1240

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

Truncated Online Arithmetic with
Applications to Communication Systems

Sridhar Rajagopal, Member, IEEE, and Joseph R. Cavallaro, Senior Member, IEEE

Abstract—Truncation in digit-precision is a very important and common operation in embedded system design for bounding the
required finite precision and for area-time-power savings. In this paper, we present the use of online arithmetic to provide truncated
computations with communication systems as one of the applications. In contrast to truncation in conventional arithmetic, online
arithmetic can truncate dynamically and produce both area and time benefits due to the digit-serial nature of computations. This is of
great advantage in communication systems where the precision requirements can change dynamically with the environment. While
truncation in conventional arithmetic can have significant truncation errors, especially when the output precision is less than the input
precision, the redundancy and most significant digit first nature of online arithmetic restricts the truncation error to only the least
significant digit of the truncated result. As an application that uses significant truncation in precision, a code matched filter detector for
wireless systems is designed using truncated online arithmetic. The detector can provide both hard decisions and soft(er) decisions
dynamically as well as interface with other conventional arithmetic circuits or act as a DSP coprocessor. Thus, optimized
communication receivers with coexisting conventional arithmetic for saturation and online arithmetic for truncation can now be built.
The truncated online arithmetic detector was also verified with a VLSI implementation in an AMI 0.5 ;. MOSIS tiny chip process.

Index Terms—Dynamic truncation, finite precision, online arithmetic, communication systems.

1 INTRODUCTION

COMMUNICATION system designs typically use finite (and,
preferably, fixed-point) precision arithmetic to provide
faster, simpler, and low power hardware. Truncation and
saturation in digit-precision are two very important and
common operations in such systems as they help to bound
the finite precision while simultaneously providing area-
time-power savings. Various designs have been proposed
in conventional arithmetic to support truncation and
saturation in units such as multipliers [1], [2]. These designs
can provide savings in area by 25-35 percent and power
dissipation by 29-40 percent [3]. Truncation is used when
the Most Significant Bits (MSBs) of the result are important,
while saturation is used when the Least Significant Bits
(LSBs) of the result are needed. The precision requirements
of the algorithms in communication systems are dependent
on several dynamic factors, such as the instantaneous
signal-to-noise ratio (SNR). Thus, if time, area, and power
benefits were to be available by dynamic saturation and
dynamic truncation, that would be of immense use to
communication system design.

Dynamic saturation is a simpler problem to solve in

conventional arithmetic for time and power benefits. This is
because if fewer LSBs are needed, the input precision can
be decreased for time and power benefits. For example, in
[4], different regions of the multiplier are dynamically

® S. Rajagopal is with WiQuest Communications, Inc., 915 Enterprise Blud.,
Suite 200, Allen, TX 75013. E-mail: sridhar.rajagopal@uwiquest.com.

e |.R. Cavallaro is with the Electrical and Computer Engineering Depart-
ment, Rice University, 6100 Main St. MS-380, Houston, TX 77251-1892.
E-mail: cavallar@rice.edu.

Manuscript received 21 Dec. 2004; revised 19 Jan. 2006; accepted 19 May
2006; published online 22 Aug. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0420-1204.

0018-9340/06/$20.00 © 2006 IEEE

deactivated depending on the precision of the operands,
giving up to 35 percent power savings. Current truncation
schemes in conventional arithmetic do not provide the
ability to modify the amount of truncation dynamically.
The only related work known to us has been in switching
between IEEE floating-point rounding and truncated
floating-point arithmetic [5]. Even if dynamic truncation
were possible by dynamically turning off parts of the
circuit, truncation in conventional arithmetic is ineffective
in providing throughput benefits as the MSBs are obtained
only at the end of computations. Hence, in this paper, we
focus only on truncated arithmetic. In particular, we explore
the use of online arithmetic to provide dynamic truncation
while simultaneously providing throughput benefits.

As can be seen from Fig. 1, truncation in conventional
arithmetic is difficult as the most significant digits are
computed only at the end due to the right-to-left flow of
computations. Here, truncation is achieved by eliminating
the hardware for calculating the lower significant digits
while providing corrections for the error introduced.
However, in online arithmetic [6], the operands, as well as
the results, flow through the computations in a digit-by-
digit manner, starting from the most significant digit
(MSDEF), providing a natural way of truncating the results
of the computation without introducing significant error.
Due to the digit serial nature of computations, we can
provide dynamic truncation of digits while simultaneously
providing throughput benefits. Though online arithmetic
has been quite well-explored in the past, we are unaware of
any past work that has exploited the MSDF computation
nature of online arithmetic for providing dynamic trunca-
tion and its related trade-offs.

Dynamic truncation is not possible in conventional
arithmetic due to the right-to-left flow of computations.

Published by the IEEE Computer Society

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

x| <X
X X | XX
X | XX

>

X X X X | XX
>

X X X

X
X X

|

—_— —
Truncation Saturation
(MSBs important) (LSBs important)

Fig. 1. Conventional truncated arithmetic for a 4-bit multiplication as an
example. Truncated arithmetic is used when MSBs are important, while
saturated arithmetic is used when LSBs are important.

Even static truncation in conventional arithmetic can have
significant errors in the least significant bits of the truncated
result and may need additional hardware to provide
correction constants for error reduction [1], [3]. Also, the
truncation error (without correction) increases with increased
truncation, especially when the precision of the result is less
than the input precision. Truncation in online arithmetic
produces error only in the least significant digit used in the
result due to the MSDF flow of computations and the
redundancy in the number system. We quantify the error
introduced in the least significant digit during truncation
using online arithmetic and show its applicability and use in
designing communication systems supporting dynamic
truncation with online arithmetic. Thus, a wide variety of
algorithms for communication systems requiring truncation
in finite precision, such as FIR filters, FFT, vocoders, matched
filters, and other sophisticated communication algorithms,
such as multiuser detection [7], [8], [9], [10], can benefit from
dynamic truncation and throughput improvements using
online arithmetic [11], [12], [13].

The main contributions of our work are as follows: We
present truncated online arithmetic and we show that it has
significant potential for dynamic truncation with through-
put benefits in designing finite precision embedded
systems. We also quantify and limit the truncation error
to the error in the least significant digit of the truncated
result. We then design a code-matched filter detector as an
example of truncated arithmetic for communication sys-
tems and show the effect of truncation on the design. We
present the online arithmetic adders and multipliers used in
the design with support for dynamic truncation and the
ability to interface with other conventional arithmetic
circuits, such as a DSP coprocessor. We finally discuss the
implementation trade-offs against conventional arithmetic
using truncation and present a VLSI implementation of the
code matched filter detector in an AMI 0.5 i process.

We have organized this paper as follows: The next section
presents the background on the use of online arithmetic for
truncation and a code matched filter detector for commu-
nication systems. Section 3 presents the effect of truncation
error on the least significant digit and how it affects the bit
error rate of the detector. Section 4 shows the radix-4 online
adder and multiplier design used in the detector with support
for dynamic truncation and interface to conventional

1241

arithmetic. In Section 5, the area-time trade-offs of truncation
in conventional and online arithmetic based detector archi-
tectures are presented. Section 6 shows a VLSI design and
implementation of the online arithmetic detector.

2 BACKGROUND

Online arithmetic [6], [14], [15] has been shown to be very
useful for many signal processing applications such as DCT,
FFT, CORDIC, filtering, and matrix-based operations [11],
[12], [16]. The advantages of online arithmetic have been to
eliminate carry-propagate addition, reduce interconnection
bandwidth between modules, and allow parallelism be-
tween several operations. With a serial data flow, online
arithmetic can be pipelined to implement sophisticated
algorithms. As carry-propagation is eliminated, online
operations can be overlapped. Though online arithmetic
has been shown to provide a speedup of 2 x —16 x [17] for
conventional numerical operations, this gain is reduced
when conventional arithmetic systems are deeply pipelined.
This is because the word-parallel logarithmic-time compu-
tations attain better throughput than the digit-serial online
computations (though at the expense of larger area and
higher latency). The other implementation trade-offs related
to the applicability of online arithmetic are its need for a
nonconventional number system, conversions to-and-from
a conventional system [18], and the inherently serial nature
of the operations.

Online arithmetic algorithms [6], [11] work in a digit-
serial manner, producing the result in a MSDF fashion. To
generate the first output digit, 6 digits of the input are
required. Thereafter, with each digit of the input, a new
digit of the result can be obtained. The online delay, ¢, is
typically a small integer, e.g., 1 to 4. Since the outputs are
produced serially, the algorithms can be pipelined with a
latency of 6, as shown below:

Input = x1 22 x3 34 x5

Input vy w1 v Yy Y1 Ys
Output z «— 6 — z1 22 23 21 2

In order to achieve MSDF operations, online algorithms
need to use a redundant number system [19] for carry-
free addition. The online representation of a number x is

given by [6]

_ 0]
Xj = Xjfl + TjysT
&
—i
Xo = E i,
i=1

where X represents the value of the addends at step j, r is
the radix of the redundant number system, and ¢ is the
online delay. The digits z; belong to a redundant digit set,
{-p,...,—1,0,1,..., p} (assumed symmetric), where r/2 <
p <r—1 represents the amount of redundancy in the
number system. For our system, we shall assume p=17—1
for maximum redundancy as this will eliminate the need for
on-the-fly conversion from nonredundant to redundant
form and will allow the inputs to the system to be directly
processed as if they were in redundant form for online
operations. Although other values of p can be chosen to

1242

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10,

Antenna Hard decision b
or soft decision §
~ ["| Detection
RF Unit L’ AD T> Demux o
156, 459, 344,568,-480,... Channel
(8-12 bit precision, »| Estimation

depending on A/D used)

OCTOBER 2006

1-111-1,.
(hard : 1 bit precision)
60, -19, 34,14,-56,,... IR

(soft : 2-8 bit precision) 1 bt precision)

information bits

1560, -1495, 34,134569,568,,...
(8-32 bit precision,
depending on algorithm used)

Fig. 2. Block diagram of a communication receiver. The detector may dynamically require either single-bit precision outputs (hard decisions) of the
detected bits or higher precision outputs (soft decisions), depending on the received signal-to-noise ratio (SNR). Precision requirements first
increase and then decrease during computations in the receiver chain. The decrease in precision may be obtained either by truncation or by

saturation (depending on the algorithm and the designer).

simplify the operations, the choice of p does not limit the
contributions of this paper. The choice of p was made based
on simplifying the discussion in the paper and more
benefits may be obtained with an alternate choice of p.

2.1 Communication System Example: Code

Matched Filter Detector

Fig. 2 shows the main blocks in a digital communication
receiver. The physical baseband layer in a communication
receiver involves operations to detect and decode the
transmitted information bits. Sophisticated algorithms for
channel estimation, detection, and decoding are applied on
the receiver to determine the transmitted bits. Based on
these high-precision operations, a hard decision (a sign-based
test) is made on the transmitted bits for detection, which are
typically +1s, assuming a Binary Phase Shift Keying (BPSK)
modulation system for simplicity. The precision require-
ments at different points in the receiver chain are shown in
Fig. 2. We can observe that the precision requirements first
increase and then decrease during computations in a
receiver chain. The actual precision used depends on
several factors such as the signal-to-noise ratio, the A/D
converters used, and the algorithms implemented, with
more advanced algorithms requiring greater amounts of
precision to maintain numerical accuracy. This varying
precision requirement makes communication systems a
very suitable application for online arithmetic due to its
digit-serial nature and the ability for dynamic truncation.

One of the most popular and simple code matched filters
[20], [21] used in a Code Division Multiple Access (CDMA)
system is mentioned as an example for truncation. The code
matched filter is useful for both the base-station and the
mobile handset and can be used as an initial estimate for
more advanced handset schemes [22], [23], [24], [25]. Let
r; € " be the received signal and A € C"*¥ be the true
cross-correlation matrix. N is the length of the spreading
code (also known as the spreading gain or the spreading
factor) and K is the number of users in the system. Let
b; € {+1,—1}" be the bits of the K users to be detected
(K =1 for the mobile handset). Then, the system can be
formulated as given below:

r, = Ab7 + iy (1)

where 7 is the Additive White Gaussian Noise (AWGN) in
the system. The single user detector or the matched filter
detector with hard decision outputs is shown to be:

b; = sign(A"'r,), 2)

where b and A refer to the estimate of the detected bit and
the estimate of the channel, respectively (as opposed to the
true value). Fig. 3 shows the architecture of a single user
matched filter detector which exhibits an inner (dot)
product structure for computations followed by sign-based
testing. The subscript, p, refers to the pth user in the system.
The received signal coming from the A/D converter
typically has 8-bit or greater precision [26]. Depending on
the algorithm implementation and the desired bit error rate
performance, the precision requirements of the hardware
processing the received signal are typically in the 8-32 bit
precision range for finite precision implementations (see
Fig. 2) such as those in [10], [27], [28], with more
sophisticated algorithms requiring greater precision for
operations such as division and matrix inversions. This
implies extraneous computations in a conventional number
system as the sign is obtained only at the end due to the
Least Significant Digit First (LSDF) nature of computations.
Online arithmetic, based on a signed digit number
representation, provides Most Significant Digit First
(MSDF) computation. Hence, the computations can stop
after the first nonzero MSD (sign) is computed and
additional computations for the successive digits are
avoided. The need for back-conversion to a conventional
number system is also not required as the sign of the digit
represents the detected bit.

2.2 Truncation Using Online Arithmetic

Fig. 4 shows the suitability of online arithmetic for
truncation. Fig. 4a shows the timing schedule of a truncated
conventional arithmetic matched filter detector shown in
Fig. 3 in the previous section. An implementation based on
conventional arithmetic has throughput as a logarithmic
function of the precision as both fast adders and multipliers
can be built for logarithmic time computation, i.e.,
toonv-mr x log(d) [29], [30], [31], where d is the bit-
precision. The truncation error depends on the amount of
correction support used. Fig. 4b shows the application of
online arithmetic for a full precision matched filter

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

1243

Code Matched Filter Detector

AH

A\H

A
f)\i’p = sign(A r;)

Fig. 3. A code matched filter detector for the pth user in the system. The operations involve testing a dot product for its sign.

a*b,l I I a*bxlz — :Utozolki: — :O:O:O:RI
Tree addition I } I Tree | : : : : = : |I R | Il : 4 |I : |I : R |
| | |
| 1 1 1 1 1 1 1 Rl 1 1 L 1 1 1 1 R |
| T T L} L} L} T L) | 1 T T] 1 T 1 |
Tree addition ‘—‘—F Tree addition | —————+—+ L e R |
Result — Result | toLmr oL d*t o |
teonvar O log(d) “ >
(a) (b)
R R
i | 1 I I()'O |R| T |R| 34%b, | — | —
a; b‘ T LI T T LI | |
| | | Tdle
| R B | R B | (Pipeline Tree addition | \ |R | L R |
rep ldition | ———— | ——— | yles) Level I [
Level 1 ! ! 1 R 1 B B | 1 IR 1 B 1 B | | L 1 R | 1 1 R |
T T T | T T T T | | T T I T T |
Tree addition | PRI il W i s | S, B.B B | Tree addition I } IR I +— . |
T T T T T T T T T T RCSUII
Result
| tormr Ot d o *tor | —_— RK
-+ >) o toLmp =constant=3% (g
Sign determined at this point Sign determined at this point. Stop!
(c) (d)

Fig. 4. Timing comparisons for truncation using different arithmetic techniques. Part (a) shows the time taken by a truncated conventional arithmetic
circuit for a dot product. Part (b) shows the time taken by online arithmetic for calculating a dot product with full precision. Part (c) shows the time
taken by a dynamically truncated online arithmetic detector without any truncation error. Part (d) shows the time taken by a truncated online
arithmetic detector with truncation error. R: RESET to signify end of current number, B: pipeline bubble.

implementation. As an example, a radix-4 system and 8-bit
precision is assumed, giving 4 digits per input. Though the
full precision implementation has a low latency, the
throughput of the system for repeated operations is a linear
function of the precision, i.e., tor—mr x d * tor, where tor, is
the online throughput time per digit. Note that one digit per

computation is wasted as it signifies the end of the current
computation precision (shown by RESET(R) in Fig. 4,
which clears all latches at the end of the computation). Also,
additional Os have to be inserted for full precision multi-
plication as the multiplier generates twice the output
precision. It is this RESET signal (R) that is used to provide

1244

the truncation dynamically. There is no truncation error
here. However, as shown in Fig. 4c, the determination of the
sign (the first nonzero MSD) can take variable time. This is
because, in contrast with conventional arithmetic (both
sign-magnitude and two’s complement), online arithmetic
does not always give the sign in the MSD. The sign is
obtained only when the first nonzero digit is computed in
an MSDF manner. As soon as the sign is detected, we can
insert the RESET signal(R) for all the adder stages in the
pipeline. We will then have idle stages in the pipeline
(shown by B for pipeline bubbles) during which the
hardware could stop the clock for low power. Since the
time for obtaining the MSD is variable, the time taken is
almost the same as part(b), i.e., tor—mr o dess * tor, where
dess is the average digit precision needed to find the sign.
The area used in the detector is also the same. The
advantage of this scheme over the full precision scheme is
due to increased throughput (desf < d) and the power
savings during idle computations. This scheme also does
not have any truncation error. Fig. 4d shows a truncated
online arithmetic detector with constant truncation during
which (m =2) MSDs were declared to be sufficient to
determine the sign along with truncation error. In this case,
a higher throughput can be obtained along with savings in
area. tor_yp = constant = (m + 1) * tor. Note that, in both
Fig. 4c and Fig. 4d, the truncation can actually eliminate the
necessity of the entire input precision and can, hence,
truncate both the input and output to provide throughput
speedups while retaining numerical accuracy.

3 EFFECT OF TRUNCATION ON ONLINE ARITHMETIC

Online arithmetic can have multiple representations for the
same number due to the use of a redundant number system.
When the first m digits out of d digits are used for
truncation, the mth digit may have an error as the
(m+1)th digit may have the opposite sign to the
mth digit, thereby changing the mth digit. For example, in
radix-4 online arithmetic, if the number is 12131 and we
truncate it to 12, i.e., d = 5, m = 2, the Least Significant Digit
(LSD) is in error as the truncated number should have been
11. Note that if the (m+1)th digit is 0, we need to
investigate further digits for the first nonzero digit to check
if the mth digit is in error. For example, if the number was
12031 truncated to 12, looking just at the third digit is not
sufficient to tell whether the truncated number has an error
in the LSD. It is, therefore, useful to know the average
truncation error in the LSD to help determine the amount of
truncation that may need to be performed to meet precision
requirements.

3.1 Average Truncation Error Probability in the LSD
We now quantify the average truncation error probability in
the LSD, assuming all the digits are equally probable. This
is a reasonable assumption since, even if the numbers are
small in general, the sign bits are equally probable. If both
the mth digit and (m + 1)th digit are not equal to 0, the
truncation error probability in the LSD, e, can be given by
q—2
€(m,m+170) 2((] — 1) P (3)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

where ¢ = 2r and r is the radix used in the implementation
(¢ = 2r because of the additional sign digit in the maximally
redundant system). There are a total of ¢ — 1 digits possible
in a maximally redundant radix r system and there are @
digits of the opposite sign, excluding 0. Now, if the (m +
1)th digit is 0, we need to look at further digits and the
probability of error in the LSD assuming the mth digit to be
nonzero can be shown to be

1 1 d—m—1
€(m#0,m+1=0) = 5 1- (ﬁ) (m < d) (4)

For the case when m = 0, truncation error will occur when
the sign of the first nonzero digit to the left of m is different
from the sign of the first nonzero digit after m. For this case,
the probability of error can be shown to be

ot (GG

(m < d).

Hence, the average probability of truncation error in the
LSD assuming all digits are equally likely is given by

1 q—2

e = ﬁ €(m=0) + ﬁ €(m+£0)

e=0

m<d
(m < d) (©)
(m=d).

Equation (6) tells us the probability that the LSD is in error
if all digits are equally likely. We note that the probability
depends on both the number of digits d in the full precision
result and the number of digits m in the truncated result
and the error keeps decreasing as we increase m. The
maximum error in LSD converges to 0.5 for increasing
precision and using higher radix number systems. Note that
truncation of the output result may actually involve
truncation of the input digits also. For example, in multi-
plication, if m < d/2, both the inputs as well as the outputs
are truncated as in Fig. 4d.

3.2 Effect of Truncation on Detection

Fig. 5 shows a simple example to motivate the use of
truncated online arithmetic for detection. Fig. 5a shows a
simple sign-based detector for the received signal, which
has been transmitted in an AWGN communication channel.
The probability distribution of the received signal [32] is as
shown in Fig. 5b(1). The sign of the received signal
determines the bit that has been transmitted. Fig. 5b(2)
and Fig. 5b(3) represent the time taken by conventional and
online arithmetic implementations of the detector to find
the sign, assuming an 8-bit precision and radix-4 online
arithmetic modules. The y-axis is normalized to the time
taken to find the first digit using online arithmetic.
Conventional arithmetic, being logarithmic time with
precision, will have a lower throughput than the online
throughput per digit (roughly shown as 1.5 in the figure for
illustrative purposes). The logarithmic time assumption of
conventional arithmetic assumes no internal pipelining
within the conventional arithmetic blocks, which can make
truncated conventional arithmetic also have a constant time.
However, that would be at a significant increase in area.

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

== =3 Sign based
L1 R N— detector -1+l
I',;'i’;t AWGN Channel Rﬁfgeifﬁd De:)eictzed
(a)
5
45 (1) Probability

distribution of
\, the received
\, signal

Time taken for addition (Normalized)

! . . . (2) Conventional
0.5 1 ¥ On-ll(lz\j[g;‘)lt;lmetlc arithmetic
0
-1 -05 0 05 1

Received Signal Amplitude (Normalized)
(b)

Fig. 5. Use of online arithmetic for detection. Part (a) shows a noisy
communication channel through which a +1 or —1 is transmitted. Part
(b) shows the time taken by conventional and online arithmetic to detect
the sign of the received signal. To have performance benefits, the sign
should be detected before the online arithmetic time exceeds the
conventional arithmetic time. An 8-bit precision and a radix-4 online
module are assumed.

Hence, we will retain this logarithmic time assumption in
the rest of the paper, but we will also compare the
associated area consumption. The figure shows that the
online arithmetic scheme can take variable time to detect
the sign, while the conventional arithmetic detector finds
the sign in constant time (assuming constant precision for
both schemes). Hence, we will have performance gains as
long as the expected time to detect the sign (the first
nonzero MSD) is less than that of conventional arithmetic
for the same precision. In the next section, we show that we
need not wait for the worst-case execution time for sign
detection in communication systems as the system perfor-
mance does not degrade significantly by including the error
as another noise source in the communication system. From
Fig. 5b, it is clear that the larger the radix used for the online
detection scheme, the faster it is to determine the sign.
Hence, a higher radix system is preferable for our design.
However, higher radix systems have overhead in terms of
area and delay. We choose a radix-4 system as a trade-off
point because 1) it allows greater control on the amount of
truncation, 2) it covers most of the area under the
probability density curve for the first digit (0.25), and 3) it
reduces the online delay, 6, to 1 for multiplication and
addition [6], [33].

In detection due to variation in SNR, as seen from
Fig. 5b(1), the MSD has a higher probability of being
nonzero than being zero. Hence, the truncation error
equation (6), which gave the effect on truncation on the

1245

Probability of error for BPSK modulation using on-line arithmetic
10 T T T T T T

Probability of error (Pe)

=0~ only first digit detector (MSD) g D
=9~ second digit detector (2 MSDs)
=#=_theoretical sign detector

20 I I I) n I 1
10 12 14 16

8.
E,N, (in dB)

Fig. 6. Probability of error versus SNR for truncated detection. The figure
shows the increase in probability of error assuming only the first digit or
first two digits are used for detection in a BPSK system.

LSD for uniform probability of input digits, is not
applicable in this detector example. Hence, in this case, a
separate truncation error analysis needs to be performed as
in the following subsection.

3.3 Truncation Error Probability for Sign Detection
The truncation error analysis for detection can be per-
formed similar to the error analysis in (6), where all digits
were equally likely. However, the truncation error analysis
now depends on the probability density function as well as
the signal to noise ratio (SNR) of the system. This is shown
in Fig. 6. The probability of error P._opr for an optimal
detector for BPSK [32] is given by

P._opr = Q (\ | 2;(\7—0Eb>) (7)

where Q(-) is the Q-function [32], Ej is the energy of the
transmitted bit, Ny = 2 x 02 is the noise energy, and o2 is the
variance of the noise. However, if we detect only the
m MSDs, then the probability of error P._oy, for the online
detector for BPSK can be shown to be

Poor = 0.5 % <Q<<1+T*1m) *,/Q*T;E”>
1 Q*E},
+Q((1_T*’ITL>* N()))7

where r is the radix used in the online implementation. We
can see from (8) that, with increasing the radix r or the
number of digits to be detected m, we get increasingly
closer to the optimal detector in (7). Fig. 6 shows the
probability of error for a radix-4 number system for the first
and second most significant digits (r =4 and m = 1,2) and
compares it with the optimal detector. We can see around a
2 dB drop in performance assuming only the MSD is used
for detection. This may still be acceptable for higher
throughput as there could be a decoder following this

1246

detector to compensate for the bit error rate degradation.
However, an additional digit makes the performance of the
online detector close to the optimal detector. Hence, we will
consider both a 1 as well as a 2 MSD truncated online
detector in this paper for comparison purposes instead of a
variable throughput, full precision, online detector archi-
tecture as presented in our earlier work [13]. Comparisons
with conventional truncation are not shown here as it is not
possible to truncate to such a low precision using conven-
tional arithmetic without significant errors.

Fig. 6 assumes a simple transmission system without any
CDMA spreading code applied on top of it (N = 1). The error
rate curve for the CDMA matched filter detector of (2) is
similar except that the Signal to Noise Ratio (SNR), E;/ Ny, is
scaled by the spreading gain N (giving 10 x log,,(N) dB
better performance for the same SNR). This is assuming
perfect knowledge of the channel estimates of the user.
With proper channel estimation for fading channels, a
closed form expression for the probability of error is no
longer available, but performance similar to Fig. 6 can be
expected. Thus, we have shown and quantified the trade-off
between throughput speedup due to truncation and the
probability of error for the code-matched filter detector.

4 ONLINE ADDERS AND MULTIPLIERS WITH
DyYNAMIC TRUNCATION SUPPORT

This section describes the design of a radix-4 online adder
and multiplier used in the detectors with dynamic trunca-
tion support. Many radix-4 online multiplier implementa-
tions in the literature assume one of the inputs as constant
[12], [34], which can simplify the multiplier design. We
present a design of a generalized online multiplier assum-
ing both inputs as variable, which makes the multiplier
design more complicated. Although generalized online
multipliers have been presented in the literature in theory,
we discuss the implementation in detail to provide area and
throughput comparisons with conventional arithmetic. The
multiplier is also enhanced to accept inputs in a conven-
tional number system so that the detector can directly
interface with a conventional arithmetic circuit, if needed.
Theoretical estimates of area and throughput of the radix-4
adder and multiplier are determined in order to understand
the area-throughput trade-offs in truncation in conventional
versus online arithmetic.

4.1 Radix-4 Online Adder
The steps involved in fixed point online addition [6], [35] of
two inputs, z and y, giving an output z are:

Initialization: P =2 9=2_1=0

Recurrence

for j=0,1,...,m+1do
W; = r* P+ (z;+y)),
zjs1 = select(W;), (9)
b= W=z,

where W is the residual and m is the number of digits in
the inputs. The selection is done by rounding by using a
discretization algorithm (DIS) [35] that performs the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

xles Xf lYS X2Y2 Vyq ’fl Tl
FA FA FA c HA
C S S C S
| .
B3 A3 B2 A2 Bl Al CHA . 2
Cout 3-bit CLA Cul—
s3 s|2 s|1 -
R —f | LATCH
R —
17 D
3 2 171 | P2

Fig. 7. A radix-4 online adder with dynamic truncation support.

rounding based on the first few MSDs. The selection
function is given by:

select(W;) = sign(W;) [W] + 1/2] if [W| < p
= sign(W;)||W;]] otherwise.

Since the online adder interfaces with the output of an
online multiplier and as an input to other online adders, we
design the adder to be a general online adder, taking in
redundant operands and producing a redundant result.
Dynamic truncation is provided by using a RESET signal(R)
to clear the latches, whenever necessary. The design of the
online adder is shown in Fig. 7. The inputs are shown as
X[3:1] and Y3 : 1], with higher indices representing the
more significant bits. The inputs are taken to be in two’s
complement radix-4 maximally redundant form (which is
also the form in which the online multiplier produces its
output). The residual is stored in Carry-Save (CS) form to
avoid carry propagation delay (shown as W.S and WC for
residual sum and carry). The design includes two half
adders (HAs), three full adders (FAs), five latches to store
the residual and the output, and a 3-bit Carry Lookahead
adder (CLA) for the digit selection. This circuit has
approximately a throughput of eight gate delays and an
area of 70 gates.

tor—app =8, (10)

Ao app = 70. (11)

For comparison purposes, we have assumed the following;:

Half Adder: Area = 2 gates, Delay = 1 gate

Full Adder: Area = 5 gates, Delay = 2 gates

3-bit CLA: Area = 21 gates, Delay = 5 gates

Latch: Area = 6 gates

We assume the time delay for a d-bit CLA adder with a fan-
in of 4 as

topa(d) = [4 xlog,(d)] + 1,

as in [29], [30], and the area in gates can be calculated as

(12)

14%d
ACLA(d):4*d+{ 3* J-l—g, (13)

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

where g is a constant between 2 and 11 depending on
mod(d,4). In the rest of the paper, wherever the time and
area are dependent on the precision d, we will emphasize it
by using it as an argument in the equations. This is to
clearly distinguish the conventional implementations from
online implementations whose area or time requirements
may be independent of the bit-precision. It is important to
note that the area and throughput per digit of the online
adder (11), (10) are both independent of the digit precision.

4.2 Radix-4 Online Multiplier
The steps involved in online multiplication [6], [35] are:
Initialization: P_1 =20 =Xy =Yy =0
Recurrence for j=1,...,m do
Wi=rxPia+ < Xj,x; > %y + Y x),
Yy =<Yj1,y; >,
zj = select(W),
Py =W; -2,

(14)

where the selection function is the same as in online
addition.

The signed digit by vector multiplication in online
multiplication [35] needs a multiplier having as one of its
inputs a signed digit and as another a vector whose length
keeps increasing with the number of digits (see (14)). This
signed-digit by vector multiplication is difficult to imple-
ment as the multiplication time becomes dependent on the
digit-precision and the advantage of precision-free online
multiplication time is lost. However, in the radix-2 case, the
signed digit multiplication reduces to multiplication by +1
and, hence, is easy to implement with lower area require-
ments. As we saw from Fig. 5, higher radix numbers are
preferable in order to detect the sign as soon as possible,
making us prefer a radix-4 number system as a better trade-
off for throughput. Radix-2 multipliers [36], [37] can still be
used if area is a more important constraint than throughput
for the detector design.

Radix-4 online multipliers have also been designed for
filter design problems and Discrete Cosine Transforms
(DCT) [12], [34], where one of the inputs to the multiplier is
considered constant. This is a reasonable assumption for
filters as the coefficients were not time-varying and the
signed digit by vector multiplication is again avoided.
However, since both the inputs in the detector are variable,
we need to implement a general Signed Digit by Vector
Multiplier (SDVM). The SDVM needed is a two’s comple-
ment multiplier of size d x3. In order to make the
multiplication time precision-independent, we produce
the outputs of the SDVM in CS form [12]. The multiplier
outputs in CS form are then added together with the
residual using a 6:2 compressor (parallel counter) [29],
[31]. We then use the MSDs in the residual for the selection
function as in [12], [34] to attain online time independent of
the precision.

Fig. 8 shows the implementation of a d-bit radix-4
multiplier in two’s complement representation. Since the
online multiplier may interface to a conventional arithmetic
circuit (see Fig. 2 and Fig. 3), we design the multiplier to
take in inputs in conventional arithmetic two’s complement

1247

Interface to conventional arithmetic
y[2:1]

x[2:1]

—— Calex

Control

Logic
yi3:1] x[3:1]
R—{2]
R —
APPEND CaleX APPEND
REGISTERS | C7¢Y REGISTERS
\—l‘“d:” 1 X[d:1]
Modified Modified
Baugh-Wooley SDVM Baugh-Wooley SDVM
C S
WS[d+3:1] & = = &
= 5 5 3 i
s WC[d+3:1] S z S 2
= = c .
= g - = PIPELINE
= = R—]| |“stacE
Y - I }
- =
wv [a—
& o
z = (d+3)-bit
= =2 6:2 Compressor
R— R —| using CSA's
S
PC[d-1:1]
PS[d-1:1] PCld+3: d] PS[d+3:]

4-bit
2:2CSA’s
(4HA's)

b 4
QC[4:2] QS[4:2]

! ! J
3-bit CLA Cin
Qs1
R —
Z[3:1]

Fig. 8. A radix-4 online multiplier with conventional arithmetic inputs and
dynamic truncation support.

QS1

| PIPELINE

R _’l STAGE

PIPELINE
STAGE

representation. The inputs « and y shown could represent
the input, r;, from the A/D converter or the input, 4,, from
the channel estimator with a parallel to serial (P/S)
converter. We internally add the appropriate sign digit to
the two’s complement number in our circuit without any
additional time overhead to make the number redundant.
The Calcx and Calcy blocks take 2 bits from each of the
inputs in the conventional arithmetic system in an MSDF
fashion and convert them to a redundant number system.
To do so, we note that all positive two’s complement
conventional numbers are valid in the redundant number
system with a 0 as the sign digit for all digits. All negative
two’s complement numbers are valid with a 1 as the sign for
the first digit and Os for the successive digits. The CalcX
and CalcY blocks append the digits generated to form the
vector for the SDVM as in (14).

The SDVM is designed based on the modified Baugh-
Wooley multiplier scheme [29], [38]. In a general d x d bit
multiplication, the Baugh-Wooley method does not require
any increase in the maximum column height. But, since the
operands to the multiplier’s input do not have the same
precision (d x 3), an additional stage of CSAs is needed to
add the 1s at the bottom of the tree, increasing the delay of
the partial product accumulation by one stage of CSAs.
Since the multiplier outputs are now combined with the

1248

residual addition, the number of inputs to be added
becomes six. Hence, a 6 : 2 compressor is used for addition.
Again, to make the online multiplication time independent
of precision, the selection function uses only the most
significant 4 bits to determine the result, as shown in Fig. 8.
Dynamic truncation is done by using the RESET signal (R)
to clear all latches appropriately.

The need for an SDVM and a 6 : 2 compressor makes the
online time requirements for multiplication (17 gate delays)
greater than that for addition (eight gate delays). Since the
online multiplier output feeds the online adders, this will
leave the adder starved for data. Hence, in order to match
the delays of the adder and multiplier, we pipeline the
design further as shown by the dotted lines in Fig. 8. This
modified design has a delay of seven gates, equal to the
delay of the compressor and the HAs. The pipeline stages
increase the online delay, 6, of the multiplier from 1 to 3,
resulting in higher throughput at the expense of larger
latency. The complete online multiplier uses 913-2,929 gates
for 8-32 bit precision. This large area requirement, even for a
digit-serial multiplier, is due to the need for an SDVM and
the large number of latches required to pipeline the design.
If this area requirement exceeds the detector architecture
specifications, then a radix-2 multiplier can be used at the
expense of throughput. The estimates of area and through-
put requirements for the radix-4 online multiplier are given
below:

tor-muL =2+3+1=17, (15)
Aspvm(d) =2+ (d*5+d*2+3xd), (16)
Acompress-or(d) = 4% (d+3) * 5, (17)

d
Aparcres(d) =5 (2* (§fl> Jr6*(d+3)+6+3)7

(18)

Aor-mvr(d) = Aspvu(d) + Acompress—or(d)
+ Ararcres(d) + Acontror(d) +4 %2 4+ 21,
(19)

where t()L—MUL and A()L—MUL(d) are the online multi-
plication time and area, respectively. The two SDVMs
having a combined area of Aspya(d) consist of d FA cells,
d HA cells, and 3 x d partial product generator gates. The
6 :2 compressor with area Acompress—or(d) consists of
four (d + 3)-bit FA cells. The 3-bit CLA takes 21 FA cells, the
four HAs take two gates each, and Ararcres(d) is the area
required by the latches in order to pipeline the design
sufficiently enough to reduce the online delay to 7.
Aconrror(d) is the area required for the additional control
logic required. It is important to note that, while the area of
the online multiplier is dependent on the precision (19), the
throughput per digit of the online multiplier (15) is
precision-independent.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

5 CONVENTIONAL AND ONLINE TRUNCATED
IMPLEMENTATIONS OF A MATCHED FILTER
DETECTOR

We now compare the effects of truncation using different
implementation schemes for a code matched filter detector.
We discuss the trade-offs in area and delay due to
truncation between a simple conventional arithmetic
implementation, a conventional arithmetic implementation
using carry-save adders, and an online arithmetic imple-
mentation. These are shown in Fig. 9. Both the conventional
and online arithmetic schemes assume no pipelining
between the adders and multipliers and the conventional
truncated arithmetic implementations assume no internal
pipelining. However, the area comparisons are also made to
put things in perspective.

5.1 Truncated Conventional Arithmetic Matched

Filter

A straightforward implementation of a truncated matched
filter [24] is shown in Fig. 9a. The dot product is
implemented in a tree structure for a parallel implementa-
tion. The multipliers form the first level of the tree and the
adders form the rest of the levels. For a length-N dot
product, there are N multipliers at the top of the tree,
N/2 adders at the next level, N/4 adders at the next level,
and so on. If the multipliers are implemented using Dadda
tree multipliers [29], [39], the delay of the multiplier
depends on the precision d.

This detector is used as a base case comparison point
with other detector structures based on conventional and
online arithmetic.

5.2 Truncated Conventional Arithmetic Matched
Filter Using Carry-Save Adders

Further reductions in delay can be obtained by reducing
the carry-propagation delay overhead using CSAs. Similar
schemes using CSAs for dot-product type computations
have been proposed in [2], [40], [41]. We explore this
architecture as another trade-off point for comparison
purposes with a time-constrained online arithmetic
architecture. The Dadda multiplier no longer does the
CLA at the bottom of the multiplier tree, but, instead,
passes on its output in a CS form, as in Fig. 9b. The CS
outputs of all the N multipliers are then added together
with a 2% N :2 compressor. The CS output of this
compressor is then fed to a wider CLA for computing the
final result. The time taken for the matched filter using
carry-save adders is the time taken for the multiplier
without the CLA, the time taken by the compressor, and the
time for the final CLA. The area and throughput estimates
of the truncated matched filter using CSAs are compared
with the other schemes in the next section.

5.3 Truncated Online Arithmetic Matched Filter

In contrast to the conventional arithmetic implementations,
the throughput of the online arithmetic-based matched filter
detector (shown in Fig. 9¢c) depends only on the number of
most significant digits m needed and is independent of the
total precision of the input and the number of stages in the
adder-multiplier chain as it is highly pipelined. The area

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

An AN

p2

fI“S,N
()

Il\)i,p = sfgn(ﬁ]; r;)

1249

AH
Apnt Al

AH AH
APJ Ap,2

fiL Tz FiN-1 Ti,N l
s[Tc s]Tc slTc sc

2#N:2 Compressor
syic
| CPA |

T,

i

%i,p = sign(ﬁ"f, r;)

(c)

Fig. 9. Code matched filter with different arithmetic schemes. Part (a) shows a simple implementation using truncated conventional arithmetic. Part
(b) shows a truncated conventional implementation using CSAs. Part (c) shows a truncated online arithmetic implementation.

and throughput comparisons of the truncated online
arithmetic-based matched filter with the conventional
arithmetic schemes are now presented in the section below.
Note that the truncated arithmetic matched filter assumes
full precision intermediate calculations and truncation to
1 bit output. Even if intermediate calculations were not
done at full precision for the truncated conventional
arithmetic multiplier, the throughput estimates do not
change for the truncated multiplier since the critical path
does not change. The area estimates might be lowered,
depending on the amount of truncation needed to reliably
get the sign.

5.4 Area-Time Trade-Offs and Results

Fig. 10 presents the theoretical throughput comparisons of
the conventional arithmetic matched filter detector, the
conventional arithmetic matched filter detector using carry-
save adders, and a radix-4 online arithmetic-based matched
filter detector. The z-axis represents the input precision in
bits. The online arithmetic numbers use digits instead of bits
and, since we use a radix-4 system, each digit in online
arithmetic is equal to 2 bits in the conventional arithmetic
system. Hence, the truncated MSD detector starts at an
input precision of 2 bits, while the truncated 2 MSD
detector, which needs at least 4 input bits to produce
2 MSDs as output, starts at an input precision of 4 bits. We
can see that both the conventional arithmetic detectors have
logarithmic increase in gate delays with precision, while the
online detector has a linear increase in gate delay and is,
hence, slower for a full precision implementation. The
truncated detector schemes with 1 and 2 MSDs, however,
perform much better as they have a constant throughput
independent of the digit precision (see (10), (15)). The

conventional arithmetic implementation using carry save
adders also outperforms the simple conventional arithmetic
implementation by limiting the carry propagation delay.
Fig. 11 presents the corresponding theoretical area
comparisons for the detectors. It can be observed from the
figure that the truncated conventional arithmetic matched
filter detector using carry-save adders has better time
performance than a straightforward implementation with
nearly the same area. Full precision online arithmetic, on the
other hand, consumes more area than the conventional
schemes for low precision due to the use of a redundant

T T
=w— Truncated conventional

-6~ Truncated conventional with CSA
—— On-line (Full precision)

=8 Truncated On-line (2 MSDs)
—e— Truncated On-line (MSD)

=)
N
T

Time required (gate delays)

1 1
20 25 30 35

15
Input Precision (in bits)

Fig. 10. Theoretical throughput estimates for the truncated arithmetic
detectors in terms of gate delays.

1250

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

-
o
T

Area required (gates)

[N
o
w
T

—+— Truncated conventional
-6 Truncated conventional with CSA
=6~ On-line (Full precision)
=8- Truncated On-line (2 MSDs)
—e— Truncated On-line (MSD)

I I I

10% I I |
0 5 10 15

20 25 30 35

Input Precision (in bits)

Fig. 11. Theoretical area estimates for truncated arithmetic detectors in terms of logic gates.

+
IIIIIIIIIIIIIIIIII Ill

Fig. 12. VLSI prototype implementation of code matched filter using truncated online arithmetic.

number system, but soon starts giving benefits in area for
higher precision (> 16 bits) due to its digit-serial nature.
Though the area required by the online adders is constant
with precision (11), the online multiplier requires more area
with increasing precision (19). The truncated online arith-
metic schemes again give additional gains in area as the
multiplier area also becomes constant if the minimum
number of truncation digits is known. Thus, the two MSD
detector area estimates assume that the detector can provide
both 1 and 2 MSDs, while the 1 MSD detector area estimates
assume that the detector can only provide the MSD.

6 VLSI IMPLEMENTATION

VLSI implementations of the online and conventional
arithmetic design were carried out to test the theoretical
estimate curves and to test and verify the design.

A prototype implementation of the radix-4 online code
matched filter chip with dynamic truncation was done at
Rice by [42] as part of the VLSI design course using a
MOSIS Tiny Chip 0.5 1 AMI process. The online arithmetic
chip implementation is shown in Fig. 12. The chip consists
of four online multipliers and adders and accepts only up to
two MSDs as inputs and provides dynamic truncation for
1-4 digits of the output. Each chip can do a dot product of
length 4 and several chips can be connected in parallel for
processing higher spreading code lengths. The throughput
estimates of the design are valid for all spreading code
lengths due to pipelining of the adders and multipliers. The
first online multiplier is expanded to show its subcompo-
nents. BW represents the Baugh-Wooley multiplier. An-
other VLSI implementation [43] uses conventional
arithmetic and truncated multipliers with constant correc-
tion as a proof-of-concept comparison. Though the online

RAJAGOPAL AND CAVALLARO: TRUNCATED ONLINE ARITHMETIC WITH APPLICATIONS TO COMMUNICATION SYSTEMS

TABLE 1
Area-Time-Power Estimates of the Radix-4 Online
Arithmetic Code-Matched Filter Detector

Blocks Delay Area Power at 5V

(in ns) | (Transistors) (in mW)
Half-adder 0.80 18 0.0978
Full-adder 2.04 38 0.1369
3-bit CLA 3.32 120 0.3497
Latch - 18 0.1066

PLA - 985 10.9040
On-line adder 7.17 394 0.8765
On-line Multiplier (non-pipelined) | 16.42 2062 6.3001
On-line Multiplier (pipelined) 12.33 2962 10.4609
Total (without padframe) 12.33 15229 454331

Total (with padframe) 12.33 19917 -

arithmetic circuits were substantially larger than the
truncated conventional arithmetic circuits in area for the
chosen 8-bit output precision (which seemed to agree with
the theoretical estimates), exploiting parallelism for con-
ventional arithmetic was more difficult due to I/O pin
limitations. Since truncation using conventional arithmetic
has been well-studied [1], we only provide implementation
details for the truncated online arithmetic code matched
filter implementation below. Further information and
comparisons can also be obtained from the Rice VLSI signal
processing research page [44].

Table 1 shows the area, time, and power consumptions of
the basic blocks used in the detector implementation. Note
that the numbers are from a prototype implementation and
should only be used as a relative comparison between the
different blocks in the detector design. The chip die size was
2.2 x 4.4mm? and used around 15,000 transistors to imple-
ment four radix-4 truncated online multipliers and four
radix-4 online adders. The delay and power estimates
were obtained by a Spice analysis for a 0.5 ;1 AMI process.

7 CONCLUSIONS

We have presented truncated online arithmetic with
applications to communication systems. We show that
online arithmetic can support dynamic truncation while
simultaneously providing area and throughput benefits.
The benefits of online arithmetic are dependent on the
amount of truncation; the larger the difference between the
full precision and the truncated result, the greater the
benefits of online arithmetic are. In general, if the output
precision is greater than 8-16 bits and significant truncation
of the result is required, online arithmetic should be used
for both area and throughput benefits. We also show the
effect of truncation error on the least significant digit of the
truncated result for online arithmetic. In contrast, conven-
tional arithmetic systems do not support dynamic trunca-
tion, have minor throughput benefits, and can have
significant errors in the truncated results. Radix-4 online
arithmetic adders and multipliers were built in VLSI and
they provided support for dynamic truncation and the

1251

ability to interface with other conventional arithmetic
circuits. Thus, communication systems with conventional
arithmetic for saturation and truncated online arithmetic for
truncation can coexist in an optimized design for through-
put and power benefits.

ACKNOWLEDGMENTS

The authors are grateful to the students at Rice University
who helped in implementing and testing the truncated
conventional and truncated online arithmetic designs—
Predrag Radosavljevic, Manik Gadhiok, Nils Bagge, Noah
Deneau, Chad Cook, Richa Dubey, and Amy Lin. This work
was presented in part at the IEEE International Symposium
on Computer Arithmetic in Vail, Colorado, in 2001. This
work was supported by Nokia, Texas Instruments, and by
the US National Science Foundation under grants ANI-
9979465 and EIA-0224458.

REFERENCES

[1] MJ]. Schulte and E.E. Swartzlander, “Truncated Multiplication
with Correction Constant,” Proc. Workshop VLSI Signal Processing,
vol. VI, pp. 388-396, Oct. 1993.

[2] P.I Balzola, MJ. Schulte, J. Ruan, J. Glossner, and E. Hokenek,
“Design Alternatives for Parallel Saturating Multioperand Ad-
ders,” Proc. IEEE Int’l Conf. Computer Design (ICCD), pp. 172-177,
2001.

[3] M.J. Schulte, J.E. Stine, and J.G. Jansen, “Reduced Power
Dissipation through Truncated Multiplication,” Proc. IEEE Ales-
sandro Volta Memorial Workshop Low Power Design, pp. 61-69, Mar.
1999

[4] Z. Huang and M.D. Ercegovac, “Two-Dimensional Signal Gating
for Low-Power Array Multiplier Design,” Proc. IEEE Int’l Conf.
Circuits and Systems, vol. 1, pp. 489-492, May 2002.

[5] K.E. Wires, M.]. Schulte, and J.E. Stine, “Combined IEEE
Compliant and Truncated Floating Point Multipliers for Reduced
Power Dissipation,” Proc. IEEE Int’l Conf. Computer Design (ICCD),
pp- 497-500, Sept. 2001.

[6] M.D. Ercegovac, “Online Arithmetic: An Overview,” Proc. Real
Time Signal Processing VII, SPIE, pp. 86-93, Aug. 1984.

[71 E.G.Walters and M.]. Schulte, “Design Tradeoffs Using Truncated
Multipliers in FIR Filter Implementations,” Proc. SPIE: Advanced
Signal Processing Algorithms, Architectures, and Implementations, July
2002.

[8] S. Oraintara, Y.J. Chen, and T.Q. Nguyen, “Integer Fast Fourier
Transform,” IEEE Trans. Signal Processing, vol. 50, no. 3, pp. 607-
618, Mar. 2002.

[9] J. Markel and A. Gray Jr., “Fixed-Point Truncation Arithmetic
Implementation of a Linear Prediction Autocorrelation Vocoder,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 22, no. 4,
pp. 273-282, Aug. 1974.

[10] S. Rajagopal, S. Bhashyam, J.R. Cavallaro, and B. Aazhang, “Real-
Time Algorithms and Architectures for Multiuser Channel
Estimation and Detection in Wireless Base-Station Receivers,”
IEEE Trans. Wireless Comm., vol. 1, no. 3, pp. 468-479, July 2002.

[11] M.D. Ercegovac and T. Lang, “Online Arithmetic: A Design
Methodology and Applications in Digital Signal Processing,” Proc.
VLSI Signal Processing III, pp. 252-263, Nov. 1988.

[12] J. Bruguera and T. Lang, “2-D DCT Using Online Arithmetic,”
Proc. Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP),
vol. 5, pp. 3275-3278, May 1995.

[13] S. Rajagopal and J.R. Cavallaro, “Online Arithmetic for Detection
in Digital Communication Receivers,” Proc. 15th IEEE Int’l Symp.
Computer Arithmetic (ARITH-15), pp. 257-265, June 2001.

[14] T. Lynch and M.]. Schulte, “A High Radix Online Arithmetic for
Credible and Accurate Computing,” J. Universal Computer Science,
vol. 1, no. 7, pp. 439-453, July 1995.

[15] R. Mcllhenny and M.D. Ercegovac, “Online Algorithms for
Complex Number Arithmetic,” 32nd Asilomar Conf. Signals,
Systems, and Computers, pp. 172-176, Oct. 1998.

1252

[16] N.D. Hemkumar and J.R. Cavallaro, “Redundant and Online
CORDIC for Unitary Transformations,” IEEE Trans. Computers,
special issue on computer arithmetic, vol. 43, no. 8, pp. 941-954,
Aug. 1994.

[17] M.D. Ercegovac and A.L. Grnarov, “On the Performance of Online
Arithmetic,” Proc. Int’l Conf. Parallel Processing, pp. 55-62, Aug.
1980.

[18] M.D. Ercegovac and T. Lang, “On-the-Fly Conversion of Re-
dundant into Conventional Representations,” IEEE Trans. Compu-
ters, vol. 36, no. 7, pp. 895-897, July 1987.

[19] A. Avizienis, “Signed-Digit Number Representations for Fast
Parallel Arithmetic,” IRE Trans. Electronic Computers, vol. 10, no. 3,
pp- 389-400, Sept. 1961.

[20] S. Moshavi, “Multi-User Detection for DS-CDMA Communica-
tions,” IEEE Comm. Magazine, pp. 124-136, Oct. 1996.

[21] S. Verdd, Multiuser Detection. Cambridge Univ. Press, 1998.

[22] M. Honig, U. Madhow, and S. Verdd, “Blind Adaptive Multiuser
Detection,” IEEE Trans. Information Theory, vol. 41, no. 4, pp. 944-
960, July 1995.

[23]]. Chen, G. Shou, and C. Zhou, “High-Speed Low-Power Complex
Matched Filter for W-CDMA: Algorithm and VLSI Architecture,”
IEICE Trans. Fundamentals, vol. E83-A, no. 1, pp. 150-157, Jan. 2000.

[24] K. Chapman, P. Hardy, A. Miller, and M. George, “CDMA
Matched Filter Implementation in Virtex Devices,” Xilinx Appli-
cation Note XAPP212(v1. 1), Jan. 2001.

[25] T. Long and N.R. Shanbhag, “Low-Power CDMA Multiuser
Receiver Architectures,” Proc. IEEE Workshop Signal Processing
Systems, pp. 493-502, Oct. 1999.

[26] R.H. Walden, “Performance Trends in Analog-to-Digital Con-
verters,” IEEE Comm. Magazine, vol. 37, no. 2, pp. 96-101, Feb.
1999.

[27] I Seskar and N.B. Mandayam, “A Software Radio Architecture for
Linear Multiuser Detection,” IEEE]. Selected Areas in Comm.,
vol. 17, no. 5, pp. 814-823, May 1999.

[28] N. Zhang, A. Poon, D. Tse, R. Brodersen, and S. Verdd, “Trade-
Offs of Performance and Single Chip Implementation of Indoor
Wireless Multi-Access Receivers,” Proc. IEEE Wireless Comm. and
Networking Conf. (WCNC), vol. 1, pp. 226-230, Sept. 1999.

[29] B. Parhami, Computer Arithmetic—Algorithms and Hardware De-
signs. Oxford Univ. Press, 2000.

[30] S. Waser and M.]. Flynn, Introduction to Arithmetic for Digital
System Designers. CBS College Publishing, 1982.

[31] L Koren, Computer Arithmetic Algorithms. Prentice Hall, 1993.

[32] J.G. Proakis and M. Salehi, Communication Systems Engineering.
Prentice Hall, 1994.

[33] A. Gorji-Sinaki and M.D. Ercegovac, “Design of a Digit-Slice
Online Arithmetic Unit,” Proc. Fifth IEEE Symp. Computer
Arithmetic, pp. 72-80, May 1981.

[34]]J.S. Fernando and M.D. Ercegovac, “Conventional and Online
Arithmetic Designs for High-Speed Recursive Digital Filters,”
Proc. Fifth IEEE Workshop VLSI Signal Processing, pp. 81-90, Oct.
1992.

[35] M.D. Ercegovac, “A General Hardware-Oriented Method for
Evaluation of Functions and Computations in a Digital Compu-
ter,” IEEE Trans. Computers, vol. 26, no. 7, pp. 667-680, July 1977.

[36] A. Guyot, Y. Herreros, and J-M. Muller, “JANUS: An Online
Multiplier/Divider for Manipulating Large Numbers,” Proc. Ninth
IEEE Symp. Computer Arithmetic, pp. 106-111, Sept. 1989.

[37] AF. Tenca, M.D. Ercegovac, and M.E. Louie, “Fast Online
Multiplication Units Using LSA Organization,” Proc. Advanced
Signal Processing Algorithms, Architectures, and Implementations IX,
SPIE, pp. 74-83, July 1999.

[38] C.R. Baugh and B.A. Wooley, “A Two’s Complement Parallel
Array Multiplication Algorithm,” IEEE Trans. Computers, vol. 22,
no. 12, pp. 1045-1047, Dec. 1973.

[39] K’A.C. Bickerstaff, E.E. Swartzlander, and M.]. Schulte, “Analysis
of Column Compression Multipliers,” Proc. IEEE Int’l Symp.
Computer Arithmetic, pp. 33-39, June 2001.

[40] G. Wang and M. Tull, “The Implementation of an Efficient and
High-Speed Inner-Product Processor,” Proc. 35th Asilomar Conf.
Signals, Systems, and Computers, vol. 2, pp. 1362-1366, Oct. 2001.

[41] N. Azakova, R. Sung, N. Durdle, M. Margala, and J. Lamoureux,
“Fast and Low-Power Inner Product Processor,” Proc. 2001 IEEE
Int’l Symp. Circuits and Systems (ISCAS), vol. 4, pp. 646-649, May
2001.

[42] P. Radosavljevic, M. Gadhiok, and N. Bagge, “Online Arithmetic
Matched Filter Detector,” Dec. 2002.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 10, OCTOBER 2006

[43] C. Cook, N. Deneau, R. Dubey, and A. Lin, “Conventional
Arithmetic Matched Filter Detector,” Dec. 2002.

[44] “VLSI Signal Processing Research at Rice University,” http://
www.ece.rice.edu/~cavallar/vlsi, 2006.

Sridhar Rajagopal (S'98, M'04) received the
MS and PhD degrees in electrical and computer
engineering from Rice University, Houston,
Texas, in 2000 and 2004, respectively, and the
BE degree (Hons. with Distinction) in electronics
engineering from VJTI, Mumbai University,
India, in 1998. He is currently a member of the
technical staff at WiQuest Communications,
working on Ultra Wide Band (UWB) communica-
tion systems. His research interests are in
wireless communications, VLSI signal processing, computer arithmetic,
and computer architecture. He is a member of the IEEE.

E

Joseph R. Cavallaro (S’'78, M’'82, SM’'05)
received the BS degree from the University of
| Pennsylvania, Philadelphia, in 1981, the MS
.~ degree from Princeton University, Princeton,
i New Jersey, in 1982, and the PhD degree from
| | Cornell University, Ithaca, New York, in 1988, all
| in electrical engineering. From 1981 to 1983, he
was with AT&T Bell Laboratories, Holmdel, New
‘ Jersey. In 1988, he joined the faculty of Rice
University, Houston, Texas, where he is cur-
rently a professor of electrical and computer engineering. His research
interests include computer arithmetic, VLSI design and microlithogra-
phy, and DSP and VLSI architectures for applications in wireless
communications. During the 1996-1997 academic year, he served at the
US National Science Foundation (NSF) as director of the Prototyping
Tools and Methodology Program in the Computer (CISE) Directorate.
During 2005, he was a Nokia Foundation Fellow and a visiting professor
with the Centre for Wireless Communications at the University of Oulu,
Finland. He is currently the associate director of the Center for
Multimedia Communication at Rice University. Dr. Cavallaro is a
recipient of the NSF Research Initiation Award and is a member of
Tau Beta Pi, Eta Kappa Nu, ACM, and a senior member of the IEEE. He
is an IEEE Computer Society Distinguished Lecturer, 2004-2006, and
was cochair of the 2004 Signal Processing for Communications
Symposium at the IEEE Global Communications Conference and
general cochair of the 2004 IEEE 15th International Conference on
Application-specific Systems, Architectures and Processors (ASAP).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

