,9890E+00 .1102E~02
1.8 +1U426E+01 -.9890E+00 .1102E~-02
2.0 +1390E+01 -.9890E+00 .1102E~-02
2.0 «1390E+01 -.9890E+00 .1102E-02
2.2 .1190E+01 ~-,9890E+00 -,2685E-02
2.4 .9656E+00 ~,9890E+00 ~.1939E-02
2.6 .7226E+00 -.9890E+00 .2556E~-04
2.8 LU686E+00 -,9890E+00 ~-.4092E-04
3.0 .2060E+00 ~,9890E+00 =-,1642E~-13
Table 12 Remaining Multipliers for Example 3,2
P (¢
Time - h
0.0 +1941E+00
0.2 .2078E+00
0.4 «2142E+00
0.6 .2002E+00
0.8 .1796E+00
1.0 .2098E+00
1.0 .3598E~01 +1427E-03
1.2 .2752E-01 +1427E-03
1.4 .1948E~-01 JI1U27E-03
1.6 .1184E-01 +1427E-03
1.8 JU585E-02 +1427E-03
2.0 -.2313E~02 L1427E-03
2.0 -,1387E-01
2.2 -.3624E-02 B T -.2060E+00
2.4 «5954E-02 W = .9890E+00
2.6 .2261E-02
2.8 -.1015E-02 o = =-.2146E-02
3.0 .9171E-03
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Example 3.3

Consider the problem of minimizing the functional

(137)

1]
~

with respect to the states x(90),y(0) and the control u(#6)

which satisfy the differential constraints

dx/d® = cos u (138)
dy/d6 = sin u

and the state variable inequality constraint

1 - (x =~ 2)2 - y2 ¢ 0 (139)

and the boundary conditions

x(0)
y(0)

0 x(T) 4 (140)

0

0 y(T)

In order to ensure satisfaction of the state Inequality
(139) over the interval of definition, introduce the
additional state-slack variable z(8) through the following

relation:

1 - (x = 2)2 - y2 + 22 =9 (141)
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which upon differentiation with respect to 6 becomes

~2(x - 2) dx/d6 - 2y dy/de + 2z dz/d6e = 0 (142)

Now Introduce the new control variable w(8) defined as:

dz/de = w(o) (143)

In light of Eans. (138), (141), (142), and (143), the

following relations among the states and the controls exist:

2( zw = (X = 2)cos u =y sinu ) =0 O0s6st (144)

=
u
o

61565 02

where the state is on the boundary from 91 to 62.

The boundary conditions on the slack variable z(8) must
be consistent with the definition (141) and the boundary

conditions Egn. (140). This generates an initial condition:

z(0) = V3 (145)

In addition, the following midpoint condition is imposed:

z(8,) =0 (146)

To convert the problem to the model of this thesis,
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introduce the normalized time t, as defined by Eqn. (17).
When normal ized time 1Is employed, the problem is

reformulated as that of minimizing the functional
I = o3 (147)

with respect to the state x(t),y(t),z(t), the control
u(t), w(t), and the parameter components 6,, 6,5, 63 which

satisfy the differential constraints

X = 6,co0s u O0sts<1 (148)
9 = elsin u

i = le

x = (8, = 8;)cos u 1sts2

y = (8, = 84)sin u

z = (6, = 69w

x = (83 = 6,)cos u 2sts3

y = (63 = 85)sin u

i = (93 - e2)W

the control variable constraints

2( zw - (x = 2)cos u -~ y sin u) =0 0sts3 (149)

w=20 1sts2
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and the multipolnf conditions

x(0) =0 x(3) = 4 (150)
y(0) =0 y(3) = 0
2(0) = V3 z(1) =0 z(3) = free
Iin this problem,
n =3 m= 2 p =3 k =1 q =2 (151)

Since n+p+k+l = 8, eight particular solutions are needed

for each gradient or restoration lteration.

Assume the nominal state

x = bt/3 y = 4t(1l-t/3)/3 2z = V3(1l-t) 0stsl (152)
x = 4t/3 y = bt(1-t/3)/3 z = O 1sts2
x = bt/3 y = 4t(1-t/3)/3 =z = V3(t-2) 2sts3
the nominal control
u = arctan(.75) w = =1 0stsl (153)
u = arctan (2-x)/y w= 0 1sts?
u = =arctan(,75) w = +1 2st<3
and the nominal parameter components
61 = 1 62 = 3 6y = b (154)

These nominals are consistent with the selection
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criteria outlined in Section 3.0, but they violate Eqns.
(148). This being the case the algorithm starts with a
restoration phase. After a total of 19 iterations the
algorithm has converged to the required accuracy. Tables
13-18 show convergence history, and the optimal trajectories

and multipliers for the converged solution.
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Table 13 Convergence History for Example 3.3
lteration P Q | Maode
0 .2561E+01 +4000E+01 REST
1 .7225E-01 JU552E+01 REST
2 JUB25E-04 L4536E+01 REST
3 +1155E=-07 JU543E+01 REST
[ . 2386E-17 «3872E-01 L4543E+01 GRAD
5 L162E=-02 JHLB99E+01 REST
6 .2630E~06 : J4519E+01 REST
7 +2181E~-14 L4638E-02 +4519E+01 GRAD
8 .1896E-03 +U4509E+01 REST
9 .1275E-08 .1482E=-02 L4513E+01 GRAD
10 .1766E~-0k J4511E+01 REST
11 +3565E~11 «5949E-03 J4512E+01 GRAD
12 «5290E-05 +4511E+01 REST
13 «2412E-12 LU940E-03 .4512E+01 GRAD
14 «2356E-05 JU511E+91 REST
15 .6887E-13 .1801E-03 .U512E+01 GRAD
16 .5376E-06 LU4511E+01 REST
17 «3863E-14 «1735E~03 J4511E+01 GRAD
18 .2375E-06 +UW511E+01 REST
19 .9128E~-15 .7036E=-04 +4511E+01 GRAD
Table 14 Parameter History for Example 3.3
lteration 64 ) 83
0 .1000E+01 .3000E+01 .4000E+01
1 c1436E+01 +2924E+01 LU4552E+01
2 L14135E+01 «2929E+01 LU4536E+01
3 L141LE+0] «2933E+01 LU4543E+01
Iy +I1414E+01 .2933E+01 LU543E+01
5 L1487E+01 .2876E+01 JUW99E+01
6 +1497E+01 +2886E+01 +U4519E+01
7 +1497E+01 .2886E+01 LU4519E+01
8 +1563E+01 +.2851E+01 J4509E+01
9 +1565E+01 «2854E+01 LU4513E+01
10 .1585E+01 +2845E+01 LU511E+01
11 +1585E+01 +2845E+01 J4512E+01
12 .1601E+01 .2838E+01 J4511E+01
13 .1601E+01 .2838E+01 J4512E+01
14 +1611E+01 .2833E+01 JU4511E+01
15 +1611E+01 .2833E+01 L4512E+01
16 +1622E+01 «2828E+01 +4511E+01
17 .1622E+01 +.2828E+01 J4511E+01
18 .1628E+01 +2826E+01 JU4511E+01
19 .1628E+01 .2826E+01 L4511E+01
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Table 15 Converged State Trajectories for Example 3.3
Time X y z

. .0000E+00 .0000E+00 +1732E+01
0.2 «2822E+00 .1627E+00 +1406E+01
0.4 .5651E+00 «3243E+00 .1078E+01
0.6 +8480E+00 L4859E+00 « 7504E+00
0.8 +1131E+01 .6L69E+00 JU4163E+00
1.0 c1413E+01 .8097E+00 ~-,5285E-~12
1.0 J14153E+01 «8097E+00 =~.5288E-12
1.2 +1622E+01 «9257E+00 ~-.5288E-12
1.4 .1852E+01 +9890E+00 =-,5288E-12
1.6 +2091E+01 .9957E+00 -,5288E~-12
1.8 «2324E+01 +O457E+00 -.5288E-12
2.0 «2539E+01 .8417E+00 ~.,5288E=-12
2.0 «2539E+01 <8417E+00 «5354E~12
2.2 «2831E+01 .6724E+0Q0 .3784E+00
2.4 «3123E+01 .5047E+00 «7193E+00
2.6 «I415E+01 .3367E+00 «1057E+01
2.8 «3708E+01 .1687E+00 «1395E+01
3.0 +UHO000E+01 ~-.4380E~-12 «1732E+01
Table 16 Converged Control Trajectories for Example 3.3
Time u w
0.0 +5309E+00 ~-.9957E+00
0.2 .5189E+00 -.1003E+01
0.4 .5189E+00 ~-.1005E+01
0.6 .5189E+00 -.1011E+01
0.8 +5105E+00 ~-,1061E+01
1.0 .6270E+00 -.1490E+01
1.0 .6270E+00 ~-.3425E=-20
1.2 .3876E+00 ~-,1590E-20
1.4 L1481E+00 <-.5467E-20
1.6 -,9128E-01 -,2201E-20
1.8 -.3307E+00 =-,1851E=-20
2.0 -.5701E+00 =-.2293E-20
2.0 -.5701E+00 .1202E+01
2.2 -,5170E+00 .1030E+01
2.4 -.5218E+00 .1004E+01
2.6 -.5218E+00 .1002E+01
2.8 -.5216E+00 .1001E+01
3.0 -.5297E+00 .9963E+00
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Table 17 Lambda Multipliers for Converged Solution, Example 3.3
Time A ) A
0.0 «2951E+01 L4986E+00 +1802E+01
0.2 +.2657E+01 «3291E+00 . 1463E+01
0.4 .2362E+01 +1611E+00 +1122E+01
0.6 .2068E+01 -.6905E=-02 .7811E+00
0.8 s1774E+01 =-.1740E+00 JU3LLE+OO
1.0 .1480E+01 ~-,3441E+00 ~.5511E-03
1.0 +1480E+01 =-,3441E+00 .8705E-03
1.2 «1267E+01 ~.4GL1E+00 +.8705E=-03
1.4 .1086E+01 =-.5150E+00 .83705E-03
1.6 +9551E+00 =~,.5198E+00 .8705E-03
1.8 .83822E+00 ~-.5054LE+00 .8705E-03
2.0 .3661E+00 -,4988E+00 .8705E-03
2.0 +3661E+00 ~.4988E+00 .8705E-03
2.2 .8670E+00 ~=~,499LE+00 =-.6039E-03
2.4 .3665E+00 ~,4992E+00 -~.9071E-04
2.6 +3664LE+00 =-,4991E+00 «2413E-04
2.8 .3663E+00 -.4991E+00 «1481E-03
3.0 .3665E+00 ~-.4991E+00 ~.5046E-11
Table 18 Remaining Multipliers for Example 3.3
Lime Ps [
0.0 .3497E+00
0.2 LOU472E+00
0.4 +3470E+00
0.6 .8468E+00
0.8 «8LOSE+00
1.0 .9327E+00
1.0 .G8LIE+0Q0 «1042E=-02
1.2 JS5U425E+00 +1042E=-02
1.4 +4000E+00 .1042E-02
1.6 «2574E+00 .1042E=-02
1.8 «1149E+00 «1042E-02
2.0 +2766E-01 .1042E-02
2.0 .3928E=-01
2.2 .4115E=-02 M, = -.8665E+00
2.4 «3563E-03 L = J4991E+00
2.6 .2748E=-03
2.8 .2735E-03 o = .1421E-02
3.0 -.1512E~02
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Example 3.4

Consider the problem of minimizing the functional

1
| = j u2 de (155)
0

with respect to the states x(90),y(8) and the control u(®6)

which satisfy the differential constraints

dx/d6 = vy (156)
dy/de = u

and the state variable inequality constraint
15 = x 20 (157)

and the boundary conditions

0 (158)

x(0) =0 x(1)
1

y(0) = y(1l) -1

In order to ensure satisfaction of the state inequality
(157) over the interval of definition, introduce the
additional state-slack variable z(8) through the following

relation:

W15 - x = z2 (159)
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which upon differentiation with respect to 8 becomes

-dx/de = 2z dz/de (160)

Since dx/de from Egn. (156) is only a function of the
state, the constraint (157) is of higher order. Therefore

Iintroduce the new state variable v(0) defined as:

dz/de = v(6) (161)

Equation (160) now takes the following form

2zv + y =0 (162)

Differentlating Eqn. (162) with respect to 6 yields:

2v dz/de + 2z dv/de + dy/de =0 (163)

Now introduce the new control variable w(9) defined as:

dz/de = w(0) (164)

In 1light of Egns. (156), (159), (162), and (164), the

following relations among the states and the controls exist:

2zw + 2v2 + u = 0 056s<1 (165)

w =20 eises 62
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where the state Is on the boundary from 8, to 92.

The boundéry conditions on the slack variables v(6),
2(0) must be consistent with the definitions (159) and (162)
and the boundary conditlions Eqgqn. (158). This generates an

initial conditlon:

z(0) = V.15 v(0) = -,5/2(0) (166)
In addition, the following midpoint condition is imposed:

z(8,) = 0 v(6,) =0 (167)

To convert the problem to the model of this thesis,
Introduce the normalized time t, as defined by Eqn. (17).
When normalized time 1Is employed, the problem is

reformulated as that of minimizing the functlonal

1
1= [ ogufde + (168)
0

2 2
j1<e2 - 00u’ dt +

3
[C1-6,u% gt
2

with respect to the state x(t),y(t),z(t), the control
u(t), w(t), and the parameter components 64,6, which satisfy

the differential constraints
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the control variable constraints

2zw

6,y
84U
0,V

61w

(o,
(6,
(8,

(o,

(1
(1
(1
(1

+

- 91)y
- 61)U
- ei)V

- 91)W

- 62)y
- 92)U
- 62)V

- 92)W

2v2  +

u

0

and the multipoint conditions

x(0)
v(0)
z(0)

1] ]
| o

/.15

z(1)

0
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Ostsl (169)

1<sts?2

2sts<3

0sts3 (170)

lsts2

1]
o

x(3) (171)
y(3)

z(3)

n
]
-

free
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v(0) = =,5/V,15 wv(1) = 0 v(3) = free
In this problem,
n =4 ma= 2 p = 2 k = 2 q= 2 (172)
Since n+ptk+l = 9, nine particular solutions are needed

for each gradient or restoration iteration.

Assume the nominal state

x = ,15¢t y = 1=t O0stsl (173)
X = ,15 y =0 1<ts<2
x = ,15(3-¢t) y = 2=t 2st<3

v.15(1-t) v = =.5(1-t)/V.15 Ostsl

z=
z = 0 v =0 1<sts<2
z = /,15(t-2) v 2 -, 5(t=-2)/V.15 2sts3

the nominal control

u = 2(t-1) w= 1 0stsl (174)
u=20 w= 0 1st<2
u = 2(2=-t) w = -1 2 sts3

and the nominal parameter components

6, = .10 6, = .90 (175)

These nominals are slightly inconsistent with the
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selection criteria outlined In Section 3.0. Due to the
sensitivity of the problem, the control u was selected to
start and terminate at the unconstrained values and to be
joined to the zero value of the central subarc by a straight
1ine segment. This in effect reduces the initial size of the
constraint (170-1). The selected nominals violate Eqns.
(169) so the algorithm starts with a restoration phase.
After a total of 22 i{terations the algorithm has converged
to the vrequired accuracy. Table 19-24 show convergence
history, and the optimal trajectories and multipliers for

the converged solution,
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Table 19 Convergence History for Example 3.4
Iteration P Q | Mode
0 .56L0E+01 .2666E+00 REST
1 «3561E+01 .2040E+01 REST
2 «1553E+01 .2829E+01 REST
3 .3562E+00 .58U6E+01 REST
[ JI14L3E-03 .6265E+01 REST
5 .1076E-07 .6308E+01 REST
6 «1090E-17 .14 83E+00 .6308E+01 GRAD
7 +4008E=~=02 .5973E+01 REST
8 +3899E-07 ' .5969E+01 REST
9 s2220E~17 +1449E~-01 .5969E+01 GRAD
10 J1412E-0k .5938E+01 REST
11 .1663E~12 .2679E=-02 .5938E+01 GRAD
12 «2200E~04 .5932E+01 REST
13 <2416E~11 .2579E-02 .5932E+01 GRAD
14 .1873E-08 J4L26E=-03 .5928E+01 GRAD
15 .2160E-06 .5928E+01 REST
16 U424 7E-16 .6713E-03 .5928E+01 GRAD
17 .1534E~-06 .5927E+01 REST
18 +1146E-16 .6336E~03 .5927E+01 GRAD
19 .2110E-11 «3174E~03 .5927E+01 GRAD
20 .5218E~11 .1786E~-03 .5926E+01 GRAD
21 .8795E-11 .1083E-03 .5926E+01 GRAD
22 .1321E-10 .6872E-04 .5926E+01 GRAD
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Table 20 Parameter History for Example 3.k

I TERATILON 8y 8,
0 .1000 .9000
1 .2199 .6952
2 .3622 427
3 14580 5712
4 4516 .5890
5 14515 .5906
6 4515 .5906
7 4666 .5589
8 4675 5540
9 NS 5540

10 4699 5478
11 .14699 5476
12 4746 .5360
13 4747 .5355
14 4748 .5353
15 4757 .5331
16 4757 .5331
17 4767 .5305
18 4767 .5305
19 4767 .5304
20 4767 5304
21 4767 .5303

22 L4767 .53503
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Table 21 Converged State Trajectories for Example 3.4
Time X Y z v

0.0 .0000E+00 .1000E+01 .3872E+00 ~.1290E+01
0.2 .7659E=-01 .6211E+00 .2709E+00 ~-.1146E+01
0.4 .1213E+00 «3323E+00 .1693E+00 =-.9812E+00
0.6 «1428E+00 «1329E+00 +8478E-01 ~.7839E+00
0.8 « 1494 E+00 «2221E-01 «2354E-01 -.4717E+00
1.0 «1499E+00 .8625E-06 +4900E-13 «2209E-12
1.0 «1499E+00 +8625E~06 +4892E-13 «2211E-12
1.2 +1499E+00 .8625E-06 «5130E-13 «2211E-12
1.4 «1499E+00 .8625E-06 .5367E-13 «2211E-12
1.6 «1499E+00 .8625E~06 .5605E~13 «2211E~-12
1.8 +1499E+00 .8625E-06 . 5843E~-13 «2211E=-12
2.0 +1499E+00 .8625C~06 .6080E-13 02211E-12
2.0 .1499E+00 .8625E~06 «5934E-13 «2260E-12
2.2 +IUOLE+00 ~.2432E-01 ~-.2448E-01 -.4967E+00
2.4 +1423E+00 -.1408E+00 -.8730E-01 ~-.8065E+00
2.6 «1204E+00 ~-.3405E+00 -.1720E+00 -.9898E+00
2.8 .7567E-01 ~,6265E+00 =~=.2726E+00 ~-.l1149E+01
3.0 .1941E-12 ~-.1000E+01 ~-.3872E+00 ~-.1290E+01
Table 22 Converged Control Trajectorles for Example 3.4
Time U w

0.0 - 4L466E+01 «1463E+01

0.2 -.3498E+01 .1608E+01

0.4 -.2556E+01 .1862E+01

0.6 -.1642E+01 L2437E+01

0.8 ~-.6427E+00 JA4197E+01

1.0 -.5493E-12 .5604E+01

1.0 «2394E-16 .0000E+00

1.2 +3497E-16 .0000E+00

1.4 .2893E~17 .0000E+00

1.6 «2893E~17 .0000E+00

1.8 «2107E-17 .0000E+00

2.0 .2893E-17 .0000E+00

2.0 .7117E-12 ~.5996E+01

2.2 -.,7095E+00 ~-.4410E+01

2.4 -.1704E+01 =-.2311E+01

2.6 -.2578E+01 ~-:1799E+01

2.8 -.3505E+01 ~.1586E+01

3.0 -.4515E+01 <~.1526E+01
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Table 23 Lambda Multipliers for Converged Solution, Example 3.4

Iime A.. An An An

0.0 .1969E+02 .1082E+02 ~-,2033E+02 «1526E+02
0.2 .1969E+02 .8941E+01 -,1517E+02 .8642E+01
O.b4 - «1969E+02 .7063E+01 ~,1055E+02 +4129E+01
0.6 «1969E+02 .5185E+01 -,6521E+01 «1430E+01
0.8 «1969E+02 .3306E+01 =,2533E+01 +2140E+00
1.0 .1969E+02 .1428E+01 .6916E-01 =-.1317E-02
1.0 «1969E+02 »1428E+01 1134E-01 «5245E-02
1,2 +.1969E+02 .1217E+01 «.1134E-01 «5123E~02
1.4 .1969E+02 .1006E+01 «1134E-01 .5002E~02
1.6 .1969E+02 «.7955E+00 .1134E-01 .4880E~-02
1.8 «1969E+02 .5846E+00 .1134E-01 LU4759E-02
2,0 .1969E+02 «3738E+00 «1134E-01 .U4638E~02
2.0 .1969E+02 «3738E+00 .1134E-01 .4638E-02
2.2 .1969E+02 ~-,1476E+01 «36%26E-01 +1483E-01
2.4 .1969E+02 ~-,3327E+01 -.4416E-02 ~,7387E-02
2.6 .1969E+02 ~-,5177E+01 ~-.4177E-02 ~-.5143E-02
2.8 .1969E+02 -,7028E+01 ~-,.5097E-03 -,3495E=-03
3.0 .1969E+02 -,.8878E+01 .1266E-11 .2971E-11

Table 24 Remaining Multipliers for Example 3.4

Time P P,

=4 L3

0 +9410E+01
«7600E+01
«5805E+01
+4037E+01
«2189E+01
.6809E+00

«7645E-01 .2807E-03
.6516E-01 «2742E-03
.5387E-01 «2677E-03
J4258E-01 .2612E-03
.3129E-01 +2547E-03
.2000E~01 .2482E-03

NP RERRE =000 O

L) . - [ ] L] -

COONENO CSCOLONMENO SO EN

.1755E+00
-.2764E-01 My
.3520E-01 My
-.8918E-02
-.5873E-02 a4
.4499E-01 a5

-.1969E+02
.8878E+01

-.5782E-01
.6562E-02

WNMNDNNN
e ® 8 o o o
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4,0 Summary and Conclusions

An algorithm for solving the optimal control
problem in the presence of a state varfable inequality
constraint has been developed. Three major features of the
algorithm are: (a) simple control of boundary entrance and
exit time through the introduction of normalized time; (b)
satisfaction of the state Inequality constraint at all
times, especially when the state trajectory 1is on the
boundary; (c) a well-defined criterion for selecting the
gradient stepsize. Several numerical examples have been
solved to test the algorithm. In all cases these results are
reasonably close to previous results. The 1Inaccuracy 1is
partly due to the new formulation which automatically
generates a singular control problem. Experience with the
algorithm suggests the following possibilities for

improvement:

(1) since the k added state variables are simple
integrators, taking advantage of this fact

may dramatically improve efficiency.

(i1) the problem associated with the selection
of nominals may be alleviated by using the

combined gradient-restoration algorithm
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(i11) accuracy may be improved by using a
sequential conjugate gradient-restoration

algorithm
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